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On (in)validating environmental models. 2. Implementation of a Turing-like 

Test to modelling hydrological processes 

 

 

Abstract 

 

Part 1 of this study discussed the concept of using a form of Turing-like Test for model 

evaluation, together with eight principles for implementing such an approach.   In this part, 

the framing of fitness-for-purpose as a Turing-like Test is discussed, together with an example 

application of trying to assess whether a rainfall-runoff model might be an adequate 

representation of the discharge response in a catchment for predicting future natural flood 

management scenarios.   It is shown that the variation between event runoff coefficients in 

the record can be used to create some limits of acceptability that implicitly take some account 

of the epistemic uncertainties arising from lack of knowledge about errors in rainfall and 

discharge observations.   In the case study it is demonstrated that the model used cannot be 

validated in this way across all the range of observed discharges, but that behavioural models 

can be found for the peak flows that are the subject of interest in the application.   Thinking 

in terms of the Turing-like Test focusses attention on the critical observations needed to test 

whether streamflow is being produced in the right way so that a model is considered as fit-

for-purpose in predicting the impacts of future change scenarios.   As is the case for 

uncertainty estimation in general, it is argued that the assumptions made in setting 

behavioural limits of acceptability should be stated explicitly to leave an audit trail in any 

application that can be reviewed by users of the model outputs. 

 

 

 

"Foxes beat hedgehogs. And the foxes didn’t just win by acting like chickens, 

playing it safe with 60% and 70% forecasts where hedgehogs boldly went with 

90% and 100%. Foxes beat hedgehogs on both calibration and resolution. Foxes 

had real foresight. Hedgehogs didn’t.” 

Phillip Tetlock and Dan Gardner, 2015 



  

 

 “What are the grounds for credibility of a given hydrological simulation model?” 

Vit Klemeš, 1986 

 

A Turing-like Test as a framing of fitness-for-purpose 

 

In Part 1 of this study we have set out the reasons for dealing with model evaluation as a form 

of pro-active Turing-like Test and set out eight principles that might underlie such a test.   We 

have argued that because of lack of knowledge and the consequent inevitable epistemic 

uncertainties in the modelling process, this will necessarily involve some qualitative 

judgments as to what constitutes acceptable model performance, particularly in judging 

whether a model is getting the right results for the right reasons and might therefore be more 

robust in providing evidence about future performance under changed conditions.   We have 

suggested that modellers need to be more like Tetlock’s agile foxes than short-sighted 

hedgehogs in their approach, but that there is a need to be explicit about the assumptions 

that are made in model evaluation, providing an audit trail that can be reviewed by potential 

users of the modelling results.    

 

Of course, in thinking about what constitutes fit-for-purpose and being robust about 

predicting the future we must take account of both our fundamental hydrological knowledge, 

and any evidence available from past observations that can be made available. What new 

observations should be made will also depend on the importance of the purpose and the 

resources allocated (Kelleher et al., 2017; Tauro et al., 2018; Beven et al., 2020).   A model 

that is only based on learning methods or calibrated against past observations of one output 

variable may provide a more likely representation of those data (e.g. Nearing et al., 2021) but 

that does not necessarily make it a more likely model of the system being described, 

especially if is required to be used to provide evidence about future performance under 

changed future conditions (e.g. Ewen and Parkin, 1996; Brigode et al., 2013; Beven and Lane, 

2019; Seibert et al., 2019; Hankin et al., 2019).   Thus, there may be a difference between a 

mathematically best fit to past streamflow data (which may be overfitted in compensating 

for errors and uncertainties in forcing and evaluation data, see Beven, 2020) and the most 

robust or reliable representation of the system for the purpose at hand.   Determining 



  

robustness will then necessarily also depend on a choice of appropriate evaluation or 

likelihood measures in the face of epistemic errors in model structures and inputs (e.g. Graeff 

et al., 2009; Andréassian et al., 2012; Coxon et al., 2014; Beven, 2019b for hydrological 

examples).   Such a choice is inherently difficult since robustness will require that both process 

representations and epistemic errors are in some sense “similar” in both evaluation and 

prediction periods, even if only for the input data.  This similarity assumption has been the 

basis of the GLUE methodology in the past but, for good epistemic reasons, cannot necessarily 

be guaranteed.  We should still expect future surprises and be prepared to learn from them. 

 

So in what way should hydrological and hydraulic models be defined as being fit-for-purpose?  

In the literature, discussion of what should constitute fitness-for-purpose in hydrological and 

other environmental models has been somewhat conspicuous by its absence.  It is inevitable 

that any decision about whether a model be considered adequate will be subjective (see Part 

1). In any application, with different model structures and parameter sets, there will be a 

range of performances from the best available to unreasonable or implausible.   The primary 

concern, however, should not only be where in that range we might decide that performance 

is adequate, but rather whether the best model available is itself adequate, or can be rejected 

as not sufficiently robust or fit-for-purpose for the type of predictions required.   

 

Such a decision will depend on the purpose. It was suggested in Part 1 that we might expect 

to be more demanding for applications where we are testing for scientific understanding 

(when a model might simply be rejected on the a basis of prior perceptual understanding, e.g. 

Wagener et al., 2021a,b; Beven and Chappell, 2021), or where the decisions that depend on 

model predictions might be consequential in terms of major investment costs or risk of 

significant dis-benefits.  We might also expect to be more demanding for model output 

variables that are directly required for such a decision than for variables that are not explicitly 

relevant to that decision (though clearly we also want to demonstrate that any model is, as 

far as possible, getting the ‘right results for the right reasons’ using all the available 

information).   We might also expect that different researchers, practitioners or end-users of 

model outcomes might have different attitudes towards what constitutes fit-for-purpose in 

assessing risk, making their decisions, or formulating policy for catchment management.    

 



  

A search of the literature concerned with model fitness-for-purpose in decision and policy-

making suggests that it often depends on purely qualitative assessments (Boaz and Ashby, 

2003; Fisher et al., 2009; Rijke et al., 2012) and therefore the attitude of the person making 

the assessment.  Even where assessments are based on summary statistics, decisions will 

necessarily have a subjective element (e.g. Wagener et al., 2001, 2021a; Ritter and Muñoz-

Carpena, 2013; Harmel et al., 2014).   Such attitudes might involve past experience about the 

pedigree or utility of a particular model or type of model (e.g. Beven, 2001; Refsgaard et al., 

2006, 2010; Francesconi et al., 2016) or an implicit recognition that some critical variables are 

expected to be just much more difficult to predict than others.  

 

This then, of course, suggests that validation or hypothesis testing of models as fit-for-

purpose is not only a matter of testing the statistical uncertainties of past performance, but 

depends on more subtle interrelationships between modellers and the users of the model 

outputs that are intrinsically linked to issues of future research funding or specific policy 

needs rather than simply aiming to get the right result for the right reason (see Lane, 2012; 

Part 1). As Lane (2012) argues: if the modeller is as important as the model; if modellers or 

modelling communities hold particular visions of what the right modelling strategy, and right 

model, are; and notably if modelling is being undertaken in a framework that emphasises 

producing results rather than slowing down reasoning, invalidation may be a markedly 

awkward goal. Following Tetlock’s (2006) notions of the fox and the hedgehog, how can we 

become more like foxes rather than persisting as short-sighted hedgehogs? 

 

The data for model (in)validation 

 

The degree of wrongness of a model will necessarily depend on the quality of the observations 

used to drive and test it (e.g. Oudin et al., 2006; Kuczera et al., 2010; Krueger et al., 2010; 

Beven and Smith, 2015; Engeland et al., 2016).   Those data will be subject to both random 

aleatory uncertainties and epistemic uncertainties (e.g. Beven and Westerberg, 2011; 

McMillan et al., 2012a, 2017, 2022; Moges et al., 2020).  However, quality assurance of all 

available data needs to be done carefully.  Ideally, data should be evaluated for consistency 

and errors prior to running any model, since we would not wish simply to exclude all periods 

of data that a model does not fit (Beven and Smith, 2015; Beven, 2019b).   The degree of 



  

uncertainty in the inputs will depend on the size of the catchment, how the inputs are 

measured, and may vary with type of event (e.g. convective versus frontal precipitation) and 

whether snow or poorly measured orographic enhancement or rain-shadow depletion of 

precipitation are important.  The uncertainties are thus, in principle, expected to be both 

epistemically unknown and non-stationary in their characteristics, meaning that it is more 

difficult to generate different realisations of the inputs as a way of assessing the sensitivity of 

model outputs to these input uncertainties, which might vary from event to event in complex 

ways.  In the case of the upland River Kent catchment (UK) being modelled in the example 

case study below, the estimates of catchment integrated rainfalls have been based on the 

interpolation of rainfalls using a form of co-kriging that allows for the effects of storm 

direction and the patterns of elevation.   Most of the observation points for this input variable 

are, however, at lower elevations.  This estimate is expected to better allow for elevation 

effects than simple linear interpolation between sparsely distributed raingauges but cannot 

itself be easily validated given the data available.  Snow is not important for the period being 

modelled in this catchment but will create additional epistemic issues where it is a significant 

input to a catchment.    

 

There have been studies on the impacts of input errors on model calibration (e.g. Kavetski et 

al., 2006; Oudin et al., 2006; Renard et al., 2010; Balin et al., 2010) and on the impact of rating 

curve errors (e.g. Liu et al., 2009; Blazkova and Beven, 2009; McMillan et al., 2010; Beven and 

Westerberg, 2011; Domeneghetti et al, 2013;  Sikorska and Renard, 2017; Coxon et al., 2014; 

Hollaway et al., 2018a).  Uncertainities in other data used for model evaluations have also 

been considered (e.g. snow depths in Blazkova and Beven, 2009; snow cover fraction in 

Schaefli, 2016 and Teweldebrhan et al., 2018; and geophysical information in Graeff et al., 

2009).    We also have evidence for this catchment that high wind speeds and local humidity 

deficits might result in significant local interception losses for some events, even in winter.  

Rarely have all such sources of epistemic uncertainty been considered.   Bayesian inference 

can do this implicitly (e.g. Huard and Mailhot, 2006; Kavetski et al., 2006; Ajami et al., 2007; 

Reichert and Mieleitner, 2009; Renard et al., 2010; Balin et al., 2010) but in ways that interact 

with the model structure and parameter distributions and that cannot lead to model 

rejection, only larger input multipliers or residual variances that compensate for any model 

deficiencies.  



  

 

In proposing a Turing-like test for model evaluation we are also suggesting that observations 

might indicate model deficiencies be allowed to “speak back” (Stengers, 2013), to change how 

we think about our underlying perceptions of the problem.  In that way it could be argued 

that real progress is being made.  Reacting as a hedgehog makes this difficult (see the 

discussion of the resistance to change in the history of preferential flow in Beven, 2018b). 

Discrepancies may be outliers that have to be dismissed, or ‘parameterised out’ of the model 

through modifying an auxiliary relation. But, they may also be the observations that force us 

to dismantle the basis upon which our predictions have been built (see Morton, 1993; 

Stengers, 2005; Baker, 2017), to perturb the dominant perceptual models and paradigms 

upon which we are relying. The question is when do discrepancies pass from being outliers to 

observations that are allowed to speak back and perturb what we think and what we do?  

That is a part of defining a thoughtful Turing-like Test. 

 

An interesting example comes from the implementation of the mass balance equation in 

many environmental models.  Similar issues can arise in the implementation of energy and 

momentum balances (see Reggiani et al., 2000, for a hydrological example).   Because the 

boundary conditions for a model domain are subject to epistemic errors (Beven et al., 2011; 

Khan et al., 2014; Kauffeldt et al., 2013; Fan, 2019; Safeeq et al., 2021) then it is quite possible 

that the available observational data will not satisfy such balance conditions.   Use of such 

data to calibrate and to test a model for which mass balance is assumed to hold as a basic 

principle might then feed disinformation into the modelling process and result in bias in the 

predictions (e.g. Beven and Smith, 2015; Beven, 2019b).    This issue has been recognised for 

a long time.  The original hydrological Stanford Watershed Model of Crawford and Linsley 

(1966) had parameters that allowed the rainfall inputs and evapotranspiration estimates to 

be modified by a constant factor to help meet the mass balance requirement.   The widely-

used Sacramento model also included a parameter that allowed inputs to be adjusted (see 

e.g. Duan et al., 2006).  The use of such parameters will also result in a strong parameter 

interaction in calibration and arose because of the hydrological understanding that either the 

rainfall estimates or the evapotranspiration estimates might not be accurate.   

 



  

The use of rainfall multipliers to correct for water balance errors is an early example of the 

use of ‘effective parameters’ that are too convenient and too costly to dismiss because they 

can easily be adjusted to produce an apparently acceptable model prediction.  Manning’s n 

provides a second example of this in hydraulic modelling. Aronica et al., (1998), Werner et al. 

(2005), Pappenberger et al. (2007) and others show how allowing both floodplain and channel 

roughness n values to vary during model calibration provides many combinations of possibly 

acceptable solutions. Lane (2014) describes how attempts to constrain Manning’s n in 

hydraulic models of river flow (such as the Conveyance Estimation System of Bramley, 2004) 

which invites modellers to enter a range of factors from channel sinuosity to vegetation) have 

failed because modellers need n as the critical parameter that can be used to make a model 

perform. When it is constrained, it is no longer so effective and it loses its versatility as a 

means of matching observations in calibration and validation.  With its dimensionality (m-

1/3s),  n should vary with depth and velocity, although this is rarely the case in practical model 

applications.   Indeed, Manning (1877) in his original paper rejected what is now known as 

the Manning equation (in part because of its dimensionality issue) so this is another case 

where a more thoughtful fox-like approach to process representations is still needed.   

Pappenberger et al. (2005a) also provide an example of how post-flood level surveys with 

which a hydraulic model might be compared may themselves be subject to epistemic 

uncertainties.    What is needed therefore is a way of assessing what might be expected of a 

model under a given set of conditions, independent of a particular model structure, i.e. based 

on allowing for data uncertainty and consistency in terms of any applicable physical principles 

such as mass and energy balance.  Given the epistemic nature of sources of error, this will 

necessarily require expert input into defining a Turing-like Test.    

  

Who then can be considered as an expert? 

 

There is one theme that underpins the application of the Turing-like Test which is the notion 

of an ‘expert’. The seventh principle in Part 1 of this study noted the need to at least record, 

if not test, the attitudes of the expert(s) involved in model evaluation. There are two points 

that need to be made here to emphasise this issue. The first is that the limited (as yet) 

research undertaken on social attitudes and responses in the field of hydrology and hydraulics 

has revealed the ways in which experts are conditioned by their personal and institutional 



  

trajectories with respect to the models with which they work (Landström et al., 2011a, 2013; 

Lane, 2014). That is, careful attention needs to be given to the a priori conditioned knowledge 

that an expert uses to frame their evaluation, whether intended or not. The second is that 

work has suggested that ‘experts’ need not simply be those who have had their expertise 

certified. In relation to flood inundation modelling, expertise has been shown to be much 

more diffuse than might be imagined and includes those who have experienced flooding in 

other ways e.g. flood victims (Lane et al., 2011). The evidence that flood victims might provide 

has traditionally been seen as biased, as it may be bound to their lived experience of flooding 

which is commonly more than just “where water has gone”, as well as a normative desire for 

a particular solution to be adopted. However, there is no evidence that such victims are any 

less biased than those modellers who advocate a particular modelling approach or model 

choice. Indeed, setting different kinds of expertise in juxtaposition may be a means of putting 

our knowledge to the test, exposing biases which we may not be aware of, and so helping us 

to reject those kinds of models (or data) in a Turing-like test.  

 

Landström et al (2011b) followed two scientists as they worked with flood victims to develop 

a new approach to flood modelling for the town of Pickering (UK). They describe how such 

working caused the scientists to turn away from their normal academic community networks, 

and associated models and modelling practices, to develop a new modelling approach to 

reduce flood risk. This co-working questioned a series of hypotheses that the modellers (and 

the associated government agency) were making (e.g. the standard of defence to which the 

community wish to be protected, the feasibility of using floodplain storage to reduce flood 

magnitude in certain events) which in turn resulted in the adoption of a new flood risk 

management strategy for the town. The point is that application of a Turing-like Test of 

fitness-for-purpose can allow for the engagement of those traditionally excluded from model 

validation who may well, in bringing a different kind of knowledge and experience, reduce 

the substantial power that other vested interests may have in not rejecting a model. 

 

More often, however, the experts have been the modellers themselves.   There are some 

prior examples of this type of Turing-like test in hydrological modelling, mostly from cases of 

trying to evaluate model simulation runs for ungauged catchments for which no past 

discharge time series are available.   In the blind validation of Parkin et al., (1996) some of the 



  

ensemble of model runs based on the prior estimates of parameter ranges were rejected by 

the modellers acting as experts as unreasonable for the catchment under study, though the 

basis for that rejection was not made clear.  Wagener and Montanari (2011) also discuss the 

use of information from hydrological streamflow signatures characteristic of ‘similar’ gauged 

catchments that might be used to constrain an initial set of model runs; while Kelleher et al. 

(2017) consider how this information might be combined with local information.  Other 

suggestions have been made, including a small number of direct discharge measurements 

(e.g. Seibert and Beven, 2009; Jackisch et al., 2014), particularly if collected during extreme 

events (Singh and Bardossy, 2012); and sources of “soft” information (Seibert and McDonnell, 

2002, 2013; Winsemius et al., 2009).  Soft data are more qualitative information or spatially 

limited data that might be obtained from short field campaigns or post-event survey work to 

capture local knowledge with limited effort (e.g. the Section 19 post-event flood extent 

surveys in Environment Agency, 2016).  A small number of direct measurements can also be 

useful in constraining model parameter values directly if these can be made directly scale 

commensurate, as in Beven et al. (1984). 

 

 

A Case Study illustrating the concept of the Turing-like Test for the case of a rainfall-runoff 

model in the prediction of flood mitigation. 

 

In defining a Turing-like Test in the case of rainfall-runoff models, the first thing to consider is 

the purpose.   In the Case Study for this paper we are interested in predicting the impacts of 

various Natural Flood Management (NFM) measures (such as in-channel and off-line storage, 

reconnection of flood plain storage; and soil improvement and tree planting) on flood peaks.   

We therefore require a model that, as far as possible, can reproduce flood peaks within the 

limitations of the data available in a way consistent with knowledge of catchment processes 

during floods, and which can later allow for implementing the types of NFM measures to be 

considered.   For the 209 km2 River Kent catchment at Sedgwick in Cumbria, UK, we have 

chosen a form of Dynamic Topmodel (Smith and Metcalfe, 2022; Electronic Supplement 

Section B).   At the catchment scale, we have observations of inputs and historical stream 

discharges but know that there are issues with the rainfall interpolation in this upland 

catchment, and rating curve extrapolations for the highest flood discharges.   We also have 



  

some information about patterns of flood inundation in past events, but no direct 

observations (e.g. saturated area measurements) of the internal hydrological processes.   This 

is a common situation in hydrological modelling. 

 

To define a Turing-like test for evaluating Dynamic Topmodel in predicting the situation prior 

to any introduced or natural changes we will make use of the historical rainfall and discharge 

data available.  The test is posed in the form of setting limits of acceptability prior to making 

model runs.  This approach has been used in different types of applications in the past within 

the Generalised Likelihood Uncertainty Estimation (GLUE) methodology in the form of the 

support for fuzzy measures (e.g. Franks et al., 1998; Freer et al, 2003, 2004; Blazkova et al., 

2002; Blazkova and Beven, 2009; Page et al., 2007; Romanowicz and Beven, 2003; 

Pappenberger et al., 2007).   The approach allows that the limits of acceptability might be 

chosen differently depending on the purpose, even for the same variable to be simulated.    

 

One way of setting limits of acceptability in a way that reflects epistemic uncertainties in 

observed rainfall and discharge data, was suggested by Beven (2019b).  It is applicable to fast-

responding catchments where event runoff coefficients can be calculated based on recession 

curve extrapolation using a master recession curve.    Beven and Smith (2015) and Beven 

(2019b) show how these can vary markedly for events of similar observed inputs, including 

events for which the apparent runoff coefficient is greater than 1.   This might arise because 

of errors in the estimation of either the inputs or the outputs.  For any event of interest, a 

distribution of runoff coefficients for similar events in terms of input volume and antecedent 

flows can then be determined and used to determine limits of acceptability for that event.   

Note that runoff coefficient as used here refers to estimates of total runoff volume that might 

have been expected if the next event had not occurred as explained in the Electronic 

Supplement to this paper.  It avoids any arbitrary separation of a “baseflow” component as 

used in many calculations of runoff coefficients (e.g. Blume et al, 2007).    

 

The method used here allows a database of event runoff coefficients to be built up that can 

be used to define distributions of potential runoff coefficients for “similar” events.  These 

distributions are then used to define limits of acceptability that reflect the rainfall and 

discharge epistemic uncertainties implicit in the variation in event runoff coefficients [see 



  

Electronic Supplement Section A].  Figure 1 shows the limits defined in this way for the River 

Kent catchment for part of the period used in model evaluation. The period includes the 

highest peak on record, produced by Storm Desmond on December 6th 2015.  Note that the 

limits of acceptability take account of the calculated runoff coefficient for each event, so that 

the limits can be highly asymmetric around the observed value (and may not even include the 

observed for events with runoff coefficients much greater than 1).  Note also that using the 

runoff coefficients as multipliers in this way allows for volumetric uncertainties but not for 

timing errors in the inputs or hydrograph shape. We have therefore relaxed the limits based 

on runoff coefficients alone to allow a +/- 2 hour timing error with a 15 minute time step (see 

also Pappenberger and Beven, 2004).  The limits of acceptability shown in Figure 1 include 

this allowance.   Figure 2 shows the range of simulations using a version of Dynamic Topmodel 

for which a wide range of prior parameter distributions have been sampled randomly [see 

Electronic Supplement Section B].  In this case there has been a sufficient ‘run-in period’ such 

that initialisation uncertainties will not be important. Figure 2 shows that the range of model 

behaviours based on prior estimates of model parameters is potentially rather wide, perhaps 

wider than a modelling expert would allow to be reasonable. 

 

 
Figure 1.   Observed discharge at 15-min resolution (black dots), Upper and Lower Limits of Acceptability  

based on distribution of runoff coefficient multipliers and +/- 2 hour timing error allowance (blue lines), and 

LoA 50th percentile (red) for a section of the evaluation period (including Storm Desmond on 6th December).   

 

 



  

 
Figure 2.   Observed (red) and simulated discharges at 15-min resolution (grey band) for the whole of the 

evaluation period over all 100,000 model runs. 

 

 

Analysis of the full set of 100,000 simulations ,some of which are shown in Figure 2, shows 

that there are no model runs that always satisfy the limits of acceptability shown in Figure 1.   

Figure 3 shows a histogram of the normalised absolute deviations, NAD, here defined as: 

 

𝑁𝑁𝑁𝑁𝑁𝑁(𝑖𝑖, 𝑡𝑡) = �𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖,𝑡𝑡)−𝐿𝐿𝐿𝐿𝐿𝐿50(𝑡𝑡)
𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡)𝑢𝑢 −𝐿𝐿𝐿𝐿𝐿𝐿50(𝑡𝑡)

�for 𝑄𝑄𝑠𝑠𝑖𝑖𝑠𝑠(𝑖𝑖, 𝑡𝑡) > 𝐿𝐿𝐿𝐿𝑁𝑁50(𝑡𝑡)   [1a] 

 

or 

 

𝑁𝑁𝑁𝑁𝑁𝑁(𝑖𝑖, 𝑡𝑡) = �𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖,𝑡𝑡)−𝐿𝐿𝐿𝐿𝐿𝐿50(𝑡𝑡)
𝐿𝐿𝐿𝐿𝐿𝐿50(𝑡𝑡)−𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡)𝑙𝑙

�     for 𝑄𝑄𝑠𝑠𝑖𝑖𝑠𝑠(𝑖𝑖, 𝑡𝑡) < 𝐿𝐿𝐿𝐿𝑁𝑁50(𝑡𝑡)  [1b] 

 

 

where  NAD(I,t) is the normalised absolute deviation for simulation I at time t; 𝑄𝑄𝐿𝐿𝑜𝑜𝑠𝑠(𝑡𝑡) is the 

observed discharge at time t; 𝑄𝑄𝑠𝑠𝑖𝑖𝑠𝑠(𝑖𝑖, 𝑡𝑡) is the simulated discharge for the ith model run; and 

𝐿𝐿𝐿𝐿𝑁𝑁(𝑡𝑡)𝑢𝑢 , 𝐿𝐿𝐿𝐿𝑁𝑁50(𝑡𝑡) and 𝐿𝐿𝐿𝐿𝑁𝑁(𝑡𝑡)𝑙𝑙  are the upper, median and lower limits of acceptability at 

time t. The normalisation is calculated with respect to the median of the distribution of runoff 

coefficient multipliers to allow for the case where the observed flow is very close to the upper 



  

or lower limits, resulting in very large NAD values if the observed flows were used.   It must 

be remembered, however, that those limits are an expression of the expectations about 

runoff coefficients from past events, so that the 𝐿𝐿𝐿𝐿𝑁𝑁50(𝑡𝑡) value represents a median estimate 

of what the model might predict given the epistemic uncertainty in the observations.  For the 

simulated flow to be within the limits of acceptability at all time steps therefore, the 

maximum NAD must be less than 1.  Figure 3 shows that this is not the case for any of the 

100,000 runs of Dynamic Topmodel. 

 

  
Figure 3.   Maximum normalised absolute deviations as defined by equations [1] for all model runs for (100% 

compliance for all time steps requires values <1) 

 

For this application there are no model runs that have a NAD < 1 for all time steps.   On that 

basis, therefore, Dynamic Topmodel could be considered to be invalidated in this application 

to the Kent catchment.   This is despite the implicit treatment of the epistemic uncertainties 

in the inputs and flow observations that are reflected in the runoff coefficient distributions 

(with the allowance for timing errors) used to construct the limits of acceptability.   It is also 

despite the fact that the simulation runs show a range of Nash-Sutcliffe Efficiency and Kung-

Gupta Efficiency values that extend to over 0.9 (see Figures 4 and 5), that many hydrological 

modellers would find quite acceptable.    

 



  

We might consider that some allowance should be made for outliers, by analogy with a one 

tailed test in statistical practice.   If a threshold is imposed at 99% compliance for NAD<1, then 

there are still no simulations that are behavioural.   At 95% compliance for NAD<1, there is 

only 1 simulation that might be considered behavioural.  At 90% compliance, there are 498 

simulations that could be considered behavioural, but this also results in some simulations 

giving significant overprediction of the highest peaks (even where those have event runoff 

coefficients estimated from the observed data of greater than 1).  This is one of the issues 

that arise with epistemic rather than aleatory uncertainties: allowing for non-compliance 

might mean that those non-compliant time steps are those of greatest interest, in this case 

highest discharge peaks during major flood events.    This is why a thoughtful, Turing-like test 

is necessary.       

 

For the purpose at hand, which is concerned primarily with predicting the peak flows during 

flood events before and after flood mitigation interventions have been introduced, we 

therefore concentrate on the simulation of the hydrograph peaks.    Checking the simulations 

of the peaks in rank order (see Table 1) shows that there are model runs that might be 

considered behavioural in predicting the peaks within the limits of acceptability and within 

the timing error limits.    There are 3249 of the 100,000 runs that can be considered as 

behavioural for all of the highest 26 peaks in the evaluation period, but none that survive the 

evaluation on all 40 peaks.   Figure 4 shows a histogram of the NSE for these simulations.   

Interestingly, these do not include the highest NSE simulations, as shown in the ‘dotty plot’ 

projections of NSE against individual parameter values in Figure 5.    Despite the constraints 

provided by the limits of acceptability. these dotty plots show that there is broad equifinality 

across the ranges of most of the parameters, with some constraint on the feasible range of 

the transmissivity decline parameter m. 

 

 

 

 

Table 1.   Percentage of the full set of 100,000 simulations that are behavioural in reproducing peak 

discharges ranked by magnitude (with rank 1 being Storm Desmond, the largest on record).  As well as 

magnitude limits of acceptability, timing limits of +/- 2 hours are imposed. 

 



  

Peak no. 1 2 3 4 5 6 7 8 9 10 

% accepted 84.1 32.9 32.8 20.0 20.0 15.6 10.8 10.5 10.5 8.7 

Peak no. 11 12 13 14 15 16 17 18 19 20 

% accepted 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 

Peak no. 21 22 23 24 25 26 27 28 29 30 

% accepted 8.5 8.5 8.5 8.5 8.5 3.6 0.9 0.9 0.9 0.9 

Peak no. 31 32 33 34 35 36 37 38 39 40 

% accepted 0.8 0.8 0.8 0.6 0.6 0.6 0.0 0.0 0.0 0.0 

 

   
 

Figure 4.   Histogram of Nash-Sutcliffe Efficiency values for the 3249 model simulations that are behavioural 

on the ranked peak evaluation. 

 



  

 
 

Figure 5.   Plots of Nash-Sutcliffe Efficiency against model parameter values as projections of the full NSE 

response surface onto single parameter dimensions.  In blue are all the 100000 simulation runs, in red the 

3249 that are behavioural on the ranked peak evaluation.   Parameters are defined in Table ES1 of the 

Electronic Supplement.  The root zone initialisation parameter is not shown here given that a run-in period 

is used before any model evaluations. 

 

The results of using these models to predict part of the full evaluation period, including the 

Storm Desmond event of December 2015 are shown in Figure 6.    This has also been used, in 

a form of split record test to predict the peak discharges for two other periods that include 

major flood events causing property damage in the same catchment in 2005 and 2009 

(Figures 7 and 8).    It can be seen that in both cases the highest peaks are successfully 

predicted but, as progressively smaller peaks are included in the evaluation, the number of 

successful simulations decreases (to zero after 11 events in 2005; to zero after 15 events in 

2009; see Table 2).    

 



  

 
Figure 6.  Upper and Lower limits of acceptability (blue lines) and range of the 3249 behavioural simulations 

after evaluation on the 2015 storm peak discharges 

 
Figure 7:  River Kent at Sedgwick (UK).  Sequential rejection of 2015 behavioural simulations for ranked 

peaks in the 2005 evaluation period.   Green dots are surviving simulations (with number labelled at each 

successive storm peak evaluation); blue dots are upper and lower limits of acceptability for peak 

magnitudes determined in the same way as 2015; crosses are observed peaks; timing limits of ± 2 hours also 

imposed as for 2015 

 



  

 
Figure 8:  River Kent at Sedgwick (UK).  Sequential rejection of 2015 behavioural simulations for ranked 

peaks in the 2009 evaluation period, River Kent at Sedgwick.  Explanation as for Figure 6.  

 

Table 2.   Numbers of simulations from the 3249 that are behavioural in 2015, that remain behavioural in 

reproducing peak discharges ranked by magnitude for the 2005 and 2009 periods.  In both periods the 

largest events were damaging flood events. 

 
Peak no. 1 2 3 4 5 6 7 8 9 10 

2005 peaks 3249 3249 1523 118 118 118 118 118 118 118 

2009 peaks 3249 3197 1343 1343 1343 1343 1343 1343 1343 1343 

Peak no. 11 12 13 14 15 16 17 18 19 20 

2005 peaks 118 0 0 0 8 8 8 8 8 8 

2009 peaks 1343 1343 1343 1074 1074 0 0 0 0 0 

 

It is clearly then a Turing-like decision as to how to define which set of models might be 

considered as fit-for-purpose..   For the purposes of the project we have model simulations 

that survive 26 hydrograph peak predictions for the selected storm period in 2015, and for 

more than 10 of the major peaks in the test periods within 2005 and 2009.   We have no 

models that survive evaluation by the limits of acceptability at all time steps, and for all 

hydrograph peaks over all three periods.  It is therefore a subjective decision as to whether 

the success in predicting the larger events is adequate for the prediction of changes in peak 

flows for the current application focused on the effects of nature-based interventions on 

flood hydrographs.   This will be explored in a future paper. 

 



  

 

The relationship between fitness-for-purpose and hydrological understanding 

 

We have shown how for this study, our model fails a limits of acceptability test at all time 

steps; but for the purpose of predicting peak flow before and after the introduction of flood 

mitigation measures it might still be useful in a Turing-like test sense.    Such model 

evaluations are, however, just a start towards understanding whether that model might be 

giving the ‘right results for the right reasons’ (as discussed also by Kirchner, 2006).   It can be 

accepted as fit-for-purpose only in the sense of reproducing storm peak discharges over the 

observed period within the span of model realisations as constrained by a minimal set of 

observations.  The evaluation is necessarily limited and conditional, as with any model 

calibration against discharge data, because discharge is an integrative observation, so that it 

provides little information on how the discharge is being generated, or on how realistic the 

input data might be. We thus may not learn that much from a model that reproduces such an 

integral observable, only that it is conditionally acceptable.  We should learn more from cases, 

such as those cited earlier, where the model is not shown to be acceptable.  

 

One possibility in the current context of assessing flood peaks is to consider the patterns of 

inundation in the Kent catchment produced by the ensemble of discharge predictions at the 

Sedgwick gauging station of the previous section.  Such patterns of inundation predicted for 

areas at risk of flooding, including the town of Kendal, could be evaluated using within event 

(e.g. aerial survey or satellite flood extent) or semi-quantitative post-event survey data 

(maximum water levels, peak timing estimates).    To illustrate this, selected models from the 

ensemble of realisations of Dynamic Topmodel that were acceptable on the peak flow limits 

have been used in a model cascade (following the approach outlined in Hankin et al. 2019) to 

drive a 2D HEC-RAS model of the network in providing patterns of lateral inflows to the  

channel reaches (See Electronic Supplement Section C].   

 

Running the model cascade for different model realisations reveals different modes of spatial 

behaviour in the predicted inundation depths and extent.   Figure 8 highlights locations where 

the simulated patterns of inundation from two of the model runs diverge, with a difference 

that would be detectable using remotely sensed images of inundation or cheap level sensors 



  

placed at critical locations in the floodplain.   In the absence of satellite imagery for this event 

this is demonstrated using a surrogate; a spatial image produced by Flood Foresight modelling 

(https://www.jbaconsulting.com/floodforesight/) which generates real-time event-

footprints with 30 m resolution based on interpolation of a scenario-library of flood depth 

grids from real-time gauge discharge data.  Based on the obvious pathway that is present in 

simulation mc541 (see Figure 8), all similar ensemble members could now be rejected, while 

simulation mc1805 is retained, along with similar simulations.  This type of approach to 

cascading modelling uncertainties using similar modes of behaviour and temporal and spatial 

constraints was previously used by Pappenberger et al. (2005b). 

 

 
Figure 8: Eliminating key modes of behaviour based on surrogate remotely sensed data (greys to blacks) for 

HEC-RAS2D inundation predictions in the area north of Kendal, Cumbria, UK. Simulation mc541 (reds) and all 



  

similar ensemble members are now rejected as the highlighted pathway was not observed.  Simulation 

mc1805 and similar ensemble members (blues) are retained. 

 

 

Surrogate data for inundation (based on another model) are clearly not the same as air-borne 

or satellite observed patterns of inundation.  However, the latter can also be associated with 

significant epistemic uncertainties (see for example, Bates et al., 1997; Romanowicz and 

Beven, 2003; Pappenberger et al., 2005a, 2007; Di Baldassarre et al., 2009; Bates, 2012).  In 

both cases, there is then an issue as to how much belief to place in a Turing-like Test that 

depends on comparing uncertain spatial model outputs to an alternative model (albeit 

conditioned on observed water depths at some a point of time) or uncertain remote sensing.   

Similar issues will arise in using local knowledge of such patterns.     

 

There are other purposes for which hydrological models are used that might require different 

limits of acceptability.   We have noted above some past applications that have defined limits 

based on different summary statistics (flow duration curves, flood frequency curves, snow 

depth and extent data, and environmental tracer data) rather than simply evaluating some 

goodness-of-fit index and accepting the best fitting models.    This difference is critical, but 

requires that for a given purpose the assumptions that underlie the definition of the limits in 

any Turing-like Test are made explicit.  This is where Principle 8 in Part 1 of this paper becomes 

important  to provide an audit trail for later critical evaluation. 

 

It is also interesting to pose the question about what critical observations are required to 

make the Turing-like Test more robust in evaluating the process representations.   Because of 

the limitations of current observational techniques in hydrology (e.g. Beven et al., 2019), this 

requires further research.  Spatial information (such as soil moisture, water table, or 

saturated areas) may be useful in assessing spatially distributed models but experience using 

such spatial information has generally had only moderate success, in part because of scale, 

commensurability and heterogeneity issues (e.g. Beven and Kirkby, 1979; Blazkova et al., 

2002; Franks et al., 1998; Lamb et al., 1998; Freer et al., 2004; Clark et al., 2009; Dimitrova-

Petrova et al., 2020), but it has also been used to argue for model invalidation (e.g. Barling et 

al., 1994).   Aronica et al. (1998), used a set of fuzzy measures to constrain ensemble 



  

predictions based on local knowledge of “time of arrival” of flood water passing through a 

narrow part of the Imera basin in Sicily.   These data were used to form useful fuzzy constraints 

(i.e., flat-topped membership functions were used given to represent the uncertainty in the 

time of arrival provided by local observers).   As noted earlier, the support of such fuzzy 

measures can also be interpreted as applying limits of acceptability for model validity as in 

the application in this paper.  

 

Remote sensing information is also associated with epistemic uncertainties and is more often 

used as model input and in data assimilation than in model evaluations or hypothesis testing.  

There have been studies that have demonstrated the use of actual evapotranspiration and 

surface soil moisture estimates in model calibration (e.g. Herman et al., 2018; Wambura et 

al., 2018) but it is important to note that both are constructed variables and again these 

studies have not considered the epistemic uncertainties and commensurability issues 

involved.   The uncertainties in closing the energy balance to construct actual 

evapotranspiration rates were demonstrated long ago (e.g. Franks and Beven, 1997),  while 

estimates of surface soil moisture may become more uncertain under wet and dry extremes 

and provide limited information on the soil water profile (and deeper). Indeed, such surface 

soil moisture estimates have often rather been used for data assimilation to correct for model 

deficiencies (see, for example, the recent review of Babaiean et al., 2018).   Environmental 

tracer data might be useful in testing different model structures (e.g. Vaché and McDonnell, 

2006; Rinaldo et al., 2011; McMillan et al., 2012b; Harman, 2015; Benettin et al., 2015; 

Kirchner, 2016) but might require more parameters in a model to make proper use of it and 

a proper consideration of uncertainties in any flow separations (e.g. Joerin et al. 2003; 

Kirchner, 2019; Genereux, 2022).  This is even more the case for non-conservative water 

quality data (e.g. Strömqvist et al., 2012; Hollaway et al., 2018b).  Practice can clearly be 

improved but there is little guidance in the literature about what might be the most 

informative observations in the context of the Turing-like Test for testing models as 

hypotheses we propose here. 

 

It is interesting to speculate about whether Turing-like tests of fitness-for-purpose could be 

“institutionalised” for different types of hydrological analyses and purposes in the same way 

as, say, certain Agencies have institutionalised methods for flood frequency analysis or 



  

methods for the design of flood defences.   This might become more important as we move 

into an era of “open science” with open source models (with multiple variants), databases of 

model parameters (with various uncertainty and commensurability issues), and open source 

data and crowd-sourced data (with more or less quality assurance).  While those Agencies 

might be reluctant to define fitness-for-purpose themselves, perhaps it might be sufficient to 

insist that there is a proper and transparent audit trail that documents explicitly the activities 

that the modeler has used to gain trust that the model be considered as fit-for-purpose for 

that purpose (see Principle 8 in Part 1), including tests that might allow for model invalidation.    

 

Conclusions 

 

Having devised the theoretical universal computing machine in 1937, Turing went on to make 

its physical equivalent, later called a computer, and predicted there would be armies of 

people programming these devices in the future (Hodges, 2014). This has been the case in 

hydrology and hydraulics for the last 50 years or so, with the development of many different 

models and implementations of models, but without much rigorous testing of those models 

as hypotheses.   Now those well-established armies of programmers are joined by the ranks 

of data-scientists, developing methods of semantic storage and deep learning (including for 

flood data, see e.g., Towe et al., 2020).   

 

We suspect that the model application presented here is a common example of how model 

simulations might represent some features of the data available well, but not necessarily all 

features (see Beven, 2020 for a discussion of deep learning in this respect).  The closer we 

look, including the use of internal state observations with all the commensurability issues of 

matching observed and model variables, the more likely this is to be the case.   We have 

suggested that model invalidation is a good thing, even if there is a natural resistance amongst 

modellers (and referees) to reject models as fit for a particular type of purpose.  Model 

invalidation means that we are required to do better, either in developing better model 

structures or providing better input and evaluation data.  It is not easy, however, to decide 

when a model should be invalidated when we expect that the sources of uncertainty in 

environmental modelling will often be epistemic rather than simply aleatory in nature.   In 

particular, we wish to avoid rejecting a model that might be useful in prediction because of 



  

uncertainties in the input and evaluation data, but equally we do not want to accept models 

that contradict secure evidence on the nature of system response.    

 

We have suggested that both modellers and referees should treat model validation as a form 

of Turing-like Test, but, in doing so, be more explicit about how the uncertainties in different 

types of observations and their impacts are assessed.   Ideally, definitions of ‘fitness’ for a 

‘purpose’ should be set up before a Turing-like Test is applied and themselves subjected to 

critical expert evaluation, that might include stakeholders from outside the modelling 

community with relevant local knowledge or experience (see, for example, Lane et al., 2011).    

 

This might be considered as an example of the ‘era of pragmatism’ in model evaluation (see 

Ewen et al., 2012) but within which evaluation should allow for the possibility that all models 

might be invalidated.  There are other examples of studies where all the models tried have 

been rejected (see discussion in Part 1).  It should be remembered that while evaluations of 

past performance provide the only information about future performance - model validation 

is always conditional.  Thus, a real possibility of future surprises remains, particularly when 

there are significant sources of epistemic uncertainty in predicting future change. 

 

One of the most important aspect of such a test is being explicit about recording the decisions 

made in framing an analysis and for model invalidation.  This allows a proper assessment by 

others and also facilitates communication with end-users of the model outputs in that the 

assumptions and audit trail can be discussed.  Such explicit recording of assumptions of an 

analysis has been incorporated into the workflows of the CURE uncertainty estimation 

toolbox (https://www.lancaster.ac.uk/lec/sites/qnfm/credible). More research is required, 

however, on the types of observational data that might be used to differentiate models and 

process representations that are fit-for-purpose for particular purposes from those that are 

not.  

 

Where this becomes most interesting is when none of the models tried satisfy the Turing-like 

Test defined for a particular purpose.    This could be for a number of reasons.   It could be 

that not enough model realisations have been run to find sets of parameters that would 

satisfy the plausibility condition, particularly in high dimensional model spaces.  Both Zhang 



  

et al. (2008) and Vrugt and Beven (2018) suggest ways of constructing an efficient search for 

model parameter sets that satisfy certain behavioural constraints.   It could be that not 

enough account has been taken of uncertainties in the data.   Even the best models are not 

immune to the ‘garbage in – garbage out’ principle.   But, if we can show that something 

needs improving, then that is how science advances (albeit that it might be disappointing for 

the policy and decision makers who are awaiting the model outcomes to inform their 

decisions).  It is also where the creativity in modelling lies, so we should look at model 

invalidation not as a failure but as a real opportunity to do better (and perhaps at the same 

time improve the quality of the observed data needed).   That depends, of course, on being 

able to avoid acting like a Tetlock hedgehog because of our prickly vested interests in existing 

model structures.  
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