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Abstract

Spike-and-slab and horseshoe regression are argu-
ably the most popular Bayesian variable selection ap-
proaches for linear regression models. However, their
performance can deteriorate if outliers and hetero-
skedasticity are present in the data, which are com-
mon features in many real-world statistics and ma-
chine learning applications. In this work, we propose
a Bayesian nonparametric approach to linear regres-
sion that performs variable selection while account-
ing for outliers and heteroskedasticity. Our proposed
model is an instance of a Dirichlet process scale mix-
ture model with the advantage that we can derive the
full conditional distributions of all parameters in closed
form, hence producing an efficient Gibbs sampler for
posterior inference. Moreover, we present how to ex-
tend the model to account for heavy-tailed response
variables. The performance of the model is tested
against competing algorithms on synthetic and real-
world datasets.

1 Introduction

Bayesian variable selection is a popular tool in stat-
istics and machine learning that can be used for fea-
ture selection in linear regression models. The two
most popular models are arguably the spike-and-slab
and horseshoe regression models. Both models rely
on choosing a sparsity inducing prior over the regres-
sion coefficients βββ ∈ Rp. In the spike-and-slab model,
the prior is a mixture between a point mass at zero
and a diffuse prior, while in the horseshoe model, a
continuous prior balances the local and global shrink-
age (see Section 2). Compared to the estimator for
the regression coefficients in standard linear regression,
the posterior distribution under these priors produces
a shrinkage effect toward zero in the posterior point
estimates. This is especially useful in the p >> n re-
gime, in which the number of attributes p can be much
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larger than the number of observations n.

In this paper we propose extensions of the spike-and-
slab and horseshoe regression models to deal with het-
eroskedasticity and outliers in the data. Specifically,
we propose a Bayesian nonparametric model in which
each observation is endowed with its own specific vari-
ance σ2

i , which is sampled from an unknown distribu-
tion P . The distribution P is a Dirichlet process prior
and the resulting model is a Dirichlet process scale mix-
ture model. Due to the discreteness of the Dirichlet
process, the resulting vector of variances (σ2

1 , . . . , σ
2
n)

will be partitioned into groups, hence also producing a
corresponding clustering of the observations, in which
observations belonging to the same group will have the
same conditional variance. Moreover, some observa-
tions may be allocated to a single group having much
larger variance than the others, hence allowing for out-
liers in the data.

The key features of our proposed model are:

• Parsimonious regression construction:
Our nonparametric method performs feature se-
lection with the posterior concentrating on the
most relevant prediction coefficients. However,
unlike variable coefficient models, there is no in-
crease in the degrees-of-freedom associated with
the number of regression parameters (or smooth-
ness of parameters to control, c.f. functional re-
gression).

• Interpretable model structure: The proposed
linear regression model changes the structure of
the marginal variance components while retaining
the highly interpretable properties of a standard
sparse regression formulation.

• Posterior credible intervals: A fully Bayesian
approach gives credible intervals for the regression
coefficients. We propose several ways to perform
posterior inference selection using these intervals,
which provide uncertainty quantification for de-
cision makers working with high-dimensional data.

• Efficient inference: Under our model, full con-
ditional distributions of all parameters can be
derived in closed form, hence producing an effi-
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cient Gibbs algorithm that gives a tuning-free and
rejection-free Markov chain Monte Carlo (MCMC)
sampler.

The rest of the paper is organized as follows. Sec-
tion 2 briefly reviews the spike-and-slab and horseshoe
regression models. Section 3 introduces the Bayesian
nonparametric framework and our Dirichlet process
mixture model for linear regression along with details
of our MCMC sampler. In Subsection 3.3.2, we provide
an extension to our model to account for heavy-tailed
response variables. Finally, Sections 4 and 5 present
an empirical comparison of our proposed model against
popular alternative models on synthetic data and two
real-world data examples.

2 Bayesian Variable Selection
for Linear Regression

The Bayesian approach to variable selection for linear
regression models is to introduce sparsity-inducing pri-
ors on the regression coefficients. The two most pop-
ular approaches in the literature, which we shall re-
view here, are the discrete mixture priors known as the
spike-and-slab (Mitchell and Beauchamp, 1988; George
and McCulloch, 1993), and the continuous shrinkage
priors, most notably the horseshoe prior (Carvalho
et al., 2010).

2.1 Spike-and-slab priors

The original spike-and-slab model was initially pro-
posed by Mitchell & Beauchamp (1988) and signific-
antly developed by Madigan & Raftery (1994) and
George & McCulloch (1997). The final adjustments to
the model were completed by Ishwaran & Rao (2005) in
what they refer to as the stochastic variable selection
model. The spike-and-slab prior is intuitively simple
and consists of two components. The spike is a delta
function centered at zero indicating βj ≈ 0, and the
slab gives probability mass to non-zero coefficients.

In our regression framework, we have data y ∈ Rn
that is explained by a matrix of attributes X ∈ Rn×p
and coefficients β ∈ Rp. Assuming a spike-and-slab
prior for β, we have the following model,

yi|xi,β, σ2 ∼ N (x>i β, σ
2) i = 1, . . . , n

βj |ηj , τ2j ∼ N (0, ηjτ
2
j ) j = 1, . . . , p

ηj |ν0, ω ∼ (1− ω)δν0(·) + ωδ1(·)
τ2j |a1, a2 ∼ IG(a1, a2) (1)

ω ∼ Unif[0, 1]

σ2|b1, b2 ∼ IG(b1, b2)

The likelihood for the data assumes a standard
Gaussian regression model, and the prior for β is a
scale mixture of Gaussians. The variable ηj is a latent
indicator and δv0(·) denotes a point mass at v0, where
v0 is a value chosen close to 0, and thus the variance of
the prior on β is either almost zero or a broad Gaussian
distribution.

2.2 Horseshoe priors

Spike-and-slab priors are intuitively appealing, but in
practice their discrete nature makes posterior infer-
ence computationally difficult. A popular alternative
perspective on sparse Bayesian regression is given by
the horseshoe prior construction (Carvalho et al., 2009,
2010, see). The horseshoe prior is a continuous shrink-
age prior which makes posterior computation more effi-
cient when using gradient-based MCMC sampling tools
such as STAN (Carpenter et al., 2017).

yi|xi,β, σ2 ∼ N (x>i β, σ
2) i = 1, . . . , n

βj |λ2j , τ2 ∼ N (0, λ2jτ
2) j = 1, . . . , p

λj ∼ C+(0, 1)

τ ∼ C+(0, 1) (2)

σ2|b1, b2 ∼ IG(b1, b2)

Under the horseshoe regression model, the paramet-
ers λj and τ are the local and global shrinkage para-
meters, respectively. Following Carvalho et al. (2010),
we choose half-Cauchy priors for λj and τ . The in-
tuition behind the horseshoe prior is that the global
parameter τ will force the regression coefficients to-
wards zero, while the heavy tails of the half-Cauchy
prior for the local shrinkage parameters λj will allow
for non-zero β coefficients.

The horseshoe model used in our experiments fol-
lows the form originally proposed by Carvalho et al.
(2010). A standard Gibbs sampling approach on this
parametrization of the model is difficult to implement
due to the non-conjugate posterior form of the shrink-
age parameters in the model. In our implementation
we introduce auxiliary variables that lead to conjug-
ate full conditionals for all parameters as suggested by
Makalic and Schmidt (2015a), and allow for a straight-
forward implementation of Gibbs sampling.

The parameterization given by Makalic and Schmidt
(2015a) makes use of an inverse gamma scale mixture
representation of a random variable with a half-Cauchy
distribution. It can be shown that X ∼ C+(0, A) if
X2|a ∼ IG(1/2, 1/a) and a ∼ IG(1/2, 1/A2). Using
this decomposition leads to the reparametrized horse-
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shoe model

yi|xi,β, σ2 ∼ N (x>i β, σ
2) i = 1, . . . , n

βj |λ2j , τ2 ∼ N (0, λ2jτ
2) j = 1, . . . , p

λ2j ∼ IG(1/2, 1/νj)

τ2 ∼ IG(1/2, 1/ξ) (3)

ν1, . . . , νp, ξ ∼ IG(1/2, 1)

σ2|b1, b2 ∼ IG(b1, b2),

for which the sampling schemes presented in the next
section easily follow.

3 Nonparametric Stochastic
Variable Selection

3.1 Background to Dirichlet processes

In Bayesian nonparametric statistics, unknown para-
meters are infinite dimensional and cannot be para-
metrized by a subset of Euclidean space. The most
common examples of nonparametric problems are the
estimation of density functions, distribution functions
and nonparametric regression (Hjort et al., 2010).

The most popular nonparametric distribution func-
tion is the Dirichlet process, introduced in Ferguson
(1973). In this setting, P has a Dirichlet process
distribution with base measure P0 and concentration
parameter α, denoted P ∼ DP (α, P0). For every
measurable partition (A1, . . . , Ak), the random vector
(P (A1), . . . ,
P (Ak)) has a Dirichlet distribution on
the k-dimensional simplex with parameters
(αP0(A1), . . . , αP0(Ak)). The base measure P0 is
the mean of the prior (i.e. E(P ) = P0), while the
concentration parameter α regulates prior uncertainty
around P0. A large α value implies a strong belief in
the prior.

There are many different representations of the Di-
richlet process (see Ghosal and Van der Vaart (2017),
Chapter 4). For the purpose of this paper, we shall
utilize the Chinese restaurant process representation,
which gives the marginal distribution of the data when
the unknown distribution P has been marginalized
out. Specifically, if θ1:n is an i.i.d. sample from P ,

θi|P
iid∼ P , and P ∼ DP (α, P0), then the marginal

distribution of θ1:n, when P is integrated out, is

π(θ1:n|α, P0) =

∫ n∏
i=1

P(θi)DP(dP;α, P0),

which can be described by the marginal of θ1 and the
conditional distributions of θi|θ1:i−1 for i = 2, . . . , n,

π(θ1:n|α, P0) = π(θ1|α, P0)
∏n
i=2 π(θi|θ1:i−1, α, P0),

where π(θ1|α, P0) = P0 and

θi|θ1:i−1, α, P0 ∼
1

i− 1 + α

n∑
i=1

δθi +
α

i− 1 + α
P0.

Thus, a sample θ1:n from π(θ1:n|α, P0) will display ties
with positive probability. The parameter α regulates
the number of clusters in θ1:n. All else being equal,
larger α will lead to more distinct values within θ1:n.

3.2 Dirichlet process mixture model

The Dirichlet process mixture model (DPM) (Lo, 1984)
assumes each observation yi is sampled from a count-
able mixture model. The likelihood of each mixture
component, K(yi; θ

∗
k), is parametrized by an unknown

parameter vector θ∗k. In the following, K will be
a Gaussian kernel and θ∗k is the group specific vari-
ance. Both the mixture parameters θ∗ and the mix-
ture weights wk can be encoded into a random measure
P =

∑
k≥1 wkδθ∗k which is endowed with a Dirichlet

process prior, hence producing the following mixture
model for i = 1, . . . , n

yi|P ∼
∞∑
k=1

wkK(yi; θ
∗
k) =

∫
K(yi; θ)P (dθ)

P ∼ DP (α, P0).

By introducing latent class variables, {θi}ni=1 s.t.
P(θi = θ∗k) = wk, the DPM model is equivalent to
the latent variable mixture model

yi|θi ∼ K(yi; θi) i = 1, . . . , n

θi|P
iid∼ P i = 1, . . . , n (4)

P ∼ DP (α, P0)

The DPM model has been used in a variety of applic-
ations in statistics and machine learning for density
estimation and clustering. In density estimation, the
goal is to estimate the unknown density of the observa-
tions through a mixture model, while in clustering the
goal is to cluster observations into groups with a similar
distribution. For the latter task, the discreteness prop-
erty of the Dirichlet process is very convenient, since
with positive probability we will observe ties among
the latent variables θ1:n. Two observations yi and yj
having the same value of the latent variables θi and θj
will be assigned to the same cluster and have the same
distribution.

In Section 3.3 we utilize the properties of the Dirich-
let process mixture model to propose a Bayesian non-
parametric extension to the spike-and-slab and horse-
shoe regression models. We show that our new model
is able to capture heteroskedasticity and outliers in the
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observations, as well as capturing clustering behaviour
in the variance structure. Under both DP variable se-
lection models the mixture component has a likelihood
with a cluster-specific variance term which is not fixed
apriori, but is learned from the data.

3.3 Dirichlet process variable selection

In both the spike-and-slab (1) and horsehoe (3) models,
one assumes that each yi has the same conditional vari-
ance σ2. Under our nonparametric Dirichlet process
model, we introduce an observation dependent vari-
ance σ2

i for each data point. The vector σ2 := σ2
1:n

is assumed to be sampled from an unknown discrete
distribution P sampled from a Dirichlet process. Spe-
cifically, we consider the following general hierarchical
model,

yi|xi,β,σ2 ∼ N (x>i β, σ
2
i ) i = 1, . . . , n

βββ ∼ π (5)

σ2
i |P ∼ P (dσ2

i ) i = 1, . . . , n

P |α ∼ DP(α, IG(b1, b2))

α ∼ Gamma(d1, d2),

where the prior π for βββ either follows the spike-and-
slab construction in lines 2-5 of eq. (1), or the horse-
shoe model in lines 2-4 of eq. (3). We refer to the
general model in eq. (5) as the Dirichlet process vari-
able selection model and recognize that the spike-and-
slab and horseshoe models are special cases, which we
denote as Dirichlet process spike-and-slab (DPSS) and
Dirichlet process horseshoe (DPHS), respectively.

In this model, we are assuming a variance σi for each
observation yi, where the vector of variances σ1, . . . , σn
is assumed to be conditionally i.i.d. from an unknown
distribution P . Specifically, we use a Dirichlet process
as a nonparametric prior for P , centered at IG(b1, b2)
with concentration parameter α. From the proper-
ties of the DP, P will almost surely be a discrete dis-
tribution. This implies that, with positive probabil-
ity, we will observe ties among σ1, . . . , σn. In other
words, some σi will take the same value. Let’s de-
note by σ∗1 , . . . , σ

∗
Kn

the Kn distinct values assumed
by σ1, . . . , σn. We will then have Kn clusters among
our observations {yi}ni=1, where observations within a
cluster have the same variance, but different clusters
have different variances. Specifically, if σi = σj , then
yi and yj will be in the same cluster and have the same
conditional variance, but with possibly different means,
depending on their attributes.

3.3.1 Posterior inference

Under the DPSS and DPHS models, posterior infer-
ence can be carried out efficiently using a Markov chain

Algorithm 1 DP variable selection Gibbs sampler

for t in 1: number of iterations do
for i in 1:n do

Sample classification value ci with probability
(6).

end for
for k in 1:Kn do

Sample σ2∗
k

σ2∗
k ∼ IG

(
b1 +

nk
2
, b2 +

1

2

∑
i:Ck

(yi − x>i β)2

)
,

where Ck = {σ2
i | ci = k}

end for
if Spike-and-Slab then

Sample β, τj , ηj and ω using Algorithm 2
else if Horseshoe then

Sample β, λj and τ using Algorithm 3
end if
Sample α, by sampling the latent variable

ψ|α,Kn ∼ Beta(α, n) then

α|ψ,Kn ∼ Gamma(d1 +Kn, d2 − logψ)

end for

Monte Carlo sampler. We propose a general Gibbs
sampler to sample σ2

1:n (see Algorithm 1) based on the
algorithm by Escobar and West (1995), where at each
iteration, we first resample a classification vector c1:n
assigning each σ2

i to a block in the partition, and then
resample the distinct values σ2∗

1:k.
The partition generated by the variance value as-

signed to each observation is distributed, a priori, as a
Chinese Restaurant Process (Aldous, 1985). This dis-
tribution can be understood intuitively as a Chinese
restaurant serving an infinite amount of customers ar-
riving in succession. Each customer needs to be seated
on a unbounded number of tables, where the probabil-
ity of seating a customer at an occupied table is propor-
tional to the number of people already seated at that
table. Alternatively, the customer could be seated at a
new table with probability proportional to the concen-
tration parameter α. Assuming i.i.d. variances, we can
assume, a posteriori, that each observation is the last
customer to arrive and each table represents a cluster
of variances. The customer/observation will be seated
at an already occupied table, or a new table with prob-
ability proportional to

P[ci = c | c−i, y1:n, σ2∗
1:Kn ] ∝ n−i,cN(yi;xxx

T
i βββ, σ

2∗
c ) for 1 ≤ c ≤ K−

αg(yi;xi,β, b1, b2) for c = K− + 1,
(6)
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where K− are the number of distinct cj for j 6= i,
labeled {1, . . . ,K−}, and n−i,c is the number of cj = c
for j 6= i. The likelihood of observation i being assigned
a new variance, i.e. seated at a new table, is defined as

g(yi;xi,β, b1, b2) :=

∫
N (yi;x

>
i β, σ

2)IG(σ2; b1, b2)dσ2

=
bb12√
2π

Γ(b1 + 2−1)

Γ(b1)
·

·
(

(yi − x>i β)2

2
+ b2

)−(b1+ 1
2 )

.

Finally, the concentration parameter α is sampled us-
ing a data augmentation trick (Ghosal and Van der
Vaart, 2017, see pg.89).

We sample the regression coefficients β for the spike-
and-slab and horseshoe models using Algorithms 2 and
3, respectively. The Gibbs sampler for the spike-and-
slab model follows from Ishwaran and Rao (2005) while
the Gibbs sampler for the horseshoe model is based
on the data augmentation construction of Makalic and
Schmidt (2015b). The full conditional distributions of
all parameters in both models can be easily derived
and have closed form expressions.

An advantage of our Dirichlet process model con-
struction is that the number of clusters Kn that parti-
tion the vector of variance parameters σ2

1:n are learned
by the DP model and do not need to be fixed apriori.

Algorithm 2 Sample β with the spike-and-slab model

Sample β
β ∼ N (µβ|·,Σβ|·)

where µβ|· = (XTΣ−1X + Λ−1)−1XTΣ−1y and

Σ−1β|· = XTΣ−1X + Λ−1, with Σ = diag(σ2
1 , . . . , σ

2
p)

and Λ = diag(τ21 η1, . . . , τ
2
p ηp),

for j in 1:p do
Sample τj

τ−2j |β, η ∼ Gamma
(
a1 + 1/2, a2 + β2

j /2ηj
)
,

end for
for j in 1:p do

Sample ηj

ηj |β, τ, ω ∼
w1,j

w1,j + w2,j
δv0(·) +

w2,j

w1,j + w2,j
δ1(·) ,

where w1,j = (1 − ω)v
−1/2
0 exp(−β2

j /2v0τ
2
k ) and

w2,j = ω exp(−β2
j /2τ

2
j ).

end for
Sample ω

ω|η, τ ∼ Beta(1 + |{j | ηj = 1}|, 1 + |{j | ηj = v0}|)

Clustering the variance parameters means that we
can account for outlier observations if one of the vari-
ances σ∗1 , . . . , σ

∗
Kn

is very large. Outlier observations
belonging to that specific cluster will have much higher
variance than the others and can therefore take more
extreme values. In this way, the model can both sim-
ultaneously account for heteroskedasticity and outliers
which are characterised by clusters with extreme vari-
ances.

Algorithm 3 Sample β with the horseshoe model

Sample β
β ∼ N (µβ|·,Σβ|·)

where µβ|· = (XTΣ−1X + Λ−1)−1XTΣ−1y and

Σ−1β|· = XTΣ−1X + Λ−1, with Σ = diag(σ2
1 , . . . , σ

2
p)

and Λ = diag(τ2λ21, . . . , τ
2λ2p),

for j in 1:p do
Sample the local shrinkage parameter λ2j and aux-
iliary variable νj ,

λ2j |· ∼ IG(1, 1/νj + β2
j /2τ

2),

νj |· ∼ IG(1, 1 + 1/λ2j );

end for
Sample the global shrinkage parameter τ2 the aux-
iliary variable ξ,

τ2 ∼ IG

(p+ 1)/2, 1/ξ +

p∑
j=1

β2
j /2λ

2
j

 ,

ξ ∼ IG(1, 1 + 1/τ2);

3.3.2 Heavy Tails: Student-t extension

In many real-world datasets, the response variable y
may contain some larger than expected values which
are commonly referred to as outliers. A common ap-
proach to model such data is to replace the normal
distribution assumption for the conditional distribu-
tion of yi given xxxi with a Student-t distribution. Com-
pared to a normal distribution, the Student-t distri-
bution has heavier tails and therefore permits outlier
observations with a higher probability than under the
normal model. We can account for outliers in our Di-
richlet process variable selection model (5) by replacing
the conditional distribution of yi with

yi|xi,β,σ2 ∼ Student-t(x>i β, σ
2
i , ν) i = 1, . . . , n,

for some degrees of freedom ν. The parameter ν reg-
ulates the thickness of the tails of the distribution. A
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small value for ν leads to thicker tails with the expect-
ation that large or extreme values for yi will be ob-
served. As ν →∞, the Student-t distribution recovers
the normal distribution.

A Gibbs sampler to perform posterior inference for
the Student-t model can be derived from Algorithm
1 by including an additional data augmentation step.
The required conditional distributions are derived by
representing the Student-t distribution as a normal dis-
tribution with an inverse gamma variance. The re-
mainder of this section describes these procedures.

We assume our response variables are distributed as
Y ∼ Student-t(µ, σ2, ν) with density,

f(y|µ, σ2, ν) =
Γ(ν+1

2 )

Γ(ν2 )
√
πνσ2

(
1 +

(y − µ)2

νσ2

)− ν+1
2

(7)

with mean E(Y ) = µ and variance Var(Y ) = σ2 ν
ν−2 .

A well-known reparameterization of the model follows
that if,

Y |G ∼ N (µ,G−1) and G ∼ Gamma(ν/2, νσ2/2),

then the marginal of Y (when integrating out G) is
Y ∼ Student-t(µ, σ2, ν).

The extension of the DPSS and DPHS models to a
Student-t model is as follows

yi|xi,β, σ2
i ∼ Student-t(x>i β, σ

2
i , ν)

β ∼ πSS/HS

σ2
i |P ∼ P (8)

P ∼ DP(α,Gamma(b1, b2)).

Using the reparameterized Student-t model, and integ-
rating out P from (8), the joint posterior distribution
π(β,G1:n, σ

2
1:n, α|Y1:n, X1:n) is proportional to,

n∏
i=1

N (yi;x
T
i β, G

−1
i )Gamma(Gi; ν/2, νσ

2
i /2)

× π(σ1:n|α)π(α)πSS/HS(β),

where as before, π(σ1:n|α) denotes the marginal likeli-
hood of σ1:n when P is integrated out, which can be
represented using the Chinese restaurant process. The
proposed Gibbs sampler is specified in Algorithm 4,
where at each iteration, we first resample a class vec-
tor c1:n assigning each σ2

i and Gi to a block in the
partition, and then resample the distinct values σ2∗

1:k

followed by each latent variable Gi. In the heavy tailed
case the observation is related to a variance through its
latent variable and hence the posterior probability of

Algorithm 4 DP variable selection Gibbs sampler,
Student-t extension

for t in 1: number of iterations do
for i in 1:n do

Sample classification vector ci with probability
(9).

end for
for k in 1:Kn do

Sample σ2∗
k

σ2∗
k ∼ Ga

(
ν

2
nk + b1,

ν

2

∑
i:Ck

Gi + b2

)
,

where Ck = {Gi | ci = k}.
end for
if Spike-and-Slab then

Sample β, τj , ηj and ω using Algorithm 2, re-
placing Σ = diag(σ2

1:n) with Σ = diag(G1:n)−1.
else if Horseshoe then

Sample β, λj and τ using Algorithm 3, replacing
Σ = diag(σ2

1:n) with Σ = diag(G1:n)−1.
end if
for i in 1:n do

Sample Gi

Gi ∼ Ga

(
ν + 1

2
,

1

2
[(Yi −XT

i β)2 + νσ2
i ]

)
.

end for
Sample α, by sampling the latent variable

ψ|α,Kn ∼ Beta(α, n) then

α|ψ,Kn ∼ Gamma(d1 +Kn, d2 − logψ)

end for

6



Figure 1: Estimation error ‖β̂ − β0‖2/‖β0‖2 as a function of n for fixed p = 20 with homoskedastic (left) and
heteroskedastic errors (right).

the classification vector is

P[ci = c | c−i, G1:n, σ
2∗
1:Kn ] ∝

∝

 n−i,cGa(Gi; ν/2, νσ
2∗
c /2) for 1 ≤ c ≤ K−

αg(Gi; ν, b1, b2) for c = K− + 1,

(9)

where K− be the number of distinct cj for j 6= i,
labeled {1, . . . ,K−}, and n−i,c is the number of cj = c
for j 6= i. Also, the likelihood of observation i being
assigned a new variance is modified to

g(Gi; ν, b1, b2) :=

∫
Ga(Gi; ν/2, νσ

2/2)Ga(σ2; b1, b2)dσ2

=
(ν/2)ν/2

Γ(ν/2)
G
ν
2−1
i

bb12
Γ(b1)

Γ(b1 + ν
2 )

(b2 + νGi/2)b1+
ν
2
.

Finally, regression coefficients β are sampled using Al-
gorithms 2 and 3 with small modifications to include
the augmented variable Gi.

4 Synthetic Data Experiments

In this section we compare the DPSS and DPHS mod-
els against the standard spike-and-slab and horseshoe
models of Ishwaran and Rao (2005) and Carvalho et al.
(2010). We begin by studying their predictive per-
formance, their ability to model heterogeneous data
and their variable selection capabilities over a range
of scenarios utilizing synthetic data. In Section 5 we
test the models’ performance on real-world datasets.
Firstly to assess the likelihood of predictions when
modelling various open-source datasets and secondly
on the reconstruction of a network of genomic data
through variable selection on a linear model. Code for
sythentic and real experiments can be found in https:

//github.com/albcab/RobustVariableSelection.

For all experiments, each algorithm is run for J =
10, 000 iterations with a burn-in period of J/2. Con-
vergence and mixing of the Markov chain is confirmed
through visual diagnostics. Hyper-parameters for the
models are set to a1 = b1 = 2.01, a2 = b2 = d1 = 1
and d2 = 1/2, which leads to weakly informative pri-
ors. This claim is verified with simple cross validation
for all the datasets. It is worth noting that one could
place additional hyper-priors on these parameters and
add extra steps to the MCMC algorithm. However, in
doing so we would run the risk of rejecting steps po-
tentially leading to longer mixing times. It is worth
noting that in comparable studies (e.g. Ishwaran and
Rao, 2005), it is common to simply fix these parameters
when assessing performance. Finally, both the depend-
ent and independent variables are normalized to have
zero mean for the testing of each model.

Performance is evaluated in the case of synthetic
data over a range of regression scenarios varying the
number of attributes p = 20, 50, 100, 200 and data
lengths n = 10, 20, 50, 100, 200. The sparsity pattern
will be kept similar across experiments according to the
Briemann structure (Breiman et al., 2001). Specific-
ally, we consider two scenarios for Gaussian linear re-
gression: Scenario (1) - homoskedastic errors with ε ∼
N (0, 1) as the single component; Scenario (2) - hetero-
skedastic errors with five components εi ∼ N (0, σ2

i ) for
σ2
i ∈ {0.5, 1, 1.5, 2, 2.5} distributed evenly among the

observations as well as 1, 2 and 4 outliers ε ∼ N (0, 10)
in the case of n = 50, 100, 200, respectively.

In each scenario and for each combination of attrib-
utes and data lengths, 10 synthetic datasets are created
and parameters are estimated for each of these data-
sets. The results presented in the remainder of this
section consider all 10 estimates for robustness.
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Figure 2: Estimation error ‖β̂ − β0‖2/‖β0‖2 as a function of n for fixed p = 200 with homoskedastic (left) and
heteroskedastic errors (right).

4.1 Homoskedastic and Heteroske-
dastic Errors

We compare the Dirichlet process variable selection
models against the standard spike-and-slab and horse-
shoe models in the presence of homoskedastic (Scenario
1 ) and heteroskedastic (Scenario 2 ) noise. Figures 1

and 2 present the posterior error ‖β̂ − β0‖2/‖β0‖2 for
the low p = 20 and high p = 200 settings, respectively,
as the number of observations n increases, with Scen-
ario 1 plotted on the left and Scenario 2 given on the
right.

Robustness - for Scenario 2, the robustness
provided by the DPSS and DPHS models improves the
predictive estimates both in the low and high dimen-
sional settings, with improvements more noticeable in
higher dimensions with sufficient data, or in lower di-
mensions when data is abundant. Under Scenario 1,
as expected, the results are similar for the models al-
lowing heterogeneous and homogeneous variances.

Coefficients - we also consider the setting of fixing
the number of observations and varying the number
of coefficients β under Scenario 2. Figure 3 presents
the posterior errors for n = 100 against an increas-
ing number of model coefficients. We see again the
Dirichlet process model performs well in the presence
of heterogeneity, particularly as the number of model
coefficients increases. It is interesting to notice that
modelling the variances nonparametrically significantly
corrects the error in prediction of the horseshoe prior
when observations are scarce.

Clusters - One of the key advantages of the non-
parametric approach we adopt is the availability of
posterior densities for the number of variance compon-
ents K. This allows us to assess the uncertainty in
the number of clusters identified in the model. For in-
stance, Figure 4 plots histograms for the parameter
K with p = 50 and n = 50. Heavy tails demon-

Figure 3: Normalised posterior error ‖β̂ − β0‖2/‖β0‖2
as a function of dimension p for fixed n = 100.

strate the Dirichlet process’ assumption of a number
of clusters which scale logarithmically towards infinity
as n grows to infinity. In the case where a finite num-
ber of clusters in the data is known, or the number of
clusters K should scale faster than logarithmically, pri-
ors that generalize the Dirichlet process can be used,
e.g. the Pitman-Yor process (Pitman and Yor, 1997).

4.2 Support Recovery

In addition to estimating the regression coefficients, a
further task of interest, especially in high-dimensional
regression, is to select a subset of attributes which
are deemed significant for the predictive model. In
a frequentist context, this is usually achieved via for-
ward selection with sequential F-tests, or with `1 or
`0 shrinkage and/or selection, for instance through the
use of the AIC or BIC criteria

One advantage of the Bayesian approach is that we
can sample from the joint posterior of the coefficients,
thus we can construct credible intervals with relative
ease. In this section, we compare two methods for es-
timating the support of the regression model:
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Model n 10 20 50 100 200
SS TP 0 [0,1] 3 [1.45,5.55] 18 [12.7,22.55] 25 [22,28] 26 [23,28]

FP 0 [0,1] 4 [1,6.55] 20 [7,48.6] 4 [0,18.05] 1 [0,4.2]
DPSS TP 0 [0,0.55] 1 [0,2.55] 9 [0.45,15.55] 27 [24.8,28] 28 [28,28]

FP 0 [0,1] 0 [0,1.55] 3 [0,13.25] 0 [0,0] 0 [0,0.559]
HS TP 0 [0,0] 0 [0,1.55] 8 [3.45,12] 25 [21.45,28] 26 [22.35,28]

FP 0 [0,0.55] 0 [0,0] 0 [0,2.1] 2 [0.45,3.65] 2 [0.45,3]
DPHS TP 0 [0,0] 0 [0,1.55] 8 [3.45,12] 28 [27,28] 28 [28,28]

FP 0 [0,0.55] 0 [0,0] 0 [0,2] 1 [0,2] 2 [0,3]

Table 1: Tabulated results for FP and TP as a function of n (p = 100 with 28 positives) with 95% credible
intervals.

Figure 4: Histogram of the derived number of clusters
K from the posterior of σ1, . . . , σn for p = 50 and n =
50 for DPSS and DPHS, where the true number of
clusters is six.

• The first approach is to simply look at the pos-
terior of the inclusion parameter ηj for selecting
either the spike, or slab. Specifically, if the mode
of the posterior η̂j is above level 1− ζ we add the

index j to the estimated support set M̂. This
method works only in the DPSS and SS models.

• The second approach is to look at the empirical
posterior credible interval of β̂i at the percentiles
ζ/2× 100 and (1− ζ/2)× 100. If the constructed
interval excludes zero, then we add the index to
the estimated support set M̂. This method is used
for the DPHS and HS models.

We note that the second approach is somewhat sim-
ilar to the z-cut method discussed in Ishwaran and
Rao (2005), however, they construct a set M̂ :=
{i | ∀i s.t. |β̄i|
≥ z(1−ζ/2)} where β̄i represents the posterior mean of
the regression coefficients.

To summarise the performance of the two ap-
proaches, we take the number of true and false positive
(TP, FP) coefficients included in the model and con-
sider how this changes as a function of n. Clearly, these
values will change as a function of ζ, and in practice
this may be tuned to favour either TP or FP results.

For simplicity, we report results with ζ = 0.05. Table
1 summarises the performance of the posterior inclu-
sion thresholding methods for different values of n in
the heteroskedastic scenario. The benefit of a robust
Dirichlet process model is highlighted through its re-
duced type II error. It is interesting to note that the
results are more conservative for the horseshoe prior
when n < p, while more precise for the spike-and-slab
prior when n > p; even though results in the synthetic
data seem to favour the spike-and-slab model for vari-
able selection, real world results with scarce observa-
tions in the following section suggest otherwise.

5 Real Data Experiments

5.1 Prediction accuracy

We test the predictive accuracy of the robust models on
various real world datasets appropriate for variable se-
lection. Specifically, data on air pollution and mortal-
ity (McDonald and Schwing, 1973), physiological vari-
ables and diabetes (Efron et al., 2004), baseball salar-
ies 1, and critical temperature of superconductors 2

(Hamidieh, 2018). The baseball and critical temperat-
ure datasets are log-transformed to allow negative val-
ues. Figure 5 plots the histograms for the real world
datasets. Notice the presence of outliers with low tem-
peratures in critical temperature and heavy tails in pol-
lution and diabetes.

Table 2 presents log-predictive densities on the test
dataset using 10-fold cross validation for each data-
set. The robust models show significant improvements
in predictive performance when observations are very
heterogeneous; for example, in the case of a random
sample of the US population in pollution vs. a sample
of patients all with diabetes in diabetes. DPSS and
DPHS perform best when data are sparse with vari-
ous outliers, as in the critical temperature data where
low temperatures are scarce but substantial enough to

1https://www4.stat.ncsu.edu/ boos/var.select/
2https://archive.ics.uci.edu/ml/datasets.php
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Figure 5: Dependent variables’ histograms for real world datasets.

show improvements in predictive accuracy for the ro-
bust models.

The model’s accuracy is also tested under the as-
sumption that the observations are heavy tailed. The
results for the pollution and diabetes datasets are
presented in the bottom half of Table 2. All the models
are run with fixed degrees of freedom ν = 2. Relaxing
the normal assumption on the observations in addition
to modelling robust variances provides significant im-
provements on the predictive results of the model. The
data augmentation trick also allows for Gibbs sampling
in the case of heavy tails and the computational cost of
sampling is essentially the same as under the normal
assumption. This provides a very robust model for
variable selection both under the spike-and-slab and
horseshoe prior assumptions on the parameters.

Furthermore, we inspect the variable selection be-
haviour both for the models under the normal and
heavy tailed assumptions. Specifically, Figure 6 plots
the mean values of each model’s parameters, indicat-
ing the level of inclusion of each regressor, for diabetes.
Even though the model’s parameters behave similarly
under both assumptions, under the heavy tailed likeli-
hood the non-zero values grow in magnitude and there
are clearer differences between the models with homo-
geneous and heterogeneous variances. Under further
investigation we notice that the number of compon-
ents estimated under the normal assumption for both
the horseshoe and spike-and-slab models is around 6
while under the t-student likelihood the number of
components centers around 2. This might indicate a
misspecification of the likelihood under the normal as-
sumption that the heterogeneous models try to make
up for by increasing the number of unique variances
estimated. When allowing for heavy tails in the like-
lihood the number of components decreases to its real
value, allowing for a better approximation of the mix-
ture generating the data.

5.2 Reconstruction of transcription
regulatory networks

We consider the problem of reconstructing genetic reg-
ulatory networks from gene expression data (Marbach

et al., 2010). This problem can be modelled as a direc-
ted network, where each node corresponds to a different
gene and each connection represents a directed interac-
tion between two genes at the transcription level. The
sparse spike-and-slab and horseshoe priors provide an
attractive approach to reconstructing these networks
using support recovery methods.

The models are tested on data from the challenge
posed at the The Dialogue for Reverse Engineering
Assessments and Methods (DREAM) 2009 conference,
specifically the multifactorial subchallenge3. The chal-
lenge consists of reverse engineering five independent
networks using 100 steady-state measurements for each
network with 100 genes. The levels of expression of
all the genes are measured under different perturbed
conditions. Each gene Xi for i = 1, ..., 100 is treated
independently and modelled through a linear relation-
ship with the rest of the genes in the network X, i.e.
Xi = XTβi+ε with every βi having independent spike-
and-slab or horseshoe priors and assuming ε is a nor-
mal random variable with mean zero and homogeneous
variances in the case of SS and HS or heterogeneous
variances in the case of DPSS and DPHS. For each
gene, the support is recovered using the method de-
scribed in Section 4.2 for the case of a spike-and-slab
prior with βi. In the case of a horseshoe prior, we
follow Steinke et al. (2007) and approximate the pos-
terior probability of a connection from gene j to gene i
by the probability of the event |(βi)j | > 0.1 under the
posterior for βi.

The performance of the different approaches is eval-
uated using the mean of the logarithmic loss of the
probabilities of connections pij from gene j to each
gene i, defined as

1

100

100∑
i=1

− 1

99

∑
j 6=i

[yij log pij + (1− yij) log (1− pij)]

 ,

where yij = 1 if there is a directed connection from j to
i and yij = 0 otherwise. Table 3 presents these results
for each tested model. The improvement in prediction
given by heterogeneous variances in the model is sub-
stantial. This supports the results from Section 4.2 on

3www.synapse.org/#!Synapse:syn3049712/wiki/74628

10



SS 95% CI DPSS 95% CI HS 95% CI DPHS 95% CI train/test

Pollution -26.4734 [-27.7,-24.72] -26.0378 [-27.53,-24.24] -24.9396 [-28.54,-22.78] -24.5585 [-27.18,-21.69] 55/5
Diabetes -230.7864 [-236.62,-225.07] -232.3278 [-239.1,-226.42] -229.9841 [-238.17,-222.8] -231.4566 [-240.63,-223.28] 400/42
Baseball -30.7400 [-35.06,-24.21] -30.2592 [-33.58,-26.24] -30.8921 [-35.81,-24.04] -30.2742 [-33.78,-26.25] 300/37
Temperature -243.2871 [-271.72,-219.62] -228.8550 [-242.35,-209.99] -243.1998 [-272.91,-219.51] -228.5229 [-241.43,-209.6] 1800/200

Pollution -34.5245 [-42.32,-24.35] -19.9301 [-26.68,-12.99] -24.3429 [-33.24,-16.02] -19.3170 [-25.91,-10.29] 55/5
Diabetes -362.7476 [-384,-344.69] -148.4859 [-163.74,-131.94] -343.5113 [-369.7,-322.28] -149.0032 [-166.24,-131.76] 400/42

Table 2: Log predictive densities for 10-fold cross validation on various real datasets with 95% Credible Intervals.

Figure 6: Estimated parameters for real world dataset diabetes for normal likelihood (top) and Student-t
likelihood (bottom) models.

synthetic data, illustrating the improvement offered by
robust models to correctly classify variables included in
the model, specifically in their capability of reducing
type II error in the predictions while correctly identify-
ing the significant coefficients in the linear relationship.
It is interesting to note that, while the DPSS model
provided better support recovery results in the syn-
thetic data example, the DPHS provides better results
in the real data example of gene network reconstruc-
tion.

SS DPSS HS DPHS
N1 0.1143 0.0928 0.0920 0.0873
N2 0.1498 0.1382 0.1248 0.1202
N3 0.1610 0.1185 0.1196 0.0914
N4 0.1588 0.1152 0.1124 0.0964
N5 0.1314 0.1079 0.1044 0.0939

Table 3: Logarithmic-loss errors for the five DREAM
Gene Network detection datasets (N1-N5).

6 Conclusion

This paper outlines a nonparametric extension of pop-
ular Bayesian variable selection models to account for
heterogeneity, outliers and clustering effects. We also
provide an extension to the model to allow for heavy-
tailed data distributions. Fitting our Dirichlet pro-
cess variable selection models is computationally effi-
cient using a Gibbs sampling construction. The results
presented for both synthetic and real data examples
show a robust improvement in both predictive accur-
acy on test data and improved efficiency in identifying
key model attributes.

This work could be further extended to encompass
other variable selection models, including extensions
of existing models, such as the regularized horseshoe
model (Piironen et al., 2017). It would also be inter-
esting to explore nonparametric priors that allow for
more flexible assumptions on the expected clustering
effect, such as the Pitman-Yor process (Pitman and
Yor, 1997).
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