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Abstract 11 

3D-printed continuous ramie fiber reinforced polypropylene composites 12 

(CRFRPP) are expected to ensure good mechanical properties while meeting the 13 

requirements of environmental friendliness and sustainability. To promote the wide 14 

industrial application of CRFRPP, this work investigated the effects of printing 15 

parameters (extrusion flow rate, printing temperature, layer thickness and printing 16 

speed) on the interfacial properties of CRFRPP. The interlayer and intralayer interfacial 17 

properties of CRFRPP with different printing parameters were studied using the design 18 

of experiment approach. Machine learning methods and response surface methodology 19 

prediction were also carried out based on the experimental results to bridge the printing 20 

parameters and interfacial properties. According to the prediction results, the printing 21 
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parameters were optimized to improve the production efficiency while ensuring the 22 

desired interfacial performance. At last, the bending tests were conducted to investigate 23 

how the difference in interfacial properties can be translated to the mechanical 24 

performance. The results found that printed specimens with weak interfacial strength 25 

suffered interlaminar delamination failure when subjected to bending loads, greatly 26 

weakening the mechanical properties of the composites. 27 

 28 

Keywords: Additive manufacturing; Interfacial properties; Continuous natural fiber; 29 

Machine learning; Polypropylene-based composites 30 

1 Introduction 31 

Additive manufacturing (AM), also known as 3D printing, is a promising 32 

manufacturing technology for quickly and cost-effectively fabricating objects with 33 

complicated structures [1]. Material extrusion-based additive manufacturing (ME-AM) 34 

is a widely used AM method that fabricated 3D parts by selectively laying extruded 35 

semi-molten thermoplastic materials. ME-AM has attracted increasing attention due to 36 

its advantages of simple process, cost-saving, high forming efficiency and multi-37 

material flexibility [2]. However, some challenges, such as voids in the microstructure 38 

and poor interfacial interaction, impact negatively the mechanical properties of printed 39 

parts thus limiting the industrial application of ME-AM products [3]. Driven by these 40 

challenges and applications, polymer-based particles, short fiber and continuous fiber 41 

reinforced composites have been intensively investigated to improve the properties of 42 
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the printed parts. Among these composites, continuous fiber reinforced composites 43 

usually outperform particles and short fiber reinforced composites in terms of 44 

mechanical performance [3-5]. The current literature mainly focused on 3D-printed 45 

continuous synthetic fibers reinforced composites [6, 7]. However, the extensive use of 46 

non-biodegradable synthetic fiber materials would affect negatively the environment 47 

[8]. Taking into account the needs of environmental friendliness and sustainable 48 

development, natural fibers were suggested as the replacement for synthetic fibers [8, 49 

9].  50 

Continuous natural fiber reinforced composite prepared by ME-AM is still a 51 

young field of research with limited works in the literature available. Matsuzaki et al. 52 

[10] fabricated jute reinforced polylactic acid (PLA)-based composites by in-situ 53 

impregnation 3D printing method and investigated their tensile properties. It was found 54 

that the tensile modulus and strength of the continuous jute reinforced PLA printed 55 

specimen increased by 157% and 134%, respectively, compared with those of the 3D-56 

printed neat PLA specimens. Le Duigou et al. [11] investigated the tensile properties of 57 

ME-AM fabricated continuous flax fiber reinforced PLA composites. The results 58 

showed that the longitudinal tensile modulus and strength of continuous flax fiber 59 

reinforced PLA composites were improved by a factor of 4.5. In another work of Le 60 

Duigou et al. [12], the mechanical properties of 3D-printed continuous flax/PLA 61 

biocomposites were demonstrated to be very sensitive to the printing parameters such 62 

as layer thickness and interfilament distance. Cheng et al. [6] investigated the effects of 63 
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printing parameters on interfacial and tensile mechanical properties of continuous ramie 64 

fiber reinforced PLA fabricated by ME-AM. The results indicated that the interfacial 65 

and tensile mechanical properties of the printed ramie/PLA composites increased as 66 

increasing printing temperature and decreasing layer thickness as well as printing speed. 67 

It can be seen that PLA as the matrix of continuous natural fiber reinforced 68 

composites is getting more attention due to its facile processability and biodegradability. 69 

However, PLA was severely limited by its relatively low toughness and poor heat 70 

resistance [13, 14]. In recent years, PP has emerged as a new 3D printing material due 71 

to its heat stability and excellent balance between toughness and rigidness [15]. 72 

Moreover, PP had superior remanufacturing capacity among various commercially 73 

available 3D printing materials [16]. Therefore, 3D-printed continuous natural fiber 74 

reinforced PP composites have promising potential to be environment-friendly and 75 

sustainable composites with good mechanical properties.  76 

As previously stated, the mechanical behaviors of 3D-printed continuous fiber 77 

reinforced composites highly depended on the printing parameters. In the available 78 

studies, the effects of process parameters on the mechanical properties of 3D-printed 79 

continuous natural fiber reinforced composites were mainly studied experimentally. 80 

However, the experimental methods are time-consuming and costly when considering 81 

many parameters and their interactions. Although finite element and theoretical 82 

modeling could also be applied to study properties of material and structure, their 83 

inherent physical assumptions and high computational costs make them challenging to 84 
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analyze 3D-printed composites with complex microstructures [17-21]. In addition, 85 

when interrelated variables are presented in a nonlinear pattern, it is difficult to reveal 86 

their relationships using traditional methods [20, 22]. The application of data-driven 87 

methods, such as machine learning (ML), may provide effective solutions for the above 88 

issues. In fact, ML method has been applied to AM with promising results in recent 89 

years [20, 22-28].  90 

In this work, continuous ramie fiber reinforced PP composites (CRFRPP) were 91 

prepared by in-situ impregnation 3D printing. Interfacial (interlayer and intralayer) 92 

properties of CRFRPP were investigated as they may impact significantly on the 93 

mechanical properties of 3D-printed composites [29-34]. Effects of printing parameters 94 

such as extrusion flow rate, printing temperature, layer thickness and printing speed on 95 

the interfacial properties of CRFRPP were studied. Box-Behnken design (BBD) and 96 

factorial design methods were combined to design experiments with the consideration 97 

of reflecting the interaction among parameters as much as possible. Response surface 98 

methodology (RSM) was applied to predict interlayer and intralayer adhesion 99 

properties of CRFRPP with different printing parameters. In addition, two ML 100 

algorithms, random forest (RF) and artificial neural network (ANN) were also applied 101 

to build prediction models of interfacial properties. The performance of the above 102 

methods was evaluated. Parameters were optimized based on the prediction results 103 

given by the prediction model with the best performance. At last, the bending tests were 104 

conducted to investigate how the difference in interfacial properties can be translated 105 
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to the mechanical performance. 106 

2 Experiments and modeling 107 

2.1 Materials and processing 108 

In this work, commercial talc (12 wt.%) filled and ethylene-propylene-diene-109 

monomer (EPDM) (20 wt.%) toughened commercial PP-based composite, 110 

PP/EPDM/talc (grade 7510, Sabic, Saudi Arabia), was selected to be the matrix for 111 

CRFRPP. Continuous ramie fiber (Hunan Huasheng Dongting Ramie Textile co., ltd, 112 

Hunan, China) was selected to be the reinforcement for CRFRPP in this study. This 113 

ramie yarn was twisted (400 turn/meter) with a linear density of 36 Nm/2R. Nm is an 114 

indirect yarn count system. The length of yarn in meters of one gram of yarn or the 115 

length of yarn in kilometers of one kilogram of yarn is called new metric count (Nm). 116 

2R means that the number of strands plied together in the yarn is 2. 117 

The as-received granular PP/EPDM/talc material was first dried in an oven at 118 

80 °C for one hour and then extruded using a twin-screw extruder at a final die 119 

temperature of 185 °C. The filament was extruded evenly by the extruder, keeping a 120 

stable diameter of 1.75 mm. The ramie yarns were also dried in an oven at 80 °C for 121 

two hours before the 3D printing process. 3D printer allowing in-situ impregnation 122 

(Combot-200, Fibertech, Shanxi, China) with a single 1.3 mm diameter flat-head 123 

nozzle was applied to fabricate CRFRPP samples in this work. As shown in Fig.1 (a), 124 

during the printing process, PP filament was fed into a liquefier to heat and melt. Then 125 

the ramie yarn was impregnated with molten PP in the liquefier and together extruded 126 
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by the nozzle. Under the action of heat and pressure, adjacent extruded filaments 127 

within the layer were bonded and then adjacent layers were bonded. The intralayer 128 

and interlayer adhesion strengths were denoted as Intra-Strength and Inter-Strength in 129 

this study, respectively, as shown in Fig.1 (b). The extruded filament was deposited in 130 

a rectilinear pattern. 131 

 132 

 133 

Fig. 1. Schematic of the (a) in-situ impregnation 3D printing process (b) cross-section 134 

of the printed specimen. 135 

 136 

2.2 Characterization 137 

Four printing parameters that could have great influences on the performance of 138 

the printed specimen: extrusion flow rate, printing temperature, layer thickness and 139 

printing speed were chosen to study their effects on the interfacial properties of 140 

CRFRPP, and each parameter was set at three levels, as shown in Table 1. Note that the 141 

extrusion flow rate was the parameter from the slicing software, which meant the 142 
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extrusion amount of molten resin in unit length, the greater value of it represented the 143 

more resin extrusion per unit length. The print line spacing was set at a constant value 144 

of 1.0 mm to ensure printed specimens can be successfully printed under all printing 145 

parameters combinations in our work. Box-Behnken design (BBD) was used to 146 

generate experimental points in this study. For BBD, only tests in the center points were 147 

designed to repeat for evaluating the error of experiments [35-37]. In addition, we added 148 

12 experimental points to better train and validate ML models for improving prediction 149 

accuracy. As a result, each type of test (Inter-strength or Intra-strength test) had 39 150 

experimental points and 78 tests were conducted in total. 151 

 152 

Table 1. Printing parameters with their codes and levels. 153 

Printing parameters Codes 
Levels 

Low level Center level High level 

Extrusion flow rate (%) E 50 70 90 

Printing temperature (oC) T 190 210 230 

Layer thickness (mm) L 0.30 0.45 0.60 

Printing speed (mm/min) V 100 300 500 

 154 

The combinations of printing parameters based on the experimental design as well 155 

as the experimental results are detailed in section 3.1 (shown in Table 3). According to 156 

the experimental design, CRFRPP with different printing parameter combinations were 157 
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manufactured and their interfacial properties (interlayer and intralayer adhesion 158 

properties) were examined. Inspired by these works [33, 38-44] and ASTM D1938 159 

standard, interlayer and intralayer adhesion strengths (Inter-Strength and Intra-Strength) 160 

of CRFRPP were characterized by the means of methods shown in Fig. 2 using a 161 

universal mechanical testing machine (E44, MTS Co., USA). For Inter-Strength 162 

characterization, the test specimens with a length of 80 mm and a width of 6 mm were 163 

printed as three layers, as shown in Fig. 2 (a). For Intra-Strength characterization, the 164 

test specimens with a length of 80 mm and a width of 6 mm were printed as two layers, 165 

as shown in Fig. 2 (b). Fig. 2 (c) shows the typical curve for an Inter-Strength 166 

measurement (curves for Intra-Strength measurement showed similar trends therefore 167 

were not presented). Interlayer and intralayer adhesion forces were obtained from the 168 

average of the steady-state region. Then interlayer and intralayer adhesion forces were 169 

normalized by width of Inter-Strength test specimen and thickness of Intra-Strength test 170 

specimen, respectively. 171 

 172 
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 173 

Fig. 2. Schematic of the (a) Inter-Strength and (b) Intra-Strength tests, and (c) typical 174 

curve for Inter-Strength measurement. 175 

 176 

To investigate how the interfacial properties influence the mechanical performance 177 

of printed specimen, three-point bending tests were carried out using the universal 178 

mechanical testing machine. The bending tests were performed with a constant cross-179 

head speed of 3 mm/min and at room temperature according to ISO14125. The bending 180 

test specimen was cuboid with dimensions of 90 mm × 6 mm × 6 mm. 181 

The morphological properties of the specimens after Inter-Strength and Intra-182 

Strength tests were investigated using an optical microscope (OM) (AO-3M150GS, 183 

AOSVI, Shenzhen, China).  184 

2.3 Modeling and evaluation 185 

Three methods, response surface methodology (RSM), random forest (RF) and 186 
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artificial neural network (ANN), were selected as prediction models. These two ML 187 

models were developed using Python (Python Software Foundation). Scikit-learn 188 

(scikit-learn package, v0.24.2) [45], an open-source ML library for Python, was used 189 

to execute ML algorithms in this study.  190 

The dataset used for modeling was built based on the experimental results. Here, 191 

the inputs for the models were extrusion flow rate, printing temperature, layer thickness 192 

and printing speed. And the outputs were corresponding Inter-Strength and Intra-193 

Strength. The data were randomly divided into training and test datasets in the ratio of 194 

9:1, which were used to calibrate the model and validate the results of the training 195 

protocol, respectively. For each ML method, hyperparameters were fine-tuned by 196 

empirical methods, grid search techniques and references to related literature [23, 46] 197 

to maximize model performance. The optimized hyperparameters are shown in Table 2. 198 

A brief explanation of the meanings for all hyperparameters mentioned in this study 199 

was presented in the Supplementary material. 200 

 201 

Table 2. Optimized hyperparameters for machine learning methods in this study. 202 

Method Method Hyperparameters Best Parameters 

RF 

max_depth 4 

min_samples_leaf 1 

min_samples_split 2 

n_estimators 50 
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ANN 

solver lbfgs 

activation tanh 

hidden_layer_sizes (4,3,3,1) 

Max_iter 134 

 203 

Four metrics were used to evaluate the accuracy of the prediction. These four 204 

metrics were R2, Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and 205 

Median Absolute Error (MedAE). The equations and brief explanations of these metrics 206 

were presented in the Supplementary material. 207 

3 Results 208 

3.1 Experimental results 209 

Table 3 shows the Inter-Strength and Intra-Strength of the CRFRPP under different 210 

printing parameters. These results would be used as training and test datasets for ML 211 

models. It should be mentioned that Inter-Strength and Intra-Strength derived from the 212 

interlayer and intralayer adhesion forces normalized by width of Inter-Strength test 213 

specimen and thickness of Intra-Strength test specimen, respectively, so their units are 214 

N/cm. 215 

 216 

Table 3. Inter-Strength and Intra-Strength of the CRFRPP under different printing 217 

parameters. 218 
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Tests 

Extrusion 

flow rate 

(%) 

Printing 

temperature 

(oC) 

Layer 

thickness 

(mm) 

Printing 

speed 

(mm/min) 

Inter-

Strength 

(N/cm) 

Intra-

Strength 

(N/cm) 

1 50 210 0.45 500 12.56 40.61 

2 90 210 0.45 100 29.34 110.38 

3 70 230 0.45 100 24.70 113.67 

4 70 210 0.6 500 9.69 67.68 

5 70 210 0.45 500 14.30 72.79 

6 50 230 0.45 300 18.15 68.67 

7 90 210 0.45 300 32.34 103.43 

8 70 230 0.60 300 20.49 78.04 

9 70 190 0.45 100 3.57 34.10 

10 70 230 0.45 500 25.31 83.29 

11 90 230 0.45 300 35.67 105.05 

12 70 230 0.30 300 27.22 117.58 

13 70 210 0.45 300 12.17 67.39 

14 70 210 0.45 300 12.65 64.67 

15 70 190 0.30 300 9.24 54.02 

16 70 210 0.60 100 9.61 53.02 

17 50 210 0.45 300 11.45 50.44 

18 70 210 0.60 300 9.71 59.67 

19 70 190 0.45 500 11.93 35.10 

20 90 210 0.45 300 30.00 100.79 

21 90 210 0.60 300 26.16 80.49 
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22 70 210 0.45 100 11.93 64.59 

23 90 190 0.45 300 23.38 82.20 

24 70 210 0.30 500 15.53 67.73 

25 90 210 0.45 500 29.59 101.59 

26 70 230 0.45 300 25.65 93.89 

27 70 210 0.30 300 14.09 94.70 

28 70 190 0.60 300 1.10 16.75 

29 70 190 0.45 300 8.45 49.54 

30 50 190 0.45 300 1.83 14.39 

31 50 210 0.60 300 1.85 40.81 

32 70 210 0.45 300 12.61 70.09 

33 50 210 0.45 300 11.82 48.79 

34 70 210 0.30 100 15.79 72.38 

35 70 210 0.45 500 13.44 62.53 

36 50 210 0.30 300 13.86 52.02 

37 90 210 0.30 300 39.21 120.35 

38 50 210 0.45 100 9.94 58.98 

39 70 210 0.45 100 12.06 65.23 

 219 

In order to show clearly the variation trends of the Inter-Strength and Intra-220 

Strength of printed parts as a function of printing parameters, experimental results are 221 

presented in Fig. 3. Note that for BBD, only tests in the center points were designed to 222 

repeat for evaluating the error of experiments, therefore only these results had error 223 
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bars. In Fig. 3 (a), it can be found that when the printing temperature was 190 °C, Inter-224 

Strength increased with the increase of printing speed. However, when printing 225 

temperature was 210 °C and 230 °C, it seemed that printing speed had an insignificant 226 

effect on the Inter-Strength of CRFRPP. Similarly, the change of Intra-Strength as a 227 

function of printing speed also presented different trends under different printing 228 

temperatures. In Fig. 3 (b), it can be seen that when printing temperature and printing 229 

speed were at their center level, the Inter-Strength and Intra-Strength of CRFRPP under 230 

three extrusion flow rates decreased with the increase of layer thickness and the degree 231 

of decline was different under different extrusion flow. The interactions between 232 

printing parameters were obvious and discrete experimental results showed nonlinear 233 

and complex rules. Therefore, they were combined with the prediction models to know 234 

the overall rules, which were necessary for the optimization. 235 

 236 

 237 

Fig. 3. Inter-Strength and Intra-Strength of the CRFRPP under different printing 238 

parameters. 239 
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 240 

3.2 Evaluation results of models 241 

Fig. 4 shows the R2 score and error (MAE, RMSE, MedAE) of the prediction 242 

models for Inter-Strength and Intra-Strength. In Fig. 4 (a), it can be seen that all three 243 

prediction models for Inter-Strength showed higher R2 scores. However, for Intra-244 

Strength, RSM presented a relatively lower R2 score. In addition, ANOVA results (see 245 

in Tables S1 and S2 in the Supplementary material) found that for both Inter-Strength 246 

and Intra-Strength, the Lack of Fit of RSM was significant, which meant the fit of RSM 247 

to actual results was significantly inaccurate. Besides, RF presented an acceptable R2 248 

score (above 0.9) and ANN showed the highest R2 score as expected. In addition, the 249 

R2 score on the training dataset and test dataset were also calculated to evaluate whether 250 

the ANN model was over-fitting. If the model presented a high R2 score on the training 251 

dataset but a low R2 score in the test dataset, it meant that overfitting occurred during 252 

the training process, indicating poor generalizability of the models. In this study, for 253 

Inter-Strength, the R2 of ANN model on the training and test dataset were 0.9682 and 254 

0.9677, respectively. And for Intra-Strength, the R2 of ANN model on the training and 255 

test dataset were 0.9449 and 0.9513, respectively. It was found that the R2 of the ANN 256 

model on the training set was not significantly bigger than that on the test set. Therefore, 257 

there seemed to be no obvious overfitting phenomenon in this work. 258 

The R2 score is an intuitive way to evaluate the performance of each model on the 259 

dataset, but it cannot directly quantify the error for specific data. To directly measure 260 
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the practicality of the model for the problem, errors between predicted values and actual 261 

values were also used for model evaluation, as shown in Fig. 4 (b). It can be found that 262 

among the three models, ANN had the lowest errors for both Inter-Strength and Intra-263 

Strength predictions.  264 

 265 

 266 

Fig. 4. (a) R2 score and (b) errors (MAE, RMSE, MedAE) of the prediction models 267 

for Inter-Strength and Intra-Strength. 268 

 269 

3.3 Predicted results 270 

Fig. 5 presents the ANN prediction results because ANN prediction results had the 271 

highest accuracy. Note that the step sizes of the printing parameters for the predicting 272 

dataset were: E: 5%, T: 5 °C, L: 0.05 mm, and V: 50 mm/min. Only part of the results 273 

was shown here as they were sufficient to show the major effects of printing parameters 274 

on Inter-Strength and Intra-Strength of CRFRPP. In Fig. 5 (a), it can be found that when 275 

layer thickness and printing speed were at their center level, the Inter-Strength of 276 
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CRFRPP increased with the increase of extrusion flow rate and printing temperature 277 

(Similar trends can be found when the layer thickness and printing speed in their other 278 

levels). In addition, when the extrusion flow rate was low, as increasing printing 279 

temperature, the Inter-Strength of CRFRPP was significantly improved. However, 280 

when the extrusion flow rate was high, CRFRPP with moderate printing temperature 281 

also had high Inter-Strength. In Fig.5 (b), it can be found that when printing temperature 282 

and printing speed were at their center level, the Inter-Strength of CRFRPP decreased 283 

with the increase of layer thickness. In addition, when the extrusion flow rate was low, 284 

with increasing layer thickness, the Inter-Strength of CRFRPP significantly decreased. 285 

However, when the extrusion flow rate was high, CRFRPP with relatively high layer 286 

thickness also had high Inter-strength. Intra-Strength presented similar trends as 287 

mentioned above under the same printing temperature so they were not shown here. In 288 

Fig. 5 (c), it can be seen that when extrusion flow rate and layer thickness were at their 289 

center level, printing speed had an insignificant influence on the Inter-Strength of 290 

CRFRPP. However, at high printing temperature, the Intra-Strength of CRFRPP 291 

decreased with the increase of printing speed as shown in Fig. 5 (d). The above results 292 

indicated that good interfacial performance of CRFRPP could be achieved without 293 

having to set each print parameter to its highest or lowest value, providing the 294 

possibility of multi-objective optimization. 295 

 296 
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297 

 298 

Fig. 5. Inter-Strength and Intra-Strength of CRFRPP under different printing 299 

parameters. 300 

 301 

3.4 Parameter optimization results 302 

To ensure the high Inter-Strength and Intra-Strength of CRFRPP and improve 303 

forming efficiency, based on the ANN prediction results, printing parameters were 304 

optimized according to the following principles:  305 

(1) Good Inter-Strength and Intra-Strength of CRFRPP: through adjusting printing 306 

parameters, the Inter-Strength and Intra-Strength of CRFRPP could be set as a 307 

percentage of their maximum value (in their prediction results range), or as a 308 
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multiple of the mean or median, depending on practical needs. 309 

(2) Low forming time: on the basis of satisfying the first principle, the printing 310 

parameters that led to the least forming time should be selected. In this study, 311 

the forming time of printed specimens was given by the slicing software and 312 

was related to the printing speed and layer thickness. 313 

(3) Low energy cost: after satisfying the above two principles, if the available 314 

parameters were not a unique combination, then a set of parameters with 315 

relatively low printing temperatures should be selected to save energy. 316 

For example, to print 50 mm × 50 mm × 50 mm solid cube specimen (printed parts 317 

with other sizes and shapes also could be chosen according to actual needs), if both 318 

Inter-Strength and Intra-Strength of CRFRPP were set above 95%, 90%, 85%, 80%, 319 

75% and 70% of their maximum values (these thresholds were denoted as Td), the 320 

optimized parameters were listed in Table 4. 321 

 322 

Table 4. Optimized parameters for different setting percentages (Td) of their 323 

maximum values of Inter-Strength and Intra-Strength. 324 

Td 

(%) 

E 

(%) 

T 

(℃) 

L 

(mm) 

V 

(mm/min) 

Inter- 

Strength 

(N/cm) 

Intra- 

Strength 

(N/cm) 

Forming time 

(h) 

95 90 225 0.30 150 38.23 136.84 45.37 

90 90 220 0.30 250 37.32 129.63 27.18 
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85 90 215 0.30 400 36.43 122.19 17.22 

80 90 215 0.35 450 35.97 113.93 13.28 

75 90 215 0.40 450 35.19 107.66 11.65 

70 90 210 0.45 500 33.13 99.71 9.45 

 325 

4 Discussion 326 

4.1 Comparison of models 327 

As the results discussed in Fig.3 and Fig.5, the variation of Intra-Strength as a 328 

function of printing parameters showed more nonlinear and complex rules than those 329 

of Inter-Strength, which would be a possible reason that all three Intra-Strength 330 

prediction models presented a relatively low R2 score. As a multiple regression method, 331 

RSM can give linear or non-linear models, and each model was scored for accuracy. 332 

Eq. (1) and (2) are the highest-scoring models from RSM. In Eq. (1), it can be seen that 333 

the model for Inter-Strength prediction is a nonlinear regression equation considering 334 

the interaction between parameters, whereas the model for Intra-Strength prediction in 335 

Eq. (2) failed to achieve the nonlinear and interactive interactions between parameters. 336 

This may be the reason why RSM performs poorly in Intra-Strength prediction.  337 

Inter − Strength = 108.84955 − 1.24548E − 1.14408T − 23.56785L +338 

0.11136V − 0.002522E ∗ T − 0.086167E ∗ L − 0.000148E ∗ V + 0.117417T ∗ L −339 

0.000484T ∗ V + 0.002750L ∗ V + 0.016940E ∗ E + 0.004365T ∗ T −340 

25.245647L ∗ L + 7.217331V ∗ V                                                                             (1) 341 
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Intra − Strength = −261.44119 + 1.34246E + 1.336071T − 86.82048L − 342 

0.01282V                                                                                                                     (2) 343 

Fig. 6 shows the schematic graph of the structure of the ANN prediction model for 344 

Intra-Strength in this work. The ANN structure in this study comprises one input layer, 345 

two hidden layers and one output layer, and each layer contains some neurons. Neurons 346 

in two neighboring layers are linked, and the magnitudes of the links between neurons 347 

in two adjacent layers are referred as "weight" [47]. The difference between the 348 

expected and true output values was utilized to change the weight for increasing 349 

accuracy. The error usually gets smaller after a few iterations. As a result, ANN could 350 

capture the complicated and nonlinear relationship between the parameters and Intra-351 

Strength, which was the reason why ANN had the best performance for Intra-Strength 352 

prediction. 353 

 354 

 355 

Fig. 6. Schematic graph of the structure of ANN prediction model for Intra-Strength. 356 

 357 
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Although RF did not perform as well as ANN, it also gave an acceptable R2 score 358 

(above 0.9). Moreover, its main advantage is that it can output the importance of 359 

parameters, which can evaluate what extent a given printing parameter influences the 360 

Inter-Strength and Intra-Strength from a holistic point of view. The importance of 361 

parameters will be discussed in detail in the next section. 362 

4.2 Effects of printing parameter on the interfacial properties 363 

Fig.7 shows the importance of four printing parameters. It can be found that 364 

extrusion flow rate (E) had the most important influence on both Inter-Strength and 365 

Intra-Strength. And printing speed (V) had a relatively small influence on both Inter-366 

Strength and Intra-Strength. For Intra-Strength, printing temperature had close 367 

importance compared to extrusion flow rate. One parameter with higher importance 368 

should be considered firstly in the adjustment to obtain better properties. For example, 369 

in this study, to obtain higher Inter-Strength and Intra-Strength, the first and most 370 

important thing is to select the appropriate extrusion flow rate, followed by adjusting 371 

the printing temperature and layer thickness, and finally to consider adjusting the 372 

printing speed. In addition, one parameter with higher importance indicated it has a 373 

relatively narrow parameter selection window. For example, as the optimized results in 374 

Table 4, when Inter-Strength and Intra-Strength of CRFRPP were set above from 95% 375 

to 70% of their maximum value, all optimized extrusion flow rates were 90%. 376 

 377 
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 378 

Fig. 7. The importance of four printing parameters, which can evaluate to what extent 379 

a given printing parameter influences the Inter-Strength and Intra-Strength from a 380 

holistic point of view. 381 

 382 

Fig. 8 shows the typical fracture surfaces of CRFRPP after Inter-Strength and 383 

Intra-Strength tests. In Fig. 8 (a), it can be found that interlayer debonding contained 384 

fiber/matrix debonding (as shown in area 1) and matrix/matrix debonding (as shown in 385 

area 2). In Fig. 8 (b), the debonding between the fine ramie fiber branches of yarns and 386 

resin (as shown in area 3) and debonding between resin and resin can be seen (as shown 387 

in area 4). Therefore, both the adhesion strength of interlayer resin and the degree of 388 

impregnation of fiber had important influence on the interlayer interaction. 389 
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 390 

Fig. 8. Typical fracture surfaces of CRFRPP after (a) Inter-Strength and (b) Intra- 391 

Strength tests, in which, area 1 is fiber/matrix debonding, area 2 is matrix/matrix 392 

debonding, area 3 is the debonding between the fine ramie fiber branches of yarns and 393 

resin and area 4 is debonding between resin and resin. 394 

 395 

Fig. 9 shows the fracture surfaces of CRFRPP under different printing parameters. 396 

Note that the fracture surfaces in which fibers can be seen after Inter-Strength tests 397 

(similar to the right image in Fig. 8 (a)) were not presented here because their difference 398 

was less visible compared with the fracture surfaces in which fibers were hard to be 399 

seen after Inter-Strength tests (just like the left image in Fig. 8 (a)). The interface 400 

morphologies at different printing speeds showed limited differences and therefore 401 

were not presented here. As shown in Fig. 9 (a) and (g), at a given printing temperature 402 

of 190 oC, when the extrusion flow rate was low, obvious voids between filaments could 403 

be seen. These defects could seriously decrease the Intra-Strength of CRFRPP. As a 404 

result, the Intra-Strengths of CRFRPP at lower extrusion flow rates and lower printing 405 
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temperatures were significantly inferior to those at higher extrusion flow rates and 406 

higher printing temperatures (see Figs. 3 and 5). Comparing to Fig. 9 (a) with (c), more 407 

and obvious defects can be seen in the fracture surface of CRFRPP with low printing 408 

temperature. In Fig. 9 (b), interlayer debonding can be seen in the fracture surface after 409 

Intra-Strength tests, indicating the bonding between layers was poor under low 410 

extrusion flow rate and low printing temperature. In addition, the fracture surface of 411 

CRFRPP with low extrusion flow rate and low printing temperature was smoother. A 412 

smooth surface means there are limited plastic deformations during debonding, 413 

indicating adhesion strength is poor. Similar results were also reported by Petersmann 414 

et al. [39]. Comparing Fig. 9 (e) and (f) to Fig. 9 (k) and (l), it can be found that the 415 

fracture surface became smoother as increasing the layer thickness. In addition, obvious 416 

interlayer debonding can be seen in the fracture surface after Intra-Strength test (Fig. 9 417 

(l)), which indicated the bonding between layers of CRFRPP was very poor at a high 418 

layer thickness. As a result, the Inter-Strengths of CRFRPP at higher layer thicknesses, 419 

lower extrusion flow rates and lower printing temperatures decreased significantly 420 

compared to those at lower layer thicknesses, higher extrusion flow rates and higher 421 

printing temperatures (see Figs. 3 and 5). 422 

 423 
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 424 

Fig. 9. Fracture surfaces of CRFRPP prepared under different printing parameters. 425 

 426 

Factors such as matrix content, temperature and pressure during the forming 427 

process could affect the impregnation of fiber by resin and the microstructures such as 428 

pores and defects, thus affecting the interface properties of 3D-printed continuous fiber 429 

reinforced composites. Printing parameters in this study directly or indirectly affect the 430 

above factors and thus affect the Inter-Strength and Intra-Strength of CRFRPP. More 431 

specifically, increasing the extrusion flow rate could increase the matrix content, thus 432 

could (1) increase the contact pressure between extruded filaments and layers to 433 

promote better connections; (2) enable the fiber to be impregnated adequately by the 434 

matrix; and (3) enable more matrix flow into interlayer so to reduce the porosity, 435 

promoting better interface connection. Increasing the layer thickness could decrease 436 

forming pressure, which would increase the interface gap between deposited beams and 437 
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layers, causing less interface interaction. Similar discussion can be found in Ref. [6]. 438 

Increasing the printing temperature could increase the fluidity of the matrix, which 439 

could (1) enable the matrix better impregnate the fiber; and (2) cause a lower ratio of 440 

deposited filament height to width, resulting in a larger contact area between adjacent 441 

filament as reported by Ref. [15, 38], causing more interfacial interaction. Vaes et al. 442 

[48] reported that as the printing temperatures increase, the interlayer bond strength of 443 

3D-printed specimen increased since the weld time between layers increased. At high 444 

printing temperatures, the thermoplastic matrix had high fluidity, which made the 445 

deposited filaments more susceptible to small perturbation [15]. In addition, high 446 

printing speed could cause more perturbation of deposited filaments, which might result 447 

in defects between adjacent filaments in a layer. Therefore, the Intra-Strength of 448 

CRFRPP with high printing temperature decreased with the increase of printing speed 449 

(Fig.5 (d)). 450 

4.3 Parameter optimization 451 

As shown in Table 4, compared to CRFRPP with optimized parameters when Td 452 

was set at 90%, Inter-Strength and Intra-Strength of CRFRPP with optimized 453 

parameters when Td was set at 80% decreased by 4% and 12%, respectively. However, 454 

its forming speed improved by 105%. It can be seen that after parameter optimization, 455 

the strength was not reduced much while the forming efficiency was greatly improved. 456 

Therefore, in the actual production process, the optimization threshold can be set 457 

according to the actual needs, and then the parameters can be optimized based on the 458 
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prediction results to ensure the strength of printed parts while improving the production 459 

efficiency and reducing costs. This could boost the wide application of 3D printing 460 

technology. 461 

4.4 Interfacial properties and mechanical performance 462 

To investigate how the difference in interfacial properties can be translated to the 463 

mechanical performance, bending tests were performed on printed specimens in 464 

directions perpendicular to the layers (out-of-plane) and parallel to the layers (in-plane). 465 

Fig. 10 shows the in-plane and out-of-plane flexural modulus and flexural strength of 466 

CRFRPP under different printing parameters. Note that the flexural properties at 467 

different printing speeds were not shown here because printing speed had insignificant 468 

effects on interfacial properties as stated above. And note that unmarked printing 469 

parameters are in the middle values in our study range. In Fig. 10, it seemed that the 470 

out-of-plane and in-plane flexural strength and modulus of the specimen did not present 471 

significant difference, which may be caused by a variety of reasons. This section 472 

focused on how the difference in interfacial properties influenced the mechanical 473 

performance, so the insignificant difference between the out-of-plane and in-plane 474 

flexural mechanical properties of the specimen was not discussed in detail. In addition, 475 

combining the results shown in Fig. 10 with those presented in Figs. 3 and 5, it could 476 

be found poor interface strengths resulted in inferior flexural properties.  477 

 478 
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 479 

Fig. 10. (a) Flexural modulus and (b) flexural strength of CRFRPP under different 480 

printing parameters.  481 

 482 

In order to further explore how interfacial properties affect flexural mechanical 483 

properties of CRFRPP, the typical failure modes of specimens in bending tests are 484 

shown in Fig. 11. Note that only the failure behaviors of specimens with printing 485 

temperatures of 190 oC and 230 oC were shown here. For specimens with layer 486 

thickness of 0.6 mm and with extrusion flow rate of 50%, the failure behaviors were 487 

similar to the failure modes of specimens with printing temperatures of 190 oC. For 488 

specimens with layer thickness of 0.3 mm and with extrusion flow rate of 90%, the 489 

failure behaviors were similar to the failure modes of specimens with printing 490 

temperatures of 230 oC, thus they were not shown here. In Fig. 11, it was observed that 491 

the specimen printed at 190 oC (which exhibited poor interfacial strengths) showed 492 

significant interlayer delamination during out-of-plane bending loading (see Fig. 11(a)). 493 

In contrast, the specimen printed at 230 oC did not present delamination during the 494 
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bending test, and their failure mode was the breakages of the fiber and matrix (see Figs. 495 

11(b) and (d)). In addition, delamination was not seen on the front view of the specimen 496 

printed at 190 oC when subjected to in-plane bending load (see Fig. 11(c)). However, 497 

from the top view, the specimen printed at 190 oC exhibited significant interlayer 498 

delamination when subjected to in-plane bending load (see Fig. 11(e)). From the above 499 

results, it could be found that printed specimens with weak interfacial strength suffered 500 

interlaminar delamination failure when subjected to either in-plane or out-of-plane 501 

bending loads, leading to the ineffective load-bearing capacity of the fibers and matrix, 502 

thus greatly weakening the mechanical properties of the composites. In addition, 503 

delamination of adjacent printed filaments within a layer was not found when subjected 504 

to bending loads, which was because of the much higher Intra-Strength than Inter-505 

Strength for printed samples with the same printing parameters (see Figs. 3 and 5). 506 

 507 

 508 
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 509 

Fig. 11. Failure modes of specimens in bending tests under different printing 510 

parameters.  511 

 512 

5 Conclusion 513 

In this study, the Inter-Strength and Intra-Strength of CRFRPP under different 514 

printing parameters were predicted by RSM and two ML methods: RF and ANN, based 515 

on the experimental data. Among the three methods, ANN showed the highest 516 

prediction accuracy, whereas RF presented acceptable accuracy while providing the 517 

importance of the parameters. The result of the importance of the parameters showed 518 

that extrusion flow rate had the most important influence on both Inter-Strength and 519 

Intra-Strength and printing speed presented a relatively small effect on the above two 520 

properties. More specifically, higher extrusion flow rates, lower layer thicknesses, and 521 

higher printing temperatures led to higher Inter-Strength and Intra-Strength of CRFRPP.  522 
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Moreover, the printing parameters were optimized based on the prediction. The 523 

optimization results suggested that the forming efficiency could increase significantly 524 

while the Inter-Strength and Intra-Strength of CRFRPP were not affected significantly. 525 

Therefore, based on the prediction results, the production efficiency of 3D-printed 526 

components could be improved using the proposed parameter optimization procedure 527 

and ensuring the properties, boosting the industrial application of 3D-printed products. 528 

Furthermore, the bending tests were carried out to investigate the effects of interfacial 529 

properties on the mechanical performance. The results found that printed specimens 530 

with weak interfacial strength suffered interlaminar delamination failure during 531 

bending loading, which greatly weakened the mechanical properties of the CRFRPP. 532 

In future work, the effects of more printing parameters (e.g., platform temperature 533 

and print line spacing) and even environmental parameters (e.g., temperature and 534 

humidity of the printing chamber) on interfacial properties will be considered to study 535 

for achieving more precise and stable analysis results. In addition, more data 536 

preprocessing methods, training and test dataset preparation approaches and more ML 537 

methods will be attempted to establish more robust and more applicable models. 538 

Furthermore, material modification for increasing the interfacial reaction between the 539 

fiber and matrix using maleic anhydride grafted polypropylene and sodium hydroxide 540 

will be systematically studied. 541 
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