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Abstract

We propose a likelihood-based approach to Stochastic Non-Parametric Envelopment
of Data (StoNED) estimator using a directional distance function with firm-specific
directional vectors. Additionally, we show how to estimate firm-specific inefficiency
estimates instead of focusing on their average only. Moreover, we propose models that
are robust to misspecification in general and the use of unit-information-priors in this
class of models. These priors control the amount of information to be exactly equal
to one observation. In this context, we propose the use of Bayesian Bootstrapping to
further mitigate possible misspecification. We also propose empirical tests for identifi-
cation of the model. Monte Carlo experiments show the good performance of the new
techniques and an empirical application to the technology of large U.S. banks shows
the feasibility of the new techniques.
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1 Introduction

Directional distance functions (DDFs) are standard tools in the arsenal of operations re-
search and production economics (Chambers, Chung, and Färe, 1996, 1998). They are
particularly useful in estimating inefficiency as different directions can be assumed, and the
results can be compared. A major obstacle is the absence of a formal data generating process
(DGP) for directional distance functions in non-parametric envelopment of data (i.e., Data
Envelopment Analysis, DEA). This problem has been solved by Kuosmanen and Johnson
(2017) who proposed a suitable DGP and extended Stochastic Non-parametric Envelopment
of Data (StoNED) or Convex Nonparametric Least Squares (CNLS) to the multiple-output
case. The proposed estimator does not rely on parametric assumptions about the technology
as it uses StoNED (Kuosmanen, 2006, 2008; Kuosmanen and Johnson, 2010; Kuosmanen
and Kortelainen, 2015; Kuosmanen et al., 2007, 2015). Kuosmanen and Johnson (2017)
made a number of simplifying assumptions since, as they correctly argued, “having a formal
statistical model with clearly defined assumptions is far better than having no model at all.”
(op. cit., p. 795). Moreover, in Kuosmanen and Johnson (2017) the direction vector of the
directional distance function are assumed to be known in advance which is quite useful for
a regulator (as in their empirical application to Finnish electricity distribution firms) but
otherwise it is somewhat restrictive. Moreover, they are able to estimate average inefficiency
but not firm-specific inefficiency. Other approaches to determine the directional vector have
been proposed by Daraio and Simar (2016), Färe, Grosskopf, and Whittaker (2013), Zofio,
Pastor, and Aparicio (2013) and Atkinson and Tsionas (2016). Our contributions in this
paper are as follows. We allow for misspecification and we use the so-called Gibbs posterior
to correct for it (see Jiang and Tanner, 2008; Yao, Jiang, and Tanner, 2011; Ghosh and
Basu, 2016; Basu et al., 1998; Bissiri et al., 2016 which is the most representative way of
defining Gibbs posteriors). In terms of prior information we would like to be as uninforma-
tive as possible so, we use the so-called Unit-Information-Prior (UIP; Kass and Wasserman,
1995) which provides information that is worth exactly one observation. Posteriors are ro-
bust in the sense that we control for the amount of information in the prior. Third, we
show how to estimate firm-specific directions as well as firm-specific inefficiency estimates
that are as robust as possible in the presence of model misspecification. In addition, we
examine identification empirically,a tool that could be used in other studies as well. To
implement Bayesian inference we use Markov Chain Monte Carlo (MCMC) procedures (e.g.,
Geweke, 1999). Fourth, analysis by CNLS and firm-specific directions is quite involved as
the constraints are no longer linear. In Bayesian analysis this is not an issue, in principle, as
general optimization problems can be handled without much difficulty (an early reference is
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Pincus, 1970). The problem, however, is to choose “non-informative” priors not all for the
directional vector but for the parameters as a whole. As “non-informative” is an ambigu-
ous term, we use the “unit information prior” (UIP) to impose information that is worth
exactly one observation. This prior depends on the data (as we use the empirical version of
the Hessian rather than the expected-value form. It also depends on the data because the
prior of directions is the posterior of common (as opposed to firm-specific) directions in the
CNLS formulation of Johnson and Kuosmanen (2017). For all practical purposes, this is an
empirical Bayes procedure. Moreover, Bayesian procedures for multivariate semiparametric
Bayesian concave regression have been developed by Arreola et al. (2020). Layer, Johnson,
Sickles and Ferrier (LJSF, 2020) assume a unimodal distribution for the data generation
process, and find that a direction that aims towards the “center” of the data and is per-
pendicular to the true function at that point tends to outperform other directions. These
directions are easy to compute in advance (see their Section 6). Relative to this study, the
present paper is based on a completely data-driven approach for selecting the directions
using two versions of an objective (unit information) prior. Arreola at al. (2020) propose
a single-stage multivariate semiparametric Bayesian concave regression method. Relative to
this important study, the present paper differs in that we use observation-specific directions.
The paper by LJSF (2020) proposes firm-specific directions that are orthogonal to the true
function. Here, we follow a different approach by crafting an objective prior based on the
unit information concept. Two such priors are proposed and compared. The directions in
LJSF (2020) are computed easily in advance whereas our directions are estimated based on
the versions of the objective prior. Moreover, convexity is enforced via the Afriat inequalities
and appropriate latent variables (denoted U). Although orthogonal directions as in Layer et
al. (2020) seem reasonable our approach is also reasonable as directional vectors are posterior
estimates resulting from a vague, unit information prior.
The plan of the paper is as follows. In Section 2, we present the directional distance function
along with the contribution of Kuosmanen and Johnson (2017). In Section 3 we present the
techniques that will be used. In Section 3.1.1 we present the concept of Gibbs posteriors.
In Section 3.1.2 we present the concept of robust posteriors and in Section 3.1.3 the so-
called objective priors where the amount of information is constrained to be equal to one
observation. In Section 3.2 we present the Bayesian approach to the StoNED estimator.
The new techniques are examined in Section 4 where we present a Monte Carlo experiment.
Our empirical application to large U.S. banks is presented in Section 5. We conclude with a
summary of the paper and suggestions for future research.
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2 Directional Distance Function model

The directional distance function (DDF; Chambers et al., 1996, 1998) is defined as

−→
D(x, y, gx, gy) = sup {λ|(x− λgx, y + λgy) ∈ T } , (1)

where (gx, gy) ∈ Rm+s
+ is a direction vector, and T is the production possibilities set defined

as
T =

{
(x, y) ∈ Rm+s

+ :
−→
D(x, y, gx, gy) ≥ 0,∀(gx, gy) ∈ Rm+s

+

}
. (2)

The properties of the distance function are as follows.
P1. Translation: −→

D(x− agx, y + agy, gx, gy) =
−→
D(x, y, gx, gy)− a.

P2. Homogeneity of degree –1 in the directional vector: −→D(x, y, agx, agy) = a−1−→D(x, y, gx, gy),
∀a.
P3. The directional distance function is decreasing in (gx, gy) for all x, y ∈ T but increasing
for all x, y /∈ T (Proposition 1 in Kuosmanen and Johnson, 2017).
Moreover, if the technology exhibits constant returns to scale (CRS), then the DDF is linearly
homogeneous in (x, y), and globally concave if T is convex. Building on Kuosmanen and
Johnson (2017), we assume that the objective function is monotonically increasing in outputs
y and monotonically decreasing in inputs x. We assume that the solution (x∗

i , y
∗
i ), which is

unobserved, lies on the boundary of the production possibilities set, i.e.,

−→
D(x∗

i , y
∗
i , g

x, gy) = 0, ∀(gx, gy) > (0,0), (3)

where i (i = 1, ..., n) denotes the particular decision-making unit (DMU). The data generat-
ing process (DGP) is

xi = x∗
i + εig

x,

yi = y∗i − εig
y, i = 1, . . . , n,

(4)

where εi = vi + ui, vi is a two-sided error term, and ui ≥ 0 represents technical inefficiency,
as in Stochastic Frontier Analysis (SFA). Therefore, we examine DGPs with directions in
both the input and output directions to represent more general technologies. Moreover, we
have

−→
D(x̃i, ỹi, g

x, gy) = εi, i = 1, . . . , n, (5)

where
x̃i = xi + (y1i/g

y
1)g

x,

ỹi = yi − (y1i/g
y
1)g

y.
(6)

In this formulation we assume gy1 is strictly positive. If this not the case (as in our empirical
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application where we have an input-oriented distance function which requires gy = 0), we can
use, for example gx1 or any other input direction. However, as we have to normalize gx = 1

it is easier to divide by gx1 in (6). The results are invariant to which direction we choose for
normalization. Kuosmanen and Johnson (2017) use Convex Non-Parametric Least Squares
(CNLS) to solve the problem:

min
a,β,γ,ε

∑n
i=1 ε

2
i ,

y1i/g
y
1 = ai + β′

ix̃i − γ′
iỹi + εi, i = 1, . . . , n,

ai + β′
ix̃i − γ′

iỹi ≤ ah + β′
hx̃i − γ′

hỹi,∀i, h,
β′
ig

x + γ′
ig

y ≤ 1,∀i,
βi ≥ 0, γi ≥ 0,∀i.

(7)

Average efficiency is estimated in a second stage by estimating the minimum envelopment
of the fitted values of the CNLS estimator (see also Kuosmanen and Kortelainen, 2012).
Of course, another disadvantage of the approach is that the directional vector is the same
across firms, but as Kuosmanen and Johnson (2017) write: “Our defense is that having a
formal statistical model with clearly defined assumptions is far better than having no model
at all.” (op. cit., p. 795). On the positive side, Kuosmanen and Johnson (2017) do not
use distributional assumptions about the components of the error εi. In turn, they can only
estimate average inefficiency. Additionally, the directional vector is assumed to be fixed.
This could be useful if there is a relevant direction desired by a regulator but otherwise it is
difficult to be selected by the user. For example, Kuosmanen and Johnson (2017) fix gx1 = 1

(this normalization is harmless) and then they select gx2 (they have two inputs) by minimizing
the value of White’s test for heteroskedasticity or (as in their empirical application) they set
it to zero. Assuming outputs are exogenous, they set the direction vectors for outputs equal
to zero to have an input-oriented DDF. Finally, we have constant returns-to-scale provided
ai = 0, ∀i, which we assume throughout. As in Kuosmanen and Johnson (2017) we assume

xi = x∗
i + gxi εi,

yi = y∗i − gyi εi, i = 1, . . . , n,
(8)

where, now, the directional vectors are random variables, and we have1

y1i
gy1i

=
−→
D(xi, yi, g

x
i , g

y
i )− εi. (9)

It appears, as Kuosmanen and Johnson (2017) write that the DGP in (4) is observationally
1For the treatment of x∗

i and y∗i , see also the Online Supplement of Kuosmanen and Johnson (2017).
Additionally, as these authors show, there is no endogeneity in the econometric sense, viz. correlation
between the error components and explanatory variables.
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equivalent to the errors-in-variables model in Kuosmanen et al. (2007). However, iden-
tification and non-reduction to Kuosmanen et al. (2007) follows from the fact that εi is
common across all equations in (4) whereas the directional vectors are non-negative. So, we
can think of (4) as a common factor model (where the common factor is εi) in multiplicative
rather than additive form. Similarly, in stochastic frontier models, identification relies on
the so-called signal-to-noise ratio. If this ratio is low, inefficiency would be hard to identify.
Although identification may be weak, we propose to examine the matter empirically as in
Section 5.3.

3 Model

3.1 Background material

3.1.1 Gibbs posterior

Suppose we have data from the vector random variable Y = (Y1, ...,Yn) (generated from
a distribution P whose density is f(·; θ)), the random variables in Y are independent, and
θ ∈ Rd represents a vector of parameters of interest.The observed data is a realization from
Y, denoted by Y . If the model is correctly specified, updating of prior beliefs summarized
in the prior p(θ), takes place according to Bayes’ theorem

p(θ|Y ) ∝ p(θ)L(θ;Y ) = p(θ)
n∏

i=1

f(yi; θ), (10)

where L(θ;Y ) is the likelihood function. If the model is not correctly specified then it is
known that θ converges (asymptotically in the sample size) to a so-called “pseudo-true”
parameter which minimizes the Kullback-Leibler divergence between the actual model and
the parametric model f(·; θ), e.g., Müller (2013). In many instances, we may not have a
fully parametric model but instead we have a loss function, `(Y, θ) in the sense that the true
parameter minimizes EP `(Y, θ) with respect to θ, where P denotes the true distribution of the
data (see also Zellner, 1986). The empirical version of EP `(Y, θ) is Dn(θ) = n−1

∑N
i=1 l(Yi, θ).

Given a prior p(θ), the Gibbs posterior is given as follows:

pn(θ|Y ) = e−ωnDn(θ)p(θ) dθ∫
e−ωnDn(

−→
θ )p(

−→
θ ) d

−→
θ
, (11)

for some scale parameter ω > 0. Parameter ω is the “learning rate” in the sense that as ω → 0

more weight is given to the prior (meaning that it is quite likely that there is misspecification,
whereas as ω increases, more weight is placed on the likelihood, implying that there is no
substantial misspecification.) This approach achieves better risk performance under model
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misspecification as the Gibbs posterior (or α-posterior) is directly associated with a risk
function (see Jiang and Tanner, 2008; Yao, Jiang, and Tanner, 2011).
3.1.2 Robust posteriors

Ghosh and Basu (2016), Basu et al. (1998) and Bissiri et al. (2016) developed the so-called
density power divergence to robustify parameter inferences from a Bayesian model. A Gibbs
posterior can be defined as

p(θ|Y ) = e−Qn(θ)p(θ)∫
e−Qn(

−→
θ )p(

−→
θ ) d

−→
θ
, (12)

where Qn(θ) is a loss function, for example as in (11). Miller and Dunson (2019) propose a
robust posterior by raising the likelihood to the power α

n+α
and this approximation is good

either when n � α or n � α. The idea of using this “learning rate” has been used by
many authors (Vovk, 1990; McAllester, 2003; Barron and Cover, 1991; Walker and Hjort,
2002; Zhang, 2006a). Specifically, Zhang (2006b) proposed the following robust posterior,
also known as α-posterior:

pα(θ|Y ) = e−αQn(θ)p(θ)∫
e−αQn(

−→
θ )p(

−→
θ )d

−→
θ
, (13)

where Qn(θ) is a loss function and α > 0 is the learning rate; see also Jiang and Tanner
(2008), and Bissiri et al. (2016). This form is similar to (11). Grünwald and van Om-
men (2017) show that posteriors with different α (and α small enough) in fact coincide
with posteriors corresponding to different models. Values of α close to zero indicate severe
misspecification so, less weight is placed on the likelihood and more on the prior.
3.1.3 Objective priors

One particular instance of an objective prior is the so-called Unit Information Prior (UIP)
which is crafted as to correspond to the information provided by a single observation (Kass
and Wasserman, 1995). Suppose, for example, that the data Y arise from a normal distri-
bution, N (µ, σ2). In large samples, the posterior can be approximated well by N (Ȳ , s2/n),
where Ȳ = n−1

∑n
i=1 Yi is the sample mean and s2 = n−1

∑n
i=1(Yi − Ȳ )2 is the sample stan-

dard deviation. The UIP in this case would have been N (µ, σ2) or, alternatively, N (Ȳ , s2).
More generally, the UIP is

p(θ) ∝ n−1/2|I(θ)|1/2, (14)

where I(θ) (also known as Fisher’s information matrix) is equal to minus the expected value
(with respect to data given θ) of the Hessian matrix of the log-likelihood:

I(θ) = −
[
EY|θ

∂ lnL(θ;Y)
∂θ

∂ lnL(θ;Y)
∂θ′

]
' −

[
EY|θ

∂2 lnL(θ;Y)
∂θ ∂θ′

]
. (15)

The two expressions in (15) are identical when the model is correctly specified, thus the
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use of ' in (15). If not, the two expressions will be different and it would be best to use
the expectation of the Hessian of the log-likelihood. Our approach is to use the product of
the score vectors (viz. ∂ lnL(θ;Y)

∂θ
) to give the model the “benefit of the doubt” in terms of

specification. Of course, using the Hessian is not a problem from the computational point
of view as it has to be used anyway in (24). A correction, however, is used in the selection
of α as in (24) below. In this case Fisher’s information matrix is divided by n to provide
information given by a single observation.2 There are alternatives; for example, the UIP can
be crafted independently for each parameter, the parameter vector θ can be replaced by the
maximum likelihood estimate or the posterior mean θ̂, etc. There are two ways to define the
prior. The first option is to use (14) as is. The second option is to use the product of the
diagonal elements of the covariance matrix in (14):

p(θ) ∝
dθ∏
j=1

pj(θj), pj(θj) ∝ n−1/2 [I(θj)]jj , j = 1, . . . , dθ, (16)

where [I(θj)]jj is the jth diagonal element of I(θ), and all other parameters are fixed at
their median values from F-UIP.3 The second option is easy to compute as it requires the
entire I(θ) which, however, is available from the step leading to (14). Nevertheless, it is
interesting to compare the performance of the two alternatives. The first approach is called
Full UIP (F-UIP). The second, presented in (16), is called the product of marginals approach
(PM-UIP) as in (16). All required derivatives in UIPs are computed numerically at each
parameter value, using the approach of Dobmann et al. (1996). It should be noted that the
PM-UIP also depends on all other parameters in vector θ but these are fixed at their median
values from F-UIP.

3.2 StoNED approach and Bayesian inference

Our model is an extension of Kuosmanen and Johnson (2017) with firm-specific directions
under normality of vi (vi ∼ N (0, σ2

v)). We impose the harmless normalization gx1 = 1.
2The UIPs are not necessarily proper (i.e. they do not necessarily integrate to one.) However, when

restricted to bounded intervals (as the result of limits in computer precision) they are proper, for practical
purposes.

3The problem of computing marginal priors in the F-UIP case is resolved as follows. Given the prior
p(θ) we use a Metropolis-Hastings algorithm to draw from the prior conditional distributions of θj ∼ θj |θ−j

(j = 1, ..., dθ) where θ−j denotes all parameters with the exception of the jth element. We use 15,000
MCMC iterations omitting the first 5,000. Eventually, we produce a MCMC sample from θ

(s)
j ∼ θj |θ(s−1)

−j

(s = 1, . . . , S, with given initial conditions). In turn, the marginal prior of θj can be computed easily using
kernel density estimation for

{
θ
(s)
j , s = 1, . . . , S

}
. Of course, these are empirical Bayes priors as they are

defined based on the observed information matrix. These computations are necessary only for the purpose of
presenting the marginal priors visually and finding the median values of the parameters in F-UIP. To draw
a sample from the PM-UIP we generate θ

(s)
j ∼ θj |θ̃−j , where θ̃−j is the median of F-UIP parameters.
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Posterior results are invariant to the selection of y1i, i.e. we can select another output in
place of y1i. Moreover, (12) will correct or at least mitigate possible misspecification, an
issue that we consider in the next section.4

Define x̃i = xi − (y1i/g
y
1i) and ỹi = yi + (y1i/g

y
1i). With firm-specific directions the CNLS

procedure is:
min
a,β,γ

∑n
i=1 ε

2
i ,

y1i/g
y
1i = ai + β′

ix̃i − γ′
iỹi + εi, i = 1, . . . , n,

ai + β′
ix̃i − γ′

iỹi ≤ ah + β′
hx̃i − γ′

hỹi,∀i, h,
β′
i1m + γ′

i1s ≤ 1,∀i,
βi ≥ 0, γi ≥ 0,∀i,

(17)

where 1m denotes the vector of ones in Rm. The third constraint is imposed to guarantee
monotonicity with respect to the first output. The constraints are nonlinear in terms of βi

and the directions. Alternatively, we have the problem
min
a,β,γ

∑n
i=1 (y1i/g

y
1i − ai − β′

ix̃i + γ′
iỹi + ui)

2 ,

ai + β′
ix̃i − γ′

iỹi ≤ ah + β′
hx̃i − γ′

hỹi,∀i, h,
β′
ig

x
i + γ′

ig
y
i ≤ 1,∀i,

βi ≥ 0, γi ≥ 0,∀i.

(18)

In this formulation, ui and the directional vector act as latent unobservable variables. The
directional vectors affect the concavity restrictions in the Afriat inequalities (first restriction)
but this is not a problem per se in MCMC. Other than that, the loss function is quadratic
subject to a number of linear inequalities and non-negativity constraints, plus the definitions
in (6). To avoid solving the problem in (18) as in the Monte Carlo experiment for each
MCMC replication, we write the constraints as follows.

ai + β′
ix̃i − γ′

iỹi = ah + β′
hx̃i − γ′

hỹi − Uih,∀i, h,
β′
ig

x
i + γ′

ig
y
i = 1− Ui0, ∀i,

βi ≥ 0, γi ≥ 0,∀i,
(19)

where Uih and Ui0 are independent non-negative random variables following a half-normal
distribution with scale parameter σU and σU0, respectively.5 These scale parameter have a

4Using non-parametric techniques to separate the error term in a one-sided and a two-sided component is
not innocuous particularly in small samples. A disadvantage is that one can only estimate average inefficiency
in the sector as in Kuosmanen and Johnson (2017).

5This is a distributional assumption but results from a gamma and exponential specification did not yield
substantial differences and they are available on request.
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prior of the form p(σU) ∝ σ−1
U and p(σU0) ∝ σ−1

U0
. Their posteriors are updated as

∑
(i,h;i 6=h)(ai+β′

ix̃i−γ′
iỹi−ah−β′

hx̃i+γ′
hỹi+Uih)

2

σ2
U

|θ, Y ∼ χ2
n(n−1),∑n

i=1(β
′
ig

x
i +γ′

ig
y
i −1+Ui0)

2

σ2
U0

|θ, Y ∼ χ2
n.

(20)

where Y denotes the data and θ is defined below in (21). The Us are updated using their
posterior conditional distributions as in standard SFMs. Our vector of parameters is

θ = {θi}ni=1 = {ai, β′
i, γ

′
i, g

x′
i , g

y′
i , ui}ni=1,

βi ≥ 0, γi ≥ 0, gxi ≥ 0, gxi ≥ 0, ui ≥ 0, ∀i = 1, . . . , n.
(21)

To define the UIP prior we proceed in two steps.
Step 1: We assume gyi = gy, gxi = gx, and ui = u are common ∀i. The prior on all
parameters is a UIP as defined in (14). So, we can recover the posterior of gx, gy, and u.
Step 2: As the prior of {gxi , g

y
i , ui}ni=1 we adopt the posterior from Step 1.6

This is, essentially, a data-based prior where the UIP is used in the first step. In the
presence of multiple latent variables in {gxi , g

y
i , ui}ni=1 which account for heterogeneity for

the directional vectors and inefficiency, it is best to avoid a UIP due to singularity problems
of the Hessian matrix. So, in the first step, these parameters are assumed to be common
for all observations, and in the second step we correct for this restrictive assumption. The
first step corresponds to the approach in Kuosmanen and Johnson (2017). The second step,
assigns a prior to observation-specific directions and inefficiencies based on the posterior of
common parameters (across i) in the first step. Can this way of defining the prior bias the
final posterior results? The question can be resolved on empirical grounds as there is no
known theoretical results about this case. In principle, we accept, as a working hypothesis,
that final results can be affected but we deal with this potential specification error: First,
we use a Gibbs posterior whose parameter α mitigates the problem. Second, we use the
Bayesian bootstrap to resolve the same problem in addition to corrections made by the
Gibbs posterior. If α is close to zero then we know that the model is misspecified and
more weight is placed on the prior. If α remains relatively large then the model is, most
likely, well specified. Of course, this prior is data-based but the problem is not significant
unless one is a Bayesian “purist”. We illustrate the concepts in Figure 1. First, we use a
UIP to produce an “objective” prior for the directions, assuming they are common across
all observations. Second, we obtain a posterior p(gx|Y ) (assuming, say, gy = 0, so that we
have input orientation of the DDF.) We will use this posterior as a prior when directions

6The joint posterior of {gx, gy, u} is approximated using a multivariate kernel density technique so that
it can evaluated point-wise in the second step.
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are observation-specific to obtain a final posterior. Of course, this prior is informative and,
therefore, it may bias the final results in various ways. Third, to eliminate or, at least,
mitigate such problems we resort, in Step 3, to the Gibbs posterior or α-posterior. We
can improve on these results by using, as in Step 3, a Bayesian bootstrapping procedure
as specification errors should be evident in different bootstrapped samples of the data. It
would be important to draw a clear distinction between the direction of the DGP (the usual
approach is to set gx = 0, gy = 1) and the direction for the efficiency measurement (e.g.,
input or output orientation). Kuosmanen and Johnson (2017) assume that DGP has a fixed
direction in the estimation stage (their Section 4.1), which is clearly somewhat restrictive,
but they do allow for firm-specific directions in the efficiency analysis stage (Section 4.3) once
the frontier has been estimated. The present study similarly starts with a fixed direction to
craft a UIP prior only and proceeds to estimate the firm-specific directions in an iterative,
data-driven fashion. This is an important distinction.

Figure 1: Model

We use Markov Chain Monte Carlo (MCMC) techniques to provide access to the Gibbs
posterior

pα(θ|Y ) = e−αQn(θ)p(θ)∫
e−αQn(

−→
θ )p(

−→
θ )d

−→
θ
, (22)

where Qn(θ) is the objective function of (18) as in (12), and p(θ) is one of the UIPs. Therefore,
the Gibbs posterior is

pα(θ|Y ) ∝ exp

{
−α

n∑
i=1

(y1i/g
y
1i − ai − β′

ix̃i + γ′
iỹi + ui)

2

}
p(θ), (23)
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subject to the constraints of (18). MCMC is implemented using 150,000 iterations omitting
the first 50,000 in the interest of mitigating possible start up effects. Specifically, we use
the Girolami and Calderhead (2011) Hamiltonian Monte Carlo method, and Geweke’s (1992)
diagnostics to monitor convergence. To use the posterior in (22), in principle, we need to solve
(18) for each MCMC iteration. However, this is avoided by using the non-negative terms in
U,see (19). First, we condition on directions and draw all other parameters. Second, given all
other parameters, we draw the directions. Implementation of the Girolami and Calderhead
(2011) procedure in two steps is easy. An alternative is to solve the CNLS problem, using
the “sweet spot” approach of Lee et al. (2013) but this is not necessary. The selection of α
is guided by Fisher’s information (it is, therefore, data-driven if we omit the expectation in
Fisher’s information matrix) and is given by

α =
tr
{
J (θ̄)I(θ̄)−1J (θ̄)′

}
tr
{
J (θ̄)

} , (24)

at a point θ̄, where J (θ) = n−1
∑n

i=1∇2`(Yi, θ), I(θ) = n−1
∑n

i=1 {∇`(Yi, θ)∇`(Yi, θ)
′} where

`(Yi, θ) denotes the loss function, ∇ is the gradient operator with respect to θ, and θ̄ is the
first-stage posterior mean estimate of θ (Lyddon et al., 2019). The expression in the nu-
merator of (24) is the so-called sandwich covariance matrix (Müller, 2013) so, this method
of selecting α matches information from the pseudo-true and misspecified model parameters
(the pseudo-true value of the parameter minimizes the Kullback–Leibler divergence between
the true but unknown DGP and the parametric DGP we actually use (e.g., Müller, 2013).
Notice that this definition of α is unlike the definition of UIP priors where only first deriva-
tives are used, effectively assuming that there is no misspecification, approximately, but a
correction is made in (24). Before proceeding, we summarize our procedure in Algorithm 1.
On an i9 Core 3.30 GHz desktop running compiled fortran 77 code, the algorithm takes
about five minutes of CPU time.

12



Table 1: Treatment of misspecification

1. Use the optimal value of α in (24) to get a posterior that is robust to specification
problems.

2. Embed step 1 in a Bayesian bootstrap procedure so that different αs are generated for
each bootstrap replication.

3. Based on the bootstrap distribution of α one can decide whether misspecification is
present.

4. If α is small, then less weight is placed on the likelihood.

5. If α is large then less weight is placed on the prior.

6. Therefore, small values of α indicate misspecification.

Algorithm 1 Estimation procedure

1. Compute the robust prior p(θ) as in (14). Numerical derivatives are used to compute
the prior. There are two priors, F-UIP and PM-UIP that correspond, respectively,
to full and product of marginals approach. Both priors are based on the posterior
distribution of common directions in the Kuosmanen and Johnson (2017) formulation.

2. Compute the robust posterior in (22) based on the CNLS approach in (18).

3. Combine the prior and the likelihood to obtain the posterior in (23). This involves the
choice of parameter α as in (24) which helps in mitigating misspecification problems.

4. Use MCMC techniques to obtain a sample of parameters that converges to the poste-
rior.

5. Further mitigation of misspecification in robust posteriors is performed via the boot-
strap. We use B=500 replications throughout.

6. Testing of identification is possible in various ways, as in Section 5.3.

We consider it useful to summarize the way we deal with misspecification as in Table 1.

4 Monte Carlo experiment

In our Monte Carlo study, we have three inputs and three outputs generated as in (4), where
the x∗

i s and y∗i s are generated from a uniform distribution in the interval (1, 10). Noise vi is
generated from a Student-t distribution with five degrees of freedom, location parameter zero
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and scale parameter 0.1. This is adopted to introduce misspecification as we use normality of
vi. The one-sided error is generated from a uniform distribution in the interval (0, 0.25). The
directional vector gxi has gx1i = 1 (∀i) and its other two elements are generated as uniform in
the interval (0, 1). We draw gyi from the same distribution but without normalization. As we
introduce output-specific directional vectors as well, the DDF does not admit a representation
as input- or output-oriented. However, we use this formulation in the interest of generality.
Notice that directions are firm-specific. The distance function has the form

y1i/g
y
1i = 0.1 + 0.4x̃1i + 0.3x̃2i + 0.2x̃3i − 0.5y1i − 0.7ỹ2i − 0.5ỹ3i − εi, (25)

where εi = vi+ui, and x̃i and ỹi are defined below (7). This data generating process (DGP)
differs from the one we use in several respects. Noise is non-normally distributed (Student-t
with five degrees of freedom), inefficiency does not follow a half-normal distribution (but a
uniform), and the directional vectors are generated from different distributions (viz., uniform)
that the ones we assume (viz., UIP). We consider samples of various sizes (n) and we report
our Monte Carlo results in Table 2, using 1000 Monte Carlo replications. Reported in Table
2 are mean absolute errors (MAE) between actual and estimated (posterior-mean based)
measures, for inefficiency, ui, and the directional vectors gxi and gyi . For the directional
vectors we consider the mean across all inputs and outputs, respectively as well as their
mean across firms. Using the wrong specification (normal-half error components, etc.) yields
MAEs which increase with the sample size which is reasonable as biases accumulate with
increasing n. The robust specification performs much better and its MAEs are much smaller
declining sharply with n. This means that both firm-specific inefficiency and directions can
be estimated accurately in moderately sized samples. In Table 3 we report means (with
standard deviations in parentheses) of the optimal values of α when we use the correct
specification (DGP) and when we use the misspecified model. For the correct DGP, the
values of α across Monte Carlo simulations are fairly close to one and increase with the
sample size, while for the misspecified case the values of α approach zero as the sample size
increases. Moreover, we use F-UIP as the results from PM-UIP were, practically, the same.
We embed the procedure within the bootstrap with B=500 replications to robustify further
the posteriors.
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Table 2: Monte Carlo results

Wrong specification Robust specification
ui

n = 100 0.042 0.013
n = 250 0.055 0.007
n = 500 0.061 0.005
n = 1000 0.088 0.003

gxi
n = 100 1.00 1.00
n = 250 0.225 0.019
n = 500 0.315 0.007
n = 1000 0.436 0.005

gyi
n = 100 0.226 0.009
n = 250 0.307 0.007
n = 500 0.421 0.005
n = 1000 0.497 0.003

Notes: Reported are mean absolute errors (MAE) between actual and estimated (posterior-mean based) measures.

Table 3: Optimal values of α

Correct
specification

Wrong
specification

n = 100 0.895
(0.013)

0.015
(0.004)

n = 250 0.970
(0.010)

0.007
(0.002)

n = 500 0.955
(0.012)

0.004
(0.001)

n = 1000 0.978
(0.010)

0.002
(0.001)

Notes: Reported are means (across Monte Carlo replications) of optimal values of α, with standard deviations in parentheses.
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5 Empirical application

5.1 Data and posterior results

For our empirical application we use an unbalanced panel with 9,807 bank-year observations
for 285 large U.S. commercial banks operating in 2001-2019 (quarterly data), whose total
assets were more than one billion dollars (in 2005 U.S. dollars) in the first three years of
observation. The data for 2007-2010 serve to focus on the effects of the financial crisis and
its aftermath. The data come from Call Reports available from the Federal Reserve Bank
of Chicago. For the period 2001-2010 the data have been used in Malikov et al. (2016).
For detailed description of the data construction, see Section 5 of Malikov et al. (2016).
The list of included variables is as follows: y1 Consumer Loans, y2 Real Estate Loans, y3
Commercial & Industrial Loans, y4 Securities, y5 Off-Balance Sheet Activities Income, x1

Labor, number of full-time employees, x2 Physical Capital (Fixed Assets), x3 Purchased
Funds, x4 Interest-Bearing Transaction Accounts, x5 Non-Transaction Accounts. We denote
banks by i ∈ I = {1, . . . , n} and time periods by t ∈ T = {1, . . . , T}.7 Unlike the
analysis in previous sections, we have panel data but this does not introduce any significant
complications as we treat the data as cross-sectional (otherwise we would have to assume, for
example, that directional vectors and inefficiency are time-invariant, which is restrictive). As
in the Monte Carlo experiment we use the F-UIP formulation and we compare the results with
PM-UIP. However, to have an input-oriented DDF, we set gy = 0. Therefore, we normalize
by gx1 = 1 in (6). Marginal effects of inputs (β coefficients) and outputs (γ coefficients) from
F-UIP are reported in Table 4. The median difference of posterior means across the sample
is denoted D . Evidently, the posterior results are fairly similar when we use PM-UIP instead
of F-UIP. This result is not entirely unexpected as we control the amount of information in
both versions of UIP.

7Although the panel is unbalanced we do not index T by i (viz., Ti) in the interest of simplifying the
notation.
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Table 4: Marginal effects of inputs (β) and outputs (γ)

mean s.d. min max D
β1, Labor 0.215 0.035 0.012 1.000 0.0031

(0.001)

β2, Capital 0.344 0.029 0.010 0.758 0.0052
(0.002)

β3, Purchased Funds 0.255 0.040 0.000 0.585 –0.040
(0.006)

β4, Interest-Bearing Transaction Accounts 0.107 0.033 0.005 0.337 0.0032
(0.0010)

β5, Non-Transaction Accounts 0.086 0.015 0.015 0.128 –0.0030
(0.0012)

γ1, Consumer Loans 7.44 2.55 0.000 15.45 –0.0050
(0.002)

γ2, Real Estate Loans 12.55 4.81 0.005 21.15 0.0022
(0.001)

γ3, Commercial & Industrial Loans 65.73 15.30 0.020 90.45 –0.0041
(0.001)

γ4, Securities 55.18 7.86 0.018 110.4 –0.0032
(0.0011)

γ5, Off-Balance Sheet Activities Income 87.30 15.20 0.000 105.3 0.0052
(0.0012)

Notes: All results are taken with respect to observation–specific posterior means. The median difference of posterior means
across the sample (F-UIP minus PM-UIP) is denoted D .
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Table 5: Estimated directions and inefficiency

(a) Directional vectors

mean s.d. min max D
gx1 , Labor 1.000 0.000 1.000 1.000 0.000

(0.000)

gx2 , Capital 0.252 0.087 0.00 0.81 0.0020
(0.002)

gx3 , Purchased Funds 0.178 0.055 0.00 0.50 –0.0032
(0.0020)

gx4 , Interest-Bearing Transaction Accounts 0.202 0.067 0.055 0.055 0.0010
(0.0010)

gx5 , Non-Transaction Accounts 0.083 0.032 0.000 0.001 –0.0021
(0.001)

(b) Inefficiency

Period sampling means and
s.d

2001-2006 0.142
(0.034)

2007-2010 0.209
(0.048)

2011-2019 0.124
(0.017)

2011-2019 0.158
(0.020)

Notes: Reported are sample averages of posterior mean estimates. The median difference of posterior means across the sample
between (F-UIP minus PM-UIP) is denoted D . We set gy = 0. Figures in parentheses are sample standard deviations.

In what follows we convert inefficiency loss to dollars as have input price data. The output
coefficients γ have a price interpretation whereas input coefficients β are unit-invariant.8 For

8Using multiple directions in CNLS may violate the global convexity of the production technology. LJSF
(2020) derive the conditions under which multiple directions can be used in the CNLS problem while main-
taining the axiomatic property of global convexity of the production technology. In our case, convexity is
imposed via the Afriat inequalities and latent variables U .
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example, increasing purchased funds by one dollar increases inefficiency by 17.8 cents on
average, in this particular direction. If we weight by the directional vectors in all inputs,
inefficiency averages 37.8% (s.d. 15.2%) which translates, approximately, to $36.4 million
in 2005 prices. In Malikov et al. (2015), cost inefficiency is, approximately, 4% so the
difference is quite large. This difference can be attributed to (i) the different method of
estimation and inference; (ii) the estimation of bank-specific directional vectors, and (iii)
that there is no need for distributional assumptions in our model as, effectively, their effect
is mitigated through the robust Gibbs posterior. These calculations are based on parameters
and directional posterior mean parameter vectors separately for the 2001-2006 period, 2007-
2010, and 2011-2019. For the entire sample, inefficiency averages 15.8% (s.d. 2%) which
translates, approximately, to $36.9 million at 2005 prices so, the two estimates are quite
close. Inefficiency by sub-period is reported in the second part of Table 5. In terms of
technical inefficiency (ui) we present its sampling distribution in panel (a) of Figure 2 for all
observations (i.e., we present the sampling distribution of posterior-mean-based inefficiency
estimates). It appears that during the sub-prime crisis we have an increase in technical
inefficiency. More specifically, during the 2001-2006 period, technical inefficiency averages
14.02% (standard deviation 3.4%). During 2007-2010, technical inefficiency averages 20.9%
(standard deviation 4.8%), and during 2011-2019, it averages 12.4% (standard deviation
1.7%).

Figure 2: Sampling distributions
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Notes: We report the sampling distribution of technical inefficiency (estimates using the posterior means).

Another parameter of interest is α, the learning rate estimated as in (24). The values
of α are reported in Table 6 for the different sub-periods as well as the entire sample.
Notice that for each MCMC draw, a different value of α is generated so, there is an overall
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posterior distribution of α. We use B=500 bootstrap replications in this instance.The value
of α is substantially smaller during the sub-prime crisis indicating severe misspecification
but in the other sub-periods as well as in the entire sample, the values of α are relatively
larger. To gain some insight in relatively large samples, from Table 3, the optimal value
of α in misspecified models is (much less than) 0.002 (posterior standard deviation 0.001).
Therefore, during 2007-2010, it seems that the model is correctly specified and using the
entire sample or other sub-periods the values of α are quite large so, they place substantial
weight on the likelihood, relative to the UIPs. Notice that posterior standard deviations of
α (uncertainty is introduced as α is recomputed with each MCMC draw) are quite low so
posterior mean estimates are quite precise. Moreover, we report median absolute differences
of posterior means of parameters and directions in the column headed “differences”. These
are differences between posterior results from F-UIP and PM-UIP and they are presented
graphically in panel (d) of Figure 2. Unsurprisingly, the results are nearly the same (although
not identical) as the UIP controls the amount of information in the first-stage prior (i.e.,
equal to one observation.) Finally, as α seems not to change much in different sub-periods,
we consider the full sample in the following discussion.

Table 6: Values of learning rate, α and differences relative to PM-UIP

Sub-period α differences

2001-2006 0.822
(0.041)

0.0005
(0.0002)

2007-2010 0.817
(0.045)

0.0002
(0.0001)

2011-2019 0.829
(0.047)

0.0001
(0.002)

2001-2019 0.835
(0.043)

0.0002
(0.0002)

Notes: Reported are sample means of posterior means with sample standard deviations in parentheses. Uncertainty arises as
different values of α are computed for each MCMC draw. Moreover in the column labeled “differences” we report median
absolute differences between posterior results from F-UIP and PM-UIP.

5.2 Further misspecification

An alternative way of eliminating or at least mitigating misspecification is using the Bayesian
bootstrap; e.g., Huggins and Miller (2019). In the bootstrap, we draw random samples from
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the data (preserving all blocks of observations for each bank) and we perform posterior
analysis using the Gibbs posterior with the optimal values of α. An interesting benchmark
against which we can compare the new techniques is to adopt half-normal or exponential
distributions for the one-sided error component (in the second stage.) In other respects,
the problem (18) remains the same but half-normal or exponential distributions are used
as priors of ui explicitly. The purpose of the comparison is to examine whether the Gibbs
posterior can still be used with this type of misspecification of the prior. In panels (a) and
(b) of Figure 3, we provide results for the half-normal case and in panels (c) and (d) for
the exponential distribution. From these results, it is evident that the results for the half-
normal and the exponential are approximately the same although from the densities for α we
conclude that αs are several orders of magnitude smaller than results corresponding to UIP,
indicating more misspecification. In other respects, the distributions of technical inefficiency
are quite different compared to those delivered by UIP. Moreover, some technical inefficiency
densities are asymmetric and multimodal. Asymmetry is not totally unexpected whereas
bimodality reflects the presence of different groups in the data related to heterogeneity in
performance. This may also be due to heterogeneity in estimated directions along which
inefficiency is estimated.

Besides ui, the directional vectors are also important. In Figure 4 we present the median
absolute difference between the half-normal-based and exponential-based estimates relative
to those delivered by bootstrapping and UIP. We report results for all directions gx (except
gx1 which is normalized to be 1) in the interest of graphical simplicity in Figure 4 from which it
is evident that the directions are also relatively robust relative to F-UIP as the differences in
posterior means of differences are quantitatively small. In this sense, the Gibbs posterior can,
indeed, at least mitigate misspecification problems arising from the prior or other aspects of
the model.

5.3 Identification

As identification may be tenuous for the DGP in (4) as both εi and gxi are random (we set gy =
0 so that we have an input-oriented DDF interpretation), we propose to test identification in
our empirical application using different priors. Comparing priors and posteriors to examine
whether learning takes place (which means that a parameter of interest is identified) may
not be enough. What is required is that

p(θ1|Y ) 6= Eθ2|Y [p(θ1|θ2)], (26)
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Figure 3: Sampling distributions, half-normal distribution

(a) Half-normal

0 0.2 0.4 0.6 0.8 1 1.2

technical inefficiency

0

0.2

0.4

0.6

0.8

1

1.2

de
ns

ity

(a)

2001-2006
2007-2010
2011-2019
2001-2019

0 1 2 3 4 5

10-5

0

1

2

3

4

5

6

7

de
ns

ity

104 (b)

2001-2006
2007-2010
2011-2019

(b) Exponential
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Notes: In panels (a) and (b) we report the sampling distribution of technical inefficiency and α (estimates using the posterior
means) for the half-normal assumption for technical inefficiency. In panels (c) and (d) we present similar results for the
exponential case. The results are presented over different periods (2001-2006, 2007-2010, 2011-2019, and the the entire sample).
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Figure 4: Median absolute differences of directions relative to F-UIP
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Notes: Reported are sampling distributions of median absolute differences in directional vectors from the half-normal (straight

line) and the exponential (dotted line) specifications relative to F-UIP. Differences are taken with respect to all directions for

visual clarity. In both cases we use the bootstrap with B=500 replications. In panel (b) we do not. We set gy = 0.

where θ1 is a parameter of interest, θ2 denotes the rest of the parameter vector, and p(θ1|θ2)
is the prior of θ1 conditionally on θ2. The term Eθ2|Y [p(θ1|θ2)] is known as the expected
posterior prior (EPP, Poirier, 1998; Koop et al., 2013). So, comparing priors and posteriors
is acceptable only when p(θ1|θ2) = p(θ1) i.e., the parameters are independent. As this
condition holds in our case we proceed to examine identification of certain parameters. In
the left panel of Figure 5, we report the prior (thick line) and in the right panel we report
marginal posteriors of ui for fifty randomly selected banks. Again, the results show that
the directional vectors are identified (we remind that gy = 0). Moreover, evidence in Figure
5 shows that inefficiencies are identified as well. In panel (a) we present three priors viz.,
F-UIP, PM-UIP, and EPP previously defined in (26). This notion of identification is correct
only when parameters are a priori independent which is not true for PM-UIP or for the F-UIP
and EPP (see Footnote 3). Moreover, contrary to PM-UIP, the EPP is more concentrated
around zero. We will investigate identification further in the following discussion.
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Figure 5: Comparison of prior and marginal posteriors of ui
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Notes: In the left panel we report the priors and in the right panel we report marginal posteriors of ui for fifty randomly selected
banks. EPP is the “expected posterior prior” in (26).

An alternative way to examine identification is to generate data sets of different size using
the parameters estimated via the posterior means. If the model is identified, then posterior
precision (measured by the inverse determinant of the sub-matrix of the posterior covariance
matrix of the parameters, should increase proportionally with the sample size. As quite
often we have relatively few observations in the time dimension, we select T=5. In turn, we
vary n for samples of size 50, 100, 250, 500, and 1,000. Our results are reported in Figure 6,
for median ui and median of certain directions. The straight lines represent actual posterior
precision and the dotted lines are fitted values from a regression of posterior precision on the
sample sizes (without intercept.) In all cases (viz., all six panels of Figure 6) we consider
medians of bank-specific inefficiencies or directions). As the two lines are quite similar, we
conclude that the model is identified using the F-UIP or PM-UIP. This is not surprising as
the second-stage prior is quite informative. This does not mean that prior and posterior
results will be the same, or that the posterior is sensitive to the prior. The prior comes out
as the result of assuming that directions are the same across all observations. Therefore, it
is informative on the one hand, but it is corrected through α -posteriors and bootstrapping.
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Figure 6: Posterior precision for different parameters
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It would be interesting to know what the F-UIP or PM-UIP look like. We present these
densities in Figure 7. The posterior and priors are for a randomly selected observation.
Results for other observations were qualitatively the same, so they are not reported here to
save space but they are available on request. The priors are truncated to the range of the
posterior for visual clarity. The F-UIP and PM-UIP (applied to the first stage problem where
gx are common across firms) are quite different which implies that we should not assume
the kind of prior parameter dependence in the PM-UIP. Unsurprisingly, the UIPs are quite
informative despite the fact that UIPs are worth a single observation. The reason is that
in (14) the priors are based on posteriors of the directions of (common across observations)
gx. Here, we use the observed Fisher information matrix whereas, normally, I(θ) should be
the expected value of the negative of the Hessian matrix of the log-likelihood.9 In practice,
the expectation is hard to compute so, in practice we use the observed information matrix.
This is a way of making the prior depend on the data as in empirical Bayes procedures.
Although, formally, this compromises “Bayesian purity” it is, arguably, a better procedure
from the practical point of view. In turn, even when α is small giving more weight to the
prior is giving less weight on a data-dependent prior, see Table 6.

9Any difference between the two implies specification problems.
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Figure 7: Posteriors, F-UIP and PM-UIP
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To examine in more detail the expected UIPs, we provide them in Figure 8 for the empirical
application. The expectations are approximated using Monte Carlo with 10,000 replications
in place of the observed data. In each case we report the marginal priors. In terms of
inefficiency (u), the (second-stage) priors tend to allocate more prior probability towards
zero and they are quite informative. In this sense, the prior parameter dependence in F-UIP
does not seem to imply different results compared to PM-UIP (which incrporates a different
kind of dependence).

6 Concluding remarks

In this paper, we extend the directional distance function approach of Kuosmanen and John-
son (2010) in several respects. First, we introduce firm-specific directions which are estimated
rather than assumed a priori. Second, we use a UIP to specify explicitly the amount of in-
formation (which corresponds to one observation.) Two such priors are developed. Third,
we use a robust posterior which accounts for potential misspecification and it is robust to
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Figure 8: Different UIPs
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Notes: We present marginal priors corresponding to F-UIP and priors corresponding to PM-UIP. The expectations are approx-

imated using Monte Carlo with 10,000 replications in place of the observed data setting the parameters equal to their posterior

means. For both the F-UIP and PM-UIP we report the marginal prior.
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the prior (and other assumptions in the model that are often made for simplification). The
extent of misspecification is reduced to a single parameter, the learning rate α. We show-
case the new techniques in a Monte Carlo experiment as well as data for large U.S. banks.
Potential misspecification, and the effect of UIP are discussed in detail. In terms of future
research, it would be interesting to examine other techniques for mitigating misspecification,
for example sub-sampling instead of the bootstrap in bagging (Politis and Romano, 1992,
1994). However, sub-sampling depends critically on the size of sub-samples which is, often, a
difficult choice to make. Another interesting avenue for further research would be to propose
more general data generating processes that are driven by more than one error component
(εi). These data generating processes are likely to produce identification problems so, a
resolution along Bayesian lines, would require crafting different “objective” priors
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