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Abstract—Currently, large quantities of remote sensing images
with different resolutions are available for earth observation
and land monitoring, which are inevitably demanding intelligent
analysis techniques for accurately identifying and classifying land
use (LU). This article proposes an adaptive multi-scale superpixel
embedding convolutional neural network architecture (AMUSE-
CNN) for tackling land use classification. Initially, the images
are parsed via the superpixel representation so that the object
based analysis (via a superpixel embedding CNN scheme) can be
carried out with the pixel context and neighborhood information.
Then, a multi-scale convolutional neural network (MS-CNN) is
proposed to classify the superpixel based images by identifying
object features across a variety of scales simultaneously in which
multiple window sizes are used to fit to the various geometries of
different LU classes. Furthermore, a proposed adaptive strategy
is applied to best exert the classification capability of MS-CNN.
Subsequently two modules are developed to fully implement
the AMUSE-CNN architecture. More specifically, Module I is
to determine the most suitable classes for each window size
(scale) by applying majority voting to a series of MS-CNNs.
Module II carries out the classification of the classes identi-
fied in Module I for the given scale used in MS-CNN and
therefore complete the LU classification of the entire classes.
The proposed AMUSE-CNN architecture is both quantitatively
and qualitatively validated using remote sensing data collected
from two cities, Kano and Lagos in Nigeria due to the spatially
complex land use distribution. The experimental results show the
superior performance of our approach against several state-of-
the-art techniques.

Index Terms—Land use classification, Convolutional neural
network, Superpixel embedding CNN, VFSR remotely sensed
imagery.

I. INTRODUCTION

INDUSTRIAL advancement and a constant need for energy
have negatively impacted the environment, which has led

to severe degradation to the natural vegetation ecosystem.
In turn, this has created substantial effects on the land use
(LU) such as loss of prime agricultural lands, destruction
of important wetlands, as well as increased flood risk [1].
However, having access to reliable LU maps, categorising
scene images into a discrete set of meaningful LU classes,
greatly assists these tasks in natural resources monitoring and
sustainable land management [2]. As the rate of LU change
grows ever faster, particularly in developing countries [3],
the importance of having accurate, up-to-date LU information
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grows too. Although these maps can be produced by hand,
this is both time-consuming and expensive to do [4]. As
access to high-power computing resources has significantly
increased in recent years, it is perhaps unsurprising that
various computational techniques have been presented which
aim to automate this task. In early days, due to low spatial
resolution of satellite images (such as Landsat series), the
pixel level classification paradigms dominated the studies
in the field. Some popular machine learning methods had
been successfully applied for categorising scene images at
pixel level, including support vector machines (SVMs) and
random forests (RFs) [5]. However, whilst achieving fine
spatial resolution of remote sensing images, the performance
of these pixel level methods has not improved due to the
inherent issues in high-resolution images such as the within-
class variability and low between-class separability [6]. As
a result, the object level delineation and analysis of remote
sensing images have emerged to study semantic entities or
scene components rather than individual pixels, as the solution
paradigm named object-based image analysis (OBIA) [7]–[9].
A typical method, OBIA-SVM [10], [11], which incorporates
this object based paradigm into the traditional SVM solution,
has successfully moved from pixel-based techniques towards
object-based representation for better land use classification.

In the last decade, however, the successes of deep learning
methods in many areas have led those in the remote-sensing
community to investigate their potential to become the new
state-of-the-art in the field. From convolutional neural net-
works (CNNs) [12], to recurrent neural networks (RNNs) [13],
to autoencoders (AEs) [14], it is now commonplace to find
deep learning methods being used to process remote sensing
data and they often perform tasks such as LU classification
with phenomenal precision. Among these methods, the pix-
elwise CNN had been widely applied by combining a pixel-
based classifier with a context-based classifier, such as the
Multilayer-Perceptron (MLP) based CNN [15], [16] providing
different feature representations with strong complementarity.
Recently, an object-based CNN (OCNN) [17] method has also
been broadly accepted in LU classification, which incorporates
the OBIA technique into the CNN framework for better
learning LU objects via within-object and between-object
information.

However, while deep learning methods are capable of
producing high-accuracy LU classification maps, they often
require large volumes of labelled data to do so, which can
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be nearly as time-consuming and expensive as producing LU
classifications by hand [5]. There have, therefore, been various
studies which have implemented techniques such as transfer
learning [18] and active learning [19] in order to attempt to
replicate high-accuracy results with smaller quantities of train-
ing data. In this study, a two-stage approach is developed for
automatic LU classification, where the multi-scale superpixel
CNN (MS-CNN) model is firstly proposed for allowing object
features to be learnt across multiple scales simultaneously
and then an adaptive strategy based on majority-voting is
developed to exert the role of MS-CNN to find most suitable
scale for each class in order to obtain best LU classification.
To this end, MS-CNN is designed to replicate the ability
of deeper CNN models to extract features [20] but does
so without using such a deep network in order to avoid
requiring the very large quantities of training data necessary
to protect against overfitting and to ensure such that the
model generalises well. MS-CNN is therefore built upon an
initial image segmentation using superpixels [21], where the
superpixel segmentation is used to extract image patches in
order to inform targeted sampling locations such that fewer lo-
cations need CNN classification. Thus, MS-CNN is an object-
based CNN with contextual features for LU classification.
Nonetheless, in the viewpoint of its model architecture, MS-
CNN aims to extract multi-scale features to classify all objects
without considering the geometric characteristics of each class,
for example residential class may be better identified using a
small scale but highway class could be well recognised using a
large scale in this study. For exploring this scale adaptability in
MS-CNN and improving the performance of LU classification,
an Adaptive MUlti-scale Superpixel Embedding Convolutional
Neural Network (AMUSE-CNN) architecture is developed to
sufficiently exert the classification capabilities of MS-CNN
when dealing with complicated geographical situations. To
this end, the AMUSE-CNN architecture is designed to consist
of two modules that each one performs its own respective
function. Module I aims to find the most suitable classes for
each window size (scale) by applying the majority voting to
the outcomes of a series of MS-CNNs. Module II is used to
apply the scale identified in Module I to the associated classes
so that these classes are able to be better classified comparing
to the use of singular MS-CNN. With the seamless integration
of the MS-CNN model and the adaptive strategy of scale
selection, the proposed AMUSE-CNN architecture is effective
and efficient to perform the LU classification, as an adaptive,
multi-scale and object based LU classification system.

We compare our method against the state-of-the-art tech-
niques, OCNN [17], OBIA-SVM [11] and pixelwise CNN
[16], on two real world datasets in Nigeria.

The main contributions of this study can be summarized as:
• An adaptive and object based land use classification

system is developed in terms of a superpixel embedding
representation of remote sensing images.

• For better extracting object features with regard to diverse
geometries of LU objects, the multi-scale based CNN
(MS-CNN) model is designed by applying the multiple
window sizes to perform LU classification.

• An adaptive strategy of scale selection is proposed to

improve the performance of MS-CNN using majority
voting. The generated LU classification system is named
AMUSE-CNN.

• Two urban areas (Lagos and Kano) are used and anno-
tated to validate the proposed AMUSE-CNN architecture.

The remainder of this paper is organised as follows: Section
II focuses on the details of the method including the AMUSE-
CNN architecture and its key components. Section III presents
the experimental results, and in Section IV, a detailed discus-
sion on the results is presented. Finally, Section V concludes
the article.

II. PROPOSED METHOD

The proposed method is composed of two parts. First, a
Multi-scale Superpixel based Convolutional Neural Network
(MS-CNN) is designed to initially implement the LU clas-
sification capability with the multiple window sizes. Based
on this MS-CNN model, an Adaptive Multi-scale Superpixel
Embedding Convolutional Neural Network (AMUSE-CNN) is
proposed to provide an overall adaptive and accurate schematic
solution for LU classification, by considering the fact that the
MS-CNN capability is limited due to being reliant on the input
of all data into pre-determined window sizes.

A. AMUSE-CNN Architecture

As mentioned above, MS-CNN is reliant on window sizes
that therefore results in a flawed LU classification as not
all individual classes perform best when just using a given
window size for a given class. This concern has driven the
design and implementation of the AMUSE-CNN architecture
with an adaptive strategy for enhancing the scale capability
of MS-CNN in LU classification. In fact, the AMUSE-CNN
architecture consists of two modules whose block diagrams are
shown in Fig. 1. Module I aims to automatically assign each
LU class to its most suitable window size through majority
voting that can then result in the training of further MS-CNN
models in Module II, where each class is trained to its highest
potential using its most suitable window size obtained from
Module I. The relevant functions of each module are described
below.

1) Module I: In this module, three specified window sizes
are used to separately conduct the best selection of window
size for each class. In this study, the window sizes include 48,
96 and 120. As shown in Fig. 1, two functions are designed
to carry out the selection implementation for each specified
window size.

• Initial Model Training: A series of four separate MS-
CNN architectures are trained with a given window size
in order to generate a series of initial accuracies for each
class, resulting in 4×N votes for each class where N is
the number of window sizes, being 3 in this study.

• Majority Voting: Majority voting is applied to deter-
mine the most suitable window size for each class by
comparing the accuracies obtained during initial training,
with the highest voted window size for each class being
assigned to said class.
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Fig. 1: AMUSE-CNN architecture consists of two modules. Module I is designed to conduct the initial training that aims
to find most suitable classes for the given window size with majority voting. Module II is designed for performing the LU
classification using the classifiers obtained from Module I for relevant classes.

2) Module II: This module is created to conduct the new
MS-CNN model training so that the accurate LU classification
can be achieved. To this end, a MS-CNN model is trained
for each window size in which only the previously assigned
classes in Module I are involved in order to gain the highest
possible accuracies for these classes, for example in this study,
Classes 1, 3 and 6 get involved in the model training for the
case of the windows size 48 as shown in Fig. 1. Afterwards,
the models obtained are used to carry out the classification of
the respective classes so that all LU classes are well finally
classified and the classification results are then output into a
single table as shown in Fig. 1.

B. MS-CNN Model
This MS-CNN model is proposed to implement a multi-

scale LU classification CNN, in which input data is rescaled
in order to produce data at various sizes. In this study,
three window sizes are used, namely full, half and quarter
resolutions that means that when any image is entered into
the MS-CNN model as input data, the image dimensions will
be halved and quartered in order to be provided as input to
each individual CNN block. The block diagram of the MS-
CNN model can be seen in Fig. 2.

1) LU classification problem descriptor: The set X of input
data consists of A × B vectors, where A and B are the
height and width of the data image respectively. This can be
expressed as

X = {x1, ...,xA×B},xi ∈ R3. (1)

Each xi also has a corresponding ui and vi corresponding
to the pixel’s vertical and lateral position in the image data
respectively, where

0 ≤ ui < A, 0 ≤ vi < B. (2)

The set Y of output data contains each pixel corresponding
land use, expressed as

Y = {y1, ..., yA×B}, yi ∈ N, 1 ≤ yi ≤ K, (3)

where K is the number of LU classes considered.
The training set, L ⊂ X , is composed of a subset of labelled

pixels for which target labels YL ⊂ Y are given. The task of
LU classification is to estimate the unknown labels.

2) Superpixel-based LU classification: By grouping pixels
which have sufficient similarity to one another (in terms of
their spatial proximity and spectral homogeneity) it can be
expected that such groups of pixels will tend to belong to
a common output class. It is upon this assumption which
superpixel-based segmentation methods are based. Exactly
what metric is used to measure similarity and what is deemed
‘sufficient’ similarity will vary with the choice of segmentation
algorithm and its parameters, but it suffices for now to say that
algorithms which attempt to perform such a task exist.

Using the term superpixel to refer to these segmented pixel
groups, each superpixel set, S is a subset of X . The set X is
divided into non-overlapping superpixel sets whose collective
union equals X , i.e.

Sα ∩ Sβ = ∅, ∀β ̸= α (4)

and
Sα ∪ Sβ ∪ ... = X. (5)

The shorthand notation i ∈ S will be used to refer to the set
{i | xi ∈ S}. The common output class assumption supposes
that

yi = yj , ∀i ∈ S,∀j ∈ S. (6)

3) LU classification of superpixels using data windows: In
order to harness the power of convolutional layers to perform
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Fig. 2: Schematic of the MS-CNN model. Blue blocks represent data, other coloured blocks represent one or more neural
layers.

data-driven feature extraction, a second assumption is made
which considers that the LU label of the pixels within a
superpixel depends only on a local neighbourhood of the
input data, a square window, Sw, centred on the segment’s
centroid. This allows any superpixel of arbitrary geometry to
be classified using a square of the input data in its vicinity.
Put probabilistically,

P (yi ∈ S|X) = P (yi ∈ S|xi ∈ Sw). (7)

The superpixel centroid vertical and horizontal position,
denoted uS and vS respectively, can be found according to

uS =

∑
i∈S ui

|S|
, vS =

∑
i∈S vi

|S|
, (8)

where |S| refers to the cardinality of the superpixel set or
equivalently the number of pixels contained within the super-
pixel. The shorthand i ∈ Sw, used to index pixels contained
within the superpixel local neighbourhood, refers to the set

{i : −W/2 ≤ ui − uS < W/2,−W/2 ≤ vi − vS < W/2},
(9)

where W is the width and height in pixels of the data
neighbourhood considered relevant for LU classification.

4) Data-driven feature extraction using CNNs: Convolu-
tional neural networks (CNNs) are designed such that succes-
sive convolutional layers are capable of learning increasingly
abstract and translationally-invariant features using relatively
few parameters [22]. This makes them very powerful in many
computer vision tasks, particularly performing LU classifica-
tion like OCNN [17] and pixelwise CNN [16]. While these
methods are capable of producing state of the art performance,
their ability to learn multi-scale features is limited by how

many filters they contain and the depth of their architecture
which are in turn limited by the amount of training data
available. With insufficient training data, deeper CNNs are
liable to overfit training data and perform poorly on unseen
data regions [15].

5) MS-CNN architecture: In order to more easily allow
a model to identify features at various scales, we propose
the MS-CNN architecture as shown in Fig. 2, which directly
operates at multiple scales simultaneously. For a given scale,
if features that would distinguish one class from another exist
at that scale, the CNN block (see Fig. 2) which has filters of
size similar to those features ought to more readily learn to
identify them.

The design of the MS-CNN model is based upon the
notion that, when working with data resolution as high as
50cm per pixel, some of the features useful for performing
LU classification might be comparatively large in terms of
the number of pixels they make up. While a deep CNN
would likely be capable of identifying these features, the
MS-CNN model should be able to learn these features with
comparatively fewer layers used in succession.

Fig. 2 illustrates that the proposed MS-CNN architecture
has three main components, Multiple Scales, CNN Blocks
and Classification Block. Multiple Scales provide multi-scale
routes for MS-CNN to learn features, parallel pathways are
used, where each pathway operates at a different scale (e.g.
half or quarter resolution). The component of CNN Blocks
goes to extract the features for each pathway with the respec-
tive scale. Each convolutional block is made up of repeated
units, consisting of a convolutional layer, a maximum pooling
and a rectified linear unit (ReLU) activation function. In
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Classification Block, the yielded feature maps of the parallel
pathways are then combined using a simple linear combi-
nation, which is encompassed within the ‘Weighted Feature
Combine’ layer which has one scalar parameter per resolution
pathway such that its output, X̃, is given by

X̃ =
∑
i

wiXi, (10)

where Xi refers to one of its inputs. This combines the features
identified at each of the network’s scales into one feature map
according to a ‘pathway importance’ weight. Subsequently, as
shown in Fig. 2, the resulting feature map is flattened and
classified using fully connected layers and finally applying a
softmax activation function to the model output.

III. RESULTS AND ANALYSIS

A. Area and data of study

Using very fine spatial resolution (VFSR) remotely sensed
optical images which were released as part of Digital Globe’s
Open Data Program, two cities of Lagos and Kano, Nigeria,
were selected for LU classification analysis. The data, seen
in Fig. 3, has three bands (red, green and blue) and a spatial
resolution of 50cm per pixel.

Fig. 3: Visualisation of the data for two cities of Lagos and
Kano, Nigeria. Each image covers an area of 16384 × 16384
pixels.

B. Data annotation

The OpenStreetMap () definition of LU (“what the area is
used for by humans”) will be adopted as the definition of
LU used in this study. Following a consideration of the LU
classes recognised by OpenStreetMap and a visual analysis of
the Lagos and Kano data, the set of LU classes described by
Table I and Table II was adopted.

By labelling polygons within the raster which were accurate
representations of each of these LU classes, a set of labels were
obtained which could be used to represent both training and
validation sets. The data annotation was not exhaustive, with
the total annotated area making up 36.8% of the total area.

The labelled polygons were randomly assigned into one
of five sets, with each acting as a validation set for one
experiment in a 5-fold cross-validation analysis, with the

TABLE I: Identified LU classes within the Lagos dataset and
brief descriptions of what they encompass.

LU Class Description

Brownfield or construction Exposed soil/dirt or dusty land
Highway Any kind of street or way
Industrial Larger buildings typically representing

warehouses/shared business sites
Lagoon A body of shallow sea water
Natural conservation Land in a natural state
Residential Areas containing private houses or accommodation
Retail Low/medium density self-contained shops and/or

market activity areas

TABLE II: Identified LU classes within the Kano dataset and
brief descriptions of what they encompass.

LU Class Description

Bare/open land Exposed soil/dirt or dusty land
Commercial High density, built-up region comprised of businesses
Industrial Larger buildings typically representing

warehouses/shared business sites
Residential Areas containing private houses or accommodation
Retail Low/medium density self-contained shops and/or

market activity areas
Road Regions designated for vehicular use
Vegetation Shrubs, grassland or agricultural lands

others acting as that particular k-fold experiment’s training
data.

C. Initial image segmentation

Different segmentation algorithms place different impor-
tances on various measures of pixel homogeneity (e.g. texture,
colour, spatial proximity). In order to segment the data into
superpixels which would represent locally coherent subregions
with a shared LU class (as per the assumption of Eq. 6),
the mean-shift algorithm [23], implemented using the open-
source software Orfeo Toolbox, was selected. The parameters
of the algorithm were adjusted in order to obtain superpixels
which were small enough to sufficiently separate individual
LU classes but not so small that the quantity of superpixels
which made up the image was unnecessarily high which would
increase inference times (the model inference time increases
approximately linearly with the number of superpixels in the
data). The mean-shift algorithm has three main hyperparam-
eters: the spatial radius, the range radius and the minimum
region size. Following a trial-and-error approach, these were
set to 30, 8 and 196 respectively.

D. Parameter settings

1) MS-CNN model: For the purposes of this investigation,
MS-CNN models were trained using three scales (full, half
and quarter resolution). Various models with various window
sizes have been trained, in order to determine the optimal
window size for performance. The CNN block shown in Fig.
2 for the models trained consisted of three repeated blocks,
each consisting of a convolutional layer (32 3× 3 kernels), a
maximum pooling layer (2×2 window) and a ReLU activation
function. The first dense layer had 32 neurons and the second
had 7 neurons (one for each LU class).

https://www.openstreetmap.org
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2) AMUSE-CNN architecture: For effectively implement-
ing the adaptive strategy, four separate MS-CNN models are
used to conduct the initial model training and thus 4×3 = 12
outcomes participate in majority voting (here 3 window sizes
used in this study).

E. LU Classification Results and Analysis

For well evaluating the AMUSE-CNN model, three state-of-
the-art LU classification models were used as benchmarks to
conduct the performance comparison: OBIA-SVM [11], Pixel-
wise CNN [15], and OCNN [17]. In addition, the performance
of MS-CNN at each scale was also presented for showing the
role of the adaptive strategy used in AMUSE-CNN. In the
following subsections, a quantitative analysis is first carried
out, followed by a qualitative comparison.

1) Quantitative Results: Tables III and IV show the classi-
fication accuracies achieved for each of the models assessed.
The classification accuracy is measured as the percentage of
the area in the validation set representing a given class which
is correctly classified. Average accuracy (AA) is calculated
by averaging the classification accuracies over all classes.
Equivalently, the overall accuracy (OA) is measured as the
percentage of the area of all polygons in the validation set
which is correctly classified. The accuracies presented are the
averages achieved over 5-fold cross-validation.

It is clearly shown in Tables III and IV that the AA 93.25%
of AMUSE-CNN in Kano is significantly better than that
85.44% in Lagos while its OA 90.16% in Kano is obviously
inferior to that 96.71% in Lagos. In fact, these accuracy
differences are determined by the geographical complexities
of two cities and the nature of the relevant LU classes. In
Lagos, some classes are very similar in color and geometries
such as Residential and Retail, which leads to ineffective
differentiation of the relevant classes, resulting in lower AA
in Lagos comparing to Kano. Fig. 8 presented in Section
III-E2 visually shows how this issue affects the performance
of the relevant methods. On the other hand, the lagoon class
takes most of the area in Lagos so its high detection accuracy
dominates the OA of Lagos, which therefore greatly helps
Lagos achieve better OA than Kano.

To demonstrate the benefits of the adaptive strategy applied
in AMUSE-CNN, the results for the MS-CNN model at each
single scale are presented in Tables III and IV. AMUSE-
CNN clearly outperforms MS-CNN in both Lagos and Kano.
For example, for Residential in Lagos, MS-CNN with the
scale 120 achieves the best accuracy 60.99% while AMUSE-
CNN reaches 78.34%; for Industrial in Kano, 72.81% is the
best accuracy obtained by MS-CNN with the scale 96 while
91.11% is achieved by AMUSE-CNN.

Comparing to the state-of-the-art methods, the traditional
handcrafted method, OBIA-SVM, is clearly ineffective to deal
with LU classification in these two datasets due to its AAs for
both datasets being 42.67% and 46.60% respectively. In partic-
ular, Retail (0.17%) in Lagos is almost all misclassified due to
being similar to Residential in colour. As for Pixelwise CNN
and OCNN, their performance is much better than OBIA-
SVM. However, our AMUSE-CNN significantly outperforms

these two methods in both AA and OA such as AA: 85.44%
vs. 78.59% vs. 82.20% in Lagos and 93.25% vs. 81.70% vs.
83.70% in Kano. Tables III and IV show that AMUSE-CNN is
able to well classify some difficult classes however Pixelwise
CNN and OCNN perform poorly, for example, Residential and
Retail in Lagos, Industrial and Residential in Kano.

On a class-by-class basis, AMUSE-CNN optimally clas-
sifies six of the seven LU classes for Lagos except for
Brownfield Construction (Pixelwise CNN being best 85.43%).
The nearest AA accuracy benchmark, OCNN can classify
the classes averagely better than any of the other methods
presented for both Lagos and Kano. For the most part, the
Highway and Lagoon LU classes in Lagos, and the Road and
Vegetation in Kano are easiest to classify (with all models
achieving > 75% accuracy). The classes which have proved
most difficult to classify (Industrial and Residential) are both
classes where AMUSE-CNN has greatly excelled relative to
the benchmarks particularly in Kano.

For further demonstrating the overall performance and
strength of AMUSE-CNN, the Receiver Operating Character-
istic (ROC) Curve is plotted for each model used in this study,
which Figs. 4 and 5 are presented for Lagos and Kano respec-
tively. These figures obviously illustrate that AMUSE-CNN
gets higher TPR (Sensitivity) and lower FPR (1-Specificity)
at any threshold setting in comparison to the benchmarks.
Thus, the classification performance of AMUSE-CNN in both
Lagos and Kano appears markedly superior to those of the
benchmarks.

2) Qualitative Results: In order to visually compare the
performance, Fig. 6 presents one randomly selected region of
Lagos (2000×2000 pixel area) alongside the ground truth (GT)
annotations for that region and the LU classification output for
each of the models trained. Where used, the subscripts refer
to the window size of the model. This visual results show that
the overall performance of AMUSE-CNN is much better than
the benchmarks and also MS-CNN although the classification
of some classes is still not best conducted due to the similarity
between classes such as a small portion of ‘Retail’ being
misclassified as ‘Industrial’. Fig. 7 shows another selected
region of the Kano data for visually showing the performance
of our method and the benchmarks. It is clearly illustrated
that AMUSE-CNN well classified most classes except for a
small portion of ’Retail’ being misclassified as ‘Residential’.
Promisingly, referring to the GT as shown in Fig. 7, AMUSE-
CNN can perform the classification much more accurate than
the benchmarks and MS-CNN. For noticeably looking into the
classification details and issues of the given classes, we zoom
on the selected parts of the images and present the relevant
classification results of these zooming-in portions as follows.

‘Residential’ and ‘Retail’ are the classes with similar geo-
graphical information in Lagos and the benchmarks thus often
wrongly classify these two classes. Fig. 8 illustrates the clas-
sification results of a selected region in which AMUSE-CNN
can well classify these two classes however the benchmarks
perform poorly.

In Lagos, ‘Industrial’ is the class with the lowest perfor-
mance of AMUSE-CNN. Fig. 9 illustrates that the indistin-
guishable boundary of ‘Highway’ and ‘Retail’ with ‘Industrial’
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TABLE III: Classification accuracy (%) comparison among OBIA-SVM, Pixelwise CNN, OCNN, MS-CNN, AMUSE-CNN
for Lagos. The presented accuracies (AA and OA) are the averages achieved over 5-fold cross-validation.

LU Class OBIA-SVM Pixelwise CNN OCNN MS-CNN48 MS-CNN96 MS-CNN120 AMUSE-CNN[48, 96, 120]

Brownfield/construction 34.01 85.43 73.55 73.88 72.05 75.77 77.37
Highway 80.62 80.33 78.14 75.34 77.43 64.41 85.39
Industrial 16.28 73.65 61.07 56.70 75.70 60.22 76.85
Lagoon 99.31 99.84 99.79 99.87 99.84 99.86 99.95
Natural Conservation 11.70 84.65 92.63 91.42 88.13 90.98 97.62
Residential 56.66 51.56 46.09 51.26 57.35 60.99 78.34
Retail 0.17 74.69 48.25 66.24 68.41 79.60 82.56
AA 42.67 78.59 82.20 73.53 76.99 75.98 85.44
OA 81.80 93.71 92.89 93.73 93.49 94.43 96.71

TABLE IV: Classification accuracy (%) comparison among OBIA-SVM, Pixelwise CNN, OCNN, MS-CNN, AMUSE-CNN
for Kano. The presented accuracies (AA and OA) are the averages achieved over 5-fold cross-validation.

LU Class OBIA-SVM Pixelwise CNN OCNN MS-CNN48 MS-CNN96 MS-CNN120 AMUSE-CNN[48, 96, 120]

Bare/open land 29.2 85.9 87.2 76.3 81.0 82.57 98.41
Commercial 43.8 77.5 82.0 72.4 78.9 78.73 92.62
Industrial 15.5 62.8 71.1 62.6 72.8 60.59 91.11
Residential 29.8 67.4 72.9 59.2 75.5 61.85 85.07
Retail 50.7 89.7 85.8 80.6 88.1 78.80 91.95
Road 77.9 92.9 94.9 91.4 94.3 81.77 96.35
Vegetation 78.8 95.4 91.9 91.2 94.2 91.59 97.29
AA 46.6 81.7 83.7 76.3 83.5 77.84 93.25
OA 32.9 73.3 77.7 68.19 76.52 69.38 90.16

Obia-SVM Pixelwise CNN OCNN MS-CNN48

MS-CNN96 MS-CNN120 AMUSE-CNN

Fig. 4: ROC curves showing the performance of all methods: AMUSE-CNN produces excellent classification performance for
all classes in comparison with other methods in Lagos.

actually intervene in the classification thus significantly reduc-
ing the performance of AMUSE-CNN in ‘Industrial’. Even
so, AMUSE-CNN obviously outperforms the benchmarks as
visually presented in Fig. 9.

Fig. 10 presents the classification results of the selected
region in Kano that the performance of AMUSE-CNN in
‘Industrial’ and ‘Residential’ is with the lowest accuracy in
comparison with other classes. It illustrates that the bench-
marks is prone to classifying ‘Residential’ as ‘Industrial’
while a small portion of ‘Industrial’ is wrongly classified
as ‘Residential’ with AMUSE-CNN. However, our proposed
method is clearly better at conducting the classification than
the benchmarks for these two classes.

F. Computational environment and complexity

To compare the computational costs of AMUSE-CNN with
those of the benchmarks, an analysis which examines the
amount of time to train each model and for each model to
perform inference on the complete data is presented in Tables
V and VI. The experiments have been carried out on a machine
with Intel i5-9400F CPU, 32 GB RAM and a NVIDIA Quadro
M400 GPU.

Overall, the amount of time needed to train/perform infer-
ence is at a similar level for MS-CNN and OCNN. Among
the benchmarks, Obia-SVM is quite time-consuming while the
pixelwise CNN stands out as the fastest training but the slowest
inference model. For the AMUSE-CNN, due to the multiple
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Obia-SVM Pixelwise CNN OCNN MS-CNN48

MS-CNN96 MS-CNN120 AMUSE-CNN

Fig. 5: ROC curves showing the performance of all methods: AMUSE-CNN produces excellent classification performance for
all classes in comparison with other methods in Kano.

Image Region Ground Truth Obia-SVM Pixelwise CNN OCNN

MS-CNN48 MS-CNN96 MS-CNN120 AMUSE-CNN

Fig. 6: A 2000 × 2000 pixel Lagos image region and the corresponding ground truth as well as LU classification for all
methods.

MS-CNN models being involved in the adaptive strategy, its
computation is costly and pretty time-consuming, however
in compensation its accuracy of LU classification is highly
improved in comparison with the benchmarks.

IV. DISCUSSION

In the proposed solution scheme, the MS-CNN model is
first proposed to improve upon the benchmark methods by
offering direct routes for multi-scale feature identification
through the use of scale-specific CNN blocks. Furthermore,
the AMUSE-CNN architecture is designed to explore the
capability of LU classification with the use of majority voting
to implement an adaptive strategy. The experimental results
shown in Sections III-E1and III-E2 demonstrate that AMUSE-
CNN does accurately outperform the state-of-the-art methods.
However, for a better LU classification, there is much room

to improve AMUSE-CNN whatever the classification accuracy
or the computational efficiency is.

It is clear that the overall performance of AMUSE-CNN is
greatly dependent on that of MS-CNN. In Tables III and IV,
the improved AA and OA offered by MS-CNN with different
scales suggests that there may be cause for further investiga-
tion into multi-scale architectures for LU classification. That
being said, the improvements observed are not seen across
every class, and so it is proved that some LU classes are
better identified using multi-scale feature learning than others
by applying the adaptive strategy, which is the essence of the
AMUSE-CNN architecture proposed. The further work could
consider to use a different model selection scheme instead of
majority voting.

With regard to the window sizes used, although MS-CNN
models presented have used half and quarter resolution as
their additional scales, this choice was somewhat arbitrary
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Image Region Ground Truth Obia-SVM Pixelwise CNN OCNN

MS-CNN48 MS-CNN96 MS-CNN120 AMUSE-CNN

Fig. 7: A 2000 × 2000 pixel Kano image region and the corresponding ground truth as well as LU classification for all
methods.

Image Region Ground Truth Obia-SVM Pixelwise CNN OCNN

MS-CNN48 MS-CNN96 MS-CNN120 AMUSE-CNN

Fig. 8: Results of the selected region showing the interference between ‘Residential’ and ‘Retail’ in Lagos.

Image Region Ground Truth Obia-SVM Pixelwise CNN OCNN

MS-CNN48 MS-CNN96 MS-CNN120 AMUSE-CNN

Fig. 9: Results of the selected region showing the interference of ‘Highway’ and ‘Retail’ on the classification of ‘Industrial’
in Lagos.
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Image Region Ground Truth Obia-SVM Pixelwise CNN OCNN

MS-CNN48 MS-CNN96 MS-CNN120 AMUSE-CNN

Fig. 10: Results of the selected region showing the classification interference between ‘Industrial’ and ‘Residential’ in Kano.

TABLE V: Computation times to train each of the classification algorithms presented for the Lagos dataset and make LU
classification predictions for the complete data.

OBIA-SVM Pixelwise CNN OCNN MS-CNN48 MS-CNN96 MS-CNN120 AMUSE-CNN[48, 96, 120]

Train time (h) 1.03 0.07 0.19 0.10 0.23 0.32 3.25
Predict time (h) 1.13 6.27 0.22 0.13 0.25 0.55 4.60

TABLE VI: Computation times to train each of the classification algorithms presented for the Kano dataset and make LU
classification predictions for the complete data.

OBIA-SVM Pixelwise CNN OCNN MS-CNN48 MS-CNN96 MS-CNN120 AMUSE-CNN[48, 96, 120]

Train time (h) 1.33 0.09 0.31 0.16 0.43 0.65 5.93
Predict time (h) 2.0 12.34 0.35 0.35 0.45 0.63 7.15

and further investigation might analyse how the choice of
scales in MS-CNN affects results. This should therefore result
in improving the performance of AMUSE-CNN. Similarly,
the choice of operating with three scales was also somewhat
heuristic and an extension of this work might assess the
balance between performance and increased computational
costs by comparing MS-CNNs which operate with more or
fewer scales. In addition, four MS-CNN models are used to
conduct majority voting in the current study. We could give a
try to taking different number of models involved in the scale
selection process such as three or five in further studies.

To better validate the AMUSE-CNN method, although two
different urban datasets are used in this study, it is anticipated
that the improved results could be replicated for more datasets.
The next step would be to produce similar improvements using
datasets collected from other continents. This should not only
offer some challenges unique to new datasets, but also present
some of the same complexities faced with classifying the
Lagos and Kano datasets.

Another big challenge to our proposed method is how to
reduce the computational complexity and make the solution
scheme more efficient. The inherent drawback of majority
voting is actually seriously bringing down the calculation
efficiency of AMUSE-CNN thus some more efficient method

of scale choice should be used in future. In addition, we could
consider to improve the computational capability with better
hardware such as TPU for more efficient calculation.

V. CONCLUSION

This article presents an adaptive LU classification CNN ar-
chitecture, namely AMUSE-CNN, based on a multi-scale fea-
ture learning model (MS-CNN) proposed, as a means for better
identifying the subtle visual cues that allow a region’s LU to
be determined. Using superpixels obtained via a segmenta-
tion of the data to represent regions of locally homogenous
LU, MS-CNN learns to identify features at multiple scales
simultaneously in order to classify superpixels and obtain a
semantic segmentation of the data. Moreover, based on MS-
CNN, AMUSE-CNN is designed and put forward to find the
most suitable scale for classes and thus obtain incomparable
classification accuracy by resorting to a scale selection process
of majority voting. The AMUSE-CNN performance is well
examined with two urban datasets, Lagos and Kano in Nigeria,
by comparing to three state-of-the-art benchmarks. A barrier
to AMUSE-CNN is the time-consuming step of performing
the scale selection, two ways of improving work for reducing
the computational complexity could be valuably attempted in
future. One could use another efficient scale section scheme
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instead of majority voting. Another one may optimise the
calculation process with more efficient code along with the
use of high-performance hardware units such as TPU.
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