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Abstract 17 

Synthetic aperture radar (SAR) image change detection is a challenging task due to inherent 18 

speckle noise, imbalanced class occurrence and the requirement for discriminative feature learning. 19 

The traditional handcrafted feature extraction and current convolution-based deep learning techniques 20 

have some advantages, but suffer from being limited to neighborhood-based spatial information. The 21 

nonlocally observable imbalance phenomenon that exists naturally in small area change detection has 22 

presented a huge challenge to methods that focus on local features only. In this paper, an unsupervised 23 

method based on a variational graph auto-encoder (VGAE) network was developed for object-based 24 

small area change detection using SAR images, with the advantages of alleviating the negative impact 25 

of class imbalance and suppressing speckle noise. The main steps include: 1) Three types of difference 26 

image (DI) are combined to establish a three-channel fused DI (TCFDI), which lays the data-level 27 

foundation for subsequent analysis. 2) Simple linear iterative clustering (SLIC) is used to divide the 28 

TCFDI into superpixels regarded as nodes. Two functions are proposed and developed to measure the 29 

similarity between nodes to build a weighted undirected graph. 3) A VGAE network is designed and 30 

trained using the graph and nodes, and high-level nonlocal feature representations of each node are 31 

extracted. The network, with a Gaussian Radial Basis Function constrained by geospatial distances, 32 

establishes the connection among nonlocal, but similar superpixels in the process of feature learning, 33 

which leads to speckle noise suppression and distinguishable features learned in latent space. The 34 

nodes are then identified as changed or unchanged classes via k-means clustering. Five real SAR 35 



datasets were used in comparative experiments. Up to 99.72% accuracy was achieved, which is 36 

superior to state-of-the-art methods that pay attention only to local information, thus, demonstrating 37 

the effectiveness and robustness of the proposed approach. 38 

Keywords: 39 

Synthetic aperture radar, Change detection, Difference image, Graph auto-encoder network, Deep 40 

learning. 41 

 42 

1. Introduction 43 

Change detection using bi-temporal remotely sensed imagery is a common goal in a wide range 44 

of applications including environmental protection, land-cover monitoring and forest resource 45 

management (Muster et al., 2015; Pantze et al., 2013; Zhang et al., 2016; Lu et al., 2011; Jia et al., 46 

2016). Synthetic aperture radar (SAR) images, compared with optical remote sensing images, have 47 

significant advantages including their relative insensitivity to atmospheric and sunlight conditions 48 

(Gong et al., 2017; Zhang et al., 2021; Li et al., 2019). However, they are usually contaminated by 49 

speckle noise, which brings interference and loss of signal to some extent. Furthermore, the changed 50 

area is commonly far smaller than the unchanged area in large scenes observed by SAR, presenting a 51 

significant imbalance and bringing great challenges for automatic change detection methods. 52 

From the perspective of the basic unit of classification, change detection methods can be divided 53 

into pixel-based and object-based methods (Zhuang et al., 2020; Hussain et al., 2013). Compared with 54 

pixel-based methods, object-based approaches exhibit higher accuracy and efficiency due to utilizing 55 

homogeneous pixel groups as the identification unit. Change detection methods can also be classified 56 

into supervised and unsupervised methods. Unsupervised methods have been studied extensively and 57 

attracted much attention, because ground reference data containing the pixel labels are commonly 58 

unavailable or insufficient. The main steps of unsupervised approaches usually include: 1) 59 

preprocessing (e.g., geometric registration, denoising); 2) generating a difference image (DI); 3) 60 

analyzing the DI and identifying changed or unchanged pixels. This article focuses on an 61 

unsupervised, object-based method. 62 

The step of generating the DI aims to provide valuable guidance for later procedures, in which 63 

subtraction and ratio operators are two classic methods for discriminating changed from unchanged 64 

pixels. The logarithmic ratio is popular for SAR images since it transforms multiplicative speckle into 65 

additive noise. Local spatial information can be exploited to suppress speckle noise (Zhang et al., 66 

2013). For example, the mean ratio and neighborhood-based ratio can increase the signal-to-noise 67 

ratio by averaging and, thus, enhance the discriminative ability between changed and unchanged 68 

classes (Gong et al., 2012). The spatial-temporal adaptive neighborhood-based ratio (Zhuang et al., 69 

2018) and adaptive generalized likelihood ratio test (Zhuang et al., 2020) were developed to select 70 

the optimal window size for generating the DI, to avoid image geometric degradation and texture loss 71 



caused by using neighborhood information from a fixed regular window. In (Zhang et al., 2021) and 72 

(Wang et al., 2020), irregular local homogeneous information was considered and used to increase 73 

texture and edge details. The high-quality DI provides more reliable guiding information for 74 

subsequent image interpretation and analysis. 75 

In the process of DI analysis and pixel classification, threshold-based and clustering-based 76 

methods are prevalent (Gong et al., 2014). The former is limited due to using only pixel intensity 77 

information (Bazi et al., 2005). Clustering-based methods, such as k-means and fuzzy c-means (FCM), 78 

have attracted much attention because they exploit more information in the DI (e.g., multi-79 

dimensional features). Research was undertaken to explore feature representations to improve 80 

clustering. Li et al. (2015) developed the Gabor wavelet representation to extract multi-dimensional 81 

information from the DI, which demonstrated outstanding noise robustness. Celik. (2009) applied 82 

principal component analysis (PCA) to extract key spatial features. Recently, deep learning-based 83 

techniques have received great attention and been applied widely in the field of remote sensing image 84 

processing. Deep learning algorithms can extract high-level semantic features automatically, and 85 

build more discriminative feature representations than hand-crafted features (Tajbakhsh et al., 2016; 86 

Wang et al., 2019; Cheng et al., 2018). A convolutional neural network (CNN) (Li et al., 2019) and a 87 

convolutional wavelet neural network (CWNN) (Gao et al., 2019) were introduced for local feature 88 

learning and change detection, achieving state-of-the art performance. Jaswanth et al. (2022) 89 

investigated the curvelet transform, which was used in the pre-classification of change detection, to 90 

assist a CNN in building more discriminative feature representations. Based on a neural network 91 

framework for change detection, Zhang et al. (2022) introduced a multi-objective sparse feature 92 

learning (MO-SFL) model where the sparsity of representation was adaptively learned, increasing the 93 

algorithm robustness to speckle noise. Dong et al. (2022) integrated a CNN with clustering to learn 94 

clustering-friendly feature representations, which showed advantages in preserving details of changed 95 

areas and suppressing speckle noise. Those studies indicate that deep learning models can transform 96 

visual features into a high-level semantic feature space and eliminate the deleterious effects of speckle 97 

noise effortlessly, effectively boosting SAR image change detection accuracy. 98 

Auto-encoder (AE) networks play an important role in unsupervised deep learning. A classic AE 99 

contains an encoder and a decoder to remove redundant information by minimizing reconstruction 100 

errors. AEs have been studied extensively and adopted for SAR image change detection due to their 101 

predominant denoising and feature learning abilities. Gong et al (Gong et al., 2017) reshaped the 102 

image patches as spatial feature vectors, and developed a sparse AE to learn the relationship among 103 

neighboring pixels to establish robust high-level representations. In (Lv et al., 2018), simple linear 104 

iterative clustering (SLIC) was used for superpixel object segmentation on a DI to obtain 105 

homogeneous local regions, and a stacked AE (SAE) was introduced for denoising and deep feature 106 

extraction. Liu et al incorporated the Fisher discriminant criterion into SAE to further strengthen the 107 

discriminative ability (Liu et al., 2019). However, using only the local pixels and their neighboring 108 



information is insufficient for feature representation. In addition, both image patches and superpixels 109 

are isolated during the learning process of the aforementioned AEs and their variants, which makes it 110 

hard to capture deep discriminative features in change detection, especially in the situation of severe 111 

imbalances between the changed and unchanged pixels. Inspired by the fact that human understanding 112 

is not only based on local observations, but also on nonlocal or long-range observations, we explore 113 

the possibility to establish relations among nonlocal samples to obtain more robust high-level feature 114 

representations. 115 

 Recently, the graph neural network (GNN) was introduced with the capability to learn nonlocal 116 

features by harnessing the graph structure of samples. Kipf et al. (2016) used a GNN as an encoder 117 

to develop a framework for unsupervised learning on graph-structured data, and applied it to several 118 

challenging tasks, such as link prediction (Cai et al., 2021; Grover et al., 2019) and node clustering 119 

(Yang et al., 2019; Salha et al., 2019; Wang et al., 2017). In this research, a novel unsupervised change 120 

detection method based on GNN was proposed for bi-temporal SAR images. It is inappropriate to 121 

apply the GNN directly to images, which are non-graph structured data. Therefore, we obtain 122 

superpixels from DIs as nodes which are the basic units of classification. Then, the similarity measure 123 

function is developed to evaluate the relationship among nodes (superpixels) to build a weighted 124 

undirected graph. Here, three different types of DI are used to build graphs to integrate fully the 125 

capability of these DIs. Then, a Variational Graph Auto-encoder (VGAE) is employed to learn 126 

nonlocal features, the learning process of which can be understood as the collaborative representation 127 

of homogeneous nodes on the entire DI. Because VGAE is suitable for solving unbalanced 128 

classification tasks with graph-structured data, we adopt VGAE to extract features and improve the 129 

representation and increase the discrimination ability of the acquired features. The contributions of 130 

this article are, thus: 131 

1) A novel unsupervised method based on VGAE was developed for small area change detection 132 

with bi-temporal SAR images, which can effectively suppress speckle noise and obtain 133 

powerful high-level representations in latent feature space. 134 

2) A novel similarity metric for nodes was proposed to build the graph, which integrates the 135 

similarity in the visual intensity space and the geospatial distance between the nodes. The 136 

obtained reliable graph supported VGAE to capture the core semantic features and remove 137 

redundant information in noisy environments. 138 

3) A three-channel fusion DI (TCFDI) was developed to provide a wealth of change information 139 

for nodes, conducive to learning more generalized features.    140 

The remainder of this article is organized as follows. Section II and Section III describe the 141 

existing relevant knowledge and the proposed methodology, respectively. Section IV provides the 142 

experimental results and the analysis. Finally, the conclusions are drawn in Section V. 143 

 144 



2. Existing relevant knowledge 145 

Recently, the success of deep learning, including through CNNs, has promoted research in the 146 

field of pattern recognition and computer vision. Image analysis tasks have been completely changed 147 

by various deep learning paradigms, such as object detection (Redmon et al., 2016; Ren et al., 2017), 148 

semantic segmentation (Han et al., 2021; Li et al., 2021), and image enhancement (Liu et al., 2021; 149 

Dai et al., 2021). In an image, pixels are attributed to a regular rigid grid in Euclidean space, while 150 

CNNs are able to exploit the shift-invariance and local connectivity of the image to extract meaningful 151 

local features for further analysis and recognition (Wu et al., 2021). Although CNNs can effectively 152 

capture the hidden characteristics of the image local space most tasks, in reality, exhibit a unique, 153 

non-Euclidean data structure. Hence, the much-anticipated GNN was created aiming to be the 154 

analysis method of the deep learning model in the graph domain. 155 

Examining CNNs and graphs, it can be found that the keys to the convolutional layers in the 156 

CNN can be summarized as local connection and shared weights, which can be generalized to the 157 

graph domain and developed into graph convolution. Thus, graph convolutional networks (GCN) 158 

emerged, exploiting the connectivity and dependencies between nodes to construct an associated 159 

graph structure. GCN can learn the global information of an image and allow information to flow 160 

over the entire association graph to learn discriminative global feature representations. A graph 161 

( , )G V E  can be defined by the relationship between nodes, where V represents the node set and E is 162 

the edge set. ( , )G V E  can be specifically represented by a weighted adjacency matrix N N×∈A R . 163 

The degree matrix N N×∈D R  can be obtained by the adjacency matrix A , whose element iid  can 164 

be calculated by Eq.1: 165 

1
,  j N

ii ij ijj
d a a=

=
= ∈∑ A   (1) 

The symmetrically normalized Laplacian matrix is: 166 

1 1
2 2− −−symL = I D AD   (2) 

where N N×∈I R   is the identity matrix. Given the graph data N∈s R  , which denotes the feature 167 

vector of all nodes of a graph where is  is the value of the thi   node (Wu et al., 2021). A filter 168 

( )diag=θg θ  parameterized by θ , the graph convolution is defined as:  169 

∗ = T
θ θg s Ug U s   (3) 

where U  is the matrix of eigenvectors of symL .  170 

The eigendecomposition of the Laplacian matrix imposes an extremely high computational cost, 171 

and any perturbation to the graph results in a change of eigenbasis (Wu et al., 2021). ChebNet 172 

(Defferrard et al., 2016) utilizes the Chebyshev polynomial of the Eigenvalue diagonal matrix to 173 

approximate the filter operator θg  to achieve K-order local convolution on the graph: 174 

'
0 k

k K
kkθ θ=

=
∗ ≈∑g s T Ls   (4) 



where (2 / )maxυ= −L L I%   and the maxυ   denotes the largest eigenvalue of L  . '
kθ  denotes the 175 

learnable parameters of K-local convolution. The Chebyshev polynomial is defined recursively by 176 

1 2( ) 2 ( ) ( )k k ks s s s− −= −T T T , which is the weight parameter matrix of K-local convolution. 177 

The K-order Chebyshev polynomial is restricted to 1K =  to alleviate the over-fitting problem 178 

of the graph with a wide distribution of node degrees on the local neighborhood structure. So the 179 

GCN (Kipf et al., 2016) is further defined as: 180 

0 1( )Nθ ≈ + −g *s θ s θ L I s   (5) 

Thus, Eq. 5 can be rewritten as: 181 
1 1
2 2( )θ

− −≈ +g *s θ I D AD s   (6) 

Then, the single-layer GCN can be formulated as: 182 

1 1
2 2

( 1) ( )

( ) ( )

( , )

        ( )

l l

l l

GCN+

− −

=

=

X X A

D AD X W 
  (7) 

where ( 1)l+X  and ( )lX   are the output and input, respectively, and ( )lW  represents the network 183 

parameters. The N= +A A I  denote the adjacency matrix, which is self-connected, and D  is the 184 

degree matrix of A . 185 

The Graph Auto-Encoder (GAE) is proposed to map nodes to embedding space to establish a 186 

low-dimensional representation through unsupervised training. It employs a multi-layer GCN to 187 

encode the nodes into embedded representations, uses a dot product decoder to reconstruct the 188 

adjacency matrix, and finally minimizes the reconstruction error between the original adjacency 189 

matrix A  and the reconstructed adjacency matrix B . The encoder and decoder can be denoted as 190 

Eq. 8 and Eq. 9: 191 

( , )GCN=Z X A   (8) 

  Dot( )= TB ZZ   (9) 

where Z  is the learned embedding low-dimensional vector, and Dot( )⋅ is the inner product function. 192 

 193 

3. Methodology 194 

The methodology of the proposed approach is exhibited in Fig. 1, which includes four parts: 1) 195 

Three kinds of DI are generated to form a TCFDI, and TCFDI is implemented with superpixel 196 

segmentation. 2) The superpixels are treated as nodes, and a graph structure is built. It should be noted 197 

that the three established graphs maintain a unified structure, but the node features in the three graphs 198 

are different. 3) A nonlocal feature representation is learned using VGAE. 4) k-means clustering is 199 

employed for node classification. 200 

 201 



 202 

Fig. 1. Methodology of the proposed change detection approach. 203 
 204 

3.1 Difference image generation 205 

A TCFDI is developed to discover more abundant guidance information for subsequent analysis. 
206 

Three types of DI, specifically the log-ratio DI (LRDI) (Li et al., 2019), the Combined DI (CDI) 
207 

(Zheng et al., 2014) and the DI based on multi-scale superpixel reconstruction (MSRDI) (Zhang et 
208 

al., 2021), are produced as the ingredients of subsequent analysis. Among them, LRDI provides strong 
209 

robustness to the multiplicative speckle noise inherent in SAR images. Compared to the original 
210 

version, we replaced the log-ratio operator of the CDI with the ratio operator, preventing the inhibition 
211 

of weakly changed pixels. MSRDI suppresses speckle noise by exploiting homogeneous information 
212 

in the local neighborhood, while retaining rich detailed edges. The TCFDI can be expressed as: 
213 

1 1 2MSRDI( , )=FDI SAR SARI I I   (10) 

2 1 2log( / )=FDI SAR SARI I I   (11) 

3 1 2 1 2 2 1( ) (max( / , / ))mean median= − +FDI SAR SAR SAR SAR SAR SARI I I I I I I   (12) 

where 1
SARI   and 2

SARI   are bi-temporal SAR images, c
FDII   is the c-th channel of the TCFDI and 214 

1,2,3c =   denotes the channel index. ( )mean ⋅   and ( )median ⋅   are the mean and median filter 215 

operators, respectively. 216 

The main motivations for developing the TCFDI are as follows: (1) the rich fused information 217 

in the TCFDI can ensure that the subsequent superpixel segmentation has better edge adhesion; (2) 218 

the three DIs focus on different types of information: MSRDI has good edge discriminating ability, 219 

CDI can capture weak intensity changes, and LRDI combined with filter operators can effectively 220 

suppress speckle noise. Information in the TCFDI gathered from the three DIs facilitates VGAEN to 221 

learn the most salient, generalized knowledge relating to the changed and unchanged classes. (3) the 222 

pixel features of the three DIs are combined to provide more valuable guidance for establishing 223 

reliable graph structures in the follow-up system. 224 



3.2 Building the graph structure 225 

Simple Linear Iterative Clustering (SLIC) is used to segment the TCFDI c
FDII   to obtain 226 

superpixels. The set of N superpixels is expressed as 1 2 3
1{ , , }n N

n n n n
=
=O O O  , where 1, 2, 3 refer to the 227 

channel index. Then, each superpixel in 1 2 3
1{ , , }n N

n n n n
=
=O O O  is reshaped into a M-dimensional feature 228 

vector, where M is the maximum number of pixels in all superpixels. When the number of pixels 229 

inside a superpixel is smaller than M, the median value of the current superpixel is used to fill the 230 

corresponding vector. All reshaped superpixel vectors are represented as 1 2 3{ , , }X X X  , where 231 
×

1 2=[ , , ... , , ... , ]c c c c c N M
n N ∈X X X X X R . That is, the task of classifying each pixel is transformed into 232 

that of identifying the reshaped superpixel vectors. For the purpose of establishing connections 233 

between analogous samples during training, two methods were developed to build the graph structure, 234 

respectively. 235 

Gaussian Radial Basis Function: 236 

The first method is that the graph is constructed by measuring similarities between vertices in 237 

intensity feature space. Here, the Gaussian radial basis function (GRBF) was introduced to calculate 238 

the similarity between nodes, as in Eq. 13: 239 
3 2
1

exp( ( ) )c c c
ij c i jc F

S λ α=

=
= − −∑ X X   (13) 

where λ   is the control parameter in intensity feature space, cα   are the weight parameters 240 

controlling the contribution of the three types of DI to the composition, and   
F

⋅ is the Frobenius 241 

norm.  242 

GRBF Constrained by Geospatial Distance: 243 

Furthermore, the spatial position information of the superpixels (nodes) in the visual space can 244 

enhance the descriptiveness of the graph for representing global knowledge. Thus, a novel similarity 245 

metric function that combines geospatial position information and intensity features is proposed to 246 

construct a more reliable graph structure, as in Eq. 14: 247 
3 2 2
1

exp( ( ) ( ) )c c c c c
ij c i j i jc F F

S λ α η=

=
= − − − −∑ X X P P   (14) 

where η  is control parameter in visual space, and c
iP  is a vector that records the centroid position 248 

of the superpixel on the TCFDI. The adjacency matrix can be built as: 249 

11 12 1

21 22 2

1 2

...

...
=

...

...

N

N

N N NN

S S S
S S S

S S S

 
 
 
 
 
 

A
  

  (15) 

 250 



 251 

Fig. 2 Principle of graph convolution based on similarity graph structure. 252 

 253 

Fig. 2 demonstrates the graph convolution to explain deeply the motivation and purpose of the 254 

proposed method. The graph convolution process is regarded as the fusion of local spatial information 255 

of nodes on the graph structure. The above methods are designed to establish the edges between nodes, 256 

which can convert the arrangement of superpixels from the DI in the visual space into the similarity 257 

space. Therefore, it can be regarded as the gradual creation of a joint representation of the interested 258 

node and its similar nodes in the learning process of GAE. The information flows on the graph 259 

structure of the similarity space, so as to traverse the DI for a long distance and realize non-local 260 

learning. The important point is that the proposed method based on the graph structure effectively 261 

describes and models the imbalanced phenomenon that the changed nodes (superpixels) are far less 262 

than the unchanged nodes. Such a graph will always maintain the constraint of imbalance in the 263 

subsequent feature learning process, so that the nodes belonging to the minority class will not be 264 

regarded as noise and removed. 265 

3.3 Variational graph autoencoder 266 

VGAE is a probabilistic model, which takes the adjacency matrix N N×∈A R  and feature matrix 267 

  1, 2,3c N M c×∈ =X R  as inputs, and aims at embedding the cX   into the latent subspace as the 268 

stochastic latent variables 1 2[ , ,..., ] N F
N

×= ∈Z z z z R , where M F> . The model (encoder) is defined 269 

as: 270 

1
2

 ( | , ) ( | , )

( | , ) ( | , ( ))

Nc c
ii

c
i i i i

q q

q N diag
=

=

=

∏Z X A z X A

z X A z μ σ
  (16) 

where ( )N ⋅  is the Gaussian Normal distribution, and the matrix μ  of means iμ  and the matrix 271 

σ  of variances iσ  are parameterized by GCN. That is, GCN learns the mean μ  and variance σ  272 

of low-dimensional vector representations of nodes. The final output of the encoder is Z , and the 273 

latent vectors iz  are realizations drawn from μ  and σ  distributions. The encoder is designed as a 274 

two-layer GCN:  275 

( ( , ) & ( , ))c cGCN GCN= Γ μ σZ X A X A   (17) 



Where ( )Γ    is sampling function. According to the encoder designed above, the distributional 276 

inference model can be parameterized as ( , )cGCN= μμ X A   and log ( , )cGCN= σσ X A  , the two 277 

GCN models shared parameters in the first layer, and which are defined as: 278 
(0) (1)

(0) (1)

( , ) ReLU( )

( , ) ReLU( )

c c

c c

GCN

GCN

=

=
μ μ

σ σ

X A H HX W W

X A H HX W W
 (18) 

where
1 1
2 2− −=H D AD   is the symmetrically normalized adjacency matrix and ReLU( ) max(0,   )⋅ = ⋅ .279 

(0)W  and (1) (1) (1){ , }= μ σW W W  are the weight matrices of the first and second layers of the GCN, 280 

respectively. The decoder adopts an inner product between the latent variables: 281 

1 1

T

( | ) ( | , )

       ( | , ) ( )

N N
ij i ji j

ij i j i j

p p a

p a sig
= =

=

=

∏ ∏A Z z z

z z z z
  (19) 

where , 1, 2,3...,i j N=  and the ( )sig ⋅  is the logistic sigmoid function. 282 

The loss function is designed to optimize the model parameters ( )lW , and is defined as: 283 

( | , )
L [log ( | )] KL[ ( | , ) || ( )]c

c
q

p q p= −
Z X A

A Z Z X A ZE   (20) 

The loss function consists of two parts. The first part is 
( | , )

[log ( | )]cq
p

Z X A
A ZE , which is used to 284 

measure the reconstruction error aiming to maintain the global relationships and dependencies 285 

between nodes. The second part KL[ ( | , ) || ( )]cq pZ X A Z   calculates the Kullback-Leibler 286 

divergence of ( | , )cq Z X A   and ( )p Z  , where ( ) ( | 0,  )ii
p N=∏Z z I   is the Gaussian prior. 287 

KL[ ( | , ) || ( )]cq pZ X A Z  enforces the distribution of the samples learned by the encoder being an 288 

approximation to the standard normal distribution, by measuring how well ( | , )cq Z X A  matches 289 

( )p Z . Full-batch gradient descent is used for training. 290 

 The adjacency matrix A  and the three channel vectors 1 2 3{ , , }X X X  obtained in the previous 291 

steps are used to train VGAE. The fused embedded representation is denoted as 1 2 3( + + ) / 3=X X X X . 292 

Finally, the k-means algorithm is employed to classify the nodes into the changed or unchanged 293 

classes. 294 

 295 

4. Experimental study 296 

4.1 Introduction to datasets 297 

Five sets of real bi-temporal SAR images were used in the experiments, namely, three extremely 298 

imbalanced datasets and two available benchmark datasets. The three extremely imbalanced datasets 299 

were collected by the COSMO-SkyMed SAR sensor at Guizhou Province, China in June 2016 and 300 

April 2017. The first of these three datasets, called dataset GZ-A, presents mainly some mountains 301 

and a river, as shown in Fig. 3. The second, called dataset GZ-B, is composed mainly of hills, plains 302 

and some buildings, as shown in Fig. 4. The third, called dataset GZ-C, exhibits mainly plains and 303 

hills, as shown in Fig. 5. The fourth dataset, San Francisco, records mainly the urban land coverage 304 



of San Francisco, the United States. The SAR images were captured by the ERS-2 SAR sensor 305 

satellite in August 2003 and May 2004, as shown in Fig. 6. The fifth dataset, Inland, is a scene of the 306 

Yellow River exhibiting a S-shaped bend, captured by the Radarsat-2 satellite in June 2008 and June 307 

2009, as shown in Fig. 7. The corresponding ground reference map (GRM) was obtained by manual 308 

marking, where white represents the changed area and black represents the unchanged area. The pixel-309 

level detailed information of all GRMs is listed in Table 1. 310 

 311 

 312 

Fig. 3 GZ-A. (a) Acquired in April 2016, (b) Acquired in April 2017, (c) GRM. 313 

 314 

 315 

Fig. 4 GZ-B. (a) Acquired in April 2016, (b) Acquired in April 2017, (c) GRM. 316 
 317 

 318 

Fig. 5 GZ-C. (a) Acquired in April 2016, (b) Acquired in April 2017, (c) GRM. 319 



 320 

Fig. 6 San Francisco, (a) Acquired in August 2003, (b) Acquired in May 2004, (c) GRM. 321 

 322 

 323 

Fig. 7 Inland, (a) Acquired in June 2008, (b) Acquired in June 2009, (c) GRM. 324 

 325 

Table 1. The details of experimental datasets. cN  and ucN  refer to the number of changed and unchanged 326 

pixels, respectively. 327 

Datasets size cN  ucN  :c ucN N  

GZ-A 400×400 1066 158934 1:149 

GZ-B 400×400 1492 158508 1:106 

GZ-C 400×400 3467 156533 1:45 

Inland 443×291 4255 124658 1:30 

San 256×256 4685 60851 1:13 

 328 

It can be noted from Table 1 that the three image pairs of datasets GZ exhibit significant 329 

imbalances, that is, the number of changed pixels is much smaller than that of unchanged pixels. 330 

From Figs. 3 to 5 it can be seen that these three datasets suffer from strong speckle noise, making 331 

change detection very challenging. The other two datasets have a relatively balanced sample 332 

distribution and suffer from speckle noise pollution to a low degree. Therefore, these datasets were 333 

used for benchmark testing to test the generalization ability of the proposed method. 334 

 335 



4.2 Evaluation criteria and experimental setting 336 

The following indicators were adopted to evaluate the change detection methods: false alarm 337 

(FA) rate, missed detection (MD) rate, percentage correct classification (PCC), Kappa coefficient 338 

(KC), and F1 score. True negative (TN) and true positive (TP), respectively, refer to the number of 339 

unchanged pixels and changed pixels classified correctly. False negative (FN) and false positive (FP), 340 

respectively, indicate the number of changed pixels and unchanged pixels that are misclassified.  341 

(1) FA: The false alarm rate is given by: 342 

FA
FPP = 100%

FP+ TP
×   (21) 

(2) MD: The missed detection rate is calculated as: 343 

MD
FNP 100%

FN+ TP
= ×   (22) 

(3) PCC: Accuracy of pixel-based classification can be expressed as: 344 
TP+ TNPCC

TP+ FP+ TN+ FN
=   (23) 

(4) KC: Kappa coefficient is used for consistency checks, defined as: 345 
PCC PREKC =  

1 PRE
−

−
  (24) 

2

(TP+ FN) (TP+ FP) + (TN+ FP) (TN+ FN)PRE
(TP+ FN+ TN+ FP)

× ×
=   (25) 

(5) F1: F1 score is an essential indicator of classification performance, which is defined as: 346 

1
2 precision recall TP TP F precision =  ,  recall =

precision+ recall TP+ FP TP+ FN
= × × ，   (26) 

In the experiments, the hyperparameters were set as: the number of superpixels divided by SLIC 347 

5000N =  , and the control parameter : 0.1λ =  , 0.01η =  , 1 0.5α =  , 2 0.25α =  , 3 0.25α =  . In the 348 

process of training VGAE, Adam was used for 200 iterations with a learning rate of 0.01. In addition, 349 

three training sets in 1 2 3{ , , }X X X  were fed sequentially to VGAE, and 18-dim hidden layer and 6-350 

dim latent variables were used respectively. All experiments were implemented on a PC with a 3.3-351 

GHz four-core CPU and 24-GB memory. The VGAE training were implemented with NVIDIA 352 

GeForce RTX 2080s GPU with 8-GB memory and PyTorch1.7.0. 353 

4.3 Comparative experiments 354 

Five pixel-based change detection methods were used in the comparative experiments, including: 355 

PCAKM (Celik., 2009), SLRDI+Gabor+FCM, NRELM (Gao et al., 2016), GFPCANet (Gao et al., 356 

2016) and GFCWNN (Gao et al., 2019). Among them, SLRDI represents the filtered log ratio DI. 357 

Five object-based methods were developed for comparison. SLIC was used to perform superpixel 358 

segmentation on TCFDI, and the change detection task was transformed into the classification of the 359 



objects (superpixels). K-means clustering (KM) was used to classify directly the superpixels, that is, 360 

SLIC+KM. PCA, AE and SAE were used to perform feature learning on the superpixels to build low-361 

dimensional embedding representations. We also evaluated the stacked contractive autoencoder 362 

(SCAE), a relatively new object-based change detection approach that uses SLIC to perform 363 

superpixel segmentation (Lv et al., 2018). Thus, there were four methods for superpixel classification 364 

using the KM algorithm: SLIC+PCA+KM, SLIC+AE+KM, SLIC+SAE+KM and SCAE. Three state-365 

of-the-art evaluation methods, applied to the benchmark datasets, were utilized to improve the 366 

comparison of the four methods, including two pixel-based approaches: nonlocal low-rank PCA and 367 

two-level clustering (NLR-PCATLC) (Sun et al., 2020), fuzzy local information c-means based on 368 

multiple features (MFFLICM) (Meng et al., 2020), and one object-based method, heterogeneous 369 

graph (HG) (Wang et al., 2022). The proposed Nonlocal Learning-Based Small Area Change 370 

Detection (NLBSACD) framework adopted the forementioned two methods (Eq. 13 and 14) to build 371 

two graphs; the developed versions are NLBSACD1 and NLBSACD2. The experimental results on 372 

the five real SAR datasets are recorded in Tables 2 - 6, and the change detection maps are listed in 373 

Figs. 8 - 12. 374 

 375 

Table 2. Comparative experimental results based on the GZ-A dataset. Best results are shown in bold. 376 

 Methods PFA (%) PMD (%) PCC (%) KC (%) F1 (%) 

 

 

Pixel-based 

 

 

PCAK 96.45 0.1 82.61 5.69 6.86 

SLRDI+Gabor+KM 92.93 0.39 91.61 12.16 13.31 

NRELM 92.00 4.10 92.90 13.74 14.76 

GFPCANet 95.37 0.88 86.91 7.71 8.84 

GFCWNN 96.58 37.37 88.44 5.34 6.49 

 

 

Object-based 

 

 

SLIC+KM 96.79 1.56 80.97 5.04 6.22 

SLIC+PCA+KM 96.73 1.56 81.29 5.14 6.32 

SLIC+AE+KM 96.74 2.73 81.52 5.14 6.32 

SLIC+SAE+KM 97.15 2.93 78.82 4.35 5.54 

SCAE 96.19 2.72 75.90 4.07 5.26 

NLBSACD1 23.05 32.58 99.66 71.69 71.86 

NLBSACD 2 23.51 28.58 99.68 73.71 73.86 

 377 

Table 3. Comparative experimental results based on the GZ-B dataset. Best results are shown in bold. 378 

 Methods PFA (%) PMD (%) PCC (%) KC (%) F1 (%) 

 

 

Pixel-based 

PCAK 96.76 3.15 73.04 4.56 6.28 

SLRDI+Gabor+KM 63.91 12.47 98.44 50.45 51.11 

NRELM 86.27 13.94 94.83 22.44 23.69 



 

 

GFPCANet 91.28 6.84 90.84 14.49 15.94 

GFCWNN 73.19 17.36 94.74 38.47 40.48 

 

 

Object-based 

 

 

SLIC+KM 95.29 7.04 82.38 7.32 8.96 

SLIC+PCA+KM 95.32 7.04 82.29 7.27 8.92 

SLIC+AE+KM 95.59 9.99 81.72 9.75 8.41 

SLIC+SAE+KM 95.56 95.84 81.78 6.81 8.47 

SCAE 96.26 6.29 77.41 5.49 7.19 

NLBSACD 1 26.18 42.56 99.41 64.31 64.61 

NLBSACD 2 24.67 42.09 99.44 65.21 65.49 

 379 

Table 4. Comparative experimental results based on the GZ-C dataset. Best results are shown in bold. 380 

 Methods PFA (%) PMD (%) PCC (%) KC (%) F1 (%) 

 

 

Pixel-based 

 

 

PCAK 90.59 6.95 80.44 13.70 17.10 

SLRDI+Gabor+KM 63.17 11.83 96.47 50.44 51.95 

NRELM 70.45 21.03 95.47 41.15 43.01 

GFPCANet 78.69 9.55 92.55 32.11 34.49 

GFCWNN 87.00 27.95 95.24 20.77 22.03 

 

 

Object-based 

 

 

SLIC+KM 85.41 7.67 88.11 22.28 25.19 

SLIC+PCA+KM 85.42 7.67 88.11 22.28 25.19 

SLIC+AE+KM 87.98 6.86 85.08 18.15 21.29 

SLIC+SAE+KM 89.89 6.14 81.76 14.92 18.24 

SCAE 90.72 8.65 80.44 13.43 16.85 

NLBSACD 1 14.94 47.79 98.76 64.10 64.70 

NLBSACD 2 23.73 40.21 98.73 66.39 67.03 

 381 

(b)(a) (c) (d) (e) (f) (g)

(h) (i) (m)(k) (l)(j)  382 

Fig. 8. Change detection maps of GZ-A dataset. (a) PCAK; (b) GFCM; (c) NRELM; (d) GFPCANet; (e) GFCWNN; 383 

(f) SLIC+KM; (g) SLIC+PCA+KM; (h) SLIC+AE+KM; (i) SLIC+SAE+KM; (j) SCAE; (k) NLBSACD1; (l) 384 

NLBSACD2; (m) GRM. 385 



 386 

(b)(a) (c) (d) (e) (f) (g)

(h) (i) (m)(k) (l)(j)  387 

Fig. 9. Change detection maps of GZ-B dataset. (a) PCAK; (b) GFCM; (c) NRELM; (d) GFPCANet; (e) GFCWNN; 388 

(f) SLIC+KM; (g) SLIC+PCA+KM; (h) SLIC+AE+KM; (i) SLIC+SAE+KM; (j) SCAE; (k) NLBSACD1; (l) 389 

NLBSACD2; (m) GRM. 390 

(b)(a) (c) (d) (e)

(m)

(f) (g)

(h) (i) (k) (l)(j)  391 

Fig. 10. Change detection maps of GZ-C dataset. (a) PCAK; (b) GFCM; (c) NRELM; (d) GFPCANet; (e) GFCWNN; 392 

(f) SLIC+KM; (g) SLIC+PCA+KM; (h) SLIC+AE+KM; (i) SLIC+SAE+KM; (j) SCAE; (k) NLBSACD1; (l) 393 

NLBSACD2; (m) GRM. 394 

As can be seen from Tables 2, 3 and 4, the change detection map for datasets GZ-A, GZ-B, and 395 

GZ-C using NLBSACD are significantly more accurate than those produced by other methods, with 396 

the lowest FA (23.51%, 24.67% and 23.73%). It is worth noting that the results of those pixel-based 397 

methods are limited for the three GZ datasets, in which more than 60%, or even 90% of the detected 398 

changes are false alarms. This is due mainly to the following two reasons: 1) pixel-based methods are 399 

sensitive to speckle noise, and local patch-based methods have limited ability to suppress speckle 400 

noise. Both methods are prone to produce numerous false alarms when faced with strong speckle 401 

noise. 2) there exist significant imbalances in the GZ datasets, which bring great challenges to 402 

learning based on pixel-based and local patch-based methods.  403 

Similarly, the object-based methods that do not consider nonlocal information, such as 404 

SLIC+AE+KM, SLIC+SAE+KM, and SCAE also produce low accuracy. The objective functions of 405 

PCA, AE, SAE and SCAE optimization are global in the process of learning and feature extraction, 406 



so it is hard for these methods to pay attention to the minority (changed) class features due to the 407 

significant imbalance. In this case, the key features belonging to the changed class will be regarded 408 

as redundant noise and discarded, which makes the learned latent representations no longer 409 

discriminative and leads to numerous false alarms. 410 

The proposed NLBSACD approach, compared with other methods, can accurately learn key 411 

features, and the detection accuracy on the GZ datasets reached 99.68%, 99.44% and 98.76%. The 412 

experimental results show that NLBSACD has excellent noise robustness, which is mainly attributed 413 

to the connection between nonlocal superpixels during the feature learning process. It ensures that 414 

the key information of the changed samples is captured and removes speckle noise. In addition, 415 

VGAE establishes collaborative representation between homogeneous samples in the latent 416 

embedding space, which further enhances the discrimination between changed and unchanged 417 

samples. The numerical experiments on imbalanced datasets illustrates the effectiveness of 418 

NLBSACD for small area change detection.  419 

 420 

Table 5. Comparative experimental results based on the San Francisco dataset. Best results are shown in bold. 421 

 Methods PFA (%) PMD (%) PCC (%) KC (%) F1 (%) 

 

 

Pixel-based 

 

 

PCAK 75.38 3.88 78.69 31.40 39.20 

SLRDI+Gabor+KM 14.70 4.23 98.52 89.44 90.24 

NRELM 49.08 1.09 93.11 63.81 67.23 

GFPCANet 7.18 7.77 98.93 91.95 92.43 

GFCWNN 10.73 3.20 98.94 92.06 92.54 

 NLR-PCATLC 8.06 8.00 98.85 91.35 91.94 

 

 

Object-based 

 

 

SLIC+KM 19.34 1.60 98.20 87.60 88.65 

SLIC+PCA+KM 19.34 1.60 98.20 87.68 88.65 

SLIC+AE+KM 25.97 2.59 97.37 82.72 84.13 

SLIC+SAE+KM 33.14 0.92 96.43 77.96 79.84 

SCAE 65.73 5.08 86.61 43.13 50.35 

HG 11.56 4.93 98.84 91.57 91.63 

NLBSACD 1 5.58 10.50 98.87 91.29 91.89 

NLBSACD 2 4.04 10.78 98.96 91.94 92.67 

 422 

Table 6. Comparative experimental results based on the Inland dataset. Best results are shown in bold. 423 

 Methods PFA (%) PMD (%) PCC (%) KC (%) F1 (%) 

 

 

Pixel-based 

PCAK 86.20 6.04 80.43 19.43 24.07 

SLRDI+Gabor+KM 19.54 25.88 98.51 76.12 76.58 

NRELM 19.67 28.77 98.47 74.73 75.51 



 

 

GFPCANet 18.96 27.78 98.21 75.62 76.38 

GFCWNN 29.62 13.68 98.35 76.69 77.54 

MFFLICM 31.53 13.27 98.47 73.24 76.46 

 

 

Object-based 

 

 

SLIC+KM 42.11 16.48 97.45 67.10 68.39 

SLIC+PCA+KM 40.29 17.13 97.58 68.19 69.41 

SLIC+AE+KM 42.71 13.81 97.42 67.53 68.81 

SLIC+SAE+KM 47.86 12.76 96.93 63.76 65.26 

SCAE 85.73 6.08 81.61 20.74 25.26 

NLBSACD 1 19.47 30.60 98.44 73.75 74.55 

NLBSACD 2 19.41 30.59 98.45 73.94 75.01 
 424 

Benchmark tests were implemented on the datasets San Francisco and Inland, aiming to validate the 425 

performance of the proposed approach in general scenarios. It was found that the F1 scores of 426 

NLBSACD on the two datasets reached 0.927 and 0.75, respectively. NLBSACD is competitive to 427 

the state-of-the-art pixel-based methods, and achieves a slightly higher detection accuracy than state-428 

of-the-art object-based methods on the San Francisco dataset. The detection result of NLBSACD on 429 

the Inland dataset is slightly less accurate than that of GFCWNN, which is mainly because the 430 

superpixels produced by SLIC segmentation inevitably contain some heterogeneous pixels. The fine-431 

grained basic unit used for the object-based methods is coarser compared with the pixel-based 432 

methods, leading to some misclassification. However, NLBSACD, as an object-based method, has 433 

more advantages in terms of efficiency for fine-resolution SAR images. The computational time of 434 

NLBSACD on the San Francisco dataset is 49.17s. In comparison, the time costs of GFCWNN and 435 

GFPCANet are 1023.42s and 831.68s. It is obvious that the proposed method is more efficient than 436 

pixel-based deep learning methods. 437 
 438 

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (m)(k) (l)(j)  439 

Fig. 11. Change detection maps of San Francisco dataset. (a) PCAK; (b) GFCM; (c) NRELM; (d) GFPCANet; (e) 440 

GFCWNN; (f) SLIC+KM; (g) SLIC+PCA+KM; (h) SLIC+AE+KM; (i) SLIC+SAE+KM; (j) SCAE; (k) 441 

NLBSACD1; (l) NLBSACD2; (m) GRM. 442 



 443 

(a) (b) (c) (e)(d)

(m)

(f) (g)

(h) (i) (k) (l)(j)  444 

Fig. 12. Change detection maps of Inland dataset. (a) PCAK; (b) GFCM; (c) NRELM; (d) GFPCANet; (e) 445 

GFCWNN; (f) SLIC+KM; (g) SLIC+PCA+KM; (h) SLIC+AE+KM; (i) SLIC+SAE+KM; (j) SCAE; (k) 446 

NLBSACD1; (l) NLBSACD2; (m) GRM. 447 

4.4 Ablation experiments 448 

In the ablation experiments, CDI, LRDI and MSRDI were implemented in NLBSACD, rather 449 

than TCFDI. The F1 score was used as the evaluation criteria, and the experimental results are 450 

exhibited in Fig. 13. NLBSACD using TCFDI achieved the highest score on the five datasets. The 451 

advantages of TCFDI lie mainly in the following three points: 1) Using TCFDI has better edge 452 

adhesion when performing superpixel segmentation, which is conducive to obtaining more 453 

homogeneous superpixels. 2) TCFDI is beneficial to establish a more accurate and reliable graph 454 

structure by fusing CDI, LRDI and MSRDI. 3) In the learning process of VGAE, TCFDI provides 455 

richer characteristic information, depending on the reliable graph structure to capture the key 456 

discriminative knowledge between the changed and unchanged classes. The experimental results 457 

demonstrate the effectiveness of TCFDI and its importance in NLBSACD. 458 

 459 



 460 

Fig. 13. Results of ablation experiments based on four kinds of Dis. 461 

 462 

4.5 Analysis of parameters 463 

The key parameters in NLBSACD are α , λ  and η . As shown in Fig. 13, among MSRDI, CDI 464 

and LRDI, the former produced the greatest accuracy, so the contributing parameters were simply set 465 

as follows: 1 0.5α = , 2 0.25α = , 3 0.25α = . 466 

 467 

 468 
Fig. 14 Relationship between parameter λ, η and change detection accuracy. 469 

 470 

In this section, a set of different values were used to construct the graph structure by GRBF for 471 

analyzing the parameter λ  in depth. The relationship between the detection result and the parameter 472 

λ  is shown in Fig. 14(a). It can be noticed that the control parameter λ  has little effect on the 473 

Inland and San Francisco datasets, and the highest accuracy is achieved when [0.1,0.5]λ∈ . The 474 



highest accuracy is achieved when 0.1λ =  for dataset GZ-B. The experimental results show that the 475 

selection of 0.1 can build a reliable graph structure accurately, and can better describe the relationship 476 

between the superpixels of the DIs. 477 

The developed similarity metric function in Eq. 14 was used to construct the graph to analyze the 478 

influence of the parameter η on the detection accuracy. As can be seen from Fig. 14, high F1 scores 479 

are obtained for three datasets when [0.005,0.1]η∈ . Moreover, a rapid fall occurs when the value 480 

of the parameter η is greater than 0.25. The reason is that the similarity structure of the node will be 481 

destroyed when the similarity measurement focuses too much on geospatial position. Consequently, 482 

an unreliable graph structure is produced, which makes it difficult for VGAE to learn discriminative 483 

features of the changed and unchanged classes. Hence, the detection accuracy is naturally decreased. 484 

 485 

5. Discussion 486 

In this article, we developed a NLBSACD framework, and tested empirically in different datasets 487 

of SAR imagery with outstanding accuracy. The method itself is novel in several ways and we identify 488 

the following points to discuss further. 489 

The proposed NLBSACD is an object-based approach, demonstrating strong robustness for 490 

discrete speckle noise. The GNN in NLBSACD, compared with early Hopfield Neural Network 491 

(HNN) (Tatem et al., 2001) and state-of-the-art CNN applied at per pixel level, is suitable to capture 492 

and identify irregular changes at an object level. Besides, NLBSACD increases the computational 493 

efficiency significantly. The basic unit in NLBSACD is at superpixel level, which reduces the number 494 

of recognition units than pixel-based approaches. For example, the 5K units of NLBSACD were 495 

classified, rather than the 160K units of pixels-based methods for the same SAR imagery. Meanwhile, 496 

we also notice some misclassification since within-object is not entirely homogeneous. Shrinking the 497 

size of superpixel (increasing the number of objects N) could increase the within-object homogeneity. 498 

Outside this paper, we found the F1 score rose significantly as N increased when 3500N < . And, 499 

reached 0.91 and gradually tended to increase slightly when N increasing from 3500 to 5000 on the 500 

San Francisco datasets, with similar phenomenon occurring on the Inland dataset. However, 501 

increasing N resulted in huge computational cost of building graph and VGAE training. Indeed, the 502 

value of N can be adjusted based on practical application requirements and the computational power 503 

etc. 504 

The reliability and accuracy of the graph structure is shown by comparing the two versions of 505 

NLBSACD. The proposed GRBF constrained by geospatial distance, compared with standard GRBF, 506 

established a more generalized connection between objects by combining feature information and 507 

geospatial correlation. These analyses further motivates the consideration of optimizing the graph 508 

structure, which can be explored from the following two aspects. On one hand, the relationships 509 

between nodes can be modeled mathematically using prior knowledge and spatial characteristics. On 510 



the other hand, supervised or semi-supervised strategy can be introduced to automatically update the 511 

graph structure to establish more reliable and accurate relationships amongst different nodes. 512 

Although the median value filling strategy may introduce a small amount of noise, it hardly affects 513 

the accuracy of change detection. It was found in the experiments that the elements of the feature 514 

vector are highly homogeneous in intensity and the discrepancy between feature vector length is small, 515 

benefitting from SLIC superpixel segmentation. Thus, the amount of noise introduced is small. 516 

Further, the constructed embedded feature representation, randomly sampled from the learned 517 

distribution, has strong noise robustness and stability. Therefore, the introduction of a small amount 518 

of noise will not degrade the discrimination of the constructed embedding representation. 519 

Finally, the proposed scheme exhibits excellent change detection performance on five real SAR 520 

datasets with significant differences. We would like to further extend the proposed method to other 521 

application fields, such as target identification (Tatem et al., 2002) and PolSAR image classification 522 

(Zou et al., 2018; Tang et al., 2021), as well as change detection in optical sensor imagery such as 523 

Landsat and Sentinel-2 satellite images.  524 

 525 

6. Conclusion 526 

In this paper, we developed a VGAE-based approach to learn nonlocal features for bi-temporal 527 

SAR image change detection. A three-channel fused difference image, called TCFDI, was used to 528 

obtain homogeneous superpixel objects with SLIC for presentation to subsequent modules. The 529 

TCFDI integrates the advantages of the three DIs to ensure the accuracy of superpixel segmentation 530 

and maintain abundant characteristic information of objects. Crucially, the GRBF combining the 531 

intensity spatial feature and the visual spatial position information was proposed to establish the graph 532 

structure between superpixels, which laid the foundation for graph-based learning. Nonlocal feature 533 

learning using VGAE was able to suppress speckle noise effectively, and build discriminative high-534 

level representations in latent space, leading to superior accuracy and robustness compared to a range 535 

of benchmark local feature learning methods. Numerical experimental results confirmed the 536 

effectiveness and robustness of the proposed approach for small area change detection, especially 537 

where imbalance exists. Moreover, it maintains competitive detection accuracy in general scenarios, 538 

illustrating the practical value for SAR remote sensing application. 539 
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