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The Rice-Mele model has two topological and spatially-inversion symmetric phases, namely
the Su-Schrieffer-Heeger (SSH) phase with alternating hopping only, and the charge-density-wave
(CDW) phase with alternating energies only. The chiral symmetry of the SSH phase is robust in
position space, so that it is preserved in the presence of the ends of a finite system and of textures in
the alternating hopping. However, the chiral symmetry of the CDW wave phase is nonsymmorphic,
resulting in a breaking of the bulk topology by an end or a texture in the alternating energies.
We consider the presence of solitons (textures in position space separating two degenerate ground
states) in finite systems with open boundary conditions. We identify the parameter range under
which an atomically-sharp soliton in the CDW phase supports a localized state which lies within
the band gap, and we calculate the expectation value py of the nonsymmorphic chiral operator for
this state, and the soliton electric charge. As the spatial extent of the soliton increases beyond the
atomic limit, the energy level approaches zero exponentially quickly or inversely proportionally to
the width, depending on microscopic details of the soliton texture. In both cases, the difference of py
from one is inversely proportional to the soliton width, while the charge is independent of the width.
We investigate the robustness of the soliton level in the presence of disorder and sample-to-sample
parameter variations, comparing with a single soliton level in the SSH phase with an odd number
of sites.

I. INTRODUCTION

A. The Rice-Mele model

The Rice-Mele model [1] is a one-dimensional tight-
binding model with one electronic orbital per site and
two sites per unit cell, with alternating onsite energies
and alternating nearest-neighbor hopping. It can be con-
sidered to have two topological and spatially-inversion
symmetric phases [2, 3] which lie within the BDI (chiral
orthogonal) classification of topological insulators [4–6]:
the Su-Schrieffer-Heeger (SSH) phase [7, 8] has alternat-
ing hopping only, and the charge-density-wave (CDW)
phase [2, 3, 9] has alternating energies only.

As well as being a model of polymers [1, 7, 8, 10, 11]
and of topological systems in one dimension [2, 3, 12–32],
the Rice-Mele model and its phases have been realized in
engineered atomic lattices [33–40] and with cold atoms
in optical lattices [41–45]. They also have analogies in
higher dimensions including square lattices [30, 46–48],
graphene nanoribbons [49–52], and finite stacks of rhom-
bohedral graphite [53–56].

In position space for a system of J atoms with open
boundary conditions, the Rice-Mele model [1] Hamilto-
nian may be written as a J×J matrix in a basis of atomic
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orbitals,

H=



u t+ 1
2∆ 0 · · · 0 0

t+ 1
2∆ −u t− 1

2∆ · · · 0 0
0 t− 1

2∆ u · · · 0 0
...

...
...

...
...

...
0 0 0 · · · u t+ 1

2∆
0 0 0 · · · t+ 1

2∆ −u


,(1)

where alternating onsite energies are parameterized by u,
parameter t is the mean nearest neighbor hopping, and
alternating hopping is described by ∆. The alternating
energies and hopping give two different atomic sites, la-
beled A and B. The Bloch Hamiltonian in k space written
in the canonical basis [2] with Bloch orbitals on A and B
sites is

H(k) =

(
u 2tck + i∆sk

2tck − i∆sk −u

)
, (2)

ck = cos(ka/2); sk = sin(ka/2),

where a is the lattice constant. This has two bands with

energies E = ±
√
u2 + 4t2 cos2(ka/2) + ∆2 sin2(ka/2).

The band gap occurs at the edge of the first Brillouin
zone k = ±π/a and has value 2

√
u2 + ∆2.

The topological properties of the SSH phase (u = 0)
have been studied at length [2, 3, 7, 8, 12, 15, 16, 18,
19, 23–27, 30–32], and ends and solitons in the ∆ texture
(domain walls in position space separating two degener-
ate ground states) conserve the chiral symmetry. The
CDW phase (∆ = 0) is less well studied [2, 3, 9]; the
chiral symmetry is nonsymmorphic [9, 31, 57, 58] so that
solitons in u and ends in a finite system break the chiral
symmetry. In this paper, we focus on the properties of
non-topological solitons in the CDW phase, and consider
whether they are robust to disorder or sample-to-sample
variations in parameter values.
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TABLE I: Parity and chiral operations for the SSH and CDW models in k space and in position space. In k space (second
column), the Bloch Hamiltonian H(k) is a 2 × 2 matrix (2), and operations are defined in terms of 2 × 2 Pauli matrices σx,
σy, σz. In position space (third column), the Hamiltonian is represented by a square matrix H (1) of order J , where J is the
number of atoms. P is a generalization of the Pauli matrix σx of order J (3). Sz is a generalization of the Pauli matrix σz of
order J (4), Ta/2 a matrix of order J (5) representing translation by an atomic spacing (half a lattice constant). Time inversion
and chiral-parity are symmetries of the full Rice-Mele model, and they may be combined to give charge conjugation-parity
(CP) symmetry. The final three columns show the effect of the operation on the parameters u, t, ∆ of the Rice-Mele model.

operation k space position space u t ∆

time inversion [H(−k)]∗ H∗ u t ∆
SSH parity σxH(−k)σx PHP for even J −u t ∆
SSH chiral −σzH(k)σz −SzHSz −u t ∆
CDW parity H(−k) PHP for odd J u t −∆
CDW chiral −σyH(k)σy −S−1

y HSy u t −∆
where Sy = Ta/2Sz

chiral-parity −σyH(−k)σy −Γ−1HΓ u t ∆
where Γ = PSz for even J

and Γ = PSy for odd J

translation by a/2 σxH(k)σx T−1
a/2HTa/2 −u t −∆

In the remainder of this Introduction, we review the
symmetry properties of the Rice-Mele model, describing
the representation of the nonsymmorphic chiral opera-
tor in position space. Then, we review the Jackiw-Rebbi
mechanism [61] which, in the continuum limit, predicts
the existence of solitons which preserve chiral symme-
try and support localized states at zero energy. In Sec-
tion II, we discuss the properties of atomically-sharp soli-
tons (where the texture is essentially a step function) in
the CDW wave phase in a finite system. We employ nu-
merical calculations as well as perturbation theory for
weak hopping (|t| � |u|) to show that these solitons sup-
port a localized state with energy within the band gap
for a wide range of parameter values but that, by tun-
ing the hopping t to very large values determined by the
system size, the soliton level will eventually merge with
the bulk states. The soliton state is characterized by the
expectation value of the nonsymmorphic chiral operator,
py, which is a generalization of electric polarization.

Section III describes the properties of a soliton with a
spatially-smooth texture of width ξ greater than the lat-
tice constant. As the width ξ increases, the soliton en-
ergy approaches zero exponentially quickly or inversely
proportionally to ξ, depending on microscopic details of
the soliton texture [9]. In both cases, the difference of
py from one is only inversely proportional to ξ, i.e. even
a level at zero energy is not topological in a finite sys-
tem. In Section IV we show numerically that the electric
charge of an atomically-sharp soliton isn’t half integer
in the CDW phase, unlike the SSH phase [10, 61] (for
spinless electrons at half filling), but dependent on the
ratio u/t of the parameters [9]. We find that the charge
is independent of soliton width ξ, so a smooth soliton
has the same charge as an atomically-sharp one, as de-
termined by u/t, even though its energy and py value
are different. In Section V, we discuss solitons in disor-
dered systems [26, 27, 63]. For a Hamiltonian to satisfy

the nonsymmorphic chiral symmetry in position space,
its form is highly restricted, and its parameters must be
uniform across the sample. This means that spatial disor-
der will break the chiral symmetry, but that some types
of sample-to-sample variations (e.g. induced by a gate
potential) will conserve the chirality. Using numerical
calculations, we study the effects of disorder and sample-
to-sample variations on a soliton in the CDW phase, com-
paring with the properties of a soliton in the SSH phase.

B. Symmetries of the Rice-Mele model

The symmetries of the Rice-Mele model are summa-
rized in Table I. The model satisfies time-inversion sym-
metry [2] so that the position space Hamiltonian (1) is
real. For the SSH phase, a center of inversion is mid-bond
and spatial-inversion symmetry (parity) involves swap-
ping A and B sites, as described by σx in k space [2].
In position space, this only holds for an even number of
atoms J and is represented by a matrix P of order J ,

P =



0 0 0 · · · 0 1
0 0 0 · · · 1 0
...

...
...

...
...

...
0 0 1 · · · 0 0
0 1 0 · · · 0 0
1 0 0 · · · 0 0

. (3)

For the CDW phase, a center of inversion is an atomic
site so parity doesn’t involve swapping A and B sites [2].
In position space, parity is still represented by matrix P
of order J as in Eq. (3), but this holds for odd J only.

For the SSH phase, chiral symmetry is represented by
σz in k space, and this may be represented in position
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space as a matrix Sz of order J ,

Sz =



1 0 0 · · · 0 0
0 −1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 −1

 . (4)

Note that Sz may be generalized to an odd number of
atoms with termination of 1 (instead of −1) at the bot-
tom right corner [32]. The chiral symmetry (4) for the
SSH model is extremely robust because Sz is diagonal in
the sublattice space. This means that the chiral symme-
try holds even in the presence of a position-dependent
texture in ∆.

Note that the position space Hamiltonian (1) is real
so the SSH phase satisfies time-inversion symmetry [2].
With chiral symmetry, this places the SSH phase in the
BDI (chiral orthogonal) classification of topological in-
sulators [4–6]. If the hopping parameters acquired a
complex phase, the SSH phase would not satisfy time-
inversion symmetry and would lie in the AIII (chiral uni-
tary) symmetry class [20], but this is not a case we con-
sider in this paper.

Although chiral symmetry of the CDW phase is simply
represented by σy in k space, this is nonsymmorphic [9,
31, 57, 58]. In position space, it can be represented as
Sy = Ta/2Sz which is a matrix product of Sz (4) with
Ta/2 describing translation by an atomic spacing a/2:

Ta/2 =



0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
0 0 0 0 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · 0 1
1 0 0 0 · · · 0 0


, (5)

Sy =



0 −1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 0 0 −1 · · · 0 0
0 0 0 0 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · 0 −1
1 0 0 0 · · · 0 0


, (6)

where Sy is written for even J . In contrast to Sz, chiral
symmetry in the CDW phase is fragile in position space,
and it is violated by an end or a texture in the alter-
nating energies. Note that a chiral symmetry which is
a combination of sublattice symmetry and a shift of the
energy spectrum (i.e. a shift proportional to the iden-
tity matrix) has recently been discussed in the context of
non-Hermitian systems [59].

In Table I, we also include chiral-parity [9, 60] which is
a symmetry of the Rice-Mele model. It may be com-

bined with time-inversion to give charge conjugation-
parity (CP) symmetry, guaranteeing electron-hole sym-
metry of the electronic spectrum.

C. Jackiw-Rebbi mechanism

Although the chiral symmetry Sy of the CDW phase
tight-binding model (6) is fragile, there are levels at zero
energy localized on a soliton in the continuum limit, as
described by the Jackiw-Rebbi mechanism [61]. The con-
tinuum Hamiltonian is obtained by substituting k →
−(π/a) + p̂/~ [62] in H(k), Eq. (2), where p̂ is the mo-
mentum operator,

H = vp̂σx + ∆(x)σy + u(x)σz,

where the velocity is v = at/~. In the SSH phase, u(x) =
0, we consider a soliton profile of the staggered hoppings
∆(x) centred on x = 0 with limits given by

lim
x→−∞

∆(x) = −s∆0; lim
x→∞

∆(x) = s∆0, (7)

for ∆0 > 0 with parameter s = ±1 describing two dif-
ferent textures. Then, there is a single localized state
for each texture with energy E = 0 [2, 7, 8, 61], and
(unnormalized) wave functions given by

ψs(x) = e−
s
~v

∫ x
0

∆(x′)dx′
(

(1− s)/2
(1 + s)/2

)
. (8)

For the CDW phase, ∆(x) = 0, we consider a soliton
profile of the onsite energies u(x) centred on x = 0 with
limits given by

lim
x→−∞

u(x) = −su0; lim
x→∞

u(x) = su0, (9)

for u0 > 0 with parameter s = ±1 describing two differ-
ent textures. Then, there is a single state with energy
E = 0 [13] and (unnormalized) wave function given by

ψs(x) = e−
s
~v

∫ x
0
u(x′)dx′

(
1
is

)
. (10)

Thus, a smooth soliton in the continuum limit should
support a zero-energy state with topological proper-
ties [9]. It is the aim of this paper to model the properties
of solitons in finite systems where the chiral symmetry
of the CDW phase is broken. We begin by considering
atomically-sharp solitons and describing the parameter
values for which they support a localized state with en-
ergy within the bulk band gap.

II. ATOMICALLY-SHARP SOLITONS

A. Qualitative picture for weak hopping

We consider atomically-sharp domain walls in the
CDW phase, Fig. 1. As an illustrative example, Fig-
ure 1(a) shows a finite system with open boundary con-
ditions and J = 8 atoms, and with a soliton consisting
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E1=E4=E6=E8=+u0

(b) Antisoliton
+ ++ +- - - -
1 3 5 72 4 6 8

E5=E7=-u0
E23=-u0+t

E'23=-u0-t

E

-u0

u0
0

E5=E7=+u0

(a) Soliton
+ ++ +- -- -

1 3 5 72 4 6 8

E1=E4=E6=E8=-u0

E23=u0-t

E'23=u0+tE

-u0

u0
0

FIG. 1: Atomically-sharp domain walls in the CDW phase,
shown schematically for a finite system with open boundary
conditions and J = 8 sites, where numbers 1, 2, . . . J label
sites. Straight lines indicate nearest-neighbor hopping t and
± symbols indicate alternating onsite energies u0 and −u0,
with u0 > 0. (a) a soliton consisting of two consecutive onsite
energies −u0 on sites 2 and 3. For hopping t = 0, energy
levels are degenerate at E = u0 or E = −u0. To first order in
degenerate perturbation theory in t, the levels on sites 2 and
3 are split as E′23 = −u0 − t and E23 = −u0 + t. The latter
lies within the band gap −u0 < E < u0, and we refer to it
as a soliton because it generally lies at negative energy. (b)
an antisoliton consisting of two adjacent onsite energies u0 on
sites 2 and 3. To first order in degenerate perturbation theory
in t, the levels on sites 2 and 3 are split as E′23 = u0 + t and
E23 = u0− t. The latter lies within the band gap −u0 < E <
u0, and we refer to it as an antisoliton because it generally
lies at positive energy.

of two consecutive onsite energies −u0 on sites 2 and 3.
We use u0 (where u0 ≥ 0) to denote the magnitude of
the staggered onsite energies u at the ends of the system
(away from the soliton). In the case of an atomically-
sharp soliton, every atom in the system has an onsite
energy of ±u0. We also assume t ≥ 0.

To describe the origin of a state within the band gap
and localized on the soliton, we consider the regime of
weak nearest-neighbor hopping t < u0. At t = 0, all
states are localized on independent atoms and have ener-
gies determined by the onsite energies, namely E = +u0

or E = −u0, and they are highly degenerate. Using de-
generate perturbation theory, to first order in t, hopping
t hybridizes the two degenerate orbitals immediately ad-
jacent to the soliton [sites 2 and 3 in Figure 1(a)]. In the
2 × 2 space of these two atoms, with ψT2 =

(
1 0

)
and

ψT3 =
(
0 1

)
, the interaction is tσx. It results in splitting

of these two levels, as E′23 = −u0− t and E23 = −u0 + t.
The latter lies within the band gap −u0 < E < u0, and
we refer to it as a soliton because it generally lies at
negative energy. Note that it corresponds to the anti-
bonding (higher-energy) state between sites 2 and 3, i.e.

ψT23 =
(
1 1

)
/
√

2. To second order perturbation in t, we
find its energy eigenvalue Esol is

Esol = −u0 + t− t2

2u0
, (11)

where the second order term describes interaction with
the two closest sites with opposite energy [sites 1 and 4
in Figure 1(a)]. We note that this expression is indepen-

dent of the length of the system or the position of the
soliton (assuming a soliton always occurs between unit
cells) because it only involves orbitals on the four sites
near the soliton.

Figure 1(b) shows an antisoliton which consists of two
consecutive onsite energies u0 on sites 2 and 3; we name
this an antisoliton because it is generally at positive en-
ergy. Note that it arises from bonding between the two
sites, ψT23 =

(
1 −1

)
/
√

2. To second order in perturba-
tion in t, we find its energy eigenvalue is Eantisol = −Esol,
with Esol given in Eq. (11).

We determine expectation values of the chiral opera-
tors Sz and Sy for the soliton state which are generalized
versions of electric polarization,

pz = 〈ψ|Sz|ψ〉, (12)

py = 〈ψ|Sy|ψ〉, (13)

where Sy = Ta/2Sz. Using degenerate perturbation the-
ory for small t, it is sufficient to consider only four
atoms in the vicinity of a soliton [e.g. sites 1-4 in
Figure 1(a)]. To first order in t, the soliton state is

ψT =
(
−τ 1 1 −τ

)
/
√

2(1 + τ2) for τ = t/(2u0). This

yields psol
z = 0 and

psol
y =

(1 + τ)2

2(1 + τ2)
, τ =

t

2u0
. (14)

This predicts psol
y = 1/2 for t = 0 and psol

y > 1/2 for

t > 0. For the antisoliton, pantisol
y = −psol

y .

B. Numerical results

Energy eigenvalues En and eigenstates ψn, n =
1, 2, . . . , J , are obtained by numerical diagonalization of
the position space Hamiltonian (1) with a texture in the
onsite energies u (and ∆ = 0 for the CDW phase). The
soliton state has index n = J/2 for even J . The density of
states per unit energy g(E) is determined numerically by
approximation using a Lorentzian with a finite width δ,

g(E) =
1

π

∑
n

δ

(E − En)2 + δ2
. (15)

We begin by discussing when a single atomically-sharp
soliton results in a localized state with an energy level
within the bulk band gap. We consider a system with
an even number of atoms, J , where J = 2N with N unit
cells. Fig. 2 shows a single atomically-sharp soliton in the
CDW phase located at the center of a finite system with
open boundary conditions (there are an even number of
unit cells in total). Fig. 2(a) shows the density of states
determined numerically for a system with J = 16 atoms
using Eq. (15) with broadening δ = 0.005u0 and t/u0 =
2.0. An energy level can be observed within the bulk
band gap −u0 < E < u0 at Esol = −0.268u0. Fig. 2(b)
plots the probability density |ψj |2 per site j = 1, 2, . . . , 16
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(c)

E
so
l/u

0

t/u0

p y

t/u0

(d)
j

E
/u

0

g(E) (1/u0)

|�
j|2

(b)(a)

J=200

J=16

J=8

FIG. 2: A single atomically-sharp soliton in the CDW phase,
at the center of a finite system with open boundary conditions.
(a) shows the density of states determined numerically for a
system with J = 16 atoms using Eq. (15) with broadening
δ = 0.005u0. (b) is the probability density |ψj |2 per site
j = 1, 2, . . . , 16 for the energy level localized on the soliton
(with energy Esol = −0.268u0). In (a) and (b), t = 2.0u0.
(c) shows the energy eigenvalue Esol plotted as a function of
the ratio t/u0 of the hopping to the alternating onsite energy,
where the dotted line indicates the bulk band edge E = −u0.
(d) shows the polarization py of the soliton eigenstate, where
py measures the chiral symmetry of the CDW phase (13). In
(c) and (d), black diamonds are numerical data points for a
system with J = 200 atoms, red squares are numerical data
points for J = 16 atoms, and blue circles are numerical data
points for J = 8 atoms. Dashed lines represent the predictions
of degenerate perturbation theory for t� u0, namely Eq. (11)
for the soliton energy and Eq. (14) for the polarization py.

for the state corresponding to this level, showing that the
state is localized at the soliton.

Fig. 2(c) shows the energy eigenvalue Esol of a single
state plotted as a function of the ratio t/u0 of the hop-
ping to the alternating onsite energy, for different sys-
tem sizes. The horizontal dotted line shows the band
edge E = −u0, and we find that there is a single level
within the gap, but below zero energy, −u0 < Esol < 0
for 0 < t/u0 < J/2 where J is the number of atoms. For
small t/u0, there is agreement with the prediction of per-
turbation theory Eq. (11) (dashed line). For large t/u0,
the energy is exactly Esol = −u0 for t/u0 = J/2. This
can be shown analytically, as in Appendix A. Fig. 2(c)
shows this energy explicity for J = 8 (blue circles) and
for J = 16 (red squares).

The polarization py is plotted in Fig. 2(d) and, for
small t/u0, there is agreement with the prediction of per-
turbation theory Eq. (14) (dashed line). The energy level
Esol is within the band gap for a wide range of parame-

(a)

E
so
l/u
0

t/u0

p y

t/u0

(b)
M

2
4
6
8

M

2

4
6
8

FIG. 3: A single atomically-sharp soliton in the CDW phase,
in a finite system of J = 16 atoms with open boundary con-
ditions. The soliton is placed in different positions, with nu-
merical data showing the soliton at a distance from the closest
end of M = 2 atoms (blue diamonds), 4 atoms (magenta cir-
cles), 6 atoms (black crosses), and 8 atoms (red squares). (a)
shows the energy eigenvalue of a single soliton Esol plotted
as a function of the ratio t/u0 of the hopping to the alter-
nating onsite energy, where the dotted line indicates the bulk
band edge E = −u0. (b) shows the polarization py of the
soliton eigenstate, where py measures the chiral symmetry of
the CDW phase (13). In both plots, dashed lines represent
the predictions of degenerate perturbation theory for t� u0,
namely Eq. (11) for the soliton energy and Eq. (14) for the
polarization py.

ters, although not necessarily near zero energy. It can ap-
proach arbitrarily close to zero, with polarization py ar-
bitrarily close to one, for a system that is sufficiently long
J � 1 and with tuned parameters, typically t > u0 (black
diamonds in Fig. 2 show numerical data for J = 200).
However, the existence of the energy at the band edge
Esol = −u0 for t/u0 = J/2 explicitly demonstrates that
a finite system breaks the bulk topology: parameter t,
which conserves the bulk chiral symmetry, can be tuned
to a high value, moving the level away from zero energy
and out of the band gap at t/u0 = J/2.

Fig. 3 shows a single atomically-sharp soliton in the
CDW phase located at different positions in a finite sys-
tem of J = 16 atoms with open boundary conditions.
Again, the horizontal dotted line shows the band edge
E = −u0, and we find that there is a single state within
the gap, but below zero energy, −u0 < Esol < 0 for
a range of t values. At the very least, this range is
0 < t/u0 < M where M is the number of atoms between
the soliton and the closest end of the system.

For an atomically-sharp soliton, the energy level Esol

can approach zero and the polarization py can approach
one for a long system by increasing the ratio t/u0. How-
ever, increasing the ratio t/u0 also increases the total
band width (4t) as compared to the band gap (2u0). An
alternative way to tune the properties of the soliton is
to make it spatially smooth with a characteristic width
greater than the lattice constant.
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(c)

E
so

l/u
0

p y

ln�

atomically-smooth solitons

(d)

�

(b)(a)

ln
(|E

so
l/u
0|)

�

�

ln
(1
-p
y)

t/u0=2.0

t/u0=0.5

t/u0=0.5

t/u0=2.0

FIG. 4: Dependence in the CDW phase on soliton width ξ,
for a single atomically-smooth soliton (16) at the center of a
finite system with open boundary conditions and J = 5000
atoms. The width ξ is dimensionless (the physical width in
units of the atomic spacing a/2). In all plots, black diamonds
are numerical data points for t/u0 = 2.0, and blue circles
are for t/u0 = 0.5. (a) shows the soliton energy level Esol,
(b) shows ln(|Esol/u0|) versus ξ with linear fits (solid lines).
Fitting is done with data up to the point where Esol is zero
within numerical precision (2.0 ≤ ξ ≤ 9.0 for t/u0 = 2.0 and
4.0 ≤ ξ ≤ 17.5 for t/u0 = 0.5). (c) shows the polarization py,
(d) shows a log-log plot with ln(1− py) versus ln ξ and linear
fits (solid lines). Fitting is done with data for 100 ≤ ξ ≤ 5000.

III. SMOOTH SOLITONS

We determine the properties of spatially-smooth soli-
tons, generalizing the atomically-sharp domain wall in
Figure 1(a). There are two ways [9] to model smooth
solitons in the CDW phase: (i) atomically-smooth soli-
tons where the energies vary smoothly on the atomic scale
so that the magnitude of onsite energies of A and B sites
within the same unit cell are slightly different, and (ii)
unit-cell-smooth solitons where the energies within the
unit cell (on A and B sites) have the same magnitude.
Ref [9] showed that the energy Esol of the former depends
exponentially on soliton width whereas the energy Esol

of the latter varies inversely proportionally to the width.
Here we consider both types of soliton, including the de-
pendence of Esol on parameters (i.e. the ratio t/u0) and
the behavior of the polarization py.

(c)

E
so

l/u
0

p y

ln�

ln�

unit-cell-smooth solitons

(d)

�

(b)(a)

ln
(|E

so
l/u
0|)

�

ln
(1
-p
y) t/u0=0.5

t/u0=2.0

FIG. 5: Dependence in the CDW phase on soliton width ξ, for
a single unit-cell-smooth soliton (19) at the center of a finite
system with open boundary conditions and J = 5000 atoms.
The width ξ is dimensionless (the physical width in units of
the atomic spacing a/2). In all plots, black diamonds are
numerical data points for t/u0 = 2.0, and blue circles are for
t/u0 = 0.5. (a) shows the soliton energy level Esol, (b) shows
a log-log plot of ln(|Esol/u0|) versus ln ξ with the solid line
showing Esol/u0 = −1/(2ξ) (20). Note that numerical data
points (for t/u0 = 0.5 and for t/u0 = 2.0) coincide. (c) shows
the polarization py, (d) shows a log-log plot with ln(1 − py)
versus ln ξ and linear fits (solid lines). Fitting is done with
data for 100 ≤ ξ ≤ 5000.

A. Atomically-smooth solitons

To model an atomically-smooth soliton, we implement
onsite energies uj with site index j = 1, 2, . . . J as

uj = (−1)ju0 tanh

(
j − j0
ξ

)
, (16)

where u0 is the magnitude at infinity, and ξ is the width
in dimensionless units written as the physical width di-
vided by the atomic spacing (a/2). For domain walls
centred between unit cells, the center j0 should be an
even number plus 1/2, e.g. for a centre between sites 2
and 3 as in Figure 1(a), then j0 = 5/2. The energy pro-
file for an antisoliton is the same as in Eq. (16) but with
an additional minus sign.

Fig. 4 shows the dependence of Esol and py on soliton
width ξ for a single soliton (16) at the center of a finite
system with open boundary conditions and J = 5000
atoms. Fig. 4(a) and (b) show that Esol approaches zero
exponentially quickly [9] with ξ,

Esol ∝ −e−ξ/`, (17)
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with a ξ-independent parameter `. However, Fig. 4(c)
and (d) show that py approaches one much more slowly.
We fit ln(1− py) versus ln ξ to a straight line y = mx+
c with data in the range 500 ≤ ξ ≤ 5000. Repeating
this for different data sets in the range 0.1 ≤ t/u0 ≤
10.0 yields m = −0.998 ± 0.001, so we deduce that the
difference 1− py is inversely proportional to ξ,

1− py ∝
1

ξ
. (18)

Thus, it is possible to have a zero energy state (within
numerical precision) that breaks the bulk topology as
indicated by non-integer py, even for ξ � 1.

B. Unit-cell-smooth solitons

To model a unit-cell-smooth soliton, we implement on-
site energies uj with site index j = 1, 2, . . . J as

uj = ±u0 tanh

(
j ∓ 1/2− j0

ξ

)
, (19)

where the plus (minus) sign is for the B (A) atom in
the unit cell, u0 is the magnitude at infinity, and ξ is
the width in dimensionless units written as the physical
width divided by the atomic spacing (a/2). For domain
walls centred between unit cells, the center j0 should be
an even number plus 1/2. The energy profile for an anti-
soliton is the same as in Eq. (19) but with an additional
minus sign.

Fig. 5 shows the dependence of Esol and py on soliton
width ξ for a single soliton (19) at the center of a finite
system with open boundary conditions and J = 5000
atoms. Fig. 5(a) and (b) show that Esol approaches zero
inversely proportionally with ξ [9]. The numerical data
in Fig. 5(b), for t/u0 = 0.5 and for t/u0 = 2.0, coincides
for ξ � 1, showing that Esol/u0 is independent of t/u0 in
this regime. We fit ln(|Esol/u0|) versus ln ξ to a straight
line y = mx + c with data in the range 500 ≤ ξ ≤ 5000.
Repeating this for different data sets in the range 0.1 ≤
t/u0 ≤ 10.0 yields m = −0.998± 0.001 and c = −0.71±
0.01, so we deduce that

Esol ≈ −
u0

2ξ
. (20)

This equation is shown as the solid line in Fig. 5(b).
Fig. 5(c) and (d) show polarization py as a function of

width ξ, and this numerical data is very similar to that
of the atomically-smooth soliton, Fig. 4(c) and (d). For
ξ � 1, the difference in the two sets of data is negligi-
ble. This demonstrates that 1 − py is inversely propor-
tional to ξ, Eq. (18), and that py doesn’t depend on the
microsopic profile of the soliton (atomically-smooth or
unit-cell-smooth).

In the remainder of this paper, we present numerical
data for atomically-smooth solitons (16) because the data
for unit-cell-smooth solitons (19) is qualitatively the same

(for both soliton charge and robustness to disorder). In
Section V, we consider how robust the state localized on a
soliton in the CDW phase is to different types of disorder.
Before that, Section IV, we consider the electric charge
of the soliton in the CDW phase.

IV. ELECTRIC CHARGE OF THE SOLITON

The electric charge of a soliton texture in ∆ in the SSH
phase is half-integer [10, 61] (for spinless electrons at half
filling) and generally fractional [1, 10, 13] for a soliton
texture in ∆ in the Rice-Mele model. Now we determine
the electric charge of the soliton in u in the CDW phase.
We consider a system of spinless electrons at half filling
and at zero temperature, with electron charge −e where
e > 0. For a finite system of J atoms, the electronic
charge is −eJ/2 in total. The soliton level discussed in
the previous sections is the highest occupied energy level.
Its eigenstate is normalized to unit probability over the
whole sample so that, if one were to consider this state in
isolation and integrate over the whole sample, one would
incorrectly conclude that the soliton charge was −e. The
presence of the soliton state disturbs the other states and,
in determining soliton charge, it is necessary to sum over
all valence band levels in the spatial vicinity of the soli-
ton.

In order to determine the soliton charge numerically,
we consider a system in position space with periodic
boundary conditions in order to eliminate any spurious
end effects, Fig. 6(a), (b). We then introduce a pair of a
soliton and an antisoliton which are widely separated at
the opposite sides of the ring, dubbed ‘left’ and ‘right’,
respectively. Left (L) sites are j = 1, 2, . . . , J/2 and right
(R) sites are j = J/2 + 1, J/2 + 2, . . . , J . The antisoliton
has the inverted texture of the soliton, i.e. it has the
same magnitude of parameters u, ξ, etc, and is, there-
fore, assumed to have the opposite charge of the soliton.
Then, the soliton charge is determined by calculating the
difference in the total charges on the left and right sides
of the ring by summing over all negative energy states
with index n = 1, 2, . . . , J/2:

Qsol = −e
2

J/2∑
n=1

∑
j∈L
|ψn,j |2 −

∑
j∈R
|ψn,j |2

 . (21)

The numerical procedure fails when the soliton and anti-
soliton energy levels are zero (within numerical precision)
and, thus, degenerate because the corresponding eigen-
states may be linear combinations of the two (and not
solely localized on the left or the right). Such degeneracy
can be broken by introducing an infinitesimal symmetry
breaking e.g. a tiny value of ∆ in the CDW phase. How-
ever, here we consider cases when the energy levels aren’t
degenerate (i.e. an atomically-sharp soliton or a smooth
one with ξ not too large).

The charge of an atomically-sharp soliton was deter-
mined analytically in Ref. [9] by relating it to the charge
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FIG. 6: (a), (b) Schematic of the set-up for determining soli-
ton electric charge numerically (21) with a soliton on the left
and an antisoliton on the right of a system with periodic
boundary conditions and J = 8 atoms. (a) is for a texture
in onsite energies in the CDW phase, indicated by plus and
minus symbols, (b) is for a texture in hopping strengths in
the SSH phase, indicated by solid and dashed lines. Dash-
dot vertical blue lines show the boundary between the left
and right sides. (c), (d) Soliton electric charge Qsol in the
CDW phase determined for a system with J = 5000 atoms.
(c) shows the charge of an atomically-sharp soliton as a func-
tion of t/u0 with numerical data (diamonds) and the ana-
lytic formula (22) [9] (solid line). (d) Dependence of the
charge on soliton width ξ for an atomically-smooth soliton.
In both plots, symbols are numerical data and solid lines are
the analytic formula (22). Data is only plotted until the point
when the soliton energy Esol is zero within numerical preci-
sion (see main text). Blue circles are t/u0 = 0.5, red squares
are t/u0 = 1.0, black diamonds are t/u0 = 2.0, and magenta
crosses are t/u0 = 4.0,

of the ends of a chain in the pristine CDW phase (e.g.
the charge of a soliton with two consecutive −u0 onsite
energies as in Fig. 1(a) can be related to the charge at the
end of a chain that terminates with −u0). For complete-
ness, we briefly outline this derivation in Appendix B,
which gives the charge of an atomically-sharp soliton [9]
as

Qsol ≈ −
e

2
[1− ζ(u0)] , (22)

where

ζ(u0) ≈ 2

π

|u0|√
u2

0 + 4t2
K

(
2t√

u2
0 + 4t2

)
, (23)

and K(x) is the complete elliptic integral of the first kind,

K(x) =

∫ π/2

0

dθ√
1− x2 sin2 θ

. (24)

The function ζ(u0) describes the magnitude of the dif-
ference in probability densities |ψB |2 − |ψA|2 for the oc-
cupied valence bands, and it modifies Qsol by describing
an unequal distribution of charge between the two sub-
lattices. Note that ζ(u0) ≥ 0 by definition and it is in-
dependent of the sign of u0. Function K(x) = π/2 for
x � 1 and K(x) → ∞ for x → 1. This means that
ζ(u0) → 1 for u0 � t and ζ(u0) → 0 for u0 � t. Hence
Qsol → 0 for u0 � t and Qsol → −e/2 for u0 � t (for a
sufficiently large system with J � 1).

Figure 6(c),(d) show numerical data (symbols) for the
soliton charge Qsol for a system with J = 5000 atoms,
and solid lines are fits to the analytic formula (22). Fig-
ure 6(c) is for an atomically-sharp soliton, showing de-
pendence on the ratio t/u0, and the agreement of numer-
ics with analytics (22) is extremely good. As with Esol

and py (discussed in Section II), it is possible to increase
the ratio t/u0 and approach the value Qsol = −e/2 ex-
pected for a topological system (as long as t/u0 doesn’t
become huge t/u0 ∼ J).

Numerically, we implement a smooth soliton and anti-
soliton pair, with the same width ξ, as uj = (−1)j+1u0 +
(−1)ju0 tanh[(j−j1)/ξ]+(−1)j+1u0 tanh[(j−j2)/ξ], with
centers j1 and j2. Figure 6(d) shows that Qsol is inde-
pendent of the soliton width ξ [64], so that the analytic
formula (22) remains applicable even for a smooth soli-
ton. In this respect, Qsol behaves quite differently to Esol

and py. Note that we only plot numerical data until the
point when the soliton energy becomes zero within nu-
merical precision, because the numerical procedure fails
when the soliton and antisoliton levels are degenerate.

The soliton charge is independent of the width and
microscopic structure of the texture [64] in the CDW
phase, and this can be understood by considering the
regime of weak hopping (t � u0). We discuss the
example in Fig. 6(a) with only J = 8 atoms, a soli-
ton centered between sites 2 and 3 on the left, and
an antisoliton centered between sites 6 and 7 on the
right. When t = 0, the states ψj are all localized on
atoms with position index j = 1, 2, . . . , J , e.g. ψT2 =(
0 1 0 0 0 0 0 0

)
. Both left and right sides have two

occupied valence band states ψ2 and ψ3, ψ5 and ψ8, so
that the charge (21) is zero. For finite t (with t � u0),
the valence band states associated with the soliton on
the left are ψTsol =

(
−τ 1 1 −τ 0 0 0 0

)
/
√

2(1 + τ2)

and ψTsol′ =
(
τ 1 −1 −τ 0 0 0 0

)
/
√

2(1 + τ2) with
τ = t/(2u0). These states are still fully localized on
the left side, so still contribute a probability of two.
However, the valence band states associated with the
boundary sites 5 and 8 extend across the boundary as
ψT5 =

(
0 0 0 −τ 1 −τ 0 0

)
/
√

1 + 2τ2 and ψT8 =(
−τ 0 0 0 0 0− τ 1

)
/
√

1 + 2τ2. Thus, the presence
of the soliton and antisoliton modifies other valence band
states, including those at the boundary, which leads to a
motion of charge between the right and left sides. Using
Eq. (21), Qsol = −2eτ2 = −et2/(2u2

0) which agrees with
the atomically-sharp result (22) to lowest order in t/u0.
Note that this estimate depends only on the magnitude
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TABLE II: Soliton electric charge in the CDW phase depend-
ing on the particular soliton state where Q is charge in a
spinless system (rows 2-5), Q̃ is charge in a spinful system
(rows 6-11). Subscript ‘sol’ (‘antisol’) indicates a soliton (an-
tisoliton) and superscript 0, 1, or 2 indicates the occupancy
of the soliton state. The function ζ(u0) is an analytical ap-
proximation [9] given in Eq. (23). The electron charge is −e
where e > 0.

state charge u0 � t u0 � t

Q
(0)
sol e(1 + ζ)/2 e e/2

Q
(1)
sol −e(1− ζ)/2 0 −e/2

Q
(0)
antisol e(1− ζ)/2 0 e/2

Q
(1)
antisol −e(1 + ζ)/2 −e −e/2

Q̃
(0)
sol e(1 + ζ) 2e e

Q̃
(1)
sol eζ e 0

Q̃
(2)
sol −e(1− ζ) 0 −e

Q̃
(0)
antisol e(1− ζ) 0 e

Q̃
(1)
antisol −eζ −e 0

Q̃
(2)
antisol −e(1 + ζ) −2e −e

of the texture u0 at the boundary as it appears in ψ5

and ψ8, and is independent of the microscopic details of
the texture near the soliton center, including the texture
shape and width ξ.

We can consider soliton charge in the SSH phase in a
similar way, using the fully-dimerized limit ∆ = 2t [19].
Fig. 6(b) shows a soliton centered on site 3 on the left,
and an antisoliton centered on site 7 on the right, solid
lines correspond to non-zero hopping (magnitude 2t),
dashed lines to zero hopping (fully broken bonds). The
isolated state on site 3 is at E = 0, the dimers give a
valence band state at E = −2t with probability equally
distributed on both sites, and the trimer (sites 6, 7, 8) has
a valence band state at E = −2t and a state at E = 0
(plus a conduction band state). For the valence band
states at E = −2t, both sides have a contribution to the
probability of 3/2 (half integer because of the dimer state
on sites 4 and 5). There are also two E = 0 states: one on
the soliton on the left and one on the antisoliton on the
right, but only one of them may be occupied. Thus, the
charge of the soliton on the left is Qsol = ±e/2 [10, 13, 61]
where the plus (minus) sign is for when it is unoccupied
(occupied).

Here we have considered spinless electrons at half fill-
ing. For spinless electrons in the CDW phase, the charge
Q(n) for different occupancy of the soliton state (n = 0, 1)

may be found from Q
(1)
sol , Eq. (22), and Q

(0)
antisol = −Q(1)

sol
by adding or subtracting electric charge ∓e [9], and
the results are summarized in rows 2-5 of Table II.
For spinful electrons, we denote soliton charge as Q̃,

and twofold spin degeneracy gives Q̃
(2)
sol = 2Q

(1)
sol and

Q̃
(0)
antisol = 2Q

(0)
antisol. Then, by adding or subtracting elec-

tric charge ∓e we find the soliton charge for different

occupancy (n = 0, 1, 2), and the results are summarized
in rows 6-11 of Table II. We introduce parameter n0 such
that n0 + 1 is equal to the number of different possible
occupations of the state, i.e. 0 ≤ n ≤ n0. Then, the
results for the spinless case (n0 = 1) and the spinful case

(n0 = 2) may be combined as Q
(n)
sol ≈ e[n0(1 + ζ)− 2n]/2

and Q
(n)
antisol ≈ e[n0(1−ζ)−2n]/2. In the large bandwidth

limit u0 � t (fourth column of Table II), then ζ → 0 and
the soliton and antisoliton charges with the same occu-
pancy are equal, and they coincide with the known values
for topological solitons in the SSH phase [13] as described
by Q(n) = e(n0 − 2n)/2.

V. DISORDER AND SAMPLE-TO-SAMPLE
PARAMETER VARIATIONS

A. Nonsymmorphic chiral symmetry in position
space

We begin by considering the general form of a J × J
Hamiltonian H in position space which satisfies nonsym-
morphic chiral symmetry S−1

y HSy = −H. For even J , it
may be written generically as

H =



h1 h2 h3 . . . h∗3 h∗2
h∗2 −h1 h2 . . . h∗4 −h∗3
h∗3 h∗2 h1 . . . h∗5 h∗4
...

...
...

...
...

...
h3 h4 h5 . . . h1 h2

h2 −h3 h4 . . . h∗2 −h1

 , (25)

where h1, h2, . . . , hJ/2+1 are arbitrary components. With
the property of hermicity, there are J real numbers:
h1 and hJ/2+1 are real, and the other components,
h2, h3, . . . , hJ/2, are complex. The CDW phase satisfies
this symmetry, but only with periodic boundary condi-
tions, and no textures in the components. Note that it
is not possible to write a non-zero Hamiltonian that sat-
isfies this symmetry for odd J .

To satisfy the nonsymmorphic chiral symmetry, the
components hi must be uniform across the entire sam-
ple. Thus it is not possible to have microscopic disorder
within a sample; in order to satisfy the symmetry, vari-
ations must be restricted to parameter values that differ
from sample to sample within an ensemble (e.g. as in
gate-induced variations). In the following, we consider
the robustness of the soliton states in a finite system to
four different types of disorder [26, 27, 63] or sample-to-
sample variatons: (i) ‘onsite disorder’ (diagonal) gives
an additional contribution to the onsite energy of site
j = 1, 2, . . . , J as δεj , where δεj is drawn randomly from
a uniform distribution −W ≤ δεj ≤ W with disorder
strength W ; (ii) ‘hopping disorder’ (off-diagonal) gives
an additional contribution to the nearest-neighbor hop-
ping between site j and j + 1 of δtj , j = 1, 2, . . . , J − 1,
where δtj is drawn randomly from a uniform distribu-
tion −W ≤ δtj ≤ W . For a given j, both δεj and δtj
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FIG. 7: Dependence of the disorder-averaged density of states
〈g(E)〉 on energy E in the SSH phase for a single soliton (26)
with width ξ = 50, t/∆0 = 1, at the center of a finite system
with open boundary conditions and J = 501 atoms. For all
plots, the disorder strength is W/∆0 = 0.5, and 〈g(E)〉 is de-
termined using Eq. (15) with broadening δ = 0.005∆0. (a) is
for onsite disorder (black), (b) is hopping disorder (magenta),
(c) is onsite variations (red), and (d) is hopping variations
(blue). Averaging is done with respect to 10, 000 disorder
realizations.

also vary between members of the ensemble. (iii) ‘onsite
variations’ give an additional contribution to the stag-
gered onsite energy δu that is uniform across the entire
sample, but is drawn randomly from a uniform distri-
bution −W ≤ δu ≤ W for different ensemble members;
(iv) ‘hopping variations’ give an additional contribution
to the nearest-neighbor hopping δt that is uniform across
the entire sample, but is drawn randomly from a uniform
distribution −W ≤ δt ≤ W for different ensemble mem-
bers.

As an example, onsite disorder in the CDW phase
(without solitons) would give onsite energies u+δε1,−u+
δε2,+u + δε3, . . . ,−u + δεJ for the first member of the
ensemble, u + δε′1,−u + δε′2,+u + δε′3, . . . ,−u + δε′J for
the second, u+ δε′′1 ,−u+ δε′′2 ,+u+ δε′′3 , . . . ,−u+ δε′′J for
the third, etc., where δεj 6= δε′j 6= δε′′j . However, onsite
variations in the same phase would give onsite energies
(u+ δu),−(u+ δu),+(u+ δu), . . . ,−(u+ δu) for the first
member of the ensemble, (u + δu′),−(u + δu′),+(u +
δu′), . . . ,−(u + δu′) for the second, (u + δu′′),−(u +
δu′′),+(u+δu′′), . . . ,−(u+δu′′) for the third, etc., where
δu 6= δu′ 6= δu′′.
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FIG. 8: Dependence in the SSH phase on disorder strength W
for a single soliton (26) with width ξ = 50, t/∆0 = 1, at the
center of a finite system with open boundary conditions and
J = 501 atoms. In all plots, black diamonds show numer-
ical data for onsite disorder, magenta circles show hopping
disorder, red squares show onsite variations, and blue crosses
show hopping variations. Averaging is done with respect to
10, 000 disorder realizations. (a) shows the mean soliton en-
ergy 〈Esol〉 with error bars, with each data set offset from zero
by multiples of 0.04∆0. (b) shows the standard deviation σE

of Esol. (c) shows the mean polarization 〈pz〉 with error bars.
(d) shows the standard deviation σp of pz.

B. Numerical methodology

For a given disorder realization, the Hamiltonian is di-
agonalized, and the states are ordered from lowest energy
upwards with labels n = 1, 2, . . . , J . Averages with re-
spect to disorder are made with an ensemble of 10, 000
disorder realizations, and the properties (e.g. energy and
polarization) of the levels with the same label n are av-
eraged. In the results we present, we focus on the soliton
state with label n = J/2 for even J , or n = (J + 1)/2
for odd J . We present results for the mean soliton en-
ergy 〈Esol〉 and its standard deviation σE , and the mean
polarization 〈py〉 and its standard deviation σp.

C. Solitons in the SSH phase

Before considering a soliton in the CDW phase, we
consider an exemplar of preservation of bulk topology [26,
27, 30], namely a single soliton in the SSH phase (u0 = 0)
for a system with an odd number of atoms and stronger
bonds at the ends. It supports a single localized state
at zero energy [63]. For a nearest-neighbor bond t` with
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FIG. 9: Dependence of the disorder-averaged density of states
〈g(E)〉 on energy E in the CDW phase for a single soliton (16)
with width ξ = 50, t/u0 = 1, at the center of a finite system
with open boundary conditions and J = 500 atoms. For all
plots, the disorder strength is W/u0 = 0.5, and 〈g(E)〉 is
determined using Eq. (15) with broadening δ = 0.005u0. (a) is
for onsite disorder (black), (b) is hopping disorder (magenta),
(c) is onsite variations (red), and (d) is hopping variations
(blue). Averaging is done with respect to 10, 000 disorder
realizations.

index ` = 1, 2, . . . , J − 1,

∆` = (−1)`∆0 tanh

(
`− `0
ξ

)
, (26)

where ∆0 is the magnitude at infinity, and ξ is the width
in dimensionless units written as the physical width di-
vided by the atomic spacing (a/2). We consider the soli-
ton to be centred on an atomic site, with integer site
index j0, such that the bond index is `0 = j0 − 1/2.

Figure 7 shows the mean density of states for a sin-
gle soliton at the center of a SSH system with J = 501
atoms, width ξ = 50, and disorder strength W/∆0 = 0.5
for the four types of disorder and sample-to-sample vari-
ations. Note that an integral of the density of states over
a small energy window centered on each peak at E = 0
will yield unity, reflecting the fact that there is a single
soliton state. For hopping disorder and hopping varia-
tions, the soliton level at E = 0 is clearly visible, which
is to be expected because hopping disorder conserves the
SSH chiral symmetry. The level is barely visible for on-
site disorder and is not discernible for onsite variations;
staggered onsite energies break the SSH chiral symmetry.

Figure 8 shows properties of the SSH soliton state as
a function of disorder strength. For hopping disorder,
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FIG. 10: Dependence in the CDW phase on disorder strength
W for a single soliton (16) with width ξ = 50, t/u0 = 1, at the
center of a finite system with open boundary conditions and
J = 500 atoms. In all plots, black diamonds show numer-
ical data for onsite disorder, magenta circles show hopping
disorder, red squares show onsite variations, and blue crosses
show hopping variations. Averaging is done with respect to
10, 000 disorder realizations. (a) shows the mean soliton en-
ergy 〈Esol〉 with error bars, with each data set offset from zero
by multiples of 0.04u0. (b) shows the standard deviation σE

of Esol. (c) shows the mean polarization 〈py〉 with error bars.
(d) shows the standard deviation σp of py.

mean energy 〈Esol〉 = 0, polarization 〈pz〉 = 1, and stan-
dard deviations are zero (within numerical precision) for
the disorder strengths we consider (up to W/∆0 = 1.5).
For hopping variations, 〈Esol〉 = 0 with zero standard de-
viation, but 〈pz〉 = 1 only up to W/∆0 = 1. After this,
〈pz〉 is slightly less than one, and the standard deviation
σp is non-zero. The system actually remains topological,
but some members of the ensemble have bonds at their
ends that are weaker (in magnitude) than the adjacent
bonds. They thus support additional zero energy states
at the ends: the two new states have pz = 1 while the
polarization of the central soliton flips to pz = −1. The
addition of contributions with pz = −1 reduces the en-
semble average 〈pz〉. Note also that 〈pz〉 = 1 (σp = 0)
for onsite variations even though σE 6= 0.

D. Solitons in the CDW phase

We now compare solitons in the CDW phase to those
in the SSH phase. Figure 9 shows the mean density
of states for a single soliton at the center of a CDW
system with J = 500 atoms, width ξ = 50, and disor-
der strength W/∆0 = 0.5 for the four types of disorder
and sample-to-sample variations [64]. For the sample-to-
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FIG. 11: Dependence of the disorder-averaged density of
states 〈g(E)〉 on energy E in the CDW phase for a single
atomically-sharp soliton with t/u0 = 1, at the center of a
finite system with open boundary conditions and J = 500
atoms. For all plots, the disorder strength is W/u0 = 0.5,
and 〈g(E)〉 is determined using Eq. (15) with broadening
δ = 0.005u0. (a) is for onsite disorder (black), (b) is hopping
disorder (magenta), (c) is onsite variations (red), and (d) is
hopping variations (blue). Averaging is done with respect to
10, 000 disorder realizations.

sample variations (onsite and hopping), the soliton level
at E = 0 is clearly visible, but it is barely visible for
spatial disorder (onsite and hopping). Figure 10 shows
properties of the CDW soliton state as a function of dis-
order strength [64]. For zero disorder, this state is at zero
energy (within numerical precision) with py = 0.9975. It
is clearly fragile in the presence of spatial disorder (onsite
and hopping) with non-zero standard deviations σE and
σp, and 〈py〉 approaching zero for large disorder. How-
ever, for sample-to-sample variations (onsite and hop-
ping), the level remains at zero energy with high py val-
ues and σE ≈ σp ≈ 0 until W/u0 ≈ 1. For W/u0 & 1 and
onsite variations, some of the ensemble members have
|δu| & u0 which destroys the state localized on the soli-
ton. For W/u0 & 1 and hopping variations, some of the
ensemble members have total hopping that is negative.
For these, the soliton energy is still near zero, but there
is a flip in the sign of py (to py ≈ −1), resulting in a
decrease of 〈py〉 and an increase in σp.

The mean density of states for an atomically-sharp sin-
gle soliton at the center of a CDW system with J = 500
atoms and disorder strength W/∆0 = 0.5 is shown in
Figure 11. The soliton state is barely visible for spatial
disorder (onsite and hopping). It can be seen for sample-
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FIG. 12: Dependence in the CDW phase on disorder strength
W for a single atomically-sharp soliton, t/u0 = 1, at the cen-
ter of a finite system with open boundary conditions and
J = 500 atoms. In all plots, black diamonds show numer-
ical data for onsite disorder, magenta circles show hopping
disorder, red squares show onsite variations, and blue crosses
show hopping variations. Averaging is done with respect to
10, 000 disorder realizations. (a) shows the mean soliton en-
ergy 〈Esol〉 with error bars. (b) shows the standard deviation
σE of Esol. (c) shows the mean polarization 〈py〉 with error
bars. (d) shows the standard deviation σp of py.

to-sample variations (onsite and hopping), but with sig-
nificant width (and an asymmetric shape as a function of
E). Figure 12 shows properties of the atomically-sharp
CDW soliton state as a function of disorder strength.
For zero disorder, this state is at non-zero energy Esol =
−0.4142u0 with py = 0.8536. To some extent the behav-
ior mirrors that of a smooth soliton, Fig. 10, but it is
less robust. For sample-to-sample variations (onsite and
hopping), σE and σp are smaller for W/u0 . 1 than for
disorder, and 〈py〉 remains close to its original value for
W/u0 . 1. For onsite disorder and variations, the mean
energy 〈Esol〉 actually moves towards zero as disorder in-
creases, which we attribute to a general narrowing of the
mean band gap, as seen in Figure 11 (by comparing the
onsite with the hopping figures).

VI. CONCLUSION

In the charge density wave (CDW) phase with stag-
gered onsite hopping, chiral symmetry is nonsymmor-
phic so that an end, spatial disorder, or a spatial tex-
ture in parameter values break the chiral symmetry. De-
spite this, an atomically-sharp soliton supports a local-
ized state with an energy Esol which lies within the band
gap for a wide range of parameter values. Increasing the
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ratio of the bandwidth to band gap (i.e. the ratio t/u0),
in a sufficiently long system, can drive the soliton energy
Esol towards zero, the polarization py towards one, and
the occupied soliton electric charge Qsol towards −e/2.

For a smooth soliton of width ξ, the dependence of
the energy level Esol on ξ depends on microscopic details
of the soliton texture [9]: for an atomically-smooth soli-
ton (16), Esol scales to zero exponentially with ξ whereas,
for a unit-cell-smooth soliton (19), Esol is inversely pro-
portional to ξ. However, both types of smooth soliton
share the same dependences of their polarization py and
charge Qsol on ξ: py approaches one only inversely pro-
portionally with ξ, and Qsol is independent of ξ. Hence,
any soliton in a finite system with open boundary con-
ditions cannot be regarded as topological. Nevertheless,
a smooth soliton in the CDW phase can be robust with
respect to sample-to-sample variations in the staggered
onsite energies and nearest-neighbor hoppings.

All relevant data present in this publication can be
accessed at [65].
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APPENDIX A: THE ENERGY LEVEL OF A
SINGLE ATOMICALLY-SHARP SOLITON IN

THE CDW PHASE IS AT THE BAND EDGE FOR
t/u0 = J/2

We consider a single atomically-sharp soliton in the
CDW phase, placed at the centre of a system with N
unit cells (where N is even), J = 2N atoms, and open
boundary conditions. The aim is to demonstrate that
there is an energy level exactly at the band edge E = −u0

for t/u0 = J/2.
The energy eigenvalue equation Hψ = Eψ, where ψ is

a J-component column vector of atomic states ψj , j =
1, 2, . . . , J , yields J simultaneous equations. With E =
−u0, half of the equations give relations between pairs of
components which may be summarized as

ψ1 = −ψ3 = ψ5 = . . . = (−1)J/4ψJ/2+1, (A1)

ψJ = −ψJ−2 = ψJ−4 = . . . = (−1)J/4ψJ/2. (A2)

The other J/2 simultaneous equations split into relations
between the sites before (j ≤ J/2) and after (j > J/2)
the soliton. For example, the former are

tψ2 = −2u0ψ1,

tψ2 + tψ4 = −2u0ψ3,

tψ4 + tψ6 = −2u0ψ5,

...

tψJ/2−2 + tψJ/2 = −2u0ψJ/2−1.

Using Eqs. (A1,A2), these may be written as

−tψ2 = 2u0ψ1,

tψ2 + tψ4 = 2u0ψ1,

−tψ4 − tψ6 = 2u0ψ1,

...

(−1)J/4tψJ/2−2 + tψJ = 2u0ψ1.

These J/4 equations may be added together to give

tψJ = (Ju0/2)ψ1. (A3)

Likewise, the J/4 simultaneous equations which give re-
lations between the sites after (j > J/2) the soliton yield

tψ1 = (Ju0/2)ψJ . (A4)

These latter two equations are only compatible if t/u0 =
J/2.

APPENDIX B: ANALYTIC EXPRESSION FOR
THE CHARGE OF AN ATOMICALLY-SHARP

SOLITON IN THE CDW PHASE

We briefly outline the derivation of Ref. [9] for the ex-
pression for the charge of an atomically-sharp soliton,
Eq. (22). Consider the position space Hamiltonian of a
pristine CDW chain with j = 1, 2, . . . , J atoms and open
boundary conditions as in Eq. (1) with ∆ = 0 and where
the first site has onsite energy u = u0. This Hamilto-
nian may be block diagonalized using the eigenstates of
a monoatomic chain (with u0 = 0) which has eigenvalues
and eigenstates as

E(0)
n,s = sε(0)

n , ε(0)
n = 2t cos

(
nπ

J + 1

)
, (B1)

ψ
(0)
n,s,j = sj+1

√
2

J + 1
sin

(
nπj

J + 1

)
, (B2)

where n = 1, 2, . . . J/2 and s = ±1. In a basis with

pairs ψ
(0)
n,+,j , ψ

(0)
n,−,j for each n, the CDW Hamiltonian is

reduced to 2× 2 blocks,

H2×2
n =

(
ε
(0)
n u0

u0 −ε(0)
n

)
. (B3)

These have eigenvalues

En,± = ±εn, εn =

√
u2

0 + 4t2 cos2

(
nπ

J + 1

)
. (B4)

For negative energy states, probability densities are

|ψn,−,j |2 =
2

J + 1
sin2

(
nπj

J + 1

)[
1− (−1)j+1u0

εn

]
.(B5)
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The charge Qend at the left end of the chain is deter-
mined by summing over all negative energy states and
over M sites near the end (where M is an even number
and M � 1):

Qend = qe

J/2∑
n=1

M∑
j=1

|ψn,−,j |2 − qe
M

2
, (B6)

where the electron charge is qe = −e, e > 0. The second
term indicates that the charge is measured with respect
to the contribution of M sites with a perfectly homoge-
neous charge distribution (for half filling). With the form
of the probabilities (B5), and M � 1,

Qend ≈ −sign(u0)
qe

4
[1− ζ(u0)] , (B7)

where [9]

ζ(u0) =
2

J + 1

J/2∑
n=1

|u0|
εn

(B8)

=
2

J + 1

J/2∑
n=1

|u0|√
u2

0 + 4t2 cos2
(
nπ
J+1

) . (B9)

For a system with a large number of sites J � 1, this
may be approximated as an integral,

ζ(u0) ≈ a|u0|
π

∫ π

0

dk√
u2

0 + 4t2 cos2
(
ka
2

) . (B10)

The complete elliptic integral of the first kind K(x) is
defined as

K(x) =

∫ π/2

0

dθ√
1− x2 sin2θ

, (B11)

so that

ζ(u0) ≈ 2

π

|u0|√
u2

0 + 4t2
K

(
2t√

u2
0 + 4t2

)
. (B12)

The charge of a domain wall is equal to the sum of
the charges of two ‘ends’ of which it consists [9]. For
example, for the soliton in Figure 1(a), which consists of
two consecutive sites with −u0, the charge is

Qsol ≈
qe

2
[1− ζ(u0)] . (B13)

For the antisoliton in Figure 1(a), which consists of two
consecutive sites with +u0, the charge is

Qantisol ≈ −
qe

2
[1− ζ(u0)] . (B14)
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