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Abstract: The existing supervisory control and data acquisition (SCADA) system continuously 31 

collects data from wind turbines (WTs), which provides a basis for condition monitoring (CM) of 32 

WTs. However, due to the complexity and high dimension and nonlinearity of data, effective 33 

modeling of spatial-temporal correlations among the data still becomes a primary challenge. In this 34 

paper, we propose a novel CM approach based on the multidirectional spatial-temporal feature 35 

aggregation networks (MSTFAN) to accurately evaluate the performance and hence diagnose the 36 

faults of the turbines. Firstly, the data collected from various sensors are formulated into graph-37 

structured data at each timestamp. Spatial-temporal network constructed by combing a graph 38 

attention network (GAT) and a temporal convolutional network (TCN) is used to extract spatial-39 
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temporal features of the data. Then, a bi-directional long short-term memory (BiLSTM) neural 40 

network is adopted to further study long-term spatial-temporal dependency of the extracted features. 41 

Finally, the condition score is obtained and the streaming peaks over threshold (SPOT) is applied to 42 

determine the abnormal threshold for early warning of the fault occurrence. Experiments on datasets 43 

from real-world wind farms demonstrate that the proposed approach can detect the early abnormal 44 

situation of the WTs, and outperform other established methods. 45 

Keywords: Wind turbine, condition monitoring (CM), graph attention network (GAT), temporal 46 

convolutional network (TCN), spatial-temporal correlation, streaming peaks over threshold (SPOT) 47 

1. Introduction 48 

Wind energy is a clean source and has become renewable energy for the most promising 49 

commercial development [1]. According to the latest global wind power report from GWEC (Global 50 

Wind Energy Council), the global capacity of installed wind power has reached 837GW to date [2]. 51 

However, the rapid expansion of wind farms has been affected by operations and maintenance 52 

(O&M) issues and high O&M costs. The designed service-life of a WT is usually 20 years while the 53 

total O&M costs constitute up to 30% of the total income of the turbines over their operating lifetime 54 

[3]. In particular, on-site maintenance for offshore wind turbines becomes more expensive since it 55 

requires complicated offshore operations [4]. Hence, it is imperative to design an efficient CM 56 

approach based on artificial intelligence techniques to improve the O&M strategies from post 57 

maintenance and planned maintenance to condition-based maintenance and predictive maintenance，58 

which will help to reduce O&M costs and ensure the long-term healthy and stable development of 59 

the wind power industry [5]. 60 

Currently, condition monitoring of wind turbines has been performed by the supervisory 61 

control and data acquisition (SCADA) system and the specifically designed condition monitoring 62 

system (CMS) [6-8]. CMS system adds high-precision sensors in the corresponding positions of key 63 

components of WTs to collect the parameters such as vibration [9] and temperature [10]. The 64 

collection frequency is generally higher than 50Hz [11]. Then the methods such as spectral analysis 65 

[12], envelope analysis [13] and machine learning [14] are applied to analyze the data to achieve 66 

the CM. This way can accurately identify the specific types, positions and damage degree of 67 

equipment faults. However, the cost of a CMS is relatively high, which can be more than 11,000 68 

Euros per turbine [15]. The SCADA system has been developed for real-time monitoring and control 69 

of WT operations by collecting data from a large number of parameters covering all key components 70 

in WTs [8, 16]. Moreover, the sampling frequency is generally lower than 1Hz. The SCADA system 71 

can provide valuable online information with depth and breadth regarding the performance and 72 

operational history of the WTs. Therefore, SCADA data have been widely used for fault detection 73 

and CM purpose [17, 18]. However, the CM based on SCADA data has faced a number of challenges 74 

[19] as follows: 1) Poor data quality, the operation of WTs is affected by variable conditions, 75 

disturbances and manual debugging, resulting in the collected data being contaminated with a large 76 

amount of bad data that cannot accurately reflect real operation states. 2) Imbalanced data 77 

classification, WTs mostly operate in the normal condition, while abnormal data are usually scarce. 78 

Meanwhile, due to the high manual label cost, valuable labels are not yet added to the collected data. 79 

3) Complex feature correlation, because of the inter-coupling among different components or 80 

subsystems of the WTs, SCADA data are naturally high-dimensional and have complex cross-81 

correlation and self-correlation.  82 
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In order to tackle these challenges, a number of CM methodologies have been developed, 83 

which can be generally categorized as physical model-based and data-driven approaches. When a 84 

large amount of data cannot be obtained, it is a natural choice to use the physical model-based 85 

methods. The model-based methods simulate the dynamic process of the system by establishing an 86 

accurate physical model for the checked objects [20]. Then, the residual between estimated and 87 

actual values of the parameters can be calculated for CM [21]. For instance, Feng et al. [22] created 88 

a wind power transmission model for gearbox condition monitoring by considering the heat transfer 89 

mechanism of the gearbox lubrication system, thus providing a sound theoretical basis for CM of 90 

the WTs. Dong et al. [23] used the gaussian mixture model (GMM) to build a multi-regime model 91 

of selected parameters that are greatly affected by working conditions.  92 

On the contrary, data-driven methods do not require excessive prior knowledge, thus making 93 

this approach advantageous when performing CM tasks with complex-coupling effects and highly 94 

nonlinear dynamic performances [24]. In recent years, data-driven methods have been gained more 95 

attention, including shallow learning approach and deep learning approach [25]. Shallow learning 96 

algorithms usually construct a data-based probability-statistical model to achieve forecasting and 97 

analysis of data, mainly including regression [26], clustering [27], classification [28] and boosting 98 

algorithm [29]. For instance, Meik et al. [30] utilized a linear regression model to solve the 99 

correlation among the variables of WTs. Tang et al. [31] and Liu et al. [32] proposed fault diagnosis 100 

approaches based on Shannon wavelet support vector machine and clustering binary tree support 101 

vector machine, respectively. Furthermore, the clustering algorithm has been extensively applied 102 

especially for dealing with the common abnormal alignments [33]. Kouadri et al. [34] proposed the 103 

hidden Markov models (HMM) by incorporating machine learning-based HMM and principle 104 

component analysis to improve the availability and reliability of the fault diagnosis model under 105 

different operating conditions. Trizoglo et al. [29] developed an ensemble model of the extreme 106 

gradient boosting (XGBoost) framework to achieve a higher accurate detection at low 107 

computational costs. Tang et al. [35] developed an improved LightGBM fault diagnosis method for 108 

WT gearboxes by embedding the confusion matrix as a performance indicator. However, when 109 

dealing with a large amount of heterogeneous data, most shallow learning algorithms have some 110 

shortcomings. For instance, logistic regression is easy to underfit and decision trees are prone to 111 

overfitting [35]. Moreover, these methods usually construct features by combining expert 112 

knowledge and may exist the problems such as slow convergence speed and low prediction accuracy 113 

when a large amount of data is processed [36]. 114 

Compared with the shallow learning algorithms, the deep learning method has a better 115 

adaptability and mapping capability [37], which has shown evident advantages when dealing with 116 

highly nonlinear SCADA data [38, 39]. Applying a deep belief network to the abnormal detection 117 

of vibration signals in WTs can learn more extensive feature representations and improve 118 

recognition accuracy [40]. SCADA data, being regarded as time series data and capturing the long-119 

term dependency relationship among features, would be vital for fault classification. Long short-120 

term memory (LSTM) can utilize its specific gates mechanism to satisfy this requirement [29, 41]. 121 

These methods are implemented mostly based on auto-encoder (AE) structure, and discriminate 122 

anomalies through reconstruction errors. For instance, Chen et al. developed the AE-LSTM to assess 123 

sequential CM data. Wu et al. [42] combined the LSTM with statistical Kullback-Leibler divergence 124 

(KLD), where the LSTM network was used to capture long-term dependency among the monitoring 125 

data while the KLD value was applied for making decisions. Compared with LSTM, convolutional 126 

https://www.sciencedirect.com/science/article/abs/pii/S0960148113003182#!
https://www.sciencedirect.com/science/article/abs/pii/S0960148112003631#!
https://www.sciencedirect.com/science/article/abs/pii/S0960148120300112#!
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neural network (CNN) has a strong learning ability for the spatial features of data. In order to deal 127 

with the multiscale characteristics inherent in the vibration signals of a gearbox, Jiang et al. [43] 128 

proposed a multiscale CNN architecture for simultaneous multiscale feature extraction and 129 

classification. In addition, the CNN-LSTM or CNN-GRU models have also achieved good results 130 

in fault diagnosis because of their abilities for spatial-temporal information extraction [44-46]. 131 

However, CNN performs remarkably in the field of image processing and is based on the assumption 132 

that the data exist in Euclidean space, which implies that the correlations among data can be 133 

measured by the Euclidean distance. This is clearly not enough for multivariable SCADA data 134 

because there are different dimensions and physical significances among various parameters, such 135 

as power and temperature.  136 

How to better identify the complex relations among different variables of SCADA data thus 137 

becomes a problem worthy of thinking. Recently, graph neural network (GNN) [47] has been proved 138 

to possess a stronger ability for dealing with relationship dependence, including graph convolutional 139 

network (GCN) [48], graph attention network (GAT) [49] and graph spatial-temporal networks [50]. 140 

These methods have received extensive applications in the fields of traffic forecasting and molecular 141 

property forecasting. For instance, Diao et al. [51] proposed a dynamic spatial-temporal GCN for 142 

accurate traffic forecasting, which tracks the spatial dependencies among traffic data. Achievements 143 

have also been made in processing time series data. To solve the anomaly detection problem of large 144 

IT systems, Scheinert et al. [52] proposed a network with the GCN architecture to extract spatial 145 

and temporal features. Deng et al. [53] proposed a GCN-based multivariate time-series anomaly 146 

detection method, which combines the relationships among sensor variables and sensor embeddings. 147 

Besides, in the latest research, Su et al. [54] proposed a method to extract the spatial features by 148 

using an attention module instead of CNN or GCN and showed promising results for the gearbox 149 

operating status detection of offshore wind turbines.  150 

In this paper, we propose a novel spatial-temporal aggregation network for condition 151 

monitoring of WTs, which makes full use of multiple monitoring variables related to WTs specific 152 

faults by allowing information to propagate through directed graphs and temporal subsequences. 153 

Specifically, firstly the multiple monitoring variables are preprocessed from the feature and 154 

temporal dimensions, respectively. Then a flexible multidirectional spatial-temporal feature 155 

aggregation network (MSTFAN) is constructed to capture the inherent relations among them. From 156 

the feature extraction perspective, the complex cross-correlation among variables is learned through 157 

the edges of the graph nodes so that different attribute sensor data can be distinguished. The models 158 

based on graph attention network can allow the correlations among sensors to be represented in a 159 

non-Euclidean space, which is more suitable for the actual complex data structures. From the 160 

temporal perspective, the correlation among variables at different timestamps is extracted by dilated 161 

casual convolution to obtain larger receptive fields while keeping the network stability. BiLSTM is 162 

further used to reconstruct spatiotemporal information in order to capture long-term temporal 163 

dependencies. For fault detection, we introduce a SPOT-based approach to identify the condition 164 

states, which makes no assumptions about the data distribution and has stronger adaptability to real 165 

failures. The main contributions of this paper are summarized as follows: 166 

(1) A new CM framework for WTs. Specifically, this approach is proposed to automatically learn 167 

complex spatial-temporal features of SCADA data for constructing the normal behavior model 168 

of operating WTs, by which the abnormal behaviors of WTs deviating from this normal model 169 

are recognized and diagnosed. For the first time, spatial-temporal features of multivariate 170 

https://ietresearch.onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Su%2C+Xiangjing
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SCADA data are investigated for CM of the WTs. 171 

(2) A novel spatial-temporal network. A flexible MSTFAN is designed for improving the 172 

performance of signal reconstruction by modeling and capturing both short- and long-term 173 

spatial and temporal correlations. To the best of our knowledge, this graph neural network is 174 

the first time applied to CM of the WTs. 175 

(3) A new abnormality warning strategy. An extreme value theory-based SPOT approach is proposed 176 

to calculate the threshold to distinguish the normal and abnormal behaviors, by which the 177 

abnormality detectability is improved. Furthermore, we propose a novel “delay perception” 178 

(DPs) pre-warning strategy, which can reduce false warnings.  179 

The rest of this paper is structured as follows. Section 2 describes the proposed WT fault 180 

detection framework. Section 3 presents the structure and working principle of MSTFAN in detail. 181 

Two case studies, namely, the drivetrain bearing fault of doubly-fed induction (DFIG)-based WTs 182 

and the pitch system fault of direct-driven WTs, are presented in Section 4, which are used to 183 

validate the effectiveness of the proposed method. In Section 5, the performance of the proposed 184 

CM method is assessed and compared with other existing mainstream methods. Finally, the 185 

conclusions and future improvements are given in Section 6. 186 

2. System framework overview 187 

2.1. CM flowchart  188 

  An unsupervised anomaly detection often refers to the task of identifying data patterns from a 189 

test dataset that appears the most divergent from the prevalent patterns of previously observed data 190 

[55]. Therefore, for the abnormal detection of WTs, we need to first create the normal behavior 191 

model and calculate the condition index of the WT. When the index exceeds a certain threshold 192 

during the diagnosis process with the test dataset, the WT will be regarded as abnormal. Generally, 193 

the newly-operated or major-repaired WTs after operating stably for a period of time are considered 194 

to be normal [56], and data from these periods are used to train the normal behavior models and 195 

calculate the alarm thresholds. 196 

 197 
Figure 1 CM flowchart of WTs 198 

The designed CM flowchart of WTs is shown in Error! Reference source not found., where 199 

the process can be classified into three stages: data preparation and graph construction, MSTFAN 200 

offline training and online condition monitoring. In the stage of data preparation, the original 201 

SCADA data are cleaned first. This is because the SCADA system may cause data missing or 202 

mutation when communication failures or maintenance activities happen which do not indicate the 203 

actual abnormal state of the wind turbine. We adopt a quarterback method for mutation detection 204 

and revise the outlier and missing data as the average of the fore and aft values. In the stage of 205 

MSTFAN offline training, the normal operation pattern of WT is learned from a large number of 206 

historical SCADA data and the monitoring parameters available for the targeted WT under normal 207 
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operating conditions are thus selected in this stage. The condition scores of normal data are then 208 

calculated, by which the threshold 𝑡ℎ of the scores is obtained by SPOT to quantify the abnormal 209 

level of the testing data. The model training and testing will be presented in detail in Section 3. In 210 

the stage of online condition monitoring, the testing data are inputted into the trained MSTFAN 211 

model to obtain their reconstructed values. The deviation between the actual and the reconstructed 212 

values is then used to calculate the condition score. The data with a score larger than the threshold 213 

𝑡ℎ are discriminated as abnormal. It is worth noting that the length of the input sequence and the 214 

number of layers of the network could affect the detection results, which will be discussed in detail 215 

in Section 4.3. Besides, when the WT assembly operates gradually from normal to abnormal 216 

conditions, there appear inevitably fluctuations in the prediction results of the model, resulting in 217 

difficult decision-making for proper CM. Hence, after the detection results are initially obtained, a 218 

DPs is further designed to adjust the results for the second time in an attempt to eliminate the 219 

frequent alarms or false alarms. Finally, the abnormal condition is represented by binary (true or 220 

false), and scores are outputted simultaneously. 221 

2.2. Graph construction  222 

The MSTFAN-based CM method for WT aims to learn complex spatial-temporal correlations 223 

of SCADA data. Therefore, we creatively create a graph using the data from each window after 224 

processing the multivariate time series data with a sliding window, which are described in detail as 225 

follows: 226 

 227 

 228 
Figure 2 The construction process of the subsequences and the associated graph 229 

Generally, for a given multivariate time series 𝑋 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑡 , ⋯ , 𝑥𝑇} , where 𝑇 and 𝑥𝑡 ∈230 

𝑅𝐷  represent the length of data samples and data collected from 𝐷  sensors at timestamp t, 231 

respectively. The subsequences are required to be processed with a uniform length. The construction 232 

process of the subsequences is shown in Figure 2. We define the feature vector at timestamp 𝑡 as 233 

𝑥𝑡 = {𝑣𝑑
, (𝑡)|𝑑 ∈ [1, 𝐷]} , and a sliding window containing certain features as 𝑣𝑑 =234 

{𝑥𝑡|𝑡 ∈ [𝑡 − 𝑤 + 1, 𝑡]}. As shown in Figure 2(a), a sliding window with length 𝑤 is assigned to 235 

partition a long sequence 𝑋  along the temporal dimension into 𝑁  subsequences 236 

𝑠1, 𝑠2, ⋯ , 𝑠𝑛, ⋯ 𝑠𝑁, which are collected as a subsequence set 𝑆. Then we build a feature graph for 237 

each subsequence 𝑠𝑛  (𝑛 = 1, ⋯ , 𝑁) , as can be seen in Figure 2(b) and (c). Each feature 𝑣𝑑  is 238 

viewed as a node in the feature graph 𝑮𝒙𝒕
= (𝑽, 𝑬𝒇), where 𝑉 = {𝑣⃗1, 𝑣⃗2, ⋯ , 𝑣⃗𝐷} represents the 239 

node set,  𝑣⃗𝑖 ∈ ℝ𝜔 represents the feature vector of each node, and 𝐸𝑓represents edge set (each 240 

edge denotes the connection between two corresponding features, and the mutual contribution 241 

between nodes 𝑖 and 𝑗 is expressed as 𝑎𝑖𝑗) among feature nodes. 242 
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3. MSTFAN-based CM  243 

  The proposed MSTFAN-based CM framework is shown in Figure 3. The key motivation of 244 

MSTFAN is that using GAT and TCN simultaneously can capture implicit normal conditions from 245 

both feature and temporal dimensions of SCADA data. The framework consists of four parts, namely 246 

data representation, feature extraction, data reconstruction, and anomaly discrimination. We 247 

establish the MSTFAN to explore spatial dependence and temporal dependence among different 248 

sensors in the SCADA system. For each timestamp, spatial features and temporal features are 249 

aggregated together by splicing and then inputted into the reconstruction network. For the 250 

reconstruction network, a BiLSTM is adopted to capture long-term temporal correlations from 251 

spatial-temporal aggregation vectors, and then the output layer composed of a fully-connected 252 

network reconstructs the implicit vectors from BiLSTM to obtain the output vectors with the same 253 

length and dimension as the input subsequence. Here the reconstructed value and actual value are 254 

used to calculate the condition score, and the final abnormal condition is assessed based on the 255 

SPOT-based threshold.  256 

 257 

Figure 3 The proposed MSTFAN-based framework for WT CM 258 

3.1. Spatial feature learning with GAT 259 

Graph attention network (GAT) was firstly proposed by Velikovi et al. [49], which utilizes 260 

attention mechanism to make a weighted sum of neighboring nodes, thus aggregating information 261 

and totally removing the constraints of the graph structure. To fully capture the spatial correlation 262 

among sensor parameters, we utilize the graph attention mechanism at each subsequence to process 263 

the signals. As shown in Figure 3, subsequence 𝑠𝑛 is processed into the graph-structured data in 264 

the feature dimension and inputted into the GAT. The spatial correlation between the 𝑖-𝑡ℎ and the 265 

𝑗-𝑡ℎ nodes can be represented by their attention coefficient being computed as:  266 
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where  is an activation function, and generally uses LeakyReLU which has a relatively small 268 

positive gradient for negative inputs. a w is a learnable weight vector, W  is the shared weight 269 

vector and the operator  represents the information concatenation of two nodes, and 𝑁𝑖 denotes 270 

the number of adjacent nodes for the 𝑖-𝑡ℎ node. Finally, the output of each node can be obtained 271 

by aggregating its adjacent nodes, as shown in Figure 4(a). The implicit vector of 𝑖𝑡ℎ sensor node 272 

through one layer of GAT can be denoted as iv . In order to avoid focusing too much on the position 273 

of the node itself, we adopt the multi-head attention mechanism [57], which is determined as follows. 274 
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where ℎ  is the head number, 𝛼𝑖𝑗
ℎ   is the attention coefficient of the ℎ -th head, 𝐻  is the total 276 

number of the attention heads, and 𝜎 is the activate function. For the final result, an average value 277 

is adopted for the output vector of each attention head.  278 
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(a) GAT aggregation representation of different 

sensors through its adjacent nodes. 𝒂𝒊𝒋 denotes 

attention coefficient between sensor nodes. 

(b) 4-layer TCN structure with residual 

connection, and 𝒅 is dilation factor. 

Figure 4 Implicit layer representation 

3.2 Temporal feature learning with TCN 279 

We adopt TCN to extract temporal features. The basic idea of TCN [58] is the combination of 280 

1D-fully convolutional network (1D-FCN) and causal convolutions. Meanwhile, in order to obtain 281 

a larger receptive field and keep the network stability, TCN uses the extended causal convolution 282 

and residual modes to replace the general causal convolution network and the general convolutional 283 

layer, respectively, enabling the receptive field to expand exponentially. For 1-D input sequence 284 

𝑠𝑛  {𝑥𝑡−𝑤+1, ⋯ , 𝑥𝑡−1, 𝑥𝑡}, 𝑥 ∈ ℝ𝐷 , the convolution kernel is 𝑓: {0, … , 𝑘 − 1} → ℝ , and the 285 

convolution at timestamp 𝑡 is defined as: 286 

 𝐹(𝑡) = (𝑥 ∗𝑑 𝑓)(𝑡) = ∑ 𝑓(𝑖)𝑘−1
𝑖=0 · 𝑥𝑡−𝑑·𝑖 ( 3 ) 287 

where 𝑑  is dilation factor, 𝑘  is the size of the convolution kernel, and 𝑡 − 𝑑 · 𝑖  indicates the 288 

direction of the past. An example structure of 4-layer TCN network is shown in Figure 4 (b). 289 

  After a series of convolution operations, the input sequence is mapped into the implicit vector 290 

ty  containing temporal information: 291 

 𝑦𝑡
′ = ℱ(𝑥𝑡 , {𝑊𝑡}) + 𝐶𝑜𝑛𝑣1∗1(𝑥𝑡) ( 4 ) 292 
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where ℱ represents the convolution operation module composed of a nonlinear causal expansion 293 

convolution, a nonlinear activation function (𝑅𝑒𝐿𝑈 ), a weight normalization and a dropout 294 

regularization. 𝐶𝑜𝑛𝑣1∗1 is used to adjust the dimension of input vector for realizing vector addition 295 

operation connected by residuals, and 𝑊𝑡 is the learnable weight vector.  296 

3.3 Feature aggregation and reconstruction 297 

  After obtaining the vectors of spatial and temporal features, we adopt a splicing approach to 298 

fuse them and send them to the BiLSTM-based reconstruction network. Different from the general 299 

LSTM network, BiLSTM deals with the data from two different directions, which can better capture 300 

bi-directional information dependence. Figure 5 shows the basic structure of the signal 301 

reconstruction network. 302 
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 303 

Figure 5 BiLSTM-based signal reconstruction network 304 

In the figure, 𝑧𝑡 is the spatial-temporal feature vector outputted from the MSTFAN at timestamp 305 

𝑡. In the forward process, the implicit vector is updated by ℎ⃗⃗𝑡, while in the reverse process, the 306 

implicit vector is updated from the reverse direction and is denoted by ℎ⃗⃖𝑡. The combined implicit 307 
vector is represented as 𝑧′𝑡, and the relevant updating formulas are given as below: 308 

 ℎ⃗⃗𝑡 = 𝑅𝑒𝐿𝑈 (𝑊ℎ⃗⃗⃗𝑡
𝑧𝑡 + 𝑈ℎ⃗⃗⃗𝑡

ℎ⃗⃗𝑡−1 + 𝑏ℎ⃗⃗⃗𝑡
) ( 5 ) 309 

 ℎ⃖⃗𝑡 = 𝑅𝑒𝐿𝑈 (𝑊ℎ⃗⃗⃖𝑡
𝑧𝑡 + 𝑈ℎ⃗⃗⃖𝑡

ℎ⃖⃗𝑡+1 + 𝑏ℎ⃗⃗⃖𝑡
) ( 6 ) 310 

 𝑆̂𝑛 = 𝑅𝑒𝐿𝑈(𝑊ℎ⃗⃗⃗𝑜 ℎ⃗⃗𝑡 + 𝑊ℎ⃗⃗⃖𝑜 ℎ⃖⃗𝑡 + 𝑏𝑜) ( 7 ) 311 

where 𝑊ℎ⃗⃗⃗𝑡
 and 𝑊ℎ⃗⃗⃖𝑡

 denote the learnable weight vectors from different directions for the spatial-312 

temporal feature vector 𝑧𝑡 , 𝑈ℎ⃗⃗⃗𝑡
  and 𝑈ℎ⃗⃗⃖𝑡

  denote the learnable weight vectors from different 313 

directions for hidden condition ℎ𝑡, 𝑊ℎ⃗⃗⃗𝑜 and 𝑊ℎ⃗⃗⃖𝑜 denote learnable weight vectors from different 314 

directions for the output layer, 𝑏ℎ⃗⃗⃗𝑡
 , 𝑏ℎ⃗⃗⃖𝑡

  and 𝑏𝑜  denote the learnable bias, and 𝑅𝑒𝐿𝑈  is the 315 

activation function. 316 

3.4 Fault detection  317 

To accurately reflect WT operation condition, we calculate the condition score at each 318 

timestamp. For the input subsequence 𝑠𝑛, the corresponding sequence 𝑠̂𝑛 of the same size as 𝑠𝑛 319 

can be reconstructed, as described above. A residual signal is taken from the difference between the 320 

actual value and reconstructed value of all the subsequences for discriminating the data deviation 321 

and then calculating the condition score at each timestamp. To eliminate the effect of different 322 
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variable dimensions, the scores are standardized [59], and calculated as follows:  323 

 2

1
ˆ

t tscore x x
D

 
 ( 8 ) 324 

When the dataset from a WT under normal operation is applied to train the model to calculate 325 

the condition scores, the majority of scores are within a normal range. Hence, we introduce SPOT 326 

to define the threshold, since neither manually pre-set threshold nor distributional assumption is 327 

required in this method. We denote the obtained condition scores in the subsequence as 𝐶 =328 

 {𝑠𝑐𝑜𝑟𝑒0, 𝑠𝑐𝑜𝑟𝑒1, ⋯ , 𝑠𝑐𝑜𝑟𝑒𝑡, ⋯ 𝑠𝑐𝑜𝑟𝑒𝑇   } , where 𝑇  is the length of data and 𝑠𝑐𝑜𝑟𝑒𝑡  represents 329 

condition score at timestamp 𝑡 . The SPOT is used to calculate the threshold 𝑡ℎ , ensuring the 330 

probability that 𝑠𝑐𝑜𝑟𝑒𝑡 > th  is smaller than the given probability value 𝑞  we have set, that is 331 

𝑃(𝑠𝑐𝑜𝑟𝑒𝑡 > th) < 𝑞. In this paper, we set 𝑞 = 0.001, an empirical value based on investigation 332 

into the nature of the datasets. With the testing dataset, when 𝑠𝑐𝑜𝑟𝑒𝑡 > th, the data are regarded as 333 

abnormal, otherwise seen as normal. The predicted label describing the data condition can be 334 

defined as 𝑌′ = {
1, (𝑠𝑐𝑜𝑟𝑒 ≥ 𝑡ℎ)

0, (𝑠𝑐𝑜𝑟𝑒 < 𝑡ℎ)
.  335 

Then we use DPs for the second discrimination of 𝑌′  in order to obtain the final binary 336 

discrimination result of 𝑌, thus improving the detection reliability. The detailed implementation 337 

process of DPs is shown in Figure 6. We observe the predicted results through two designated 338 

windows, namely, a voting area and an observation area, where the observation area contains several 339 

voting areas. During the CM process, the window representing the observation area continuously 340 

moves forward as time goes by. We denote the ratio of abnormal samples in each voting area as 𝑝 341 

(𝑖-𝑡ℎ voting area is denoted as 𝑝𝑖). As shown in voting area , when 𝑝 continuously increases to 342 

above 90%, the samples in this voting area are adjusted to be abnormal. On the contrary, as shown 343 

in voting area , when 𝑝 continuously decreases to below 5%, the samples in this voting area are 344 

adjusted to be normal, while the area without continuous change of 𝑝 in the observation area is not 345 

adjusted. This adjustment can avoid frequently repeated alarms in the voting area. In addition, after 346 

the WT operation returns to normal, false alarms can be avoided, thus improving the reliability of 347 

CM results for practical O&M arrangements.  348 

 349 

Figure 6 Use of delayed perception to reduce frequent alarms or false alarms 350 

4. Experiment results and analysis 351 

4.1 Datasets 352 

Different types of WTs (direct-driven or doubly-fed) or WTs installed in different locations 353 

(mountainous or coastal) have great differences in data characteristics and high-risk components. 354 

For example, the hub of the direct-driven WT is directly connected to the rotor of the generator 355 
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through rigid bearings; therefore, the hub speed is equal to the generator speed, which makes the 356 

variables of pitch system closely related to the variables of the generator. For DFIG, the hub is 357 

indirectly connected to the generator through the gearbox. Hence, the variables of the gearbox are 358 

closely related to the variables of the generator and it is the gearbox that is a high-risk component 359 

of failures in DFIGs.  360 

Therefore, to evaluate the performance of the proposed method, the SCADA data from two 361 

different wind farms with representative types of faults, i.e., pitch system fault for direct-driven WTs 362 

and drivetrain bearing fault for DFIG WTs, are selected. These two wind farms are denoted as 𝑊𝐹1 363 

and 𝑊𝐹2 , respectively. The wind farm 𝑊𝐹1  is located in the southern coast of China, which 364 

consists of 25 WTs with nominal power 2MW and DFIG. Having checked the onsite O&M records, 365 

we select a WT with good operation condition and a WT with drivetrain bearing fault to build two 366 

different datasets represented by 𝑊𝐹1 - WT1  (without abnormality) and 𝑊𝐹1 - WT2  (with 367 

abnormality), respectively. The wind farm 𝑊𝐹2 is located in the south-central hilly area of China, 368 

which consists of 25 WTs with nominal power 2MW and direct-driven WT generators. We select a 369 

WT with good operation condition and a WT with pitch system fault to build two different datasets 370 

represented by 𝑊𝐹2-WT1 (without abnormality) and 𝑊𝐹2-WT2 (with abnormality), respectively. 371 

The datasets in detail are given in Table 1. More physical descriptions of these faults are described 372 

in subsequent case studies.   373 

Table 1 Datasets in detail 374 

Datasets Samples 
Anomaly 

ratio 

Sampling 

intervals 

Dimension 

(Monitoring 

parameters) 

Location/Type Description  

𝑊𝐹1-WT1 52790 - 10 minutes 9 Coast/DFIG Without abnormality 

𝑊𝐹1-WT2 86829 7.3% 10 minutes 9 Coast/DFIG Drivetrain bearing fault 

𝑊𝐹2-WT1 915000 - 1 second 32 Hill/Direct-driven Without abnormality 

𝑊𝐹2-WT2 995800 7.5% 1 second 32 Hill/Direct-driven Pitch system fault 

4.2 Case studies 375 

4.2.1 Case 1: main bearing fault 376 

The main bearing is one of the most important components for DFIG-based WTs. Once the 377 

abnormality of bearing occurs, the operating safety of WT will be seriously threatened. As shown 378 

in Figure 7, the main bearing abnormalities mainly include bearing cage wear and deformation of 379 

the ball. The continuous rotation of the main bearing causes the variety of bearing temperatures. 380 

Under the normal condition, the temperatures at each location of bearing change with the rotating 381 

speed; however, their changes are still maintained within a certain range. However, the situation 382 

under abnormal operating conditions is different. Thus, as shown in Table 2, nine parameters were 383 

selected among hundreds of SCADA parameters [60, 61], primarily because the rotating hub and 384 

the rotor of the generator are connected through the gearbox, implying that the changes in the 385 

temperature of main bearings are closely correlated to the speeds, ambient temperature, and active 386 

powers. For instance, when the bearing cracks, the temperature difference between the front-end 387 

and back-end of the gearbox may change greatly.   388 
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 389 
Figure 7 Physical photos of the drivetrain bearing fault 390 

Table 2 SCADA parameters of bearing fault diagnosis in 𝑾𝑭𝟏 391 

Location Parameters Unit 

Weather station Ambient temperature ℃ 

Wind speed m/s 

Hub Rotation speed rpm 

Generator Active power at generator side kW 

Active power at grid side kW 

Drivetrain Bearing temperature 1 (middle in front-end) ℃ 

Bearing temperature 2 (front-end) ℃ 

Bearing temperature 3 (back-end) ℃ 

Bearing temperature 4 (middle in back-end) ℃ 

Figure 8 and Figure 9 present CM results using the datasets 𝑊𝐹1 − WT1  and 𝑊𝐹1 − WT2 , 392 

respectively. Figure 8(a) and (b) show, under the normal conditions, that the actual value and 393 

reconstructed value almost coincide, and Figure 8(c) shows that the condition score maintains within 394 

the range of 0.01. This is because the model only uses the data under the normal conditions for 395 

training and learns the normal behavior of the WT, demonstrating the accuracy of the predicted 396 

model.  397 

 398 

Figure 8 Abnormality detection results of the 𝑊𝐹1 − WT1 399 

According to the maintenance records during the routine inspection, the O&M personnel detected 400 

a grease abnormality of the main bearing and smelled the stink produced due to bearing deformation 401 

at the timestamp 1900. However, there was no fault alarm because the value of temperature did not 402 
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exceed the alarm threshold set by the existing SCADA system. Figure 9(a) and (b) show the actual 403 

value and reconstructed value for the active power and main bearing temperature 2, respectively. 404 

The condition scores in Figure 9(c) show that the proposed algorithm is able to detect the 405 

abnormality at the timestamp 1500, at which the WT was still generating power, showing that the 406 

fault had not caused the WT to shut down. Then the condition score gradually increases until it fully 407 

deviates from the original normal condition. Based on the initial value of the SPOT threshold 408 

calculated using the dataset only containing health data, the threshold calculated using the testing 409 

dataset becomes higher up to 0.0116, enabling to differentiate the condition scores from the two 410 

datasets properly. It is noticed that in the early stage of fault occurrence, the incipient abnormality 411 

results in the condition scores with certain fluctuations. As shown in Figure 9(d), after the DPs 412 

adjustment, the condition scores are adjusted to be anomalies near the timestamp 1500, which is 413 

beneficial for the O&M personnel to be able to make decisions nearly 66 hours in advance about 414 

maintenance plans for WTs.  415 

 416 

Figure 9 Fault detection results of the 𝑾𝑭𝟏 −WT𝟐 417 

Figure 10 and Figure 11, respectively, show the probability density distribution of actual value 418 

and reconstructed value of 𝑊𝐹1-WT2 within the normal and abnormal periods, where sub-figure (a) 419 

shows the distribution of all parameters after dimension reduction by t-distributed stochastic 420 

neighbor embedding (t-SNE) algorithm and sub-figure (b) shows the probability density distribution 421 

of the main bearing temperature 2. The comparison of Figure 10(a) and Figure 11 (a) clearly shows 422 

that our method fits the data well in normal conditions, while the distribution of the reconstructed 423 

values deviates from the original distribution in abnormal conditions. As shown in Figure 10(b), 424 

under normal conditions, the main bearing temperature 2 is distributed in the range of 0 to 0.84℃. 425 

However, within the abnormal conditions, as seen in Figure 11(b), there are significant differences 426 

in the temperature distributions, indicating the existence of abnormality. This is consistent with the 427 

main bearing cracking discovered during the maintenance activities. 428 

Abnormality detected for the first time. 

The time when the fault is found. 
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(a) t-SNE distribution of all parameters (b) Probability density distribution of main bearing 

temperatures 

Figure 10 The distribution of actual value and reconstructed value  

from 𝑾𝑭𝟏 −WT𝟐 under normal conditions 

  

(a) t-SNE distribution of all parameters (b) Probability density distribution of main bearing 

temperatures 

Figure 11 The distribution of actual value and reconstructed value  

from 𝑾𝑭𝟏 − WT𝟐 under abnormal conditions 

4.2.2 Case 2: pitch system fault 429 

In this section, a CM case of direct-drive WT pitch system is presented. Because of the time-430 

varying nature of winds, the direct-drive WT needs to adjust the blade angle through the pitch system 431 

to achieve a stable energy output. Once a pitch system fault occurs, as shown in Figure 12, the 432 

common abnormalities include pitch-bearing cracks and bolt fractures. As shown in Table 3, thirty-433 

two parameters were selected among hundreds of SCADA parameters [62, 63], primarily because 434 

the bearing cracking may lead to an increase in running resistance, which results in the deviation of 435 

related pitch system parameters away from the original normal condition, such as the wide 436 

fluctuations of pitch-motor currents and changes in pitch-motor temperatures and temperatures of 437 

those components housed in the hub. At the same time, the failure of any blade bearing will cause 438 

damage to the WT due to imbalance. Therefore, those parameters related to blades, such as blade 439 

angles and nacelle vibrations are also important, along with the wind conditions and generator 440 

operation parameters. 441 

  442 
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 443 

Figure 12 Physical photos of the pitch system fault 444 

Table 3 SCADA parameters of the pitch system fault in 𝑾𝑭𝟐 445 

Location Parameters Unit Parameters Unit 

Weather station Ambient temperature ℃ Wind direction ° 

Wind speed m/s   

Hub Rotation speed rpm Hub temperature ℃ 

Pitch motor current 1 A Angle of blade 1 ° 

Pitch motor current 2 A Angle of blade 2 ° 

Pitch motor current 3 A Angle of blade 3 ° 

Pitch motor temperature of blade 1 ℃ Pitch motor power 1 kW 

Pitch motor temperature of blade 2 ℃ Pitch motor power 2 kW 

Pitch motor temperature of blade 3 ℃ Pitch motor power 3 kW 

Battery temperature of blade 1 ℃ Inverter temperature of blade 1 ℃ 

Battery temperature of blade 2 ℃ Inverter temperature of blade 2 ℃ 

Battery temperature of blade 3 ℃ Inverter temperature of blade 3 ℃ 

Nacelle Vibration x m/s2 Hydraulic brake pressure bar 

Vibration y m/s2   

Generator Active power at generator side kW Turbine state (e.g., startup, generation, 

and stop) 

 

Active power at grid side kW Generator current A 

Generator frequency Hz Generator torque kNm 

The CM results on the datasets 𝑊𝐹2 − WT1  and 𝑊𝐹2 − WT2  are respectively shown in 446 

Figure 13 and Figure 14. It can be seen from Figure 13 that under the normal condition, the actual 447 

value almost coincides with the reconstructed value, and the condition score maintains in the range 448 

of 0.04. Although there is a jump at the end of the condition score in Figure 13(c), it is still normal 449 

and within the allowable range. We can see clearly from Figure 13(a) that the actual power changes 450 

to zero at this time instant when the turbine shuts down, indicating that our method is still robust in 451 

dealing with such sudden changes in operations. 452 
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 453 
Figure 13 Abnormality detection result of the 𝑾𝑭𝟐 −WT𝟏  454 

According to the maintenance records during the routine inspection, the maintenance personnel 455 

detected a bolt fracture at the outer pitch bearing of blade-2 and a fracture at the location of the 456 

bearing ball-plugging hole at timestamp 46800. By analyzing the data, it is found that the pitch 457 

motor current of blade-2 is clearly higher than that of blade-1 and blade-3, and furthermore the 458 

motor current presents large fluctuations at high frequencies, as can be seen in Figure 14(b). However, 459 

the SCADA system does not detect the abnormality. Instead, it only gives an alarm. The condition 460 

score curve in Figure 14(c) shows that at timestamp 33800, the proposed algorithm has detected the 461 

abnormalities above the threshold 0.1337 for several times, indicating that the pitch system fault 462 

occurs at that moment. As shown in Figure 14(d), after the DPs adjustment, the proposed CM method 463 

identifies the fault occurrence 3.6 hours earlier. It is noteworthy that the threshold value of 0.1337 464 

in this case is much higher than the threshold value of 0.0116 in case 1, indicating a decline in the 465 

model's capacity in terms of fitting the normal data. This is primarily because the two cases work at 466 

different sampling rates and with different number of parameters (9 for case 1 while 32 for case 2). 467 

The maximum scores under abnormal conditions are also significantly different with 0.2 and 0.8 for 468 

the two cases respectively. This shows that although the detection difficulty increases, the proposed 469 

model still demonstrates good CM ability in dealing with the high-dimensional and complex 470 

parameters. 471 
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  472 
Figure 14 Fault detection result of the 𝑾𝑭𝟐 −WT𝟐 473 

The probability density distribution of actual values and reconstructed values of 𝑊𝐹2 − WT2 474 

within the normal and abnormal periods are given in Figure 15 to Figure 16. As shown in Figure 15(a), 475 

under the normal condition, the distributions of actual values and reconstructed values of all selected 476 

32 parameters are consistent after t-SNE dimension reduction. Taking the pitch motor current of 477 

blade-2 as an example, it can be seen from Figure 15(b) that the current values of blade-2 are mainly 478 

distributed in the range of 0 to 0.2𝐴, indicating that the proposed model has an accurate expression 479 

capability under the normal operation. However, within the abnormal period, Figure 16 shows the 480 

clear differences between the distributions of actual values and reconstructed values after t-SNE 481 

dimension reduction. The actual values of the pitch motor current of blade-2 are shifted to the range 482 

of 0 to 0.65𝐴 under the abnormal operation.  483 

  

(a) t-SNE distribution of all parameters (b) Probability density distribution of pitch motor 

current of blade-2 

Figure 15 The distribution of actual value and reconstructed value  

from 𝑾𝑭𝟐 −WT𝟐 under normal conditions 

Abnormality detected for the first 

The time when the fault is found. 
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(a) t-SNE distribution of all parameters (b) Probability density distribution of pitch motor 

current of blade-2 

Figure 16 The distribution of actual value and reconstructed value  

from 𝑾𝑭𝟐 −WT𝟐 under abnormal conditions 

4.2.3 Discussions of cases 484 

 From the results of the above two representative cases, we can see that, the model proposed in 485 

this paper can accurately detect the potential anomalies, although there exist large differences in 486 

data in the wind farms due to the differences in turbine type, installation area, working environment, 487 

fault type, and data collection frequency. For these cases, our methods can be adapted to the input 488 

with variation in data dimension, which is significant for real-world WT condition monitoring, 489 

because it is always hard to obtain the variables consistent with the faults. However, it is worth 490 

noting that many variables may affect the accuracy of the prediction model due to data redundancy. 491 

Moreover, different data collection frequency indicates the large differences in the contained 492 

information. Use of the lower sampling frequency leads to domination of the trend-varying 493 

information of the data, while use of the higher sampling frequency produces both low and high 494 

frequency components of the data. Hence, when the data collection frequency is different, we need 495 

to set different model hyper-parameters, mainly including sliding window length and number of 496 

network layers.  497 

4.3 Hyperparameter effect on the model performance 498 

We have studied the effects of different parameters on model performance. Here, we take the 499 

experimental results of the datasets 𝑊𝐹1 -WT2  and 𝑊𝐹2 -WT2  as examples to undertake the 500 

performance analysis. It is hoped that the model can capture spatial-temporal features under normal 501 

conditions as much as possible, thus providing an effective normal behavior model of the WT. 502 

However, for abnormal data, the opposite properties are required, that is to say, it is better if the 503 

reconstructed abnormal values deviate from the measured data. Therefore, the selection of 504 

hyperparameters would be crucial for appropriate modelling. We mainly focus on the effect from 505 

the number of layers of spatial-temporal feature extraction network composed of GAT and TCN and 506 

the sliding window width on the model performance, because the number of BiLSTM layers is 507 

found to have relatively little impact. Meanwhile, 𝐹1 =  2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 is used to evaluate the 508 

performance of the model, where 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 , 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
  . 𝑇𝑃 , 𝐹𝑃  and 𝐹𝑁  refer to 509 

true positives, false positives, and false negatives, respectively. 510 

Figure 17 and Figure 18 show the effects of different sliding window widths and the number of 511 

spatial-temporal network layers on 𝐹1 score. For the 𝑊𝐹1-WT2, when the window width is 120, 512 
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F1 reaches 0.9306; however, when the window width is 10, F1 reduces to 0.8866. This is because a 513 

longer time window contains more temporal features. It can be seen from Figure 18 that F1 reaches 514 

the optimal value 0.9257 when the number of network layer is 2. For the 𝑊𝐹2-WT2, when the 515 

window width is 60 and the number of network layer is 1, F1 reaches the optimal 0.9361 and 0.937, 516 

respectively. F1 does not increase further with the increase of network layer number, indicating that 517 

the number of network layer has little effect on the model performance. Note that the gradual 518 

increase in network layer number clearly results in the increase in computation load and possibility 519 

of the overfitting. Hence, in the practical applications, it is appropriate to select 1 to 2 layers of the 520 

model. The parameter configuration of MSTFAN proposed in this paper is given in Table 4.  521 

 522 

  

Figure 17 Detection accuracy with different widths 

of the sliding window 

Figure 18 Detection accuracy with different layers 

of the proposed model 

5. Performance comparison 523 

To further verify the accuracy and effectiveness, the proposed MSTFAN method is compared 524 

with TCN [58], LSTM, LSTM-VAE [64], CNN-LSTM and CNN-GRU [65]. All parameters of these 525 

deep learning methods are kept to be consistent with the proposed MSTFAN method in this paper. 526 

The TCN model is a 1-D dilated causal convolution-based model, which enables a better extraction 527 

of spatial and temporal features from multivariate SCADA data. For the LSTM model, it is a 4-layer 528 

LSTM network, a typical model for temporal feature extraction, which can capture potential 529 

temporal dependency information from SCADA data. The LSTM-VAE-based model is used for 530 

multimodal fault detection. The potential distribution of multivariate spatial-temporal signals is 531 

modelled and then the information is reconstructed using the expected distribution. The CNN-532 

LSTM method performs similarly to the spatial-temporal feature extraction method proposed in this 533 

paper, by utilizing the CNN network and LSTM network to extract spatial features and temporal 534 

features, respectively. The CNN-GRU method performs similarly to CNN-LSTM since GRU is a 535 

variant model of LSTM. Omitting the output gate in the model structure can make the number of 536 

GRU parameters fewer, thus making the training easier.  537 

  538 

Table 4 Parameter configuration of MSTFAN 539 

layer Filter (Dropout) Channels Heads Kernel (Strides) Activation Padding (Dilation) 

Spatial 

network 

GATConv  10/15 4 / / / 

Linear 64   / / / 

GATConv  10/15 4 / / / 
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Linear 64 / / / / / 

Temporal 

network 

Conv1d 128（20） / / 7（1） ReLU 6（1） 

Conv1d 128（20） / / 7（1） ReLU 6（2） 

Reconstruction 

network 

BiLSTM 150（20） / / / / / 

Linear 10/15 / / / / / 

In addition, for all methods, the batch size is set to 128; the initial learning rate is 0.001; the 540 

maximum number of iterations is 100; and the early stopping mechanism is used to prevent the 541 

model from overfitting. To obtain a better convergence performance of the model, 542 

ReduceLROnPlateau, a kind of learning rate adjustment method based on epoch training times, is 543 

adopted for dynamic adjustment of learning rate. Meanwhile, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃𝑟𝑒. ), 𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅𝑒𝑐. ), 544 

𝐹1 and area under ROC curve (AUC) are used as evaluation indexes. Here the receiver operating 545 

characteristic (ROC) curve is a graphical plot that illustrates the diagnostic ability of a binary 546 

classifier system as its discrimination threshold is varied. 547 

Table 5 Performance comparison of all methods for 𝑾𝑭𝟏 and 𝑾𝑭𝟐 548 

 𝑾𝑭𝟏-WT𝟐 𝑾𝑭𝟐-WT𝟐 Average 

Methods F1 Pre. Rec. AUC F1 Pre. Rec. AUC F1 Pre. Rec. AUC 

TCN 0.879  0.862  0.898  0.949  0.922  0.952  0.894  0.983  0.901  0.907  0.896  0.966  

LSTM 0.820  0.970  0.713  0.925  0.903  0.958  0.854  0.982  0.861  0.964  0.784  0.953  

LSTM-AE 0.719  0.837  0.642  0.930  0.781  0.968  0.661  0.966  0.750  0.903  0.652  0.948  

CNN-LSTM 0.893  0.971  0.827  0.970  0.868  0.964  0.791  0.982  0.880  0.968  0.809  0.976  

CNN-GRU 0.848  0.972  0.756  0.964  0.892  0.953  0.842  0.978  0.870  0.962  0.799  0.971  

MSTFAN (proposed) 0.931  0.963  0.900  0.980  0.932  0.953  0.913  0.983  0.931  0.958  0.907  0.981  

Table 5 shows the performance of all methods against these two datasets 𝑊𝐹1 − WT2 and 𝑊𝐹2 − WT2. 549 

Figure 19 graphically illustrates the performance comparison of the results from all the models 550 

investigated, where the optimal performance of the metric is shown in bold. It can be seen that the 551 

overall performances in terms of F1 and AUC are 0.931 and 0.981, respectively, which are produced 552 

from MSTFAN. The proposed MSTFAN is more optimal than those other methods, indicating that 553 

MSTFAN can effectively capture the complex spatial-temporal features of multivariate SCADA 554 

data and has a better generalization performance. Notably, the recall of MSTFAN is 0.907, which is 555 

also more optimal than other models. High recall indicates the model has a higher true negatives 556 

(TN) value, meaning that the model has a higher detection accuracy for abnormal data. This would 557 

be essential for fault detection. Furthermore, CNN-LSTM and CNN-GRU also present good 558 

performances whose AUC values are over 0.970; however, their average F1 (0.880 and 0.870, 559 

respectively) is still lower than that of the MSTFAN, and even worse than that of the TCN prediction 560 

network alone. It indicates that although CNN has a good local feature extraction capability, its 561 

ability to extract temporal correlations is weak when compared with the TCN. Meanwhile, CNN 562 

deals with problems under the Euclidean space, which may not be enough for complex multivariate 563 

time series data. We also notice that the average F1 of LSTM-AE is only 0.750, which is the worst 564 

performance in all models. This may be caused by abnormal patterns due to the trend anomaly of 565 

the variables and correlation anomaly among the variables. The AE-based methods use the 566 

reconstruction error to achieve the condition monitoring; however, sometimes the abnormal patterns 567 

may be allowed to be reconstructed. This fully illustrates the importance that the MSTFAN adopts 568 

the graph attention network to model specifically the spatial correlation of multivariate data, thus 569 
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improving the detection accuracy. 570 

 571 

 572 
Figure 19 Performance comparison of the average results of different methods 573 

Figure  and Figure  show the comparison of the actual and reconstructed values, taking main 574 

bearing temperature 2 from 𝑊𝐹1 − WT2 and pitch motor current of blade-2 from 𝑊𝐹2 − WT2 as 575 

examples. It can be seen that the proposed MSTFAN method has the best performances, although 576 

TCN and LSTM both present comparable fitting effect for the normal data. CNN-LSTM and CNN-577 

GRU do not manifest perfect effects, possibly because these two methods only consider spatial 578 

correlation at the front-end of network while ignoring temporal correlation of data at the back-end 579 

of network. Moreover, although LSTM and TCN networks have good fitting effects on the normal 580 

state of WTs, it can be seen from Figure  that the values of F1 and AUC are relatively low. This 581 

indicates that network over-fitting may happen, which is disadvantageous to fault detection. The 582 

above analyses verify the necessity of spatial-temporal feature extraction from SCADA data by 583 

combining graph network and temporal network. Meanwhile, the use of BiLSTM network has 584 

further improved the extraction ability of the model due to long-term dependency correlation of 585 

temporal data, making the proposed MSTFAN achieve an optimal performance in terms of accuracy 586 

and generalization. 587 
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 588 

Figure 20 Comparison of the actual value and reconstructed value for main bearing temperature 589 

2 of 𝑾𝑭𝟏 − WT𝟐 590 

 591 

 592 

Figure 21 Comparison of the actual value and reconstructed value for pitch motor current of 593 

blade-2 of 𝑾𝑭𝟐 − WT𝟐 594 

6. Conclusions  595 

A novel approach is proposed for fault detection of WTs based on spatial-temporal information 596 

aggregation in this paper. It combines a graph neural network with a temporal convolution neural 597 

network to extract simultaneously spatial features and temporal features from multivariate SCADA 598 

data. A reconstruction network by means of BiLSTM network is utilized to capture the bi-directional 599 

information dependence to achieve an optimal prediction accuracy for the normal operation 600 
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conditions of WTs. Furthermore, a condition scoring method is proposed based on reconstruction 601 

error, and DPs is further designed to improve the detection reliability for the early warning of the 602 

faults. The experimental results demonstrate that the proposed MSTFAN model can effectively 603 

detect early WT faults and be convenient for users to detect anomalies in the condition monitoring 604 

of real-world WTs. For future studies, the detection accuracy and generalization capability of the 605 

model need to be optimized further by the proper selection of monitoring parameters. Moreover, 606 

practical data with more extensive fault cases should be collected for training and verifying the 607 

model to improve the robustness of the approach. 608 
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