1 Safeguarding nutrients from coral reefs under climate change

2	Camille Mellin ^{1,*} , Christina C. Hicks ² , Damien A. Fordham ¹ , Christopher D. Golden ³ , Marian Kjellevold ⁴ , M.
3	Aaron MacNeil ⁵ , Eva Maire ² , Sangeeta Mangubhai ⁶ , David Mouillot ⁷ , Kirsty L. Nash ^{8,9} , Johnstone O.
4	Omukoto ^{2,10} , James P. W. Robinson ² , Rick D. Stuart-Smith ⁸ , Jessica Zamborain-Mason ^{3,11,12} , Graham J.
5	Edgar ⁸ , Nicholas A. J. Graham ²
6	
7	¹ The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
8	² Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
9	³ Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
10	⁴ Institute of Marine Research, Bergen, Norway
11	⁵ Ocean Frontier Institute, Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
12	⁶ Talanoa Consulting Fiji, Suva, Fiji
13	⁷ MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, MARBEC, Montpellier, France
14	⁸ Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7001 Australia.
15	⁹ Centre for Marine Socioecology, University of Tasmania, Hobart, TAS 7001 Australia.
16	¹⁰ Kenya Marine and Fisheries Research Institute, Mombasa, Kenya
17	¹¹ ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811 Australia
18	¹² College of Science and Engineering, James Cook University, Townsville, QLD 4811 Australia
19	*Corresponding author: camille.mellin@adelaide.edu.au
20	
21	ORCIDs
22	Aaron MacNeil 0000-0001-8406-325X
23	Kirsty Nash 0000-0003-0976-3197
24	Rick Stuart-Smith 0000-0002-8874-0083
25	Jessica Zamborain-Mason 0000-0002-4705-0166

26 Johnstone O. Omukoto 0000-0003-2318-1310

- 27 Christopher D. Golden 0000-0002-2258-7493
- 28 Sangeeta Mangubhai 0000-0002-4728-4421
- 29 Marian Kjellevold 0000-0001-7070-5784
- 30 Christina Hicks 0000-0002-7399-4603
- 31 Nicholas Graham 0000-0002-0304-7467
- 32 Eva Maire 0000-0002-1032-3394
- 33 James Robinson 0000-0002-7614-1112
- 34 Graham Edgar 0000-0003-0833-9001
- 35 David Mouillot 0000-0003-0402-2605
- 36 Damien Fordham 0000-0003-2137-5592
- 37
- 38 Key words
- 39 Climate change; coral bleaching; ecological indicators; fisheries; food security; micronutrients; seafood
- 40

41 Abstract

42 The sustainability of coral reef fisheries is jeopardized by complex and interacting social-ecological 43 stressors that undermine their contribution to food and nutrition security. Climate change has emerged 44 as one of the key stressors threatening coral reefs and their fish-associated services. How fish nutrient 45 concentrations respond to warming oceans remains unclear but is likely affected by both direct 46 (metabolism, trophodynamics) and indirect (habitat, species range shifts) effects. Climate-driven coral 47 habitat loss can cause changes in fish abundance and biomass, revealing potential 'winners' and 'losers' 48 among major fisheries targets that can be predicted using ecological indicators and biological traits. A 49 critical next step is to extend research focused on the quantity of available food (fish biomass) to also 50 consider its nutritional quality, which is relevant to progress in the fields of food security and 51 malnutrition. Biological traits are robust predictors of fish nutrient content, and thus potentially indicate 52 how climate-driven changes are expected to impact nutrient availability within future food webs on 53 coral reefs. Here we outline future research priorities and an anticipatory framework towards 54 sustainable reef fisheries contributing to nutrition-sensitive food systems in a warming ocean.

56

57 The world's coral reefs support extraordinary biodiversity and provide essential ecosystem services, including food and income to over 500 million people¹, and up to 90% of animal protein in some 58 countries across the Pacific and Indian Oceans²⁻⁴. Small-scale reef fisheries are particularly crucial in 59 coastal and rural areas where they often provide the majority of fish consumed⁵, and are socially and 60 culturally important⁶. Aquatic foods are a unique dietary source of iodine, vitamin D, and the long-61 62 chained n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and are also a valuable source of bioavailable micronutrients, including iron, zinc, vitamin A, and B_{12}^{7} . Deficiencies of 63 64 these micronutrients are linked to a growing 'triple burden of malnutrition', which refers to the 65 coexistence of overnutrition, undernutrition, and micronutrient deficiencies, responsible for impaired cognitive development and accounting for a million premature deaths per year⁸⁻¹⁰. Fish therefore hold 66 potential to help address these deficiencies, particularly where nutrient intakes are inadequate^{8,11} (Fig. 67 1A). However, coral reefs are highly vulnerable to both overfishing¹² and climate change¹³, stressing the 68 need to better understand the current, and potential future, contributions of coral reef fisheries to 69 70 human health¹¹.

71 Global development has led to complex shifts in food supply and demand through increases in 72 wealth, human population size, urbanisation, and the globalization of trade and transport. Through the 73 global fish trade, reef fish can now be sold at high prices in European seafood markets and luxury restaurants¹⁴ (Fig. 1B, C), while the aquarium trade can target species caught by small-scale fishers, 74 75 some of which would have been consumed locally¹⁵. These globalising markets erode reef fish biomass, 76 resulting in catch declines that can force fishers to travel further offshore, increasing inequalities 77 between those who can afford larger and more powerful boats to maintain production and those who 78 cannot¹⁶. Global demand for reef fish through trade also drives market prices up, which can make fish

unaffordable for local consumers¹⁷. In parallel, diets in these countries can be influenced by preferences
shifting towards a greater demand for meat and a reliance on imported, often processed or high-starch
root crop foods characterized by lower nutrient quality^{18,19}, potentially heightening the risk of metabolic
diseases and micronutrient deficiencies^{11,19}. Together, the rapidly changing socioeconomic context, as is
characteristic in tropical regions, simultaneously exacerbates declines in nutrient-rich foods, particularly
where nutrient gaps (e.g., East Africa)⁸ and increases in diet-related diseases (e.g., Pacific islands)¹⁰ are
apparent¹¹.

86

87 Essential ecosystem services under pressure from climate change

88 Socioeconomic pressures on coral reefs, including overfishing and the global fish trade, are exacerbated 89 by climate-driven coral bleaching and other ongoing environmental stresses, including extreme weather 90 events (e.g., tropical cyclones, tsunamis), sea level rise, reduced water quality, ocean acidification, and 91 invasive species (Fig. 2). Of particular concern, increasingly frequent and severe marine heatwaves 92 disrupt the provision of ecosystem services, with foundational species such as reef-building corals among the most affected taxa²¹. Although algal growth following coral loss can support higher 93 biomass²²⁻²⁴ and productivity²⁵ of herbivorous species under moderate fishing pressure, the resulting 94 catch instability that can arise from spatiotemporal variation in reef recovery²² has the potential to 95 negatively impact local market supply chains, including fisher incomes and consumer access to seafood, 96 97 with potential implications for food and nutrient intakes. 98 Importantly, climate change and human activities interact in many ways, reinforcing pressures on

coral reefs that ultimately threaten both ecosystem structure and functioning (Fig. 2). For example,

100 herbivore depletion through overharvesting can impede post-bleaching coral recovery¹³, especially on

101 reefs where structural complexity has been degraded²⁶. In turn, the loss of reef structural complexity

102 can reduce recruitment of juvenile fishes and the replenishment of fish stocks²⁷. The consequences of

interactions between climate change and other human-driven processes range from the collapse of reef
 structure and associated fish stocks²⁸ to novel benthic communities dominated by stress-tolerant and
 'weedy' taxa, where some ecological functions can persist to some extent^{29,30}, to increased prevalence
 of toxic microalgae and ciguatoxins³¹.

107 Future climate projections unanimously predict that without immediate intervention to reduce 108 harmful greenhouse gas emissions, most ecosystem services provided by coral reefs will be severely degraded by the end of the century³². Such detrimental effects of climate change on seafood production 109 110 in the world's poorest countries will not be counteracted by agricultural production, since 90% of the 111 world's population are projected to experience losses of food production in both sectors simultaneously³³. Understanding how nutrient availability from coral reef fisheries respond to 112 113 environmental change will offer potential pathways for maintaining and even boosting access to 114 nutrient-dense seafood under climate change. Managing these fisheries so that they sustain or even 115 increase the nutritional value of harvested stocks in the face of global warming will have many benefits 116 for human health. These potential benefits likely apply to all coral reef fisheries, not only those targeting 117 coral reef finfish (the focus of this paper) but also those including other reef organisms such as algae and 118 invertebrates, for which data are severely lacking.

119 Here, we outline the key ecological knowledge gaps and research priorities required to support 120 the future potential contribution of coral reef fisheries to food and nutrition security under climate 121 change. We focus on the impacts of a warming ocean, including both gradual warming and acute marine 122 heatwaves, which have been identified as the primary drivers of coral reef habitat loss³⁴. We argue that 123 coral reef management practices currently focusing on fish stocks must be reorientated to sustain and 124 protect nutritional benefits as well. This needs robust projections for the species that are the most likely 125 to provide essential nutrients in warmer oceans and the knowledge of functional traits that characterize 126 them. Achieving this objective requires understanding the environmental factors and trophic pathways

that underpin macro- and micronutrient concentrations in fishes, and how these are likely to change in a
warmer ocean with degraded coral reefs. Looking forward, we propose an anticipatory approach for
defining safe operating spaces for multiple ecological and social objectives. These much-needed
advances are now ready for development and will form the cornerstone of future management
interventions to minimize impacts, and to improve the adaptive capacity of human societies that rely on
coral reef fisheries for food and nutrition.

133

134 Unlocking the trophic pathways behind fish nutrient quality in warmer oceans

135 Environmental determinants of fish nutrient profiles

136 Recent research has revealed the environmental and biotic correlates of fish nutrient content at the species level (e.g., diet; energetic demand; thermal regime)³⁵, shedding light on the determinants of 137 138 interspecific variability in nutrient quality. However, the extent to which nutrient profiles differ intra-139 specifically over space (e.g., at biogeographic scales) or time (in response to global warming) is still 140 poorly known. A better understanding is required of the potential mechanisms by which fishes 141 accumulate their nutrients, and how these mechanisms respond to thermal stress and habitat loss, both 142 directly (trophodynamics, metabolism) or indirectly (fish microbiome). Trophodynamics determine the 143 flow of energy and nutrients through food webs, and thus can predict how fish assimilate bioavailable 144 nutrients or synthesize them from other precursors³⁶. Importantly, fish diet composition and metabolic 145 rates, two major determinants of the nature and strength of trophic pathways, might both be affected 146 by global warming.

Fishes primarily derive nutrients from diet, and diet composition is impacted by climate-driven changes in food composition and availability across multiple pathways, including primary and secondary producers. Ocean biogeochemical dynamics such as changes in light, temperature and nutrient availability can differentially affect the composition and abundance of phytoplankton communities³⁷,

151 and microphytobenthos, including *Gambierdiscus toxicus*, the ciguatera-producing dinoflagellate³⁸. 152 Secondary producers may also respond to changing habitats independently from changes in primary 153 producers. For example, dominant epifaunal crustacean taxa vary massively between live coral habitats and dead coral rubble, especially in terms of size structure and productivity³⁹. Changes in nutrient 154 155 profiles of primary and secondary producers can propagate through the food web to higher trophic 156 levels⁴⁰ and, in turn, have consequences for the structure and nutrition profile of fish populations and fishery stocks⁴¹. For example, warmer temperatures reduce fatty acid production in phytoplankton⁴¹⁻⁴³. 157 158 Because plankton is the main source of omega-3 for fishes, this would ratchet down the omega-3 levels in most species, including apex predators⁴⁴. 159

160 Most fish species are characterized by mixed diets, suggesting a degree of versatility and opportunism as available food sources change in response to coral bleaching and habitat loss^{45,46}. 161 Likewise, some tropical species are moving towards temperate areas as oceans warm⁴⁷⁻⁴⁹, leading to 162 163 novel biotic interactions including potential competition between temperate, sub-tropical, and tropical 164 species. This implies a degree of adaptability in fish diet for at least some fish species, in particular ecological generalists⁵⁰, likely driving a shift in their nutrient concentration. This also suggests the 165 existence of dynamic spatial gradients in fish nutrient profiles at biogeographic scales, which have so far 166 167 remained largely unexplored.

Metabolism is predominantly driven by temperature, which determines the rate at which food is processed and assimilated by biological organisms, and further translates to somatic growth⁵¹. Warmer temperatures induce faster exothermic biogeochemical reactions and higher metabolic rates, and thus faster and less efficient biomass transfer across the food web, especially in tropical ecosystems⁵². This is because, at each trophic level, large energy losses are induced by respiration and metabolic processes that scale with temperature. Yet, whether nutrient assimilation efficiency at each trophic level will similarly be affected by warmer temperatures remains unknown.

175 Microbiomes can also play an indirect yet likely important role in the way that fish assimilate 176 nutrients but remain a key gap in our understanding of reef trophodynamics. In particular, little is known 177 regarding the environmental drivers of fish hindgut microbiome composition, although a recent study 178 suggests high regional variability in fish gastrointestinal microbial composition and associated nutritional 179 outcomes⁵³. For corals, microbial community composition can be affected by thermal stress, leading to a 180 metabolic shift from autotrophy to heterotrophy, and altered metabolism of fatty acids, contributing to a deterioration in coral health⁵⁴. Altogether, these examples suggest that microbiomes can be 181 182 influenced by environmental variation at various stages of trophodynamic pathways that determine fish 183 nutrient profiles, but more research is required to assess the generality of these results and embed 184 them into trophodynamic ecosystem models.

185

186 *Climate impacts on potential nutrient yields from multispecies fisheries*

187 Nutrient changes at the species level scale up to determine community-level nutrient concentrations, with the potential to globally affect the nutritional quality of multispecies fisheries, for instance through 188 enriched iron and zinc concentrations in fish living on regime-shifted macroalgal reefs⁵⁵ (Box 1). This is 189 190 influenced by compositional shifts in fish communities, with some species declining in abundance 191 (losers) in response to marine heatwaves and other climate drivers, while others can increase (winners) due to more abundant and better-quality food resources^{22,25}, greater stress tolerance, competitiveness 192 or better ability to recolonize habitats after a disturbance⁵⁰. The species composition of fisheries catches 193 194 determines their nutritional quality, according to predictable interspecific variation in fish nutrient levels³⁵, implying that climate-driven compositional shifts are likely to impact the potential of fisheries to 195 196 supply key nutrients in support of human health. For example, browsing herbivores (e.g., rabbitfishes, 197 family Siganidae) are relatively rich in iron, whereas piscivores have the highest omega-3 concentrations among reef fishes^{56,57}. Therefore, iron content may rise in fishery catches following climate-driven 198

increases in herbivore biomass, whether through (i) increased algal productivity after coral mortality²³ or 199 200 (ii) increased temperature placing herbivorous species closer to their thermal optima (e.g. in higher latitude reefs and subtropical regions) and, thus optimal fitness^{24,58}. In contrast, size-based food web 201 202 models predict declines in piscivore productivity following the collapse of coral habitat structure and 203 subsequent declines in prey populations²⁸, which may reduce omega-3 fatty acids in fishery catches. 204 The long-term implications of climate change for nutrients supplied by reef fisheries will 205 ultimately depend on how fish populations from different species collectively respond to the 206 combination of warming (gradual and more frequent extreme events) and habitat changes (including reductions in primary production, ocean acidification and deoxygenation⁵⁹). By 2050, the combination of 207 208 poleward species redistributions, declines in habitat suitability, reduced species richness along the equator (as some species exceed maximum thermal limits)⁶⁰, and reduced primary productivity is 209 expected to decrease global fisheries catch potential⁶¹, diminishing nutrient yields from coral reefs⁶². 210 211 Collectively, gradual warming and more frequent marine heatwaves will modify the rates at which fish 212 assimilate energy and nutrients, influencing the quantity and quality of multispecies catches in warmer 213 oceans, and substantially altering the future contribution of reef fisheries to both food and nutrition 214 security.

215

216 Indicators of nutrient availability from climate-impacted reefs

217 Information on inter and intra-specific shifts in reef fish nutritional quality is fundamental to

218 understanding the effect of environmental change on nutrient production from coral reef fisheries.

However, our capacity to effectively monitor shifts in fisheries nutrient production will rely on careful

- selection of biological traits and ecological indicators that can reveal the vulnerability of coral
- 221 communities to climate impacts and subsequent responses of fish communities⁶³.

222 Biological traits relevant to diet, thermal regime or energetic demand are strong predictors of the nutrient profile of fish species³⁵. Furthermore, the response of fish communities to changes in coral 223 224 composition and associated structural complexity likely depends on species traits rather than taxonomic composition per se. Species traits represent a suite of 'Essential Biodiversity Variables'⁶⁴ that can reflect 225 226 trophic ecology, metabolic theory, or life history strategy, and thereby provide novel indicators to 227 monitor the capacity of reef ecosystems to support essential ecological functions linked to ecosystem 228 services such as food and nutrition security (Box 2). Yet, many of the potential relationships between 229 biological traits, pressures and habitat types, and consequences on the nutritional quality of reef 230 fisheries remain to be explored, particularly from the perspectives of sustainability and resilience of ecosystem processes and services⁶⁵ (but see e.g. Maire et al. 2021⁶⁶) (Table 1). 231

232 Understanding how changes in reef habitats will impact nutrient supply requires quantifying the 233 degree to which each species (or trait) relies on healthy coral reefs, and their ability to cope with 234 alternative reef ecosystem states. Reef health assessments have typically focused on total live hard coral 235 cover, an essential indicator⁶⁷ of reef condition that allows for cross-comparisons among regions and 236 ecosystems when measuring the impact of chronic and acute disturbances on coral reefs. However, climate-induced changes in total hard coral cover can obscure changes in coral community composition, 237 e.g., from the dominance of fast-growing, branching and tabular species that are important providers of 238 239 three-dimensional habitat, to depauperate communities dominated by taxa with simpler morphologies 240 and slower growth rates³⁰. It follows that fish species that are not particularly reliant on a specific coral 241 habitat tend to have a competitive advantage over habitat specialists as benthic communities shift in composition⁵⁰. Therefore, an important remaining question is whether the extent of habitat 242 243 specialisation, potentially inducing diet specialisation, can also predict fish nutrient profile. If so, a community-weighted mean of the species generalisation index⁵⁰ could provide an important tool to 244 245 track nutritional changes at the community level in response to changes in benthic habitats.

246 The structural complexity of a coral reef, built by the living coral veneer and sustained by the underlying old reef matrix, is a key determinant of reef fish abundance and diversity⁶⁸ with potentially 247 important implications in terms of nutrition. For example, the scale of complexity in hard reef structure 248 affects where abundance peaks occur in the size spectrum of fish present on the reef⁶⁹. Following coral 249 250 mortality, reef structure can remain intact in the short-term, sustaining fish communities aside from 251 specialist species that require live coral for food or shelter. However, reef structures dominated by dead corals are vulnerable to physical and biological erosion, and may begin to collapse within five years⁷⁰. 252 Subsequent loss of structural complexity can drive declines in fish diversity by 50%⁷¹, homogenise 253 community composition among habitat types⁷², and change fish size structure by depleting abundances 254 of small-bodied individuals⁷³. Size-based food web models predict that such changes to benthic 255 structure could result in a 35% decline in fisheries productivity²⁸. Moreover, turf and macroalgae can 256 257 proliferate after coral mortality and loss of reef structure, forming alternate benthic regimes that typically support bottom-heavy trophic pyramids⁷⁴. Non-linear relationships between algal cover and 258 259 herbivore biomass⁷⁵ suggest the existence of benthic thresholds triggering shifts in fish community 260 composition, which may help to better predict the biomass, productivity and nutritional quality after coral mortality (Box 1). 261

While evidence suggests that higher functional redundancy (i.e., higher number of species with 262 263 similar ecological functions) can initially buffer communities against the detrimental impact of disturbances^{76,77}, the general trend over time is a loss of functional redundancy⁷⁶ and biotic 264 265 homogenisation^{50,72} in response to habitat degradation under increasing disturbance regimes. However, 266 the consequences for nutritional quality at the community level remain unknown, and future research will need to assess which species traits matter most for predicting winners and losers from a nutrition 267 perspective (Box 2; Table 1). While nutrient profiles have been predicted from phylogeny⁷⁸ and traits³⁵, 268 269 only one study has related nutrient profiles to traits that reflect species vulnerability to environmental

changes⁶⁶. This information is necessary to determine how coral and fish traits can be used to derive 270 conservation and resource management policies in the face of changing climate⁷⁹, in particular those 271 relevant to future food and nutrition security from coral reef fisheries³⁵ (Box 2). It will also help prioritize 272 273 the indicators that long-term monitoring programs should focus on in the future and determine the 274 taxonomic scope and resolution required for making such inferences. For example, collecting data on 275 benthic cover at the species level can be extremely difficult and time consuming, whereas automated 276 image analysis might provide a cost-effective proxy of habitat condition for predicting nutritional outcomes. A key priority for future research should thus focus on using existing, extensive datasets^{57,80} 277 278 to identify the most reliable and cost-effective ecological indicators of fish community nutritional 279 responses to climate change (Box 2; Table 1).

280

281 Balancing food security, ecosystem functioning and other socio-ecological goals

282 The ecological management of multi-species fisheries on tropical reefs is challenging because fisheries and landing sites are widely dispersed, catches are often unreported⁸¹, and formal governance, 283 monitoring, and management are often lacking⁸². However, the need for sustainable reef fisheries has 284 285 motivated the search of solutions through alternative fisheries-independent biomass-based models, showing that fishing can be compatible with the maintenance of key ecosystem functions⁸³. These 286 approaches have typically aggregated fish communities into either total biomass⁸³ or trophic group 287 biomass¹² and used space-for-time substitutions of large observational datasets to infer temporal 288 289 dynamics. Consistently, such work has shown that, out of a total unfished biomass averaging ~1000 kg/ha¹², fishing down to approximately 50% of total unfished biomass tends to maintain important reef 290 ecosystem structure and function⁸³ and that there are clear benefits from having some form of reef 291 management in place^{12,84}. 292

293 Maximizing sustainable production while maintaining ecosystem functioning is a major goal in 294 coral reef fisheries science, but it is not the only one. Maximizing economic yield, incorporating socio-295 cultural dimensions, and addressing nutrient deficiencies³⁵ are important goals that also need to be 296 considered where coral reef fisheries operate. This broad range of objectives and the potential for 297 synergies and trade-offs among them, raises the importance of defining a safe operating space for coral 298 reefs informed by multiple social and ecological dimensions (Fig. 3). Within this framework, boundaries 299 that delineate safe operating spaces need to be jointly defined based on indicators for multiple 300 dimensions. For example, a safe zone is one that allows for sustainable yield while delivering nutritional 301 quality, and still preserving functional diversity. Monitoring of indicators and targets relevant to each 302 goal, and comparison to safe zone boundaries will be necessary to assess the overall performance and 303 sustainability of coral reef fisheries and will ultimately support efforts to maximise synergies and 304 minimise trade-offs. The combination of maximum sustainable yield, maximum economic yield, and 305 recent developments in modelling maximum nutrient yield for fisheries now provides an 306 interdisciplinary framework for comparing nutritional outcomes with other ecological and socio-307 economic objectives⁸⁵.

308 A key question for reef fisheries management is how models of reef fisheries and biomass-based 309 targets should be adapted to incorporate potential nutritional benefits while handling uncertainty 310 surrounding the future composition and abundance of reef fish communities impacted by ongoing 311 environmental changes⁸⁶. These multi-species models will need to account for future changes in fish 312 nutritional content as well as food safety parameters that, while beyond the scope of this paper, are likely to change with e.g., increasing levels of methylmercury in warmer oceans⁸⁷. A critical first step will 313 314 be to collate comprehensive food composition and safety databases from small-scale domestic fisheries, 315 along with country-specific statistics on catches, local consumption, and consumer preferences (Table 316 1), which are still crucially lacking in many coral reef countries.

Temperature-dependent models⁸⁸ that also account for species range shifts⁸⁹ and life history 317 traits⁹⁰ will then be needed to project future changes in fisheries contributions to food and nutrition 318 319 security, and accounting for associated uncertainty (Box 2). For example, work from temperate 320 ecosystems has shown that the direction and magnitude of the expected maximum sustainable yield is 321 sensitive to factors such as taxonomy, ecoregion, and life history⁸⁸, providing promising insights for coral 322 reef fisheries. Together, a combination of these approaches and their spatially explicit extensions will 323 help identify which target species are most susceptible (losers) to negative impacts and which ones will 324 thrive (winners) under future environmental changes (Box 1).

325 This knowledge will contribute to a better understanding of how future environmental changes 326 will alter the ecological capacity of coral reef fisheries, their associated nutrient supply, and the flows of 327 these nutrients to consumers. These data will allow fisheries management to be governed not only by 328 ecological and economic priorities, but also through the lens of human nutritional vulnerability and 329 needs, in order to harness the species that will thrive to their fullest nutritional potential (Table 1). 330 Enhancing the contribution coral reefs can make to future food and nutrition security will ultimately 331 need a holistic approach that incorporates improved local management of small-scale domestic fisheries⁸⁴ and agriculture with integrated and targeted programs that provide vulnerable societies with 332 healthy and sustainable diets¹⁸, such as socio-economic incentives, nutrition-sensitive policies, and 333 integration into education¹⁸, as well as public nutrition (e.g. schools) programs⁹¹. At larger scales, 334 335 inclusion of food and nutrition security experts into the development of international trade agreements 336 will be essential to ensure nutrient-rich catches are retained for vulnerable populations¹⁷ and provide a 337 key resource in addressing nutrient deficiencies (Table 1).

338

339 Conclusion

340 Coral reef fisheries represent an important resource for addressing micronutrient deficiencies, 341 particularly in countries where reef dependency is high, and these deficiencies are most acute. Yet, the 342 complex interplay between climate change and other social-ecological stressors are increasingly 343 impacting reef ecosystem structure and functioning, with major consequences for ecosystem services 344 that support food provision and nutrition. Our capacity to adapt to novel fish communities based on 345 fewer or different coral reefs will rely on a better understanding of the modified trophic pathways that 346 will affect the nutrient profiles of fished species, and how these changes will propagate from individual 347 fish to entire communities, throughout food webs. Transdisciplinary approaches are required to fill 348 knowledge gaps and inform fisheries management policies, from the collection of baseline data on 349 catches and domestic consumption of reef-based seafoods, to the identification of safe operating spaces 350 for future coral reef fisheries, and their uptake in the management of local fisheries and regulation of 351 trade and export markets. Addressing such key priorities will provide important opportunities towards 352 much needed "nutrition-sensitive" approaches to fisheries management and conservation.

353

354 Correspondence should be addressed to Camille Mellin.

355

356 Acknowledgements

357 Australian Research Council funding supported CM (FT200100870), KLN (DE210100606) and RSS

358 (FT190100599). MAM is supported by the NSERC Canada Research Chairs Program. JPWR received

359 funding from a Leverhulme Trust Early Career Fellowship. NG received funding from the Royal Society

360 (URF\R\201029), and from the European Union's Horizon 2020 research and innovation programme

361 under grant agreement No 820989 (project COMFORT). CCH receives funding from a European Research

362 Council Starting Grant (759457) and a Philip Leverhulme Prize. CDG and JZM receive funding from the

- 363 National Science Foundation CNH-L 1826668 and the John and Katie Hansen Family Foundation. DM is
- 364 supported by the 2017-2018 Belmont Forum and BiodivERsA REEF-FUTURES project under the

BiodivScen ERA-Net COFUND program and with the funding organization ANR. The work reflects only

- the authors' view; the European Commission and their executive agency are not responsible for any use
- that may be made of the information the work contains.
- 368

369 Author contributions

- 370 C.M. conceptualized the structure and content of the manuscript after discussion with C.C.H. and
- N.A.J.G. C.M. wrote an initial draft. D.A.F., C.D.G., M.K., M.A.M., E.M., S.M., D.M., K.L.N., J.O.O., J.P.W.R.,
- R.D.S.-S., J.Z.-M., G.J.E. expanded upon the ideas, and engaged in discussion and editing of the final
- 373 manuscript.
- 374
- **375** Competing interests
- 376 The authors declare no competing interests.

378 Figure legends

379 Figure 1. Addressing inadequate micronutrient intake in coral reef countries requires policies that integrate the 380 global fish trade dynamics with food and nutrition security policy. (a) Risk of inadequate micronutrient intake (%) 381 (average across seven nutrients and reproduced from Golden et al. 2021¹¹) in coastal countries is often high for 382 countries with coral reefs (data from UNEP-WCMC²⁰; in cyan). Countries with no maritime Exclusive Economic Zone 383 are shown in light grey, and countries smaller than 25,000km² are shown as dots. (b) Blue-barred parrotfish (Scarus 384 ghobban) sold in France and (c) red snapper (Lutjanus spp.) sold in London, both more than 3,500-km from their 385 closest potential point of capture (based on the shortest great-circle distance to the Red Sea; photos from J. 386 Robinson and E. Maire). 387 388 Figure 2. Impacts of climate change and other human stressors on access to reef-based food and nutrition. 389 Amplification of social-ecological stressors linked to global change (blue) disrupts the provision of ecosystem 390 services provided by coral reefs (green) in support of food and nutrition security. As human activities continue to 391 increase greenhouse gas emissions, pollution and overharvesting (blue arrow), safeguarding food and nutrition 392 security traditionally supported by healthy coral reefs (green arrow) will require adaptation to novel coral reef 393 communities and the identification of 'winners' vs. 'losers' among fish species, not only in terms of biomass but 394 also nutritional value. Images from Shutterstock.com; used with permission.

395

396 Figure 3. Safe operating spaces for coral reef fisheries and interactions between multiple indicators. (a) Safe 397 operating spaces for multiple dimensions of coral reef fisheries, including ecosystem structure and function, 398 ecosystem services, and social goals. Colours of the different dimensions of coral reef fisheries correspond to their 399 status in relation to the boundaries, e.g., reef habitats are shaded red as in this example they have crossed the 400 ecological ceiling (red boundary) and are now in such a depauperate state that irreversible changes have occurred. 401 Safe zones (green) and boundaries (orange) need to be jointly defined for multiple interacting dimensions, as 402 illustrated in (b). (b) Examples of interactions between indicators of three dimensions include trade-offs (e.g., 403 functional richness declines with increasing catch biomass), synergies (e.g., mean calcium concentration of the 404 catch increases with increasing functional richness), or scale dependent interactions (e.g., mean calcium

- 405 concentration of the catch is higher at intermediate levels of catch biomass). Status of each dimension (a),
- 406 relationships between indicators and green 'safe' zones (b) are illustrative only.

Box 1: Pathways to nutritional gains and losses on climate-impacted coral reefs

Climate-driven loss of coral habitat is expected to change the nutritional value of coral reef fisheries.
Coral bleaching and mortality following heat stress can transform reef habitats into low complexity,
algal-dominated states, which reroute nutrient pathways in reef food webs⁹² and alter the productivity
and composition of fish communities²⁵. Nutrient yields on climate-impacted reefs will thus be
determined by the effects of these processes on fish nutrient content, both among (changes in species
compositions) and within (changes in the energy sources that determine an individual's nutrient
content) species.

417 Fish gain micronutrients from their diet, implying that nutrient levels in fish will be influenced by 418 changes to nutrient pathways (within-species effects), while the availability of nutritious target species 419 will depend on the productivity and composition of reef fish communities in post-bleaching reef habitats 420 (among-species effects). Evidence from Seychelles suggests that disruption of nutrient pathways may have a greater influence on nutrient levels than species compositional changes⁵⁵. In Seychelles, a mass 421 422 coral bleaching event in 1998 caused >95% coral mortality, collapsing reef habitat and, on some reefs, provoking macroalgal regime shifts¹³. Such benthic turnover altered trophic pathways⁴⁵, likely because 423 424 macroalgae replaced plankton as the primary energy nutrient input to the reef food web. Fish on 425 regime-shifted macroalgal reefs had greater iron and zinc concentrations than fish caught on nearby recovering coral reefs, possibly due to greater contributions of mineral-rich tropical seaweeds⁹³ to 426 427 primary production.

Reef fish communities also became less diverse after bleaching, forming bottom-heavy trophic
pyramids ^{13,22,74} with enhanced biomass of herbivorous scrapers (Scarinae) and browsers (Siganidae) that
are targeted by small-scale trap fisheries²³. Although browsers were abundant on macroalgal reefs,
scraping herbivores dominated fish communities on most reefs both before and after bleaching,
suggesting that average micronutrient concentrations of the target fish community were largely

433	unaffected by changes in reef fish composition. Greater post-bleaching herbivore productivity also
434	increased micronutrient availability to fishers (i.e., more fishable biomass).
435	Scraping herbivores contain higher levels of calcium, iron and zinc than most animal-source foods ^{56,57}
436	and often respond positively to coral declines ²⁵ . If fishing pressure is managed sustainably, these species
437	may be nutrition 'winners', sustaining micronutrient contributions from climate-impacted reefs.
438	
439	[Figure redrawn with permission from Robinson et al. 2022 ⁵⁵]
440	

441	Box	2

2. Looking ahead: Future research priorities towards nutrition security from coral reef fisheries.

(i) Determine the nutritional vulnerability of fish species under increased temperatures. 442 443 Combining experimental, observational and modelling approaches would help understand the variability in nutrient content of fish. Warming experiments (e.g., ⁹⁴) and feeding trials (e.g., ⁹⁵) will provide 444 445 fundamental knowledge of causal relationships between food availability, temperature and nutritional 446 value. Field-based space-for-time analyses of intraspecific variability in fish nutrient content along 447 temperature gradients will build understanding of future climate-driven variability in nutritional profiles. The close ties between fish traits and nutrient profiles³⁵, and the extensive literature detailing traits of 448 coral reef fishes⁹⁶ could be leveraged to use trait-based approaches⁹⁷ for predicting spatial and 449 450 temporal trends in the nutrient content of fishes, notably including when species-specific information is 451 lacking. 452 (ii) Understand the direct and indirect trophic pathways that affect fish nutritional content. 453 Stable isotope analyses (SIA) provide a powerful method to explore the effect of environmental 454 455 variability on trophodynamics and ultimately nutrient content of fishes. However, the extreme ecological complexity and range of primary production sources⁹⁸ on coral reefs present a challenge for 456 457 studying trophic pathways. Compound-specific SIA, which targets specific essential amino acids rather than the bulk muscle tissue used for traditional isotope analysis⁹⁹, provides a potential, albeit expensive, 458 459 solution. Essential amino acids undergo little modification through trophic transfer, so forms synthesised 460 by the primary producer persist as they move up the food chain, permitting researchers to track sources of dietary carbon more accurately¹⁰⁰ and interpret trophic dynamics, even where basal samples are not 461 available¹⁰¹. Lastly, recent developments in **next-generation sequencing**⁵³ and **metagenomics**⁵⁴ will 462 463 allow indirect trophic links to be inferred that involve the role of the microbiome associated with fish gastrointestinal tracts as well as fish habitats. 464

465	
466	
467	(iii) Establish how nutritional changes propagate from species/population to reef communities.
468	Use of size-based models to evaluate the impacts of fishing and environmental change is well
469	established ¹⁰² , and has recently been applied to coral reef systems ²⁸ . Such models, if forced using
470	climate change projections at fisheries-relevant spatial scales, would allow to explore the effect of
471	fishing and environmental change scenarios on key fish traits and the flow of nutrients through entire
472	reef communities. It is also important for multispecies reef fisheries models to expand and include other
473	aquatic species(e.g., algae, invertebrates), which have been generally neglected but can be a major
474	source of nutrition through gleaning (mostly by women) in many coastal communities ¹⁰³ . Such
475	comprehensive, multispecies reef fisheries models that incorporate nutritional benefits ⁸⁵ would provide
476	decision-makers with an effective framework to anticipate future patterns in nutrient production from
477	reef fisheries, and to be proactive in managing fisheries for nutritional outcomes in a changing world.

Table 1. Key knowledge gaps and potential solutions towards food and nutrition security from coral reef fisheries under climate change. 'Pre requisite' refers to other elements listed in the table and identified by the 'ID' column.

ID	Category	Key knowledge gap	Potential solutions	Pre-requisite
a.		Baseline data on nutrient	Collate relevant, up-to-date nutrient	
		composition and food safety	data on reef fishes to be integrated	
		parameters for target species	in local food composition databases	
b.		Reliable and disaggregated (e.g., sex,	Integrate fish catch and	
		ethnicity) statistics of reported	consumption into market and	
		catches, including from small-scale	national surveys (e.g., household	
	Data deficiency	fisheries, and domestic consumption	income and expenditure)	
		of reef-based seafood		
с.		Proportion of total nutrient yield	Couple nutrient databases with data	а
		that is exported through the global	on fish production, export, and local	
		and regional fish trade vs. retained	consumption (esp. from small-scale	
		for domestic consumption, in	fisheries) accounting for differences	
		different coral reef countries	in reporting format	
d.		Sensitivity of fish nutritional	Combine experimental biology and	а
		composition (species level) to	nutritional analysis on fish sampled	
		environmental variation	along environmental gradients (Box	
			2)	
e.		Relative impact of overfishing and	Assess nutritional and catch	a, d
		climate change on potential nutrient	contribution of species and	
	Analytical need	supply from coral reef fisheries	functional groups under varying	
	Analytical field		levels exploitation and climate	
			stress	
f.		Ecological indicators of nutritional	Identify species and community	a, d, e
		vulnerability in response to	traits that characterize, among	
		environmental change	fishery targets, nutritional 'winners'	
			in response to environmental	
			change (Box 2)	
g.		Appropriate incentives and	Incorporate reef fish as	а
	Dollarmond	mechanisms for managing reef	micronutrient source in national	
	Policy need	fisheries for nutrition security, and	dietary guidelines and public	
		identify relevant spatial scales	nutrition (e.g., schools) programs	

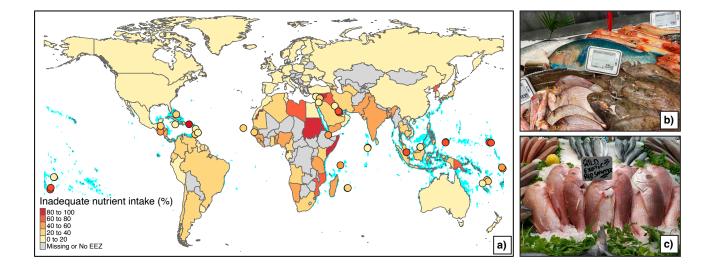
h.	Ecologically and socially sustainable thresholds for future reef fisheries that enhance nutritional outcomes while preserving ecosystem functionDevelop socio-ecological models to identify critical thresholds and tipping points to inform management	a-f
i.	Key trade-offs and alternativeIntersect policy frameworkssolutions to simultaneouslytypically used to govern and setmaximize fishery production,goals for fishery production,nutritional content, and functionalnutrition, biodiversity	a-h
j.	How changes in the nutrient supplyInclude food and security expertsfrom coral reef fisheries should beinto trade negotiations; implementintegrated with larger scale policyeconomic incentives and/ordecisions on fish trade and exportsubsidies for retaining local fishmarketsproduction	a-i

487 References

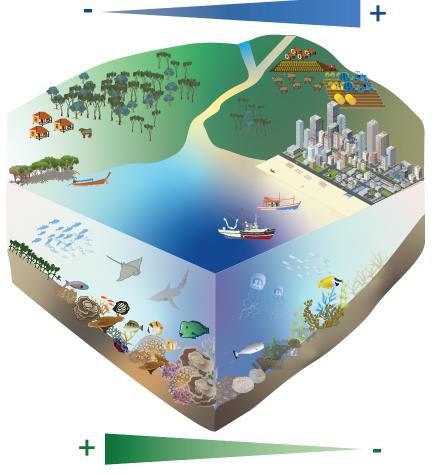
- Burke, L., Reytar, K., Spalding, M. & Perry, A. *Reefs at Risk Revisited*. (World Resource Institute, 2011).
- Bell, J. D. *et al.* Planning the use of fish for food security in the Pacific. *Marine Policy* 33, 64-76, doi:<u>https://doi.org/10.1016/j.marpol.2008.04.002</u> (2009).
- 492 3 Gillett, R. Fisheries in the economies of the Pacific Island countries and territories. (Asian
 493 Development Bank, 2016).
- 4944UNEP-Nairobi Convention and WIOMSA. The Regional State of the Coast Report: Western Indian495Ocean. (UNEP and WIOMSA, 2015).
- 496 5 Wabnitz, C. C. C., Cisneros-Montemayor, A. M., Hanich, Q. & Ota, Y. Ecotourism, climate change
 497 and reef fish consumption in Palau: Benefits, trade-offs and adaptation strategies. *Marine Policy*498 88, 323-332, doi:<u>https://doi.org/10.1016/j.marpol.2017.07.022</u> (2018).
- 499 6 Cinner, J. E. *et al.* Building adaptive capacity to climate change in tropical coastal communities.
 500 *Nature Climate Change* 8, 117-123, doi:10.1038/s41558-017-0065-x (2018).
- Thilsted, S. H. *et al.* Sustaining healthy diets: The role of capture fisheries and aquaculture for
 improving nutrition in the post-2015 era. *Food Policy* **61**, 126-131,
 doi:<u>https://doi.org/10.1016/j.foodpol.2016.02.005</u> (2016).
- Beal, T., Massiot, E., Arsenault, J. E., Smith, M. R. & Hijmans, R. J. Global trends in dietary
 micronutrient supplies and estimated prevalence of inadequate intakes. *PLOS ONE* 12,
 e0175554, doi:10.1371/journal.pone.0175554 (2017).
- 507 9 Calder, P. C. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and
 508 clinical relevance. *Biochimica et Biophysica Acta (BBA) Molecular and Cell Biology of Lipids*509 **1851**, 469-484, doi:<u>https://doi.org/10.1016/j.bbalip.2014.08.010</u> (2015).
- 510 10 Haddad, L. *et al.* A new global research agenda for food. *Nature* 540, 30-32,
 511 doi:10.1038/540030a (2016).
- 512 11 Golden, C. D. *et al.* Aquatic foods to nourish nations. *Nature* 598, 315-320, doi:10.1038/s41586 513 021-03917-1 (2021).
- 514 12 MacNeil, M. et al. Recovery potential of the world's coral reef fishes. Nature 520, 341-+ (2015).
- 515 13 Graham, N. A. J., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting climate516 driven regime shifts versus rebound potential in coral reefs. *Nature* 518, 94,
 517 doi:10.1038/nature14140 (2015).
- 518 14 Crona, B. I., Van Holt, T., Petersson, M., Daw, T. M. & Buchary, E. Using social–ecological
 519 syndromes to understand impacts of international seafood trade on small-scale fisheries. *Global*520 *Environmental Change* 35, 162-175, doi:<u>https://doi.org/10.1016/j.gloenvcha.2015.07.006</u>
 521 (2015).

522 15 Okemwa, G. M., Kaunda-Arara, B., Kimani, E. N. & Ogutu, B. Catch composition and 523 sustainability of the marine aquarium fishery in Kenya. Fisheries Research 183, 19-31, 524 doi:https://doi.org/10.1016/j.fishres.2016.04.020 (2016). 525 16 Cinner, J. E., Folke, C., Daw, T. & Hicks, C. C. Responding to change: Using scenarios to 526 understand how socioeconomic factors may influence amplifying or dampening exploitation 527 feedbacks among Tanzanian fishers. Global Environmental Change 21, 7-12, 528 doi:https://doi.org/10.1016/j.gloenvcha.2010.09.001 (2011). 529 17 Hicks, C. C., Graham, N. A. J., Maire, E. & Robinson, J. P. W. Secure local aquatic food systems in 530 the face of declining coral reefs. One Earth 4, 1214-1216, doi:10.1016/j.oneear.2021.08.023 531 (2021). 532 Albert, J. et al. Malnutrition in rural Solomon Islands: An analysis of the problem and its drivers. 18 533 Maternal & Child Nutrition 16, e12921, doi:https://doi.org/10.1111/mcn.12921 (2020). 534 19 Golden, C. D. et al. Social-ecological traps link food systems to nutritional outcomes. Global Food 535 *Security* **30**, 100561, doi:<u>https://doi.org/10.1016/j.gfs.2021.100561</u> (2021). 536 20 UNEP-WCMC, W. C., WRI, TNC. Global distribution of warm-water coral reefs, compiled from 537 multiple sources including the Millennium Coral Reef Mapping Project. Version 4.1. 538 https://doi.org/10.34892/t2wk-5t34. (UN Environment World Conservation Monitoring Centre, 539 2021). 540 21 Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem 541 services. Nature Climate Change 9, 306-312, doi:10.1038/s41558-019-0412-1 (2019). 542 22 Robinson, J. P. W., Wilson, S. K., Jennings, S. & Graham, N. A. J. Thermal stress induces 543 persistently altered coral reef fish assemblages. Global Change Biology 25, 2739-2750, doi:10.1111/gcb.14704 (2019). 544 545 23 Robinson, J. P. W. et al. Productive instability of coral reef fisheries after climate-driven regime shifts. Nature Ecology & Evolution 3, 183-190, doi:10.1038/s41559-018-0715-z (2019). 546 547 24 Stuart-Smith, R. D., Brown, C. J., Ceccarelli, D. M. & Edgar, G. J. Ecosystem restructuring along 548 the Great Barrier Reef following mass coral bleaching. Nature 560, 92-96, doi:10.1038/s41586-549 018-0359-9 (2018). 550 25 Morais, R. et al. Severe coral loss shifts energetic dynamics on a coral reef. Functional Ecology, 551 doi:10.1111/1365-2435.13568 (2020). Robinson, J. P. W. et al. Habitat and fishing control grazing potential on coral reefs. Functional 552 26 553 *Ecology* **34**, 240-251, doi:10.1111/1365-2435.13457 (2020). 554 27 Fontoura, L. et al. Climate-driven shift in coral morphological structure predicts decline of 555 juvenile reef fishes. Global Change Biology 26, 557-567, doi:10.1111/gcb.14911 (2020). 556 28 Rogers, A., Blanchard, J. L. & Mumby, P. J. Fisheries productivity under progressive coral reef 557 degradation. Journal of Applied Ecology 55, 1041-1049, doi:10.1111/1365-2664.13051 (2018).

558 559	29	Bates, A. E. <i>et al.</i> Climate resilience in marine protected areas and the 'Protection Paradox'. <i>Biological Conservation</i> 236 , 305-314, doi: <u>https://doi.org/10.1016/j.biocon.2019.05.005</u> (2019).
560 561 562	30	Darling, E. S. <i>et al.</i> Social–environmental drivers inform strategic management of coral reefs in the Anthropocene. <i>Nature Ecology & Evolution</i> 3 , 1341-1350, doi:10.1038/s41559-019-0953-8 (2019).
563 564 565	31	Soliño, L. & Costa, P. R. Global impact of ciguatoxins and ciguatera fish poisoning on fish, fisheries and consumers. <i>Environmental Research</i> 182 , 109111, doi: <u>https://doi.org/10.1016/j.envres.2020.109111</u> (2020).
566 567	32	Rogers, A. <i>et al</i> . Anticipative management for coral reef ecosystem services in the 21st century. <i>Global Change Biology</i> 21 , 504-514, doi:10.1111/gcb.12725 (2015).
568 569 570	33	Thiault, L. <i>et al.</i> Escaping the perfect storm of simultaneous climate change impacts on agriculture and marine fisheries. <i>Science Advances</i> 5 , eaaw9976, doi:10.1126/sciadv.aaw9976 (2019).
571 572	34	Souter, D. <i>et al. Status of Coral Reefs of the World: 2020</i> . (Global Coral Reef Monitoring Network & International Coral Reef Initiative, 2021).
573 574	35	Hicks, C. C. <i>et al.</i> Harnessing global fisheries to tackle micronutrient deficiencies. <i>Nature</i> 574 , 95-98, doi:10.1038/s41586-019-1592-6 (2019).
575 576	36	Bierwagen, S. L., Heupel, M. R., Chin, A. & Simpfendorfer, C. A. Trophodynamics as a Tool for Understanding Coral Reef Ecosystems. <i>Frontiers in Marine Science</i> 5 , 24 (2018).
577 578 579	37	Flombaum, P. <i>et al.</i> Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. <i>Proceedings of the National Academy of Sciences</i> 110 , 9824, doi:10.1073/pnas.1307701110 (2013).
580 581	38	Lehane, L. & Lewis, R. J. Ciguatera: recent advances but the risk remains. <i>International journal of food microbiology</i> 61 , 91-125, doi: <u>https://doi.org/10.1016/S0168-1605(00)00382-2</u> (2000).
582 583 584	39	Fraser, K. M. <i>et al.</i> Production of mobile invertebrate communities on shallow reefs from temperate to tropical seas. <i>Proceedings of the Royal Society B: Biological Sciences</i> 287 , 20201798, doi:10.1098/rspb.2020.1798 (2020).
585 586 587	40	Ullah, H., Nagelkerken, I., Goldenberg, S. U. & Fordham, D. A. Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation. <i>PLOS Biology</i> 16 , e2003446, doi:10.1371/journal.pbio.2003446 (2018).
588 589	41	Kang, J. X. Omega-3: a link between global climate change and human health. <i>Biotechnol Adv</i> 29 , 388-390, doi:10.1016/j.biotechadv.2011.02.003 (2011).
590 591 592	42	Hixson, S. M. & Arts, M. T. Climate warming is predicted to reduce omega-3, long-chain, polyunsaturated fatty acid production in phytoplankton. <i>Global Change Biology</i> 22 , 2744-2755, doi:10.1111/gcb.13295 (2016).

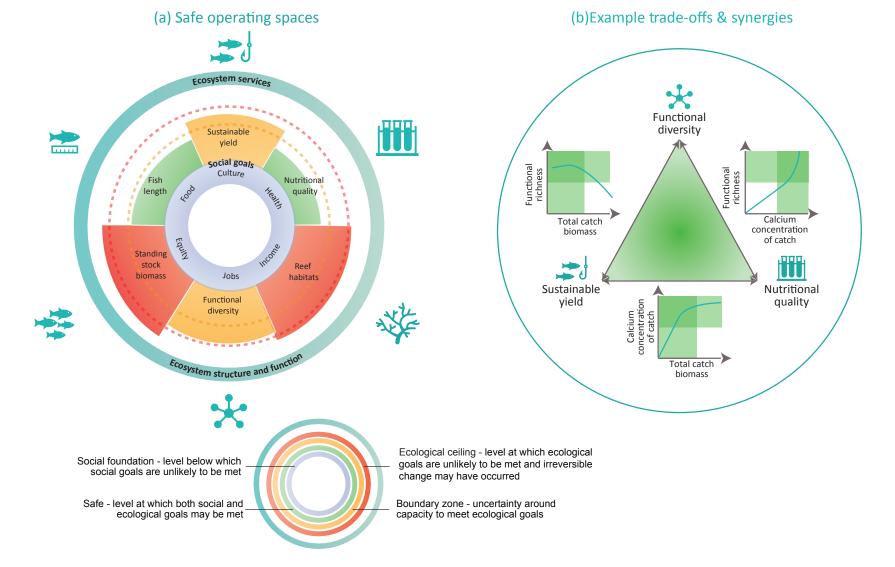

- 59343Tan, K., Zhang, H. & Zheng, H. Climate change and n-3 LC-PUFA availability. *Progress in Lipid*594*Research* 86, 101161, doi:<u>https://doi.org/10.1016/j.plipres.2022.101161</u> (2022).
- 595 44 Pethybridge, H. R. *et al.* Spatial Patterns and Temperature Predictions of Tuna Fatty Acids:
 596 Tracing Essential Nutrients and Changes in Primary Producers. *PLOS ONE* 10, e0131598,
 597 doi:10.1371/journal.pone.0131598 (2015).
- Hempson, T. N., Graham, N. A. J., MacNeil, M. A., Bodin, N. & Wilson, S. K. Regime shifts shorten
 food chains for mesopredators with potential sublethal effects. *Functional Ecology* 32, 820-830,
 doi:10.1111/1365-2435.13012 (2018).
- 46 Bellwood, D. R., Hughes, T. & Hoey, A. S. Sleeping functional group drives coral-reef recovery.
 602 *Current Biology* 16, 2434-2439 (2006).
- 60347Sunday, J. M. *et al.* Species traits and climate velocity explain geographic range shifts in an604ocean-warming hotspot. *Ecology Letters* **18**, 944-953, doi:10.1111/ele.12474 (2015).
- 60548Burrows, M. T. *et al.* Ocean community warming responses explained by thermal affinities and606temperature gradients. *Nature Climate Change* **9**, 959-963, doi:10.1038/s41558-019-0631-5607(2019).
- 608 49 Cheung, W. W., Watson, R. & Pauly, D. Signature of ocean warming in global fisheries catch.
 609 *Nature* **497**, 365-368 (2013).
- 50 Stuart-Smith, R. D., Mellin, C., Bates, A. E. & Edgar, G. Habitat loss and range shifts contribute to 611 ecological generalization amongst reef fishes. *Nature Ecology and Evolution* **5**, 656-662 (2021).
- 612 51 Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of
 613 ecology. *Ecology* 85, 1771-1789, doi:10.1890/03-9000 (2004).
- 614 52 du Pontavice, H., Gascuel, D., Reygondeau, G., Maureaud, A. & Cheung, W. W. L. Climate change
 615 undermines the global functioning of marine food webs. *Global Change Biology* 26, 1306-1318,
 616 doi:10.1111/gcb.14944 (2020).
- 53 Jones, J. *et al.* The Microbiome of the Gastrointestinal Tract of a Range-Shifting Marine
 618 Herbivorous Fish. *Frontiers in Microbiology* 9, 2000 (2018).
- 61954Littman, R., Willis, B. L. & Bourne, D. G. Metagenomic analysis of the coral holobiont during a620natural bleaching event on the Great Barrier Reef. Environmental Microbiology Reports 3, 651-621660, doi:10.1111/j.1758-2229.2010.00234.x (2011).
- 62255Robinson, J. P. W. *et al.* Climate-induced increases in micronutrient availability for coral reef623fisheries. One Earth 5, 98-108, doi:10.1016/j.oneear.2021.12.005 (2022).
- Froese, R. & Pauly, D. FishBase. World Wide Web electronic publication. <u>www.fishbase.org</u>,
 version (06/2021). (2021).
- 626 57 MacNeil, M. A. *NutrientFishbase dataset.*, (<u>https://github.com/mamacneil/NutrientFishbase</u>,
 627 2021).

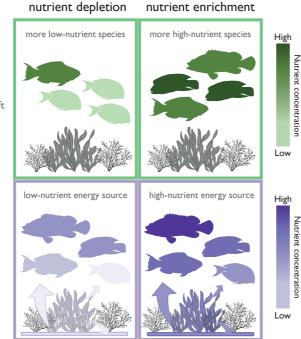
628 629 630	58	Waldock, C., Stuart-Smith, R. D., Edgar, G. J., Bird, T. J. & Bates, A. E. The shape of abundance distributions across temperature gradients in reef fishes. <i>Ecology Letters</i> 22 , 685-696, doi:10.1111/ele.13222 (2019).
631 632	59	Breitburg, D. <i>et al.</i> Declining oxygen in the global ocean and coastal waters. <i>Science</i> 359 , eaam7240, doi:10.1126/science.aam7240 (2018).
633 634 635	60	Chaudhary, C., Richardson, A. J., Schoeman, D. S. & Costello, M. J. Global warming is causing a more pronounced dip in marine species richness around the equator. <i>Proceedings of the National Academy of Sciences</i> 118 , e2015094118, doi:10.1073/pnas.2015094118 (2021).
636 637	61	Cheung, W. W. L., Reygondeau, G. & Frölicher, T. L. Large benefits to marine fisheries of meeting the 1.5°C global warming target. <i>Science</i> 354 , 1591, doi:10.1126/science.aag2331 (2016).
638 639	62	Golden, C. <i>et al.</i> Nutrition: Fall in fish catch threatens human health. <i>Nature</i> 534 , 317-320, doi:10.1038/534317a (2016).
640 641	63	Nash, K. L. & Graham, N. A. J. Ecological indicators for coral reef fisheries management. <i>Fish and Fisheries</i> 17 , 1029-1054, doi: <u>https://doi.org/10.1111/faf.12157</u> (2016).
642 643	64	Pereira, H. M. <i>et al.</i> Essential Biodiversity Variables. <i>Science</i> 339 , 277, doi:10.1126/science.1229931 (2013).
644 645 646	65	Brandl, S. J. <i>et al.</i> Coral reef ecosystem functioning: eight core processes and the role of biodiversity. <i>Frontiers in Ecology and the Environment</i> 17 , 445-454, doi:10.1002/fee.2088 (2019).
647 648	66	Maire, E. <i>et al.</i> Micronutrient supply from global marine fisheries under climate change and overfishing. <i>Current Biology</i> 31 , 4132-4138.e4133, doi:10.1016/j.cub.2021.06.067 (2021).
649 650	67	Miloslavich, P. <i>et al</i> . Essential ocean variables for global sustained observations of biodiversity and ecosystem changes. <i>Global Change Biology</i> 24 , 2416-2433, doi:10.1111/gcb.14108 (2018).
651 652	68	Graham, N. A. J. & Nash, K. L. The importance of structural complexity in coral reef ecosystems. <i>Coral Reefs</i> 32 , 315-326, doi:10.1007/s00338-012-0984-y (2013).
653 654 655	69	Nash, K. L., Graham, N. A. J., Wilson, S. K. & Bellwood, D. R. Cross-scale Habitat Structure Drives Fish Body Size Distributions on Coral Reefs. <i>Ecosystems</i> 16 , 478-490, doi:10.1007/s10021-012- 9625-0 (2013).
656 657 658	70	Pratchett, M. S. <i>et al.</i> in <i>Oceanography and Marine Biology: An Annual Review, Vol 46</i> Vol. 46 Oceanography and Marine Biology (eds R. N. Gibson, R. J. A. Atkinson, & J. D. M. Gordon) 251- 296 (Crc Press-Taylor & Francis Group, 2008).
659 660	71	Graham, N. A. J. <i>et al.</i> Dynamic fragility of oceanic coral reef ecosystems. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 103 , 8425-8429 (2006).


661 662 663	72	Richardson, L. E., Graham, N. A. J., Pratchett, M. S., Eurich, J. G. & Hoey, A. S. Mass coral bleaching causes biotic homogenization of reef fish assemblages. <i>Global Change Biology</i> 24 , 3117-3129, doi:10.1111/gcb.14119 (2018).
664 665	73	Graham, N. A. <i>et al.</i> Lag effects in the impacts of mass coral bleaching on coral reef fish, fisheries, and ecosystems. <i>Conservation Biology</i> 21 , 1291-1300 (2007).
666 667	74	Hempson, T., Graham, N., Macneil, A., Hoey, A. & Wilson, S. Ecosystem Regime Shifts Disrupt Trophic Structure. <i>Ecological Applications</i> 28 , doi:10.1002/eap.1639 (2017).
668 669 670	75	Jouffray, JB. <i>et al.</i> Identifying multiple coral reef regimes and their drivers across the Hawaiian archipelago. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> 370 , 20130268, doi:10.1098/rstb.2013.0268 (2015).
671 672	76	McLean, M. <i>et al.</i> Trait structure and redundancy determine sensitivity to disturbance in marine fish communities. <i>Global Change Biology</i> 25 , 3424-3437, doi:10.1111/gcb.14662 (2019).
673 674 675	77	Nash, K. L., Graham, N. A. J., Jennings, S., Wilson, S. K. & Bellwood, D. R. Herbivore cross-scale redundancy supports response diversity and promotes coral reef resilience. <i>Journal of Applied Ecology</i> 53 , 646-655, doi:10.1111/1365-2664.12430 (2016).
676 677	78	Vaitla, B. <i>et al.</i> Predicting nutrient content of ray-finned fishes using phylogenetic information. <i>Nature Communications</i> 9 , 3742, doi:10.1038/s41467-018-06199-w (2018).
678 679	79	Kissling, W. D. <i>et al.</i> Towards global data products of Essential Biodiversity Variables on species traits. <i>Nature Ecology & Evolution</i> 2 , 1531-1540, doi:10.1038/s41559-018-0667-3 (2018).
680 681 682	80	Edgar, G. J. <i>et al.</i> Reef Life Survey: Establishing the ecological basis for conservation of shallow marine life. <i>Biological Conservation</i> 252 , 108855, doi: <u>https://doi.org/10.1016/j.biocon.2020.108855</u> (2020).
683 684 685	81	Pauly, D. & Zeller, D. Accurate catches and the sustainability of coral reef fisheries. <i>Current Opinion in Environmental Sustainability</i> 7 , 44-51, doi: <u>https://doi.org/10.1016/j.cosust.2013.11.027</u> (2014).
686	82	Worm, B. & Branch, T. A. The future of fish. <i>Trends in Ecology & Evolution</i> 27, 594-599 (2012).
687 688 689	83	McClanahan, T. R. <i>et al.</i> Critical thresholds and tangible targets for ecosystem-based management of coral reef fisheries. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 108 , 17230-17233, doi:10.1073/pnas.1106861108 (2011).
690 691	84	Cinner, J. E. <i>et al.</i> Meeting fisheries, ecosystem function, and biodiversity goals in a human- dominated world. <i>Science</i> 368 , 307, doi:10.1126/science.aax9412 (2020).
692 693	85	Robinson, J. P. W. <i>et al.</i> Managing fisheries for maximum nutrient yield. <i>Fish and Fisheries</i> n/a , doi: <u>https://doi.org/10.1111/faf.12649</u> (2022).
694 695	86	Graham, N. A. <i>et al.</i> Extinction vulnerability of coral reef fishes. <i>Ecology Letters</i> 14 , 341-348 (2011).

696 697	87	Schartup, A. T. <i>et al.</i> Climate change and overfishing increase neurotoxicant in marine predators. <i>Nature</i> 572 , 648-650, doi:10.1038/s41586-019-1468-9 (2019).
698 699	88	Free, C. M. <i>et al.</i> Impacts of historical warming on marine fisheries production. <i>Science</i> 363 , 979, doi:10.1126/science.aau1758 (2019).
700 701	89	Pinsky Malin, L. <i>et al.</i> Preparing ocean governance for species on the move. <i>Science</i> 360 , 1189- 1191, doi:10.1126/science.aat2360 (2018).
702 703 704	90	Thorson, J. T. Predicting recruitment density dependence and intrinsic growth rate for all fishes worldwide using a data-integrated life-history model. <i>Fish and Fisheries</i> 21 , 237-251, doi:10.1111/faf.12427 (2020).
705 706	91	Ahern, M. B. <i>et al</i> . Locally-Procured Fish Is Essential in School Feeding Programmes in Sub- Saharan Africa. <i>Foods</i> 10 , doi:10.3390/foods10092080 (2021).
707 708 709	92	Morillo-Velarde, P. S. <i>et al.</i> Habitat degradation alters trophic pathways but not food chain length on shallow Caribbean coral reefs. <i>Scientific Reports</i> 8 , 4109, doi:10.1038/s41598-018- 22463-x (2018).
710 711 712	93	Kumar, M. <i>et al.</i> Minerals, PUFAs and antioxidant properties of some tropical seaweeds from Saurashtra coast of India. <i>Journal of Applied Phycology</i> 23 , 797-810, doi:10.1007/s10811-010-9578-7 (2011).
713 714	94	Coleman, M. A. <i>et al.</i> Climate change does not affect the seafood quality of a commonly targeted fish. <i>Global Change Biology</i> 25 , 699-707, doi:10.1111/gcb.14513 (2019).
715 716	95	Sissener, N. H. Are we what we eat? Changes to the feed fatty acid composition of farmed salmon and its effects through the food chain. <i>J Exp Biol</i> 221 , doi:10.1242/jeb.161521 (2018).
717 718	96	Hadj-Hammou, J., Mouillot, D. & Graham, N. A. J. Response and effect traits of coral reef fish. Frontiers in Marine Science 8 , doi:10.3389/fmars.2021.640619 (2021).
719 720 721	97	Mouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H. & Bellwood, D. R. A functional approach reveals community responses to disturbances. <i>Trends in Ecology & Evolution</i> 28 , 167-177, doi: <u>https://doi.org/10.1016/j.tree.2012.10.004</u> (2013).
722 723 724	98	McMahon, K. W., Thorrold, S. R., Houghton, L. A. & Berumen, M. L. Tracing carbon flow through coral reef food webs using a compound-specific stable isotope approach. <i>Oecologia</i> 180 , 809-821, doi:10.1007/s00442-015-3475-3 (2016).
725 726	99	McMahon, K., Hamady, L. L. & Thorrold, S. Ocean ecogeochemistry – A review. <i>Oceanography and marine biology</i> 51 , 327-374 (2013).
727 728 729	100	Chikaraishi, Y. <i>et al.</i> Determination of aquatic food-web structure based on compound-specific nitrogen isotopic composition of amino acids. <i>Limnology and Oceanography: Methods</i> 7 , 740-750, doi: <u>https://doi.org/10.4319/lom.2009.7.740</u> (2009).

- Bowes, R. E. & Thorp, J. H. Consequences of employing amino acid vs. bulk-tissue, stable isotope
 analysis: a laboratory trophic position experiment. *Ecosphere* 6, art14,
 doi:https://doi.org/10.1890/ES14-00423.1 (2015).
- Blanchard, J. L., Heneghan, R. F., Everett, J. D., Trebilco, R. & Richardson, A. J. From bacteria to
 whales: Using functional size spectra to model marine ecosystems. *Trends in Ecology & Evolution* **32**, 174-186, doi:10.1016/j.tree.2016.12.003 (2017).
- Kleiber, D., Harris, L. M. & Vincent, A. C. J. Gender and small-scale fisheries: a case for counting
 women and beyond. *Fish and Fisheries* 16, 547-562, doi:<u>https://doi.org/10.1111/faf.12075</u>
 (2015).




Climate and anthropogenic stress

Access to reef-based food and nutrition

CLIMATE STRESSORS OTHER HUMAN STRESSORS • Gradual warming + marine Overexploitation heatwaves • Global trade and export markets • Others (e.g., ocean • Destructive fishing practices acidification, sea level rise) • Land -based pollution **HABITAT LOSS** Coral cover decline • Loss of structural complexity Shifts in dominant taxa ٠ **SPECIES NUTRIENT PROFILES FISH COMMUNITIES** • Altered metabolic rates • Changes in species available locally Altered nutrient assimilation Biomass declines **NUTRITION** • Altered proportion of adequate nutrient intake based on country, gender or age-specific nutrient requirements

post-disturbance benthic regime low coral cover and/or algal overgrowth

nutrient depletion

Among-species effects

Change in fish assemblage composition after benthic habitat shift

Within-species effects

Change in fish tissue after nutrient pathways are disrupted by benthic habitat shift