
Enhancing Anomaly Detection
Techniques for Emerging

Threats

Ryan Michael Mills

This dissertation is submitted for the degree of Doctor of Philosophy

Abstract

Despite the Internet being an apex of human achievement for many years, crimi-

nal behaviour and malicious activity are continuing to propagate at an alarming

rate. This juxtaposition can be loosely attributed to the myriad of vulnerabilities

identified in existing software. Cyber criminals leverage these innovative infection

and exploitation techniques to author pervasive malware and propagate devas-

tating attacks. These malicious actors are motivated by the financial or political

gain achieved upon successful infiltration into computer systems as the resources

held within are often very valuable in nature.

With the widespread developments in the Internet of Things (IoT), 5G, and

Starlink satellites, unserved areas of the world will experience a pervasive expan-

sion of connected devices to the Internet. Consequently, a barrage of potential

new attack vectors and victims are unfolding which requires constant monitor-

ing in order to manage this ever growing problem. Conventional rule-based in-

trusion detection mechanisms used by network management solutions rely on

pre-defined attack signatures and hence are unable to identify new attacks. In

parallel, anomaly detection solutions tend to suffer from high false positive rates

due to the limited statistical validation of ground truth data, which is used for

profiling normal network behaviour.

When considering the explosive threat landscape and the expanse of connected

devices, current security solutions also face challenges relating to the scale at

which attacks need to be monitored and detected. However, recent innovations in

Big Data processing have revealed a promising avenue in which scale is addressed

through cluster computing and parallel processing.

This thesis advances beyond current solutions and leverages the coupling of

anomaly detection and Cyber Threat Intelligence (CTI) with parallel processing

for the profiling and detection of emerging cyber attacks. This is demonstrated

through the design, implementation, and evaluation of Citrus : a novel intrusion

detection framework which is adept at tackling emerging threats through the col-

lection and labelling of live attack data by utilising diverse Internet vantage points

in order to detect and classify malicious behaviour using graph-based metrics, as

well as a range of Machine Learning (ML) algorithms.

This research provides innovative contributions to the cyber security field,

including the public release of an open flow-based intrusion detection data set.

This data set encompasses emerging attack patterns and is supported by a robust

ground truth. Furthermore, Citrus advances the current state of the art through

a novel ground truth development method. Citrus also enables both near real-

time and offline detection of emerging cyber attacks under optimal computational

costs. These properties demonstrate that it is a viable and practical solution for

next generation network defence and resilience strategies.

Declaration

I declare that the work presented in this thesis is, to the best of my knowledge

and belief, original and my own work. The material has not been submitted,

either in whole or in part, for a degree at this, or any other university.

Ryan Michael Mills

September, 2021

Acknowledgements

I would like to begin by expressing my sincere gratitude to my PhD supervisors, in

particular Dr. Matthew Broadbent, who have been pillars of support during my

research. I would also like to thank Dr. Angelos Marnerides for his considerable

insight into the world of cyber security and anomaly detection.

Outside of the sphere of research, I am eternally thankful to my family. In

particular my grandfather, David Mills, who inspires me to be successful.

Contents

1 Introduction 17

1.1 Contemporary Intrusion Detection 18

1.2 Cyber Threat Intelligence . 20

1.3 Motivation . 22

1.4 Research Questions . 22

1.5 Thesis Aims and Contributions 24

1.6 Thesis Structure . 25

2 Background and Related Work 27

2.1 Modern Threat Landscape . 28

2.1.1 Malware . 28

2.1.1.1 Botnet . 31

2.1.1.2 Ransomware . 33

2.1.2 Multi-stage intrusion . 35

2.1.2.1 APTs . 38

2.1.3 Service Disruption . 38

2.2 Cyber Threat Intelligence . 39

2.2.1 Honeypot . 40

2.2.1.1 Honeypot Types 41

2.2.1.2 Telemetry Extraction 42

2.2.1.3 Deployment Locations 43

2.2.1.4 Security Implementations 44

2.2.2 Cyber Threat Intelligence Service 46

2.2.2.1 Services . 46

2.2.2.2 Sharing Methodology 47

2.3 Intrusion Detection . 48

2.3.1 Network-based IDS . 48

2.3.2 Host-based IDS . 48

2.3.3 Misuse Detection . 49

2.3.4 Anomaly Detection . 49

2.3.4.1 Machine Learning 50

2.3.5 IDS Data Sets . 52

2.3.5.1 Data Set Labelling 53

2.3.5.2 KDD ’99 Data Set 55

2.3.5.3 MAWILab Data Set 57

2.3.5.4 Kyoto 2006+ Data Set 57

2.3.5.5 ISCX 2012 Data Set 58

2.3.5.6 CTU-13 Data Set 58

2.3.5.7 UNSW-NB15 Data Set 59

2.3.5.8 CICIDS2017 Data Set 59

2.4 Research Challenges . 60

2.5 Summary . 66

3 Design of Citrus 68

3.1 Requirements . 68

3.1.1 Attack Data Availability 68

3.1.2 Ground Truth Development 69

3.1.3 Near Real-time Attack Detection 71

3.2 Citrus System Architecture . 72

3.2.1 Southbound Interface . 73

3.2.1.1 Stream Listener 74

3.2.1.2 Cluster Operation Dispatcher 75

3.2.1.3 Storage Operations 75

3.2.1.4 Historic Flow Collector 75

3.2.1.5 Intelligence Collector 76

3.2.2 Tangerine . 76

3.2.2.1 Driver . 78

3.2.2.2 Data Cleaner . 78

3.2.2.3 Intelligence Orchestrator 79

3.2.2.4 Intelligence Service Application 80

3.2.2.5 Ground Truth . 80

3.2.3 Clementine . 82

3.2.3.1 Driver . 83

3.2.3.2 Data Cleaner . 83

3.2.3.3 Model Training and Prediction 83

3.3 Security Considerations . 84

3.4 Privacy Requirements . 85

3.5 Summary . 85

4 Implementation 87

4.1 Citrus . 87

4.1.1 Shared Library . 88

4.1.2 Southbound Interface . 89

4.1.2.1 Stream Listener 90

4.1.2.2 Cluster Operations Dispatcher 91

4.1.2.3 Storage Operations 91

4.1.2.4 Historic Flow Collector 92

4.1.2.5 Intelligence Collector 93

4.1.3 Tangerine . 93

4.1.3.1 Driver . 94

4.1.3.2 Intelligence Orchestrator 95

4.1.3.3 Intelligence Service Applications 96

4.1.3.4 Ground Truth . 99

4.1.4 Clementine . 100

4.1.4.1 Driver . 101

4.1.4.2 Model Training and Prediction 102

4.2 Intelligence Sharing . 103

4.3 Summary . 103

5 Evaluation 105

5.1 Evaluation Environment . 107

5.1.1 Deployed Network Services 108

5.2 Data Set . 110

5.2.1 Overview . 111

5.2.2 Geolocation Analysis . 112

5.2.3 Source IP Address Analysis 113

5.2.4 Destination Port Analysis 114

5.2.5 Extracted Features . 117

5.2.6 Data Set Comparison . 119

5.3 Ground Truth Development . 121

5.3.1 Methodology . 121

5.3.2 Results . 126

5.3.3 Comparison . 129

5.4 Detection Capabilities . 131

5.4.1 Offline Detection . 132

5.4.1.1 Methodology . 132

5.4.1.2 Results . 134

5.4.1.3 Feature Importance 136

5.4.2 Online Detection . 138

5.4.2.1 Methodology . 138

5.4.2.2 Results . 142

5.5 Classification Performance . 145

5.5.1 Model Training . 145

5.5.1.1 Methodology . 145

5.5.1.2 Results . 147

5.5.2 Online Prediction . 147

5.5.2.1 Methodology . 147

5.5.2.2 Results . 149

5.6 Summary . 150

6 Conclusion and Future Work 153

6.1 Thesis Contributions . 154

6.1.1 Summary . 157

6.2 Limitations . 157

6.3 Future Work . 158

References 176

List of Figures

2.1 Asymmetric ransomware encryption process. 34

2.2 Attack life cycle model . 36

3.1 Citrus architecture design . 72

3.2 Southbound interface design overview 74

3.3 Tangerine design overview . 77

3.4 Data transformation . 79

3.5 Graph feature clustering . 81

3.6 Clementine design overview . 82

4.1 Data flow of clementine . 100

5.1 Cyber Threat Lab Architecture 107

5.2 Number of flows distinguished by geographic location 112

5.3 Distinct count of source IP addresses per date 114

5.4 Distribution of destination ports 114

5.5 Number of flows to distinct services exposed by honeypots 115

5.6 From raw telemetry to labelled data set 121

5.7 Subgraph example of node relationships 123

5.8 Graphical representation of nodes distinguished by label 125

5.9 Clusters visualised by silhouette values and feature space. 127

5.10 Average silhouette value time series 128

5.11 Box plot depicting distribution of silhouette values for varying clus-

ter sizes. 128

5.12 Comparison of computational cost to label varying number of sam-

ples. 130

5.13 Statistical metrics observed from offline detection 135

5.14 Statistical metrics observed from offline detection 137

10

5.15 Configuration of experimental set-up. 139

5.16 Performance metrics obtained from online classification of live teleme-

try . 142

5.17 Comparison of model selection using grid search and variable clus-

ter size . 146

5.18 Evaluation of classification efficiency using variable batch interval 148

5.19 Cumulative Distribution Function (CDF) for processing time dis-

tinguished by batch interval. 149

List of Tables

4.1 The CTI services used to correlate data points and provide a

ground truth . 97

5.1 Distribution of flow labels within LUFlow ’20 111

5.2 The top 10 source IP address locations 113

5.3 The various features inherent within LUFlow ’20 118

5.4 Comparison of IDS data sets . 119

5.5 The parameters configured for the k-means algorithm 125

5.6 Comparison of Citrus and other frameworks which develop a ground

truth. 129

5.7 Mean classification metrics for attack scenarios using data set out-

put by Citrus and B-IDS . 130

5.8 Example confusion matrix . 131

5.9 The parameters configured for various algorithms 133

5.10 Offline classification metrics for a range of ML models 135

5.11 The importance of each feature 136

5.12 Online classification metrics for a number of attack scenarios . . . 142

5.13 The parameters used to evaluate single core and cluster approaches

to model training . 146

12

List of Acronyms

ACCS Australian Centre for Cyber Security

AD Anomaly Detection

AES Advanced Encryption Standard

AP Access Point

API Application Programming Interface

APT Advanced Persistent Threat

AS Autonomous System

CC Command and Control

CADHo Collection and Analysis of Data from Honeypots

CDF Cumulative Distribution Function

CSV Comma-separated values

CTI Cyber Threat Intelligence

CTIS Cyber Threat Intelligence Service

DDoS Distributed Denial of Service

DGA Domain Generation Algorithm

DNN Deep Neural Network

DoS Denial of Service

EMBER Endgame Malware BEnchmark for Research

ENISA European Union Agency For Cybersecurity

FN False Negative

13

FP False Positive

FTP File Transfer Protocol

HDFS Hadoop File System

HIDS Host-based Intrusion Detection System

HTTPS Hypertext Transfer Protocol Secure

ICS Industrial Control System

IDS Intrusion Detection System

IP Internet Protocol

IRC Internet Relay Chat

IV Initialisation Vector

IoC Indicator of Compromise

IoT Internet of Things

JSON JavaScript Object Notation

LAN Local Area Network

ML Machine Learning

MLLib Machine Learning Library

MiTM Man in The Middle

NAT Network Address Translation

NHS National Health Service

NIDS Network-based Intrusion Detection System

NSA National Security Agency

OSINT Open-source Intelligence

P2P Peer to Peer

14

PCAP Packet Capture

PE Portable Executable

PII Personally Identifiable Information

PoC Proof of Concept

RBF Radial Basis Function

RCE Remote Code Execution

RDD Resilient Distributed Dataset

RPCL Rival Penalized Competitive Learning

SCP Secure Copy

SDN Software-defined Networking

SQL Structured Query Language

STIX Structured Threat Information eXpression

SVM Support Vector Machine

TAXII Trusted Automated eXchange of Indicator Information

TCP Transmission Control Protocol

TTL Time To Live

U2R User to Root

UDP User Datagram Protocol

UPnP Universal Plug n Play

VMI Virtual Machine Introspection

VNC Virtual Network Computing

WAN Wide Area Network

XSS Cross Site Scripting

15

Publications
The work presented in this thesis has been published in the following journal and

conference:

R. Mills, A. K. Marnerides, M. Broadbent and N. Race. Practical Intrusion

Detection of Emerging Threats. IEEE Transactions on Network and Service

Management. 2021. DOI: 10.1109/TNSM.2021.3091517.

R. Mills, N. Race and M. Broadbent. Citrus: Orchestrating Security Mechanisms

via Adversarial Deception. NOMS 2020 - 2020 IEEE/IFIP Network Operations

and Management Symposium. 2020. DOI: 10.1109/NOMS47738.2020.9110443.

16

Chapter 1

Introduction

The advancement in technology has paved the way for the pervasive integration

of computers into the lives of many. The respective data and resources they

contain makes each a potential target for attackers. Disruption to these systems

can incur financial losses for operators, and wider consequences for users who are

unable to access resources.

The cost of damages caused by malicious activity over the Internet is rapidly

growing, and by 2021 the estimated cost of attacks orchestrated throughout com-

puter networks is assessed to be around $6 trillion per annum [1]. Furthermore,

with the substantial growth in active malware campaigns, this overall trend does

not seem to be stopping. Network monitoring solutions are typically used to

tackle these attacks. To defend against this growth in unique distributed infec-

tions, the method in which attacks are identified and prevented have recently

received significant overhaul.

As well as the number of attacks increasing, the explosive growth of connected

devices and the corresponding traffic generated in modern networks also create

challenges for traditional network monitoring solutions. Networks which com-

pose the Internet have recently been reported to be generating data at the scale

of zettabytes. This is further exacerbated by the widespread expansion of the

Internet of Things (IoT), with estimates forecasting the number of heterogeneous

devices connected to Internet Protocol (IP) networks to be three times more

than the global population by 2023 [2]. Hence, modern network traffic satisfies

the requirements of big data, as it contains properties of vast volume, variety,

and velocity [3].

17

An emerging approach in the prevention of cyber crime is the use of machine

learning algorithms to perform intrusion detection. This approach to anomaly

detection attempts to define normal behaviour through the training of models,

and any substantial deviation from that baseline identifies a potential infiltration

attempt. However, there often occurs a number of false positives due to challenges

related to the profiling of normal behaviour within training data [4].

In parallel, there has also been substantial developments in the evaluation of

attacker behaviour through the use of Cyber Threat Intelligence (CTI) services.

The knowledge gained by the contextualisation of observed data enables a fuller

understanding of the attack and actor as a whole, leading to a more accurate con-

clusion of malicious intent. Leveraging this understanding of malicious behaviour

grants insight into the true nature behind suspicious activity, paving the way for

the establishment of a ground truth.

The ground truth provides a method to separate benign from attack traffic,

thus revealing the true nature of data captured within networks. This estab-

lishment of a ground truth aids machine learning algorithms to more accurately

identify patterns of normal and malicious behaviour, reducing the number of

False Positives (FPs) and False Negatives (FNs) obtained under decision making

scenarios.

1.1 Contemporary Intrusion Detection

One of the primary defense mechanisms of choice within modern enterprise net-

works is typically an Intrusion Detection System (IDS). An IDS performs classifi-

cation of events which transpire within a network into either benign or malicious

in an attempt to thwart intrusion attempts. These events can be network based,

such as packets or flows traversing a switch, or host based, such as process util-

isation and system logs. This classification can then be leveraged to inform an

administrator of malicious behaviour or perform remediation through an auto-

mated response.

The decision making process can be categorized as either misuse or anomaly

detection. Misuse detection uses pre-defined attack patterns using signatures of

known malware. As a result, novel attacks exploiting unknown vulnerabilities

bypass this approach as there exists no corresponding signature. Furthermore,

18

signatures are often too specific and minute code alteration of malware also cir-

cumvent the decision making process. Misuse detection relies upon a database

of known attack signatures, which is necessarily large and requires constant up-

dates to keep abreast of developing threats. AD (Anomaly Detection) leverages a

description of normal behaviour, which is learned through observations in train-

ing data, and any future observation which deviates from the normal baseline

is labeled as malicious. Nonetheless, the task of profiling normal behaviour is

highly challenging due to its dependency on the establishment of ground truth

data, which in many cases are not validated either statistically or even empir-

ically. Hence, anomaly detection solutions can also be problematic especially

when a large volume of information is processed and statistical normality is not

thoroughly assessed.

The unprecedented growth in the number of Internet users, which is estimated

to be 66% of the overall population in 2023 [2], has caused an exponential increase

in the generation and transmission of network traffic. This has naturally led to

an era of big data within modern networks, which poses numerous challenges

in the sphere of network security [5]. Big data is typically defined in terms

of the three Vs: volume, variety, and velocity. As originally specified in [6],

volume refers to the sheer quantity of data. Velocity refers to the speed at which

data is required to be processed, which certainly causes challenges when data is

transmitted through networks at a rate greater than the capacity of traditional

monitoring solutions [7]. Variety refers to the assortment of heterogeneous data.

Within modern networks, this is typically manifested by IoT devices, which often

leverage diverse communication protocols.

The requirements distilled by the nature of the emerging cyber threat land-

scape demonstrate that attacks are now conducted on a large scale, thus IDS-

based solutions are required to maintain vast quantities of either signatures or

training data used for decision making. Furthermore, the decision making pro-

cedure is additionally hindered by the copious quantity of traffic in modern net-

works which needs to be processed. It is essential to immediately process this

data within the network for the rapid identification of anomalies. However, tradi-

tional approaches are incapable of handling big data [7, 5, 8]. For example, 85%

of cyber attacks are detected weeks after they occur, with an average detection

time of 206 days [9].

Therefore, a high throughput processing framework is required to adequately

19

analyse and classify this data in a reasonable time frame. Big data frameworks

such as Hadoop [10], Google BigTable [11], Elasticsearch [12] are inherently scal-

able by design and thus able to deal with extremely large data sets. However, they

lack high throughput processing capabilites. Recently, Spark [13] has emerged as

a prominent distributed computing framework, which has evidenced the ability

to handle the large amount of data required for contemporary intrusion detection

[14, 5].

Spark enables the parallel processing of vast data sets through the segmen-

tation of data amongst nodes within a cluster. Spark also offers streaming ca-

pabilities suitable for online anomaly detection using telemetry gathered from

internal hosts. This technology critically enables data to persist in memory, lead-

ing to substantial efficiency improvements when compared to conventional cluster

computation frameworks such as MapReduce [15]. This improvement is further

exacerbated when considering iterative algorithms, such as those used in machine

learning. Providing anomaly detection algorithms the ability to scale with the

influx of emerging threats is crucial to overcome the challenges brought about by

the rapid growth of connected devices, innovative infection techniques, and the

large variety and volume of data within modern networks [7].

1.2 Cyber Threat Intelligence

CTI refers to the behaviour and information derived from the observation of

threat sources. Current research into this sphere typically attempts to extract

Indicators of Compromise (IoCs) to gain an understanding of attack properties

so attacks of the same type can be prevented. An invaluable threat intelligence

source is a honeypot. Honeypots are systems under observation, which contain

components that masquerade as legitimate enterprise infrastructure in order to

catch unsuspecting adversaries leveraging previously unobserved exploits, attack

tactics and patterns used for infiltration [16]. Deploying a honeypot on the In-

ternet allows one to gain a point of observation, which, when leveraged properly,

grants unrestricted access to activity initiated by legitimate benign services (e.g.

Shodan [17]) as well as malicious sources such as botnets. This insight into the

emerging threat landscape enables IDS’s the ability to store relevant knowledge

about bleeding edge compromise methodology. Furthermore, the decision engine

20

of the IDS is bolstered with recent data enabling it to make a better informed

choice on whether or not an action is malicious.

When using supervised machine learning algorithms to determine abnormality

in systems telemetry, it is essential to train the models on data, which includes

benign behaviour. However, the training data must also include relevant attacks,

which are likely to be encountered and need to be identified and remediated.

There exists challenges with contemporary intrusion detection data sets such

as the fact that they contain dated and non-relevant attacks [18], and manually

injected attacks, which do not accurately reflect the current threat landscape [19].

Training data derived from honeypot telemetry is a solution to these challenges

posed by the emerging threat landscape [20], as the data contained within is

representative of a partial view of the malicious actions currently propagating

throughout the Internet.

Furthermore, one of the most crucial features in supervised machine learning

algorithms is the ground truth represented as target labels. These labels are

used to inform algorithms about the true nature of the data. Current data sets

often do not either include this feature [21], or engineer it in a non-standard

and often problematic manner [22, 23]. This often forces the use of unsupervised

statistical methods, or in the case of ineffective labelling techniques, the trained

supervised models will often have a distorted view of normal behaviour, and

the detection results will be impacted accordingly. Honeypots not only attract

malicious traffic, but also legitimate traffic such as scanners attempting to profile

the Internet topology [24]. Thus, labelling all traffic associated with honeypots as

malicious could negatively affect the decision making process of AD algorithms

when used as training data.

Current solutions which integrate CTI services with IDSs have not yet ex-

plored the possibility of the development of a ground truth to provide accurate

labels for telemetry captured by heterogeneous honeypot deployments. Services

such as Greynoise [25] and Censys [26] offer an open API (Application Program-

ming Interface) to gather contextual information about a suspicious host. They

typically achieve this by deploying monitoring nodes within data centres to iden-

tify web crawlers, spam, botnet, and other malicious activity. This contextual

information offers corroborating evidence in the identification of malicious actors

as they confirm whether they are displaying malicious behaviour in other areas

of the Internet. Naturally, this additional context heralds innovation for a novel

21

ground truth development method for use in the labelling of data sets. Funda-

mentally, this is intended to aid anomaly detection algorithms in the accurate

identification of malicious behaviour.

1.3 Motivation

The emergence of novel threats leveraging sophisticated exploits has caused dev-

astating damage to computer networks. In recent events, this has been realised

through extensive botnets performing mass exploitation to steal sensitive docu-

ments and service disruption caused by large scale Distributed Denial of Service

(DDoS) attacks utilising innovative methods of infection. This issue coupled with

the explosive growth of the Internet, leading to increased attack vectors, poses

challenges to current security solutions.

Through the utilisation of emerging technologies and innovative ground truth

development techniques, this thesis aims to present a solution for intrusion de-

tection in the modern Internet age. In detail, this solution incorporates the use

of big data frameworks to address scalability concerns inherent within modern

networks. Moreover, automatic attack telemetry collection and labelling is under-

taken, through the composition of honeypots and correlation with CTI services,

in order to establish a ground truth, which aims to improve the accuracy of de-

tection mechanisms. Furthermore, the latter approach additionally provides a

constant feed of emerging threat data, which could be used to iteratively train

machine learning classifiers, enabling an evolving understanding of malicious be-

haviour, and has been suggested to solve the current issues faced by public IDS

data sets [23].

1.4 Research Questions

Motivated by such events in recent times, this thesis aims to answer several open

questions within research. In detail, these include:

• Research Question 1: Can a continuously updated intrusion detection

data set be authored through the deployment of honeypots?

IDSs require up-to-date profiles of malicious behaviour in order to defend

against the most cutting edge attack vectors. Most intrusion detection data sets

22

within literature are not updated to reflect these emerging attack patterns. As a

result, IDSs which leverage these data sets will often not be able to detect attacks

that are currently propagating. In order to provide contributions to the security

community in the form of updated attack data, this thesis explores the use of

honeypots to continuously capture emerging attack patterns. To the best of our

knowledge, the use of honeypots has not previously been used in literature to

create an updated intrusion detection data set.

• Research Question 2: Can CTI services be leveraged to provide accurate

labels for telemetry, which contains emerging attack patterns and benign

traffic?

Through the composition of honeypots within public address space, emerging

attack patterns which are orchestrated over the Internet can be captured. In

addition to attacks, honeypots also capture traffic that can be classed as benign.

To distinguish between these varying classes of traffic, a ground truth must be

developed. The clear separation of this traffic can be used to accurately inform

supervised Machine Learning (ML) approaches of both normal and malicious

behaviour, leading to more accurate decision making processes. Recent devel-

opments within the area of CTI provide evidence of attacks, which have been

observed in various parts of the Internet. To the best of our knowledge, CTI

has not previously been used to provide accurate target labels for telemetry with

the intention to aid anomaly detection approaches to intrusion detection. Due to

the lack of research within this area, it is essential to examine whether such an

approach is feasible and appropriate.

• Research Question 3: Can innovations within Big Data technologies help

deal with the scale at which traffic in modern networks is required to be

processed for the intrusion detection of emerging threats?

As previously discussed, the amount of traffic which traverses modern net-

works has grown substantially. In order to identify malicious behaviour within

the network, this traffic must be evaluated. Traditional approaches have typically

struggled to deal with this influx of data related to the growing number of con-

nected devices. There have recently been innovations within Big Data technolo-

gies, which claim to handle extremely large amounts of data with low processing

23

overhead. This thesis intends to explore the benefits provided by these emerging

technologies. Specifically, this thesis will evaluate Big Data technologies in the

context of intrusion detection, and will assess whether near real-time detection

of attacks encompassed within large amounts of data can be achieved through

integration with these technologies.

1.5 Thesis Aims and Contributions

This thesis aims to investigate modern intrusion detection. This is achieved

through design, implementation and evaluation, with the main aims and contri-

butions of this thesis summarised below:

1. Attack data availability: In order to evaluate Citrus, the AD component

must be trained on a robust data set incorporating emerging attacks, and

normal behaviour. Due to the challenges identified with current data sets

during literature review, Citrus orchestrates the collection and processing

of emerging threat data through the composition of honeypots scattered

throughout Lancaster University’s public address space. Citrus then pro-

duces an open and reusable data set suitable not only for the evaluation

of itself, but also for the evaluation of next generation intrusion detection

techniques. This contribution is created to address Research Question 1.

2. Practical integration of CTI for active network defense: Supervised

ML algorithms require labelled training data to perform classification. In

order to provide contributions within this domain, Citrus develops a ground

truth for network telemetry data through a novel integration with CTI

services. The labelled data created through this process can be used to

evaluate next-generation attack detection frameworks. This contribution

aims to address Research Question 2.

3. Near real-time anomaly detection: Citrus is also designed with tremen-

dous scalability in mind. To provide effective attack detection capabilities

in large-scale networks, Citrus is integrated with big data technologies. Cit-

rus is also released in an open-source format to promote adoption by both

research and industry. This contribution aims to address Research Question

3.

24

1.6 Thesis Structure

This thesis is structured into six distinct chapters, the remaining are detailed in

the following:

• Background and Related Work (Chapter 2): This chapter initially

provides an introduction to the emerging threat landscape by exploring

current propagation, exploitation, and communication methodology. This

chapter then examines the use of CTI, with a focus on the use of honeypots

as a cyber defense strategy. This chapter also provides a detailed description

of contemporary intrusion detection methods, including the various different

data input types, and detection engine methodology. Finally, the chapter

concludes with a discussion of current challenges within this area of research.

These challenges are identified with the goal of motivating several design

requirements.

• Design (Chapter 3): This chapter discusses the design requirements for

effective and efficient intrusion detection derived from the aforementioned

related work. This chapter then goes on to showcase the design of a novel

intrusion detection framework, which aims to satisfy the challenges posed

by the emerging threat landscape via the integration with developing tech-

nologies and CTI services.

• Implementation (Chapter 4): This chapter highlights the technical im-

plementation of the previously mentioned design of a contemporary intru-

sion detection framework. It details the data collection and processing

pipeline, alongside a comprehensive description of how the data is classified

using ML algorithms. In addition, this chapter includes a presentation of

how Citrus is instrumented to establish a ground truth to aid its detection

approach.

• Evaluation (Chapter 5): This chapter undertakes rigorous investiga-

tion into the efficiency and effectiveness of the detection approach taken,

clearly detailing the benefits to scalability and ability to accurately detect

emerging threats. It achieves this by initially evaluating the efficiency of

the data processing pipeline, and then through the examination of its de-

tection capabilities an evaluation of its ability to detect various attacks is

25

conducted. Furthermore, the ground truth undergoes validation to ensure

the correctness of the labels applied to the telemetry used in the training

of ML models for detection purposes. This series of evaluations ultimately

explore whether the design requirements of Citrus have been met.

• Conclusion (Chapter 6): This chapter summarises the contributions of

this thesis, and goes on to document the potential areas in which this work

can be extended. Critically, this chapter explores whether the research

questions outlined in this chapter have been successfully answered.

26

Chapter 2

Background and Related Work

The overarching research questions outlined in the previous chapter motivate

several aspects of this thesis. In order to answer these questions, investigations

must initially be made within several areas of research to identify similar existing

approaches. The findings related to this investigation are documented within the

following chapter of this thesis. Based upon these, the design, implementation,

and evaluation of a prototype is used to explore whether these questions can be

answered with a positive outcome.

To begin, a critical examination of the evolving threat landscape and the way

in which monitoring and security mechanisms are employed in order to react to

these threats is conducted. Section 2.1 begins to present various attack methods,

malware families and types, detailing the methodology used to gain a foothold

into infrastructure and perform malicious actions at scale over the Internet.

One way in which emerging attacks are able to be monitored and analysed is

through the utilisation of CTI. Section 2.2 details various CTI providers, namely

honeypots, in recent literature. This includes the ability to collect attack teleme-

try, malware and generate signatures of compromise.

Through the monitoring and analysis of these threats, efforts can be made

to mitigate the problem. Section 2.3 highlights the use of IDS in contemporary

literature, examining the different methods used to detect malicious actions. This

section additionally investigates available intrusion detection data sets and their

deficiencies.

27

2.1 Modern Threat Landscape

Networked computer systems are increasingly susceptible to abuse due to the

growing propagation of exploitation and disruption campaigns throughout the

Internet. Motivated by economic and geopolitical gain, these myriad attacks

encompass a large range of techniques and are very diverse in nature. Ranging

from IoT malware initiating large scale DDoS attacks, to targeted and stealthy

intrusions into critical infrastructure leveraging zero-day exploits as part of a

sophisticated attack chain, the emerging threat landscape remains a challenging

problem to solve.

Within the modern threat landscape exists a variety of evolving and unfolding

attack vectors. These type of threats, which contain novel or updated infection

properties are known as emerging threats. Typically, threats such as these emerge

after recent developments within the security community, such as the public dis-

closure of a new software vulnerability.

2.1.1 Malware

Attack campaigns typically utilise malware in order to automate stages in an at-

tack chain, such as lateral movement and privilege escalation. Malware are typi-

cally classified into different families, each with a specific purpose and technique.

According to a recent report issued by FireEye, 41% of all observed malware

families in 2020 were previously unknown [27]. This emergence of novel malware

depicts a sobering insight into the threat landscape. New authors continue to be

motivated by lucrative returns and begin development, while current authors are

prepared to fully reimplement their malware in an attempt to evade detection

and gain infections.

The MITRE ATT&CK knowledge base documents over 240 distinct tactics

and techniques used in adversary behavior and taxonomy for adversarial actions

across their lifecycle [28]. Since its inception in 2013, this knowledge base has

grown to incorporate and reflect the evolving attack vectors discovered in the wild.

Malware authors are continuously innovating, employing increasingly complex

methods including exploitation, privilege escalation, lateral movement, and data

exfiltration in an attempt evade detection and complete their objective.

One of the most effective methods employed in malware is the use of undis-

28

closed vulnerabilities, more commonly known as zero-days, which are capable of

exploiting fully patched software. In an unprecedented attack campaign, Stuxnet

malware leveraged four unique zero-day vulnerabilities targeting systems operat-

ing Windows within an Iranian nuclear power plant [29]. These powerful exploits

remain illusive in nature with bug bounties allowing security researchers to ben-

efit economically for their efforts. Despite this, individuals may decide to choose

a different approach: weaponising the exploit and incorporating into bespoke

malware, or sale of said exploit on the black market, typically returning a larger

payout when compared to bug bountys. While initially causing large scale com-

promise, as evidenced in the WannaCry outbreak, which weaponised the leaked

and highly severe EternalBlue exploit [30], zero-days continue to infect devices

years after they are disclosed due to systems remaining unpatched [27] [31]. As a

result, these exploits are commonly instrumented within emerging malware, de-

spite the vulnerability being disclosed years prior. Being so effective and readily

available through open source weaponised code, there has been an emergence of

Exploit Kits. Exploit Kits provide a sophisticated delivery method in the dis-

tribution of malware, typically targeted at Windows machines with unpatched

commonly installed software such as Internet Explorer and Java. Exploit Kits

are comprised of a number of different exploits. Through the analysis of User

Agent strings embedded in HTTP headers, they filter viable candidates and tar-

get vulnerable software with a relevant exploit. Next, they attempt to exploit

these vulnerabilities, and if successful, the final payload is revealed and executed

upon the target machine. Often, Exploit Kits are provided as a PaaS offering.

This enables malware authors to focus on functionality, rather than the infection

vector.

Spelevo [32] Exploit Kit has been observed propagating through targeted ad-

vertising campaigns, injecting malicious iframes into visitors of legitimate web-

sites. This campaign commonly makes use of CVE-2018-15982 [33], an Adobe

Flash vulnerability enabling arbitrary remote code execution. In parallel, the

Rig [34] Exploit Kit has targeted users of adult websites through an advertising

campaign named HookAds. This campaign funnels traffic to decoy adult websites

where CVE-2018-8174 [35] is taken advantage of. This vulnerability targets In-

ternet Explorer and exploits the VBScript engine to gain Remote Code Execution

(RCE). A report by MalwareBytes disclosed this Exploit Kit has stopped using

Flash vulnerabilities, possibly signalling its limited utility due to Flash reaching

29

its end of life at the end of 2020 [36].

Upon successful infiltration of a system, malware typically communicates with

Command and Control (C&C) infrastructure to receive commands, or in the case

of ransomware, a unique public key is transferred in order to encrypt sensitive

documents. Traditionally, botnets have utilised the IRC (Internet Relay Chat)

protocol as a C&C medium, with bots instrumented to connect to a predefined

server and specified channel. They lay dormant until receiving a command from

the bot master, in which case each bot processes the task at once. This process is

now rarely observed in the wild, with HTTP now commanding a dominant share

of all C&C traffic, typically due to firewalls permitting this protocol access to

the Internet, masquerading as legitimate web traffic [37]. This method leverages

HTTP requests, with the malware initiating communication with the C&C server,

providing system information within the request body. Based on the request the

C&C server receives, a tailored response and corresponding commands are sent

to the victim.

However, both of these methods suffer from the same problem: a single point

of failure. If the server in each case is taken offline through abuse reports, the

malware cannot receive commands and effectively becomes benign. Recent in-

novations in C&C architecture and methodology have been discovered which at-

tempt to address this problem. Through distributed placement of C&C servers,

proxy redirection, Peer-to-Peer (P2P) networking, DNS fast-flux, and Domain

Generation Algorithms (DGA), malware authors continue to attempt to elude

discovery and counter measures.

DGA provides a method in which hostnames corresponding to C&C servers

are rotated periodically. In this instance, malware instrumented to communicate

with C&C servers first generate the domain through a function using the current

time and date as an argument. If the domain generated successfully resolves, the

malware designate it as the authoritative command server until the next round

of generation. After each iteration, the previous domains are discarded and never

used again, ensuring law enforcement cannot perform reactive take downs and

cause disruption to functionality. One method used by researchers to monitor

this activity is through the analysis of malware. Researchers at University of

California, Santa Barbara employed this method to inspect the generation func-

tion of emerging TorPig variants [38]. Through identifying the mechanisms used

to generate the domain on a given date, they were able to register future domains

30

before the bot masters, effectively taking control of the botnet for 10 days. Dur-

ing the length of control, the researchers were able to intercept communications

from bots, and were able to retrieve millions of account details obtained through

Torpigs form capture and password manager attacks.

DGA is often used in conjunction with DNS Fast-Flux to provide an additional

layer of protection against counter measures. The Fast-Flux concept rapidly

changes the IP addresses corresponding to a given domain name. Through the

constant update of DNS A records, IP addresses of other infected hosts are in-

serted with a low TTL (Time To Live) value, cycling them every few minutes.

When the malware wishes to communicate with the C&C server, the IP of the

given domain is resolved through recursive DNS, with the authoritative server

returning an IP address of another infected host. The malware will then connect

to the identified remote host, proxying the request to the C&C server.

2.1.1.1 Botnet

Botnets remain a prominent threat in recent times, comprising a vast number of

malicious activity currently occurring in computer networks. These threats are

capable of infecting large numbers of hosts through powerful exploitation tech-

niques and persistent malware, making them also part of the growing botnet.

Botmasters are individuals who control botnets from behind the scenes, orches-

trating the infected bots’ actions through administration of the C&C servers,

providing them a layer of anonymity. Through this process, individual bots or

the entire army can be ordered to complete tasks such as updating malware bi-

naries, or performing distributed attacks such as DDoS. Updating of malware

binaries is performed to enable additional functionality of the botnet, with the

most popular in recent times including click fraud, phishing, spam campaigns,

and cryptocurreny mining [39].

Due to the nature of botnets, they are extremely lucrative and are capable of

earning large amounts of profit through diverse sources. This is often achieved

through financial fraud leveraging form capture, keylogging, or password man-

ager exploit, where the credit card information and banking account credentials

are captured and sold for profit or used to extract funds from victims’ accounts.

This is not always the case, and botnets are capable of earning money by sim-

ply controlling large numbers of hosts. As evidenced by the Mariposa botnet,

31

individuals are willing to rent these botnets to coordinate attacks of their own,

effectively skipping the large investment needed to gain these infections [40].

Coordinated by C&C infrastructure and malware present on bots, botnets

such as Mariposa initiate scanning campaigns in order to identify vulnerable sys-

tems via the discovery of open ports. Port scans of this nature can be achieved

through UDP (User Datagram Protocol) and TCP (Transmission Control Proto-

col) methods, with each botnet choosing one suitable for services they are actively

trying to exploit.

Utilising TCP as the scanning protocol is a popular approach in botnets, with

most modern services operating with this protocol, and it generally being faster

than UDP methods. Stealth TCP scans are initiated by sending a prospective

host a SYN packet directed to the target port, if a SYN/ACK response is returned,

it is determined the port is open, and if a RST packet is received, the port is

closed. This technique is relatively unobtrusive as the full TCP connection is not

made, limiting the noise involved in the process.

In some cases, botnets also utilise UDP in scanning mechanisms, however this

protocol has limitations over TCP implementations, namely open and filtered

ports rarely respond, incurring heavy delays and possible retransmission if the

packet was thought to be lost. Furthermore, this problem is exemplified when

combined with the fact that closed ports usually send back ICMP Port Unreach-

able errors, which are also often rate limited by many systems including the Linux

kernel. In order to work around this issue, bots will typically scan the same port

of many different hosts simultaneously, therefore, circumventing rate limit lim-

itations. This is known as horizontal scanning, and many popular botnets are

currently employing this technique to scan vast numbers of IP addresses , choos-

ing particular ports they are interested in. The famous Zeus botnet has been

observed utilising this method, with the scanning only targeting specific ports

commonly used for vulnerable web servers across multiple hosts simultaneously

[41]. The vertical scanning technique involves scanning a single host for a range

of different ports. This is often used to enumerate all services that are open on

a host, uncovering all possible attack vectors. While this may not be the most

efficient method in which botnets scan large number of IPs, this is typically used

in manual intrusion attempts and is incorporated in the popular Nmap tool [42].

An emerging avenue in which botnets have been able to generate revenue is

the mining of cryptocurrency. This is widely known within the cyber security

32

community as cryptojacking. A recent report by the European Union Agency For

Cybersecurity (ENISA) documents that 61.4 million cryptojacking attacks were

identified within 2019 [43]. This type of attack leverages the computational power

of a large number of infiltrated servers to generate substantial and untraceable

income. The report lists a variety of legitimate mining software used by botnets

to perform this function. In addition, the report identifies Monero as being the

most popular cryptocurrency to mine by various botnets.

2.1.1.2 Ransomware

Ransomware, much like botnets, employ vast scanning and exploitation cam-

paigns. However, in this case, the objective is very specific: the encryption of

sensitive files on an infected system. The malware leaves ransom notes detailing

how to transfer payment, typically in the form of untraceable cryptocurrency or

gift cards. In return, operators of the attack communicate the decryption key

to the victims, allowing them access to their files once again. Holding data for

ransom has been around for many years. Before the inception of Bitcoin, tradi-

tional payment methods typically did not provide a layer of anonymity and came

with some risk for attackers. However, the widespread use of cryptocurrency has

led to the creation of an explosive wave of innovative ransomware families be-

ing authored, each with various tactics and techniques used for infiltration and

encryption schemes [44]. The most publicised ransomware attack occurred in

2017, through powerful exploitation of SMB services. WannaCry ransomware

infected thousands of devices in short succession, making use of powerful self-

replication technique [45]. As a result, the UK’s National Health Service (NHS)

suffered several breaches, where computers in general practices were targeted and

patient records were encrypted, leaving doctors and nurses to work without ade-

quate resources [46]. This could have been easily prevented as the exploits used

in WannaCry were EternalBlue and EternalRomance, exploits developed by the

National Security Agency (NSA) and subsequently leaked by malicious actors.

The exploits target various flaws in Microsoft’s implementation of the SMB pro-

tocol, and grant system level privileges to attackers. These exploits are typically

utilised alongside the DoublePulsar implant, a backdoor developed by the NSA.

This enables custom commands to be received through hooking the SrvTransac-

tionNotImplemented method within the SMB service [47]. A recent investigation

33

revealed through mass scanning of the Internet that 56,586 hosts were infected

with the DoublePulsar implant [48]. Interestingly, there is no authentication to

use the backdoor. As such, WannaCry also scans and actively exploits targets

already infected with the DoublePulsar implant. Prior to these exploits being

leaked, Microsoft released patch MS17-010 fixing the vulnerabilities. However in

the case of the NHS and other enterprise networks, they did not manage to patch

the systems in a timely manner, leaving them vulnerable and highlighting severe

security problems in major institutions [49].

Ransomware employs either symmetric encryption, asymmetric encryption,

or a combination of both. Poor implementation of symmetric key encryption

methods have lead to developments in decryption tools, circumventing the ransom

payment and decrypting the files through identification of symmetric keys used in

the encryption process. TeslaCrypt is an example of one such ransomware family,

utilising AES-256 (Advanced Encryption Standard) as the method of encryption

and storing symmetric keys on the disk in a file named ’key.dat’ in the users

application data folder. As a result, decryption is trivial, with Cisco releasing a

tool of their own which restores all files destroyed by TeslaCrypt [50].

Figure 2.1: Asymmetric ransomware encryption process.

A more robust approach is the use of unique asymmetric keys for each victim.

This process is depicted in Figure 2.1. Upon successful infiltration of systems,

communication is initiated with the C&C servers, typically using some form of

additional encryption to prevent interception of data, where the C&C server

generates private and public keys unique for the victim. This process is stage

34

1 within the figure. The C&C server will then log victim system details, along

with encryption keys to an internal database and send only the public key to the

victim. This public key is then used in the file encryption process on the victim

system. This process is stage 3 within the figure. Finally, the victim will be

informed of his misfortune and a ransom note will be presented, as highlighted

within stage 4 of the figure.

As asymmetric key encryption is much slower than symmetric key encryption.

Authors combine the two to gain benefits in speed and security. Taking Cryp-

toLocker as an example, this family creates a symmetric AES key to encrypt files

on the host. Once this process is complete, the public key received from the C&C

is used to encrypt the symmetric key, saving it to disk along with the encrypted

files, ensuring the original encryption key is erased from memory. Thus, only the

private key on the C&C server can decrypt the symmetric key, requiring ransom

payments to be made [51]

If there is no connection to the Internet on the infected device, this method

can not be used as communication with C&C servers cannot happen. In this

case, some ransomware families still encrypt the files, typically using AES-256

with varying Initialisation Vectors (IVs). Furthermore, they attempt to erase the

symmetric key used from memory and disk, along with deleting shadow copies to

ensure backups cannot be used to restore files. Ransom notes are still delivered

to victims and payments can still be made, however the attackers do not have

access to encryption keys, leaving victims helpless in this scenario despite making

payment.

2.1.2 Multi-stage intrusion

Multi-stage intrusions are attacks which incorporate multiple techniques, tactics,

and protocols, such as those discussed previously, to achieve a predetermined goal.

In this scenario, attackers typically follow an attack life cycle model, which details

the steps required by an adversary to infiltrate computer systems. For example,

after the successful infiltration into infrastructure through phishing attempts,

attackers may execute malicious code in order to further establish a foothold into

infrastructure through lateral movement and additional exploitation of vulnerable

services.

This model was first introduced by Lockheed Martin to aid analysts in un-

35

derstanding what information may be available for defensive courses of action,

identifying different stages in which attackers leave traces of compromise [52].

This model is depicted in Figure 2.2, with each stage being required to be com-

plete before leading to the subsequent stages.

Figure 2.2: Attack life cycle model

Reconnaissance: Initially looking to gain as much information about the

target as possible, attackers perform reconnaissance through identifying vulner-

able technical components and key staff members within the organisation. In

this stage, enumeration of computer systems and their respective IP addresses,

domains, and services is undertaken to identify potential vulnerabilities and at-

tack vectors. The aforementioned vertical scanning technique is often used to

enumerate potential services to exploit, utilising Nmap to perform stealth TCP

scans. In the case of the discovery of web servers, publicly available tools such

as gobuster [53] can be utilised to bruteforce directories and files, DNS subdo-

mains, and virtual hosts in an attempt to discover hidden services which do not

follow proper security protocol. Furthermore, contextual information about the

target is also gathered in this stage, possibly identifying members of the organ-

isations through Open Source Intelligence (OSINT) tools. OSINT is a form of

intelligence collection through publicly available sources on the Internet. Social

media is often examined as part of this process. Through the identification of

employee profiles, email addresses, usernames, and organisational hierarchy can

be ascertained. This discovery can potentially lead to future attack vectors, with

spear phishing attempts being enhanced with convincing contextual employee

information. Moreover, usernames and email addresses could be leveraged as cre-

dentials for accessing computer systems, with their corresponding passwords also

potentially being able to be recovered from password dumps of leaked databases

[54].

Delivery: Based on the attack vectors identified through reconnaissance,

delivery of the attack payload is then processed. This step can also be approached

through multiple avenues, with spear phishing and watering hole attacks being

the most common [55]. Spear phishing relates to intricately crafted phishing

36

emails targeting entities identified to be of significance in the organisation with

malicious attachments or links. The concept of watering hole attacks follows an

analogy of a predator patiently waiting at a watering hole, biding its time knowing

that eventually the victim will fall prey and enter the watering hole. Similarly,

attackers identify websites frequented by the victim and attempt to infect that

website through such methods as XSS (Cross Site Scripting). Consequently, when

the victim loads the website, they also become infected.

Exploitation: The exploitation stage seeks to activate the payload deliv-

ered in the previous stage, gaining initial access into the target network. This

is typically achieved through actors clicking attachments or malicious links in

the aforementioned spear phishing methods, and also through the execution of

malicious code on target computer through exploitation of vulnerable services.

Installation: Upon successful exploitation of systems, the next step involves

the installation of malware to gain remote access and persistence through restarts.

Command & Control: Through the installation of malware, C&C mecha-

nisms are established which specify how the malware operates, enabling further

compromise.

Privilege Escalation: If the user account compromised within the host

does not have sufficient privileges to perform necessary actions, for example read

sensitive documents or execute specific binaries, privilege escalation techniques

can be used to gain access to administrator accounts. At the time of writing,

GTFOBins [56] maintains a list of 185 Linux applications that have the capability

to perform this operation, showcasing a glaring security risk if permissions are

not meticulously administered.

Lateral Movement: Once deemed that the compromised system has been

fully explored, lateral movement can be used to pivot into other internally net-

worked systems, expanding the overall control over the targeted organisation. In

this stage, credentials harvested from previous stages in the attack can be used to

remotely authenticate into internal systems. This is then repeated, compromis-

ing as many systems in succession as deemed necessary to complete the attackers

objective.

Data Exfiltration: When the target data is discovered, exfiltration is per-

formed using encrypted protocols to transfer it to a location the attacker controls.

Despite this attack cycle being representative of attacks occurring within con-

temporary networks, there exists some problems with the model. It has been

37

criticised as being too stringent in nature, as the diversity of attacks currently

propagating means that not all attacks follow the model precisely, potentially

missing some stages if not necessary or applicable to the overall goal of the at-

tacker [57]. For example, privilege escalation may not be necessary if the exploit

stage grants root access, such as the aforementioned EternalBlue exploit. More-

over, lateral movement does not need to be utilised if the compromised system

already contains the required data.

2.1.2.1 APTs

APTs (Advanced Persistent Threats) are cyber attacks executed by sophisticated

and well-resourced actors pursuing access into government or other high-profile

target infrastructure. These attacks often contain multiple zero-day vulnerabil-

ities estimated to be worth in excess of hundreds of thousands of pounds. It is

therefore no surprise that monetary gain is often not the purpose of these attacks,

with geopolitical instability speculated to be at the fore of the most cutting-edge.

These attacks utilise multiple attack vectors to gain footholds into cyber infras-

tructure and perform their objectives. They are described in [58] as having the

ability to pursue objectives repeatedly over an extended period of time, adapting

to defenders resistive efforts , and having specific targets. There are multiple

phases within APTs, and as such there are models which attempt to classify the

life cycle.

2.1.3 Service Disruption

Another attack method which does not require exploitation of services and in-

filtration of infrastructure is the Denial of Service (DoS) attack. DoS attacks

attempt to disrupt the legitimate use of computer systems by flooding them with

a large amount of traffic. This is done in an attempt to fully consume the re-

sources of the system, leaving none to serve legitimate requests. Investigations

have revealed the most popular type of DoS attack is the TCP SYN method

[59]. This type of attack uses the SYN flag within the TCP header to indicate

a connection should be opened to the client. Using source address spoofing, a

single client can open numerous unused connections to the same server. These

open connections consume resources on the server, and if enough are kept open,

no more connections are able to be made to the victim server.

38

As discussed in the previous chapter, DDoS attacks involve the orchestration

of multiple DoS attacks. In order to perform this type of attack, attackers first

need to gain access to a large number of computers through exploitation of ser-

vices [60]. As mentioned previously, this accumulation of infected computers is

known as a botnet. Bots within the botnet coordinate with each other to perform

DDoS attacks at massive scale. A recent report has identified that during June

2020, DDoS attack traffic was traversing the Internet at a rate of 2.8 terabytes

per second [61]. As is often the case for cyber attacks, monetary gain is a moti-

vating factor for DDoS attacks. Akamai published a report which outlines DDoS

attacks occurring in August 2020 as a result of extortion attempts [62]. Not dis-

similar in nature to ransomware, the threat actors typically communicate with

organisations beforehand, warning of impending DDoS attacks unless a ransom

is paid in bitcoin.

2.2 Cyber Threat Intelligence

As identified in the previous section, the evolving threat landscape consists of

innovative and large scale attacks. The monitoring of these attacks is essential to

reduce the rate at which they propagate, a process which utilises sensors scattered

around the Internet to observe cutting edge adversarial methodology. There

exists substantial research into this area, with contributions incorporating the

deployment of honeypots and dark IP address space to capture unsolicited traffic.

Moreover, analysis of malware which was used as part of the attack process is

also undertaken in literature to gain insight into novel exploit techniques and the

structure of C&C architecture. The information derived from these sources is

known as CTI, which in contemporary studies has been used to profile malicious

activity and enhance security mechanisms.

In this section, an examination of how threat intelligence aids understanding

of emerging attacks is undertaken, providing details of how attacker methodology

can bolster existing security mechanisms. This is initially discussed in Section

2.2.1 by considering honeypots, systems which attract attacks through decep-

tion. When monitoring emerging threats, it is crucial to correlate data with

external sources to corroborate suspicion of illicit activity. Cyber Threat Intelli-

gence Services (CTIS), as described in Section 2.2.2, provide such functionality.

39

Serving as additional data points, these services have the capability to confirm

whether attacks identified locally are symptomatic of a larger campaign orches-

trated throughout the Internet, further augmenting knowledge of threat actors

through contextual information.

2.2.1 Honeypot

Honeypots are systems under observation which contain components that mas-

querade as legitimate enterprise infrastructure in order to catch unsuspecting ad-

versaries leveraging previously unobserved exploits, attack tactics and patterns

used for infiltration [16]. Utilising these honeypots grants unrestricted access to

emerging CTI through extracted log data, which is otherwise extremely difficult

for the wider community to access. This is in part due to an anonymisation

process, which data is often subject to before public release. In many cases this

removes information relevant in the analysis of attacks, such as IP addresses.

In addition, cutting edge attack data is difficult to obtain due to deficiencies in

research and secrecy from industry.

The benefits of this approach relate to the fact that activity relating to these

systems is likely to be malicious as all communication is unsolicited. Therefore,

honeypots are an invaluable asset in the identification of novel attack vectors.

The types of attacks honeypots encounter are vast, as the number of different

services emulated by honeypots grow, diverse attack vectors can be captured and

discovered, leading to the generation of threat intelligence data. Ghourabi et al.

characterise telemetry observed from their bespoke web application honeypot, and

identify that among benign Internet traffic there existed exploitation attempts

such as Structured Query Language (SQL) and XSS injection, fuzzing penetration

testing tools, and scanning attempts [63]. The nature of the deployed honeypots

dictate the types of attacks encountered, with honeypots deploying a large number

of different services granting observation of more diverse types of attacks. Yahya

et al. [64] deploy a range of emerging honeypots that emulate a large number

of popular services. Through the analysis of the captured telemetry, the authors

identify diverse attack techniques such as DDoS attacks, bruteforce attempts,

and exploitation of vulnerabilities targeting various software implementations.

40

2.2.1.1 Honeypot Types

As a honeypot is a conceptual method of observing attackers, there exists multiple

varying implementations with each providing different functionality. Despite this,

honeypots can be loosely classified into three distinct types: low-interaction,

medium-interaction, and high-interaction. A low-interaction honeypot typically

exposes fake services with no underlying layer in which adversaries can exploit

and propagate further through the network. These are mainly used to gather

metrics relating to credentials and connection information gathered from headers

within packers. Examples of these include Glutton [65] and Heralding [66]. As

a result, these types of honeypots typically gather a lot of scanning data, due to

attackers concluding that there is no attack surface and therefore will not attempt

any further probing or exploitation.

Medium-interaction honeypots aim to masquerade as a realistic service such

as File Transfer Protocol (FTP) and Secure Shell (SSH) to provide an underlying

emulated environment which allows attackers to further interact and capture ex-

ploits without any real risk of infiltration. An example of such a service is Cowrie

[67], an SSH and Telnet honeypot capable of capturing brute-force attempts,

command-line input, and malware dropped within the shell session. Another

prominent medium-interaction honeypot is Dionaea [68]. Dionaea emulates mul-

tiple services spanning both UDP and TCP, with the ultimate intention to trap

malware exploiting vulnerabilities in services exposed to a network. This honey-

pot leverages libemu [69], an x86 emulation framework, to execute exploits crafted

by attackers in order to gather shell code and other behavioural information.

High-interaction honeypots further add complexity as they deploy real oper-

ating systems and applications in which an attacker has the ability to completely

gain access. While the risk of infiltration and propagation is much greater, the

data gathered grants a system level view of operations, which further aids under-

standing of the extent of their behaviour. Furthermore, this is the only approach

which grants insight into the entire chain of events, from initial reconnaissance to

data exfiltration. The virtualisation of systems is a popular approach in deploy-

ing high-interaction honeypots, with hypervisors and containers being utilised

heavily to prevent full takeover. Valicek et al. [70] take this approach through

the cloud based deployment of remote high-interaction honeypots composed with

Docker containers. This was made feasible through recent Windows 10 patches,

41

which introduced native Windows Docker containers. Attackers were presented

with an isolated server environment where they can perform any actions they

wish, uncovering attack properties in the process. After the attack was deemed

to be complete, the corresponding logs can be extracted and Docker containers

reset to their original state, ready for another adversary.

2.2.1.2 Telemetry Extraction

There are typically three methods of extracting information from high interaction

honeypots, namely: agent based approach, Man in The Middle (MiTM) proxy,

and Virtual Machine Introspection (VMI). Sentanos et al. [71] identifies MiTM

as a stealthy method in which collection of shell commands injected into an active

SSH occurs. While providing common commands used to propagate malicious

activity, this approach lacks the high level understanding of Tactics, Techniques,

and Procedures (TPPs) used to analyse how these commands interact with the

operating system and perform malicious actions. Adopting an agent based ap-

proach grants rich insight into operating system and application behaviour by

emitting event logs which can be utilised for analysis of malicious actions at a

host level. However, this approach can easily be deceived by knowledgeable ad-

versaries. As the agent resides with the system itself, attackers can modify the

data collection process to produce benign activity. VMI also has the ability to

provide rich systems level information, and has additional benefits of complete

isolation between the system under analysis and monitoring system, ensuring a

complete and untainted view of systems operations. Sentanos et al. take this ap-

proach in their research, monitoring system calls of processes to gain an overview

of operations within the system.

In the case of medium and low interaction honeypots, network telemetry is

used to identify attacks. In addition to the logging capabilities provided by these

honeypots, the raw network traces of attacks can be captured in order to derive a

fuller understanding. From these raw network traces, essential statistical features

can be derived for the inclusion in intrusion detection data sets [18]. At a software

level, network traffic can be captured using the open source Libpcap [72] library,

which offers an interface for capturing link-layers frames. This library also defines

a standard format in which the captured frames are stored, known as the tcpdump

format [73]. Sperotto et al. utilise this approach when capturing network traffic

42

from honeypots. In their research, the authors create a new intrusion detection

data set derived from this data capture.

In recent years, NetFlow has emerged as a popular method of monitoring

network activity. This method solely collects flow based features which are derived

from network traffic. As raw packet payloads are not considered, this method

helps cope with growing scalability concerns introduced by expanding networks

and increased speeds. Flow enabled devices are now offered by many vendors,

such as Cisco supplying routers with NetFlow capabilites. Husák et al. utilise

NetFlow to provide a flow based honeypot monitoring solution [74]. In their

approach, the authors use NetFlow probes located at egress points of the network

to gather data. The use of a NetFlow collector is also required in this scenario to

further collect and analyse the captured data.

2.2.1.3 Deployment Locations

When deploying honeypots into a network, consideration of deployment loca-

tion is required to produce desirable results. There are typically three locations

suitable for enterprise network deployment, namely within Local Area Network

(LAN), Demilitarized Zone (DMZ), or Wide Area Network (WAN) regions [16].

LAN refers to a collection of networked devices in the same physical location. A

DMZ is a network which exposes external-facing services to an untrusted network

such as the Internet. A WAN is a type of large network which connects devices

over large distances. When positioning a honeypot within the LAN, it becomes

integrated with production services and internal hosts. This approach tends to

observe attacks emanating from within the network as opposed from the Inter-

net. As a result, targeted attacks and malware looking to move laterally within

an organisations network are often gathered from these honeypots. As interaction

with honeypots within these local networks is unsolicited, it is highly likely that

there is malicious intent. Therefore, these types of honeypots have been heavily

utilised in production environments to provide a layer of defense against insider

attacks [75]. One way of achieving this is through the use of honey tokens. These

represent artificially crafted data which are unique to an individual and enable

the monitoring of data movement. These act as bait for attackers, deceiving them

into thinking that they have valuable data while constantly being tracked.

When honeypots are accessible from the Internet, the number of observed at-

43

tacks rises dramatically. Attackers are constantly launching scanning campaigns,

looking to identify vulnerable systems that they can compromise. The growth

of Internet device search engines such as Shodan [17] has exacerbated this prob-

lem, allowing attackers to find all devices vulnerable to a particular exploit on

the Internet in seconds. Due to this, honeypots which are accessible from the

Internet are able to capture ample amounts of emerging attack telemetry. Ema-

nating from various parts of the world, the attacks uncover novel techniques and

tactics derived from the telemetry to gain an understanding of threats which are

currently targeting infrastructure at scale.

2.2.1.4 Security Implementations

While honeypots do not directly increase security in a network through simple

deployment, the analysis of the collected records can be leveraged in order to aid

understanding of the threats targeting the network. This in turn can then be

used to aid security mechanisms such as IDS or IPS. The approach taken in [76]

leveraged high and medium interaction honeypots to produce host based intru-

sion signatures suitable for misuse-based Host-based Intrusion Detection Systems

(HIDSs). The research outlines how deviation from normal behaviour observed

within honeypots is detected, and how the corresponding signatures incorporating

malicious actions are generated and can be used to prevent future compromise.

Vasilomanolakis et al. [77] used a similar approach, through the deployment of

bespoke Industrial Control System (ICS) honeypots in order to generate signa-

tures of multi stage attacks by modeling each disparate protocol from the same

host as a separate stage in the attack. For each of these stages, a signature is

generated based upon characteristics of the network packet involved in the attack,

which is then used by Bro IDS [78] to evaluate the detection capabilities.

Miyamoto et al. [79] adopt a different approach to aiding security within

networks through the use of honeypots, namely through the migration of suspect

adversaries from production services to honeypots. They forward suspect attacks

identified by their Web Application Firewall (WAF) to VMs masquerading as

legitimate enterprise services, ensuring that the attacker has no capabilities to

target actual production systems. This approach performs live migration of VMs

to achieve a perfect copy of environments for web applications, deceiving attackers

in the process and wasting their time and efforts.

44

Matin et al. propose a detection approach for malware using honeypots and

machine learning algorithms [80]. In their approach, the authors utilise the

Endgame Malware BEnchmark for Research (EMBER) [81] data set that con-

tains static analysis statistics of over one million Windows Portable Executable

(PE) malware samples to train machine learning based classification algorithms.

In their architecture, they outline the integration of honeypots to collect suspect

executable files, and subsequently use the classification algorithms to identify the

various families of collected malware samples. If a file is found to be malicious,

the network administrator is notified, alerting them to the discovery of malicious

actions.

Alata et al. predict the occurrence of new waves of attack on a given platform

based upon the history of attacks for the given platform through the analysis and

application of linear models on data collected from honeypots of varying inter-

action levels [82]. The authors outline the Collection and Analysis of Data from

Honeypots (CADHo) project, an initiative which deployed distributed honeypots

in many physical locations on five distinct continents in order to collect telemetry

of emerging attacks. The authors also apply the use of statistical and probabilis-

tic analysis techniques to further model the observed phenomena. Through the

use of linear regression, the authors plot and predict trends inherent within the

data, forecasting the number of attacks from different countries in the process.

Another popular use of honeypots in contemporary literature is the creation

of IDS data sets. To evaluate the effectiveness of attack detection techniques they

must be tested against data which includes benign and attack traffic. Such data is

difficult to collect, with privacy and legal concerns making telemetry unavailable

to the wider community. Honeypots gather a wide range of malicious and benign

activity, representative of a portion of attacks currently propagating throughout

the Internet. Therefore, telemetry derived from honeypots offer realistic insight

into emerging attack processes and can heavily aid the security community with

the evaluation of detection schemes. Many contemporary IDS data sets utilise

honeypots to gather such data, and as such, they are investigated further in the

section 2.3.5 of this thesis.

45

2.2.2 Cyber Threat Intelligence Service

CTI services provide organisations insight into relevant threat actors which aim

to infiltrate infrastructure. These types of services are typically used in order to

cope with the growing complexity of the cyber threat landscape and the increasing

frequency at which cyber attacks take place [83]. Furthermore, these services all

function in a bespoke manner, and deliver various types of intelligence. These

range from services which systemically scan and profile the entire internet address

range, e.g. Shodan, to services which maintain historical records of identified

attackers in blocklists such as Maltiverse1. Due to commercial reasons, the true

nature behind how these services operate is not divulged to the general public.

Despite this, the intelligence offered by these platforms is an invaluable resource

in the analysis and defense of emerging threats.

2.2.2.1 Services

Shodan is one of most popular CTI services, and boasts being the world’s first

search engine for Internet-connected devices. This service enables the compre-

hensive discovery of servers which contain a public IP address. Through entering

various search terms into Shodan, a list of vulnerable servers is able to be pro-

duced. This indicates possible servers which have already been exploited, and any

communication involving these servers should be treated as suspicious. Further-

more, this enables an understanding of the total number of hosts susceptible to

various new vulnerabilities identified by researchers. This can be used to further

assess the severity of the impact these vulnerabilities can cause.

Another such service which performs profiling of the Internet is Greynoise2.

This service claims to maintain a large number of ephemeral servers in hundreds of

data centers across the world, and perform omni-directional scanning to uncover

properties about the topology of the Internet.

Maltiverse is another example of a CTI service. This service compiles a col-

lection of various blocklists which detail IoCs. These IoCs include IP addresses,

file hashes, and more. This can be used to understand whether potential com-

munication attempts have been initiated by a known attacker contained within

a blocklist. Another use case for this service involves checking against a list of

1https://maltiverse.com/
2https://greynoise.com/

46

known malicious files before execution. The benefit of using this service relates to

the fact that it contains multiple blocklists, and provides a unified API to retrieve

details from all of them at once.

2.2.2.2 Sharing Methodology

In order to enable the automated retrieval and processing of vast amounts of

CTI data, these services typically provide a method in which the data is easily

shared between parties. Standardisation of both the exchange mechanism and the

format in which the data is exchanged has taken place to simplify this process

and support a wide range of use cases.

In detail, the Structured Threat Information eXpression (STIX)3 is a stan-

dardised language for structured cyber threat information representation [83].

The STIX language comprises of a large set of CTI classes, including indicators

of compromise, TPPs, exploit targets, and threat actors. This enables a compre-

hensive understanding of suspicious cyber events.

To securely and automatically exchange CTI across organisations, the Trusted

Automated eXchange of Indicator Information (TAXII)4 was created. Increas-

ing situational awareness of emerging threats, TAXII can be used to ingest large

amounts of cyber intelligence represented in STIX format. A number of shar-

ing mechanisms are provided by TAXII, and include peer-to-peer and source-

subscriber models.

Despite the standardisation of exchange mechanism and intelligence repre-

sentation, a large number of CTI services, including those discussed in Section

2.2.2.1, provide data through a RESTful API. While this also enables program-

matic collection and analysis, the format in which the data is stored varies depend-

ing upon the CTI service. For example, Shodan grants access to its’ intelligence

platform through the RESTful API, and documents the data held within it in

JSON format. The manner in which the data is represented in Shodan’s JSON

format further differs from that of other CTI services, meaning that applications

which use multiple services are required to parse the intelligence using varying

means.

3http://stix.mitre.org
4http://taxii.mitre.org

47

2.3 Intrusion Detection

An intrusion can be defined as any activity that causes damage to information

systems [84]. An IDS is a system which identifies these malicious actions to en-

sure the security and integrity of computer systems is maintained [85]. These

systems monitor various activities taking place, and if deemed to be malicious,

alerts and remediation procedures are commenced to mitigate such threats. Data

sources which describe this activity are diverse and manifest themselves in mul-

tiple ways, however, there are two broad classes of IDSs: Host-based IDS (HIDS)

and Network-based IDS (NIDS). This distinction is based upon the type of input

data and measurements used to detect abnormality.

However, in general, all types of IDSs contain three components: data col-

lection, conversion of features, and a decision engine [86]. The data collection

component ingests various types of data such as packets or system calls. To pre-

pare the data for decision making, an IDS must convert the input data into a list

of attributes called a feature vector. The decision engine consists of an algorithm

which decides whether the input data is representative of malicious behaviour or

not.

2.3.1 Network-based IDS

A NIDS monitors traffic traversing computer networks to detect malicious activ-

ity. The network traffic used to detect attacks is captured through various means,

such as packet capture and NetFlow. Packets have traditionally been the method

of choice for NIDS. However, due to the pervasive adoption of encryption, the

packet payload is unable to be inspected. Additionally, full payload capture is

computationally expensive and can lead to performance bottlenecks in high-speed

networks [87]. Therefore, flow-based detection methods have become popular in

literature as they encompass measurements from multiple packets in a connection

and only analyse the packet header, not the payload.

2.3.2 Host-based IDS

A HIDS leverages data which originates from the system itself to defend against

malicious actions. Multiple types of input data can be used to inform a HIDS

about potential attacks, including system calls, system logs, file systems, Win-

48

dows Registry, and processes. Notably, this method enables the detection of

threats which do not manifest themselves over the network.

System call data is one of the most popular choices for use in HIDS. This

has been suggested to be because there is no process which can obfuscate these

events as they originate from the OS kernel, unlike the production of log files [86].

Modern operating systems are capable of producing hundreds of different types

of system calls. The main drawback related to this approach to HIDS is the high

computational overhead required for collection and processing.

2.3.3 Misuse Detection

The previous two sections categorise IDSs into groups based upon the data source.

However, they can also be categorised based upon the method used to identify

attacks. These groupings are known in literature as misuse-based intrusion detec-

tion and anomaly-based intrusion detection. Misuse-based IDSs typically lever-

age a database of known attack signatures to detect attacks. These systems use

pattern matching to identify whether suspect activity is contained within the

known malicious database. If the activity being compared matches with records

within the existing database, an alert can be generated to notify administrators

of malicious activity.

These types of systems generally grant excellent detection accuracy for known

attacks. However, they struggle against emerging and novel threats, due to the

fact that the signature database must be updated to reflect the new attacks. The

increasing rate at which novel attack vectors are discovered and utilised have

rendered this approach less effective [88].

2.3.4 Anomaly Detection

Anomaly detection approaches have drawn immense interest from the research

community due to them alleviating challenges incurred by signature-based sys-

tems. Most notably, these include the ability to detect zero-day attacks as they

do not require a known malicious signature database [89]. In this approach, a

model of normal systems behaviour is created using machine learning, statistical-

based or knowledge-based methods [84]. Any monitored activity which deviates

from this normal behaviour profile is treated as an intrusion. However, these

49

systems generally suffer from a greater false positive rate compared to signature

alternatives. This is caused through various means, including a lack of strong

ground truth within training data.

2.3.4.1 Machine Learning

Machine learning based methods have been shown to be adept in the detection of

a variety of malicious activity. In this approach to anomaly detection, machine

learning models are trained using data extracted from intrusion detection data

sets. Their capacity to detect attacks is then evaluated using test data containing

unknown records. There are many distinct types of machine learning algorithms

that have been applied to intrusion detection scenarios, such as decision trees,

clustering, neural networks, and genetic algorithms.

To further distinguish between machine learning techniques, there exists both

supervised and unsupervised algorithms. Supervised algorithms require a ground

truth in the form of target labels within training data. This approach attempts

to create a function which correctly maps input data to the corresponding out-

put, using observations learned through training. Supervised learning is typically

achieved in regards to classification, which maps an input to clearly defined out-

put labels. The model will always assume the output labels within training data

are accurate. However, this is not always the case in real-world scenarios. Clearly,

this highlights the importance of an accurate ground truth, as incorrect labels

reduce the effectiveness of model prediction. Conversely, unsupervised learning

techniques do not require a ground truth. These type of algorithms attempt to

understand and predict based upon the natural structure of data points. How-

ever, unsupervised approaches often grant lesser accuracy when compared to

supervised approaches [90].

Research conducted by Sangkatsanee et al. leveraged decision trees to detect

a variety of malicious behaviour, including DDoS and probes, in an online fashion

[91]. Their approach verifies the detection capabilities through real attacks or-

chestrated against victims, where the network traffic is captured and accurately

classified. This type of evaluation ensures that the attack detection capabilities

work within real-world scenarios. While successfully classifying primitive attacks

with high accuracy, this approach does not consider attacks which are sophisti-

cated and emerging in nature. This raises further questions regarding the appro-

50

priateness of such an approach to detect the myriad attacks which encompass the

emerging threat landscape.

In another approach, Rahul et al. [92] construct a Deep Neural Network

(DNN) to classify network traffic which provides excellent detection rates, grant-

ing around 93% accuracy when evaluated on the KDD data set. Despite the

promising results obtained under decision making scenarios, they neglect to eval-

uate their system using a recent data set. The KDD data set is now over two

decades old, and, as further explained later in this chapter, it has been argued

by contemporary researchers that it does not reflect current network conditions

or relevant attack patterns. Furthermore, the authors neglect to perform a per-

formance evaluation for either the training or decision making processes. As a

result, it is not clear whether such an approach is appropriate for the evaluation

of live network data.

Morfino et al. [14] identify challenges related to the volume and velocity of

data transferred through modern networks. Based upon this, they implement

a near real-time intrusion detection mechanism which integrates with big data

technologies. Their approach is able to detect DoS attacks orchestrated against

IoT devices with high accuracy. Furthermore, they evaluate overall training time

using varying number of data instances, demonstrating inherently low training

times through the construction of various models. One aspect of their system

which was not evaluated was the efficiency of the prediction process.

Lobato et al. implement a threat detection framework which leverages stream

processing technology [93]. In order to address the ”needle in a haystack” prob-

lem associated with the vast amount of data network providers must process to

identify threats, the authors leverage Apache Storm, a distributed stream pro-

cessing computation framework. The framework is evaluated using a bespoke

data set which incorporates DoS attacks and scanning probes. The data set is

not made publicly available. Tested using a handful of different classification

algorithms, the framework is able to detect these primitive attacks with an ac-

curacy of around 95%. Despite the promising performance and accuracy granted

by this framework, it is not evaluated against threats of a sophisticated nature.

Therefore, it is unknown how effective it would be in contemporary real-world

scenarios.

Viegas et al. [94] create a machine learning based intrusion detection frame-

work for high speed networks, BigFlow. BigFlow leverages the stream compu-

51

tation framework, Apache Flink [95], to accomplish this. The authors also ac-

knowledge the requirement of realistic training data for the accurate detection

of anomalies. To address this, they make promising steps towards the practical

integration of automated data set creation and anomaly detection for the identifi-

cation of cyber attacks. They implement a feature extraction module which takes

raw network packet captures from the MAWI archive [96] and creates flow-based

features to compose a novel data set, MAWIFlow. Despite including the capa-

bility to engineer features, this framework relies on an external, extremely dated

and problematic labelling methodology [97], resulting in a questionable ground

truth for their data set.

Dong et al. [5] implement a NIDS on top of the distributed processing frame-

work, Apache Flink [95]. They acknowledge the problems relating to current big

data solutions typically performing batch processing, and instead leverage Apache

Flink’s streaming capabilities coupled with Apache Kafka’s [98] distributed mes-

sage bus to detect attacks in an online fashion. Using a DNN, they are able

to detect various attacks with around 94% accuracy. Despite the promising de-

tection results, they neglect to perform a performance evaluation to assess the

benefits granted via integration with the aforementioned big data technologies. In

addition, the authors evaluate their system using the KDD data set, as discussed

in Section 2.3.5, it has multiple limitations.

Rathore at al. [99] propose an IDS which is reported to be suitable for high-

speed networks. They leverage the Apache Hadoop [10] software library to per-

form distributed processing of network telemetry. While the system is able to

process streaming packets from network devices, such as switches, it does not use

a distributed message bus. The system is also only evaluated on the KDD data

set, which poses questions about the validity of the detection mechanism.

2.3.5 IDS Data Sets

In order to evaluate the effectiveness of an IDS, the accuracy of the attack de-

tection procedure is typically used. This process typically assesses the FP (False

Positive) and TP (True Positive) rates of detection. A data set which contains

both benign and attack traces is necessary to assess this metric. Currently, there

still exists challenges in the collection and release of this data to the public. Most

notably, privacy concerns have been raised over personally identifiable informa-

52

tion, leading to heavy anonymisation in most contemporary IDS data sets [100].

Recent studies have shown that the most widely adopted data sets are heavily

dated and no longer reflect modern attack vectors. Moreover, investigations have

also discovered other deficiencies relating to lack of traffic diversity, attack tech-

niques, and inappropriate features, which can affect the transparency of the IDS

evaluation [101].

In the security community there is a lack of public IDS data sets, with current

literature urgently appealing for high quality labelled attack data [102, 103, 104,

22, 7, 105, 106, 107, 108, 109]. An IDS data set of high quality must include a

comprehensive reflection of contemporary threats and a range of benign behaviour

spanning multiple protocols, hosts, and applications [101]. Furthermore, an often

overlooked aspect is the methodology behind labelling of the data set. Correct

labelling ensures all observed attacks are identified, thus dictating the reliable

outcome of any IDS [110]. Additionally, labelling enables the use of supervised

machine learning algorithms, which have been shown to usually provide better

detection accuracy than their unsupervised alternatives [90]. A study conducted

by Abt et al. discovered that the majority of publicly available data sets are not

labelled, assigning the cause to be due to the labour intensive nature of manual

labelling of data sets [23]. The authors then argue that the “missing labelled data

problem” affects repeatability and comparability of research.

Recently, there have emerged data sets that have been released to the public

that utilise novel automated mechanisms to alleviate this problem. This sec-

tion discusses the various ways this is embodied in modern literature, as well as

highlighting popular publicly available data sets that use methods designed to

provide a ground truth in the form of target labels, alongside other techniques

used to compile data sets whilst simultaneously highlighting the deficiencies in

their approach.

2.3.5.1 Data Set Labelling

In order to successfully label a data set, the ground truth must be discovered. In

literature, there are only a handful of public data sets which consider the ground

truths and provide corresponding labels. This has traditionally been examined

and implemented using labour intensive methods of manual analysis. The KDD

’99 [19] ground truth is an example of a data set incorporating this approach.

53

Despite this data set being over two decades old, it is still considered a milestone

in the community because of the accuracy of the provided labels [97]. As a

result, this data set has been exhaustively used in literature to evaluate IDS,

despite the fact that the modern threat landscape has shifted significantly, with

many researchers suggesting experiments performed with this data set are no

longer relevant [22]. Since the public release of KDD ’99, novel approaches that

provide automated routines to derive a ground truth for intrusion detection data

sets have been outlined in literature.

One of the first data sets to incorporate such an approach was the Kyoto 2006+

data set [18]. In their approach, honeypots were deployed to attract malicious

intrusion attempts. Kyoto 2006+ provides data with partial labels such as to

enable the separation of normal and malicious traffic. Unlike the KDD data set,

the labels do not describe explicit types of attacks. Much attention has been given

to enhancing classification performance using data with partial labels, such as

[111, 112], due to the lower effort required to provide such labels. This is also true

in network security, since specifying the distinct attack description is often more

challenging. In this case, Kyoto 2006+ provides labels by assigning traffic relating

to honeypots deployed within their architecture as malicious. Consequently, this

approach does not consider legitimate traffic involving honeypots.

As identified by Sperotto et al. in [113], not all telemetry associated with

honeypots are attacks and malicious in nature. In their work, they identify a

number of non-malicious traffic to and from honeypots which they consider “side

effects”. It has also been identified that honeypots are also targeted by legitimate

services which actively probe and document internet connected devices, such as

Shodan [24]. In order to differentiate between actual attacks and normal traffic

relating to honeypots, a strong ground truth is required.

As a result of their investigation, Sperotto et al. also create the first flow based

intrusion detection data set and additionally provide labels through automated

routines. In their approach, the authors generated labels through the correlation

of alerts generated from honeypot logs and network flows derived from traffic

capture. This is implemented in their work by an algorithm which matches alerts

from honeypots to their corresponding network traces based on their timestamps.

Based upon the category of the alert generated on the honeypot, the correspond-

ing network traces were able to be labelled.

In more recent embodiments, unsupervised anomaly detection algorithms have

54

been utilised to derive a ground truth for an intrusion detection data set. This

is the approach taken in the MAWILab data set [114], where they used auto-

matic labelling mechanisms to produce a continuous stream of labelled telemetry.

The data set consists of labelled network traces gathered on a trans-Pacific link

between the United States and Japan. However, the MAWILab ground truth

is questionable since it has been derived through the combined output of four

seperate decade old unsupervised network anomaly detectors, and upon manual

inspection some anomalous flows exhibit benign characteristics [97, 114].

The approach taken by Aparicio-Navarro et al. also utilises unsupervised

anomaly detection techniques to automatically label a data set [115]. The au-

thors gathered benign telemetry from a wireless Access Point (AP), and injected

malicious activity through the use of the AirPwn [116] tool. From this data, they

present automatic routines which generate three levels of belief for each analysed

frame using Dempster-Shafer theory. These are beliefs in normal, which indicates

how strong the belief is that the frame is benign, belief in attack, which indicates

how strong the belief is that the frame is malicious, and belief in uncertainty,

which measures how doubtful the system is in deciding whether the frame is be-

nign or malicious. Based upon the values for these beliefs, the authors then define

a threshold between the belief in normal and the belief in attack, which enables

misclassified instances to be discarded. Finally, the data set generated by the

authors is not intended to train supervised IDSs. Instead, their approach is used

in tasks of feature selection.

The approach taken by B-IDS [117] leverages one-class Support Vector Ma-

chine (SVM) and a Rival Penalized Competitive Learning (RPCL) network to

develop attack ground truth. These algorithms produce a classification outcome,

which is combined with the Dempster-Shafer theory such as to produce a singular

output. Via this approach, the authors are able to distinguish between normal

and attack packets extracted from real traffic traces with an error rate of around

2%.

2.3.5.2 KDD ’99 Data Set

As previously mentioned, the KDD ’99 data set is one of the first publicly avail-

able IDS data sets and remains the most widely adopted in the evaluation of

anomaly detection methods [104]. In 1998, researchers at Lincoln Laboratories

55

in MIT University generated the DARPA98 data set to perform thorough inves-

tigation of IDSs. The data set incorporates results from a simulation containing

both normal and abnormal traffic collected from inside a military network. The

simulation concluded after nine weeks, resulting in five million connection records

included in training data and two million collection records included in the test

data. The KDD data set emerged from the tcpdump portion of DARPA98 traces,

incorporating rich features derived from extensive analysis.

The data set contains over 40 unique features for each connection, incorpo-

rating both host measurements, such as the number as files accessed, number of

failed logins, as well as standard network measurements such as flow duration

and number of bytes sent to destination. The attacks embedded in the data set

were based on modified scripts gathered from various sources, and were addition-

ally synthetically injected into the background traffic. As identified by McHugh,

no attempt was made to ensure that the synthetic attacks were realistically dis-

tributed in the background noise [118]. Furthermore, Tavallaee et al. claims

an inherent problem within the data set is that the workload of the synthesized

data does not reflect traffic in real networks [119]. These problems highlight the

challenges incurred when utilising synthetic data in the generation of IDS data

sets, heralding innovation in order to capture a high quality realistic data set.

The total number of attacks synthetically injected into the data set was over 300

and are categorised into the following: DoS, User to Root (U2R), Root to Local

(R2L), and Probing. The labels of the attacks were said to be ”verified by hand”

and a very labour intensive process, however the details of the verification process

are not divulged [120].

While this data set has been heavily utilised in literature, several researchers

have reported major problems inherent within the data, which can cause issues

in the evaluation of IDSs [110, 121]. The main problem relates to the difference

in probability distributions of the training and test set. This is due to some at-

tacks injected solely into the test set, which leads to bias in classification methods

[101]. Another problem is the redundant data within the data set. Investigations

have discovered up to 75% of the records are duplicated, causing additional bias

to learning algorithms towards more frequent records, diminishing the ability to

learn from infrequent records such as the U2R attacks [119]. As a resolution to

these problems, the NSL-KDD data set was produced from the KDD data set,

which aimed to address some of the inherent shortcomings [100, 119]. However,

56

each of these data sets are extremely dated, with the attacks no longer being rele-

vant to what is experienced today. As a result, they cannot serve as a viable data

set anymore, with studies stating that their only role in contemporary research

is to test whether an approach is hopelessly broken [22].

2.3.5.3 MAWILab Data Set

MAWILab is a database containing approximately 500 billion packets captured

at an intercontinental link between USA and Japan. Every day since 2001, this

database is updated with a 15 minute trace of traffic in packet-based format [114].

The updated nature of this data set is the first of its’ kind, enabling an evolving

understanding of normal network conditions as well as anomalies.

Despite this, the data set has a number of limitations. To begin, the traffic

traces are only available in tcpdump [122] format. This inhibits the usability of

this data set, since there must be intermediary steps taken, such as engineering

valuable features and converting to Comma-Separated Values (CSV) file, in order

to analyse using modern techniques. In addition, the labelling mechanism lever-

aged to distinguish between normal and anomalies within the captured traces,

consists of the combination of four dated unsupervised machine learning tech-

niques. This has been heavily criticised within literature [97, 114], and as a result

the data set is not widely adopted. This highlights the importance of a robust

labelling method.

2.3.5.4 Kyoto 2006+ Data Set

The Kyoto 2006+ data set was created by researchers at the National Institute of

Information and Communications Technology through the collection of attacks

and benign telemetry spanning from November 2006 until August 2009 [18]. In

their approach, Song et al. utilise honeypots as an attack capture medium, de-

ploying various enticing systems which lure adversaries into revealing their tech-

niques. In the same network, servers conducting benign tasks such as mailing

service and DNS server were also deployed to generate realistic background traf-

fic resembling legitimate enterprise infrastructure. The way in which Song et

al. label the data set is dubious, as they regard all telemetry gathered from

the honeypots as malicious and all telemetry gathered from the mail and DNS

server as benign. It is stated by the authors that all traffic related to the DNS

57

and mail server was labelled normal as there were only a “few” attacks on them.

However, the number of false positives, i.e., the traffic related to the honeypot

which was not an attack is not divulged by the authors, leading to an inconclusive

understanding of the accuracy in their approach.

Utilising Bro [78] to convert raw traffic into session data, twenty four relevant

features were derived which represent each record. Of the twenty-four, fourteen

were statistical and encapsulated the flow characteristics of the session. An addi-

tional ten features were derived which enable the effective investigation into what

attacks happened within the data set including various detection metrics such as

whether shellcode or malware was detected during the session.

2.3.5.5 ISCX 2012 Data Set

The ISCX 2012 data set [123] was created by researchers at the Information Secu-

rity Centre of Excellence in the University of New Brunswick. This data set was

created using a combination of attack and benign profiles. The benign profiles are

created through the examination of typical non-malicious traffic extracted from

Packet Capture (PCAP) files. The statistical distributions of the times traffic

was produced were calculated from these observed traces, and were subsequently

used to generate synthetic traffic representative of these observed distributions.

The attack profiles are generated using human knowledge and assistance in

execution. In total, this data set contains only four attacks which are orchestrated

manually against servers within their local network. Naturally, these are real

attacks, however, they do not include the variety of exploits leveraged in the wild

to infiltrate large numbers of servers remotely. As the attacks captured are not

orchestrated by real threat actors, it can not be concretely concluded that they

are fully representative of attack patterns for that period. With the evolution

in network infrastructure and attack patterns, it is also questionable that this 8

year old data set is still relevant.

2.3.5.6 CTU-13 Data Set

The CTU-13 data set contains attack data consisting of 13 distinct scenarios

in which botnet malware was executed [124]. This data set was authored by

researchers at Czech Technical University with the intention of capturing normal

and malicious traffic within a real networked environment. Normal traffic is

58

labelled based upon certain filters outlined by the authors. Malicious traffic

is labelled for traffic relating to known infected hosts. Background traffic is also

included in the data set. However, this includes both normal and attack telemetry.

Due to the static nature of this data set, it is not able to fully reflect the

evolving modern threat landscape. Furthermore, this data set only includes at-

tack traces created through the execution of botnets. Whilst still a popular

method of infection in recent times, there exist myriad other types of threats

which wreak havoc on computer networks. Therefore, the data set should only

be used to evaluate the performance of botnet detection mechanisms.

2.3.5.7 UNSW-NB15 Data Set

The UNSW-NB15 data set was synthetically generated by researchers at the Aus-

tralian Centre for Cyber Security (ACCS) [101]. They utilised the IXIA traffic

generator tool across three distinct servers, two of which produced benign traffic

whilst one produced abnormal traffic. The data was collected over two periods,

lasting 15 and 16 hours respectively. The duration of the collection is relatively

short compared to other data sets, therefore there could exist inherent bias and

lead to over fitting when employed alongside machine learning algorithms. Fur-

thermore, the traffic was generated within a small network environment, with

45 distinct IP addresses contained within the data. The authors list nine dif-

ferent attack types which were synthetically injected into the data set including

backdoors, exploits, DoS, and more. However, the authors do not provide details

about any individual attack or their properties, which raises questions regarding

whether the attacks are representative of attacks currently taking place.

The main drawback of their approach relates to the fact that all data is syn-

thetically generated, thus, it is not reflective of real operations within enterprise

networks. Moreover, the injected attacks are known before-hand, primitive in

nature, and not representative of attacks currently propagating.

2.3.5.8 CICIDS2017 Data Set

The CICIDS2017 data set contains labelled network traces of benign and ma-

licious activity conducted across twelve different servers [104]. Sharafaldin et

al. construct a victim network consisting of heterogenous devices, with one port

on the main switch configured as a mirror port to completely capture all traffic

59

traversing the network. The benign behaviour and corresponding telemetry was

generated using the B-Profile system [100], which emulates legitimate user be-

haviour through web-crawling and generating HTTP traffic. The authors then

construct an attack network, in which attacks are orchestrated against the victim

network. These attacks are categorised into six attack profiles, which were based

on “the last updated list of common attack families”, and include brute force,

DoS, DDoS, botnet, and infiltration attacks. The authors do not go into detail

about how they are representative of attacks currently propagating.

To extract the network traffic features, the CICFlowMeter [125] tool is used.

This tool extracts 80 flow based characteristics from a pcap file. The importance

of each feature with regard to the target label is also investigated by the authors.

Using the RandomForestRegressor module of scikit-learn, the best feature sets

for each category of attack is outlined.

There are a number of shortcomings related to the CICIDS2017 data set.

Despite injecting attacks into a victim network, it has been identified that in

288602 instances there are missing target labels [126]. Furthermore, this data set

also contains very high class imbalance. High class imbalance arises when a class

within the data set becomes a large majority, and in the case of classification

using the data set, bias towards the majority class occurs [127, 128]. In the case

of the CICIDS2017 data set, the majority class contains 83.34% of all records,

whilst the minority class only contains 0.00039%. If a random sample is used for

the training and testing of classification algorithms, it becomes likely that the

minority class will not be included in training data. As a result, the classification

algorithms will fail to recognise patterns of such attacks in future testing, as it

has not previously been encountered.

2.4 Research Challenges

Through an investigation into background and related work as part of the research

undertaken in this thesis, a number of deficiencies and gaps in research have been

identified, which limit contributions into the cyber security domain. In detail,

these include:

• Research Challenge 1: The research community lacks high-quality attack

data.

60

As outlined in Section 2.3.5, the research community requires novel attack

data to fully evaluate anomaly detection approaches to intrusion detection. Such

data sets are scarcely released to the public, which motivates innovation to answer

Research Question 1. When creating a data set, it is essential to identify certain

properties that ensure it is of high quality and can be successfully leveraged by

the researchers. Ma lowidzki et al. outline several of these properties in [107].

Included in this list of features which make a high quality data set is the aspect

of realism. Realism, in regards to intrusion detection data sets, manifests itself

in multiple ways. These include the inclusion of network traffic captured from

actual networks instead of simulated network traffic through mathematical models

[106, 129]. Furthermore, attack telemetry which is representative of real attacks

currently propagating should also be incorporated. The research conducted by

Hindy et al. surveys the available IDS data sets, and finds that data sets with

dated attacks render IDSs ineffective against emerging attacks or zero days [20].

As the research conducted within this thesis aims to explore how emerging attacks

can be identified using machine learning algorithms, a data set incorporating a

range of emerging attack techniques is required to evaluate the effectiveness of

this approach.

The availability of emerging attack telemetry in the form of a data set is

limited, and as discussed in the related work, they all incur limitations, which

inhibit their practical use in IDSs. Most notably, the KDD-99 data set is the most

widely utilised in the evaluation of IDS in literature. However, due to the age

and irrelevancy of the attacks incorporated within the data set, in modern real-

world settings the detection capabilities achieved from training machine learning

algorithms on this data is not acceptable [92].

The nature of honeypots enable an unrestricted view of malicious activity cur-

rently propagating over the Internet, capturing detailed accounts of attacks likely

currently being encountered by enterprise networks. As a result, honeypots have

been identified as a solution to the problems faced by data sets requiring realis-

tic malicious activity [7]. Through the planned deployment of honeypots, attack

telemetry can be gathered, which incorporates real emerging techniques and tac-

tics used for mass infiltration. The analysis and processing of this telemetry is

required to collate a robust IDS data set, which includes cutting edge malicious

and non-malicious records.

61

• Research Challenge 2: There is an emphatic lack of ground truth with

regards to publicly available intrusion detection data sets.

As previously discussed in Section 2.3.8, modern publicly available intrusion

detection data sets largely omit the establishment and validation of a ground

truth. Neglecting to establish a ground truth inhibits the utility of a data set,

while neglecting to validate the ground truth incurs various negative consequences

when used in anomaly detection scenarios. For example, inaccurate labelling of

samples within a data set causes a distorted view of the normal behaviour profile,

which further affects the accuracy of any decision making processes taken by ML

algorithms accordingly.

The time, effort, and expertise required to perform manual analysis or im-

plement automatic labelling and validation mechanisms has been suggested to

be the cause of such a challenge within the research community. The data sets

identified in this thesis attempt to provide a ground truth through various meth-

ods. However, each of these approaches incur limitations in some manner. For

example, one of the most recent intrusion detection data sets, CICIDS2017, pro-

vides a ground truth as the attacks are known before-hand and injected into

simulated benign traffic. There are a number of problems with this approach.

As the modern threat landscape is constantly evolving, it should be noted that

the cherry-picked primitive attacks performed multiple years ago are no longer

representative of current threats. Furthermore, the normal behaviour profile is

synthetically generated, which indicates that there exists differences between it

and benign activity captured through the deployment of network services in a real-

world network environment. When leveraging these data sets to provide intrusion

detection capabilities, it is essential that the normal behaviour is as realistic and

appropriate to the environment as possible to provide accurate results.

Correctly labelling the data set ensures all attacks are successfully identified,

separating the benign traces from the malicious traces, thus revealing the true

nature of the data. This is useful in many scenarios. For example, when taking a

supervised ML approach, these systems require labelled data sets to be trained.

Moreover, in more general scenarios the real nature of a data set must be known in

order to evaluate the effectiveness of the detection approach, i.e. to determine the

True Positive (TP) and False Positive (FP) rates of detection. Another important

scenario is the feature selection process, the analysis and identification of feature

62

importance within a data set, which can only be utilised if labels are included.

Within typical network conditions, collecting labelled data sets is impossible [115].

At present, the majority of data sets are labelled manually by a technician

performing forensic analysis. This is impractical especially when the amount of

data is large, taking considerable amounts of time, thus, not enabling online im-

plementation. As a further compromise, attacks which are deemed representative

of the type the IDS should detect are sometimes injected into the data set. As

discussed in the previous chapter, the data sets based on this method face chal-

lenges such as blending the attacks into the normal traffic in a realistic manner.

As a result, some data sets have inherent problems, which limit the evaluation of

IDSs. Furthermore, none of the data sets identified in this thesis which inject at-

tacks, have provided details about why they chose the attacks they did, and how

they were identified as being representative of attacks currently propagating. As

common IDS approaches, such as classification through ML, find similarities be-

tween the known attacks and future attacks [22], it is essential that these attacks

be relevant for the IDS to provide an effective response.

Another approach is detailed in Sommer’s seminal work on ML for NIDS

outside the closed world, exploring how the ground truth of a data set can be

gathered via a mechanism orthogonal to how the detector works [22]. This ap-

proach has gathered traction within the research community, with frameworks

emerging which are designed to automatically label data sets using methods un-

related to typical IDS detection methodology [115, 73, 113, 114]. This avenue

enables a constant supply of emerging labelled data without the need for human

intervention, effectively providing an autonomous evolving understanding of ma-

licious behaviour to IDSs. Furthermore, the constant stream of labelled data has

been suggested to stop the overstudy of data sets, or publication of irrelevant re-

sults on outdated data sets, helping alleviate some of the current problems facing

the research community [23]. Research Question 2 poses the question of whether

it is possible to establish a ground truth through correlation with CTI services.

The approach adopted in this thesis is similar to the research discussed above, but

it is the first to identify malicious behaviour through the use of diverse Internet

vantage points.

• Research Challenge 3: Traditional anomaly detection methods are not

suitable for the volume of data produced in modern networks

63

In Section 2.3, IDSs are described alongside their techniques and properties.

These type of systems aim to detect attacks through various methods. The

most common approach is the use of signature-based methods, which compare

each suspicious event to a known database of malicious indicators of compromise.

However, as previously discussed, this type of approach has the ability to detect

only a small subset of attacks, and typically cannot detect unknown attacks,

such as emerging threats and zero-days [130]. Therefore, in this thesis a machine

learning approach to anomaly detection is taken, utilising classification algorithms

to identify emerging threats of a similar ilk to what has been discovered from

the labelled telemetry collected from honeypots. The data set output by Citrus

is additionally designed with the intention to be used with machine learning

based intrusion detection systems. The utilisation of machine learning to perform

intrusion detection has been evaluated in modern literature, and has provided

largely positive results through high detection accuracy.

Despite this, due to the explosive growth in the complexity of modern net-

works and propagation of malware, the cost associated with the processing of the

corresponding training and test data used in the creation and evaluation of ma-

chine learning models is substantial. As a result, preliminary investigations have

revealed that existing approaches to anomaly detection are not effective enough,

especially upon the consideration of real-time or near real-time prediction [5].

Research Question 3 poses the question of whether big data technologies can

deal with attack detection in large-scale networks. This approach would alle-

viate the growing scalability challenges associated with such varied and large

amounts of data in modern networks [131, 132, 133, 134]. These emerging tech-

nologies provide a scalable solution for the storage, access, and processing of large

amounts of heterogeneous data samples. Motivated by such contributions, the

design of Citrus should integrate Big Data technologies to leverage their high

performance data pre-processing capabilities in addition to their capacity to per-

form distributed computing and processing of both training and testing of ma-

chine learning models for the purpose of intrusion detection. Such methodology

is suggested to help alleviate the relatively high computational cost of machine

learning algorithms when compared to traditional signature-based methods.

While Big Data technologies help alleviate certain challenges incurred by the

large volumes of data generated in modern networks, intrusion detection frame-

works must operate in an online fashion to provide network administrators timely

64

alerts for mitigation and remediation purposes. In modern literature, a great

number of approaches which lack near real-time implementation have leveraged

Big Data technologies to perform batch processing and offline classification of

network telemetry [135, 136, 132, 137, 138, 97, 133]. Whilst providing a scalable

intrusion detection solution, these approaches fail to provide timely remediation

since the detection process occurs much later than the actual malicious behaviour.

Additionally, further stages in the attack are allowed to continue, such as data ex-

filtration, which could be stopped upon the rapid identification of initial stages.

These types of publications typically attempt to marginally increase detection

rates on dated data sets, which, as identified in [23], is a current problem facing

the research community. As a result, many research contributions fail to address

the challenges faced when running classification algorithms based upon big data

streaming [109].

A practical approach to intrusion detection, which is also suitable for the

diversity and verbosity of data within modern networks, must implement a scal-

able near real-time decision making mechanism using streaming technology to

ensure malicious behaviour is detected in a timely manner. To achieve this type

of intrusion detection, telemetry must be transmitted to the intrusion detection

framework where live classification occurs to determine whether malicious actions

have taken place. In order to detect attacks currently emanating from devices

from within the network, sensors must additionally be deployed to capture and

transmit this telemetry, which contains the intricate properties of the infiltration

attempt. Based upon the previously encountered behaviour in training data, a

machine learning model can then make an informed decision about the nature of

this new behaviour, and potentially alert administrators if it does not correspond

to the normal profile.

The challenges outlined above showcase a variety of deficiencies within the

literature. This thesis aims to provide contributions within these areas to alleviate

these challenges. In order to achieve this, certain design requirements are defined

which are motivated by these challenges. These design requirements are detailed

in the following chapter.

65

2.5 Summary

This chapter has presented background and related work spanning various topics

of research. Initially, the modern threat landscape is discussed, highlighting how

threats are constantly evolving in order to propagate a continuous barrage of

attacks against networks. This is further detailed through the examination of

emerging botnet, malware, and threat actor methodology.

This chapter additionally discussed the need to monitor these emerging threats

in order to mitigate infections and service disruption. Notably, the use of CTI

to gain knowledge of cutting edge adversarial tactics and techniques has fos-

tered much interest within the research community. The technologies enabling

the creation of such CTI data have been highlighted within this chapter. This

is initially outlined through a detailed review of honeypot mechanisms, which

enable the gathering of rich malicious behaviour and corresponding compromise

indicators. Third party threat intelligence services provide an additional source

of malicious behaviour, further enhancing contextual understanding of suspect

network events.

Bolstering intrusion detection mechanisms with such intelligence enables ac-

curate detection of emerging threats. This is further explored in this chapter

through an investigation into modern IDSs. IDSs are used to defend against

threats which plague modern networks. They can be classified into either signature-

based or anomaly-based systems. Signature-based systems use a database of

known attack properties, while anomaly-based based systems require a profile

which is representative of normal behaviour. Data sets which contain a normal

behaviour profile are scarce and rarely publicly available. The data sets that are

available have significant limitations which inhibit their practical use in IDSs. As

discussed, CTI enables updates to the signature database of an IDS, preventing

future compromise through the identified attack vector. Further benefits become

evident when employed alongside an IDS which incorporates machine learning

techniques.

A lot of effort has been made by the research community into the evaluation

of machine learning based anomaly detection techniques used in the detection

of network attacks. However, many approaches focus solely on the evaluation of

offline, batch prediction. Such approaches neglect to examine streaming based

anomaly detection, as used in time-critical, real world attack detection imple-

66

mentations, and its associated challenges.

The telemetry derived from CTI sources, such as honeypots, can be used to

train machine learning models, which have the ability to prevent emerging attacks

of a similar nature to what has been observed. As not all telemetry associated

with honeypots is inherently malicious in nature, a robust ground truth is required

to rigorously separate the benign traces. The development of a ground truth can

be implemented in multiple ways. However, recent developments within CTI

enable the correlation of suspicious behaviour for this purpose.

Finally, this chapter concludes with the identification of various challenges fac-

ing the research community. These challenges range from the quality of intrusion

detection data sets to the practical application of such in realistic environments.

In the next chapter, the design of Citrus is outlined, which attempts to address

these challenges.

67

Chapter 3

Design of Citrus

In this chapter, the design of a modern intrusion detection framework, Citrus,

which has the capacity to detect emerging threats is outlined. This is initially

achieved through the discussion of Citrus’ design requirements in Section 3.1.

These requirements document the core functionality that the proposed system

should incorporate based upon the challenges identified in the previous chapter.

Subsequently, Section 3.2 presents the architecture and design overview of Citrus.

The security considerations of the Citrus framework are divulged in Section 3.3,

and the privacy requirements of Citrus are discussed in Section 4.4.

3.1 Requirements

This section highlights the high level design requirements and core functional-

ity desired for a modern intrusion detection framework, which aims to tackle

emerging threats.

3.1.1 Attack Data Availability

As evidenced by the background and related work in Chapter 2, the modern

threat landscape incorporates a myriad of evolving attacks, which have the abil-

ity to cause devastating damage to network infrastructure. Research Challenge

1, as mentioned in Section 2.4, states that the security community lacks high-

quality modern data sets which reflect these evolving attack vectors. These data

sets are essential for the training of machine learning models and the evaluation

of intrusion detection mechanisms. Through a comprehensive literature review,

68

honeypots have been identified as a means to attract cyber threats and capture

relevant emerging attack properties.

Motivated by this challenge within research, an outline of several design re-

quirements are provided. These requirements are intended to deliver contribu-

tions into the cyber security field through the composition and public release of

an innovative intrusion detection data set. These are as follows:

1. Leverage honeypots to continuously capture and collect network telemetry

incorporating real emerging attacks

2. Engineer features from the captured telemetry to compile an updated in-

trusion detection data set

As discovered through literature review, a substantial number of current intru-

sion detection data sets inject attacks to incorporate malicious behaviour. This

approach often creates limitations in the form of realism as attacks chosen by

the authors must be blended seamlessly with the traffic representative of normal

behaviour. In addition, a new data set must be authored to reflect changes in

attack patterns. The deployment of honeypots to compile an intrusion detection

data set ensures up-to-date attacks, which are representative of real attacks cur-

rently being orchestrated, are captured. Furthermore, this approach enables the

constant capture of novel and emerging attacks which are part of the perpetually

evolving cyber threat landscape.

The attacks captured by these honeypots are used to compile a new intrusion

detection data set, which receives periodic updates. The purpose of the data set

is to evaluate attack detection mechanisms, specifically using machine learning

based approaches. The design of Citrus should incorporate this functionality,

collating telemetry from various honeypots, and pre-processing it in preparation

for the labelling stage. Ultimately, the data set should be released to the general

public to promote further contributions into the intrusion detection domain.

3.1.2 Ground Truth Development

When taking a supervised machine learning approach to the detection of emerging

threats, a labelled data set containing benign and attack telemetry representative

of the modern threat landscape and of a recent nature is required. In order to

69

label a data set, a ground truth is required. As identified by Research Challenge

2 in Section 2.4, the number of publicly available data sets which establish and

validate the ground truth are limited, and pose additional limitations, which

suggest that they are not suitable for this purpose. The following high level

design requirements attempt to help alleviate this challenge:

3. Automatically develop a ground truth for captured network telemetry using

contextual CTI

Through the capture of telemetry from honeypots, a robust data set will be

made available, which details emerging attack properties. Furthermore, within

the telemetry exists benign communications to internal services such as databases

used to transfer and securely store the logs, as well as scanning from external ser-

vices, which aim to profile the Internet topology for legitimate purposes, and

traffic which is a side effect of an attack but cannot be classified as malicious by

itself [104]. In order to successfully implement an automated labelling method to

separate the benign from malicious traces, a robust ground truth must be devel-

oped. This approach is explored in the design of Citrus through the realisation

of these requirements.

Citrus is the first framework to correlate behaviour observed locally with

third party CTI services in order to establish a ground truth for the purposes

of bolstering AD algorithms. This enables Citrus to gain a fuller understanding

of how actors conduct their behaviour with regards to the general Internet, and

provide associated labels for the published data set. These actors are identified

through the extraction of IP addresses from telemetry captured by honeypots.

As previously discussed, the majority of CTI services deploy bespoke servers

at particular locations to gain a vantage point of malicious communications or

behaviour. They typically expose an API, which allows clients to interface with

the system and collect information relating to their deployments.

From the additional data obtained through these sources, intricate details per-

taining to infiltration attempts observed elsewhere and other malicious behaviour

are revealed. This intelligence enables an insight into the relationships between

every IP address encountered by deployed honeypots and various entities. Due

to the heterogeneity of CTI services, a plethora of different relationships can be

identified, such as being active within blocklists, communicating with a given

malware sample, belonging to a particular AS, and exposing certain services.

70

Leveraging concepts of graph theory, these relationships can be modelled in a

visually intuitive representation. The ground truth is further developed from this

representation, and the design of Citrus should incorporate this functionality in

order to provide a novel automatic labelling mechanism for the data set.

3.1.3 Near Real-time Attack Detection

An intrusion detection framework is typically used in order to detect attacks

which are manifested within the network. There exists a number of different

approaches to intrusion detection. However, machine learning based anomaly

detection techniques have recently demonstrated excellent accuracy under eval-

uation scenarios. Systems which employ these techniques require training data

consisting of normal behaviour and attack patterns to build machine learning

models. In order for the prompt detection of attacks, frameworks must be instru-

mented in a such a manner which enables iterative prediction on live data using

these models.

As identified in Research Challenge 3, traditional anomaly detection meth-

ods are rendered ineffective due to the vast amount of highly-dimensional het-

erogeneous data emanating from devices within modern networks. In order to

satisfy the data processing requirements for near real-time detection, innova-

tion within intrusion detection systems is required. Recently, technologies have

emerged which are designed to alleviate challenges related to the processing of

Big Data. These technologies typically leverage a cluster of compute resources to

perform efficient processing in parallel. This is enabled through the segmentation

of data amongst the cluster. In order to bolster anomaly detection mechanisms

with the ability to successfully classify and identify attacks in large amounts of

data within an acceptable time frame, the following design requirement of Citrus

is established:

4. Leverage system and data parallelism to perform near real-time detection

of emerging threats

To achieve this functionality, Citrus requires a stream of telemetry emanating

from within the local network. Upon receipt of the telemetry, Citrus should pro-

vide a robust data pipeline, which distributes it amongst nodes in a cluster, in

preparation for parallel processing. Furthermore, Citrus should be instrumented

71

to support the online classification of traffic using machine learning models, which

have been previously trained offline using data representative of local network con-

ditions. This online classification provides a means to rapidly identify malicious

behaviour and alert network administrators of potential misuse, thus, acting as

a viable approach for next generation network defense solutions.

3.2 Citrus System Architecture

Citrus is a framework which provides automated network telemetry labeling, and

scalable intrusion detection mechanisms. In this section, an overview of Citrus’

architecture is presented, detailing the new components created and technologies

utilised to achieve the aforementioned requirements.

Figure 3.1: Citrus architecture design

The architecture of Citrus, as illustrated in Figure 3.1, is composed of dis-

tinct components which interface with services deployed within the network, as

well as remote services located on the Internet. The southernmost components

within Figure 3.1 represent these services, which provide Citrus crucial input data

necessary for its operation. Furthermore, they are also utilised for output oper-

ations, such as saving labelled telemetry to disk for future dissemination within

the research community.

72

These services interact with Citrus through its Southbound Interface, which in

turn feeds the request into to the appropriate higher level component: Tangerine

or Clementine. This Southbound Interface, which is further discussed in Section

3.2.1, provides Citrus the ability to integrate with Big Data technologies, enabling

an exceptional level of performance through their distributed storage, access, and

processing capabilities. Moreover, the Southbound Interface additionally facili-

tates the communication between Citrus and remote threat intelligence services,

providing rich contextual information for suspect historic telemetry captured by

various honeypots.

Above the Southbound Interface is where both Tangerine and Clementine are

located. These two components are independent of each other and offer distinct

functionality. The Tangerine component, which is further outlined in Section

3.2.2, is responsible for the collection of historical telemetry. This is composed

of both attack telemetry from honeypots and benign telemetry from internal ser-

vices. Tangerine also orchestrates the collection of corresponding contextual CTI.

Through this process, Tangerine is also able to provide target labels for the histor-

ical telemetry based upon the derived contextual information and development

of a ground truth, enabling a constant supply of labelled flow-based telemetry

suitable for the evaluation of Intrusion Detection Systems.

Clementine exists at the same level as Tangerine; receiving input data from

services deployed within the network, which traverse through the Southbound

Interface in the process. This component, which is described in more detail in

Section 3.2.3, orchestrates intrusion detection procedures of online flows emanat-

ing from devices within the network. Critically, Clementine utilises the flow-based

labelled data set output by Tangerine to achieve this. Due to the large amount

of high-dimensional telemetry captured within the network, a scalable solution

is required to provide an efficient response. Clementine achieves this through

integration with emerging Big Data technologies, namely, high-throughput dis-

tributed streaming frameworks to transmit telemetry in an efficient fashion, and

distributed processing frameworks to execute various tasks in parallel.

3.2.1 Southbound Interface

The Southbound Interface is composed of various modules that are used to com-

municate with services located within the network and on the Internet. These

73

modules provide Citrus rich input data used for both automated labelling and

online intrusion detection purposes. They additionally enable Citrus to perform

output operations, further aiding its ability to integrate with emerging technolo-

gies. This section details each module located within the Southbound Interface,

providing an overview of its operations and responsibilities.

Figure 3.2: Southbound interface design overview

3.2.1.1 Stream Listener

The first module within the Southbound Interface is the Stream Listener. This

module solely serves as an input to Clementine. Clementine uses this input to

perform online flow-based intrusion detection. As such, the information flowing

through the Stream Listener consists of network flows emanating from devices

located within the network. Network flows are transmitted to the Stream Listener

using high-throughput streaming technologies, enabling rapid access to suspicious

flows for further intrusion detection purposes.

Due to the way in which this module is designed, a plethora of streaming

technology can be used. However, this research leverages Apache Kafka [98] due

to it being able to efficiently handle high amounts of load in a distributed fash-

ion. Kafka is integrated with this module through programmatically provisioning

Kafka consumers, which receive and process data from the message broker. This

74

data is formatted depending on the manner of capture. The format chosen within

this research is a JavaScript Object Notation (JSON) formatted string.

3.2.1.2 Cluster Operation Dispatcher

The next module is the Cluster Operation Dispatcher, which provides an inter-

face between Citrus and distributed processing frameworks. This module utilises

clusters of executor nodes deployed within the network to perform parallel com-

putation of complex operations. This integration enables highly efficient trans-

formations of vast, high-dimensional intrusion detection data sets. Clementine

additionally utilises this interface to submit machine learning tasks to executor

nodes, significantly decreasing the time taken for training and prediction of large

data sets when compared to traditional approaches. This is achieved through in-

tegration with a library provided by the distributed processing framework. This

library exposes many methods to manipulate data, which is partitioned across

many physical nodes.

3.2.1.3 Storage Operations

The Storage Operations module is responsible for the reading and writing of la-

belled data sets and trained models to a distributed file system. This functionality

is critical for a a variety of use cases. Namely, this enables Tangerine the ability to

write labelled data sets to disk. As a result, this also allows Clementine to access

labelled telemetry in a distributed fashion, enabling rapid access and decreasing

loading time as records are partitioned between executor nodes. Furthermore,

this also allows models to be saved for future use, providing re-usability for ob-

jects, which incur prolonged training times. The Storage Operations module also

enables the resulting labelled flow-based data set to be shared with the wider re-

search community, with the intention of providing daily submissions of realistic,

emerging attack telemetry which next generation intrusion detection systems can

use to evaluate their approach.

3.2.1.4 Historic Flow Collector

The Historic Flow Collector module provides an interface between Tangerine

and a distributed database. The distributed database stores historic flow-based

telemetry emanating from honeypots, in which attack traffic occurs, and services

75

deployed privately within the network, in which benign traffic occurs. The module

allows Tangerine to query a database for telemetry using an expressive language,

which returns each record matched by the query. This is achieved through sending

web requests to the database and receiving back data in JSON format.

Critically, this module enables Tangerine to load vast amounts of telemetry

into memory, which will then be used to compile a robust intrusion detection

data set. Therefore, this module is intended to satisfy the Design Requirement 1,

further outlined in Section 3.1.1, as it collects traffic captured by diverse honeypot

deployments.

3.2.1.5 Intelligence Collector

Unlike the other modules discussed in this section, the Intelligence Collector

module provides an interface between Citrus and remote services located on the

Internet. Through this module, Tangerine is able to correlate the data derived

from honeypot deployments with various CTI services to gain contextual infor-

mation regarding suspect attackers. The CTI services leveraged by Tangerine are

heterogeneous in nature and provide varying information. Most notably, intel-

ligence services which provide access to various blocklists will be communicated

with to corroborate whether a host which interacts with the honeypots Citrus

governs is known to be an attacker, confirming that the host responsible is acting

in a overtly malicious manner. There is also further integration with auxiliary

threat intelligence services, such as malware analysis platforms, which provide

data that details malware samples that are associated with a suspect attacker.

As illustrated within Figure 3.2, the Intelligence Collector module provides both

input and output operations. This is to enable custom queries (as an output)

to each distinct threat intelligence service, such as providing a list of suspicious

hosts, and returning to Tangerine (as an input) the corresponding response from

the service.

3.2.2 Tangerine

The Tangerine component within Citrus, as illustrated in Figure 3.3, performs

automated intrusion detection data set labelling through correlation with CTI

service providers. This component ultimately outputs a comprehensive flow-

based labelled data set, which enables the Clementine module to perform online

76

Figure 3.3: Tangerine design overview

intrusion detection tasks.

This module is designed to develop a ground truth for telemetry captured on a

specific day. Therefore, this module should begin execution upon the discovery of

new telemetry captured over a period of 24 hours. As a result, a continuous feed

of labelled telemetry is supplied by Tangerine through ground truth validation.

To achieve this functionality, Tangerine initially gathers the telemetry to be

labelled from the Southbound Interface. The telemetry is then pre-processed in

preparation for exportation as a labelled data set. Contextual information is

then gathered through correlation with CTI services. Upon successful collection

and processing of this contextual information, the relationships between potential

attackers observed within the telemetry on the capture date are extracted. This is

achieved through integration with a graph library. A clustering technique is then

applied to the nodes, i.e. the suspected attackers, within the graph to identify

highly connected supernodes. These supernodes are determined to be malicious

as they are associated with a large number of blocklists or reports derived from

CTI services. Based upon this clustering approach, the malicious communications

within the collected telemetry are able to be accurately labelled.

These stages within the ground truth development process are embodied as

components within Tangerine. The remainder of this subsection details these

77

components and discusses how they work in harmony to produce a continuous

supply of flow-based labelled telemetry data.

3.2.2.1 Driver

The Driver component is the entry point of Tangerine, and is additionally respon-

sible for the orchestration of all stages within the labelling process. As a result,

this component has connections with all of the other components within Tan-

gerine. The Driver has one input and produces two distinct output operations.

The input is in the form of flow based telemetry data collected from honeypots

and benign servers deployed within the network, which is delivered through the

Southbound Interface to the Driver component.

Due to the large amount of telemetry data needed to be stored in memory

and operated upon, Tangerine integrates with Big Data processing frameworks

to alleviate scalability challenges. The Driver component triggers operations

to be performed on a cluster of worker nodes, which transforms the telemetry

in parallel for data preparation purposes. Upon successful response from all

components within Tangerine, which indicates that the telemetry data has been

cleaned, contextualised, and labelled, the Driver is able to produce a flow-based

labelled intrusion detection data set as an output destined for storage within a

distributed file system.

3.2.2.2 Data Cleaner

The Data Cleaner component is responsible for the transformation of telemetry

data into an appropriate format. All telemetry data gathered from honeypots and

benign servers deployed within the network is processed through this component

to prepare the relevant features required for an intrusion detection data set. As

a result, the Data Cleaner plays a critical role in delivering the telemetry data in

a format appropriate for the evaluation of Intrusion Detection Systems. Further-

more, the design of this module satisfies Design Requirement 2 as its purpose is

to engineer features relating to diverse traffic measurements.

This component receives from the Driver raw telemetry data in the form of

network flow measurements. The Data Cleaner transforms the raw telemetry

data and returns it to the Driver in a standard format, preparing it to be output

as a data set. As illustrated in Figure 3.4, the telemetry data is fed into the Data

78

Cleaner in the form of JSON formatted string. There are many more features,

but they have been omitted for brevity. For example, the additional features

include both flow-based and packet-based features, such as bytes in and entropy.

Further information regarding all of the features can be found in Section 5.2.5.

The Data Cleaner then constructs additional features and converts the data into

a columnar format. The columnar format is required by the cluster processing

framework to perform distributed operations.

Figure 3.4: Data transformation

3.2.2.3 Intelligence Orchestrator

The Intelligence Orchestrator component coordinates requests for CTI data. It

achieves this through the instantiation and governing of Intelligence Service Ap-

plications, custom applications built specifically for communication with a certain

CTI service. As such, this component plays a critical role in enabling extensibility

and flexibility for future integrations with new CTI services. Critically, through

the orchestration of these Intelligence Service Applications, this module helps to

develop a ground truth.

The Intelligence Orchestrator receives a list of IP addresses, which are ex-

tracted from the telemetry data collected by the Driver. These IP addresses

79

uniquely identify potential attackers interacting with the honeypots deployed

within the network, and are utilised to perform queries on CTI services to gain

contextual information relating to these actors. The Intelligence Orchestrator

instructs each Intelligence Service Application to construct a list of request ob-

jects, using the IP addresses as a parameter within the request, to query the

corresponding CTI service. These request objects are transferred to the Intelli-

gence Collector module within the Southbound Interface, where each request is

processed and the corresponding response from the service is returned.

Upon successful response from the Southbound Interface, the Intelligence Or-

chestrator then instructs each Intelligence Service Application to parse the re-

sponse. When all responses have been parsed, the resulting CTI for each actor

observed within the telemetry data is then transmitted to the Driver.

3.2.2.4 Intelligence Service Application

Intelligence Service Applications are developed within Tangerine, which contain

the functionality required to query and parse responses from threat intelligence

services. As these services are heterogeneous in nature, there is no standard

method in which to construct a query and parse the corresponding response. As

a result, to enable communication between Tangerine and specific CTI services,

a corresponding application must be instrumented, which contains this distinct

functionality. These applications provide their procedures to the Intelligence

Orchestrator, which further coordinates the intelligence gathering process.

3.2.2.5 Ground Truth

The Ground Truth component is responsible for the development of a ground

truth relating to telemetry data collected by Citrus. The functionality provided

by this module is intended to satisfy Design Requirement 3, which is discussed in

Section 3.1.2. The approach taken identifies supernodes within a graphical rep-

resentation of suspected attackers and their relationships as discovered through

active CTI correlation. As mentioned previously, services which provide access

to CTI data enable an understanding of malicious behavioural patterns observed

on various parts of the Internet. As a result of the integration with CTI services,

this module is designed to create and manipulate graph data structures based

upon the contextual information received from CTI services regarding potential

80

attackers. In detail, the Ground Truth module contains the functionality required

to add nodes and connections to others through edges. These connections are in-

tended to indicate a relationship between nodes, such as being active within a

blocklist.

Figure 3.5: Graph feature clustering

In addition to the graphing capabilities, the Ground Truth module is designed

to perform clustering of features extracted from the graph. Upon completion of

graph related processing, these features are input into a clustering algorithm,

which separates the nodes into clusters based upon the features. The clusters

are then used to identify supernodes, which are the nodes established as having

many relationships with malicious entities as derived through CTI correlation.

This approach is illustrated in Figure 3.5. The graphs within the figure are

populated with data points extracted from features of the graphical representa-

tion of attackers and their associations as derived through correlation with CTI

services. As shown, they can be visualised in two-dimensional space. The left

graph shows the data points before clustering, while the graph on the right dis-

plays the result of clustering. The cluster centres are also clearly marked to

illustrate the data points which belong to a particular cluster.

This determination ultimately provides the automated labelling methodology

inherent within Tangerine. Therefore, based upon this clustering approach to

identify supernodes, the telemetry data associated with each node within the

graph can be labelled. Upon this successful identification of supernodes, the

Ground Truth component provides a list of labels to the Driver. The Driver

81

then performs transformation on the telemetry data to include such labels, and

prepares it for output as a labelled data set.

3.2.3 Clementine

Figure 3.6: Clementine design overview

The Clementine component within Citrus, as illustrated in Figure 3.6, performs

online intrusion detection of flows emanating from devices within the network.

These network flows are transmitted to Clementine through the Southbound In-

terface using emerging streaming technology. This component adopts a machine

learning approach to intrusion detection. In this approach, supervised classifica-

tion models are trained on the labelled flow-based data set output by Tangerine.

Both the initial training data set and the streaming flows are input to Clemen-

tine through the Southbound Interface. Both of these are considerable in size

and dimensionality. As motivated by contributions within the research commu-

nity, Clementine integrates with Big Data technologies to execute training and

prediction tasks in parallel across distributed worker nodes. In addition, this

component also performs the transformations required for the pre-processing of

streaming flows in preparation for prediction. This functionality is divided into

distinct components within Clementine. The remainder of this section details

these components and their role in providing online intrusion detection capabili-

ties.

82

3.2.3.1 Driver

The Driver within Clementine fundamentally coordinates all stages within the

intrusion detection process. Initially, this component receives, as an input, a

flow-based labelled data set from the Southbound Interface. The Driver then

instructs the Model Training and Prediction component to build a trained classi-

fication model from this data set. To achieve this in an efficient fashion, training

operations are dispatched to a cluster of executor nodes, which process the re-

quest in parallel. Upon the successful training of the model, Clementine is ready

to begin predicting whether streaming flows emanating from devices within the

network are of a normal or malicious nature.

The Driver then begins to consume network flows transmitted through the

Southbound Interface. These flows are pre-processed through the Data Cleaner

to prepare the relevant features used for flow classification. The Driver then

instructs the Model Training and Prediction component to predict the label as-

sociated with the flow.

3.2.3.2 Data Cleaner

The Data Cleaner is responsible for the pre-processing of streaming network flows.

This component periodically receives raw network flow telemetry data from the

Driver. The Data Cleaner parses each flow and creates the appropriate features

used in the prediction process. Upon successful creation of features, they are then

returned to the Driver.

3.2.3.3 Model Training and Prediction

The Model Training and Prediction component provides the machine learning

capabilities used by Clementine to perform intrusion detection. To achieve this

in an efficient fashion, Clementine integrates with high-throughput streaming

frameworks and Big Data processing frameworks, which provide highly scalable

machine learning algorithms. Critically, these frameworks enable this module to

leverage data and system parallelism for use in intrusion detection tasks, which

is intended to satisfy Design Requirement 4.

This component performs two critical tasks in the intrusion detection process:

the training of a machine learning model on a flow-based data set containing both

83

benign and malicious traces, and the prediction of streaming flows emanating

from devices within the network. Both of these tasks require features of flows

to be sent from the Driver. Upon the receipt of these features, training and

prediction operations are executed on a cluster of worker nodes. In the event of

training operations, the trained model is returned to the Driver. In the event of

prediction tasks, the associated predicted label for each flow is returned to the

Driver, providing effective detection of emerging threats emanating from devices

within the network.

3.3 Security Considerations

Considerations must be made for the security of Citrus in order to provide a

robust framework. Citrus was designed with this in mind and many choices were

made to architect a secure solution. One example of such a consideration is that

Citrus does not need to be directly accessible from the Internet to function. All

communication with external networks is initiated by Citrus through Hypertext

Transfer Protocol Secure (HTTPS) to ensure confidentiality and integrity of data

transmission. This means that Citrus can be placed behind a Network Address

Translation (NAT) gateway. In addition, Citrus does not expose any APIs to

external sources, and instead provides an interface only for its own modules and

internally managed services.

The managed services required by Citrus do not need to be accessible from the

Internet. As a result, they can all be placed in private networks. This means that

exploitation of these services, and Citrus, is very unlikely. The only caveat here is

that communication must be allowed between honeypots and a database to store

the telemetry data. Honeypots can be deployed with various placement strategies,

including being accessible from the Internet. In this case, and more generally,

it is recommended to follow the principle of least privilege. This ensures that

applications and services can perform necessary functions but nothing more. For

example, a network rule should be configured to enable the transfer of honeypot

telemetry data to the database using a secure protocol. Any traffic that does not

match this rule should be blocked. This will ensure that Citrus and the required

services are totally isolated from any other infrastructure.

Despite the application and system security considerations, there exists po-

84

tential avenues of exploitation through Citrus’ use of ML algorithms. Since the

internal workings of CTI services are kept secret, they should be considered as a

black box. Citrus extracts data from these services to label training data. As a

result, if these services tampered with the data, it could impact Citrus’ labelling.

For example, assigning normal behaviour to traces that are in fact malicious.

This would also affect the ability of ML algorithms to predict unseen data based

upon the tainted training data.

3.4 Privacy Requirements

The honeypot telemetry captured and used by Citrus incorporates a wide range

of data. This includes features that could be considered Personally Identifiable

Information (PII) such as IP addresses. Despite no communication being initiated

by the honeypots, it is important to respect the privacy of individuals. Citrus

removes such data and instead replaces it with more general information. In

the case of IP addresses, they are converted to the number corresponding to the

Autonomous System (AS) that the IP address belongs to. This has the benefit

of removing personal information yet preserving some aspect of the data, which

could still be useful.

3.5 Summary

This chapter has outlined an architecture which has been designed to achieve the

aforementioned requirements detailed in Section 3.1. The design choices made

within this chapter highlight the necessity for a scalable and efficient approach to

intrusion detection through integrations with state of the art technologies. These

choices are made to provide an efficient solution when dealing with extremely

large amounts of data. Moreover, the extensibility of the system is explored

through the design of Intelligence Service Applications, which can be used to

communicate with novel threat intelligence platforms. These bespoke applications

are designed to gather contextual information pertaining to potential attackers,

and further enable the development of a robust ground, which separates malicious

and suspicious traffic traces.

Citrus is designed to be deployable within a range of networks. The South-

85

bound Interface ensures that integration with a variety of local network envi-

ronments is seamless through the utilisation of streaming technologies to collect

live telemetry data emanating from network devices. The design of Citrus is also

intentionally agnostic to telemetry data it collects, labels, and uses to classify ma-

licious events. As such, network devices can be instrumented to transmit packets

or flows to Tangerine’s distributed database for future labelling. This enables

flexibility for the network operator to determine which is the most appropriate

for their particular use case. In the following chapter, the design of Citrus is

realised through a robust implementation.

86

Chapter 4

Implementation

In the previous section, the design of Citrus’ architecture was presented. This

architecture provides two overarching pieces of functionality, which enable the

detection of emerging threats. These are embodied as components within Citrus:

Tangerine and Clementine. The implementation of these core components is out-

lined in Section 4.1. Tangerine, which is further discussed in Section 4.1.3, orches-

trates the automatic collection and labelling of telemetry incorporating emerging

attacks. The intelligence service applications which enable correlation with CTI

services are also outlined to demonstrate Citrus’ intelligence gathering capabil-

ities. Clementine, as discussed in more detail in Section 4.1.4, coordinates the

consumption of streaming flows emanating from devices within the network, and

utilises the labelled telemetry output by Tangerine to perform intrusion detec-

tion. As discussed in the design chapter, both of these components integrate with

emerging technologies to perform their respective operations. The integration

with these technologies is achieved through the implementation of a Southbound

Interface, and is discussed in more detail in Section 4.1.1. The implementation of

development and deployment tools are also outlined in this chapter. In Section

4.2, the implementation of a tool which enables the automatic publication of the

compiled data set to GitHub [139] is discussed.

4.1 Citrus

This section discusses the components which compose the architecture of Cit-

rus. In particular, the implementation detail of each component is divulged to

87

highlight how the design architecture has been realised. Each of the components

listen within this section have been implemented using the Python programming

language [140]. Python version 3.7 was chosen as Python 2 has reached its end of

life and is therefore no longer actively being maintained. Additionally, Python 3

introduces a range of new functionality to the language and also contains the

largest number of libraries.

4.1.1 Shared Library

The components within Citrus share a range of common functionality. To reduce

the amount of code duplicated within Citrus, a shared library is developed, which

contains this common functionality1. The library is implemented as a Python

package. The relevant components within Citrus have the ability to import this

library to provide additional utilities and features.

As discussed in the design section, Citrus integrates with various Big Data

technologies to perform efficient processing of vast high-dimensional data. Mo-

tivated by contributions identified in literature, this is implemented in Citrus

through the utilisation of Apache Spark [13]. Apache Spark provides large scale

data processing capabilites. It also supplies high-level APIs in Scala, Java, Python

and R, which support structured data processing, machine learning and struc-

tured streaming for incremental computation and stream processing. This sup-

port also enables interoperability with other technologies which further aid large

scale data processing, such as Elasticsearch [12], Apache Hadoop [10], and Apache

Kafka [98]. The use of these technologies in discussed further in this chapter.

Apache Spark has the ability to execute processes on a cluster of executor

nodes. This is coordinated by the SparkContext object within the application.

SparkContext connects to various cluster managers (Standalone, Mesos [141],

YARN [10], or Kubernetes [142]), which allocate resources across clusters. Upon

allocation, Spark acquires executor nodes within the cluster, which perform com-

putations and store data for an application. Finally, SparkContext sends tasks

incorporated within an application to be run on the executors within the cluster

in parallel.

Due to the development of Citrus being undertaken in the Python program-

ming language, the Python bindings, PySpark [143], were used to successfully

1https://github.com/ruzzzzz/Citrus/tree/master/citrus lib

88

integrate with Apache Spark. As this technology is utilised by both the Clemen-

tine and Tangerine components within Citrus, the shared library includes support

for the execution of distributed tasks on executor nodes. This is achieved through

instantiation of the SparkContext object, which is made available to other com-

ponents within Citrus.

The telemetry used by Citrus to perform intrusion detection is initially col-

lected in a non-standard format, and must be pre-processed for further opera-

tions. Tangerine must incorporate this functionality to prepare the telemetry for

exportation as a labelled data set. Clementine also requires this functionality

to prepare streaming telemetry emanating from devices within the network for

classification. As a result, the shared library includes a Data Cleaner for this

purpose. The Data Cleaner is implemented as an abstract class which supplies a

clean method. This method is inherited by its child classes, which model various

input sources, and pre-processes the data into a standard format. This enables

extensibility for the collection of telemetry, which is created using various imple-

mentations. The implementation of the Data Cleaner enables the preparation of

data and engineering of features, thus, it is intended to satisfy Design Require-

ment 2.

Citrus requires the configuration of several variables before it can begin exe-

cution. These include the IP address and port number of network services, and

keys used in the authentication stage of communication with the threat intelli-

gence service. For this purpose, Citrus contains a configuration file which can be

retrieved by any module which requires it. The format of the configuration file is

JSON. This format was chosen due to its self-descriptive nature, as well as library

support within Python enabling the loading of such JSON strings into dictionar-

ies within memory. A Python module is additionally implemented within Citrus’

shared library to perform this functionality.

4.1.2 Southbound Interface

As discussed in Section 3.3.1, Citrus contains a Southbound Interface to inte-

grate with various network services2. This interface is implemented as a Python

module. Upon initialisation, this module instantiates each individual component

within the Southbound Interface. Notably, the SparkContext object, obtained

2https://github.com/ruzzzzz/Citrus/tree/main/southbound

89

from the shared library, is passed to the relevant components constructor to per-

form distributed operations upon a cluster of executor nodes. The components

contained within the Southbound Interface are accessed by the higher level com-

ponents, Tangerine and Clementine, through a get method within the interface.

This method accepts a string, which represents the component which is requested.

The remainder of this section outlines each component within the Southbound

Interface, and details the functionality each provide.

4.1.2.1 Stream Listener

The Stream Listener provides the functionality to consume streaming telemetry

emanating from devices within the network. This enables the online evaluation

of telemetry within a local network. This is achieved through integration with

Apache Spark’s streaming library [144]. Spark Streaming extends the traditional

core Spark API by providing high-throughput, fault tolerant, and scalable stream

processing of live data. This data can emanate from a variety of sources such

as Apache Kafka [98], Kinesis [145], and rudimentary sockets. The streaming

platform implemented within Citrus is Apache Kafka. This platform was chosen

due to its distributed, replicated, and extremely highly performant nature. These

attributes should help enable the timely online detection of emerging attacks.

The data streams can be operated upon using high-level functions such as

map, reduce, and join. Furthermore, Spark Streaming additionally enables the

application of machine learning algorithms upon such data streams. Spark pro-

vide a high-level abstraction of these streams of data, called Discretized Streams

(DStreams). DStreams are internally represented as sequences of Resilient Dis-

tributed Datasets (RDDs). RDDs are a fault tolerant collection of elements par-

titioned across nodes within a cluster, which can be operated upon in parallel

[146]. The sequencing of these elements structure a streaming computation as a

series of micro-batch computations [147]. This property is leveraged by Citrus to

perform online intrusion detection using conventional map and reduce operations

as well as machine learning algorithms on batches with small time intervals.

To achieve this, the Stream Listener component provides three methods: cre-

ate, start, and stop. Initially, the create method initialises a StreamingContext

object, which is the entry point for all streaming functionality. This object is

then passed, alongside the URI and port of the Kafka broker, to a function within

90

Spark, which creates an instance of a DStream object. This DStream object is

returned to Clementine to perform parallel computations. The start method be-

gins the consumption of telemetry from the Kafka broker, while stop terminates

the streaming context.

4.1.2.2 Cluster Operations Dispatcher

RDDs are aware of the actions required to create themselves and can only be

created from operations on either data in storage, or other RDDs [15]. These

operations are named transformations, and include map, filter, reduce, join. The

map transformation sends each element within the RDD through a function and

returns the resulting RDD. The filter transformation discards elements within

the RDD which do not satisfy a predicate. The reduce transformation performs

aggregation of elements within the RDD. The join transformation combines ele-

ments within two distinct RDDs.

This module contains methods which perform these transformations upon

network telemetry. An example of this is using the map transformation to pass

each telemetry record through the Data Cleaner to pre-process it into a standard

format. Furthermore, map transformations are utilised to construct additional

features. These features augment existing data elements to produce features rele-

vant in intrusion detection data sets. Such features which have been implemented

include flow duration, mean inter packet arrival time, and target labels, and are

detailed further in the following chapter.

4.1.2.3 Storage Operations

The Storage Operations module is responsible for read and write operations to

distributed storage. Hadoop File System (HDFS) [10] was chosen as the stor-

age medium due to its high-throughput access and fault tolerant nature. Upon

initialisation by the Southbound Interface, this module’s constructor is passed

the SparkContext object as an argument. This object provides high level APIs,

which include the ability to read and write items to HDFS. This is used within this

module to implement operations for the loading and saving of labelled flow-based

data sets and machine learning models.

This module provides a read and a write method to Citrus’ high level com-

ponents. To distinguish between whether a model or data set is being operated

91

upon, a string is passed as an argument to each method. Based upon this argu-

ment and the name of the object, the corresponding location is deduced. Using

the methods provided by SparkContext, the object is loaded/saved to the loca-

tion within HDFS. In the case that a data set is to be loaded from storage, an

RDD object is returned, which contains the data partitioned across nodes within

a cluster.

4.1.2.4 Historic Flow Collector

The Historic Flow Collector module integrates with a distributed database con-

taining raw network telemetry. This telemetry contains emerging attack data

captured from honeypots, and benign communications between internal services.

This enables the Tangerine component within Citrus to collect and label network

telemetry for output as an intrusion detection data set. The database chosen to

store this vast amount of data is Elasticsearch [12]. This is due to its distributed

nature through sharding of data among nodes within a cluster. Each shard is an

instance of a Lucene index, which enables the handling and querying of a sub-set

of data stored in an Elasticsearch cluster.

Elasticsearch additionally enables the searching of large amounts of data in an

efficient fashion. This module utilisies this functionality to query for a specific type

of data stored within the database. This enables the flexibility to load telemetry

of varying genres. Furthermore, Elasticsearch also separates data into indices.

These indices can be considered a data organisation mechanism, which Citrus

leverages to partition logs based upon the date of capture. This enables Citrus

to seamlessly gather telemetry associated with a certain day which is required to

be labelled.

This module provides a query method to Tangerine. Utilising the SparkCon-

text object passed to the constructor, Elasticsearch is queried and returns each

record that matches. These records are transformed by SparkContext to a RDD,

which is then returned to the calling component. This module is implemented to

collect honeypot telemetry data, and is intended to satisfy Design Requirement

1.

92

4.1.2.5 Intelligence Collector

The Intelligence Collector module is dissimilar to the other modules within the

Southbound Interface, as it communicates with remote CTI services and does

not require a SparkContext. The purpose of this module is to dispatch requests

to these services and return the corresponding result. In order to perform a

large number of HTTP requests in an efficient fashion, a multi-threaded library,

grequests [148], was chosen to perform this task. This library combines the con-

ventional requests [149] and gevent [150] libraries to perform HTTP requests

concurrently using asynchronous design.

This module provides a send method, which accepts a list of request objects

as an argument. These objects are individually composed of Intelligence Service

Applications inherent within Tangerine. Each request is then dispatched using

the grequests map function. Each response, including the response code and

payload is appended to a dictionary. Upon all requests being dispatched and the

corresponding response being received, this dictionary is then returned from the

method.

4.1.3 Tangerine

The Tangerine3 component within Citrus enables the labelling of network teleme-

try incorporating emerging attack patterns, and as a result it produces a labelled

intrusion detection data set. This section details the modules which have been

implemented within Tangerine to perform such functionality.

def run (date) :

ips , data = s e l f . loadTelemetry (date)

i n t e l = s e l f . i n t e l . lookupIOCs (i p s)

s e l f . i n t e l . p a r s e I n t e l (i n t e l)

graph = s e l f . graph . draw (date)

graphFeatures = s e l f . graph . ca lcu lateGraphFeatures (graph)

kmeans = s e l f . c l u s t e r . kmeans (graphFeatures)

l abe l l edData = s e l f . southbound . c l u s t e r . applyLabels (

data ,

3https://github.com/ruzzzzz/Citrus/tree/main/tangerine

93

kmeans . l ab e l s ,

date

)

s e l f . southbound . s t o r a g e . saveLabelledDF (labe l l edData , date)

Listing 4.1: Driver logic

4.1.3.1 Driver

The Driver is the initial entry point to Tangerine, and orchestrates all stages

within the labelling process. Listing 4.1 documents the code used in this imple-

mentation. The following describes each of these steps in detail. Tangerine starts

the process by retrieving the start date from the configuration model within the

shared library. This start date is used to begin labelling telemetry collected af-

ter a specified date. Tangerine performs the labelling of network telemetry in

batches, typically into distinct days of collection. Upon the successful labelling

and exportation of a labelled data set, Tangerine increments the start date, and

automatically begins to label the next day’s telemetry. This process terminates

when there is no more telemetry to label, and resumes upon new telemetry be-

coming available.

When telemetry is available and not already labelled, Tangerine collects it

through requests to the Southbound Interface. In particular, the Historic Flow

Collector module within the Southbound Interface is utilised. The Driver in-

vokes the query function within the Historic Flow Collector module, passing the

date and data source requested. This module then returns an RDD, which par-

titions the selected data across nodes within a cluster. This telemetry is then

pre-processed through invoking functions implemented within the Data Cleaner

located in the shared library. Each distinct IP address is extracted from the

telemetry. This is implemented through aggregation operations on the RDD

storing the telemetry.

The IP addresses extracted from the previous operations are used to query

CTI services. They are passed to the Intelligence Orchestrator, which performs

communication with these services. Upon the successful response from a remote

service, each response is parsed and objects are constructed in memory, which

represent the data contained within. These are implemented as dictionaries, and

are used in future operations to produce a graphical representation. The Driver

then coordinates with the Ground Truth module to draw a graph which represents

94

relationships between potential attackers and entities derived from CTI sources

on a specified date. The graph-based features of each node are then calculated.

These features are then clustered to identify nodes of similar ilk. Supernodes

are discovered from the clusters which represent highly connected nodes. This

indicates that they share a relationship with many malicious entities, and can be

labelled as such. Nodes which are not part of the supernode cluster are labelled

as outliers, as there is no consensus from the intelligence community that they

have performed malicious actions elsewhere on the Internet during the period of

telemetry capture.

These labels are then applied to the telemetry using the Cluster Operations

module within the Southbound Interface. This returns a RDD incorporating

emerging attacks, which is supported by a strong ground truth, and known be-

nign communications to internal network services. Additional features are com-

posed before the telemetry is saved, using the Southbound Interface, to HDFS

as a labelled intrusion detection data set. The additional features created grant

greater insight into the captured data. These include the duration of the flow, as

well as the time that the flow started and ended.

4.1.3.2 Intelligence Orchestrator

The Intelligence Orchestrator coordinates with Intelligence Service Applications

to communicate with various CTI services. The communication with these ser-

vices can be enabled or disabled using the aforementioned configuration module.

Upon initialisation by the Driver module, instances of each enabled application

are created.

This module provides query and parse methods. The query method accepts

a list of IP addresses, which were observed communicating with a deployed hon-

eypot. Each application instance is then iterated to call the corresponding appli-

cation’s query method, passing the list of IP addresses. After this is done, a list

of request objects are returned from the applications which contain the informa-

tion necessary to query various CTI services. These objects are then transferred

through the Southbound Interface to the Intelligence Collector module, which

performs the requests and returns each response as a dictionary.

The parse method receives these responses. This method must initially de-

duce which CTI service each response is associated with. The corresponding

95

application’s parse method is then called, passing every response that it governs

as an argument. Each application then performs specific functionality, parsing

the responses into objects within memory, which represent relationships an IP

address has with sources derived from threat intelligence services.

4.1.3.3 Intelligence Service Applications

As CTI services provide a non-standard interface, custom applications can be

created, which contain unique functionality used to query and parse responses

from distinct sources. All applications inherit various methods and variables

from a base application class. New applications can be added in a simplistic

fashion, as they only require the implementation of query and parse methods.

An example implementation of an application which interfaces with a threat

intelligence service providing blocklist information through a remote RESTful

API is discussed below.

Each application begins upon execution of its query. In the case that authenti-

cation is required, the configuration module is invoked to access such information.

These are typically usernames, emails, passwords, or a key. The authentication

data is then appended to the headers within each request. Through research

and experimentation with various CTI service, they typically provide either bulk

or individual queries. Bulk queries enable a single HTTP request to look up a

number of different IP addresses, while individual queries only permit a single

data instance per request. In the case that the CTI service the application is

interfacing with allows bulk queries, the payload of the request is modified to

contain all IP addresses. Naturally, this reduces the time taken to perform intel-

ligence collection, and is the approach taken if possible. However, for individual

queries, a number of request objects must be created with each payload contain-

ing a distinct IP address. Upon successful construction, they are returned to the

Intelligence Orchestrator.

When responses are received from threat intelligence services, the parse method

of each application is invoked. Typically, CTI services return responses in JSON

format. In order to parse and store this information in memory, the json Python

library is used. The status code of the response is initially parsed, and if it is not

as expected, the response is dropped. Otherwise, the appropriate data is then

extracted from the response. For example every blocklist, including the date, the

96

IP address is associated with. These are then appended to a dictionary, which is

returned to the Intelligence Orchestrator.

The Intelligence Service Applications are implemented in a manner which

promotes extensibility, and currently support a diverse range of CTI services.

These are further detailed in Table 4.1.

Name Entity Type Description

AbuseIPDB Abuse Report
Allows users to submit reports of malicious ac-
tions orchestrated by devices on the Internet.

Apility Blocklist
Provides the capability to query IP addresses
against a diverse range of blocklists.

BGP Rank-
ing

AS Details historical AS information

Censys Service Search engine for Internet connected devices.
GreyNoise Service Search engine for Internet connected devices.
Hybrid Anal-
ysis

Malware,
C&C Servers

Scans uploaded samples and provides access to
several extracted IoCs.

Maltiverse Blocklist Search engine for Internet connected devices.

OTX Blocklist
Provides access to custom blocklist by Alien-
vault.

Shodan Service Search engine for Internet connected devices.
ZoomEye Service Search engine for Internet connected devices.

Table 4.1: The CTI services used to correlate data points and provide a ground
truth

Every CTI service provides access to a varying type of information. For ex-

ample, the Hybrid Analysis platform [151] provides insight into files identified

as malicious, which are associated with an IP address. This service allows users

to upload suspected malicious samples. These samples are then scanned by a

diverse range of antivirus services to determine whether they perform malicious

actions. Hybrid Analysis then extracts IP addresses from the malware through

static and dynamic analysis. Hybrid Analysis additionally allows users to query

samples based upon the extracted IP addresses through a RESTful API. This

is the method in which Tangerine gathers evidence of a node’s association with

samples classified as malware by third parties. Any other IP addresses associated

with the malware sample are also leveraged by Tangerine. These grant addi-

tional insight into the infrastructure associated with these samples, such as C&C

servers.

97

class AbuseIPDB(Feed) :

def i n i t (s e l f , key) :

super () . i n i t ()

s e l f . u r l = ’ https : // api . abuseipdb . com/ api /v2/ check ’

s e l f . key = key

def s t r (s e l f) :

return ” abuseipdb”

def parse (s e l f , r e sponse) :

i f ’ r epo r t s ’ in re sponse and len (re sponse [’ r epo r t s ’]) > 0 :

r epo r t s = [r epor t for r epor t in re sponse [’ r epo r t s ’]]

r e t = {” type” : s e l f . s t r () , ”data” : r epo r t s }
return r e t

else :

return {” type” : s e l f . s t r () , ”data” : None}

def query (s e l f , i p s) :

qu e r i e s = []

for ip in i p s :

r s . append (g r eque s t s . get (s e l f . ur l , t imeout=30, params = {
’ ipAddress ’ : ip ,

}))
return que r i e s

Listing 4.2: AbuseIPDB Application Example

Listing 4.2 documents an example application implemented to coordinate with

AbuseIPDB. The query method is passed a list of IP addresss as an argument.

These are then iterated to create a list of request objects. These objects are

identical except for the HTTP parameters, which contain the IP address to query.

Once these requests have been sent, the responses are then parsed using the

parse method. Each of the responses are iterated, and the relevant information

is extracted and returned to the driver.

98

4.1.3.4 Ground Truth

This module extracts the relationships of potential attackers and performs cluster-

ing of graph-based features to identify highly malicious nodes. The relationships

of these nodes are determined through correlation with the third party CTI ser-

vices discussed in the previous section. Importantly, services providing access to

blocklists and abuse reports are leveraged for their ability to provide rich details

about infiltration attempts associated with suspect IPs. To achieve this function-

ality, this module integrates with various libraries providing graph and clustering

capabilities. In detail, these include the NetworkX [152] and scikit-learn [153]

Python libraries. NetworkX provides an implementation for the creation and

study of graph data structures, including directed graphs and multigraphs, as

well as graph-based algorithms such as PageRank. The scikit-learn library is

used for the provided k-means clustering algorithm.

The graphing capabilities of NetworkX are utilised to plot every node rela-

tionship in a visual network representation. In order to extract the relationships

derived through CTI correlation, this module traverses through the dictionaries

storing contextual information, which are created by the Intelligence Orchestra-

tor. For every identified relationship, this module updates the graph accordingly.

Upon the successful mapping of these relations, built-in NetworkX functions are

used to extract graph-based features, which are used in a clustering approach to

identify highly malicious nodes. Additional details about the methodology and

reasoning behind the choices made to develop the ground truth and the associated

labelling approach are outlined in Section 5.2.1.

Each of the modules within Tangerine perform a specific function. When

these functions are combined they provide the capability to extract contextual

information from third parties and the ability to apply this information on data

for labelling purposes. As previously discussed, this is achieved through integra-

tion with CTI services and the implementation of graph-based feature clustering.

These pieces of functionality are implemented to satisfy Design Requirement 3.

99

4.1.4 Clementine

Clementine4 serves as a practical implementation of a framework, which leverages

labelled network telemetry to perform emerging attack detection. Clementine in-

tegrates with Apache Spark to perform this in an online and distributed fashion.

Spark contains streaming functionality which enables the consumption and online

processing of network telemetry emanating from devices within the local network.

Spark also provides a Machine Learning Library (MLLib), which performs effi-

cient computation of machine learning algorithms on distributed nodes within

a cluster. Clementine contains modules which leverage these technologies. The

implementation detail of each is outlined below.

Figure 4.1: Data flow of clementine

4https://github.com/ruzzzzz/Citrus/tree/main/clementine

100

4.1.4.1 Driver

To perform online intrusion detection, the Driver must initially load a previously

saved model or train a new one, which will be used to predict the intent of each

network flow. In the case that a suitable model has not already been created,

the labelled data set output by the Tangerine module is partitioned across nodes

within a cluster using an RDD. This RDD is passed to the Model Training and

Prediction component to train a machine learning model on the data contained

within. As illustrated in Figure 4.1, this model is then saved for future use,

eliminating the costly training time. In the case that an appropriate model has

been previously saved, it is loaded into memory. For each of these scenarios,

the Storage Operations component within the Southbound Interface is utilised to

load and save objects.

The Driver then creates a streaming context, an associated DStream ob-

ject, along with accumulators which store the counts of the True Positive (TP),

False Positive (FP), True Negative (TN) and False Negative (FN) labels of each

experimental run. These counts will be used to assess the performance of the

detection scheme using widely employed metrics such as accuracy, precision, re-

call, and F-score. Accuracy is arguably the most intuitive metric, and is simply

the proportion of correctly predicted observations over total number of obser-

vations. Precision further examines the correctness of positive predictions, and

corresponds to the ratio of correctly predicted positive observations to the total

number of observations which are predicted to be positive. Recall relates to the

proportion of observations predicted as positive over the total number of observa-

tions which are positive in actuality. F-score provides a harmonic mean between

precision and recall, essentially measuring the balance between the two.

Accumulators are another abstraction provided by Spark, which provide access

to shared variables within tasks operated upon by remote nodes within a cluster.

In particular, accumulators are variables which can be added through associated

operations and are typically used for implementing counters, sums, and other

aggregations.

The operations performed on each batch of streaming data are defined using

the DStream object obtained previously. This involves pre-processing the network

telemetry using the Data Cleaner, predicting the associated label, and calculating

performance accuracy metrics. The aforementioned accumulators are used to

101

store the overall count of TP, FP, TN, and FN values. The streaming context is

then started, enabling the online consumption of network telemetry.

4.1.4.2 Model Training and Prediction

The Model Training and Prediction module contains the functionality to perform

ML tasks across nodes within a cluster. This is implemented through leveraging

high level abstractions provided by Spark. A critical abstraction leveraged by this

module is the ML Pipeline. The ML pipeline specifies a ML workflow through

the chaining of Transformer and Estimator algorithms. A Transformer is an

abstraction which converts one partitioned collection of elements to another, typ-

ically used to append columns such as feature vectors. An Estimator abstracts

learning algorithms which train on data. This abstraction ultimately produces a

model. The ML Pipeline enables the appropriate sequencing of stages required

to perform online intrusion detection.

This module implements train, predict, and metrics methods which are lever-

aged by the Driver. The train method is used when a model must be trained on

the labelled network telemetry output by Tangerine. A ML Pipeline is created

which contains algorithms used to assemble feature vectors and perform super-

vised machine learning. In detail, these include the VectorIndexer and StringIn-

dexer transformers, which construct feature and label vectors respectively. Ad-

ditionally, an estimator which performs classification is added to the pipeline.

The specific estimator varies depending upon which classification algorithm is

intended to be evaluated. The Pipeline’s fit method is called in order to execute

each stage in the pipeline and ultimately train the model, which is then returned

to the Driver.

The predict method implemented within this module uses the model created

previously to predict the label of network telemetry. The telemetry from each

streaming batch is fed through the same ML pipeline to ensure that training and

prediction features encounter identical steps. The labels are appended to the

input RDD, and returned to the Driver.

The metrics method leverages MLLib’s Evaluation abstractions to gain per-

formance accuracy metrics. These are generated for each batch of streaming

telemetry. As mentioned previously, accumulators are used to count the total

TP, FP, TN, and FN values for each experiment.

102

All of the functionality discussed above enables the distributed processing of

large amounts of data across a number of compute instances. This functionality

is implemented in such a manner to perform intrusion detection of network traces

using a range of ML algorithms. This has been implemented to satisfy Design

Requirement 4.

4.2 Intelligence Sharing

To enable the research community to replicate the intrusion detection capabili-

ties and achieve similar results, the data set output by the Tangerine module is

periodically released to a public GitHub repository [154]. It is also envisioned

that next generation intrusion detection mechanisms can utilise this data set for

evaluation purposes. A Python script is developed which automatically performs

this functionality.

The script initially checks to see if any new telemetry has been labelled. This

is achieved through a library which enables access to HDFS operations within

Python, hdfscli [155]. If new telemetry is discovered, the library is used to retrieve

it locally. The directory structure of the repository is then amended to reflect

the changes. Each new file is then compressed using the standard zipfile Python

library. This heavily reduces file size, as the data set is released in a CSV format.

Once all new telemetry has been retrieved and compressed, changes are commited

to the remote GitHub repository, and subsequently pushed to periodically release

the data set.

4.3 Summary

This section has highlighted the implementation detail of Citrus and additional

tools. The functionality of Citrus is encapsulated within two modules: Tangerine

and Clementine. Tangerine performs automated labelling of network telemetry

to produce a labelled intrusion detection data set. Clementine utilises this data

set to perform online intrusion detection. In order to deal with the scale at which

traffic is required to be processed in modern networks, Clementine integrates

with Apache Spark, a cluster computation and parallel processing framework. To

share intelligence gathered with the research community, an additional script is

103

developed, which automatically releases each output data set to a remote GitHub

repository. In the following section, several aspects of the implementation are

evaluated to determine whether Citrus has achieved its design requirements.

104

Chapter 5

Evaluation

In this chapter, the implementation of Citrus is evaluated. Multiple experiments

are performed which aim to evaluate Citrus in varying manners. Each evalua-

tion is also performed with the intention of discovering whether Citrus has met

the aforementioned design requirements, as outlined in Section 3.1, which are

motivated by challenges identified within research.

Initially, in Section 5.1, the evaluation environment is discussed, highlighting

an appropriate network architecture suitable for Citrus’ operation. Subsequently,

the telemetry captured from services deployed within this architecture is exam-

ined in Section 5.2, performing analysis and detailing the properties of the corre-

sponding intrusion detection data set authored by Citrus. As outlined in Section

2.1, the modern threat landscape consists of diverse evolving attack patterns.

This evaluation will critically examine the attack patterns incorporated within

the data set. In addition, a comparison between several other intrusion detection

data sets within literature is done to showcase its beneficial properties. Criti-

cally, this evaluation will assess whether Design Requirements 1 and 2 have been

achieved by Citrus, and will explore aspects of realism and whether the attack

data is representative of the modern threat landscape to accomplish this. The

lack of these properties in relation to intrusion detection data sets has made the

comprehensive evaluation of detection mechanisms extremely problematic within

literature.

Section 5.3 evaluates the ground truth developed by Citrus. In order to un-

derstand whether Design Requirement 3 has been met, the developed ground

truth must be validated to ensure its accuracy. This evaluation divulges intricate

105

details about the methodology behind the development of the ground truth, and

further provides results which are intended to showcase the appropriateness of

Citrus’ method using established cluster-based metrics.

Research Challenge 3 states that traditional approaches to anomaly detection

are not appropriate for the vast amount of data within modern networks. In

order to provide contributions within this area and help alleviate this challenge,

Citrus must achieve Design Requirement 4. This will ensure Citrus is capable

of providing accurate detection of emerging attacks in a practical real-world en-

vironment. In addition, Citrus must also provide a detection approach which is

able to handle such large volumes of data, and predict in near real-time to pro-

vide network administrators timely alerts relating to intrusion attempts. It will

be assessed whether Citrus has met Design Requirement 4 through two separate

evaluations, which are further discussed below.

Section 5.4 evaluates the detection capabilities granted by Citrus. Initially,

this is achieved through the exploration of various machine learning algorithms

and their corresponding accuracy to detect attacks within the data set produced

by Citrus. The models created by these algorithms are trained offline, and are also

originally used in an offline manner to predict unseen attack data. The results

extracted from this evaluation are used to inform the most suitable algorithm for

online intrusion detection scenarios. Also included in this evaluation are experi-

ments which assess Citrus’ ability to detect attacks in a practical manner using

a real network environment. Several scenarios are outlined which use machine

learning models, which are trained offline, in an online fashion to predict live data

emanating from devices within the network.

Finally, Citrus’ ability to efficiently process vast amounts of data is discussed

in Section 5.5, specifically exploring the benefits provided through integration

with frameworks providing parallel processing capabilities. This evaluation uses

the data pipeline leveraged by Citrus to detect live attacks. This will assess

whether Citrus’ intrusion detection capabilities are suitable for the substantial

amount of data within modern networks and whether near real-time prediction

is possible.

106

5.1 Evaluation Environment

In order to evaluate Citrus, a suitable network environment is required. A re-

search facility located within Lancaster University, the Cyber Threat Lab [156], is

used for this purpose. The laboratory is designed to provide a collaborative plat-

form that enables the analysis of emerging threats in a controlled environment.

Consisting of multiple inter-connected components, the Cyber Threat Lab grants

access to a plethora of malicious data garnered by a myriad of sources. This data

proves fruitful in understanding the manner in which attackers operate and is

ultimately used in this thesis to detect such attacks. This facility is physically

composed of five servers, each containing an Intel Xeon E5-2620 v3 processor and

128GB RAM. The VMWare [157] hypervisor is used to manage virtual machines

within this environment.

Figure 5.1: Cyber Threat Lab Architecture

As illustrated in Figure 5.1, there are two primary logic zones within the Cyber

107

Threat Lab, a green zone and a red zone. The green zone allows management

and entry into the environment, and the red zone hosts the machines and devices

in which network services are deployed.

Within the red zone, there exists a number of segmented networks, which em-

ploy varying access to local and internet services. Public networks are designed

to emulate servers and devices that are directly publicly accessible over the Inter-

net. This enables the analysis of emerging attacks that are typically conducted

against vulnerable network services at scale. For the evaluation of Citrus, various

honeypots are deployed within this network in order to attract adversaries to

perform malicious actions.

Citrus also utilises services deployed within the Shared Infrastructure, which

allows other red zone networks to utilise central infrastructure such as logging,

authentication, name resolution, etc. Additional network services are required

for the operation of Citrus, and the deployment is discussed in more detail in

Section 5.1.1.

NAT Networks are designed to emulate personal, enterprise or organisation

networks. Internal hosts are all permitted outbound access through a shared

public address.

Isolated networks are used to monitor activity that do not require any external

connectivity outside of the lab or have a significant risk of negatively impacting

external sources outside of Lancaster University. This is especially useful for

the analysis of malware garnered from monitoring the experiments in the other

networks.

5.1.1 Deployed Network Services

Citrus requires various services to be deployed within the network. A range of

these services have been instantiated within the Cyber Threat Lab, which support

Citrus and the work in this thesis in general. Notably, Citrus requires telemetry

which incorporates malicious and benign activity. As motivated by related work

in this area, honeypots are utilised to capture a plethora of emerging attacks.

These are deployed within the Public Network segment of the Cyber Threat Lab.

This grants each deployed honeypot a WAN IP address, which is accessible from

the Internet.

A variety of different honeypots are deployed, which emulate various vulner-

108

able services, including TPot [158]. TPot is composed of a number of medium

interaction container-based versions of popular honeypots, which span multiple

protocols. Consisting of over fifteen honeypots in total, TPot enables the capture

of a wide variety of emerging attack telemetry, including attacks targeting ICS

devices. Additional standard versions of honeypots are scattered throughout the

Public Network, including the aforementioned Dionaea and Cowrie honeypots.

Critically, every deployed honeypot is either medium or low interaction to ensure

the integrity of the Cyber Threat Lab. These types of honeypots contain exposed

ports, which emulate popular services that are also vulnerable to a range of vul-

nerabilities. As they are emulated, in reality the servers are not susceptible to

such vulnerabilities. As such, these honeypots are to able to securely store the

traffic characteristics of attack attempts directed towards Lancaster University’s

public address space.

The telemetry data associated with every deployed honeypot is captured by

Cisco’s Joy [159] tool. Joy provides a libpcap based software solution for the

extraction of data features from live network traffic. This is achieved using a

flow oriented model, and is represented as JSON. This telemetry is transferred

to a distributed database located within the Shared Infrastructure network seg-

ment. The database deployed within the Cyber Threat Lab is Elasticsearch,

a distributed NoSQL database suitable for the storage of JSON based network

telemetry. The telemetry is indexed within the database based upon the date

of collection. Elasticsearch is deployed within the network in a distributed fash-

ion. A cluster is formed, which is comprised of two master and three data nodes.

Elasticsearch also provides a convenient agent, Logstash [160], which is used to

transfer all telemetry from the honeypots to a database instance.

As one of the requirements of Citrus is to perform intrusion detection by

leveraging machine learning algorithms, it is also necessary to capture benign

telemetry. This provides a profile of normal behaviour, which is used by such

algorithms to correctly identify flows which do not pose a threat. This known be-

nign traffic is captured from internally accessible VMs located within the Shared

Infrastructure. In a similar vein to the approach taken by Song et al. [18], these

VMs perform two main functions, acting as a DNS server and a data node. These

servers are also instrumented with additional communication protocols, e.g. ssh,

for management purposes. The telemetry is extracted from these services in the

same manner as the honeypots, leveraging Joy and the Logstash agent. Further-

109

more, all traffic related to these network services are regarded as benign as there

were no observed attacks within this controlled environment.

A Hadoop cluster is deployed within the Shared Infrastructure to store the

labelled intrusion detection data set output by Tangerine in a format suitable for

sharing with the research community. This service is also used by Clementine

to gain rapid access to the data set to perform intrusion detection. This cluster

consists of one master node and six data nodes.

In addition, Citrus integrates with Spark to perform tasks in parallel on nodes

within a cluster. A Spark cluster is deployed within the Shared Infrastructure to

orchestrate and execute these tasks. Each of the six nodes within this cluster are

provisioned with 4 vCPU cores and 64GB RAM. Citrus utilises Hadoop YARN

as a cluster manager to schedule tasks upon the executor nodes.

Finally, a cluster of Kafka brokers are deployed within the network to transfer

live network telemetry to Clementine. This is consumed by the Spark Streaming

framework to perform intrusion detection on batches of streaming flows. To

provide fault tolerance, three brokers are deployed within the cluster. These are

provisioned with 4 vCPU cores and 12GB RAM.

Each of the services residing within the Shared Infrastructure are accessible

through a specific private IP address and port. In order to enable the integration

of Citrus with other network environments, these IP addresses and port numbers

are specified within a configuration file.

5.2 Data Set

The telemetry captured within the Cyber Threat Lab is compiled to create a flow-

based intrusion detection data set with a robust ground truth. In this section, the

properties of all telemetry captured within the operational period is presented.

Additionally, analysis is performed to reveal statistical properties of the data.

The operational period, in which automatic network telemetry collection and

labelling is conducted, initiated in June 2020. Due to the automatic nature of

this process, there is no fixed end date. As a result, the intrusion detection data

set compiled from this telemetry will receive periodic updates for the foreseeable

future. To enable the analysis of the data set, records are used up until 15th

December 2020 in this evaluation. This novel intrusion detection data set, which

110

is produced by the Tangerine component within Citrus, is named LUFlow ’20.

LUFlow ’20 is released to the general public through a GitHub repository [154].

This release anonymises IP addresses to alleviate privacy concerns.

The remainder of this section showcases data analysis performed on the LU-

Flow ’20 data set. As previously discussed, this data set is constantly updated

to reflect new attacks captured by honeypots deployed within the Cyber Threat

Lab. Therefore, the results obtained from any future analysis performed may be

subject to change. However, this analysis is provided to supply researchers with

an insight into the threat landscape at the time of publication.

Given that the placement strategy of the honeypots ensures that they are

accessible from the Internet, several types of network traffic are observed. This

includes scanning activity, noise, and malicious behaviour. The honeypots are

also placed within IP address space belonging to a University. University networks

often allow a diverse range of services and applications to be used. This property

could be very attractive to an adversary since infiltration could open up other

avenues to attack. As a result, it should be noted that the data encompassed

within this data set may not be observed in other non-academic networks.

It should also be made clear that despite the data set receiving updates

through automatic releases, the data set and environment have not been main-

tained since 2021. It is now not known what will occur within the environment

and how that would affect the data capture. Therefore, there is no guarantee

that the traffic meets the assumptions stated in the original capture design.

5.2.1 Overview

Number of
flows

Mean flows per
day

Percentage

Total 166,815,387 926,752 100%
Benign 90,852,768 504,737 54.46%

Malicious 57,922,695 321,792 34.72%
Outlier 18,039,924 100,221 10.81%

Table 5.1: Distribution of flow labels within LUFlow ’20

Table 5.1 provides an overview of the distribution of labels within LUFlow ’20.

During the selected period of observation, there was a total of 166,815,387 flows

111

captured within the Cyber Threat Lab, of which, 90,852,768 flows are known

to be benign. As previously discussed, all traffic relating to privately accessible

internal network services is regarded as benign. The telemetry captured through

the composition of honeypots within the Cyber Threat Lab is subject to Tan-

gerine’s labelling mechanism. This mechanism identifies malicious nodes through

correlation with third party CTI services. The number of malicious flows la-

belled in this manner is 57,922,695. The nodes identified as having no association

with malicious entities through this correlation process, have their corresponding

telemetry labelled as an outlier. The total count of these outlier flows within

LUFlow ’20 is 18,039,924. These flows remain in the data set to encourage the

practice of manual analysis to determine the true intent behind the unsolicited

form of communication.

5.2.2 Geolocation Analysis

Figure 5.2: Number of flows distinguished by geographic location

The results outlined in Table 5.2 showcase the locations of the top 10 source

IP addresses identified in the telemetry captured by nodes within the Cyber

Threat Lab. This analysis is included to highlight potentially untrustworthy

regions or ASs. In order to map an IP address to an ASs, the GeoLite2 ASN

database [161] is used. The IP addresses of these servers have been anonymised

to consider the privacy of the individuals. As shown, a server within AS49509,

an ISP in Russia, initiated the most flows by a substantial margin. Interestingly,

112

IP Address Flow Count ASN Country

x.x.x.1 810,793 49505 RU
x.x.x.2 424,132 49877 RU
x.x.x.3 423,777 37963 CN
x.x.x.4 397,955 207566 RU
x.x.x.5 279,090 213371 NL
x.x.x.6 243,113 213371 NL
x.x.x.7 234,692 43350 NL
x.x.x.8 233,956 49877 RU
x.x.x.9 225,281 49877 RU
x.x.x.10 221,126 43350 RU

CN = China, RU = Russia, NL = Netherlands

Table 5.2: The top 10 source IP address locations

Russian ASs are the source of over half of the top 10 IP addresses seen in this

analysis. Furthermore, AS49877 appears in three separate instances within this

table. This AS is associated with a hosting provider serving the Russian and

Moldovan regions.

The geographic distribution of all flows associated with the deployed honey-

pots, i.e. malicious or outlier flows, is illustrated in Figure 5.2. This is intended

to visualise the geographic origin relating to potential infiltration attempts. In

total, there are flows associated with 209 distinct countries within LUFlow ’20.

In this investigation, it is observed that flows relating to servers originating in

Russia are the most prevalent. It is also observed that around 50% of all unso-

licited flows captured by honeypot telemetry originate from five countries: China,

Vietnam, United Kingdom, United States, and Russia.

Furthermore, there are only a handful of countries which do not appear within

LUFlow ’20. These include small countries within the continent of Africa, as well

as Greenland and Antarctica. Notably, despite harsh restrictions and censorship

on the Internet, servers designated as originating from North Korean ASs are

identified as interacting with the honeypots on multiple dates.

5.2.3 Source IP Address Analysis

Figure 5.3 illustrates statistics regarding the number of source IP addresses iden-

tified within the telemetry. The purple line represents the occurrence of unique

113

Figure 5.3: Distinct count of source IP
addresses per date

Figure 5.4: Distribution of destination
ports

source IP addresses in each day, while the green line represents the accumula-

tion, i.e. the cumulative sum, of these unique IP addresses identified. As evident

within this figure, the total number of unique Source IP Addresses within LU-

Flow ’20 is 184,751. This overall count is steadily increasing, with an average

number of 1,026 new source IP addresses being discovered within the telemetry

every day.

However, there is an evident negative trend, with the number of new source IP

addresses gradually reducing for every day of telemetry capture. This is suggested

to be the result of adversaries exhaustively enumerating every possible attack

vector. Upon the unsuccessful infiltration of the deployed honeypots, attackers

will typically move on to the next target.

5.2.4 Destination Port Analysis

Figure 5.4 depicts the various destination ports which have been used to commu-

nicate with services within the Cyber Threat Lab. These include services which

have been targeted by attackers, as well as network services used to profile normal

behaviour. The LUFlow ’20 data set contains flows which explore every available

port, ranging from 0 to 65535. As evidenced in the figure, the destination port

9200 occurs the most commonly within LUFlow ’20. This port is frequently used

to communicate with the distributed database, which stores the telemetry used to

compile LUFlow ’20, and as a result is mainly used for benign purposes. However,

not all traffic destined to this port represents normal behaviour. The Elasticpot

114

[162] honeypot is deployed within the Cyber Threat Lab using the aforemen-

tioned TPot platform. This honeypot emulates various vulnerabilities inherent

wihin Elasticsearch instances, and as a result attracts malicious behaviour on the

same port. However, when filtering out normal flows within the data set, the

number of flows to this destination port become substantially less.

Figure 5.5: Number of flows to distinct services exposed by honeypots

The next most prevalent port within the data set is 445, which is typically

used by SMB services. This service has received patches, which aim to fix critical

vulnerabilities, such as RCE . This investigation has identified a number of these

vulnerabilities, which are still being actively exploited in the wild. Most notably,

the infamous Eternalblue exploit (CVE-2017-0144), which has been previously

discussed in the related work section, has caused devastating damage through

the incorporation into malware and botnets such as WannaCry and Petya. Due

to the powerful nature of these exploits, they are still propagating at an alarming

rate, as evidenced by the high number of requests to this port within LUFlow ’20.

In order to further examine how attack patterns evolve over time, a time-

series of the number of flows directed towards services exposed to the Internet

by honeypots deployed within Lancaster University’s network address space is

included in Figure 5.5. The most popular services, as identified in Figure 5.4, are

included in this figure, with exception of port 445 due to it receiving substantially

more flows than the others, which makes the measurements of the remaining

services less legible. The values included within the figure represent a seven day

moving average, a common statistical technique used to smooth any short-term

fluctuations and highlight long-term trends inherent within the data. This is done

115

due to the existence of highly volatile measurements observed for the services on

each date.

This time-series enables the identification of a number of trends, which corre-

spond to potentially new attack vectors or threat actors. Notably, the destination

port 5900 is also heavily targeted towards the end of 2020. Further investigation

has revealed that this port corresponds to implementations of the Virtual Network

Computing (VNC) service, which enables the remote control of another computer.

Though the true nature behind the reason this service is highly targeted by at-

tackers is unknown, there has been a proliferation of novel vulnerabilities aimed at

this service. These include powerful exploits, such as CVE-2020-14404, which en-

able malicious actors to remotely execute code in order to infect devices en masse

and perform further malicious behaviour [163]. Nevertheless, it is suggested that

the large amount of telemetry directed at this port may be indicative of large

scale malware campaigns in which this service is targeted to gain a foothold into

infrastructure.

In addition, there are an increased number of requests towards port 53, which

is used to handle name server resolutions, towards the end of July 2020. One

possible explanation for this is the public disclosure of CVE-2020-1350 on the

14th of July, a vulnerability discovered within Windows Domain Name System

servers [164]. This vulnerability enables unauthenticated adversaries to execute

arbitrary code in the context of the Local System Account. The vulnerability

has also been given the maximum severity rating of 10, indicating that it can be

heavily exploited to infiltrate a large number of remote servers. As usual for a

vulnerability of this nature, several Proof of Concept (PoC) exploits were released

on code sharing platforms the next day [165]. Naturally, malware authors could

easily incorporate this attack vector into their arsenal within the following days,

which could be the reason behind the increased measurements relating to port 53

observed in Figure 5.5.

A large number of requests is also observed towards port 1900 at the start

of July 2020. Any traffic to this port is suspicious, as it has no association with

the benign behaviour profile inherent within the data set. Interestingly, traffic

related to this port drops substantially in the middle of July. This trend has

continued towards the end of the period of observation, with an average number

of flows related to this port being around only 20 every day for the month of

December. Port 1900 is used by services offering Universal Plug and Play (UPnP)

116

functionality, and has in the past been plagued by code execution exploits such as

CVE-2018-16596. It is possible that all vulnerable servers have been exhaustively

discovered, attacked, or patched. In this case, it may not be lucrative enough for

malware authors to use these exploits anymore. Another possible explanation

could be the collapse of botnets and their associated infrastructure, which have

previously leveraged this vulnerability.

Another observation is the general upwards trend of traffic relating to port

22. This port is exclusively reserved for the SSH protocol. SSH is an industry

standard protocol used to remotely instrument remote servers through the com-

mand line. The consistently high number of flows relating to the SSH service

could be indicative of the number of unsecured, or loosely secured, SSH servers

that are typically provisioned with newly instantiated servers on the Internet.

Attacks which target this port usually leverage a brute force method to search

for possible common username and password combinations.

As evidenced within this analysis, the services targeted and the correspond-

ing type of attacks orchestrated against the deployed honeypots vary over time.

Due to the evolving nature of attack procedures, it is essential to keep abreast

of emerging attack patterns which are likely to be used against critical infras-

tructure. Defense mechanisms such as IDSs require attack data which is repre-

sentative of these potential attacks in the form of signatures or training data.

As LUFlow ’20 is continually updated to reflect these emerging attack patterns,

training data used in anomaly detection approaches and signatures used in mis-

use detection approaches can be consequently updated to defend against similar

emerging variants.

5.2.5 Extracted Features

As mentioned previously, each row within the LUFlow ’20 data set represents

a distinct network flow captured within the Cyber Threat Lab. Each column

within the data set represents a feature which describes a certain facet of the

flow. Inspired by predecessor intrusion detection data sets [18, 19, 101, 104, 73,

91], LUFlow ’20 contains a variety of significant features extracted from both

benign and malicious flows. These features, which are recorded in Table 5.3,

incorporate both packet-based and flow-based features. Each flow is defined as

a set of packets with common characteristics. In this instance, the conventional

117

Name Description

1 src ip
The source IP address associated with the flow. This feature
is anonymised to the corresponding Autonomous System.

2 src port The source port number associated with the flow.

3 dest ip
The destination IP address associated with the flow. The fea-
ture is also anonymised in the same manner as before.

4 dest port The destination port number associated with the flow.

5 protocol
The protocol number associated with the flow. For example
TCP is 6.

6 bytes in The number of bytes transmitted from source to destination.
7 bytes out The number of bytes transmitted from destination to source.
8 num pkts in The packet count from source to destination.
9 num pkts out The packet count from destination to source.

10 entropy
The entropy in bits per byte of the data fields within the flow.
This number ranges from 0 to 8.

11 total entropy
The total entropy in bytes over all of the bytes in the data
fields of the flow. This number ranges from 0 to 8n, where n
is bytes out plus bytes in.

12 mean ipt The mean of the inter-packet arrival times of the flow.
13 time start The start time of the flow in seconds since the epoch.
14 time end The end time of the flow in seconds since the epoch.
15 duration The flow duration time, with microsecond precision.

16 label
The label of the flow, as decided by Tangerine. Either benign,
outlier, or malicious.

Table 5.3: The various features inherent within LUFlow ’20

network five-tuple is used: source IP address, source port number, destination IP

address, destination port number, and protocol. Furthermore, bidirectional flows

are created by combining unidirectional flows which are part of the same session.

Bidirectional flows consist of a pair of unidirectional flows whose source addresses,

destination addresses and ports are reversed. This enables both inbound and

outbound communication within a single flow. Critically, LUFlow ’20 provides

a ground truth through flow labels. Since all attacks are real, i.e. they are not

injected into the data set, it is not possible to accurately label each type of attack.

Therefore, the target labels of each flow are considered to be either benign, outlier,

or malicious.

118

5.2.6 Data Set Comparison

A comparative analysis is conducted between LUFlow ’20 and other related IDS

data sets surveyed in recent literature. Only publicly available data sets which

incorporate a ground truth in the form of target labels are considered in this

comparison. Table 5.4 documents the properties of each of these data sets.

Name
No. of

networks

No. of
distinct

IPs
Simulation

Attack
Injection

Duration Updated

KDD ’99
[19]

2 11 Yes Yes
5

Weeks
No

MAWILab
[114]

1 Unspecified No No
19+

Years
Yes

Kyoto
2006+ [18]

5 4,420,971 No No
2

Years
No

ISCX 2012
[123]

4 21 Yes Yes 7 Days No

CTU-13
[124]

2 Unspecified No Yes 6 Days No

UNSW-
NB15 [101]

3 45 Yes Yes
16

Hours
No

CICIDS2017
[100]

5 500 Yes Yes
1

Week
No

LUFlow ’20
[154]

4 184,751 No No
6+

Months
Yes

Table 5.4: Comparison of IDS data sets

In summary, the key differences which separates LUFlow ’20 from the major-

ity of other IDS data sets is the real nature of network traffic and incorporated

attacks, which reflect emerging threats currently propagating. As detailed in

Section 3.1, the design of Citrus ensures real benign and malicious traffic are

constantly captured, labelled, and included in periodic releases of LUFlow ’20.

The majority of data sets surveyed in literature are created using simulation

tools, which fundamentally generate synthetic network traces. As identified in

related work, data sets who choose this method face challenges such as seam-

lessly blending benign traffic with malicious traffic, which inhibits the utility and

reliability of the data set to accurately represent real-world intrusion scenarios.

Additionally, LUFlow ’20 does not contain any attacks which have been manu-

119

ally injected into the data set. This ensures that all of the malicious activity

incorporated within it is truly representative of emerging attack vectors.

Furthermore, LUFlow ’20 is the only recent data set which receives constant

updates. As documented in Table 5.4, the MAWILab data set is updated in daily

intervals. However, the labelling mechanism was implemented based upon the

output of the combination of four dated unsupervised learning algorithms. During

the period between the detector implementation and present day, there has been

a substantial evolution in the way in which attacks manifest themselves, which

suggests this approach is no longer relevant. As other researchers have indicated,

this approach lacks accuracy for modern day attack vectors and network traffic

in general [97]. This becomes evident upon manual inspection of the data set,

with many anomalous traffic traces exhibiting normal patterns.

Fundamentally, LUFlow ’20 was created with the intention to constantly cap-

ture network traces incorporating real attacks and normal behaviour using a

robust ground truth. Notably, this is the first data set made publicly available

which considers the development of a ground truth through active CTI collection.

The constant nature of this telemetry capture and labelling through correlation

with CTI services enables the data set to be continuously updated. To the best

of our knowledge, an updated data set has not previously been achieved through

the use of honeypots. Critically, this allows LUFlow ’20 to reflect novel threats

encountered in the wild. Moreover, this constant feed of labelled network teleme-

try helps alleviate current problems facing the research community, such as the

over study of data sets, or publication of irrelevant results on outdated data sets

[23].

LUFlow ’20 also maintains a good balance of malicious and benign traces. This

is in stark contrast to the CICIDS2017 data set, which has a high class imbalance.

High class imbalance influences classification algorithms to be biased towards the

minority class, thus, resulting in lower accuracy. In the case of CICIDS2017, the

benign class accounts for 83% of the total data. As identified by Panigrahi et

al. [126], random samples taken from this data set often result in a large number

of attacks being omitted from training data. LUFlow ’20 incorporates millions of

malicious traces, and as discussed in Section 5.2.4, it also includes a wide range

of different attack techniques. This ensures classification algorithms that use

LUFlow ’20 as training data have access to rich attack telemetry.

The Kyoto 2006+ data set also provides an insight into the geographic dis-

120

tribution of servers which communicate with their honeypots. They report that

50% of attacks are initiated by servers located in China, United States, and South

Korea. As discussed in Section 5.2.2, 50% of malicious LUFlow ’20 data relates

to traffic from China, Vietnam, United Kingdom, United States, and Russia.

This shift in geographic distribution could be influenced by a number of factors,

including the fact there is over a 10 year gap between the data sets. As well

as this, there exists differences between the environment in which data was cap-

tured. Despite both environments belonging to a University, Kyoto 2006+ was

captured within Japan, while LUFlow ’20 was captured in United Kingdom. This

could help explain the large number of malicious flows emanating from devices

in United Kingdom for LUFlow ’20 and the lack of these in Kyoto 2006+.

5.3 Ground Truth Development

Figure 5.6: From raw telemetry to labelled data set

5.3.1 Methodology

Based upon the restricted ground truth identified in literature, an emphasis has

been placed upon the development of a robust ground truth. Citrus’ Ground

Truth module contains the functionality required to map any identified relation-

ships relating to remote servers which interact with deployed honeypots in the

Cyber Threat Lab. These relationships are then used to derive the ground truth.

A high-level overview of this labelling process is presented in Figure 5.6.

Initially, the raw flow measurements are collected, and the unique IP addresses

are extracted. CTI services are then queried, using the IP addresses as parame-

ters. This step is taken to correlate suspect activity with third parties. The data

collected from these services is then processed, and each record’s date is compared

against the date the captured telemetry occured. Records with matching dates

are then extracted and used for plotting within a graph. This process ensures

121

derived relationships are valid for the suspected attacker on the date they interact

with deployed honeypots.

This network of relationships derived from third party CTI services is defined

as an undirected graph, which is composed of nodes connected by edges. In this

graphical representation, nodes can be connected to any number of other nodes,

however, they cannot be connected through an edge to themselves, or contain

parallel edges to the same node. Formally, the graph is defined as G = (V,E),

where V is the set of vertices, and E is the set of edges.

In this instance, the nodes within the graph are the suspected attackers IP ad-

dresses, which are connected through edges to entities derived from the collected

CTI. These connected entities represent all known associations of a suspect at-

tacker present on the date of the telemetry capture. Therefore, this method

identifies nodes which have been observed to be performing malicious actions on

the date the telemetry was captured.

Due to the diversity and heterogeneity resulting from the variety of CTI ser-

vices utilised by Tangerine, each service provides an edge between a suspect

attacker, u, and a variable entity. These entities currently represent blocklists,

v, malware samples, w, Autonomous Systems, x, (through ASNs), and available

services, y. Considering this, the set of vertices in G is defined as:

V = {u1, ..un, v1, ..vn, w1, ..wn, x1, ..xn, y1, ..yn} (5.1)

and there exists an edge from u to v, w, x, or y if the CTI collected indicates a

connection between them.

The edges indicate a relation between a server which initiated communication

with a honeypot and an entity as derived through CTI correlation. For example,

a suspected attacker may be using a network interface, which has an IP address

that belongs to an AS. In this case an edge would connect the attacker to this

AS. This suspected attacker may also have been observed performing malicious

behaviour elsewhere on the Internet, and as such they have been placed on a

blocklist. Through correlation with CTI services, which provide blocklist data,

an edge would also be made between the suspected attacker and a given blocklist.

The significance of this is that because the suspected attacker has been placed

on a blocklist, the traffic captured by the honeypot is also likely malicious. Fur-

thermore, suspected attackers that share a large number of common associations,

122

Figure 5.7: Subgraph example of node relationships

such as blocklists or malware samples, can be viewed as highly malicious and

further increases the possibility that the data captured by the honeypots is also

malicious. The intention of this approach is to identify these highly malicious

individuals.

Each edge between a suspect attacker and an entity has an associated weight,

which distinguishes its importance. For example, a suspect attacker having an

edge with a blocklist is of high importance in the determination of malicious

intent, and therefore has a high weight within the graph. On the other hand, a

suspect attacker having an edge with an AS is expected, and as such requires a

much lower weighting.

For example, Figure 5.7 illustrates a small sub graph used to highlight the ap-

proach. Blocklists, denoted by red entities, reside in the center and are connected

to IP addresses, green nodes, which are active within the blocklist on the date

of telemetry capture. These nodes are then also connected to an ASN, yellow

entities, and exposed services, blue entities. Exposed services represent a port

open on a server. In order to identify nodes which belong to a large number of

malicious entities, such as blocklists, features are extracted from the graph.

The features used in this approach include node degrees and eigenvector cen-

trality. For a particular node in a graph, degrees represents the total number of

connected edges. High values of degrees indicate a large number of relationships

to entities. The rationale behind using this feature is that if a node is connected

123

to a large number of entities, the likelihood is that it has been identified as per-

forming many malicious actions over the Internet. Formally, the maximum degree

of a vertex can be defined by deg(v) = n – 1 ∀ v ∈ G.

Eigenvector centrality is the measure of influence a node has in a graph. A

high eigenvector centrality value means that the node in question is connected

to many nodes who themselves have a large number of connections. This feature

is used to understand how important a particular node is within the graph as it

gives a clear indication of how connected a node is, both directly and indirectly.

For the graph, G, let A = (av,t) be the adjacency matrix where

av,t =

{
1 if vertex v is linked to vertex t

0 if vertex v is not linked to vertex t
(5.2)

The eigenvector centrality score for a given vertex, v, can then be given as

xv =
1

λ

∑
t∈M(v)

av,txt (5.3)

where M(v) is the set of neighbours of vertex v and λ is a constant. By virtue of

the Perron-Frobenius theorum, the greatest eigenvalue, selected as λ, results in

the desired centrality measure.

These features are then input to the k-means clustering algorithm offered by

scikit-learn. The k-means algorithm is an unsupervised method, which partitions

observations into k clusters, in which each observation belongs to a cluster with

the nearest centroid. The k-means algorithm has a number of parameters, which

can be configured to influence the result. The parameters chosen in this thesis

are listed in Table 5.5. The n clusters variable is changed to find the value which

performs the best, and is discussed later in this evaluation.

The corresponding clusters within the graph can be used to identify nodes

which are the most highly connected to the entities derived through CTI collec-

tion. Regardless of the number of clusters identified, there will also always exist a

cluster which contains nodes which are the most loosely-connected. Nodes which

are not part of this loosely-connected cluster include potential attacker nodes,

which have a very high number of connections to blocklists and malware samples

on the date the telemetry was captured, and as such they can be treated as su-

pernodes. Any node in the graph which is not linked to a supernode is labelled

124

Parameter
Name

Value Description

n clusters Various The number of clusters to form.

max iter 300
Maximum number of iterations of the
k-means algorithm for a single run.

n init 10
Number of time the k-means

algorithm will be run with different
centroid seeds.

Table 5.5: The parameters configured for the k-means algorithm

Figure 5.8: Graphical representation of nodes distinguished by label

as an outlier. These outliers can be further examined to deduce the intent behind

their communication with a honeypot. The remaining nodes within the graph

that are linked to a supernode, i.e. there exists an edge, or a series of edges,

between the two nodes, are labelled as malicious. This is due to the fact that

they share a common entity association. To find every vertex which is linked

to a supernode, a breadth first search is performed. This procedure has a time

complexity of O(|V | + |E|) for each vertex, since all vertices must be explored in

the worst case.

This approach forms the basis of the labelling of honeypot telemetry incor-

porated within LUFlow ’20. Figure 5.8 presents a graph of all identified node

relationships for a given date as derived through correlation with CTI services.

The nodes which represent IP addresses extracted from the telemetry are coloured

based upon the aforementioned labelling approach. The nodes labelled as mali-

125

cious in red, as they are connected to a supernode, and outlier nodes in green.

The cyan nodes indicate an entity as derived through CTI. The blue nodes within

Figure 5.8 are the entities extracted through correlation with CTI services, such

as blocklists and ASs.

Validation of the consistency within these clusters of data is required to ensure

the identified supernodes, and derived ground truth, are accurate. The silhouette

metric is used for this purpose. The silhouette metric shows how similar an object

is to its own cluster, compared to other clusters. Silhouette measurements range

from -1 to +1, where a high value indicates that the object is very similar to

objects in its own cluster, and not similar to objects in other clusters. For any

data point i within the cluster Ci let

a(i) =
1

|Ci| − 1

∑
j∈Ci,i ̸=j

d(i, j) (5.4)

be the mean intra-cluster distance, where d(i, j) is the distance between i and j

in the cluster Ci. The mean dissimilarity between i and a cluster, Ck, in which i

is not a member can be defined by

b(i) = max
k ̸=i

1

|Ck|
∑

j∈Ci,i ̸=j

d(i, j) (5.5)

The silhouette coefficient of i can now be defined by

s(i) =
b(i) − a(i)

max{a(i), b(i)}
, if |Ci| > 1 (5.6)

These measurements for each data point, i, can be displayed visually by com-

bining the silhouettes into a single plot, enabling an appreciation of the overall

quality of the clusters. Therefore, the average silhouette value, i.e. width of the

plot, provides an evaluation of clustering validity [166].

5.3.2 Results

An example plot is presented in Figure 5.9(a), which shows silhouette values for

various clusters of graph based features used to derive a ground truth. This

example is taken from the results of clustering LUFlow ’20 data captured on the

7th September 2020. Furthermore, this example is used to showcase the excellent

126

(a) Combined silhouette values
which are distinguished by clus-
ter.

(b) Clusters plotted in feature
space.

Figure 5.9: Clusters visualised by silhouette values and feature space.

clustering capabilities provided by the k-means algorithm. In this case, it is visible

that the clusters are dense, well separated and consistent with each other. This

is because the clusters are of similar thickness, indicating a similar sample size,

and contain high silhouette values, which are all in the region of the silhouette

average, indicated by the vertical red dashed line. It should be noted that the

green cluster contains data points which are less similar than others, as evidenced

by the fluctuations in silhouette values. This is further visualised in Figure 5.9(b),

which shows the clusters more clearly by plotting the corresponding data points in

feature space. The different colours within the figure represent a cluster of data.

Each of these clusters are identified using the aforementioned k-means algorithm.

The colour of the cluster is linked to silhouette value with the same colour in

Figure 5.9(a).

In order to fully evaluate how similar every supernode and outlier clusters are

to each other, the average silhouette value is calculated for every graph used to

label telemetry relating to LUFlow ’20. As previously discussed, a graph is created

for every date telemetry is captured to compile LUFlow ’20. A time series of these

values, ranging from June to December 2020, is presented in Figure 5.10, which

displays an average silhouette value for variable cluster size, n.

127

Figure 5.10: Average silhouette value time series

Figure 5.11: Box plot depicting distribution of silhouette values for varying cluster
sizes.

As shown, the lowest average silhouette value is greater than 0.55, indicating

clear cluster consistency in general. Figure 5.11 illustrates a box plot representing

the distribution of silhouette values for varying number of clusters. Evidently, we

can deduce that significant differences exist between the distribution of silhouette

values based upon the size of the clusters chosen. The mean silhouette value for

a cluster size of six is µ6 = 0.7868, and the standard deviation is σ6 = 0.0727.

When the cluster size is at the lowest, a value of two, the mean silhouette value

is µ2 = 0.7572, and the standard deviation is σ2 = 0.0731. Hence, it can be

concluded that nodes within the supernode and outlier clusters truly belong in

128

Name Labelling Mechanism Open Source External Correlation Data Set Released Attack Types

Citrus Cyber Threat Intelligence Yes Yes Yes Various
MAWI [114] Unsupervised AD No No Yes Various

Sperotto et al. [113] Log Correlation No No No Various
Aparicio-Navarro et al. [115] Dempster-Shafer No No No Wireless

B-IDS [117] SVM, RPCL, and Dempster-Shafer No No No Various

Table 5.6: Comparison of Citrus and other frameworks which develop a ground
truth.

those clusters due to the absence of any negative silhouette metrics.

The above results indicate that a cluster size of 6 is optimal. However, this is

only for the data used in the analysis. As mentioned previously, this analysis uses

data from June 2020 to Decemeber 2020. Since LUFlow ’20 receives updates, this

value is liable to change depending on the range of data used. It is recommended

to perform this evaluation to identify the optimal value for data captured on

different dates.

5.3.3 Comparison

This section compares Citrus’ ground truth development capabilities through

experimentation and a comparison of features. To begin, Table 5.6 provides a

comparison between the features of Citrus and other similar frameworks. Citrus

is shown here to be the only ground truth development solution which provides

an open-source codebase within literature. Furthermore, Citrus is also the sole

framework which performs external correlation for a greater understanding of

potential intrusion attempts. The majority of the other solutions also neglect

to publicly release the associated data set. Naturally, this does not aid further

research efforts in the evaluation of network defense solutions using diverse attack

data.

Citrus establishes data ground truth through an unsupervised clustering ap-

proach. In contrast to supervised classifications methods, which have been tra-

ditionally used in a multitude of systems (e.g., [91]), there is no requirement

of costly training procedures. In order to demonstrate Citrus’ advantages, an

experimental comparison is performed between Citrus and a similar data set la-

belling framework, B-IDS. This framework was chosen as it leverages a number

of open-source algorithms, which promotes the wider replication of results in this

experimental comparison. These open-source algorithms are used to engineer

B-IDS using the specifications provided in [117].

129

A single day of telemetry capture, comprised of one million records, is used in

this evaluation to compare the approaches. This telemetry is labelled using the

unsupervised and supervised approaches on the same hardware. The supervised

B-IDS method was implemented using open-source software and was configured

according to the specifications provided in [117].

Name F-score Recall Accuracy Precision

Citrus 95.37% 93.40% 93.87% 97.43%
B-IDS 94.30% 92.12% 93.51% 96.60%

Table 5.7: Mean classification metrics for attack scenarios using data set output
by Citrus and B-IDS

Classification metrics were calculated for the online detection scenarios, out-

lined in Section 5.4.2.1, using the telemetry labelled by both Citrus and B-IDS. As

evidenced in Table 5.7, the results show that Citrus outperforms the supervised

alternative, and has an increased F-score metric by 1%. Due to F-score rep-

resenting the harmonic mean between recall and precision, it can be concluded

that Citrus’ labelling methodology is superior in regards to enhancing detection

mechanisms. In addition, the other classification metrics are marginally greater

for Citrus, indicating overall superiority.

Figure 5.12: Comparison of computational cost to label varying number of sam-
ples.

Furthermore, the experimentation has also demonstrated that Citrus has a

more optimal computational cost when compared to the alternative. Figure 5.12

illustrates the time taken to label a number of samples using both approaches. As

shown, there exists similar computational cost for the lower number of samples.

130

However, when considering larger sample size, Citrus performs much better, indi-

cating clear supremacy in this regard, and further supports its real-time detection

pipeline.

5.4 Detection Capabilities

This section explores the detection capabilities enabled by LUFlow ’20. This is

demonstrated through leveraging the proof-of-concept implementation, Clemen-

tine. As previously discussed, Clementine performs intrusion detection by taking

a machine learning approach. Two experiments are conducted which evaluate

Clementine’s capacity to detect a variety of emerging attacks. In the first experi-

ment, an offline detection approach is taken, which considers various classification

methods. In the second experiment, online intrusion detection is performed us-

ing live network data, which incorporates injected attacks, and the classification

method which performed the best in the first experiment. The online evaluation

is performed to assess Clementine’s effectiveness in malicious behaviour detection

using a realistic network environment.

In both of these experiments, Clementine is installed on a VM, which is pro-

visioned with 4 vCPU cores and 32GB RAM, in an isolated network within the

Cyber Threat Lab. Clementine also integrates with Spark to perform data pro-

cessing and classification algorithms in parallel on the aforementioned cluster.

The detection performance of each of these algorithms are assessed by comparing

the predicted label to the actual label. This assessment forms a confusion matrix,

which describes all possible classification outcomes. An example is shown below

in Table 5.8.

Actual Label
Benign Malicious

Predicted Label
Benign TN FN
Malicious FP TP

Table 5.8: Example confusion matrix

For each experiment within this evaluation, the flows labelled as outliers are

removed from the data set, enabling a binary classification outcome. This is

because the true intent of the flow is not known. In the experiments performed

in this evaluation, a positive prediction is where Clementine produces a label of

131

malicious. Therefore, a True Positive (TP) refers to a prediction of malicious

when in fact the flow in question is malicious, else it is treated as a False Positive

(FP). On the contrary, a negative result occurs when Clementine predicts a benign

label. As a result, if the flow under scrutiny is not related to attack traffic and

Clementine predicts a benign label, a True Negative (TN) occurs. Furthermore, if

Clementine predicts a benign label when the flow is related to malicious behaviour,

a False Negative (FN) occurs. From this confusion matrix, conventional metrics

can be derived, which further assess the performance of the detection approach.

These are outlined below:

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Fscore = 2 ∗ (
Precision ∗Recall

Precision + Recall
)

The accuracy of an algorithm represents the probability that a flow record

is correctly classified. Recall indicates how successful the algorithm performs in

identifying the positive class, while precision provides the percentage of positively

classified flows which are truly positive. F score represents the harmonic mean of

precision and recall.

5.4.1 Offline Detection

5.4.1.1 Methodology

This experiment evaluates the capacity of machine learning algorithms to detect

malicious activity within LUFlow ’20. A myriad of traditional supervised learning

algorithms are considered and evaluated within this section. This experiment

is intended to verify the validity of the data set whilst identifying the greatest

performing algorithm to use in the online detection process. Motivated by similar

research within literature [91], this experiment was also selected to validate the

use of machine learning in intrusion detection scenarios. Despite this test not

considering streaming data from within the network, it is still classifying real

132

network telemetry captured previously. Thus, if a positive result is obtained then

the test indicates that machine learning is a suitable detection approach for this

type of data.

In this experiment, the LUFlow ’20 data set is split into a training and test

data set. The training data set consists of 10,000,000 randomly sampled records

in total, with 5,000,000 normal records and 5,000,000 malicious records. The

malicious records are the result of the telemetry captured and labelled by Tan-

gerine, and incorporate a wide variety of unknown attacks. The test data set

contains 8,000,000 records, split into 4,000,000 malicious and 4,000,000 benign

classes. The number of records within each category was chosen based upon pos-

itive results in related research [91], while also maximising the number of flows

captured within the data set. Ensuring a large number of flows are used ensures

that many diverse attack patterns are included in the training data.

Algorithm Parameter Name Value

Logistic Regression

iterations 250
regParam 0.01
regType l2
intercept False

corrections 10

Gradient Boosted Tree

impurity variance
lossType logistic

maxDepth 5
maxIter 100

Random Forest

impurity gini
numTrees 100
maxDepth 5
maxBins 32

featureSubsetStrategy sqrt
Naive Bayes smoothing 1

Decision Tree

impurity gini
numTrees 100
maxBins 32

Linear SVC

maxIter 250
fitIntercept True
regParam 1

tol 1e-06

Table 5.9: The parameters configured for various algorithms

133

5.4.1.2 Results

Training machine learning models enables inference and classification of future

unknown records. Each of the machine learning algorithms associated with these

models typically exposes tunable hyperparameters to developers, which adjusts

how the algorithm performs internally. For example, the Radial Basis Function

(RBF) kernel in SVM algorithms enables the specification of C and γ parameters.

C acts as a regularisation parameter for SVM, while γ dictates the curvature of

the decision boundary. It is not known beforehand which C and γ are optimal

for a given problem, therefore, a grid search must be performed. The goal of this

process is to identify the values for these parameters which increase prediction

accuracy of unknown data. Table 5.9 documents the parameters used in each of

the experiments.

The results of the offline detection approach is outlined in Figure 5.13. Each

model listed within this figure has been trained with the parameters which max-

imise the aforementioned classification metrics. The optimal parameters for this

classification problem were identified through a grid search of several values for

each parameter used.

As shown, the worst performing supervised classification algorithm was Naive

Bayes. This algorithm performed relatively well in recall, however, lacked in

other metrics, suggesting that the algorithm is incorrectly labelling benign flows

as malicious. On the contrary, one of the highest performing algorithms was the

random forest classifier, which obtained 98.8% precision, as well as high accuracy,

recall and F-score. Random forests belong to the class of ensemble learning

algorithms, and can be used in both regression and classification tasks. They

operate through the construction of numerous decision trees during training. Each

individual tree is used to predict the class a data instance belongs to under

classification scenarios, and the mode of these classes is used as the model’s

prediction. As well as the promising classification metrics, this algorithm was also

identified to be faster than the comparable gradient-boosted tree. As a result, it

is more appropriate for use in online evaluation. This is discussed further in the

next section.

Despite LUFlow ’20 being publicly released a short time ago, there has been

research that evaluates it from a ML approach. Chua et al. [167] devise an

experimental framework that performs classification of network data using ML.

134

Model Name Recall Accuracy Precision F-score

Logistic Regression 90.23% 87.64% 91.52% 90.87%
Gradient Boosted Tree 94.59% 95.17% 99.18% 96.83%

Random Forest 93.28% 94.27% 98.84% 95.97%

Naive Bayes 86.76% 38.12% 2.34% 4.56%

Decision Tree 91.04% 92.98% 91.52% 91.28%

Linear SVC 64.52% 64.23% 99.02% 78.13%

Table 5.10: Offline classification metrics for a range of ML models

Figure 5.13: Statistical metrics observed from offline detection

They select two data sets for this evaluation: CICIDS2017 and LUFlow ’20. In

their work, they identify similar classification metrics to the results in this eval-

uation. For example, Naive Bayes performs less well than the other classification

algorithms and Random Forest performs the best. With the exception of Naive

Bayes, all of the algorithms used in their work resulted in accuracy of over 99%.

These results are much better than the results found in this evaluation despite

using the same algorithms and data set.

To understand why this is case, one must identify the samples of data used.

This evaluation uses randomly sampled data from June 2020 to December 2020

for training and test data, while Chua et al. use June 2020 as training data

and January 2021 as test data. They also sample only 20% of data from these

months to further reduce the number of flows under evaluation. The sample size

in their work is much lower when compared to this evaluation, thus, the number

of attacks they need to correctly identify is also lower. Furthermore, this also

highlights the benefits granted by training on smaller and more relevant samples,

driving future efforts into the automated iterative training on recent data.

135

Chua et al. also compare the results of LUFlow ’20 to CICIDS2017. Inter-

estingly, they observe different results from the data sets. It was identified that

models trained from CICIDS2017 suffered from different degrees of overfitting.

This is in contrast to models trained on LUFlow ’20, where no overfitting was ob-

served. This could be attributed to the differences in the attacks and environment

for CICIDS2017. CICIDS2017 changes various aspects about the environment,

including servers where data is captured, while LUFlow ’20 has a stable environ-

ment where the attacks change over time.

5.4.1.3 Feature Importance

For the detection experiments listed within this thesis, all features incorporated

within LUFlow ’20 are used. The random forest model fit in this experiment also

grants an insight into the importance of each feature. The feature importance is

denoted by a weighting as identified by the random forest model. In this instance,

gini importance is used by random forest to identify these values. Each of these

weights specify how critical a certain feature is in the determination of benign or

malicious intent. The higher the value, the more critical the feature. The top five

most important features within LUFlow ’20 are documented within Table 5.11.

Feature Name Weight

bytes out 0.422
total entropy 0.205

duration 0.100
entropy 0.072

num pkts in 0.072

Table 5.11: The importance of each feature

As shown, the number of bytes transmitted from source to destination within

a flow is regarded as the most important feature within the data set in regards to

classification between normal and malicious activity. This suggests that there may

exist evident differences between this value for benign and malicious instances.

Upon further analysis of network flows, it is identified that there does exist

a notable difference between the value for bytes out when comparing flows with

distinct target labels. Figure 5.14 provides a box plot illustration of this com-

parison. As shown, there is an evident visual discrepancy. The mean value for

136

Figure 5.14: Statistical metrics observed from offline detection

bytes out of benign flows is µbenign = 4182.68744, and the standard deviation is

σbenign = 6292.4795. The same values for malicious flow traces are much smaller,

with µmalicious = 331.3217 and σmalicious = 1476.9448. Through this analysis, the

results within Table 5.11 can be considered as expected.

These statistical properties are a result of behavioural distinctions between

traffic belonging to malicious and benign network traces. With an understanding

of these differences from a practical perspective, the results documented can also

be expected. In detail, a large portion of the benign behaviour corresponds to

traffic relating to communication with a distributed database to store telemetry

data. This communication is long-lived and large amounts of data are transferred

within the connection. Attack traffic such as scanning contrasts heavily with these

types of network flows. For example, TCP SYN scanning sends a single packet

with SYN in the packet header.

Feature importance can play in important role in tuning classification algo-

rithms. While we consider all features within this evaluation, altering the number

of features can remove non-essential features and provide positive results. Chua

et al. perform analysis on LUFlow ’20 and identify such a relationship. In their

research, they find that the Naive Bayes algorithm provides the lowest accuracy

when one feature is considered, and it provides the highest accuracy when three

features are used. Chua et al. also provide a list of the most important features

identified within their research. In the same manner as this evaluation, they also

use random forest to calculate the feature importance. They discover different

137

results when compared to the feature importance documented in this evaluation.

This could be due to the use of different data to perform the evaluation, as the

authors only use data captured in June 2020. As identified in Section 5.2.4, the

attack activity evolves over time, which could have an influence on the feature

importance depending on the selected data period.

5.4.2 Online Detection

5.4.2.1 Methodology

This experiment leverages the random forest classifier to detect malicious be-

haviour in an online fashion using live network telemetry. The random forest

classifier was carried over from the previous experiment as it resulted in high

classification metrics and performed faster than the gradient-boosted tree model.

The data used to train the model consisted of 10,000,000 malicious and benign

records respectively. The parameters used for the random forest model are the

same as the ones which were identified to perform the greatest in the offline de-

tection evaluation. After having successfully trained the classifier on this training

data, Clementine is ready to begin the consumption of live network telemetry in

order to perform online intrusion detection. To achieve this, Clementine leverages

Spark’s Streaming abstraction. In this evaluation, Kafka is used as the medium

in which telemetry is transferred from local network devices to Clementine, where

it is then processed and classified into benign or malicious binary classes. Kafka

was chosen as it provides a highly scalable message broker, capable of processing

vast amounts of data with low latency. This is essential when considering that

attacks need to be detected as soon as possible, and within large scale networks.

For the purpose of this experiment, additional VMs are provisioned within

the Cyber Threat Lab. These are scattered throughout the various networks

contained within. An illustration of how these are connected within the network

to detect real attacks is included in Figure 5.15. A victim server is instantiated

within the shared infrastructure to allow intrusion attempts from attack servers

located in the other networks. The victim server performs similar functionality to

the benign network services used to profile normal behaviour within LUFlow ’20,

including coordination with a distributed database amongst other known normal

behaviour. A variety of victim machines were chosen to evaluate the detection

properties across a range of system implementations. The attack servers attempt

138

Figure 5.15: Configuration of experimental set-up.

to infiltrate the victim server through various means. These infiltration attempts

are identified as being representative of emerging attacks currently propagating

through the analysis of the telemetry captured by honeypots, as well as related

research and reports [27, 168].

The victim server’s network telemetry is captured by the aforementioned Joy

tool. This is then immediately transferred to a Kafka broker where it is then

consumed by Clementine. As this telemetry is generated irrespective of Tangerine,

the labelling process is not the same. Due to the prior knowledge about the

injected attacks, flows are labelled based upon the IP addresses associated with

the flow. If either the destination or source IP address correspond to an attack

server, the flow is labelled as malicious, otherwise benign.

In this evaluation, a series of separate experiments are conducted, which ex-

amine Clementine’s ability to detect emerging threats in an online fashion using

live network telemetry. These experiments are conducted to evaluate the accuracy

from a practical perspective. Similarly to the offline evaluation, this experiment

validates ML based detection capabilities on network data. However, this experi-

ment also considers live data. Thus, it also examines the capabilities within a real

networked environment. Such an environment requires methods to capture and

transmit the data from diverse devices in near-real time, which could impact the

result when compared to offline detection. This evaluation also considers previ-

ously unobserved attacks and attacks on systems other than the honeypots where

the training data was gathered. These properties were selected to understand how

effective the detection of an unsuspected attack is within an organisation’s net-

work, which consists of heterogeneous systems. Network telemetry is captured

139

and streamed to Clementine over a period of 10 minutes. At a random point

during this period, the normal telemetry is injected with malicious behaviour

through attacks performed by various attack servers. The various scenarios used

in this evaluation are documented below.

Scanning In this scenario, a single attacker host performs a port scan of the

victim machine. The victim machine in this case is a standard Ubuntu 20.04

VM, which is instantiated in the Cyber Threat Lab. The Nmap tool is used to

perform such network scan. Specifically, TCP SYN and UDP scanning techniques

are leveraged to identify thousands of open ports upon the victim machine. These

scanning attempts send multiple packets to the victim, which further compose

the associated malicious flows streamed to Clementine through Kafka. After 10

minutes of normal and injected malicious behaviour, the experiment is stopped

and the associated metrics are calculated.

DDoS This attack involves flooding the victim machine with a large number

of TCP-SYN requests to overwhelm its resources. This is orchestrated by numer-

ous attack machines located within the same network. These machines initiate

flooding for a period of 2 minutes. This is achieved through leveraging the hping3

tool. The tool is configured with a random source address, flood rate, and SYN

packets. The flood rate configuration sends packets as fast as possible and do

not wait for a reply before sending another. Every benign and malicious flow is

captured and streamed to Clementine, which classifies each in an online manner.

Brute Force The use of brute force and dictionary attacks plague networked

systems to this day. Sending rapid bursts of authentication requests, these at-

tacks can be orchestrated against remote or local targets to gain a foothold into

infrastructure and gather sensitive information. In this experiment, an MSSQL

server is targeted with a large amount of brute force traffic for a period of 2 min-

utes. Hydra is used to perform this attack, further utilising the largely popular

’rockyou.txt’ wordlist [169] as the attempted passwords.

Exploitation In this experiment, an attack is leveraged against a victim ma-

chine, which consists of a number of distinct stages. Initially, the NSA exploit

leaked by the Shadow Brokers collective, which takes advantage of CVE-2017-

0145, EternalRomance, is utilised to gain remote code execution privileges on

the victim machine. Despite public disclosure in 2017, this exploit still remains

a prominent threat in recent times [170, 171]. This exploit delivers a payload,

which is then executed. The payload is composed of shell code, which instanti-

140

ates a reverse shell on the victim. This reverse shell provides a covert method of

interaction with the victim, and is further used to perform various actions, such

as downloading sensitive documents to model data exfiltration in this experi-

ment. These separate stages are designed to emulate emerging attack patterns

encountered in real-world scenarios.

As the EternalRomance exploit leverages Microsoft’s implementation of the

SMB protocol, a Windows 8.1 VM was instantiated within the Cyber Threat

Lab to play the role of the victim. In the same vein as the other experiments,

the joy tool is built to capture live telemetry in the form of network flows. All

stages within this attack against the victim machine were orchestrated by a VM

within the Cyber Threat Lab running a Kali Linux distribution [172]. A reverse

shell payload is generated using the msfvenom framework, specifying the target

architecture and payload format. The meterpreter reverse shell handler [173] is

then used to listen for an incoming connection from the victim. Next, using the

Metasploit framework installed on Kali, the EternalRomance exploit is chosen,

with further configurations including setting the destination host to target the

Windows victim machine and the payload to the reverse shell. The exploit is

then executed against the victim, gaining access to the aforementioned reverse

shell through execution of the post-exploitation payload.

Cryptojacking As identified in Section 2.1.1.1, cryptocurrency mining is

popular amongst cyber criminals as a means of generating large amounts of in-

come. In order to perform mining, a server must first be infiltrated through

various methods. Much like the previous experiment, this experiment also con-

sists of multiple stages. In order to initially compromise the server, the SSH

credentials of the victim machine are found through a dictionary attack using the

aforementioned Hydra tool. A custom password list, containing the password of

the victim server, is used by Hydra to identify the correct credentials.

Upon successfully cracking credentials, the Secure Copy (SCP) binary is used,

alongside the credentials, to copy XMRig [174] software to the victim machine.

XMRig is cryptocurrency mining software, which can be used for legitimate pur-

poses, however, it is also used by cyber criminals to mine cryptocurrency on

exploited servers [43]. A remote shell is then opened on the victim machine using

the credentials harvested previously, and the XMRig software is executed.

141

Figure 5.16: Performance metrics obtained from online classification of live
telemetry

5.4.2.2 Results

Attack Type Recall Accuracy Precision F-score

DDoS 99.78% 99.79% 99.87% 99.82%
Scanning 99.78% 97.46% 88.43% 93.80%

Brute Force 99.78% 99.79% 99.76% 99.77%

Exploitation 91.43% 99.12% 92.65% 92.03%

Cryptojacking 71.57% 90.33% 79.08% 75.13%

Table 5.12: Online classification metrics for a number of attack scenarios

Scanning As shown in Figure 5.16, these metrics showcase Clementine’s high

accuracy, 97.46%, and extremely high recall, 99.70%. This demonstrates the

ability of Clementine to detect scanning attempts using live telemetry. Despite

the high recall, the precision in this experiment is markedly lower. This could

be attributed to a difference in scanning methodology between data captured

at honeypots and in this experiment. It is likely that the data captured by

the honeypots represents horizontal scanning techniques since these IP addresses

serve no legitimate purpose and can only be discovered through this method.

Conversely, the scan type in this experiment uses a vertical method.

DDoS The performance metrics associated with the classification is illus-

trated in Figure 5.16. As shown, Clementine performs extremely well under a

DDoS attack; demonstrating a low number of FPs and FNs and over 99% in all

142

calculated metrics. This attack is orchestrated through the rapid transmission

of SYN packets. Such an attack involves network flows which exhibit similar

properties. Furthermore, this attack does not require high-interaction honey-

pots to capture the most realistic data since no underlying service is required to

be exploited. These types of flows should be easily distinguished from benign

behaviour, therefore, detected with high accuracy.

As discussed in the related work, Sangkatsanee et al. also perform a similar

evaluation using a private data set. In their work, they perform online classifica-

tion using live network traces, which include DDoS traffic. The results are similar

to those found in this evaluation with over 99% accuracy in the classification of

DDoS attacks.

Bruteforce As shown in Figure 5.16, Clementine is able to successfully dis-

tinguish between benign flows and flows relating to brute force attempts with

extremely high precision, accuracy, and, recall. In a similar manner to the DDoS

experiment, this attack does not require high-interaction honeypots to provide

realistic training data. As a result, if bruteforce attacks were captured within the

Cyber Threat Lab the training data would contain very similar network flows to

those found in this experiment. Thus, the ML algorithm can accurately identify

malicious activity.

Exploitation As illustrated in Figure 5.16, Clementine classifies network

flows under this attack scenario with very high accuracy, over 99%, with all

other metrics achieving above 90%. Critically, flows associated with the meter-

preter reverse shell are correctly classified as malicious. As previously discussed,

the malicious telemetry captured to create LUFlow ’20 emanates from medium-

interaction honeypots. Therefore, this specific attack does not exist in training

data as payloads are captured but not executed, and can be treated as a novel

attack vector. The ability of machine learning algorithms to detect unknown

attacks is clearly highlighted in this scenario.

Furthermore, within this scenario, Clementine only incorrectly classified a sin-

gle malicious flow record as benign. This is the first truly malicious flow record

involved in this multi-stage intrusion experiment, and includes the initial exploita-

tion attempts. Due to the semantic gap inherent within ML algorithms, there

can be no explicit explanation, however, there exist a number of possibilities.

The first potential reason is that the shell code payload delivered through the

Metasploit framework is substantially different to that of the WannaCry worm

143

(3611 and 4869 bytes in size respectively [175]). The WannaCry worm is reported

to remain a prominent threat [176], and upon manual inspection over 90% of the

binaries captured from the Dionaea honeypots within the Cyber Threat Lab are

attributed to WannaCry according to VirusTotal [177]. Another possible expla-

nation for this occurrence is the fact that the emulation of SMB services offered

by Dionaea is not robust enough. As identified in issues posted by the developers,

the emulation is currently not perfect and leaves a lot to be desired [175]. It would

be an area of interesting research to repeat the experiment with data captured by

legitimate SMB service and compare the results. Despite this single misclassified

malicious flow, the remainder of malicious flows are correctly identified, ensuring

that the attack is still successfully detected in a timely manner.

Cryptojacking Crytocurrency mining is performed on the victim machine

for a period of 5 minutes. As illustrated in Figure 5.16, Clementine classifies all

stages within this multi-stage attack with 90% accuracy. The remaining metrics

associated with this attack are slightly lower. This is in part due to a number of

False Negatives (FNs) associated with the shell session opened by the attacker to

the victim machine. Clementine classifies some instances of flows relating to the

shell as benign, despite it being used for malicious purposes. While this is the case,

Clementine is able to accurately classify the dictionary attack and cryptocurrency

mining stages performed by the attacker machine. These stages within the attack

are undeniably malicious as they are not part of the normal telemetry profile

within LUFlow ’20. As a result, detection of this attack as a whole is enabled by

Clementine. In addition, due to the nature of the network environment used to

capture traffic which composes LUFlow ’20, cryptocurrency mining traffic is not

contained within the training data used within this experiment. As a result, the

cryptojacking stage within the attack can be considered a previously unobserved

attack, thus, further highlighting the benefits of an anomaly detection approach

to intrusion detection. In the same vein as the exploitation experiment, due to

stages within this attack not being observed before in training data, this type of

attack could exhibit different statistical properties to known malicious behaviour.

Therefore, the results observed could be impacted accordingly.

144

5.5 Classification Performance

A performance evaluation is also performed which considers the efficiency with

which Citrus processes data. This section examines a variety of Clementine’s

performance aspects to understand the benefits gained through leveraging the

Spark parallel processing engine.

5.5.1 Model Training

5.5.1.1 Methodology

In typical embodiments of grid search functionality, a separate model is trained

sequentially on a single server for each parameter value combination specified in

the grid search. The best performing model, i.e. the most accurate, is then se-

lected for future prediction purposes. The Spark engine provides an alternative

implementation, which leverages the power of cluster computation. In this ap-

proach, separate models can be trained in parallel across a number of executor

nodes in the cluster. This has the benefit of combining heterogeneous computa-

tional resources to tackle computationally expensive problems.

In order to evaluate the performance benefits of this approach, several experi-

ments are conducted, which aim to compare grid search implementations and the

corresponding overall training time of machine learning models. Based upon the

favourable detection results obtained in Section 5.4, the Random Forest classifier

is used within these experiments. In each, the model is trained with 500,000 ran-

domly sampled records extracted from the LUFlow ’20 data set. To compare the

distributed training approach to a baseline, the widely popular sklearn library

[153] is leveraged to perform parameter tuning and model training in a single

core scenario. This library provides the necessary random forest and grid search

implementations. Both Spark and sklearn share parameters used in their respec-

tive random forest classifier implementations. These parameters can be modified

to influence the outcome of the decision making process. The various parameters

and values used in these experiments to evaluate and compare the efficiency of

distributed model training against a single core approach are included in Table

5.13.

In order to measure the total time taken to build several models in parallel

145

Parameter
Name

Values Description

numTrees 10, 20, 40, 80 The number of trees within the forest
maxDepth 1, 3, 5 The maximum depth of the tree

impurtiy entropy, gini
Criterion used to evaluate quality of a

split

Table 5.13: The parameters used to evaluate single core and cluster approaches
to model training

using Spark, the package SparkMeasure1 is used. This package simplifies the col-

lection and analysis of Spark performance metrics. This package is implemented

using listeners to collect task metric data, and provides developers an API to

accurately measure the time taken to perform various operations on a cluster.

Measurements are recorded for the total time taken to train all models, as

specified by the parameters, and find the best performing upon a cluster of varying

node sizes. In total, 4 Spark executor nodes, each containing 4 processor cores,

are used to provide a maximum of 16 cores. The number of nodes in the cluster

is used as an independent variable, and is changed to determine how it affects

the total computation time. The mean of five separate measurements for each

experiment is taken to record an average total training time.

Figure 5.17: Comparison of model selection using grid search and variable cluster
size

1https://github.com/LucaCanali/sparkMeasure

146

5.5.1.2 Results

As illustrated in Figure 5.17, sklearn’s grid search implementation takes the

longest time, 979 seconds, to find the optimal parameter combination. As previ-

ously discussed, this is because each model is trained sequentially. The parallel

processing capabilities Spark provides are evident even on a single node cluster.

Spark is able to leverage the 4 cores on a single machine, training models inde-

pendently and reducing the total time taken compared to traditional approaches.

This reduction in model training and selection is further evidenced in clusters of

larger node sizes. Within a 4 node cluster, the average computation time is 243

seconds, a 75% reduction when compared to the baseline.

These experiments clearly demonstrate the performance benefits gained from

leveraging Spark and a cluster of nodes, when compared to a single server ap-

proach, to train and search for optimal model parameters. Furthermore, the

results have shown that increasing the number of nodes within the cluster, and

associated cores, has a favourable effect on the overall training time. This is

directly influenced by the increased level of parallelism used in processing opera-

tions.

5.5.2 Online Prediction

5.5.2.1 Methodology

The time taken to train a model measures the efficiency in which a behaviour

profile is built, which does not fully evaluate the properties required for near

real-time detection. To evaluate Citrus’ capacity to detect threats in a timely

manner, this section documents experiments which assess the performance of

live data prediction. These experiments consider the temporal efficiency of all

stages within the data classification pipeline, including data pre-processing and

prediction. Notably, since Spark performs lazy evaluations of transformations,

including prediction of telemetry, an additional action must be performed after

each transformation to evaluate the processing efficiency.

As previously discussed, the Clementine module within Citrus integrates with

Spark’s DStream abstraction and performs intrusion detection in an online, prac-

tical fashion to detect emerging threats. DStreams enable the receipt of live input

data streams and divide the data into batches, where it is then processed. Apache

147

Kafka is used in this embodiment to stream telemetry from heterogeneous VMs

within the Cyber Threat Lab. The time taken to process and classify unknown

records is of great importance, and should be as little as possible to rapidly notify

systems administrators that malicious actions have taken place.

When compared to signature-based approaches, machine learning algorithms

exhibit greater processing overhead. However, they contain powerful detection

properties, capable of defending against unknown attacks. This evaluation aims

to assess the speed at which a large amount of data can be streamed, processed,

and classified using the proof-of-concept implementation, Clementine. As pre-

viously discussed, DStreams separate input data into batches. The interval of

these batches determine the rate at which data is processed. Therefore, careful

consideration should be taken when choosing this value. The batch interval is

used as an independent variable in this evaluation to determine an optimal value

in this instance.

Data containing 100,000 randomly sampled records extracted from LUFlow ’20

is streamed to Clementine, where it is then pre-processed and classified, using the

random forest classifier, into malicious or benign classes. Five separate measure-

ments are taken for every batch interval value to derive the average time taken

to process all streamed records. Importantly, the values reported in the following

section pertain to the overall processing time taken to classify 100,000 records,

and does not include any time waiting, as dictated by the batch interval, for the

batches to fill with telemetry.

Figure 5.18: Evaluation of classification efficiency using variable batch interval

148

5.5.2.2 Results

As illustrated in Figure 5.18, the batch interval value has a significant impact

upon the total processing time. In general, as the batch interval increases, the

processing time decreases. For example, specifying a batch interval of 1 second

separates the data into multiple mini-batches, all of which incur scheduling over-

heads. On average, the 1 second batch interval took µ1 = 5.32 seconds to classify

all 100,000 records. In comparison, a batch interval of 60 seconds took an av-

erage of µ60 = 1.2 seconds. This is because, in this case, all of the input data

can be streamed within the batch interval, ensuring only a single batch to be

processed. However, this interval means at least 60 seconds transpire before any

classification occurs, and therefore does not allow near real-time prediction.

Figure 5.19: Cumulative Distribution Function (CDF) for processing time distin-
guished by batch interval.

In order to further investigate the distribution of processing times, additional

analysis is performed on these measurements. Figure 5.19 displays a Cumulative

Distribution Function (CDF) plot for measurements taken with a batch interval

of 2, 5, and 20 seconds. Notably, there exist differences between the distribution

of the measurements with respect to the batch intervals. The mean processing

time with a batch interval of 2 is µ2 = 3.780 seconds, and has a standard deviation

of σ2 = 0.691. When the batch interval is 5 seconds, the mean processing time is

µ5 = 1.96, and has a standard deviation of σ5 = 0.268. The mean processing time

for an interval of 20 is µ20 = 1.34, and has a standard deviation of σ20 = 0.389.

Despite the large difference in interval times, it is apparent that intervals of 5

149

and 20 seconds exhibit similar statistical properties. In this instance, an interval

of 5 seconds is recommended due to the lower waiting time.

In order to understand the rate at which Clementine can process flows per

second, another experiment is also performed, which leverages a batch interval of

one second. Through five distinct runs of this experiment, an average of almost

11,000 flows were observed to be streamed to Clementine from another device

within the network within each batch. This result showcases Apache Kafka’s

ability to process and transfer large amounts of data over the network with low

latency. In addition, these flows are required to be processed by Clementine to

classify potentially malicious traffic. It took on average around 0.9 seconds to

process all data within these batches where a one second interval is used. Given

this, on average it takes around 17 milliseconds to classify a single flow using a

1 second batch interval. This should be considered a conservative assessment,

since results have also shown that batches containing over 20,000 records can be

efficiently processed in under a second. Importantly, in this scenario, since the

processing time is less than the batch interval of one second, there is no scheduling

delay in which Clementine must wait to process previous batches before beginning

to process the latest batch.

These results are extremely positive since they demonstrate Citrus’ ability to

rapidly process large amounts of data, and pave the way towards the composi-

tion of real-time detection. Due to this, it can be concluded that Citrus is able

to be leveraged for the detection of emerging threats in large-scale networked

environments.

5.6 Summary

Within this chapter, Citrus is evaluated in numerous ways. Every evaluation

explored within this chapter was designed to examine a certain facet of Citrus,

with the overall intention to demonstrate its effectiveness as an intrusion detection

framework. Furthermore, these evaluations are also intended to assess whether

Citrus has achieved the design requirements discussed in Section 3.1. A discussion

of the results obtained through these evaluations is included in the remainder of

this section.

In order to detect attacks using a machine learning approach, realistic training

150

data which incorporates diverse attack patterns is required. Section 5.2 presents

the analysis of the LUFlow ’20 data set produced by Citrus for this purpose.

Critically, this data set includes real attack telemetry captured through the com-

position of diverse honeypots. The analysis explores the geographic distribution

of attack sources, as well as the evolution of the most popular services which

are actively being exploited. In addition, a comparison is made between LU-

Flow ’20 and other similar data sets within literature. This showcases the many

beneficial properties inherent within LUFlow ’20, particularly with respect to the

updated nature. The telemetry analysed within this evaluation has showcased

the availability of diverse attack data composed by Citrus. From the analysis

of the telemetry, coupled with the fact that it has been released publicly2 and

continues to receive updates, it can be concluded that Design Requirement 1 has

been achieved. The analysis contained within this evaluation also documents the

features engineered from the raw flow capture. These features which compose

the LUFlow ’20 data set are discussed further in Section 5.2.5, and as a result,

Design Requirement 2 has been met.

Intrusion detection data sets must be labelled when utilised by supervised

machine learning algorithms. A ground truth must be established for the labels

to be accurate. The evaluation performed in Section 5.3 includes a validation of

the ground truth established by Citrus to label the LUFlow ’20 data set. This

involves the examination of the consistency between clusters used to separate be-

nign and attack traffic. The time-series analysis performed in this evaluation has

highlighted the routinely positive silhouette values across all dates where teleme-

try has been captured and labelled. This has ensured that the clusters used to

identify malicious nodes are generally consistent, and do not include nodes which

are actually representative of benign behaviour. Fundamentally, this validation

of the ground truth guarantees the accuracy of the labels provided in LUFlow ’20,

and further enhances anomaly detection algorithms with robust normal and ma-

licious behaviour profiles. The consistency between clusters amongst all days

wherein telemetry has been captured and labelled demonstrates Citrus’ ability to

successfully develop a robust ground truth through correlation with third-party

CTI services, thus, Citrus has successfully accomplished Design Requirement 3.

Section 5.4 presents an examination of Citrus’ ability to detect attacks. This

2https://github.com/ruzzzzz/LUFlow

151

is assessed through the calculation of recognised classification metrics, which es-

tablish how effective Citrus performs under diverse attack scenarios. Initially,

experimentation is performed to identify the highest performing machine learn-

ing model using attacks incorporated within LUFlow ’20. The chosen model is

trained on randomly sampled data from LUFlow ’20 and used by Citrus to fur-

ther evaluate its detection performance in real-world practical settings. This

evaluation has highlighted Citrus’ remarkable ability to accurately detect various

emerging attack patterns using live telemetry emanating from real devices within

the network, establishing it as a viable network defense solution.

In order to satisfy the elevated data processing requirements inherent within

modern networks, Citrus must provide an efficient solution to network intrusion

detection. The final evaluation (presented in Section 5.5) explores the efficiency

of Citrus’ data pipeline to classify network flows. This is first assessed through

an examination and comparison of model training and parameter tuning using a

cluster of varying sizes. The evaluation demonstrates that an increased number

of executor nodes within a cluster drastically reduces the overall training time.

In addition, experiments are conducted to evaluate the efficiency of the deci-

sion making process taken by Citrus to identify network attacks in live telemetry

using the model trained previously. Citrus was shown here to be able to classify

tens of thousands of streaming flows within mere seconds using a small cluster

deployed on commodity hardware. This highlights the beneficial properties re-

lating to Citrus’ efficient data pipeline in the detection of attacks orchestrated

against real devices within the network. The practical deployment and evaluation

of Citrus within a networked environment has generated largely positive results.

In addition to the detection capabilities discussed previously, Citrus has demon-

strated the ability to process and predict vast amount of telemetry in a timely

manner. Hence, Citrus has successfully managed to provide accurate and near

real-time intrusion detection capabilities suitable for modern networks. There-

fore, it can be concluded that Design Requirement 4 has been achieved.

152

Chapter 6

Conclusion and Future Work

The modern threat landscape consists of novel and innovative infection mecha-

nisms orchestrated en masse to deal damage to networks at scale. In parallel, the

complexity of modern network infrastructure renders traditional approaches to

monitoring and attack detection redundant, due to the variety and volume of data

flow contained within. The further integration of emerging network technologies

into everyday life, such as 5G, IoT, and Starlink satellites facilitate the continuous

growth in attack surfaces and the number of network connected devices. These

challenges require a substantial overhaul to monitoring and detection approaches

in order to deal with the growing threat of malicious behaviour encompassed

within the vast amount of data produced in modern networks.

This thesis acknowledges the importance and implications of these issues, and

presents a practical solution for next-generation network defense and resilience

strategies. This is achieved through the examination of emerging technologies,

which leverage a cluster of compute resources to drastically reduce processing

costs when deployed on large data sets. The solution presented in this thesis

utilises such novel technologies to tackle the growing scalability challenges as-

sociated with data collection and processing techniques within modern network

infrastructure. Furthermore, this thesis explores approaches which are able to

deliver near real-time classification, in stark contrast to offline batch processing,

which provide timely and effective detection capabilities appropriate for contem-

porary network infrastructure.

When deploying supervised machine learning algorithms to classify malicious

behaviour in an online practical setting, models must be trained beforehand using

153

data appropriate for the network environment. These models can then be used in

a live fashion to perform an online assessment of network traffic. This thesis also

investigates publicly available data sets suitable for this purpose. As previously

identified, the most popular data sets used in research are considered archaic and

lack attack traffic which is truly representative of modern infection vectors.

A data set of high quality should also include accurate labels, which repre-

sent the true nature of the data. The labelling technique adopted by creators of

data sets are varied, however, they are typically derived through labour intensive

methods of manual analysis. Recently, developments within the security commu-

nity have emerged, which automatically label data sets through the establishment

of a ground truth. A ground truth explicitly separates the benign from malicious

traces within a data set, further bolstering anomaly detection techniques with a

robust normal behaviour profile.

6.1 Thesis Contributions

As discussed in the introductory chapter, the ultimate goal of this thesis is to

answer various open research questions. To begin this process, a survey of litera-

ture was conducted, which resulted in the identification of a number of challenges

within research. Amongst others, these challenges limit the utility of anomaly

detection techniques which are appropriate for modern network infrastructure.

These challenges, in unison with an understanding of existing systems and fu-

ture network directions, have influenced the design of a novel intrusion detection

framework: Citrus.

The design of Citrus is segmented between various modules, which are re-

sponsible for performing specific functions. In detail, the design of the Tangerine

module lays out the necessary components required to collect and label telemetry

to output a novel intrusion detection data set. To ensure the accuracy of the

labels, the ground truth must be established and validated. The novel design of

Tangerine also considers this, and is the first framework which provides an ef-

fective ground truth development technique through correlation with third party

CTI services. In addition, this thesis divulges the design detail of the Clemen-

tine module. This module is responsible for the online detection of emerging

threats through the utilisation of machine learning algorithms and integration

154

with cluster computation technology. Critically, this module enables the detec-

tion of previously unobserved attacks emanating from nodes within a high-speed

network.

Developing upon the design of this system, this thesis outlines the implemen-

tation detail of a proof-of-concept intrusion detection framework. This imple-

mentation is created with the intention to satisfy the requirements outlined in

Section 3.1. Furthermore, the implementation is released publicly1 in an open-

source manner to promote further examination and research into the cyber secu-

rity field. A wide range of industry beneficiaries could also adopt this framework

for network defense purposes in large scale on-premises or cloud infrastructures.

In detail, Citrus provides companies the ability to create a bespoke labelled data

set, which contains a normal traffic profile relating to actual behaviour encoun-

tered within their network. Using this tailored data set and Citrus, companies

could also defend their network against emerging threats through Citrus’ inherent

scalable anomaly detection capabilities.

An evaluation is also performed within this thesis which attempts to assess

whether the aforementioned design requirements have been met through exper-

imentation and analysis. In detail, the evaluation explores Citrus’ ability to

successfully develop a ground truth and perform near real-time intrusion detec-

tion through the utilisation of well-established machine learning algorithms. For

this purpose, an appropriate network test-bed located within Lancaster Univer-

sity was chosen. Citrus, alongside essential network services, are deployed within

this environment to evaluate its ability using real traffic captured from within.

In addition to the contributions related to the public release of Citrus, this

thesis has also contributed to the public release of a novel intrusion detection data

set. As previously outlined, the Tangerine component within Citrus orchestrates

the collection and labelling of flows captured from various honeypot deployments.

Through this process, telemetry representative of emerging attack vectors is com-

piled into a data set appropriate for the evaluation of next-generation anomaly

detection approaches to intrusion detection. This data set is publicly released2

under open-source license in an open and reusable format. Similarly to the open-

source nature of Citrus, the data set is delivered in such a manner to be adopted

by third parties within both academia and industry for the evaluation of next-

1https://github.com/ruzzzzz/Citrus
2https://github.com/ruzzzzz/LUFlow

155

generation attack detection techniques.

As previously discussed, Citrus has achieved Design Requirements 1 and 2

through the analysis, public release, and updating of the LUFlow ’20 data set.

As a result, we have also demonstrated that honeypots can be used as means to

capture emerging attack patterns and author a continuously updated intrusion

detection data set, thus, positively answering Research Question 1.

Through a series of evaluations, a number of beneficial properties relating

to Citrus are identified. Initially, an investigation into the consistency of the

clusters identified through the calculation of graph-based features is conducted

to ensure an accurate ground truth is developed. The silhouette metric is chosen

for this purpose, and a time-series of these values are presented for every day in

which telemetry is captured and labelled using the ground truth developed for

that specific day. This evaluation highlighted clear consistency in all examined

clusters through wholly positive silhouette values, indicating that nodes labelled

as malicious do not actually belong to clusters associated with outlier telemetry

traces. As a result of this validation of the ground truth, Design Requirement 3

has been successfully achieved. Due to this, we are able to provide an answer for

Research Question 2. Specifically, this thesis has demonstrated that CTI services

can be successfully leveraged to develop and validate a ground truth for telemetry

captured by honeypots.

In addition, an examination of Citrus’ ability to efficiently and effectively de-

tect attacks through both offline and online detection approaches is conducted.

This range of evaluations has demonstrated the accuracy of Citrus’ intrusion

detection mechanism in a real-world practical setting through the successful clas-

sification of previously unobserved attacks orchestrated against victim servers.

As well as demonstrating the accuracy of the approach, the design of Citrus has

also been shown to be highly scalable, capable of the classification of thousands

of live flows emanating from real networked devices within seconds, thus, achiev-

ing near real-time prediction. As previously discussed, the results extracted from

these evaluations have shown that Design Requirement 4 of Citrus has been met.

Since we have demonstrated that this design requirement is met, we can also

positively answer Research Question 3. In detail, this thesis has established that

Big Data technologies can be leveraged to perform accurate intrusion detection

through the prediction of vast amounts of traffic in near real-time.

156

6.1.1 Summary

To summarise, this thesis has made the following contributions:

• The design of a framework which provides the practical integration of CTI

for active network defense. This design enables the establishment and vali-

dation of a robust ground truth to aid towards accurate anomaly detection.

• The design of a near real-time anomaly detection approach, which exploits

properties of data and system parallelism.

• The realisation of both of these designs to create an open-source prototype

implementation of an innovative intrusion detection framework.

• A comprehensive evaluation of this prototype. This was made possible

through the use of a realistic network environment.

• The public release of a continuously updated novel intrusion detection data

set which is supported by a robust ground truth.

6.2 Limitations

The work presented in thesis has a number of limitations. These relate to the ap-

proaches taken in the design of system architecture, application implementation,

and classification methods.

One such limitation is the method used to identify malicious activity within

honeypot telemetry data. As mentioned previously, CTI services are used for

this process. Due to the nature of CTI services, they are likely to capture overtly

intrusive and noisey attacks. As a result, if stealthy attacks were orchestrated on

the honeypots, it is possible that they have not been observed elsewhere by CTI

services and the corresponding telemetry would not be labelled as malicious. The

decision making process of IDSs which use this telemetry as training data will be

impacted accordingly.

In a similar vein to the previous limitation, the ML algorithms adopted by

Citrus could also be tricked via adversarial ML attacks. Adversarial ML attacks

are manifested in multiple ways, but a common method is data poisoning. Since

the labels of the training data are dictated by CTI services, Citrus trusts that the

157

CTI services are truthful. Many of the CTI services utilised by Citrus leverage

user submissions and are likely not verified. As a result, there is a possibility

that the honeypot telemetry data could be poisoned to provide desired results by

attackers.

Another important limitation is the different types of honeypots used. Due to

restrictions within the experimental environment, only low and medium-interaction

honeypots were deployed. In contrast to high-interaction honeypots, these types

of honeypots do not allow observation of the entire attack life cycle. In the case

that high-interaction honeypots were leveraged, there is a strong possibility that

more realistic data would have been captured and that the data would also better

reflect attack patterns of a more sophisticated nature.

6.3 Future Work

This thesis has outlined the design, implementation, and evaluation of a next-

generation network security framework, Citrus, which is adept at near real-time

detection of emerging threats. Despite the promising results discussed in the

evaluation, there are a number of additional avenues, which could be explored to

make further contributions to the cyber security field.

One such area proposed for future work is the automatic revision and re-

training of machine learning models to deal with behavioural changes apparent

within captured telemetry. As previously discussed, the modern threat landscape

consists of myriad threat actors consistently producing an evolving array of in-

novative attack techniques. As the data set composed by Citrus is constantly

receiving updates due to the automatic nature of Citrus’ collection and labelling

mechanism, it is able to reflect these rapidly evolving behavioural traffic patterns.

The incremental update of machine learning models has been shown to ensure

that defense mechanisms are able to detect the most novel and innovative threats

[94].

Another way in which this work can be extended is the creation of auto-

mated remediation measures. While Citrus has been demonstrably shown to be

able to detect emerging threats, malicious classifications by Citrus are intended

to alert network administrators of attacks. These administrators will then need

to apply remedial actions manually in order to neutralise the threat. A system

158

which automatically performs remediation, such as the blocking of network flows

from a particular source address, will ensure attacks are thwarted before they

can perform further malicious actions. An avenue in which this could be ad-

dressed is Software-defined Networking (SDN), which enables the programmatic

manipulation of network behaviour without the need for specialised hardware.

The LUFlow ’20 data set incorporates a variety of normal and malicious net-

work flows. As network flows are captured using honeypots, all communication

with them should be treated as suspicious since it is unsolicited. Many of these

flows are labelled as malicious as they are identified by CTI services as perform-

ing malicious actions elsewhere. However, there exist some flows that are not

labelled as malicious and are instead labelled as outliers. Outlier flows are inter-

esting as they have initiated communication with honeypots, yet are not known

to CTI services. There could be many possible explanations for this, including

that they could be stealthy, targeted attacks. As a result, there could be value in

the research of such flows to identify their true nature. Such investigation could

reveal previously unobserved infiltration techniques.

159

References

[1] Cyber Security Ventures Cybercrime Report. URL:

https://cybersecurityventures.com/2015-wp/wp-content/uploads/

2017/10/2017-Cybercrime-Report.pdf/.

[2] CISCO. Cisco Annual Internet Report (2018–2023) White Paper. 2020.

[3] Mohammad Mehedi Hassan, Abdu Gumaei, Ahmed Alsanad, Majed

Alrubaian, and Giancarlo Fortino. A hybrid deep learning model for efficient

intrusion detection in big data environment. Information Sciences,

513:386–396, March 2020.

[4] Muhammet Baykara and Resul Das. A novel honeypot based security

approach for real-time intrusion detection and prevention systems. Journal

of Information Security and Applications, 41:103–116, August 2018.

[5] Riyaz Ahamed Ariyaluran Habeeb, Fariza Nasaruddin, Abdullah Gani,

Mohamed Ahzam Amanullah, Ibrahim Abaker Targio Hashem, Ejaz Ahmed,

and Muhammad Imran. Clustering-based real-time anomaly detection—A

breakthrough in big data technologies. Transactions on Emerging

Telecommunications Technologies, pages 1–27, 2019.

[6] Douglas Laney. 3D data management: Controlling data volume, velocity,

and variety. META Group, February 2001.

[7] Richard Zuech, Taghi M Khoshgoftaar, and Randall Wald. Intrusion

detection and Big Heterogeneous Data: a Survey. Journal of Big Data, 2:3,

2015.

160

https://cybersecurityventures.com/2015-wp/wp-content/uploads/2017/10/2017-Cybercrime-Report.pdf/
https://cybersecurityventures.com/2015-wp/wp-content/uploads/2017/10/2017-Cybercrime-Report.pdf/

[8] Elisabetta Raguseo. Big data technologies: An empirical investigation on

their adoption, benefits and risks for companies. International Journal of

Information Management, 38:187–195, 2018.

[9] Peter Clay. A modern threat response framework. Network Security, 2015,

04 2015.

[10] Apache Hadoop. URL: https://hadoop.apache.org/.

[11] BigTable. URL: https://cloud.google.com/bigtable/.

[12] Elasticsearch. URL: https://www.elastic.co/.

[13] Apache Spark. URL: https://spark.apache.org/.

[14] Valerio Morfino and Salvatore Rampone. Towards near-real-time intrusion

detection for IoT devices using supervised learning and apache spark.

Electronics (Switzerland), 9(3), 2020.

[15] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin

Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica.

Resilient distributed datasets: A fault-tolerant abstraction for in-memory

cluster computing. Proceedings of NSDI 2012: 9th USENIX Symposium on

Networked Systems Design and Implementation, pages 15–28, 2012.

[16] Muhammet Baykara and Resul Daş. A Survey on Potential Applications of

Honeypot Technology in Intrusion Detection Systems. International Journal

of Computer Networks and Applications (IJCNA), 2(5).

[17] Shodan. URL: https://shodan.io/.

[18] Jungsuk Song, Hiroki Takakura, Yasuo Okabe, Masashi Eto, Daisuke

Inoue, and Koji Nakao. Statistical analysis of honeypot data and building of

Kyoto 2006+ dataset for NIDS evaluation. Proceedings of the 1st Workshop

on Building Analysis Datasets and Gathering Experience Returns for

Security, BADGERS 2011, pages 29–36, 2011.

[19] KDD ’99 Data Set. URL:

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html/.

161

https://hadoop.apache.org/
https://cloud.google.com/bigtable/
https://www.elastic.co/
https://spark.apache.org/
https://shodan.io/
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html/

[20] Hanan Hindy, David Brosset, Ethan Bayne, Amar Seeam, Christos

Tachtatzis, Robert Atkinson, and Xavier Bellekens. A Taxonomy and

Survey of Intrusion Detection System Design Techniques, Network Threats

and Datasets. 1(1), 2018.

[21] Unified Host and Network Dataset. URL:

https://csr.lanl.gov/data/2017.html/.

[22] Robin Sommer and Vern Paxson. Outside the closed world: On using

machine learning for network intrusion detection. In 2010 IEEE Symposium

on Security and Privacy, pages 305–316, 2010.

[23] Sebastian Abt and Harald Baier. Are We Missing Labels? A Study of the

Availability of Ground-Truth in Network Security Research. Proceedings -

3rd International Workshop on Building Analysis Datasets and Gathering

Experience Returns for Security, BADGERS 2014, pages 40–55, 2016.

[24] Y. Chen, X. Lian, D. Yu, S. Lv, S. Hao, and Y. Ma. Exploring shodan from

the perspective of industrial control systems. IEEE Access, 8:75359–75369,

2020.

[25] GreyNoise Intelligence. URL: https://greynoise.io/.

[26] Censys. URL: https://censys.io/.

[27] FireEye Threat Trend Report 2020. URL:

https://content.fireeye.com/m-trends/rpt-m-trends-2020.

[28] Mitre ATT&CK. URL:

https://attack.mitre.org/matrices/enterprise/.

[29] R. Langner. Stuxnet: Dissecting a cyberwarfare weapon. IEEE Security

Privacy, 9(3):49–51, 2011.

[30] Savita Mohurle and Manisha Patil. A brief study of wannacry threat:

Ransomware attack 2017. International Journal of Advanced Research in

Computer Science, 8(5), 2017.

[31] Rob Joyce. Disrupting Nation State Hackers. USENIX Association,

January 2016.

162

https://csr.lanl.gov/data/2017.html/
https://greynoise.io/
https://censys.io/
https://content.fireeye.com/m-trends/rpt-m-trends-2020
https://attack.mitre.org/matrices/enterprise/

[32] Subash Poudyal and Dipankar Dasgupta. Ai-powered ransomware

detection framework. In 2020 IEEE Symposium Series on Computational

Intelligence (SSCI), pages 1154–1161, 2020.

[33] CVE-2018-15982. URL:

https://nvd.nist.gov/vuln/detail/CVE-2018-15982/.

[34] Michael Hopkins and Ali Dehghantanha. Exploit kits: The production line

of the cybercrime economy? In 2015 second international conference on

Information Security and Cyber Forensics (InfoSec), pages 23–27. IEEE,

2015.

[35] CVE-2018-8174. URL:

https://nvd.nist.gov/vuln/detail/CVE-2018-8174/.

[36] Malwarebytes 2019 Exploit Kit Review. URL:

https://blog.malwarebytes.com/exploits-and-vulnerabilities/

2019/11/exploit-kits-fall-2019-review/.

[37] Muhammad N Sakib and Chin-Tser Huang. Using anomaly detection

based techniques to detect http-based botnet c&c traffic. In 2016 IEEE

International Conference on Communications (ICC), pages 1–6. IEEE, 2016.

[38] Brett Stone-Gross, Marco Cova, Lorenzo Cavallaro, Bob Gilbert, Martin

Szydlowski, Richard Kemmerer, Christopher Kruegel, and Giovanni Vigna.

Your botnet is my botnet: analysis of a botnet takeover. In Proceedings of

the 16th ACM conference on Computer and communications security, pages

635–647, 2009.

[39] Sudipta Chowdhury, Mojtaba Khanzadeh, Ravi Akula, Fangyan Zhang,

Song Zhang, Hugh Medal, Mohammad Marufuzzaman, and Linkan Bian.

Botnet detection using graph-based feature clustering. Journal of Big Data.

[40] Mariposa White Paper. URL:

https://defintel.com/docs/Mariposa_White_Paper.pdf.

[41] Angelos K. Marnerides and Andreas U. Mauthe. Analysis and

characterisation of botnet scan traffic. In 2016 International Conference on

Computing, Networking and Communications (ICNC), pages 1–7, 2016.

163

https://nvd.nist.gov/vuln/detail/CVE-2018-15982/
https://nvd.nist.gov/vuln/detail/CVE-2018-8174/
https://blog.malwarebytes.com/exploits-and-vulnerabilities/2019/11/exploit-kits-fall-2019-review/
https://blog.malwarebytes.com/exploits-and-vulnerabilities/2019/11/exploit-kits-fall-2019-review/
https://defintel.com/docs/Mariposa_White_Paper.pdf

[42] Nmap. URL:

https://nmap.org/book/man-port-scanning-techniques.html.

[43] ENISA Cryptojacking Threat Landscape 2020. URL:

https://www.enisa.europa.eu/publications/

enisa-threat-landscape-2020-cryptojacking.

[44] Ronny Richardson and Max M North. Ransomware: Evolution, Mitigation

and Prevention. International Management Review, 13(1):10, 2017.

[45] Savita Mohurle and Manisha Patil. A brief study of Wannacry Threat:

Ransomware Attack 2017. International Journal of Advanced Research in

Computer Science, 8(5).

[46] Guy Martin, Saira Ghafur, James Kinross, Chris Hankin, and Ara Darzi.

WannaCry - A year on. BMJ (Online), 361(June):10–11, 2018.

[47] DoublePulsar Analysis. URL: https://zerosum0x0.blogspot.com/2017/

04/doublepulsar-initial-smb-backdoor-ring.html#pulsar_step0.

[48] Hackers are using NSA’s DoublePulsar backdoor in attacks. URL:

https://www.securityweek.com/

hackers-are-using-nsas-doublepulsar-backdoor-attacks.

[49] MS17-010 Security Bulletin. URL: https://docs.microsoft.com/en-us/

security-updates/securitybulletins/2017/ms17-010.

[50] Cisco Teslacrypt. URL:

https://blogs.cisco.com/security/talos/teslacrypt.

[51] Aurelien Palisse, Helene Le Bouder, and Jean-Louis Lanet. Ransomware

and the Legacy Crypto API. volume 10158 of CRiSIS 2016, pages 11–28.

Springer International Publishing, 2017.

[52] Eric Hutchins, Michael Cloppert, and Rohan Amin. Intelligence-driven

computer network defense informed by analysis of adversary campaigns and

intrusion kill chains. Leading Issues in Information Warfare Security

Research, 1, 01 2011.

[53] Gobuster. URL: https://github.com/OJ/gobuster.

164

https://nmap.org/book/man-port-scanning-techniques.html
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2020-cryptojacking
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2020-cryptojacking
https://zerosum0x0.blogspot.com/2017/04/doublepulsar-initial-smb-backdoor-ring.html#pulsar_step0
https://zerosum0x0.blogspot.com/2017/04/doublepulsar-initial-smb-backdoor-ring.html#pulsar_step0
https://www.securityweek.com/hackers-are-using-nsas-doublepulsar-backdoor-attacks
https://www.securityweek.com/hackers-are-using-nsas-doublepulsar-backdoor-attacks
https://docs.microsoft.com/en-us/security-updates/securitybulletins/2017/ms17-010
https://docs.microsoft.com/en-us/security-updates/securitybulletins/2017/ms17-010
https://blogs.cisco.com/security/talos/teslacrypt
https://github.com/OJ/gobuster

[54] Dennis Mirante and Justin Cappos. Understanding password database

compromises. Dept. of Computer Science and Engineering Polytechnic Inst.

of NYU, Tech. Rep. TR-CSE-2013-02, 2013.

[55] Ping Chen, Lieven Desmet, and Christophe Huygens. A Study on

Advanced Persistent Threats. pages 63–72, 2014.

[56] GTFOBins. URL: https://gtfobins.github.io/.

[57] CSO Cyber Kill Chain Report. URL:

https://www.csoonline.com/article/2134037/strategic-planning-erm-the-

practicality-of-the-cyber-kill-chain-approach-to-security.html/.

[58] Saurabh Singh, Pradip Kumar Sharma, Seo Yeon Moon, Daesung Moon,

and Jong Hyuk Park. A comprehensive study on APT attacks and

countermeasures for future networks and communications: challenges and

solutions. The Journal of Supercomputing, pages 1–32, sep 2016.

[59] Mitko Bogdanoski, Tomislav Shuminoski, and Aleksandar Risteski.

Analysis of the syn flood dos attack. International Journal of Computer

Network and Information Security, 5:1–11, 06 2013.

[60] S. T. Zargar, J. Joshi, and D. Tipper. A survey of defense mechanisms

against distributed denial of service (ddos) flooding attacks. IEEE

Communications Surveys Tutorials, 15(4):2046–2069, 2013.

[61] Netscout Threat Intelligence Report 2020. URL:

https://www.netscout.com/threatreport.

[62] Akamai State of the Internet / Security Report. URL: https://www.

akamai.com/uk/en/multimedia/documents/state-of-the-internet/

soti-security-a-year-in-review-report-2020.pdf.

[63] Abdallah Ghourabi, Tarek Abbes, and Adel Bouhoula. Characterization of

attacks collected from the deployment of Web service honeypot. Security

and Communication Networks, 7(2):338–351, feb 2014.

[64] Ibrahim Yahya, Mohammed Al, Prashant Chauhan, Shivi Shukla, and M B

Potdar. Review on efficient log analysis to evaluate multiple honeypots

using ELK. (6):492–504, 2016.

165

https://gtfobins.github.io/
https://www.netscout.com/threatreport
https://www.akamai.com/uk/en/multimedia/documents/state-of-the-internet/soti-security-a-year-in-review-report-2020.pdf
https://www.akamai.com/uk/en/multimedia/documents/state-of-the-internet/soti-security-a-year-in-review-report-2020.pdf
https://www.akamai.com/uk/en/multimedia/documents/state-of-the-internet/soti-security-a-year-in-review-report-2020.pdf

[65] Glutton. URL: https://github.com/mushorg/glutton.

[66] Heralding. URL: https://github.com/johnnykv/heralding.

[67] Cowrie. URL: https://github.com/cowrie/cowrie/.

[68] Dionaea. URL: https://github.com/DinoTools/dionaea/.

[69] libemu. URL: https://github.com/buffer/libemu/.

[70] Martin Valicek, Gregor Schramm, Martin Pirker, and Sebastian

Schrittwieser. Creation and Integration of Remote High Interaction

Honeypots. Proceedings - 2017 International Conference on Software

Security and Assurance, ICSSA 2017, pages 50–55, 2018.

[71] Stewart Sentanoe, Benjamin Taubmann, and Hans P. Reiser. Virtual

machine introspection based ssh honeypot. In Proceedings of the 4th

Workshop on Security in Highly Connected IT Systems, SHCIS ’17, page

13–18, New York, NY, USA, 2017. Association for Computing Machinery.

[72] Libpcap. URL: https://www.tcpdump.org/manpages/pcap.3pcap.html/.

[73] Monowar H Bhuyan, Dhruba K Bhattacharyya, and Jugal K Kalita.

Towards Generating Real-life Datasets for Network Intrusion Detection.

17(6):683–701, 2015.

[74] Martin Husák and Martin Drašar. Flow-based Monitoring of Honeypots.

pages 63–70, 2013.

[75] Dominic Storey. Catching flies with honey tokens. Network Security,

2009(11):15–18, 2009.

[76] Ryan Mills, Nicholas Race, and Matthew Broadbent. Citrus: Orchestrating

security mechanisms via adversarial deception. In NOMS 2020 - 2020

IEEE/IFIP Network Operations and Management Symposium, pages 1–4,

2020.

[77] Emmanouil Vasilomanolakis, Shreyas Srinivasa, Carlos Garcia Cordero,

and Max Mühlhäuser. Multi-stage attack detection and signature generation

with ICS honeypots. In Proceedings of the NOMS 2016 - 2016 IEEE/IFIP

166

https://github.com/mushorg/glutton
https://github.com/johnnykv/heralding
https://github.com/cowrie/cowrie/
https://github.com/DinoTools/dionaea/
https://github.com/buffer/libemu/
https://www.tcpdump.org/manpages/pcap.3pcap.html/

Network Operations and Management Symposium, pages 1227–1232.

Institute of Electrical and Electronics Engineers Inc., June 2016.

[78] Bro. URL: https://www.zeek.org/.

[79] Daisuke Miyamoto, Satoru Teramura, and Masaya Nakayama. Intercept:

High-interaction server-type honeypot based on live migration. In

Proceedings of the 7th International ICST Conference on Simulation Tools

and Techniques, SIMUTools ’14, page 147–152, Brussels, BEL, 2014. ICST

(Institute for Computer Sciences, Social-Informatics and

Telecommunications Engineering).

[80] Iik Muhamad Malik Matin and Budi Rahardjo. Malware Detection Using

Honeypot and Machine Learning. 2019 7th International Conference on

Cyber and IT Service Management, CITSM 2019, 2019.

[81] Hyrum S. Anderson and Phil Roth. EMBER: an open dataset for training

static PE malware machine learning models. CoRR, abs/1804.04637, 2018.

[82] E Alata, M Dacier, Y Deswarte, M Kaaâniche, K Kortchinsky,

V Nicomette, V H Pham, and F Pouget. Collection and analysis of attack

data based on honeypots deployed on the Internet. In Dieter Gollmann,

Fabio Massacci, and Artsiom Yautsiukhin, editors, Quality of Protection,

pages 79–91, Boston, MA, 2006. Springer US.

[83] Florian Skopik, Giuseppe Settanni, and Roman Fiedler. A problem shared

is a problem halved: A survey on the dimensions of collective cyber defense

through security information sharing. Computers and Security, 60:154–176,

jul 2016.

[84] Ansam Khraisat, Iqbal Gondal, Peter Vamplew, and Joarder

Kamruzzaman. Survey of intrusion detection systems: techniques, datasets

and challenges. Cybersecurity, 2(1):20, 2019.

[85] G. Creech and J. Hu. A semantic approach to host-based intrusion

detection systems using contiguousand discontiguous system call patterns.

IEEE Transactions on Computers, 63(4):807–819, 2014.

167

https://www.zeek.org/

[86] Tarrah R Glassvandetr, ornlgov Iannacone, Michael D Iannaconemd,

ornlgov Vincent, Maria S Vincentms, ornlgov Chen, and Robert A Bridgesra.

A Survey of Intrusion Detection Systems Leveraging Host Data. 2018.

[87] A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, and B. Stiller.

An overview of ip flow-based intrusion detection. IEEE Communications

Surveys Tutorials, 12(3):343–356, 2010.

[88] Symantec Internet Security Threat Report 2017. URL:

https://docs.broadcom.com/doc/istr-22-2017-en.

[89] A. Alazab, M. Hobbs, J. Abawajy, and M. Alazab. Using feature selection

for intrusion detection system. In 2012 International Symposium on

Communications and Information Technologies (ISCIT), pages 296–301,

2012.

[90] Pavel Laskov, Patrick Düssel, Christin Schäfer, and Konrad Rieck.

Learning Intrusion Detection: Supervised or Unsupervised? In Fabio Roli

and Sergio Vitulano, editors, Image Analysis and Processing – ICIAP 2005,

pages 50–57, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[91] Phurivit Sangkatsanee, Naruemon Wattanapongsakorn, and Chalermpol

Charnsripinyo. Practical real-time intrusion detection using machine

learning approaches. Computer Communications, 34(18):2227–2235, 2011.

[92] Vigneswaran K. Rahul, R. Vinayakumar, Kp Soman, and Prabaharan

Poornachandran. Evaluating Shallow and Deep Neural Networks for

Network Intrusion Detection Systems in Cyber Security. 2018 9th

International Conference on Computing, Communication and Networking

Technologies, ICCCNT 2018, pages 1–6, 2018.

[93] Antonio G P Lobato, Martin Andreoni Lopez, and Alvaro A Cardenas. A

Fast and Accurate Threat Detection and Prevention Architecture using

Stream Processing. pages 1–12.

[94] Eduardo Viegas, Altair Santin, Alysson Bessani, and Nuno Neves. BigFlow:

Real-time and reliable anomaly-based intrusion detection for high-speed

networks. Future Generation Computer Systems, 93:473–485, 2019.

168

https://docs.broadcom.com/doc/istr-22-2017-en

[95] Apache Flink. URL: https://flink.apache.org/.

[96] Mawi archive. URL: http://mawi.wide.ad.jp/mawi/samplepoint-F/.

[97] Juliette Dromard and Philippe Owezarski. Study and Evaluation of

Unsupervised Algorithms Used in Network Anomaly Detection. Advances in

Intelligent Systems and Computing, 1070:397–416, 2020.

[98] Apache Kafka. URL: https://kafka.apache.org/.

[99] M. Mazhar Rathore, Anand Paul, Awais Ahmad, Seungmin Rho,

Muhammad Imran, and Mohsen Guizani. Hadoop based real-time intrusion

detection for high-speed networks. 2016 IEEE Global Communications

Conference, GLOBECOM 2016 - Proceedings, (Ml):0–5, 2016.

[100] Iman Sharafaldin, Amirhossein Gharib, Arash Habibi Lashkari, and Ali

Ghorbani. Towards a reliable intrusion detection benchmark dataset.

Software Networking, 2017:177–200, 01 2017.

[101] Nour Moustafa and Jill Slay. UNSW-NB15: A comprehensive data set for

network intrusion detection systems (UNSW-NB15 network data set). In

2015 Military Communications and Information Systems Conference,

MilCIS 2015 - Proceedings. Institute of Electrical and Electronics Engineers

Inc., dec 2015.

[102] Nasrin Sultana, Naveen Chilamkurti, Wei Peng, and Rabei Alhadad.

Survey on SDN based network intrusion detection system using machine

learning approaches. Peer-to-Peer Networking and Applications,

12(2):493–501, 2019.

[103] Jérôme François, Shaonan Wang, Radu State, and Thomas Engel.

BotTrack: Tracking botnets using netflow and pageRank. Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 6640 LNCS(PART

1):1–14, 2011.

[104] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani. Toward

generating a new intrusion detection dataset and intrusion traffic

characterization. In ICISSP, 2018.

169

https://flink.apache.org/
http://mawi.wide.ad.jp/mawi/samplepoint-F/
https://kafka.apache.org/

[105] Przemys law Bereziński, Bartosz Jasiul, and Marcin Szpyrka. An

Entropy-Based Network Anomaly Detection Method. 17(4):2367–2408, April

2015.

[106] Markus Ring, Sarah Wunderlich, Dominik Grüdl, Dieter Landes, and

Andreas Hotho. Flow-based benchmark data sets for intrusion detection. In

Proceedings of the 16th European conference on cyber warfare and security,

pages 361–369, 2017.

[107] Marek Ma lowidzki, Przemys law Berezi, and Micha l Mazur. Network

Intrusion Detection: Half a Kingdom for a Good Dataset. Proceedings of

NATO STO SAS-139 Workshop, pages 1–6, 2015.

[108] Muhammad Fahad Umer, Muhammad Sher, and Yaxin Bi. Flow-based

intrusion detection: Techniques and challenges. Computers & Security,

70:238–254, 2017.

[109] Alessandro D’Alconzo, Idilio Drago, Andrea Morichetta, Marco Mellia,

and Pedro Casas. A Survey on Big Data for Network Traffic Monitoring and

Analysis. arXiv, 16(3):800–813, 2020.

[110] Prasanta Gogoi, Monowar H Bhuyan, D K Bhattacharyya, and J K

Kalita. Packet and Flow Based Network Intrusion Dataset. In Manish

Parashar, Dinesh Kaushik, Omer F Rana, Ravi Samtaney, Yuanyuan Yang,

and Albert Zomaya, editors, Contemporary Computing, pages 322–334,

Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[111] Nam Nguyen and Rich Caruana. Classification with partial labels.

Proceedings of the ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 551–559, 2008.

[112] W. Meng, Y. Liu, S. Zhang, D. Pei, H. Dong, L. Song, and X. Luo.

Device-agnostic log anomaly classification with partial labels. In 2018

IEEE/ACM 26th International Symposium on Quality of Service (IWQoS),

pages 1–6, 2018.

[113] Anna Sperotto, Ramin Sadre, Frank Van Vliet, and Aiko Pras. A labeled

data set for flow-based intrusion detection. Lecture Notes in Computer

170

Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), 5843 LNCS:39–50, 2009.

[114] Romain Fontugne, Pierre Borgnat, Patrice Abry, and Kensuke Fukuda.

MAWILab : Combining Diverse Anomaly Detectors for Automated

Anomaly Labeling and Performance Benchmarking. 2010.

[115] Francisco J. Aparicio-Navarro, Konstantinos G. Kyriakopoulos, and

David J. Parish. Automatic dataset labelling and feature selection for

intrusion detection systems. In Proceedings - IEEE Military

Communications Conference MILCOM, pages 46–51. Institute of Electrical

and Electronics Engineers Inc., November 2014.

[116] Airpwn-ng. URL: https://github.com/ICSec/airpwn-ng/.

[117] Francesco Gargiulo, Claudio Mazzariello, and Carlo Sansone.

Automatically building datasets of labeled IP traffic traces: A self-training

approach. Applied Soft Computing Journal, 12(6):1640–1649, 2012.

[118] John Mchugh. Testing Intrusion Detection Systems : A Critique of the

1998 and 1999 DARPA Intrusion Detection System Evaluations as

Performed by Lincoln Laboratory. 3(4):262–294, 2001.

[119] Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A Ghorbani. A

Detailed Analysis of the KDD CUP 99 Data Set. (Cisda):1–6, 2009.

[120] Kristopher Kendall. A database of computer attacks for the evaluation of

intrusion detection systems. Master’s thesis, Defense Technical Information

Center, 1999.

[121] Matthew V Mahoney and Philip K Chan. An Analysis of the 1999

DARPA/Lincoln Laboratory Evaluation Data for Network Anomaly

Detection. In Giovanni Vigna, Christopher Kruegel, and Erland Jonsson,

editors, Recent Advances in Intrusion Detection, pages 220–237, Berlin,

Heidelberg, 2003. Springer Berlin Heidelberg.

[122] Tcpdump. URL: https://www.tcpdump.org/.

171

https://github.com/ICSec/airpwn-ng/
https://www.tcpdump.org/

[123] Ali Shiravi, Hadi Shiravi, Mahbod Tavallaee, and Ali A. Ghorbani.

Toward developing a systematic approach to generate benchmark datasets

for intrusion detection. Computers and Security, 31(3):357–374, 2012.

[124] S. Garćıa, M. Grill, J. Stiborek, and A. Zunino. An empirical comparison

of botnet detection methods. Computers and Security, 45:100–123, 2014.

[125] CICFlowMeter. URL:

https://github.com/ahlashkari/CICFlowMeter/.

[126] Ranjit Panigrahi and Samarjeet Borah. A detailed analysis of CICIDS2017

dataset for designing Intrusion Detection Systems. International Journal of

Engineering and Technology(UAE), 7(3.24 Special Issue 24):479–482, 2018.

[127] Joffrey L Leevy, Taghi M Khoshgoftaar, Richard A Bauder, and Naeem

Seliya. A survey on addressing high-class imbalance in big data. Journal of

Big Data, 5(1):42, 2018.

[128] Rushi Longadge and Snehalata Dongre. Class imbalance problem in data

mining review. International Journal of Computer Science and Network, 2,

2013.

[129] Markus Ring, Sarah Wunderlich, Deniz Scheuring, Dieter Landes, and

Andreas Hotho. A survey of network-based intrusion detection data sets.

Computers and Security, 86:147–167, 2019.

[130] Faranak Abri, Sima Siami-Namini, Mahdi Adl Khanghah, Fahimeh Mirza

Soltani, and Akbar Siami Namin. The performance of machine and deep

learning classifiers in detecting zero-day vulnerabilities. CoRR,

abs/1911.09586, 2019.

[131] Chieh Yen Lin, Cheng Hao Tsai, Ching Pei Lee, and Chih Jen Lin.

Large-scale logistic regression and linear support vector machines using

spark. Proceedings - 2014 IEEE International Conference on Big Data,

IEEE Big Data 2014, pages 519–528, 2015.

[132] Mustapha Belouch, Salah El Hadaj, and Mohamed Idlianmiad.

Performance evaluation of intrusion detection based on machine learning

using apache spark. Procedia Computer Science, 127:1–6, 2018.

172

https://github.com/ahlashkari/CICFlowMeter/

[133] Manish Kulariya, Priyanka Saraf, Raushan Ranjan, and Govind P. Gupta.

Performance analysis of network intrusion detection schemes using Apache

Spark. International Conference on Communication and Signal Processing,

ICCSP 2016, pages 1973–1977, 2016.

[134] Hao Zhang, Shumin Dai, Yongdan Li, and Wenjun Zhang. Real-time

Distributed-Random-Forest-Based Network Intrusion Detection System

Using Apache Spark. In 2018 IEEE 37th International Performance

Computing and Communications Conference, IPCCC 2018. Institute of

Electrical and Electronics Engineers Inc., jul 2018.

[135] Qianru Zhou and Dimitrios Pezaros. Evaluation of Machine Learning

Classifiers for Zero-Day Intrusion Detection-An Analysis on CIC-AWS-2018

dataset. CoRR, abs/1905.03685, 2019.

[136] Gokul Kannan Sadasivam, Chittaranjan Hota, and Bhojan Anand.

Detection of Severe SSH Attacks Using Honeypot Servers and Machine

Learning Techniques. Software Networking, 2017(1):79–100, 2017.

[137] Sana Siddiqui, Muhammad Salman Khan, Ken Ferens, and Witold

Kinsner. Detecting advanced persistent threats using fractal dimension

based machine learning classification. In Proceedings of the 2016 ACM on

International Workshop on Security And Privacy Analytics, IWSPA ’16,

page 64–69, New York, NY, USA, 2016. Association for Computing

Machinery.

[138] Marzia Zaman and Chung Horng Lung. Evaluation of machine learning

techniques for network intrusion detection. IEEE/IFIP Network Operations

and Management Symposium: Cognitive Management in a Cyber World,

NOMS 2018, pages 1–5, 2018.

[139] GitHub. URL: https://github.io/.

[140] Python. URL: https://python.org/.

[141] Apache Mesos. URL: http://mesos.apache.org/.

[142] Kubernetes. URL: https://kubernetes.io/.

173

https://github.io/
https://python.org/
http://mesos.apache.org/
https://kubernetes.io/

[143] PySpark. URL: https://pypi.org/project/pyspark/.

[144] Spark Streaming. URL: http://spark.apache.org/docs/latest/

streaming-programming-guide.html/.

[145] Amazon Web Services Kinesis. URL:

https://aws.amazon.com/kinesis/.

[146] Spark RDD Guide. URL:

http://spark.apache.org/docs/2.4.4/rdd-programming-guide.html.

[147] Matei Zaharia. Discretized Streams. An Architecture for Fast and General

Data Processing on Large Clusters, (1):65, 2016.

[148] grequests. URL: https://pypi.org/project/grequests/.

[149] Requests Library. URL: https://pypi.org/project/requests/.

[150] gevent. URL: http://www.gevent.org/.

[151] Hybrid Analysis. URL: https://www.hybrid-analysis.com/.

[152] NetworkX. URL: https://networkx.github.io/.

[153] scikit-learn. URL: https://scikit-learn.org/.

[154] LUFlow ’20 Intrusion Detection Data Set. URL:

https://github.com/ruzzzzz/LUFlow.

[155] HdfsCLI. URL: https://pypi.org/project/hdfs/.

[156] Angelos Marnerides, Daniel Prince, John Couzins, Ryan Mills, Vasileios

Giotsas, Paul McEvatt, David Markham, and Catherine Irvine. Fujitsu

white paper: Cyber threat lab, 2019.

[157] VMware. URL: https://www.vmware.com/.

[158] TPot Honeypot. URL: https://github.com/dtag-dev-sec/tpotce.

[159] Joy. URL: https://github.com/cisco/joy/.

[160] Logstash. URL: https://www.elastic.co/logstash.

174

https://pypi.org/project/pyspark/
http://spark.apache.org/docs/latest/streaming-programming-guide.html/
http://spark.apache.org/docs/latest/streaming-programming-guide.html/
https://aws.amazon.com/kinesis/
http://spark.apache.org/docs/2.4.4/rdd-programming-guide.html
https://pypi.org/project/grequests/
https://pypi.org/project/requests/
http://www.gevent.org/
https://www.hybrid-analysis.com/
https://networkx.github.io/
https://scikit-learn.org/
https://github.com/ruzzzzz/LUFlow
https://pypi.org/project/hdfs/
https://www.vmware.com/
https://github.com/dtag-dev-sec/tpotce
https://github.com/cisco/joy/
https://www.elastic.co/logstash

[161] Geolite2 database. URL:

https://dev.maxmind.com/geoip/geoip2/geolite2-asn-csv-database/.

[162] Elasticpot Honeypot. URL:

https://gitlab.com/bontchev/elasticpot/.

[163] CVE-2020-14404. URL:

https://ubuntu.com/security/notices/USN-4573-1.

[164] CVE-2020-1350. URL: https://msrc.microsoft.com/update-guide/

en-US/vulnerability/CVE-2020-1350.

[165] Cve-2020-1350 Proof of Concept. URL:

https://github.com/Plazmaz/CVE-2020-1350-poc.

[166] Peter J Rousseeuw. Silhouettes: A graphical aid to the interpretation and

validation of cluster analysis. Journal of Computational and Applied

Mathematics, 20:53–65, 1987.

[167] Tuan-Hong Chua and Iftekhar Salam. Evaluation of machine learning

algorithms in network-based intrusion detection system. Cryptology ePrint

Archive, Paper 2022/335, 2022. https://eprint.iacr.org/2022/335.

[168] Sophos Threat Report 2020. URL:

https://www.sophos.com/en-us/labs/security-threat-report.aspx.

[169] rockyou.txt Wordlist. URL: https://github.com/brannondorsey/

naive-hashcat/releases/download/data/rockyou.txt.

[170] K. Saikawa and V. Klyuev. Detection and classification of malicious access

using a dionaea honeypot. In 2019 10th IEEE International Conference on

Intelligent Data Acquisition and Advanced Computing Systems: Technology

and Applications (IDAACS), volume 2, pages 844–848, 2019.

[171] Sadegh Torabi, Elias Bou-Harb, Chadi Assi, El Mouatez Billah Karbab,

Amine Boukhtouta, and Mourad Debbabi. Inferring and Investigating

IoT-Generated Scanning Campaigns Targeting A Large Network Telescope.

IEEE Transactions on Dependable and Secure Computing, pages 1–17, 2020.

[172] Kali Linux. URL: https://www.kali.org/.

175

https://dev.maxmind.com/geoip/geoip2/geolite2-asn-csv-database/
https://gitlab.com/bontchev/elasticpot/
https://ubuntu.com/security/notices/USN-4573-1
https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2020-1350
https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2020-1350
https://github.com/Plazmaz/CVE-2020-1350-poc
https://eprint.iacr.org/2022/335
https://www.sophos.com/en-us/labs/security-threat-report.aspx
https://github.com/brannondorsey/naive-hashcat/releases/download/data/rockyou.txt
https://github.com/brannondorsey/naive-hashcat/releases/download/data/rockyou.txt
https://www.kali.org/

[173] Meterpreter. URL: https://www.offensive-security.com/

metasploit-unleashed/about-meterpreter.

[174] XMRig. URL: https://github.com/xmrig/xmrig.

[175] Dionaea DoublePulsar emulation. URL:

https://github.com/DinoTools/dionaea/issues/240.

[176] SecurityIntelligence WannaCry Report. URL:

https://securityintelligence.com/news/weekly-security-news-roundup-

wannacry-dominated-ransomware-detections-in-q1-2020/.

[177] VirusTotal. URL: https://virustotal.com/.

176

https://www.offensive-security.com/metasploit-unleashed/about-meterpreter
https://www.offensive-security.com/metasploit-unleashed/about-meterpreter
https://github.com/xmrig/xmrig
https://github.com/DinoTools/dionaea/issues/240
https://virustotal.com/

	Introduction
	Contemporary Intrusion Detection
	Cyber Threat Intelligence
	Motivation
	Research Questions
	Thesis Aims and Contributions
	Thesis Structure

	Background and Related Work
	Modern Threat Landscape
	Malware
	Botnet
	Ransomware

	Multi-stage intrusion
	APTs

	Service Disruption

	Cyber Threat Intelligence
	Honeypot
	Honeypot Types
	Telemetry Extraction
	Deployment Locations
	Security Implementations

	Cyber Threat Intelligence Service
	Services
	Sharing Methodology

	Intrusion Detection
	Network-based IDS
	Host-based IDS
	Misuse Detection
	Anomaly Detection
	Machine Learning

	IDS Data Sets
	Data Set Labelling
	KDD '99 Data Set
	MAWILab Data Set
	Kyoto 2006+ Data Set
	ISCX 2012 Data Set
	CTU-13 Data Set
	UNSW-NB15 Data Set
	CICIDS2017 Data Set

	Research Challenges
	Summary

	Design of Citrus
	Requirements
	Attack Data Availability
	Ground Truth Development
	Near Real-time Attack Detection

	Citrus System Architecture
	Southbound Interface
	Stream Listener
	Cluster Operation Dispatcher
	Storage Operations
	Historic Flow Collector
	Intelligence Collector

	Tangerine
	Driver
	Data Cleaner
	Intelligence Orchestrator
	Intelligence Service Application
	Ground Truth

	Clementine
	Driver
	Data Cleaner
	Model Training and Prediction

	Security Considerations
	Privacy Requirements
	Summary

	Implementation
	Citrus
	Shared Library
	Southbound Interface
	Stream Listener
	Cluster Operations Dispatcher
	Storage Operations
	Historic Flow Collector
	Intelligence Collector

	Tangerine
	Driver
	Intelligence Orchestrator
	Intelligence Service Applications
	Ground Truth

	Clementine
	Driver
	Model Training and Prediction

	Intelligence Sharing
	Summary

	Evaluation
	Evaluation Environment
	Deployed Network Services

	Data Set
	Overview
	Geolocation Analysis
	Source IP Address Analysis
	Destination Port Analysis
	Extracted Features
	Data Set Comparison

	Ground Truth Development
	Methodology
	Results
	Comparison

	Detection Capabilities
	Offline Detection
	Methodology
	Results
	Feature Importance

	Online Detection
	Methodology
	Results

	Classification Performance
	Model Training
	Methodology
	Results

	Online Prediction
	Methodology
	Results

	Summary

	Conclusion and Future Work
	Thesis Contributions
	Summary

	Limitations
	Future Work

	References

