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Abstract

The work in this thesis is centred around exploring the transport properties induced

by periodically driving topologically non-trivial systems. In particular, it focuses upon

the signatures associated with Majorana modes in 1D topological superconductors and

their adiabatic manipulations, in anticipation of the next generation of experiments

pursuing the realization and control of such excitations, which have been stipulated as

the potential building blocks of robust quantum computation.

We examine two distinct ways by which external driving can influence a system’s

topology. Firstly, we focus upon systems for which the modulation results in the

emergence of additional topological phases, not present in their static counterparts, the

classification of which is not well defined by the usual topological invariants associated

with the energy spectrum of the bulk system. For such systems, transport properties

are vital in identifying non-trivial topological regimes and, with this motivation, we

examine the relationship between driven scattering matrix topological invariants and

conductance signatures.

Secondly, we determine the transport statistics associated with the adiabatic

manipulation of topological excitations appearing in static systems, with a specific focus

upon a Majorana braiding protocol. In this way, we demonstrate that the topological

protection of the operation is reflected in geometric contributions to the heat transport

induced by the driving. In addition to providing potential experiential signatures of such

manipulations, this analysis also sheds light on the influence of periodic driving upon

exchange fluctuation theorems, that govern the thermodynamics of non-equilibrium

quantum systems, and also the performance of such protected operations as nanoscale

thermal machines.
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(b̂†α(E)). The scattering matrix S(E) encodes the relationship between

the ingoing and outgoing operators at some energy E and its exact form

depends upon the physical properties of the mesoscopic sample in question. 46

xiii



5.1 (a)-(e) Quasienergy band structure of a driven 1D Kitaev chain for

various values of the Hamiltonian parameters. The driving protocol

is outlined in Sec. 5.4.1 and the phase diagram corresponding to the

parameters λ0 and λ1 is plotted in Fig. 5.3. The fact that the quasienergy

is defined periodically results in the existence of two relevant energy gaps

in the system, at εT = 0 and εT = π. These gaps close in (b) and (d)

respectively, indicating a topological phase transition. . . . . . . . . . . 76

5.2 (a) Schematic of an electronic system connected to two external leads

(terminals) via tunneling rates ΓL,ΓR and driven via periodic control of

its parameters X1, X2, the time dependence of which are sketched in (b).

Each terminal (L,R) includes ingoing and outgoing (←,→) electron (e)

and hole (h) scattering states. (c) Two scattering scenarios are depicted,

corresponding to either a continuous coupling to the leads (dashed lines)

or time-pulsed couplings with periodicity T (solid lines). . . . . . . . . 78

xiv



5.3 Phase space diagram illustrating how the topological phase of the Floquet

Kitaev wire depends upon the Hamiltonian parameters λ0 and λ1 (see

Eq. 5.50). (a-h) Numerical results for the zero temperature differential

conductance summed over energy sidebands G̃ and the stroboscopic

conductance Gstrob, plotted as a function of the total voltage bias between

the left and right external leads V = VL−VR. The plot colours correspond

to those in the phase diagram. The conductance is evaluated at both the

four sweet spots, marked by black crosses, as well as the points marked

by the white crosses in each phase: (a,b) Trivial, (c,d) MZM, (e,f) MPM,

(g,h) MZM/MPM. The results were obtained using a chain of 20 sites

and with tunneling rates to the external leads given by ΓL/R/ω = 0.016. 93

xv



5.4 (a,c) Density plots illustrating the value of the difference function

for both the zero mode resonance D0 and π mode resonance Dπ

respectively throughout the parameter space (λ0, λ1), with coupling

strength ΓL/R/ω = 0.0016. (b,d) Corresponding plots of the time

variance of the function γα(t) controlling the resonance widths. The

comparison between the conductance summed over energy sidebands

G̃ and the stroboscopic conductance Gstrob for selected points are

shown in (e-h), again with coupling strength ΓL/R/ω = 0.0016. (i)

Comparison of G̃ (solid lines) and Gstrob (dashed lines) for increased

strength coupling to the external leads Γ, close to the MZM resonance.

(j) Density plot illustrating difference between the stroboscopic and

summed conductances integrated over the entire spectrum throughout

the parameter space, calculated using a coupling strength of ΓL/R/ω =

0.016. All data was obtained using a chain of n = 20 fermionic sites. . . 98

xvi



5.5 (a) Variation of the bulk quasi energy gaps around εT = 0 and εT = π

over a range of driving frequencies ω. The possible phases over this

range are denoted: Tr=Trivial, MZM=Zero-modes only, MPM=π-modes

only and MZM/MPM=Both Zero and π modes. (b) Illustration of the

difference functions for the zero (D0) and π (Dπ) mode resonances over

this range of frequencies and (c) the corresponding behaviour of the time

variance of γi(t) dictating this difference. (d-f) Conductance profiles

for selected driving frequencies comparing the measured conductance

summed over sidebands with the stroboscopic construction. All data was

obtained using a chain length of n = 70 and coupling strength ΓL/R/ω =

0.04. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.6 Weight of the time-dependent zero-mode Floquet states for an isolated

system |φ0(t)〉 (Eq. 5.26) on each of the fermionic sites in a 1D driven

Kitaev wire. (a) and (b) show solutions from two chosen points from

the phase diagram for protocol 1 (see Fig. 5.3), whereas (c) and (d)

show points from protocol 2 (see Fig. 5.5(a)). For each example, the

spatial structure of the zero mode is shown for 3 snapshots throughout

the driving period, illustrating the extent of the time dependence. In (a)

the strong time dependence of the weight upon the end sites corresponds

to the marked difference in the stroboscopic and summed conductance

quantities at this point in the phase space. This is contrasted with (b), a

point at which the time dependence is minimal and hence the agreement

is good. The examples from protocol 2 show little dependence on time,

corresponding to good agreement between the two conductances. . . . . 102

xvii



6.1 (a) Y-junction of p-wave superconducting nanowires (blue) with Ma-

jorana zero modes at positions indicted by the green dots. Each of

the external Majorana modes, γx,y,z, are coupled to the central mode

with corresponding coupling strengths ∆x,y,z and the modes γx and γy

are further coupled to conducting normal metal leads with strengths

ΓL and ΓR. (b) Illustration of the required sequence of couplings to

perform a Majorana exchange, where the solid blue lines illustrate the

couplings which are turned on and dashed lines indicate those that are

turned off. White circles indicate Majoranas with a large Coulomb

splitting whereas coloured circles correspond to those with a vanishly

small Coulomb splitting. The small diagrams above each arrow show

the intermediate steps with two couplings turned on and one of the zero

energy Majoranas delocalised over the two corresponding external sites.

(c) The corresponding evolution, C1 + C2 + C3, is shown as a path in

spherical parameter space on the left. Also illustrated is an example of

a small amplitude driving contour Cs. . . . . . . . . . . . . . . . . . . . 117

xviii



6.2 (a) Schematic of a Cooper pair box composed of a superconducting island

(blue), carrying charge Q and superconducting phase ϕ, connected to a

bulk superconductor via a split Josephson junction (grey). A nanowire

(yellow) can be added to the island so that the system can host two MZMs

when in the topological phase. These spatially separated Majoranas can

be coupled using the Coulomb charging energy on the island, which

can be tuned by changing the magnetic flux Φ passing through the

Josephson junction. (b) Three Cooper pair boxes connected in a Y-

junction configuration via the tunnel coupling between the three internal

MZMs. By controlling the couplings between MZMs on the same island,

this setup can be used to perform a Majorana exchange. . . . . . . . . 118

6.3 (a) Real and (b) imaginary parts of the Andreev reflection component

of the scattering matrix for the topological superconducting Y-junction.

Results are plotted for several positions in the parameter space, (θ0, φ0),

and for equal coupling to the left and right external leads ΓL = ΓR. . . 125

6.4 Period-averaged static contribution to the second cumulant of (a) the

pumped heat and (b) pumped charge throughout the driving of a

Majorana Y-junction centred at (θ0, φ0) = (π/2 − 0.1, π/4), with

amplitude θω = φω = 0.01. The noise is plotted as a function of the

external lead temperature T/ΓR, for a driving frequency ω/ΓR = 0.001.

The insets show the temperature dependence of this quantity scaled by

T 5 and T for heat and charge respectively, highlighting the behaviour as

T → 0. The different colours correspond to various values of the coupling

between the Y-junction and the external leads ΓL/ΓR (cf. legend). . . . 129

xix



6.5 The total heat QL pumped into the left lead throughout the Majorana

braiding process as a function of the lead temperature, in the absence of

a temperature bias. Results are shown for a selection of symmetric lead

coupling strengths ΓL/R = Γ. When scaled by temperature, we see that

this purely geometric heat becomes independent of the coupling strength

in the low temperature limit, tending to a universal value. . . . . . . . 133

6.6 The pumped contribution to the second cumulant of the heat transport

throughout the driving of a Majorana Y-junction centred at (θ0, φ0) =

(π/2 − 0.1, π/4), with amplitude θω = φω = 0.01. Plots (d, e, f) show

the geometric contribution whereas (a, b, c) illustrate the remaining non-

geometric part. Plots (a, d) show the second cumulants as a function

of temperature, with the inset highlighting the region T � ω. Panels

(b, c, e, f) show the same quantities plotted against frequency. (b, e)

illustrate the behaviour as a function of low frequencies ω < T and

(c, f) at high frequencies ω > T . . . . . . . . . . . . . . . . . . . . . . . 136

6.7 The pumped contribution to the second cumulant of the charge transport

throughout the driving of a Majorana Y-junction centred at (θ0, φ0) =

(π/2 − 0.1, π/4) with amplitude θω = φω = 0.01. Plots (d, e, f) show

the geometric contribution whereas (a, b, c) illustrate the remaining non-

geometric part. Plots (a, d) show the second cumulants as a function

of temperature, with the inset highlighting the region T � ω. Panels

(b, c, e, f) show the same quantities plotted against frequency. (b, e)

illustrate the behaviour as a function of low frequencies ω < T and

(c, f) at high frequencies ω > T . . . . . . . . . . . . . . . . . . . . . . . 137

xx



6.8 (a) Probability distribution, P (Q), for the heat pumped via the small

amplitude (θω = φω = 0.01) driving of a Majorana Y-junction centred

at (θ0, φ0) = (π
2
− 0.01, π

4
). Results are shown for several values of

the coupling to the external leads, ΓL = ΓR = Γ, with an external

lead temperature of T/ω = 10. The inset shows the corresponding

behaviour of the fluctuation theorem violation quantifier A(λ) = |χ(λ)−

χ(−λ)| which is identically zero when the Gallavotti-Cohen fluctuation

theorem holds true. (b) Probability distribution for the case of a static

Majorana Y-junction at (θ0, φ0) = (π
2
− 0.1, π

4
). Results are plotted for

several temperature gradients, β? and the inset shows the corresponding

behaviour of the fluctuation theorem. . . . . . . . . . . . . . . . . . . . 141

6.9 An illustration of how the difference between contour integrals in

opposite directions for arbitrary amplitude cycles can be broken down

into the sum of similar differences on smaller cycles. This result is due

to the cancellation of the integrals along the interior sides of the smaller

cycles and is valid upon division of the contour C into an arbitrary

number of smaller cycles {Ci}. . . . . . . . . . . . . . . . . . . . . . . . 144

6.10 Absolute value (a) and argument (b) of the geometric contribution to the

heat transport characteristic function χgeom(λ) for the case of a Majorana

braiding protocol. Results are plotted for several values of the external

lead temperature. Asymmetry of this function in λ indicates an apparent

violation of the Gallavotti-Cohen type fluctuation theorem. . . . . . . . 146

xxi



7.1 Schematic of a Majorana braiding driven thermal machine. The

superconducting Y-junction introduced in Sec. 6.2 is coupled to hot and

cold fermionic reservoirs with a temperature bias of ∆T . The execution

of the braiding cycle, in addition to the temperature gradient, stimulates

the flow of heat Qtr between the reservoirs. The work done W by the

driving also results in an additional flow of heat into the system. . . . 151

7.2 (a) Pumped heat Qtr and work done by the driving W as a function

of lead temperature for a Majorana braiding exchange in the absence

of a temperature gradient, ∆T = 0. The inset gives a closer view of

the behaviour of W at low temperatures. We used a coupling strength

to the external leads of ΓL = ΓR = 0.01T and a driving frequency of

ω = 0.02T . (b) Using the same system parameters, we plot the behaviour

of the coefficient of performance ηhp versus T . (c) The coefficient of

performance is plotted as a function of driving frequency. The COP is

unbounded in the slow driving limit as the heat dissipated by the driving

tends to zero and the geometric pumped heat remains unchanged. . . . 161

xxii



7.3 (a) Transported heat Qtr and work done by the driving W as a function of

the temperature gradient between the hot and cold leads for a Majorana

braiding exchange. We used a coupling strength to the external leads of

ΓL = ΓR = 0.01T and a driving frequency of ω = 0.02T . In this regime

the braiding operation results in a refrigeration effect, pumping heat

from the cold to the hot bath. (b) Using the same system parameters,

we plot the behaviour of the coefficient of performance ηfr versus ∆T . We

plot the COP normalized by the maximum Carnot value in addition to

the raw value. (c) The normalized coefficient of performance is plotted

as a function of driving frequency ω for ∆T/T = 0.0025. The COP

becomes negative for lower frequencies, where the static heat flow due to

the temperature gradient dominates and the system no longer operates

as a refrigerator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

xxiii



List of Tables

2.1 Classification of topological phases depending upon the symmetry class

and number of spatial dimensions. For each of the possible classes

the absence of the chiral (χ), particle-hole (C) and time-reversal (T )

symmetries are denoted by 0, whereas their their presence is indicated

by a ‘±1’ depending on whether the operator in question squares to ±1.

For each combination of symmetries and dimensionality, the possibility

of the existence of a topologically non-trivial phase is indicated by the

corresponding type of topological invariant. A ‘0’ denotes the case for

which only the trivial phase is present. . . . . . . . . . . . . . . . . . . 16

3.1 Relationship between the topological invariant Q and the reflection

submatrix r for each of the possible symmetry classes for 1D systems

exhibiting topologically non-trivial phases. For Z2 topological phases,

the corresponding invariant is given either by the determinant (det) or

Pfaffian (Pf) of r, whereas for Z phases the relevant quantity is given by

the number ν of negative eigenvalues of r . . . . . . . . . . . . . . . . . 61

xxiv



Chapter 1

Introduction

A key aspect of condensed matter physics is the classification of systems into distinct

phases based on their underlying properties and the external conditions to which they

are subjected. Conventional phase transitions are well described by Landau’s theory,

which states that phase transitions occur upon the breaking of some internal symmetry

of the system [1–3]. Despite its success in the classification of a myriad of crystalline

structures and emergent properties such as magnetism and superconductivity, the

discovery of the quantum Hall effect posed a stumbling block to this theory by exhibiting

distinct phases characterized by the emergence of quantized conductance along the

edges of a sample, the bulk of which remains in an insulating state [4–7]. Crucially, the

emergence of this conductance occurs without the breaking of any local symmetry and

hence such phases require an alternative notion of classification.

This discovery initiated the concept of the topological classification of condensed

matter systems, a notion more commonly encountered in Mathematics, where it is

used to differentiate continuous manifolds which cannot be smoothly deformed into one

another. Within the realm of condensed matter physics, this idea can be used to group
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wavefunctions that are adiabatically connected and distinct topological phases can be

defined by the value of a topological invariant that is immune to such deformations

[8–13]. Importantly, this manner of classification is based upon the global properties

of the object in question, as opposed to the local structure, and hence the topological

properties of each phase are robust against adiabatic perturbations to the system.

One particularly striking consequence of topologically non-trivial states of matter

is the existence of gapless excitations at the boundaries with systems of a different

topological class [11]. It is such protected excitations that result in the quantized

conductance across quantum Hall systems [14] and such excitations take on increasingly

remarkable properties when the concept of topological classification is extended to

superconductors [15, 16]. Superconducting systems allow for emergence of quasi-

particles consisting of linear combinations of particles and holes and, at zero energy,

this results in the appearance of Majorana zero modes (MZMs); excitations for which

the creation and annihilation operators are identical [17–22]. The possible existence

of such excitations was first eluded to by Kitaev’s toy model of a 1D spinless p-wave

superconductor [18], followed by the suggestion of their presence within vortices in 2D

px + ipy superconductors [23].

Much of the excitement surrounding MZMs, and thereby the motivation for them

forming the focus of this thesis, stems from their potential applications in the field of

topological quantum computation [21,24–28]. It has been stipulated that two spatially

separated MZMs, defining a non-local state, could in principle encode information as

a qubit system. The topological protection of the constituent MZMs partnered with

the fact that the information is encoded non-locally, would instill such a theoretical

qubit with a high resistance to decoherence via local perturbations. Furthermore,
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the MZMs exhibit non-Abelian statistics under exchange [23, 24, 29], allowing for

the protected control of the qubit state and the execution of some computational

gates. Such potential applications have motivated a multitude of attempts to realize

such excitations experimentally [30–34], many of which are centered around detecting

signatures via electronic tunnelling spectroscopy. It is known that the scattering of

electrons via MZMs, when in contact with an external metal lead, should yield a

quantised zero-bias peak in the conductance spectrum [35,36]. However, such a feature

is not a unique consequence of the existence of Majoranas [37,38] and hence alternative

detection methods are desirable. Furthermore, in anticipation of the next generation

of experiments beyond detection, it is of interest to explore the transport signatures

associated with dynamical manipulation of MZMs, such as braiding operations, for

which several theoretical implementation proposals already exist [39,40].

As a consequence of the correspondence between topological classification and the

presence of gapless boundary modes, scattering matrices can provide an alternative tool

in the identification of topological phases [41–43]. Indeed, scattering matrices provide

alternative topological indexes for all symmetry classes present in the so called 10-fold

way [44], providing a complete classification of the zoo of possible symmetry protected

topologically non-trivial states of matter. This approach is particularly applicable to

the identification of the additional topologically distinct phases that arise in systems

subjected to a source of periodic driving. Such Floquet topological systems attract

interest due to the ability to manipulate their properties and induce phase transitions

by simple changing the driving frequency [45–51]. However, unlike their stationary

counterparts, the original topological invariants associated with the eigenstates of the

bulk system can fail to capture the behaviour at the boundary [47, 52, 53]. Despite
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this, stroboscopic scattering matrices, defined by only turning on the coupling to

external leads after regular intervals, remain sensitive to the existence of gapless modes

and are hence an indispensable tool in the classification of such driven systems [53].

However, the exact relationship between this fictitious stroboscopic scattering setup

and the electronic conductance that would be accessible in potential experiments, with

constantly coupled leads, remains unclear and hence is one of the topics addressed in

this work.

In addition to the emergence of additional topological features in periodically driven

systems, it is also of interest to consider the transport properties associated with the

time dependent manipulation of the topological excitations existing in static systems.

When connected to external baths of particles, the slow driving of a quantum system is

known to stimulate the transition of, or pump, both particles and energy between the

baths, even in the absence of potential or temperature biases [54,55]. These geometric

contributions to the transport are intricately connected to the Berry phase accumulated

during the periodic manipulation of a quantum state [56]. This contribution takes on

a renewed significance in systems for which the dynamical operations in question are

topologically protected, such as the exchange of Majorana zero modes [57] which is the

chosen example addressed in this work.

Geometric contributions to heat transport are also known to have a profound impact

upon the thermodynamic properties of driven mesoscopic systems. Specifically, they

have been shown to result in corrections to steady state fluctuation theorems, that

quantify the likelihood of anomalous heat transfer against a thermal gradient and

are of fundamental importance to understanding the second law of thermodynamics

on a mesoscopic scale [58–62]. The potential for topologically protected transport
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contributions, and consequently the possibility of driving a highly controlled heat flux

against a thermal gradient, means that it is also of interest to consider the performance

of adiabatically driven quantum systems as thermal machines [63–66] and consequently

this forms the final focus of this thesis. The ability to utilise the flow of heat to

perform useful work or, conversely, use the external driving in order to refrigerate at

the nanoscale is of fundamental importance to the development of a host of quantum

technologies [67–71]. The highly robust nature of topologically protected operations

adds an additional desirable facet to the operation of such a thermal machine.

Structure of Thesis

The work in this thesis addresses themes concerned with the connection between

transport properties and periodically driven topological systems, using scattering

matrices as the central tool. It is divided into two main parts. Part I introduces the

background theoretical framework required to explore the properties of the topological

superconducting systems analysed in Part II, in which the culmination of my original

studies of such systems are presented. Specifically, Chap. 2 will introduce the general

notion of topology in condensed matter physics, before focusing upon the emergence of

Majorana zero modes in topological superconducting systems. Chap. 3 then provides

an outline of how we can study the transport properties of such systems by introducing

Landauer-Büttiker theory and the scattering matrix formalism. This formalism is

then extended for application to both superconducting and periodically driven Floquet

systems. We will also explore how the underlying symmetries of the scattering matrix

can be exploited for the classification of topological phases. The fluctuations theorems

describing the work done by an isolated system as well as the heat exchange between
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reservoirs are introduced in Chap. 4.

Chap. 5 is concerned with studying the transport properties of the additional

topological phases that arise due to external driving and focuses on the example of a

one-dimensional superconducting nanowire, periodically driven to host both Majorana

zero and π modes. We compare the electronic conductance accessible in transport

experiments with constantly coupled leads, with the conductance defined using the

stroboscopic scattering matrix, formulated by considering pulse-like coupling at periodic

intervals. In this way, we shed light upon the connection between the scattering matrix

topological invariants used to classify Floquet systems and the raw DC conductance.

Chap. 6 centres around the transport processes induced by performing a Majorana

braiding operation, when coupled to external fermionic reservoirs. Using a scattering

matrix approach, we analyse the full counting statistics of both the heat and charge

transport driven by the process and hence identify geometric contributions that share

the topological protection of the braiding operation. The calculation of the full

probability distribution describing the flow of heat, allows for the analysis of the relevant

fluctuation theorem for this driven system. Finally, in Chap. 7, the discussion of the

Majorana braiding protocol is extended to assess its performance as a quantum thermal

machine.
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Part I

Theoretical Framework
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Chapter 2

Topology in Condensed Matter

Physics

2.1 Topological band theory

The topological classification of two geometrical objects concerns whether they can be

smoothly transformed into one other, that is, without the alteration of some global

property such as the number of holes [8, 9, 13]. Within the realm of mathematics this

notion can be illustrated by considering the simple structures of a sphere and torus.

The hole in a torus cannot be created by continuous deformations of the sphere and

hence these two objects are topologically distinct [72]. However, the torus belongs to

the same topological class as a coffee cup, since they share the same number of holes.

The number of holes thereby defines what is known as a topological invariant; an integer

value, determined by a global property of the system, that cannot be changed under

smooth deformations [73].

The concept of topological classification can also be extended into a condensed
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2.1. Topological band theory

matter setting and, in particular, can be applied to crystalline systems that exhibit

translational invariance. This translational symmetry allows the system to be described

in terms of a Bloch Hamiltonian H(k) acting within a single unit cell of the crystalline

structure, where k is the periodic crystal momentum defined within the Brillouin

zone. The eigenstates, or Bloch states |um(k)〉, of this Bloch Hamiltonian then define

the possible electronic states of the system, with the corresponding eigenvalues εm(k)

describing energy bands that together form the band structure [74], each labelled by a

band index m = 1, 2, 3, . . .. Therefore, within the context of condensed matter physics,

two quantum systems which exhibit a finite energy gap between the highest occupied

band and lowest empty excited state band are said to be topologically equivalent if their

Bloch Hamiltonians can be adiabatically deformed into one another without closing this

gap [8,9,13]. Each topologically distinct phase is characterised by some integer invariant

quantity n ∈ Z that depends upon the topological structure of the Bloch wavefunctions

in momentum space.

One important quantity, crucial in the determination of such topological invariants,

is the Berry phase γm [75]. This is the phase factor that, in addition to the dynamical

phase γdyn
m = −

´
εm(k(t))dt, is accumulated as an eigenstate is adiabatically taken

around some closed path C in parameter space. The Berry phase is a purely geometric

quantity and can be expressed as a closed contour integral of the so-called Berry

connection Am(k) = i 〈um(k)|∇k |um(k)〉 [76]:

γm =

˛
C

dk · Am(k). (2.1)

The Berry connection can also be used to construct a gauge invariant quantity known

as the Berry curvature Ωm = ∇k ×Am. The flux of this quantity passing through the
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2.1. Topological band theory

entire Brillouin zone gives us our topological classification of the eigenstate |um(k)〉,

known as the Chern invariant

Chm =
1

2π

ˆ
BZ

dk Ωm(k). (2.2)

In the case that the eigenstate in question is topologically trivial, and hence the Berry

connection Am(k) exhibits no singularities over the entire Brillouin zone, the Chern

number can be evaluated via Stokes’ theorem, with the periodicity of the Brillouin zone

resulting in a vanishing integral and Chm = 0. In the case that there exists a singularity

in Berry connection at some point in a region R of the Brillouin zone, then we can

perform a gauge transformation |um(k)〉 → eiφm(k) |um(k)〉 such that this singularity is

removed. This results in a subsequent transformation of the Berry connection:

A′m(k) = Am(k)− ∂kφm(k), (2.3)

and Stokes’ theorem gives us a Chern number of

Chm =
1

2π

ˆ
∂R

dk · ∂kφm(k), (2.4)

where ∂R is the boundary of R. Since our choice of gauge eiφm(k) is a unique function

on ∂R, the value of this integral must be 2πN with integer N and consequently we have

that Chm ∈ Z [8, 73, 76]. The fact that the Chern number is restricted to take integer

values means that under continuous deformations of the Hamiltonian, which maintain

the energy gap between bands and result in continuous changes to the Berry curvature,

it cannot change. Only when the energy gap separating εm from a neighbouring band
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2.1. Topological band theory

closes, at which point the Berry connection is not well defined, can the Chern number

be altered. We hence see that Chm behaves like a topological invariant.

The connection between topological spaces and the band structure of some Bloch

Hamiltonian H(k) can be visualised in the case of a generic gapped two level system.

The general form of the Hamiltonian describing such a system can be expanded in the

basis of Pauli matrices as

H(d) = dxσx + dyσy + dzσz = d · σ, (2.5)

where d ∈ R3 and |d| 6= 0 in order to avoid the degeneracy in the energy spectrum

occurring at the origin, so that the system remains gapped. For now, we do not specify

the spatial dimension of the system in question and hence do not include the wave

vector dependence of d. Labelling the two eigenstates of this system as |±〉, one can

show that, in the parameter space defined by the vector d, the corresponding Berry

curvatures can be calculated as [76,77]

Ω±(d) = ± d|d|
1

2d2
. (2.6)

This corresponds to the field of a point-like monopole source of Berry curvature,

emanating from the origin of our parameter space.

As an example of such a two band system, we can consider the case of an electron

with two possible internal states, hopping on a translation invariant 2D lattice. The

internal states may correspond to electron spin or some sublattice index in the case

that the electron is spin polarized. The function d(k) now maps each 2D wave vector

k = (kx, ky) to a 3D vector in the parameter space defined by d. Due to the periodicity
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2.1. Topological band theory

of the crystal momentum, as we sweep k through the Brillouin zone the endpoints of

the vector d(k) map out a deformed torus in R3 \ 0. The value of the Berry curvature

flux passing through the torus, defined by the mapping d(k) over the Brillouin zone,

is then 0 in the case that the monopole source at the origin lies outside of the torus

and 2πN , with N ∈ Z, if the origin is contained within the torus. This results in

quantized integer values of the Chern number. Furthermore, we can see that deforming

a torus into one with a different Chern number necessarily requires that the surface

intersects the origin, corresponding to the point at which the band gap closes. Hence,

we can visualize the protection of the Chern number under deformations that preserve

the energy band gap which separates distinct topological phases.

2.1.1 Quantum Hall effect

The first example of a topologically non-trivial insulating state was discovered in

1980, in the form of the integer quantum Hall effect (IQHE) [4]. Such an effect is

exhibited in a two-dimensional electron gas subjected to a strong magnetic field, acting

perpendicularly to the plane. The action of the magnetic field, B, is to force electrons in

the bulk of the material to perform quantized circular orbits with a cyclotron frequency

ωc = eB/me, where e and me denote the electron charge and mass respectively. The

band structure of the bulk then takes the form of flat Landau levels with energies

given by εm = ~ωc(m + 1/2). In the case that N of these Landau levels are filled and

the remaining levels are empty, the Fermi energy lies in a gap in the band structure

and we have an insulating Hamiltonian for which we can calculate the Chern numbers

associated with each band. In a finite quantum Hall system, states close enough to the

edges have energy bands which are deformed by the effects of the confining potential and
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2.1. Topological band theory

hence cross the Fermi energy. Classically, we can imagine that electrons at a distance

from the edge that is smaller than their cyclotron orbit radius are reflected by the

surface and forced to skip along the boundary in a single direction. These conducting

states, bound to the edges of the bulk insulating system and forced to propagate in a

single direction, are known as chiral edge modes. As a consequence, one can show that

the Hall conductance, dictating the current that flows perpendicularly to an applied

voltage, takes quantized values [5]:

σxy = N
e2

h
, (2.7)

where N is the number of occupied Landau levels. It can also be shown that N

corresponds exactly to the sum of the Chern numbers for each of the occupied bands

of the system [6]. Consequently, each allowed quantized value of the Hall conductance

corresponds to the system being in a distinct topological phase.

2.1.2 Bulk-boundary correspondence

The existence of conducting states at the edges of bulk insulating systems, such as those

appearing in the 2D quantum Hall state, constitutes a universal property of non-trivial

topological phases. This correspondence between the topological classification of the

energy bands of a bulk insulating system and the existence of edge modes is known

as bulk-boundary correspondence [11]. The emergence of such gapless edge states can

be understood by considering the interface of crystal structures of differing topologies.

Since we have seen that topological invariants can only change upon the closure of the

bulk band gap, gapless energy modes must exist somewhere within the interface over

which the topological invariant changes. Due to the insulating nature of the bulk on
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2.1. Topological band theory

either side of such an intersection, these conducting states are localized at the interface

and decay exponentially into the bulk. A more detailed derivation of the existence of

such modes is included in Sec. 2.2, where we study a specific example of a topologically

non-trivial phase in more detail.

2.1.3 The role of symmetries

Although the concept of bulk-boundary correspondence is a feature universal to phases

of matter exhibiting a non-trivial topology, the nature of the topological invariants

used to classify these phases are dependent upon the system in question. In particular,

it is the presence or absence of the three fundamental Hermitian symmetries in the

system’s Hamiltonian, along with the dimensionality of the system in question, that

determine the possible topologies of the occupied bands [15,44]. These three symmetries

consist of two anti-unitary operators, time-reversal (T ) and particle-hole exchange (C),

which can either square to 1 or -1, along with the unitary operator representing chiral

symmetry (χ) which always squares to 1. It can be shown that [8, 9], in the absence

of these symmetry constraints, the only possible topologically non-trivial state, in up

to three dimensions, is that of the quantum Hall state in 2 dimensions with an integer

topological invariant given by the Chern number defined previously. In other words,

in 1D and 3D systems for which all three fundamental symmetries can be broken, all

gapped Hamiltonians can be deformed into one another without closing the bulk gap.

The importance of symmetry on topological classification can be illustrated by

considering what happens to a 2D insulating system in the presence of time-reversal

symmetry [78, 79]. The time-reversal symmetry operator commutes with the Bloch
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2.1. Topological band theory

Hamiltonian so that

T H(k)T −1 = H(−k). (2.8)

In the case of a system containing spin-1
2

electrons, the relevant time-reversal operator

is given by T = iσyK, where σy represents the second Pauli matrix acting on the spin

degree of freedom, K is the complex conjugation operator and we see that T 2 = −1.

The symmetry of such a system means that for every eigenstate |un(k)〉 of the Bloch

Hamiltonian, its orthogonal, time-reversed partner T |un(k)〉 is also an eigenstate with

the same energy. This implies that every energy eigenstate of such a system is two-

fold degenerate, known as Kramers degeneracy. Each Kramers pair can be denoted as∣∣uIn(k)
〉
,
∣∣uIIn (k)

〉
and can be used to define corresponding Chern numbers ChI and

ChII . One can easily show that under time-reversal the Berry curvature transforms as

Ωm(k)→ −Ωm(−k) and hence time reversal symmetry ensures that ChI + ChII = 0,

so that the total Chern number of the occupied bands always vanishes. Despite this,

the Chern numbers associated with the Kramers pairs can be used to define a new Z2

topological invariant that changes sign upon the closing of the energy gap and hence

can be used to indicate the topology of each phase. For a time-reversal invariant system

this index can be defined as

ν = (−1)ChI = (−1)ChII . (2.9)

A topological invariant of this type is restricted to take values of ±1 and consequently,

such a system can only exhibit two topologically distinct phases.

Such time-reversal symmetric systems, when in the topologically non-trivial phase,

will exhibit two gapless modes at each edge of the system. These so called helical edge
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2.1. Topological band theory

Symmetry Dimension
Class χ C T 0 1 2 3

A 0 0 0 Z 0 Z 0
AIII 1 0 0 0 Z 0 Z
AI 0 0 1 Z 0 0 0

BDI 1 1 1 Z2 Z 0 0
D 0 1 0 Z2 Z2 Z 0

DIII 1 1 -1 0 Z2 Z2 Z
AII 0 0 -1 2Z 0 Z2 Z2

CII 1 -1 -1 0 2Z 0 Z2

C 0 -1 0 0 0 2Z 0
CI 1 -1 1 0 0 0 2Z

Table 2.1: Classification of topological phases depending upon the symmetry class and
number of spatial dimensions. For each of the possible classes the absence of the chiral
(χ), particle-hole (C) and time-reversal (T ) symmetries are denoted by 0, whereas their
their presence is indicated by a ‘±1’ depending on whether the operator in question
squares to ±1. For each combination of symmetries and dimensionality, the possibility
of the existence of a topologically non-trivial phase is indicated by the corresponding
type of topological invariant. A ‘0’ denotes the case for which only the trivial phase is
present.

modes are counter-propagating and have opposite spins, meaning that although the

Hall conductivity of the sample vanishes, there is instead a net spin Hall conductivity,

leading such systems to be known as quantum spin Hall insulators [79].

This example provides a clear demonstration of how adding certain symmetries to a

system can alter the nature of the topological phases that it can exhibit. We will study

the effects of the particle-hole symmetry present in superconducting systems in the

following section. One can show that it is possible to invoke 10 possible combinations

of the three fundamental symmetries mentioned previously and for each it is possible

to determine the nature of the topological invariant present depending on the spatial

dimension. The result is a periodic table of invariants known as the ‘Ten-fold way’

[15,44,80] which is displayed in Table 2.1.
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2.2. Kitaev chain

2.2 Kitaev chain

The work in this thesis is focussed upon the nature of topological phases within

superconducting systems and as such we here outline one of the simplest toy models

that can be used to illustrate their emergence: the Kitaev chain [18, 81]. The model

describes a system consisting of a 1D chain of N fermionic sites, each of which can be

occupied by an electron of only one fixed direction of spin. The system is governed by

the following Hamiltonian:

H =
∑
j

(
− µ(a†jaj −

1

2
)− w

2
(a†jaj+1 + a†j+1aj) +

∆

2
ajaj+1 +

∆∗

2
a†j+1a

†
j

)
, (2.10)

where µ gives the on-site potential strength, w ≥ 0 the nearest neighbor hopping

amplitude and ∆ = |∆|eiθ the superconducting gap. The operators a†j and aj denote

the fermionic creation and annihilation operators acting on the site j = 1, . . . , N .

2.2.1 Energy spectrum of the bulk

Since topological phase transitions occur when the energy gap of the bulk system

closes, it is useful to analyse the bulk energy spectrum in order to determine in which

regimes of the Hamiltonian parameters we should expect non-trivial topological features

to be present. To this end we eliminate the boundaries of the Kitaev chain and

assume periodic boundary conditions. In this situation, the system has a translational

symmetry |j〉 → |j + 1〉 and the momentum k is a conserved quantum number with

allowed values 2πn/N , where n = 1, ...N . The creation and annihilation operators in
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2.2. Kitaev chain

momentum space are given by

ak =
1√
N

N∑
j=1

e−ikjaj. (2.11)

In momentum space, the Kitaev Hamiltonian can then be expressed in Bogoliubov-de

Gennes (BdG) form:

H =
1

2

∑
k

A†kHBdG(k)Ak, HBdG(k) =

 εk ∆̃∗k

∆̃k −εk,

 (2.12)

where εk = −w cos k − µ, ∆̃k = −i∆ sin k and we have introduced the two-component

operator A†k = (a†k, a−k). The BdG Hamiltonian HBdG, is symmetric under the exchange

of the particle and hole degrees of freedom. This particle-hole symmetry is captured by

the anticommutation of the BdG Hamiltonian with the antiunitary operator C = σxK,

where K is the complex conjugation operator:

CHBdG(k)C−1 = −HBdG(−k). (2.13)

This symmetry results in a symmetric energy spectrum around E = 0, with a dispersion

relation given by [20]

E±(k) = ±
√

(w cos k + µ)2 + ∆2 sin2 k, (2.14)
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2.2. Kitaev chain

and with corresponding eigenstates taking the form

ψ+ =

 uk

v∗−k

 , ψ− = C

u−k
v∗k

 =

 vk

u∗−k

 . (2.15)

Hence, particle-hole symmetry in this system means that any excitation at energy E

is necessarily accompanied by a corresponding excitation at energy −E. Diagonalizing

the Hamiltonian,

H =
1

2

∑
k

E+(k)α†kαk + E−(k)α̃†kα̃k =
∑
k

E+(k)α†kαk, (2.16)

we see that these excitations take the form of Bogoliubov quasiparticles, αk, α̃k, which

consist of a linear combination of particle and hole operators:

αk = u∗kak + v−ka
†
−k and α̃k = v∗kak + u−ka

†
−k. (2.17)

From these expressions it is evident that the positive and negative energy excitations,

αk and α̃k respectively, are related as αk = α̃†−k and hence a special case arises when

E± = 0, k = 0 and the operators define a particle that is its own anti-particle, otherwise

known as a Majorana zero mode.

Such special points occur when the bulk energy gap closes which, from Eq. 2.14,

we see occurs when the on-site potential is set to µ = ±w. Since the regimes for which

µ < −w and µ > w are related by the particle-hole symmetry operator C, it seems

that the system exhibits two distinct gapped phases for parameter values |µ| < |w| and

|µ| > |w| respectively. However, in order to see that these two regimes do indeed have

distinct topologies, we require information beyond the bulk spectrum. In order to see
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������

Figure 2.1: Band structure of the 1D Kitaev chain for several values of the parameters
(µ,w,∆), including at the values for which a topological phase transition occurs: µ =
±w. For the points away from the phase transition, the path traced out by the vector
h(k) (Eq. 2.18) on the unit sphere S2 as k is swept through the Brillouin zone is also
plotted and illustrates the two possible, topologically distinct, trajectories.

this, it is useful to write the BdG Hamiltonian HBdG in the form

HBdG(k) = h(k) · σ, (2.18)

where σ = (σx, σy, σz) is the vector of Pauli matrices and h(k) = (hx(k), hy(k), hz(k))

with components given by

hx(k) =
Re ∆̃k

E+(k)
, hy(k) =

Im ∆̃k

E+(k)
, hz(k) =

εk
E+(k)

. (2.19)

Since |h(k)|2 = 1 when the spectrum is gapped, this vector maps a given wavenumber

k to a point on the surface of a 2D unit sphere S2. Sweeping the value of k through
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2.2. Kitaev chain

the Brillouin zone −π < k ≤ π then corresponds to tracing out a path on the surface

of this sphere. The particle-hole symmetry of our Hamiltonian results in the following

constraints on the components of the vector h(k):

hx,y(k) = −hx,y(−k), hz(k) = hz(−k). (2.20)

As a consequence, the mapped path of the Brillouin zone is constrained to pass through

one of the poles of the sphere at both k = 0 and k = π. This results in paths with

two distinct topologies: those passing through the same pole at both k = 0 and k = π,

corresponding to paths that can be continuously deformed to a single point, and those

passing through opposite poles that cannot. These two scenarios are illustrated in Fig

2.1 and can be distinguished by the Z2 topological index [20]

ν = sgn[ε0επ] = −sgn[(w + µ)(w − µ)]. (2.21)

Since w ≥ 0 by definition, we find that ν = −1, and hence the system exhibits a

non-trivial topology, when −w ≤ µ ≤ w.

The BdG Hamiltonian describing the bulk system can further be used to study the

nature of the transition points between distinct topological phases and hence shed light

upon the bulk-boundary correspondence introduced in Sec. 2.1.2 [82, 83]. Considering

the case of µ = −w, at which the bulk energy gap closes for k = 0, the Hamiltonian

can be linearly expanded as

HBdG(k) ≈ mσz + ∆kσy, (2.22)
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2.2. Kitaev chain

Figure 2.2: (a) Spatial dependence of the mass parameter m(x) appearing in the
linear expansion of the Kitaev chain Hamiltonian (Eq. 2.23), alongside the spatial
dependence of the zero energy Majorana mode Ψ(x). (b) Sketch of the interface between
trivial and topological Kitaev chains. The orange circles represent the fermionic sites,
each containing two red Majorana modes. The coupling between the Majoranas are
illustrated by the blue lines, leaving the uncoupled green zero mode localized at the
interface.

where m = −w − µ. We see that, close to the gap closure, the system is described

by a ‘Dirac Hamiltonian’ which is linear in k and includes a ‘mass’ parameter m, the

magnitude of which corresponds to the size of the band gap. We notice that m changes

sign across the topological phase transition, so that m > 0 corresponds to the trivial

phase and m < 0 when the system is topological. Consequently, the interface between

two different phases can be described by a mass parameter that varies continuously in

space and changes sign at some point, as sketched in Fig. 2.2. In real-space, the Dirac

Hamiltonian takes the form

H(x) = m(x)σz − 2∆σyi∂x, (2.23)

where m(x)→ ±m for x→ ±∞ and m = 0 at the domain wall corresponding to x = 0.

Since we know that gapless zero energy Majorana modes exist for m = 0, we can study
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2.2. Kitaev chain

the spatial dependence of such states by solving H(x)Ψ(x) = 0. The solutions of this

expression take the form

Ψ(x) = exp

(
±
ˆ x

0

m(x′)

2∆
dx′

) 1

±1

 . (2.24)

The fact that m(x) changes sign at the interface results in only one of these two solutions

being normalizable and hence physical. This solution takes the form of a wavefunction

centered at the interface, which decays exponentially on both sides. Furthermore, in

the case that m(x) does not change sign, no zero-energy normalizable solution exists.

This demonstrates the emergence of localized zero energy excitations at the boundary

between two phases of differing topologies. This analysis can be extended to any

topological system in order to demonstrate the universality of the principle of bulk-

boundary correspondence.

2.2.2 Majorana zero modes

In order to highlight the physical consequences of the existence of a non-trivial

topological phase in the Kitaev wire, it is instructive to assign to each fermionic site in

the Kitaev chain a pair of Majorana operators defined as [18]

γ2j−1 = ei
θ
2aj + e−i

θ
2a†j, γ2j = i

(
ei
θ
2a†j − e−i

θ
2aj

)
, (2.25)

satisfying the relations

γ†j = γj and γiγj + γjγi = 2δij. (2.26)
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2.2. Kitaev chain

Written in terms of these newly defined operators the Kitaev chain Hamiltonian takes

the form

H =
i

2

N−1∑
j=1

(
− µγ2j−1γ2j +

1

2

(
w + |∆|

)
γ2jγ2j+1 +

1

2

(
− w + |∆|

)
γ2j−1γ2j+1

)
. (2.27)

In this form, two limiting cases that highlight the distinct topological phases evident

in this system become manifest. The first is the trivial phase for which |∆| = w = 0,

µ < 0 and the Hamiltonian becomes

H = −µ
N−1∑
j=1

(
γ2j−1γ2j

)
= −µ

N∑
j=1

(
a†jaj −

1

2

)
. (2.28)

Here, we see that in this case only Majoranas belonging to the same fermionic site are

coupled. This situation is illustrated in Fig. 2.3(a) and has a ground state corresponding

to the situation where every fermionic site is empty. If instead we consider the case

where |∆| = w > 0 and µ = 0, then

H = iw
N∑
j=1

γ2jγ2j+1 = 2w
N−1∑
j=1

(
ã†j ãj −

1

2

)
. (2.29)

In this case, only Majoranas from neighbouring sites are coupled and the Hamiltonian

is diagonalized by alternative creation and annihilation operators defined as ãj =

1
2
(γ2j + iγ2j+1) and ã†j = 1

2
(γ2j − iγ2j+1). This is the situation shown in Fig. 2.3(b).

Consequently, the Majorana operators localized at each end of the wire, γ1 and γ2N

remain uncoupled to the bulk of the chain and do not appear in the Hamiltonian. The

system is now in the topological phase, characterised by the existence of these zero

energy excitations at the system boundaries. These two unpaired Majorana operators
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2.2. Kitaev chain

Figure 2.3: Schematic illustration of the two limiting cases of the Kitaev Hamiltonian
for (a) |∆| = w = 0, µ < 0 and (b) |∆| = w > 0, µ = 0. In the former limit, Majoranas
from the same fermionic site are coupled and the system exhibits a unique trivial ground
state. In the latter, coupling between neighbouring sites leaves an unpaired Majorana at
each end of the chain, resulting in a topologically non-trivial ground state with two-fold
degeneracy.

define a non-local fermionic state, the occupation of which costs zero energy:

f =
1

2
(γ2N − iγ1). (2.30)

The ground state of the system is hence two-fold degenerate and spanned by the states

|ψ0〉 and |ψ1〉 = f † |ψ0〉 with opposite fermionic parity. The non-local nature of this

fermionic state, along with the non-Abelian statistical properties of the Majoranas,

make such systems appealing candidates for use as a topological qubit. These properties

will be discussed in more detail in the next section, but before this we would like to study

the behaviour of the Kitaev chain away from the two fully dimerized limits outlined

above.
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2.2. Kitaev chain

For arbitrary values of the Hamiltonian parameters µ, w and ∆, the Kitaev

Hamiltonian can be expressed in terms of the Majorana operators in a generic quadratic

form [18]:

H =
i

4

∑
l,m

Almγlγm with A∗lm = Alm. (2.31)

Such a Hamiltonian can be diagonalised by fermionic operators ã† that are constructed

as linear combinations of the operators associated with each site in the chain a†j. From

these one can construct associated Majorana operators γ̃
′
j, γ̃

′′
j , defined via the relations

ãj = 1
2
(γ̃
′
j + iγ̃

′′
j ) and ã†j = 1

2
(γ̃
′
j − iγ̃

′′
j ). In terms of these operators, the Hamiltonian

takes the form

H =
i

2

N∑
j=1

εj γ̃
′

j γ̃
′′

j =
N∑
j=1

εj

(
ã†j ãj −

1

2

)
. (2.32)

For values of the Hamiltonian parameters for which the bulk energy spectrum is gapped,

any zero energy mode of the finite system must be localized at the ends of the chain.

The particle-hole symmetry of the system also ensures that we chose zero energy states

to have a support on only even or odd Majorana states γj. As such, any potential edge

modes can be expressed in the general form

γ′ =
∑
j

(α′+x
j
+ + α′−x

j
−)γ2j−1, γ′′ =

∑
j

(α′′+x
−j
+ + α′′−x

−j
− )γ2j,

with x± =
−µ±

√
µ2 − w2 + |∆|2

w + |∆| .

(2.33)

These states are further subjected to boundary conditions enforced by the fact that it

is necessary for them to vanish beyond the boundaries of the Kitaev chain: α′+ + α′− =

α′′+x
−(N+1)
+ +α′′−x

−(N+1)
− = 0. Considering the two topologically distinct phases separated

by the closing of the bulk energy gap:
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2.2. Kitaev chain

• In the trivial phase, for |w| < |µ|, we see that either |x+| > 1 and |x−| < 1 or

|x+| < 1 and |x−| > 1. Consequently, in order to be localized at one end of the

chain, one of the coefficients α′+ or α′− must be equal to zero and hence cannot

satisfy the boundary conditions. As a result, zero energy edge states do not exist

in this phase.

• In the topological phase, for w > |µ|, we have that |x+|, |x−| < 1 so that γ′

is localized close to j = 1 and γ′′ close to j = N . In this case the boundary

conditions can be satisfied and hence Majorana zero modes exist in the whole of

this regime.

The persistence of the Majorana zero modes throughout the entire topological phase

can also be understood by considering the symmetry protection of these states. Due to

the particle-hole symmetry of the system and the resulting symmetric energy spectrum

around E = 0, any perturbation to the Hamiltonian that would move a state away from

zero energy individually is forbidden. Since the bulk spectrum is gapped throughout the

phase, the only possibility of removing zero energy states is to couple the two unpaired

Majorana states together. However, due to their localization at opposite ends of the

system, the strength of this interaction decays exponentially with the length of the

chain like e−N/ξ, where ξ is the Majorana coherence length, and hence can be assumed

negligible in the limit N � ξ.
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2.3. Majoranas in 2D superconducting systems

2.3 Majoranas in 2D superconducting systems

It can be shown that unpaired Majorana zero modes also arise in spinless 2D px + ipy

superconducting system described by a Hamiltonian of the form [17,20]

H =

ˆ
d2r

{
ψ†

(
− ∇

2

2m
− µ

)
ψ +
|∆|
2

[
eiφψ(∂x + i∂y)ψ +H.c

]}
, (2.34)

where ψ† is the creation operator for a spinless fermion with effective mass m, |∆|

determines the p-wave pairing amplitude and φ is the corresponding superconducting

phase. As in the case of the 1D analogue, when in the topological phase this system

is found to exhibit Majorana zero modes. In the 2D case, these Majorana states

are bound to the edges of topologically trivial regions within the superconductor

that are penetrated by an external magnetic flux and correspond to vortices in the

superconducting pairing parameter ∆ = |∆|eiφ [20, 84]. Several proposals of systems

that have the potential to exhibit such an exotic superconducting state have been

put forward. These include intrinsic realizations, such as the fractional quantum Hall

state at filling factor ν = 5/2 [17, 24] and the superconductors Sr2RuO4 [85, 86] and

CuxBi2Se3 [87, 88], in addition to hybrid metal or semiconductor systems which are

engineered to display the desired characteristics [89, 90], the basic principles of which

will be outlined in Sec. 2.6. Although such 2D systems are not the focus of this thesis,

they are useful for explaining the behaviour of Majorana zero modes under exchange

and braiding, processes which require more than one spatial dimension to occur.
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2.4. Exchange statistics of Majorana zero modes

Figure 2.4: Schematic illustrations of vortex-bound Majorana braiding processes in
a 2D topological superconductor. (a) demonstrates the phase factor acquired when
one vortex is taken in a circular path around another, whereas in (b) we see the
effect of directly exchanging the positions of two vortices, with the dotted lines
representing the branch cuts in real space needed to unambiguously define the phase of
the superconducting order parameter.

2.4 Exchange statistics of Majorana zero modes

2.4.1 Braiding MZMs in 2D

One of the most interesting properties of Majorana zero modes is the fact that they

exhibit non-Abelian statistics under the exchange of their positions [23,24,29]. In order

to demonstrate this, consider the setup illustrated in Fig. 2.4(a), consisting of a pair

of vortices in a 2D superconducting system. Each vortex hosts a MZM denoted γA and

γB which define fermionic creation and annihilation operators as

c†AB =
γA + iγB

2
, cAB =

γA − iγB
2

. (2.35)
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2.4. Exchange statistics of Majorana zero modes

We know that when particles obeying fermionic or bosonic statistics are exchanged

twice, the wavefunction of the resultant state is the same as that with which we started.

However, the non-locality of the creation and annihilation operators defined via the

separated vortices in a 2D p-wave superconducting system, together with the fact that

the system is confined to just two dimensions, means that this is not the case for the

exchange of Majorana zero modes. To see this we consider the following sequence of

processes [22]. We start initially with our vortices A and B as illustrated in Fig 2.4(a).

We then consider the arrival of a third vortex C which proceeds to move in a path

around vortex B before again moving far away, leaving us with our initial two vortices.

Such a process is equivalent to the double exchange of vortices B and C and hence,

under the assumptions of regular fermionic and bosonic statistics, we would expect the

initial and final states of the sytem to match. To see that this is not the case, we first

note that, due the Aharonov-Bohm effect, an electron or hole moving in one complete

circuit around a vortex in a superconductor containing a flux quantum Φ0 = hc/2e,

acquires a phase factor given by

e±
ieΦ0
~c = −1. (2.36)

Given that Majorana operators consist of a superposition of electron and hole states,

a vortex bound Majorana moving around another such state transforms as γ0 →

−γ0. Consequently, the process illustrated in Fig 2.4(a) results in the following

transformation of the fermionic operators defined by the vortices A and B:

c†AB =
γA + iγB

2
→ γA − iγB

2
= cAB,

cAB =
γA − iγB

2
→ γA + iγB

2
= c†AB.

(2.37)
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2.4. Exchange statistics of Majorana zero modes

We now consider the case that our system is initially in the state |i〉, corresponding to

the fermionic state defined by the Majorana operators γA and γB being empty, so that

|i〉 = |0〉 , cAB |0〉 = 0. (2.38)

Considering the transformation of the fermionic operators, the final state of the system

must satisfy

c†AB |f〉 = 0 =⇒ |f〉 = |1〉 ≡ c†AB |0〉 . (2.39)

Hence we see that the final state of the system is orthogonal to the initial state and

the Majorana zero modes behave as non-Abelian anyons. One should note here that

this operation does not alter the parity of the total system since occupation of the

fermionic state defined by γC and its necessary partner will simultaneously change as

a consequence of the exchange.

In order to determine the exact form of the unitary operator representing the single

exchange of two MZM hosting vortices, we consider the situation illustrated in Fig.

2.4(b) [23]. In order to unambiguously define the phase of the superconducting order

parameter φ, we introduce branch cuts connecting each of the vortices with the left

boundary of our system. We then take the superconducting phase to be single valued

away from these cuts and jumping by 2π as you move across the cuts. From Eq. 2.34

we see that a shift in the superconducting phase by δφ is equivalent to a wavefunction

transformation of the form ψ → eiδφ/2ψ. As a consequence, a phase shift of 2π due to

crossing a branch cut results in a sign change for any unpaired fermionic operators in

the system. Since they are linear superpositions of these fermionic operators, the same

applies to operators corresponding to MZMs. Considering the evolution of the branch
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2.4. Exchange statistics of Majorana zero modes

cuts as we perform a single exchange of two vortices as illustrated in Fig. 2.4(b) it

becomes clear that this process will result in just one of the MZMs crossing a branch

cut and hence being subjected to change of sign. Which of the two vortices experiences

the sign change will depend upon whether the braiding is performed in a clockwise

or anticlockwise direction in the 2D plane. The transformation corresponding to the

braiding of MZMs γA and γB therefore takes the form:

TAB :


γA → γB

γB → −γA
. (2.40)

From this transformation we can construct the corresponding unitary operator associ-

ated with the braiding UAB, such that UABγiU
†
AB = TAB(γi). This operator takes the

form

UAB =
1√
2

(1 + γBγA) = exp
(π

4
γBγA

)
. (2.41)

In the case of a system consisting of four vortices the MZMs can be combined to

define two fermionic states as c†AB = (γA + iγB)/2 and c†CD = (γC + iγD)/2. The three

operators corresponding to the braidings of neighbouring vortices can then be expressed
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2.4. Exchange statistics of Majorana zero modes

as matrices in the basis (|00〉 , c†AB |00〉 = |10〉 , c†CD |00〉 = |01〉 , c†ABc†CD |00〉 = |11〉):

UAB = exp
(π

4
γBγA

)
= exp

(
− iπ

4
I ⊗ σz

)
,

UCD = exp
(π

4
γDγC

)
= exp

(
− iπ

4
σz ⊗ I

)
,

UBC = exp
(π

4
γCγB

)
=

1√
2



1 0 0 −i

0 1 −i 0

0 −i 1 0

−i 0 0 1


.

(2.42)

In matrix form the non-trivial nature of the braiding operators becomes evident and

in particular we see that the unitary operators UAB and UBC do not commute, so

that UABUBC 6= UBCUAB. This further illustrates the fact that such single exchange

processes are indeed non-Abelian.

2.4.2 Braiding MZMs in 1D

Although the braiding of two MZMs requires a minimum of two spatial dimensions in

order to perform without collisions, the process can also be achieved using a network of

one-dimensional superconducting nanowires [91]. The simplest such network required

to perform a braiding operation takes the form of a T-junction, as illustrated in Fig.

2.5(c). It is the exchange of MZMs hosted in such 1D structures that will form the focus

of the majority of the work in this thesis. The T-junction consists of the three distinct

wires meeting at a single junction. Each wire is described by a Kitaev Hamiltonian

(Eq. 2.10) and can either reside in the topological or trivial phase depending on the

on-site potential strength µ. Since MZMs remain localized at the boundaries between

phases of differing topologies, tuning µ locally along the wire provides a mechanism for
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Figure 2.5: (a) Illustration of how tuning the on-site potential strength µ locally along
the wire can be used to control the size of the topological region and hence the location
of the Majoranas. (b) The coupling between the Majoranas at the junction between
two superconducting nanowires in the topological regime results in the formation of a
finite energy fermionic state at the interface. (c) Demonstration of how a T-junction
configuration of 1D nanowires can be used to perform an exchange of the Majoranas
γ1 and γ2. The black arrows on each topologically non-trivial wire are used to define
the phase of the superconducting order parameter ∆.

transporting Majoranas. This process is sketched in Fig. 2.5(a). Of course, moving an

unpaired MZM towards the other end of the wire in this way will eventually result in a

finite coupling between the MZMs at opposite end of the wire, thereby combining them

into an ordinary finite-energy fermion. However, this scenario can be avoided in the

case where we have two topological superconducting nanowires meeting at a junction,

as shown in Fig. 2.5(b). This situation results in a finite coupling between the MZMs

meeting at the junction. If the phase of the superconducting parameter is given by

φL/R for the left/right chains, then this coupling can be shown to take the form [92,93]

Hcoup ∼ −
i

2
cos
(φL − φR

2

)
γLB,Nγ

R
A,1. (2.43)
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Consequently, in general these MZMs combine to form a finite energy fermionic state

that will not interact with the MZM we would like to move towards the junction. We

note however that an exception occurs in the case that φL − φR = π, in which case the

MZMs at the junction are decoupled.

Consider now the T-junction of three Kitaev chains as illustrated in Fig. 2.5(c).

Initially both of the horizontal chains are assumed to be in the topological state and

the vertical chain is trivial. Due to the universality of the braiding statistics, we are free

to restrict our Kitaev Hamiltonian for each wire to be real as we perform the braiding.

This restricts the superconducting phases to either 0 or π. Since the superconducting

pairing term in the Hamiltonian gives us that |∆|eiφajaj+1 = |∆|eiφ+πaj+1aj we see that

in order to rigorously define the problem, the superconducting phase must be defined

relative to the direction in the wire for which the index j increases. For the setup

illustrated in Fig. 2.5(c), we define j to increase as we move rightward/upward and so

visualise the case that φ = 0 with rightward/upward arrows and conversely φ = π is

represented by leftward/downward arrows. The requirement that the coupling between

MZMs at the junction should remain non-zero then manifests itself as requiring that one

arrow should always point into the junction and one away from the junction throughout

the braiding process. As demonstrated in Fig. 2.5(c), exchanging the MZMs γ1 and

γ2 under this requirement results in a configuration for which the two arrows point in

the opposite direction to the original configuration. In order to complete the process, a

gauge transformation must then be performed to restore the Hamiltonian to its original

form. This is achieved by multiplying all creation operators by eiπ/2 = i, including

the operator defined by the unpaired MZMs: f † = (γ1 − iγ2)/2 → (γ2 + iγ1). This

corresponds to the transformation γ1 → γ2 and γ2 → −γ1, similar to that in the case
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of braiding vortices in 2D (Eq. 2.40). Hence, exchanging Majoranas hosted by 1D

superconducting nanowires results in the same non-Abelian operations achievable in

2D systems.

2.5 MZMs and quantum computation

Much of the excitement surrounding Majorana zero modes and their non-Abelian

statistics results from their potential use for performing topologically protected

quantum computation. A topological qubit can be implemented via a system consisting

of two pairs of MZMs which correspond to fermionic operators c†AB = (γA + iγB)/2 and

c†CD = (γC + iγD)/2. The four-fold degenerate ground-space is then spanned by the

eigenstates |00〉, |01〉, |10〉 and |11〉 defined above Eq. 2.42. The parity conservation

arising from the particle-hole symmetry of the superconducting system means that only

coherent superpositions of states sharing the same parity are allowed and hence we can,

without loss of generality, take the two states of our qubit system to be encoded as |01〉

and |10〉.

Crucially, since the MZMs are protected by the particle-hole symmetry of the system

and are spatially separated, the states of such qubits would be protected against local

perturbations at temperatures well below the superconducting gap ∆. Furthermore,

the requirement of fermionic parity conservation and the presence of the energy gap

constrain the unitary evolution associated with the braiding to operate within the

ground state subspace with fixed parity. These properties of the system completely

determine the form of the braiding evolution operators given in Eq. 2.42 and hence

render them independent of fluctuations in the driving process. The requirement

of parity conservation also prevents fluctuations in the qubit occupation, rendering
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its state immune to decoherence and circumventing the need for the error correction

schemes necessary for other proposed methods of quantum computation.

As an example of how braiding operations can be used to execute quantum

computational gates, we can once again consider the process illustrated in Fig 2.4(a).

One can show that [8], by braiding the third MZM γC in a complete circle around one of

the existing MZMs, one exchanges the states spanning the ground-space of the system,

corresponding to a NOT operation on the qubit:

U2
BC

|01〉

|10〉

 = i

|10〉

|01〉

 = iσx

|01〉

|10〉

 . (2.44)

Similarly, the protected exchange of pairs of MZMs can be used to execute the remaining

Pauli gates, σy and σz, in addition to the Hadamard gate H = 1√
2
(σx +σz). The action

of single-qubit quantum gates can be represented as rotations on the Bloch sphere,

which is the unit sphere spanned by the eigenstates of the qubit. In order to implement

arbitrary rotations of the single qubit state on the Bloch sphere one additionally requires

use of the T -gate:

T =

1 0

0 ei
π
4

 . (2.45)

Achieving universal quantum computation, with a fundamental advantage over its

classical counterpart, requires access to the T -gate, H-gate and the two-qubit controlled

NOT gate [94]. While the latter can be executed in a topologically protected way via a

combination of fermion-parity measurements and braiding [95], the same cannot be said

about the T -gate. While proposals of how to implement the T -gate upon Majorana

qubit systems do exist, via coupling to non-topological qubits for example [96], all
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require the breaking of the topological protection and hence represent a fundamental

limitation of this approach.

Despite the robust properties of Majorana qubit states and their manipulation,

this potential topological protection against computational errors is reliant upon the

maintenance of fixed fermionic parity in the superconducting system. Consequently,

this protection is lost if the system is subject to quasiparticle poisoning (QPP) where

single superconducting quasiparticles are able to tunnel into the host system from

the environment. QPP is ubiquitous in proposed realistic non-trivial superconducting

systems and hence poses a significant hurdle to performing protected computation

[97, 98]. Minimizing the risk of qubit decoherence relies on ensuring that braiding

processes are performed on timescales shorter than the quasi-particle poisoning time

τQP and hence understanding and potentially maximising this timescale is a subject of

significant interest [28, 99, 100]. On the other hand, the coherence of the qubit state

can also be lost if manipulations are performed fast enough to induce excitations out

of the degenerate ground-space. Avoiding such non-adiabatic processes requires that

braiding is performed over a timescale exceeding τ∆ = ~/∆, set by the superconducting

gap [25, 26]. These considerations present significant technological challenges in the

quest to harness the advantage of topologically protected quantum computation and

hence it seems the realization of such systems will likely need to be supplemented by

quantum error correction schemes [101–103].

2.6 Physical realization of Majorana zero modes

To conclude our discussion of Majorana zero modes, we here briefly discuss the

methods by which systems resembling Kitaev’s toy model for a 1D, spinless, p-wave
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Out[ ]=

Figure 2.6: (a) Sketch of the fundamental components necessary to realize Majorana
zero modes within a 1D spin-orbit coupled semiconducting nanowire, where B is
the strength of an external magnetic field. (b) Band structure corresponding to the
Hamiltonian of a spin-orbit coupled wire, Hwire, in the absence (red and blue parabolas)
and presence (green curves) of an external magnetic field. The parabolas are shifted on
the momentum axis by kSO = mα, where α is the spin-orbit coupling strength. When
the chemical potential µ lies in the gap induced by the magnetic field, the system is
effectively spinless. The addition of a proximity-induced superconducting pairing term
results in the phase diagram sketched in (c).

superconductor can be realized in practice. We will see that such a system can be

constructed by endowing a semi-conducting nanowire with three key ingredients [92,93]

(see Fig. 2.6(a)): spin-orbit coupling, proximity coupled s-wave superconductivity and

an external magnetic field strong enough so that the system can be approximated as

spinless.

Let us first focus upon the bulk Hamiltonian of a semi-conducting wire with spin-

orbit coupling, subjected to an external magnetic field of strength B [20]:

Hwire =

ˆ
dk

2π

[
ψ†(k)

( k2

2m
− µ+ αkσy +Bσz

)
ψ(k)

]
. (2.46)

Here, µ is the chemical potential, α denotes the strength of the spin-orbit interaction

and ψ†(k) = (ψ†↑(k), ψ†↓(k)), where ψ†σ(k) creates an electron with spin σ, effective mass
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m and momentum k. When the magnetic field is switched off, corresponding to B = 0,

the electronic band structure is given by the red and blue parabolas sketched in Fig.

2.6(b). These parabolas correspond to electrons with spin aligned along +y and −y

respectively and exhibit a crossing at the Kramers degenerate point k = 0 due the time-

reversal symmetric nature of the system. This degeneracy results in an even number

of pairs of Fermi points crossing the chemical potential µ. Upon the addition of a

superconducting pairing term, failure to lift this symmetry will result in two MZMs

at each end of our nano-wire. These states will subsequently interact and conspire

to remove the zero energy states from the system. Therefore, to have any hope of

engineering a system capable of hosting unpaired MZMs, one must introduce a time-

reversal symmetry breaking term in order to leave the system effectively spinless. This

can be achieved via the addition of a non-zero magnetic field, B 6= 0, resulting in band

energies

ε±(k) =
k2

2m
− µ±

√
(αk)2 +B2, (2.47)

illustrated by the green curves in Fig. 2.6(b). When the chemical potential µ lies within

this induced energy gap, our system can be considered spinless as desired. Upon the

addition of a superconducting pairing term to our system, this approximation can be

maintained by focusing on this lower band only, an approximation that is valid in the

limit B � ∆.

We next briefly outline how to manipulate our wire in order to induce the k-

dependent p-wave superconducting pairing present in the Kitaev chain Hamiltonian

and required to induce non-trivial topological phases in the system. It can be shown

[20, 90, 104], that by bringing a semi-conducting wire in close proximity with a bulk

s-wave superconductor, Cooper pairing can be induced within the wire, leading to the
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addition of an extra term to Hwire of the form

H∆ =

ˆ
dk

2π
∆
(
ψ↑(k)ψ↓(−k) +H.c.

)
, (2.48)

where ∆ denotes the pairing amplitude of the proximity coupled s-wave superconductor.

Rewriting the full Hamiltonian of the wire in terms of the eigenstates of the system

with ∆ = 0, which we denote ψ†±(k), reveals the outcome of the interplay between the

conventional superconducting pairing and spin-orbit interaction:

H̃ =

ˆ
dk

2π

[
ε+(k)ψ†+(k)ψ+(k) + ε−(k)ψ†−(k)ψ−(k)

+
∆p(k)

2

(
ψ+(−k)ψ+(k) + ψ−(−k)ψ−(k) +H.c.

)
+ ∆s(k)

(
ψ−(−k)ψ+(k) +H.c.

)]
,

(2.49)

with pairing coefficients given by

∆p(k) =
αk∆√

(αk)2 +B2
, and ∆s(k) =

B∆√
(αk)2 +B2

. (2.50)

The first line in this expression simply describes the band energies of the system,

whereas the second line encodes its proximity induced superconducting properties. We

see that, as a result of the spin-orbit coupling interaction present in the wire, the system

exhibits p-wave intraband pairing on top of the expected s-wave pairing term acting

between the two bands. Taking the limit of strong magnetic field B � ∆ is equivalent

to sending ψ− → 0, leaving a spinless system with p-wave pairing only which connects

smoothly to Kitaev’s toy model in the topologically non-trivial phase. Since the band

gap only closes when B =
√

∆2 + µ2 we conclude that the system is topological for
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field strengths satisfying

B >
√

∆2 + µ2. (2.51)

The phase diagram is sketched in Fig. 2.6(c). For values of B below this critical value,

the system can no longer be approximated as ‘spinless’ due to the increased influence

of pairing between bands, resulting in a trivial state.

Following the initial theoretical proposals, the hunt for topologically non-trivial

superconducting phases swiftly moved into the realm of experiments. Initial hybrid

devices consisted of InAs or InSb semiconducting nanowires proximity coupled to a

thin superconducting film of Al or Nb. [32, 105–108]. Such semiconductors have a

spin-orbit interaction sufficient to open an appreciable p-wave superconducting gap ∆p,

whilst being spin polarized by a magnetic field strength low enough to preserve the

superconductivity of the proximity coupled s-wave superconductor.

Early experiments were concerned with identifying zero voltage bias conductance

peaks by probing the superconducting nanowires using tunnelling spectroscopy tech-

niques when coupled to a normal metal lead. Such a feature in the conductance

spectrum would indicate the presence of localized states at the normal metal-

superconductor interface that facilitate the resonant Andreev reflection of incoming

electrons (see Sec. 3.3). Several studies reported evidence of such zero bias peaks

that were found to persist over a range of magnetic field strengths within the expected

topological regime [32, 105–107]. Such results were initially hailed as likely signatures

of MZMs. However, later studies quickly began to demonstrate that the emergence of

these features could also be accounted for by the existence of topologically trivial sub-

gap excitations, known as Andreev bound states (ABSs) [38,109–112]. Such states are

formed when confined electrons are subjected to multiple coherent Andreev reflection
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events and it has been demonstrated that such states are expected to exist within

the hybrid superconducting devices under consideration here due to, for example, the

presence of disorder [113] or the formation of quantum dots within the nanowire [37,114].

Furthermore, various mechanisms have been highlighted by which such states can

become pinned to zero energy and hence mimic many of the features attributed to the

presence of MZMs [38, 109–112]. As such, conclusive proof of the existence of MZMs

is still lacking and the quest to differentiate between MZMs and ABSs continues. The

focus of recent experiments is on probing the non-local nature of the exponentially

separated MZMs, by examining correlations in the conductance measured at either

end of the nanowire [115–117] or searching for signatures of the topological phase

transition [118–120].

The engineered 1D topological superconducting nanowires outlined in this section

also suffer from several technological challenges due to the fact that they require a high

level of control of the system parameters in order enter the topological regime. For

example, tuning the chemical potential using metallic gates is difficult due to screening

by the proximity coupled superconductor. Furthermore, the strong magnetic field

required can induce states within the superconducting gap, effectively softening the gap

and reducing the topological protection of the system [121]. In an attempt to circumvent

such issues, recent proposals have investigated a variety of 2D platforms for MZMs. For

example, the use of a 2D electron gas coupled to a pair of superconductors forming a

Josephson junction allows the onset of the non-trivial phase to be controlled via the

tuning of the phase difference across the junction, even in the limit of a weak magnetic

field [122]. Alternatively, it is hoped that 2D topological insulators hosting helical

edge modes may play host to MZMs without the requirement of an external magnetic
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field, potentially inducing a larger and more stable gap when proximity coupled to a

superconductor [123]. For a detailed review of recent experimental advances in the field,

see Refs. [108,121,124].
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Chapter 3

Landauer-Büttiker Theory of

Transport

3.1 Scattering theory

The Landauer-Büttiker scattering theory [125–128] provides a simple and effective tool

for describing the electronic transport properties of mesoscopic conducting systems

by mapping the process to a corresponding quantum-mechanical scattering problem

[129, 130]. The theory assumes that our mesoscopic system of interest is coupled to

N macroscopic particle reservoirs, as sketched in Fig. 3.1. These reservoirs act as a

source of electrons which, upon entering the mesoscopic sample, are either reflected

back into the reservoir from which they originated or transmitted into a different one.

Such a scattering theory of transport is valid in a low enough temperature regime so

that the phase coherence length, Lφ, is much larger than the size of the sample [130].

Consequently, scattering events can be considered coherent and energy conserving.

Under these conditions, electronic transport properties can be ascertained by observing
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3.1. Scattering theory

Figure 3.1: Mesoscopic sample coupled to multiple particle reservoirs (indexed α =
1, ...,N ) via conducting metal leads. Each reservoir is characterised by a temperature
and chemical potential, denoted Tα and µα respectively. The green (red) arrows indicate
the propagation direction of the incident (scattered) states in each lead, defined by the
creation operators â†α(E) (b̂†α(E)). The scattering matrix S(E) encodes the relationship
between the ingoing and outgoing operators at some energy E and its exact form
depends upon the physical properties of the mesoscopic sample in question.

the flow of electrons travelling towards or away from the scattering centre. The starting

point of determining transport properties via scattering processes is the form of the

eigenfunctions of ingoing and outgoing states in the leads connecting our sample to the

particle reservoirs. The leads are defined as open in the longitudinal direction, x, and

confined by some potential in the transverse direction, y. Such a situation results in

separable wave functions, in each lead j, of the form [130]

ψα(E, x, y) = φα,n(y)eikαx, (3.1)
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with wavenumber kj and transverse band number indexed by n. For simplicity, we will

henceforward focus on the case in which only one transverse band exists for each lead.

We denote wave functions propagating towards the scatterer, with positive wavenumber

k, as ψ
(in)
α and those leaving the sample with negative wavenumber as ψ

(out)
α .

In order to calculate the current flowing between the reservoirs, it is instructive to

use the second quantization formalism and define creation and annihilation operators

for particles in each of the leads. To this end, we use â†α(E) to represent an operator

creating an ingoing electron in the lead α, with wave function ψ
(in)
α (E) and b̂†α(E) for

the creation operator of a scattered electron in the state ψ
(out)
α (E). These operators are

subject to the usual fermionic anti-commutation relations:

â†α(E)âβ(E ′) + âβ(E ′)â†α(E) = δαβδ(E − E ′)

â†α(E)â†β(E ′) + â†β(E ′)â†α(E) = 0

âα(E)âβ(E ′) + âβ(E ′)â†α(E) = 0.

(3.2)

Similar relations hold for the outgoing operators b̂†α(E)/b̂α(E).

The scattering matrix S(E) is then defined as the linear operator mapping the vector

of ingoing annihilation operators to the vector of outgoing annihilation operators at

energy E: 
b̂1(E)

...

b̂N (E)

 = S(E)


â1(E)

...

âN (E).

 (3.3)

From the conservation of particle flux in the system, we have that the scattering matrix
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should be unitary:

S(E)S†(E) = I =⇒
N∑
β=1

|Sαβ(E)|2 = 1. (3.4)

In order to define the particle current flowing through the lead at some time t and lead

coordinate r = (x, y), it is first necessary to define field operators for electrons in the

lead α as,

Ψ̂α(t, r) =
1√
2π

ˆ ∞
0

dEe−i
E
~ t

(
âα(E)

ψ
(in)
α (E, r)√
~vα(E)

+ b̂α(E)
ψ

(out)
α (E, r)√
~vα(E)

)
, (3.5)

where vα(E) = ~kα/m denotes the electron’s velocity. The particle current flowing in

the lead α can then be expressed as [130–133]

Îα(t, x) =
i~
2m

ˆ
dy

(
∂Ψ̂†α(t, r)

∂x
Ψ̂α(t, r)− Ψ̂†α(t, r)

∂Ψ̂α(t, r)

∂x

)
. (3.6)

Upon inserting the definitions of the field operators, one finds that this expression

for current will include terms which depend on two energies E and E ′. However,

the situation can be significantly simplified by noting that when calculating observable

quantities, such as average electronic and heat currents and their higher order moments,

the corresponding expressions are dominated by terms for which the difference between

these energies is small: |E − E ′| � E ∼ µ0, where µ0 is the Fermi energy [132]. Under

this approximation, the energy dependence of the electron velocity follows vα(E) ≈

vα(E ′) and the particle current becomes

Îα(t) =
1

h

¨
dEdE ′ei

E−E′
~ t

(
b̂†α(E)b̂α(E ′)− â†α(E)âα(E ′)

)
. (3.7)
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In order to turn the particle current operator into a measurable quantity, one can

calculate its expectation value Iα = 〈Îα(t)〉, by taking the quantum statistical average

over the state of the ingoing electrons. Our approach relies upon the assumption that

the presence of the mesoscopic scattering sample does not affect the properties of the

macroscopic reservoir from which any electron approaching the scatterer has arrived.

Additionally, the reservoirs are assumed large enough to remain in their equilibrium

state at all times and are uncorrelated with electrons in different wires [130]. Under

these conditions, expectation values of ingoing particle operators take the form

〈â†α(E)âα(E ′)〉 = δαβδ(E − E ′)fα(E), (3.8)

where fα(E) denotes the Fermi-Dirac distribution function for electrons in the reservoir

α:

fα(E) =
1

1 + e
E−µα
kBTα

. (3.9)

Here, kB is the Boltzmann constant and µα and Tα represent the chemical potential

and temperature in the reservoir of interest respectively. Using the definition of the

scattering matrix given in Eq. 3.3, the expectation of the outgoing particle operators

can also be expressed in terms of the distribution functions for ingoing states:

〈b̂†α(E)b̂α(E ′)〉 =
N∑
β=1

N∑
γ=1

S∗αβ(E)Sαγ(E
′)〈â†α(E)âα(E ′)〉,

=
N∑
β=1

N∑
γ=1

S∗αβ(E)Sαγ(E
′)δ(E − E ′)δβγfβ(E).

(3.10)

Consequently, using the unitarity of the scattering matrix, the particle current can be
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expressed as

Iα =
1

h

ˆ
dE

N∑
β=1

|Sαβ(E)|2
(
fβ(E)− fα(E)

)
. (3.11)

Again using the fact that the scattering matrix is unitary, one can show that, in the

case of a static sample, this particle current obeys the conservation law

N∑
α=1

Iα = 0. (3.12)

Here, the positive direction of current flow is defined from the scatterer to the corre-

sponding reservoir. This conservation law demonstrates that there is no accumulation

of particles within the scattering centre.

The studies within this thesis are mainly be concerned with scattering systems

in contact with just two particle reservoirs, referred to as ‘left’ (L) and ‘right’ (R)

respectively. In this two-terminal scenario the scattering matrix will take the form

S(E) =

rLL(E) tLR(E)

tRL(E) rRR(E)

 . (3.13)

Consequently, we see that only scattering events involving the transmission of particles

between two different leads contribute to the current:

Iα =
1

h

ˆ
dET

(
fβ(E)− fα(E)

)
, (3.14)

with α 6= β = L,R and where T (E) = |tLR(E)|2 = |tRL(E)|2 is the transmission

probability between the two leads. The particle current can be used to calculate the

electronic current, IQα , flowing in each of the leads as IQα = eIα. This in turn can be
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utilised to find the differential conductance, Gα(Vα) = dIQα /dVα, for a voltage bias Vα

in the lead α. In the zero-temperature limit, this reduces to the well-known Landauer

expression of conductance [129,134]

GL/R(Vα) =
e2

h
T (Vα − µα). (3.15)

3.1.1 Scattering theory with superconductors

Here, we will outline how the scattering theory introduced in the previous section can

be extended to the case for which our mesoscopic sample is superconducting [135–139].

This will allow for the study of transport properties of topological superconducting

systems, such as the 1D Kitaev chain outlined in Sec. 2.2. The key difference that

arises when superconducting pairing terms are introduced into our system Hamiltonian,

is the need to treat particle and hole degrees of freedom explicitly due to the potential

for incoming electrons to be reflected into a hole and vice versa. Such an event results

in the injection of a Cooper pair into the superconducting sample and is known as

Andreev reflection [140]. This necessitates the inclusion of an additional index when

labeling the scattering states in each of the external leads. Concretely, we use â†αe and

â†
αh

to denote operators creating electrons and holes traveling towards the scattering

sample respectively. Similarly, b̂†αe and b̂†
αh

are used to describe the creation of the

corresponding scattered states. The particle-hole symmetry present in superconducting

systems dictates that the creation of a hole state at energy E, measured relative to the

chemical potential of the superconductor, is equivalent to the annihilation of an electron

with energy −E. This results in the following relationship between particle and hole
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operators [133,135]:

â†
αh

(E) = âαe(−E), b̂†
αh

(E) = b̂αe(−E). (3.16)

The relationship between the ingoing and scattered states in the leads is again encoded

within the scattering matrix, which is now extended to include the particle-hole degrees

of freedom, so that

b̂αγ (E) =
∑
δ=e,h

∑
β

Sαγβδ(E)âβδ(E). (3.17)

Transport quantities in the superconducting case can be calculated in much the

same way as the case for which the mesoscopic sample is a normal metal conductor.

However, now the relevant sign of contribution of the holes will depend upon whether

we are considering charge or energy currents. Focusing here upon the case of charge

current, the relevant operator can be expressed as [132]

Îeα(t) =
e

h

¨
dEdE ′ei

E−E′
~ t

(
b̂†αe(E)b̂αe(E

′)− b̂†
αh

(E)b̂αh(E ′)

− â†αe(E)âαe(E
′) + â†

αh
(E)âαh(E ′)

)
.

(3.18)

The quantum-statistical average of the products of creation and annihilation operators

for holes can be found by exploiting particle-hole symmetry:

fαh(E) =
〈
â†
αh

(E)âαh(E)
〉

=
〈
âαe(−E)â†αe(−E)

〉
= 1− fαe(−E).

(3.19)
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Hence, the distribution function for holes in the lead α takes the form

fαh(E) =
1

1 + e
E+µα
kBT

. (3.20)

As we saw for the case of a normal system, these relations can be used to simplify the

expression for the average electronic current flowing into the lead α:

IQα =
e

h

ˆ
dE

N∑
β=1

∑
γ=e,h

|Sαeβγ (E)|2
(
fβγ (E)− fαe(E)

)
−
∣∣Sαhβγ (E)

∣∣2(fβγ (E)− fαh(E)
)
.

(3.21)

3.2 Floquet scattering theory

The previous sections in this chapter have demonstrated the power of scattering matrix

theory in simplifying the calculation of transport properties across static mesoscopic

samples. Here, we show how this formalism can be extended to incorporate systems

that are subject to some form of time dependent driving and, in particular, to Floquet

systems for which this driving is periodic [130,141–143]. Such non-equilibrium systems

have been shown to exhibit a variety of properties and phases which are not present

in their static counterparts [144–146]. For example, the emergence of additional driven

topological phases will be of particular interest in the forthcoming chapters of this

thesis [45–51].

Our starting point is the Floquet theorem, which states that for a system with a

periodic Hamiltonian, with time-period T ,

H(t, r) = H(t+ T , r), (3.22)
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solutions to the time-dependent Schrödinger equation can be expressed in the form [130]

Ψα(t, r) = e−
iεαt
~ ψα(t, r), (3.23)

where |ψα(t, r)〉 is a periodic eigenstate of the effective Hamiltonian Heff = H(t, r)−i∂t,

Heff(t, r) |ψα(t, r)〉 = εα |ψα(t, r)〉 . (3.24)

Here, α is the band index and εα are the quasienergies of the periodically driven system,

in analogy with the quasimomentum characterizing the Bloch eigenstates of a spatially

periodic system. The quasienergy εα is unique up to multiples of the driving frequency

~ω0 and is therefore defined within the interval −π/T < εα
~ ≤ π/T .

Expanding the periodic function φ(t, r) as a Fourier series, the Floquet wave function

becomes

Ψα(t, r) = e−
iεt
~

∞∑
q=−∞

e−iqω0tψα,q(r),

where ψα,q(r) =
1

T

ˆ T
0

dteiqω0tψα(t, r).

(3.25)

In this form the effect of the periodic driving upon the wave functions becomes manifest.

We see that the wave function now includes additional terms corresponding to the initial

energy ε shifted by integer multiples of the driving frequency E±q~ω0. In the context of

scattering theory, this equates to inelastic scattering events resulting in the absorption

or emission of energy quanta ~ω0.

The prospect of scattered particles exchanging energy with the driven mesoscopic

sample means that the relevant scattering matrix for the problem now depends on two

energies which differ by integer multiples of the energy quantum ~ω0. The details of

such processes are captured by the Floquet scattering matrix, SF [130,141]. The element
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SF,αeβe(En, E) describes the process when an electron of energy E in lead β is scattered

as an electron in lead α with a final energy of E + n~ω0. The initial and resultant

scattering states are assumed to be eigenstates of the stationary Hamiltonian of the

leads.

As in the static case, conservation of particle flow implies that the Floquet scattering

matrix is unitary:

∞∑
n=−∞

N∑
α=1

S∗F,αβ(En, Em)S∗F,αβ(En, E) = δm0δβγ (3.26)

Here, the sum over energy sidebands, n, runs from −∞ to ∞ since we are considering

superconducting systems for which electron and hole states at all energies contribute to

the conductance. In order to determine the current operator for the periodically driven

case, we first write down the operator for scattered states accounting for the fact that

an outgoing electron may have exchanged energy with the dynamic scatterer:

b̂α(E) =
∞∑

n=−∞

N∑
β=1

S∗F,αβ(E,En)âβ(En). (3.27)

The periodic nature of the scattering properties in a Floquet system results in the

generation of periodic oscillating currents between the leads. Using the definition of

the outgoing scattering operators in Eq. 3.7, the current generated by a periodically

driven scatterer can be expressed as

Ieα(t) =
∞∑

l=−∞

e−ilω0tIeα,l,

where Ieα,l =
e

h

ˆ
dE

N∑
β=1

∞∑
n=−∞

S∗F,αβ(En, E)SF,αβ(El+n, E)

(
fβ(E)− fα(En)

)
.

(3.28)
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Of particular interest is the time-independent, or direct, current that results in a finite

transfer of charge between different leads. Within this formalism, this contribution can

be isolated by focusing upon the l = 0 term in Eq. 3.28:

Ieα,0 =
e

h

ˆ
dE

∞∑
n=−∞

N∑
β=1

|SF,αβ(En, E)|2
(
fβ(E)− fα(En)

)
. (3.29)

When expressed in this form it becomes evident that the nature of the current is dictated

by the difference in distribution functions (fβ(E)−fα(En)). Hence, for small frequencies

relative to the chemical potential of the leads (nmax~ω0 � µ), only electrons close to

the Fermi energy contribute to the electronic current. Here nmax sets the maximum

number of energy quanta that an electron can absorb/emit during a scattering process

before the probability of such an event becomes negligible. This value is determined by

the specific form of the Floquet scattering matrix in question and will depend upon the

amplitude and frequency of the driving [130]. The energy window of current carriers

can also be set by any potential biases between the leads, as well as the temperature of

the selected leads.

3.2.1 Slow driving approximation of the Floquet scattering

matrix

The possibility of scattering between energies differing by integer multiples of the driving

frequency means that the Floquet scattering matrix has a very large number of elements

and is hence difficult to calculate in practice. One possible method of combating the

resultant numerical complexity is to consider situations for which the driving can be

considered slow compared to other relevant energy scales in the problem. In this limit,
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the time spent by an electron in the scattering sample is small compared to the driving

period T and so, to all intents and purposes, the properties of the scatterer can be

considered frozen throughout the scattering process.

With this in mind, for a given periodically driven system, we can define a stationary

scattering matrix S(t, E) that depends implicitly on time through several periodically

modulated parameters pi, i = 1, ..., Np. This scattering is then itself time periodic, so

that S(t, E) = S(t+T , E). This scattering matrix is frozen in the sense that if we fix the

parameters p(t) at some chosen time t = t0, then the scattering matrix S(t0, E) would

describe scattering from such a stationary or frozen system. This scattering matrix

only depends upon a single energy and hence does not describe the true scattering

properties of the dynamically driven system. However, connections can be drawn to

the full Floquet scattering matrix in the slow driving limit. In order to see this, it is

first useful to expand the Floquet scattering matrix in powers of the driving frequency

[130,141,147]:

SF =
∞∑
q=0

(~ω0)qS
(q)
F . (3.30)

We note that the scattering matrix element Sαβ(En, E) induces a modification to the

wave function of ingoing electrons of the form

Ψ
(in)
β (E) ∼ e−

iEt
~ → Ψ(out)

α (En) ∼ Sαβ(En, E)Ψ
(in)
β (E) ∼ e−

iEt
~ e−inω0t. (3.31)

This can be compared with the action of the frozen scattering matrix, Ψ
(out)
α (E) ∼

S(t, E)Ψ
(in)
β (E), in the case that we take the Fourier expansion of S(t, E):

S(t, E) =
∞∑

n=−∞

e−inω0tSn(E). (3.32)
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From this, one can see that the scattered wave function inherits the same factor of

e−inω0t as from the Floquet scattering matrix element Sαβ(En, E). To zeroth order in

ω0, the energies E and En can be considered equivalent and therefore the comparison

between the effects of the Floquet and frozen scattering matrices yields

S
(0)
F (En, E) = S

(0)
F (E,E−n) = Sn(E). (3.33)

It will become apparent in the later chapters of this work that this zeroth order

approximation of the Floquet scattering matrix is sufficient to exactly determine the

direct current generated by a driven scatterer to first order in ω0.

It will also prove useful to consider the first order terms in the expansion in Eq.

3.30. Given the form of the zeroth order approximation in Eq. 3.33, it can be shown

that [142], up to first order, the expansion can be expressed as

SF (En, E) = Sn(E) +
n~ω

2

∂Sn(E)

∂E
+ ~ωAn(E) +O

(
ω2
)
,

SF (E,E−n) = Sn(E)− n~ω
2

∂Sn(E)

∂E
+ ~ωAn(E) +O

(
ω2
)
.

(3.34)

Here, An denotes the Fourier coefficients of some matrix A(t, E) which, by enforcing

the unitarity of the Floquet scattering matrix, can be shown to share the following

relationship with the frozen scattering matrix [130]:

~ω0

[
S†(t, E)A(t, E) + A†(t, E)S(t, E)

]
=

1

2
P
{
S†(t, E), S(E, t)

}
, (3.35)

where P
{
S†(t, E), S(E, t)

}
denotes the Poisson bracket with respect to energy and
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3.3. Symmetry classes and scattering matrices

time:

P
{
S†(t, E), S(E, t)

}
= i~

(
∂S†

∂t

∂S

∂E
− ∂S†

∂E

∂S

∂t

)
. (3.36)

The expression of the Floquet scattering matrix expansion in Eq. 3.34 reveals the

form of the parameter that must be small in order to neglect the higher order terms.

The use of the first order expansion requires that

~ω0

δE
� 1. (3.37)

Here, δE is the energy scale over which the frozen scattering matrix changes

significantly. This may refer to the width of resonances or the distance between

resonances depending upon the relevant energy E.

3.3 Symmetry classes and scattering matrices

In Chap. 2, we outlined how the principle of bulk-boundary correspondence demon-

strates that topological invariants Q, obtained from the bulk properties of some system,

are related to the number of zero-energy conducting states localized at the edges of

the system. Upon opening such a topologically non-trivial system, by connecting it to

external metal leads, the presence or absence of edge modes will influence the scattering

properties of electrons approaching the sample. This, in turn, provides a connection

between the bulk topological invariant Q and the scattering matrix S [41].

In order to demonstrate this connection, we consider the simple example of the

interface between a normal metal wire and a topologically non-trivial superconducting

wire capable of hosting Majorana zero modes at its ends. At energies far below the

superconducting gap parameter ∆, there are no states available to aid transmission
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3.3. Symmetry classes and scattering matrices

scattering events across the superconducting sample and consequently the only non-

trivial elements of the scattering matrix are given by the sub-block governing scattering

events within the same lead. For a superconducting system, this reflection matrix r(E)

can be written as

rα(E) =

ree reh

rhe rhh

 . (3.38)

Particle conservation once again ensures that this matrix is unitary r†r = 1. The

particle-hole symmetry of the Hamiltonian (Eq. 2.13) results in a corresponding

symmetry of the reflection matrix r(E):

σxr
∗(−E)σx = r(E). (3.39)

This symmetry constrains the determinant of the reflection matrix at zero energy to be

real since

det r(0) = det
(
σxr

∗(0)σx
)

=
(

det r(0)
)∗
. (3.40)

This, along with the fact that r(E) is unitary, constraints the determinant to take one

of two possible values: det r(0) = ±1. Furthermore, since this conclusion was attained

using only the fundamental symmetries of the system, the determinant of r(0) cannot

be changed by continuous deformations of the Hamiltonian that preserve the energy

gap. In fact, the determinant can only change upon the closing of this energy gap, due

to the existence of possible transmission scattering events which violate the unitarity

of the reflection matrix. Therefore, it is clear that the quantity Q = det r(0) fulfills the

requirements of a topological invariant for the system. The topological properties of the

scattering matrix are also evident in the electronic transport induced by the scatterer.
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3.3. Symmetry classes and scattering matrices

Symmetry Topology
Class χ C T Phase Scattering Index

D 0 1 0 Z2 sign det r
DIII 1 1 -1 Z2 sign Pf ir
BDI 1 1 1 Z ν(r)
AIII 1 0 0 Z ν(r)
CII 1 -1 -1 2Z ν(r)

Table 3.1: Relationship between the topological invariant Q and the reflection
submatrix r for each of the possible symmetry classes for 1D systems exhibiting
topologically non-trivial phases. For Z2 topological phases, the corresponding invariant
is given either by the determinant (det) or Pfaffian (Pf) of r, whereas for Z phases the
relevant quantity is given by the number ν of negative eigenvalues of r

The symmetry and unitary nature of the reflection matrix enforce the following

simultaneous relationships upon the normal and Andreev reflection coefficients:

Q =|ree|2 − |reh|2 = ±1,

|ree|2 + |reh|2 = 1.

(3.41)

There are only two scenarios for which both of these requirements hold true. The first

is the trivial case, where |ree| = 1 and we have perfect normal reflection resulting

in no electronic transport between different leads. The second corresponds to the

superconductor being in the topological phase and the presence of the MZMs leads

to perfect Andreev reflection, |reh| = 1. Since, at low energies, only Andreev reflection

events result in the transfer of charge between the leads, it follows that the conductance

in a given lead α takes the form

Gα(Vα) =
2e2

h
|reh(V )|2. (3.42)

Consequently, the existence of MZMs in the scattering sample is associated with a
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3.3. Symmetry classes and scattering matrices

quantised conductance peak at V = 0 of height G(0) = 2e2

h
. This peak shares the

robustness of the topological index Q and can only change upon the closure of the

energy gap.

This example demonstrates the power of the scattering matrix as a tool for

determining topological indices. This method circumvents the need for knowledge of

the full spectrum of a given Hamiltonian, by reducing the problem to the scattering

properties of the system at the Fermi level only. This approach has been extended to

all of the symmetry classes listed in Table 2.1. Here, we will not include the details of

the scattering matrix invariants for each class, however Table 3.1 includes the form of

the invariant for each of the five non-trivial classes in 1D for reference [41].
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Chapter 4

Transport Statistics in

Non-equilibrium Systems

4.1 Introduction to fluctuation theorems

The thermodynamic properties of equilibrium systems, free from the subjection

to thermodynamic forces or time-dependent driving, are well understood and the

probability distribution governing their microscopic degrees of freedom can be easily

formulated. The Hamiltonian, dictating the evolution of such systems, can be used

to determine the partition function from which macroscopic, experimentally accessible

thermodynamic quantities, such as average energy and specific heat, can be calculated.

However, the situation for non-equilibrium systems is far from as simple. Further-

more, such systems are prevalent in nature and arise in the presence of temperature and

chemical potential gradients, in addition to the application of time-dependent external

driving; the main focus of this thesis. Close to equilibrium, when the forces in question

can be considered weak, the deviation of the system’s properties with respect to the
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4.2. Quantum fluctuation relations

unperturbed values can be calculated via linear response functions [148–150]. Despite

this, analogous expressions valid arbitrarily far from equilibrium prove to be much more

elusive.

Fluctuation theorems (FTs) provide information about non-equilibrium systems

beyond the linear response regime by severely restricting the form of the probability

distributions for thermodynamic quantities, such as work and entropy production, that

are known to fluctuate at a microscopic level. Such relations describe the connection

between the probability distribution functions associated with the forward, PF (x), and

time-reversed, PR(x) processes and are typically expressed in the form [151]

PF (x)

PR(−x)
= ea(x−b), (4.1)

where x is our fluctuating quantity of interest and a and b are constants determined by

the equilibrium nature of the system.

4.2 Quantum fluctuation relations

Within the quantum setting, we are concerned with isolated systems, driven out of

equilibrium, which can be described by a density matrix ρ(t) obeying the von Neumann

equation:

d

dt
ρ(t) = − i

~
[H(t), ρ(t)]. (4.2)

The solution to this expression takes the form

ρ(t) = U(t, 0)ρ0U
†(t, 0), (4.3)
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4.2. Quantum fluctuation relations

where ρ0 is the density matrix describing the system at t = 0 and the unitary evolution

operator reads

U(t, 0) = exp+

(
− i

~

ˆ t

0

dτH(τ)

)

≡ 1 +
∞∑
n=1

(
− i

~

)n ˆ t

0

dt1

ˆ t1

0

dt2...×
ˆ tn−1

0

dtnH(t1)H(t2)...H(tn),

(4.4)

with the subscript + indicating the use of an anti-chronological time ordering from left

to right.

Generalising the notion of the work performed on a system to the quantum regime

was a concept that initially caused some difficulties in the development of quantum

fluctuation relations [152]. Unlike other observables, which are defined by operators

which can be measured at any single time, work is a two-point quantity obtained by

finding the difference between the initial and final energy of the system after being

allowed to evolve for some time interval [151,153].

With this in mind, we now consider some general observable A(t), with eigenvalues

at and eigenstates |at〉. We then imagine performing two consecutive measurements of

A(t) and define the joint probability of measuring a0 at time 0 and at at some later

time t:

P [at, a0] ≡ Tr
[
PatU(t, 0)Pa0ρ0Pa0U

†(t, 0)Pat
]
, (4.5)

with projective measurement operators defined as Pat = |at〉 〈at|. This can also be

expressed in the form

P [at, a0] =
∑
i,j

P [j, at; i, a0], (4.6)

where the indices i and j are used to distinguish degenerate energy states sharing the
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4.2. Quantum fluctuation relations

same eigenvalue. Using Eq. 4.5, the joint probability accounting for the degenerate

eigenstates is given by

P [j, at; i, a0] = | 〈j, at|U(t, 0)|i, a0〉|2 〈i, a0|ρ0|i, a0〉 . (4.7)

The time-reversed evolution is defined as the process that brings the final density

matrix of the forward evolution back to its initial density matrix ρ0. It can be shown

that [151], the probability of measuring at initially and a0 after the application of the

time-reversed evolution protocol for some time time t, can be expressed as

P tr[i, a0; j, at] = | 〈j, at|U(t, 0)|i, a0〉|2 〈j, at|ρ0|j, at〉 . (4.8)

The quantity of interest in the general form of FTs is the logarithm of the ratio of

the forward and time-reversed probabilities:

R[j, at; i, a0] ≡ ln
P [j, at; i, a0]

P tr[i, a0; j, at]
= ln

〈i, a0|ρ0|i, a0〉
〈j, at|ρ0|j, at〉

, (4.9)

where we have used the expressions for the probabilities given in Eqs. 4.7 and 4.8. This

immediately allows the determination of the integral FT, which takes the form

〈e−R〉 =
∑

j,at,i,a0

P [j, at; i, a0]e−R[j,at;i,a0] =
∑

j,at,i,a0

P tr[i, a0; j, at] = 1, (4.10)

following from the normalisation condition of the joint probability distribution P tr[i, a0; j, at].

The fluctuation theorem can be expressed in an alternative formalism by introducing
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4.2. Quantum fluctuation relations

the probability distributions associated with the forward and reversed evolution:

P (R) =
∑

j,at,i,a0

P [j, at; i, a0]δ(R−R[j, at; i, a0]),

P tr(R) =
∑

i,a0,j,at

P tr[i, a0; j, at]δ(R−Rtr[i, a0; j, at]),

(4.11)

where

Rtr[i, a0; j, at] ≡ ln
P tr[i, a0; j, at]

P [j, at; i, a0]
. (4.12)

From this we can write down the general form of the so-called detailed FT:

ln
p(R)

ptr(−R)
= R. (4.13)

4.2.1 Jarzynski and Crooks relations

To put the general form of the FT given in Eq. 4.13 into some physical context, we

here consider the case for which our quantity of interest is the work performed on some

isolated system by an arbitrary external source of driving [154, 155]. Our system is

initially described by the Hamiltonian H(0) and is assumed to be in an equilibrium

state described by the density matrix ρ0 = e−βH(0)/Z(0), where Z(t) = Tr e−βH(t). At

t = 0 the energy is measured before being subjected to driving up until a later time t,

when a second energy measurement is performed. The corresponding backward process

can be described by allowing the system to thermalise after the second measurement, so

that we arrive at the equilibrium state, ρtr
0 = e−βH(t)/Z(t), of the system described by

H(t), and then taking another measurement of the energy. We then proceed to apply

the time-reversed driving protocol to the system, before taking a final measurement of

the energy after a time t has passed, with the final Hamiltonian returning to H(0).
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4.2. Quantum fluctuation relations

Using Eqs. 4.7 and 4.8, the probabilities associated with the two-point energy

measurements for the forward and reverse processes can be expressed as

P [j, Et; i, E0] = | 〈j, Et|U(t, 0)|i, E0〉|2e−β
(
E0−F (0)

)
,

P tr[i, E0; j, Et] = | 〈j, Et|U(t, 0)|i, E0〉|2e−β
(
Et−F (t)

)
,

(4.14)

and the expression for the quantity R is given by

R[j, Et; i, E0] = β
(
w −∆F (t)

)
. (4.15)

Here we have defined the work done on the isolated system by the external driving as the

difference in the energy measurements of the final and initial states; w = Et−E0. The

free-energy difference is given by ∆F (t) = F (t) − F (0), where F (t) = −β−1 lnZ(t).

Written in this form we see that the quantity β−1〈R〉 can be associated with the

irreversible contribution to the entropy change of the process, a property shared by

all manifestations of fluctuation theorems. The general form of the FT in Eq. 4.13 now

takes the form of the Crooks relation [156]:

p(w)

ptr(−w)
= eβ(w−∆F ), (4.16)

which relates non-equilibrium work with the equilibrium free energy difference. From

this relation, the Jarzynski equality [154] immediately follows:

〈e−βw〉 = eβ∆F . (4.17)
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4.2.2 Steady state exchange fluctuation theorem

Fluctuation theorems can also be formulated to describe fluctuations in entropy

production [157,158] and various related quantities such as the heat exchange between

two reservoirs via some embedded system of interest [159–161]. Fluctuation theorems

of this form can also be extended to be valid in the long-time limit and are hence known

as steady-state FTs. We study FTs of this form in Chap. 6, in the context of heat

transport driven by the periodic modulation of a system’s parameters.

In general, we can consider two reservoirs A and B, described by Hamiltonians

HA and HB, each with inverse temperature βA/B and chemical potential µA/B. The

reservoirs are weakly coupled to a system of interest, described by the Hamiltonian

HS, which facilitates the transport of energy and particles between the reservoirs. We

assume that the initial states of this composite system, for both the forward and time-

reversed processes, are described by the equilibrium density matrix [151]

ρ0 = ρtr
0 = ρeq

A (βA, µA)ρeq
B (βB, µB)ρeq

S (βS, µS). (4.18)

After an initial measurement of both energy EA and particle number nA in reservoir

A, the system is allowed to evolve up until a second measurement at some time

t. We denote the measurement outcomes of the combined system using α =

(EA, nA, EB, nB, ES, nS) so that, in this scenario, Eq. 4.9 gives us

R[α′, α] =− βA[(EA − E ′A)− µA(nA − n′A)]

− βB[(EB − E ′B)− µB(nB − n′B)]− βS[(ES − E ′S)− µS(nS − n′S)].

(4.19)

For a weakly coupled system, conservation laws for energy and particle number result
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in the following constraints on the respective changes in the constituent parts of the

composite system:

EB − E ′B ≈ E ′A − EA + E ′S − ES and nB − n′B = n′A − nA + n′S − nS. (4.20)

Under these constraints, the ratio of probabilities for the forward and reversed processes

can be simplified as

R[E ′A, n
′
A;EA, nA] ≈ −AQ(E ′A−EA)−AN(n′A−nA)+O(E ′S − ES)+O(n′S − nS), (4.21)

where we have defined AQ = βB−βA and AN = βAµA−βBµB as the affinities associated

with heat and matter transport respectively.

The fact that the reservoirs A and B are considered macroscopic sources of particles

and energy means that the changes in energy and matter that they experience over long

time intervals in unbounded. This is in contrast to the internal mesoscopic system of

interest which is small and finite. Consequently, in the steady state limit, t → ∞, the

FT describing heat and matter flow from the reservoir A can be reduced to [151,153]

lim
t→∞

1

t
ln

p(∆EA,∆nA)

p(−∆EA,−∆nA)
=

1

t

(
AQ∆EA +AN∆nA

)
. (4.22)

From this exchange FT it is evident that positiveAQ (AN) indicates that the probability

of an energy transfer ∆EA (particle transfer ∆nA) from reservoir A to reservoir B is

exponentially more likely to occur than from B to A. The right-hand side of Eq. 4.22

takes the form of an entropy production and fluctuation relations of this kind are known

generally as Gallavotti-Cohen (GC) type FTs [158]. When focusing on the nature of
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heat transport between two reservoirs only, the relation reduces to the expression:

lim
t→∞

1

t
ln

p(∆E)

p(−∆E)
=

∆E(βR − βL)

t
. (4.23)

In Chap. 6 we explore the validity of this expression in the case that the internal system

is subjected to a source of slow, periodic driving. For such a scenario, the conservation

law constraining the energy changes within each part of the system (Eq. 4.20) no

longer holds true, since the driving itself acts as an additional energy source/sink. This

exchange of energy can facilitate the driving of heat against a thermal gradient and

hence results in a correction to the fluctuation relation in Eq. 4.23 [58–62].
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Original Results
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Chapter 5

Transport Properties of Floquet

Majorana Systems

This chapter is based upon the results published in the paper:

T. Simons, A. Romito, and D. Meidan. Relation between scattering matrix topological

invariants and conductance in Floquet Majorana systems. Phys. Rev. B 104, 155422

(2021)

In Chap. 2 we discussed how, under certain conditions, p-wave superconducting

structures can play host to zero-energy excitations known as Majorana zero modes.

Their stability and non-Abelian nature ensure that such excitations receive great

attention, particularly in relation to their potential application within a quantum

computation setting. Building systems capable of hosting such a topologically non-

trivial phase is experimentally challenging and hence exploring alternative mechanisms

capable of achieving this goal are of great interest.

One possible direction is to exploit the emergent properties of systems driven out of
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5.1. Floquet topological phases

equilibrium by some source of periodic driving. It is known that such Floquet systems

can exhibit a variety of distinct properties, for which there is no evidence of in their

static counterparts [144–146]. These properties can be tuned solely by the driving,

in contrast to equilibrium systems, for which they are intrinsic to the setup and hard

to change in situ. In particular it is known that periodic driving can result in the

emergence of additional topological phases, even in the case that the system is trivial

at any given point during the cycle [45,47–51].

The calculation of topological invariants, such as the Chern number defined in Eq.

2.4, from the bulk properties of the system cannot be straightforwardly generalised

from the case of static to periodically driven systems [47,52,53]. However, the principle

of bulk-boundary correspondence, and resulting existence of gapless surface modes,

ensures that scattering properties continue to provide a reliable method for calculating

topological invariants. In contrast to static systems, it has been shown [53] that

the invariants of periodically driven systems are related to a gedanken scattering

experiment, for which the leads are only coupled to the system at discrete times

separated by the driving frequency. Despite this, the exact relationship between

this stroboscopic scattering matrix and the DC transport properties measured in

conductance experiments remains unclear and forms the subject of this chapter.

5.1 Floquet topological phases

In order to see how such phases can arise, we first use the Floquet theory introduced

in Sec. 3.2 to study the stationary solutions of a periodically driven system described

by a Hamiltonian of the form H(t + T ) = H(t), where T is the period of the driving

acting with frequency ω = 2π/T .
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5.1. Floquet topological phases

The quasienergy spectrum can be determined by considering the unitary evolution

operator U(t, 0) |ψα(0)〉 = |ψα(t)〉, and in particular the Floquet operator which gives

the evolution over one entire period of the driving cycle, F = U(T, 0). From this we

can construct the Floquet Hamiltonian:

HF =
i

T
log(F ), (5.1)

the eigenspectrum of which provides access to the quasienergies εα,

HF |ψα(0)〉 = εα |ψα(0)〉 . (5.2)

Similar to the case of static systems, we can determine the bulk quasienergy spectrum

of a periodically driven system by applying spatial periodic boundary conditions and

determining the momentum space Hamiltonian H(k).

For example, we can consider the case of a driven Kitaev wire, where the system

Hamiltonian is of the form given in Eq. 2.12, with µ = µ1 for 0 ≤ t < T/2 and

µ = µ2 for T/2 ≤ t < T . Such a driving scheme is desirable from an experimental

perspective since it requires the control of only a single Hamiltonian parameter and the

modulation of the on-site potential can be achieved in p-wave superconducting systems

by driving the gates controlling the electrostatic environment [162–164]. Furthermore,

it is not a strict requirement that the value of µ be changed stroboscopically as it has

been demonstrated that the emergence of non-trivial phases persists when the driving

is performed in a sinusoidal manner [163].

Examples of the resultant quasienergy spectrum are plotted in Fig. 5.1. The

particle-hole symmetry present in the system again results in a spectrum that is

75



5.1. Floquet topological phases

������

Figure 5.1: (a)-(e) Quasienergy band structure of a driven 1D Kitaev chain for various
values of the Hamiltonian parameters. The driving protocol is outlined in Sec. 5.4.1
and the phase diagram corresponding to the parameters λ0 and λ1 is plotted in Fig.
5.3. The fact that the quasienergy is defined periodically results in the existence of two
relevant energy gaps in the system, at εT = 0 and εT = π. These gaps close in (b) and
(d) respectively, indicating a topological phase transition.

symmetric around ε = 0, with eigenstates fulfilling ψk(ε) = ψ†−k(−ε). However, due

to the periodic nature of the quasienergy spectrum, ε = π/T is an additional point

mapped onto itself by the symmetry transformation ε → −ε. Consequently, this

results in a second relevant energy gap in the system when it comes to topological

classification. As in the case of Majorana zero modes, wavefunctions at quasienergy

ε = π/T also exhibit the property of being their own anti-particle ψ = ψ† and can only

be removed by the closing of the band gap at this energy. Such excitations are known as

Majorana π-modes (MPMs) [46,165–170] and their existence provides a clear example

of how the periodic driving of a system can add to the richness of its topological order.
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Furthermore, the fact that the presence of such Majorana modes can be controlled by

tuning the versatile external driving protocol, holds promise for a wide range of potential

applications [171–173]. In particular the driven Kitaev wire has been stipulated as

a potential candidate for demonstrating a topologically protected Majorana braiding

operation (Sec. 2.4) within a single 1D wire by utilizing the quasienergy as an effective

second dimension [163,174].

The realization and manipulation of such driven topological phases would require

overcoming several experimental challenges. In particular it is known that, in

generic interacting systems, subjection to periodic driving results in heating to infinite

temperature, rendering any topological Floquet states unstable. Several mechanisms

of how to avoid or suppress such heating have been stipulated, such as many-

body localization and prethermalization [175, 176]. It has further been demonstrated

that, for interacting systems, the switching on of the driving can stimulate the

production of unwanted quasiparticles, again leading to the instability of the Floquet

system [177]. Driven systems would also be subject to the same limitations as their

static counterparts, such as the issue of quasiparticle poisoning, when considered as

candidates for performing topologically protected quantum computation. Although

several proposals of how to realize Floquet Majorana states in practice do exist

[51,164,178], these are yet to be demonstrated in experiments.

5.2 Model Hamiltonian

With the objective of studying the electronic transport properties of periodically driven

topological systems, we consider the setup sketched in Fig. 5.2(a). Our system of

interest is driven via the periodic modulation of its Hamiltonian parameters {Xi(t)}
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<latexit sha1_base64="vhtmIY5uRZPNokJwTgTKz6VAIS0=">AAAB+nicbVA9SwNBEN3zM8avi5Y2i0GwCndB0DJgY2ERwXxAEo+9zVyyZG/32N0zhDM/xcZCEVt/iZ3/xk1yhSY+GHi8N8PMvDDhTBvP+3bW1jc2t7YLO8Xdvf2DQ7d01NQyVRQaVHKp2iHRwJmAhmGGQztRQOKQQyscXc/81iMozaS4N5MEejEZCBYxSoyVArcEwe1D1lVsMDREKTmeBm7Zq3hz4FXi56SMctQD96vblzSNQRjKidYd30tMLyPKMMphWuymGhJCR2QAHUsFiUH3svnpU3xmlT6OpLIlDJ6rvycyEms9iUPbGRMz1MveTPzP66QmuuplTCSpAUEXi6KUYyPxLAfcZwqo4RNLCFXM3orpkChCjU2raEPwl19eJc1qxfcq/t1FuVbN4yigE3SKzpGPLlEN3aA6aiCKxugZvaI358l5cd6dj0XrmpPPHKM/cD5/ANXnlFA=</latexit><latexit sha1_base64="vhtmIY5uRZPNokJwTgTKz6VAIS0=">AAAB+nicbVA9SwNBEN3zM8avi5Y2i0GwCndB0DJgY2ERwXxAEo+9zVyyZG/32N0zhDM/xcZCEVt/iZ3/xk1yhSY+GHi8N8PMvDDhTBvP+3bW1jc2t7YLO8Xdvf2DQ7d01NQyVRQaVHKp2iHRwJmAhmGGQztRQOKQQyscXc/81iMozaS4N5MEejEZCBYxSoyVArcEwe1D1lVsMDREKTmeBm7Zq3hz4FXi56SMctQD96vblzSNQRjKidYd30tMLyPKMMphWuymGhJCR2QAHUsFiUH3svnpU3xmlT6OpLIlDJ6rvycyEms9iUPbGRMz1MveTPzP66QmuuplTCSpAUEXi6KUYyPxLAfcZwqo4RNLCFXM3orpkChCjU2raEPwl19eJc1qxfcq/t1FuVbN4yigE3SKzpGPLlEN3aA6aiCKxugZvaI358l5cd6dj0XrmpPPHKM/cD5/ANXnlFA=</latexit><latexit sha1_base64="vhtmIY5uRZPNokJwTgTKz6VAIS0=">AAAB+nicbVA9SwNBEN3zM8avi5Y2i0GwCndB0DJgY2ERwXxAEo+9zVyyZG/32N0zhDM/xcZCEVt/iZ3/xk1yhSY+GHi8N8PMvDDhTBvP+3bW1jc2t7YLO8Xdvf2DQ7d01NQyVRQaVHKp2iHRwJmAhmGGQztRQOKQQyscXc/81iMozaS4N5MEejEZCBYxSoyVArcEwe1D1lVsMDREKTmeBm7Zq3hz4FXi56SMctQD96vblzSNQRjKidYd30tMLyPKMMphWuymGhJCR2QAHUsFiUH3svnpU3xmlT6OpLIlDJ6rvycyEms9iUPbGRMz1MveTPzP66QmuuplTCSpAUEXi6KUYyPxLAfcZwqo4RNLCFXM3orpkChCjU2raEPwl19eJc1qxfcq/t1FuVbN4yigE3SKzpGPLlEN3aA6aiCKxugZvaI358l5cd6dj0XrmpPPHKM/cD5/ANXnlFA=</latexit><latexit sha1_base64="vhtmIY5uRZPNokJwTgTKz6VAIS0=">AAAB+nicbVA9SwNBEN3zM8avi5Y2i0GwCndB0DJgY2ERwXxAEo+9zVyyZG/32N0zhDM/xcZCEVt/iZ3/xk1yhSY+GHi8N8PMvDDhTBvP+3bW1jc2t7YLO8Xdvf2DQ7d01NQyVRQaVHKp2iHRwJmAhmGGQztRQOKQQyscXc/81iMozaS4N5MEejEZCBYxSoyVArcEwe1D1lVsMDREKTmeBm7Zq3hz4FXi56SMctQD96vblzSNQRjKidYd30tMLyPKMMphWuymGhJCR2QAHUsFiUH3svnpU3xmlT6OpLIlDJ6rvycyEms9iUPbGRMz1MveTPzP66QmuuplTCSpAUEXi6KUYyPxLAfcZwqo4RNLCFXM3orpkChCjU2raEPwl19eJc1qxfcq/t1FuVbN4yigE3SKzpGPLlEN3aA6aiCKxugZvaI358l5cd6dj0XrmpPPHKM/cD5/ANXnlFA=</latexit>

h!
L

<latexit sha1_base64="ARZEtZ/NXSBX+Nc/6AL/+FZmJ+c=">AAAB+nicbVBNS8NAEN34WetXqkcvi0XwVJIi6LHgxYOHCvYD2hg2202zdLMJuxNLif0pXjwo4tVf4s1/47bNQVsfDDzem2FmXpAKrsFxvq219Y3Nre3STnl3b//g0K4ctXWSKcpaNBGJ6gZEM8ElawEHwbqpYiQOBOsEo+uZ33lkSvNE3sMkZV5MhpKHnBIwkm9XIv/2Ie8rPoyAKJWMp75ddWrOHHiVuAWpogJN3/7qDxKaxUwCFUTrnuuk4OVEAaeCTcv9TLOU0BEZsp6hksRMe/n89Ck+M8oAh4kyJQHP1d8TOYm1nsSB6YwJRHrZm4n/eb0Mwisv5zLNgEm6WBRmAkOCZzngAVeMgpgYQqji5lZMI6IIBZNW2YTgLr+8Str1muvU3LuLaqNexFFCJ+gUnSMXXaIGukFN1EIUjdEzekVv1pP1Yr1bH4vWNauYOUZ/YH3+ANqjlFM=</latexit><latexit sha1_base64="ARZEtZ/NXSBX+Nc/6AL/+FZmJ+c=">AAAB+nicbVBNS8NAEN34WetXqkcvi0XwVJIi6LHgxYOHCvYD2hg2202zdLMJuxNLif0pXjwo4tVf4s1/47bNQVsfDDzem2FmXpAKrsFxvq219Y3Nre3STnl3b//g0K4ctXWSKcpaNBGJ6gZEM8ElawEHwbqpYiQOBOsEo+uZ33lkSvNE3sMkZV5MhpKHnBIwkm9XIv/2Ie8rPoyAKJWMp75ddWrOHHiVuAWpogJN3/7qDxKaxUwCFUTrnuuk4OVEAaeCTcv9TLOU0BEZsp6hksRMe/n89Ck+M8oAh4kyJQHP1d8TOYm1nsSB6YwJRHrZm4n/eb0Mwisv5zLNgEm6WBRmAkOCZzngAVeMgpgYQqji5lZMI6IIBZNW2YTgLr+8Str1muvU3LuLaqNexFFCJ+gUnSMXXaIGukFN1EIUjdEzekVv1pP1Yr1bH4vWNauYOUZ/YH3+ANqjlFM=</latexit><latexit sha1_base64="ARZEtZ/NXSBX+Nc/6AL/+FZmJ+c=">AAAB+nicbVBNS8NAEN34WetXqkcvi0XwVJIi6LHgxYOHCvYD2hg2202zdLMJuxNLif0pXjwo4tVf4s1/47bNQVsfDDzem2FmXpAKrsFxvq219Y3Nre3STnl3b//g0K4ctXWSKcpaNBGJ6gZEM8ElawEHwbqpYiQOBOsEo+uZ33lkSvNE3sMkZV5MhpKHnBIwkm9XIv/2Ie8rPoyAKJWMp75ddWrOHHiVuAWpogJN3/7qDxKaxUwCFUTrnuuk4OVEAaeCTcv9TLOU0BEZsp6hksRMe/n89Ck+M8oAh4kyJQHP1d8TOYm1nsSB6YwJRHrZm4n/eb0Mwisv5zLNgEm6WBRmAkOCZzngAVeMgpgYQqji5lZMI6IIBZNW2YTgLr+8Str1muvU3LuLaqNexFFCJ+gUnSMXXaIGukFN1EIUjdEzekVv1pP1Yr1bH4vWNauYOUZ/YH3+ANqjlFM=</latexit><latexit sha1_base64="ARZEtZ/NXSBX+Nc/6AL/+FZmJ+c=">AAAB+nicbVBNS8NAEN34WetXqkcvi0XwVJIi6LHgxYOHCvYD2hg2202zdLMJuxNLif0pXjwo4tVf4s1/47bNQVsfDDzem2FmXpAKrsFxvq219Y3Nre3STnl3b//g0K4ctXWSKcpaNBGJ6gZEM8ElawEHwbqpYiQOBOsEo+uZ33lkSvNE3sMkZV5MhpKHnBIwkm9XIv/2Ie8rPoyAKJWMp75ddWrOHHiVuAWpogJN3/7qDxKaxUwCFUTrnuuk4OVEAaeCTcv9TLOU0BEZsp6hksRMe/n89Ck+M8oAh4kyJQHP1d8TOYm1nsSB6YwJRHrZm4n/eb0Mwisv5zLNgEm6WBRmAkOCZzngAVeMgpgYQqji5lZMI6IIBZNW2YTgLr+8Str1muvU3LuLaqNexFFCJ+gUnSMXXaIGukFN1EIUjdEzekVv1pP1Yr1bH4vWNauYOUZ/YH3+ANqjlFM=</latexit>

h L
<latexit sha1_base64="5R0Pz1AUOZrALGqOmWAZJdDJ/Lc=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69LBbBU0mKoMeCFw8eKthWaGPYbDft0s1u2N1USug/8eJBEa/+E2/+G7dtDtr6YODx3gwz86KUM20879spra1vbG6Vtys7u3v7B+7hUVvLTBHaIpJL9RBhTTkTtGWY4fQhVRQnEaedaHQ98ztjqjST4t5MUhokeCBYzAg2VgpddxjePuY9TmODlZJP09CtejVvDrRK/IJUoUAzdL96fUmyhApDONa663upCXKsDCOcTiu9TNMUkxEe0K6lAidUB/n88ik6s0ofxVLZEgbN1d8TOU60niSR7UywGeplbyb+53UzE18FORNpZqggi0VxxpGRaBYD6jNFieETSzBRzN6KyBArTIwNq2JD8JdfXiXtes33av7dRbVRL+Iowwmcwjn4cAkNuIEmtIDAGJ7hFd6c3Hlx3p2PRWvJKWaO4Q+czx8Ad5PW</latexit><latexit sha1_base64="5R0Pz1AUOZrALGqOmWAZJdDJ/Lc=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69LBbBU0mKoMeCFw8eKthWaGPYbDft0s1u2N1USug/8eJBEa/+E2/+G7dtDtr6YODx3gwz86KUM20879spra1vbG6Vtys7u3v7B+7hUVvLTBHaIpJL9RBhTTkTtGWY4fQhVRQnEaedaHQ98ztjqjST4t5MUhokeCBYzAg2VgpddxjePuY9TmODlZJP09CtejVvDrRK/IJUoUAzdL96fUmyhApDONa663upCXKsDCOcTiu9TNMUkxEe0K6lAidUB/n88ik6s0ofxVLZEgbN1d8TOU60niSR7UywGeplbyb+53UzE18FORNpZqggi0VxxpGRaBYD6jNFieETSzBRzN6KyBArTIwNq2JD8JdfXiXtes33av7dRbVRL+Iowwmcwjn4cAkNuIEmtIDAGJ7hFd6c3Hlx3p2PRWvJKWaO4Q+czx8Ad5PW</latexit><latexit sha1_base64="5R0Pz1AUOZrALGqOmWAZJdDJ/Lc=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69LBbBU0mKoMeCFw8eKthWaGPYbDft0s1u2N1USug/8eJBEa/+E2/+G7dtDtr6YODx3gwz86KUM20879spra1vbG6Vtys7u3v7B+7hUVvLTBHaIpJL9RBhTTkTtGWY4fQhVRQnEaedaHQ98ztjqjST4t5MUhokeCBYzAg2VgpddxjePuY9TmODlZJP09CtejVvDrRK/IJUoUAzdL96fUmyhApDONa663upCXKsDCOcTiu9TNMUkxEe0K6lAidUB/n88ik6s0ofxVLZEgbN1d8TOU60niSR7UywGeplbyb+53UzE18FORNpZqggi0VxxpGRaBYD6jNFieETSzBRzN6KyBArTIwNq2JD8JdfXiXtes33av7dRbVRL+Iowwmcwjn4cAkNuIEmtIDAGJ7hFd6c3Hlx3p2PRWvJKWaO4Q+czx8Ad5PW</latexit><latexit sha1_base64="5R0Pz1AUOZrALGqOmWAZJdDJ/Lc=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69LBbBU0mKoMeCFw8eKthWaGPYbDft0s1u2N1USug/8eJBEa/+E2/+G7dtDtr6YODx3gwz86KUM20879spra1vbG6Vtys7u3v7B+7hUVvLTBHaIpJL9RBhTTkTtGWY4fQhVRQnEaedaHQ98ztjqjST4t5MUhokeCBYzAg2VgpddxjePuY9TmODlZJP09CtejVvDrRK/IJUoUAzdL96fUmyhApDONa663upCXKsDCOcTiu9TNMUkxEe0K6lAidUB/n88ik6s0ofxVLZEgbN1d8TOU60niSR7UywGeplbyb+53UzE18FORNpZqggi0VxxpGRaBYD6jNFieETSzBRzN6KyBArTIwNq2JD8JdfXiXtes33av7dRbVRL+Iowwmcwjn4cAkNuIEmtIDAGJ7hFd6c3Hlx3p2PRWvJKWaO4Q+czx8Ad5PW</latexit>

e L
<latexit sha1_base64="nZCiysSHz3bHvC2F++Io+wYSpKI=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBbBU0mKoMeCFw8eKthWaGPYbCft0s1u2N1USug/8eJBEa/+E2/+G7dtDtr6YODx3gwz86KUM20879spra1vbG6Vtys7u3v7B+7hUVvLTFFoUcmleoiIBs4EtAwzHB5SBSSJOHSi0fXM74xBaSbFvZmkECRkIFjMKDFWCl0XwtvHvMchNkQp+TQN3apX8+bAq8QvSBUVaIbuV68vaZaAMJQTrbu+l5ogJ8owymFa6WUaUkJHZABdSwVJQAf5/PIpPrNKH8dS2RIGz9XfEzlJtJ4kke1MiBnqZW8m/ud1MxNfBTkTaWZA0MWiOOPYSDyLAfeZAmr4xBJCFbO3YjokilBjw6rYEPzll1dJu17zvZp/d1Ft1Is4yugEnaJz5KNL1EA3qIlaiKIxekav6M3JnRfn3flYtJacYuYY/YHz+QP7r5PT</latexit><latexit sha1_base64="nZCiysSHz3bHvC2F++Io+wYSpKI=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBbBU0mKoMeCFw8eKthWaGPYbCft0s1u2N1USug/8eJBEa/+E2/+G7dtDtr6YODx3gwz86KUM20879spra1vbG6Vtys7u3v7B+7hUVvLTFFoUcmleoiIBs4EtAwzHB5SBSSJOHSi0fXM74xBaSbFvZmkECRkIFjMKDFWCl0XwtvHvMchNkQp+TQN3apX8+bAq8QvSBUVaIbuV68vaZaAMJQTrbu+l5ogJ8owymFa6WUaUkJHZABdSwVJQAf5/PIpPrNKH8dS2RIGz9XfEzlJtJ4kke1MiBnqZW8m/ud1MxNfBTkTaWZA0MWiOOPYSDyLAfeZAmr4xBJCFbO3YjokilBjw6rYEPzll1dJu17zvZp/d1Ft1Is4yugEnaJz5KNL1EA3qIlaiKIxekav6M3JnRfn3flYtJacYuYY/YHz+QP7r5PT</latexit><latexit sha1_base64="nZCiysSHz3bHvC2F++Io+wYSpKI=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBbBU0mKoMeCFw8eKthWaGPYbCft0s1u2N1USug/8eJBEa/+E2/+G7dtDtr6YODx3gwz86KUM20879spra1vbG6Vtys7u3v7B+7hUVvLTFFoUcmleoiIBs4EtAwzHB5SBSSJOHSi0fXM74xBaSbFvZmkECRkIFjMKDFWCl0XwtvHvMchNkQp+TQN3apX8+bAq8QvSBUVaIbuV68vaZaAMJQTrbu+l5ogJ8owymFa6WUaUkJHZABdSwVJQAf5/PIpPrNKH8dS2RIGz9XfEzlJtJ4kke1MiBnqZW8m/ud1MxNfBTkTaWZA0MWiOOPYSDyLAfeZAmr4xBJCFbO3YjokilBjw6rYEPzll1dJu17zvZp/d1Ft1Is4yugEnaJz5KNL1EA3qIlaiKIxekav6M3JnRfn3flYtJacYuYY/YHz+QP7r5PT</latexit><latexit sha1_base64="nZCiysSHz3bHvC2F++Io+wYSpKI=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBbBU0mKoMeCFw8eKthWaGPYbCft0s1u2N1USug/8eJBEa/+E2/+G7dtDtr6YODx3gwz86KUM20879spra1vbG6Vtys7u3v7B+7hUVvLTFFoUcmleoiIBs4EtAwzHB5SBSSJOHSi0fXM74xBaSbFvZmkECRkIFjMKDFWCl0XwtvHvMchNkQp+TQN3apX8+bAq8QvSBUVaIbuV68vaZaAMJQTrbu+l5ogJ8owymFa6WUaUkJHZABdSwVJQAf5/PIpPrNKH8dS2RIGz9XfEzlJtJ4kke1MiBnqZW8m/ud1MxNfBTkTaWZA0MWiOOPYSDyLAfeZAmr4xBJCFbO3YjokilBjw6rYEPzll1dJu17zvZp/d1Ft1Is4yugEnaJz5KNL1EA3qIlaiKIxekav6M3JnRfn3flYtJacYuYY/YHz+QP7r5PT</latexit>

e R
<latexit sha1_base64="zViO30Y/N/XDYkbyHTBNkXHJ51g=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBbBU0mKoMeCF49VbCu0MWy2k3bpZjfsbiol9J948aCIV/+JN/+N2zYHbX0w8Hhvhpl5UcqZNp737ZTW1jc2t8rblZ3dvf0D9/CorWWmKLSo5FI9REQDZwJahhkOD6kCkkQcOtHoeuZ3xqA0k+LeTFIIEjIQLGaUGCuFrgvh3WPe4xAbopR8moZu1at5c+BV4hekigo0Q/er15c0S0AYyonWXd9LTZATZRjlMK30Mg0poSMygK6lgiSgg3x++RSfWaWPY6lsCYPn6u+JnCRaT5LIdibEDPWyNxP/87qZia+CnIk0MyDoYlGccWwknsWA+0wBNXxiCaGK2VsxHRJFqLFhVWwI/vLLq6Rdr/lezb+9qDbqRRxldIJO0Tny0SVqoBvURC1E0Rg9o1f05uTOi/PufCxaS04xc4z+wPn8AQUkk9k=</latexit><latexit sha1_base64="zViO30Y/N/XDYkbyHTBNkXHJ51g=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBbBU0mKoMeCF49VbCu0MWy2k3bpZjfsbiol9J948aCIV/+JN/+N2zYHbX0w8Hhvhpl5UcqZNp737ZTW1jc2t8rblZ3dvf0D9/CorWWmKLSo5FI9REQDZwJahhkOD6kCkkQcOtHoeuZ3xqA0k+LeTFIIEjIQLGaUGCuFrgvh3WPe4xAbopR8moZu1at5c+BV4hekigo0Q/er15c0S0AYyonWXd9LTZATZRjlMK30Mg0poSMygK6lgiSgg3x++RSfWaWPY6lsCYPn6u+JnCRaT5LIdibEDPWyNxP/87qZia+CnIk0MyDoYlGccWwknsWA+0wBNXxiCaGK2VsxHRJFqLFhVWwI/vLLq6Rdr/lezb+9qDbqRRxldIJO0Tny0SVqoBvURC1E0Rg9o1f05uTOi/PufCxaS04xc4z+wPn8AQUkk9k=</latexit><latexit sha1_base64="zViO30Y/N/XDYkbyHTBNkXHJ51g=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBbBU0mKoMeCF49VbCu0MWy2k3bpZjfsbiol9J948aCIV/+JN/+N2zYHbX0w8Hhvhpl5UcqZNp737ZTW1jc2t8rblZ3dvf0D9/CorWWmKLSo5FI9REQDZwJahhkOD6kCkkQcOtHoeuZ3xqA0k+LeTFIIEjIQLGaUGCuFrgvh3WPe4xAbopR8moZu1at5c+BV4hekigo0Q/er15c0S0AYyonWXd9LTZATZRjlMK30Mg0poSMygK6lgiSgg3x++RSfWaWPY6lsCYPn6u+JnCRaT5LIdibEDPWyNxP/87qZia+CnIk0MyDoYlGccWwknsWA+0wBNXxiCaGK2VsxHRJFqLFhVWwI/vLLq6Rdr/lezb+9qDbqRRxldIJO0Tny0SVqoBvURC1E0Rg9o1f05uTOi/PufCxaS04xc4z+wPn8AQUkk9k=</latexit><latexit sha1_base64="zViO30Y/N/XDYkbyHTBNkXHJ51g=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBbBU0mKoMeCF49VbCu0MWy2k3bpZjfsbiol9J948aCIV/+JN/+N2zYHbX0w8Hhvhpl5UcqZNp737ZTW1jc2t8rblZ3dvf0D9/CorWWmKLSo5FI9REQDZwJahhkOD6kCkkQcOtHoeuZ3xqA0k+LeTFIIEjIQLGaUGCuFrgvh3WPe4xAbopR8moZu1at5c+BV4hekigo0Q/er15c0S0AYyonWXd9LTZATZRjlMK30Mg0poSMygK6lgiSgg3x++RSfWaWPY6lsCYPn6u+JnCRaT5LIdibEDPWyNxP/87qZia+CnIk0MyDoYlGccWwknsWA+0wBNXxiCaGK2VsxHRJFqLFhVWwI/vLLq6Rdr/lezb+9qDbqRRxldIJO0Tny0SVqoBvURC1E0Rg9o1f05uTOi/PufCxaS04xc4z+wPn8AQUkk9k=</latexit>

h R
<latexit sha1_base64="tFyndP/UF31cwVrc73kdPQC1TOA=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBbBU0mKoMeCF49VbCu0MWy2m3bpZjfsTiol9J948aCIV/+JN/+N2zYHbX0w8Hhvhpl5USq4Ac/7dkpr6xubW+Xtys7u3v6Be3jUNirTlLWoEko/RMQwwSVrAQfBHlLNSBIJ1olG1zO/M2bacCXvYZKyICEDyWNOCVgpdN1hePeY9wSLgWitnqahW/Vq3hx4lfgFqaICzdD96vUVzRImgQpiTNf3UghyooFTwaaVXmZYSuiIDFjXUkkSZoJ8fvkUn1mlj2OlbUnAc/X3RE4SYyZJZDsTAkOz7M3E/7xuBvFVkHOZZsAkXSyKM4FB4VkMuM81oyAmlhCqub0V0yHRhIINq2JD8JdfXiXtes33av7tRbVRL+IooxN0is6Rjy5RA92gJmohisboGb2iNyd3Xpx352PRWnKKmWP0B87nDwndk9w=</latexit><latexit sha1_base64="tFyndP/UF31cwVrc73kdPQC1TOA=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBbBU0mKoMeCF49VbCu0MWy2m3bpZjfsTiol9J948aCIV/+JN/+N2zYHbX0w8Hhvhpl5USq4Ac/7dkpr6xubW+Xtys7u3v6Be3jUNirTlLWoEko/RMQwwSVrAQfBHlLNSBIJ1olG1zO/M2bacCXvYZKyICEDyWNOCVgpdN1hePeY9wSLgWitnqahW/Vq3hx4lfgFqaICzdD96vUVzRImgQpiTNf3UghyooFTwaaVXmZYSuiIDFjXUkkSZoJ8fvkUn1mlj2OlbUnAc/X3RE4SYyZJZDsTAkOz7M3E/7xuBvFVkHOZZsAkXSyKM4FB4VkMuM81oyAmlhCqub0V0yHRhIINq2JD8JdfXiXtes33av7tRbVRL+IooxN0is6Rjy5RA92gJmohisboGb2iNyd3Xpx352PRWnKKmWP0B87nDwndk9w=</latexit><latexit sha1_base64="tFyndP/UF31cwVrc73kdPQC1TOA=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBbBU0mKoMeCF49VbCu0MWy2m3bpZjfsTiol9J948aCIV/+JN/+N2zYHbX0w8Hhvhpl5USq4Ac/7dkpr6xubW+Xtys7u3v6Be3jUNirTlLWoEko/RMQwwSVrAQfBHlLNSBIJ1olG1zO/M2bacCXvYZKyICEDyWNOCVgpdN1hePeY9wSLgWitnqahW/Vq3hx4lfgFqaICzdD96vUVzRImgQpiTNf3UghyooFTwaaVXmZYSuiIDFjXUkkSZoJ8fvkUn1mlj2OlbUnAc/X3RE4SYyZJZDsTAkOz7M3E/7xuBvFVkHOZZsAkXSyKM4FB4VkMuM81oyAmlhCqub0V0yHRhIINq2JD8JdfXiXtes33av7tRbVRL+IooxN0is6Rjy5RA92gJmohisboGb2iNyd3Xpx352PRWnKKmWP0B87nDwndk9w=</latexit><latexit sha1_base64="tFyndP/UF31cwVrc73kdPQC1TOA=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBbBU0mKoMeCF49VbCu0MWy2m3bpZjfsTiol9J948aCIV/+JN/+N2zYHbX0w8Hhvhpl5USq4Ac/7dkpr6xubW+Xtys7u3v6Be3jUNirTlLWoEko/RMQwwSVrAQfBHlLNSBIJ1olG1zO/M2bacCXvYZKyICEDyWNOCVgpdN1hePeY9wSLgWitnqahW/Vq3hx4lfgFqaICzdD96vUVzRImgQpiTNf3UghyooFTwaaVXmZYSuiIDFjXUkkSZoJ8fvkUn1mlj2OlbUnAc/X3RE4SYyZJZDsTAkOz7M3E/7xuBvFVkHOZZsAkXSyKM4FB4VkMuM81oyAmlhCqub0V0yHRhIINq2JD8JdfXiXtes33av7tRbVRL+IooxN0is6Rjy5RA92gJmohisboGb2iNyd3Xpx352PRWnKKmWP0B87nDwndk9w=</latexit>

h!
R

<latexit sha1_base64="I1emhBFUsBl4JDDOBu4mK6oREYM=">AAAB+nicbVBNS8NAEJ34WetXqkcvi0XwVJIi6LHgxWMV+wFtDJvtplm62YTdjaXE/hQvHhTx6i/x5r9x2+agrQ8GHu/NMDMvSDlT2nG+rbX1jc2t7dJOeXdv/+DQrhy1VZJJQlsk4YnsBlhRzgRtaaY57aaS4jjgtBOMrmd+55FKxRJxrycp9WI8FCxkBGsj+XYl8u8e8r5kw0hjKZPx1LerTs2ZA60StyBVKND07a/+ICFZTIUmHCvVc51UezmWmhFOp+V+pmiKyQgPac9QgWOqvHx++hSdGWWAwkSaEhrN1d8TOY6VmsSB6YyxjtSyNxP/83qZDq+8nIk001SQxaIw40gnaJYDGjBJieYTQzCRzNyKSIQlJtqkVTYhuMsvr5J2veY6Nff2otqoF3GU4ARO4RxcuIQG3EATWkBgDM/wCm/Wk/VivVsfi9Y1q5g5hj+wPn8A5A+UWQ==</latexit><latexit sha1_base64="I1emhBFUsBl4JDDOBu4mK6oREYM=">AAAB+nicbVBNS8NAEJ34WetXqkcvi0XwVJIi6LHgxWMV+wFtDJvtplm62YTdjaXE/hQvHhTx6i/x5r9x2+agrQ8GHu/NMDMvSDlT2nG+rbX1jc2t7dJOeXdv/+DQrhy1VZJJQlsk4YnsBlhRzgRtaaY57aaS4jjgtBOMrmd+55FKxRJxrycp9WI8FCxkBGsj+XYl8u8e8r5kw0hjKZPx1LerTs2ZA60StyBVKND07a/+ICFZTIUmHCvVc51UezmWmhFOp+V+pmiKyQgPac9QgWOqvHx++hSdGWWAwkSaEhrN1d8TOY6VmsSB6YyxjtSyNxP/83qZDq+8nIk001SQxaIw40gnaJYDGjBJieYTQzCRzNyKSIQlJtqkVTYhuMsvr5J2veY6Nff2otqoF3GU4ARO4RxcuIQG3EATWkBgDM/wCm/Wk/VivVsfi9Y1q5g5hj+wPn8A5A+UWQ==</latexit><latexit sha1_base64="I1emhBFUsBl4JDDOBu4mK6oREYM=">AAAB+nicbVBNS8NAEJ34WetXqkcvi0XwVJIi6LHgxWMV+wFtDJvtplm62YTdjaXE/hQvHhTx6i/x5r9x2+agrQ8GHu/NMDMvSDlT2nG+rbX1jc2t7dJOeXdv/+DQrhy1VZJJQlsk4YnsBlhRzgRtaaY57aaS4jjgtBOMrmd+55FKxRJxrycp9WI8FCxkBGsj+XYl8u8e8r5kw0hjKZPx1LerTs2ZA60StyBVKND07a/+ICFZTIUmHCvVc51UezmWmhFOp+V+pmiKyQgPac9QgWOqvHx++hSdGWWAwkSaEhrN1d8TOY6VmsSB6YyxjtSyNxP/83qZDq+8nIk001SQxaIw40gnaJYDGjBJieYTQzCRzNyKSIQlJtqkVTYhuMsvr5J2veY6Nff2otqoF3GU4ARO4RxcuIQG3EATWkBgDM/wCm/Wk/VivVsfi9Y1q5g5hj+wPn8A5A+UWQ==</latexit><latexit sha1_base64="I1emhBFUsBl4JDDOBu4mK6oREYM=">AAAB+nicbVBNS8NAEJ34WetXqkcvi0XwVJIi6LHgxWMV+wFtDJvtplm62YTdjaXE/hQvHhTx6i/x5r9x2+agrQ8GHu/NMDMvSDlT2nG+rbX1jc2t7dJOeXdv/+DQrhy1VZJJQlsk4YnsBlhRzgRtaaY57aaS4jjgtBOMrmd+55FKxRJxrycp9WI8FCxkBGsj+XYl8u8e8r5kw0hjKZPx1LerTs2ZA60StyBVKND07a/+ICFZTIUmHCvVc51UezmWmhFOp+V+pmiKyQgPac9QgWOqvHx++hSdGWWAwkSaEhrN1d8TOY6VmsSB6YyxjtSyNxP/83qZDq+8nIk001SQxaIw40gnaJYDGjBJieYTQzCRzNyKSIQlJtqkVTYhuMsvr5J2veY6Nff2otqoF3GU4ARO4RxcuIQG3EATWkBgDM/wCm/Wk/VivVsfi9Y1q5g5hj+wPn8A5A+UWQ==</latexit>

e!R
<latexit sha1_base64="miJhc9xAh7n8b9jx2uPv884xKjg=">AAAB+nicbVBNSwMxEM36WevXVo9egkXwVHaLoMeCF49V7Ae0dcmm2TY0myzJrKWs/SlePCji1V/izX9j2u5BWx8MPN6bYWZemAhuwPO+nbX1jc2t7cJOcXdv/+DQLR01jUo1ZQ2qhNLtkBgmuGQN4CBYO9GMxKFgrXB0PfNbj0wbruQ9TBLWi8lA8ohTAlYK3BIL7h6yruaDIRCt1XgauGWv4s2BV4mfkzLKUQ/cr25f0TRmEqggxnR8L4FeRjRwKti02E0NSwgdkQHrWCpJzEwvm58+xWdW6eNIaVsS8Fz9PZGR2JhJHNrOmMDQLHsz8T+vk0J01cu4TFJgki4WRanAoPAsB9znmlEQE0sI1dzeiumQaELBplW0IfjLL6+SZrXiexX/9qJcq+ZxFNAJOkXnyEeXqIZuUB01EEVj9Ixe0Zvz5Lw4787HonXNyWeO0R84nz/fU5RW</latexit><latexit sha1_base64="miJhc9xAh7n8b9jx2uPv884xKjg=">AAAB+nicbVBNSwMxEM36WevXVo9egkXwVHaLoMeCF49V7Ae0dcmm2TY0myzJrKWs/SlePCji1V/izX9j2u5BWx8MPN6bYWZemAhuwPO+nbX1jc2t7cJOcXdv/+DQLR01jUo1ZQ2qhNLtkBgmuGQN4CBYO9GMxKFgrXB0PfNbj0wbruQ9TBLWi8lA8ohTAlYK3BIL7h6yruaDIRCt1XgauGWv4s2BV4mfkzLKUQ/cr25f0TRmEqggxnR8L4FeRjRwKti02E0NSwgdkQHrWCpJzEwvm58+xWdW6eNIaVsS8Fz9PZGR2JhJHNrOmMDQLHsz8T+vk0J01cu4TFJgki4WRanAoPAsB9znmlEQE0sI1dzeiumQaELBplW0IfjLL6+SZrXiexX/9qJcq+ZxFNAJOkXnyEeXqIZuUB01EEVj9Ixe0Zvz5Lw4787HonXNyWeO0R84nz/fU5RW</latexit><latexit sha1_base64="miJhc9xAh7n8b9jx2uPv884xKjg=">AAAB+nicbVBNSwMxEM36WevXVo9egkXwVHaLoMeCF49V7Ae0dcmm2TY0myzJrKWs/SlePCji1V/izX9j2u5BWx8MPN6bYWZemAhuwPO+nbX1jc2t7cJOcXdv/+DQLR01jUo1ZQ2qhNLtkBgmuGQN4CBYO9GMxKFgrXB0PfNbj0wbruQ9TBLWi8lA8ohTAlYK3BIL7h6yruaDIRCt1XgauGWv4s2BV4mfkzLKUQ/cr25f0TRmEqggxnR8L4FeRjRwKti02E0NSwgdkQHrWCpJzEwvm58+xWdW6eNIaVsS8Fz9PZGR2JhJHNrOmMDQLHsz8T+vk0J01cu4TFJgki4WRanAoPAsB9znmlEQE0sI1dzeiumQaELBplW0IfjLL6+SZrXiexX/9qJcq+ZxFNAJOkXnyEeXqIZuUB01EEVj9Ixe0Zvz5Lw4787HonXNyWeO0R84nz/fU5RW</latexit><latexit sha1_base64="miJhc9xAh7n8b9jx2uPv884xKjg=">AAAB+nicbVBNSwMxEM36WevXVo9egkXwVHaLoMeCF49V7Ae0dcmm2TY0myzJrKWs/SlePCji1V/izX9j2u5BWx8MPN6bYWZemAhuwPO+nbX1jc2t7cJOcXdv/+DQLR01jUo1ZQ2qhNLtkBgmuGQN4CBYO9GMxKFgrXB0PfNbj0wbruQ9TBLWi8lA8ohTAlYK3BIL7h6yruaDIRCt1XgauGWv4s2BV4mfkzLKUQ/cr25f0TRmEqggxnR8L4FeRjRwKti02E0NSwgdkQHrWCpJzEwvm58+xWdW6eNIaVsS8Fz9PZGR2JhJHNrOmMDQLHsz8T+vk0J01cu4TFJgki4WRanAoPAsB9znmlEQE0sI1dzeiumQaELBplW0IfjLL6+SZrXiexX/9qJcq+ZxFNAJOkXnyEeXqIZuUB01EEVj9Ixe0Zvz5Lw4787HonXNyWeO0R84nz/fU5RW</latexit>

Floquet topological
<latexit sha1_base64="TmgLh5RV9WG+Ey5dSPdk4hMsZ3U=">AAAB/nicbVDLSgMxFM3UV62vUXHlJlgEV2WmG10WBHFZwT6gHUomzbShmWRM7ghlKPgrblwo4tbvcOffmGlnoa0HAodzziX3njAR3IDnfTultfWNza3ydmVnd2//wD08ahuVaspaVAmluyExTHDJWsBBsG6iGYlDwTrh5Dr3O49MG67kPUwTFsRkJHnEKQErDdyTG6EeUgYYVGLDI2sIXBm4Va/mzYFXiV+QKirQHLhf/aGiacwkUEGM6fleAkFGNHAq2KzSTw1LCJ2QEetZKknMTJDN15/hc6sMcaS0fRLwXP09kZHYmGkc2mRMYGyWvVz8z+ulEF0FGZdJCkzSxUdRKuytOO8CD7lmFMTUEkI1t7tiOiaaULCN5SX4yyevkna95ns1/65ebdSLOsroFJ2hC+SjS9RAt6iJWoiiDD2jV/TmPDkvzrvzsYiWnGLmGP2B8/kDpCKVMg==</latexit><latexit sha1_base64="TmgLh5RV9WG+Ey5dSPdk4hMsZ3U=">AAAB/nicbVDLSgMxFM3UV62vUXHlJlgEV2WmG10WBHFZwT6gHUomzbShmWRM7ghlKPgrblwo4tbvcOffmGlnoa0HAodzziX3njAR3IDnfTultfWNza3ydmVnd2//wD08ahuVaspaVAmluyExTHDJWsBBsG6iGYlDwTrh5Dr3O49MG67kPUwTFsRkJHnEKQErDdyTG6EeUgYYVGLDI2sIXBm4Va/mzYFXiV+QKirQHLhf/aGiacwkUEGM6fleAkFGNHAq2KzSTw1LCJ2QEetZKknMTJDN15/hc6sMcaS0fRLwXP09kZHYmGkc2mRMYGyWvVz8z+ulEF0FGZdJCkzSxUdRKuytOO8CD7lmFMTUEkI1t7tiOiaaULCN5SX4yyevkna95ns1/65ebdSLOsroFJ2hC+SjS9RAt6iJWoiiDD2jV/TmPDkvzrvzsYiWnGLmGP2B8/kDpCKVMg==</latexit><latexit sha1_base64="TmgLh5RV9WG+Ey5dSPdk4hMsZ3U=">AAAB/nicbVDLSgMxFM3UV62vUXHlJlgEV2WmG10WBHFZwT6gHUomzbShmWRM7ghlKPgrblwo4tbvcOffmGlnoa0HAodzziX3njAR3IDnfTultfWNza3ydmVnd2//wD08ahuVaspaVAmluyExTHDJWsBBsG6iGYlDwTrh5Dr3O49MG67kPUwTFsRkJHnEKQErDdyTG6EeUgYYVGLDI2sIXBm4Va/mzYFXiV+QKirQHLhf/aGiacwkUEGM6fleAkFGNHAq2KzSTw1LCJ2QEetZKknMTJDN15/hc6sMcaS0fRLwXP09kZHYmGkc2mRMYGyWvVz8z+ulEF0FGZdJCkzSxUdRKuytOO8CD7lmFMTUEkI1t7tiOiaaULCN5SX4yyevkna95ns1/65ebdSLOsroFJ2hC+SjS9RAt6iJWoiiDD2jV/TmPDkvzrvzsYiWnGLmGP2B8/kDpCKVMg==</latexit><latexit sha1_base64="TmgLh5RV9WG+Ey5dSPdk4hMsZ3U=">AAAB/nicbVDLSgMxFM3UV62vUXHlJlgEV2WmG10WBHFZwT6gHUomzbShmWRM7ghlKPgrblwo4tbvcOffmGlnoa0HAodzziX3njAR3IDnfTultfWNza3ydmVnd2//wD08ahuVaspaVAmluyExTHDJWsBBsG6iGYlDwTrh5Dr3O49MG67kPUwTFsRkJHnEKQErDdyTG6EeUgYYVGLDI2sIXBm4Va/mzYFXiV+QKirQHLhf/aGiacwkUEGM6fleAkFGNHAq2KzSTw1LCJ2QEetZKknMTJDN15/hc6sMcaS0fRLwXP09kZHYmGkc2mRMYGyWvVz8z+ulEF0FGZdJCkzSxUdRKuytOO8CD7lmFMTUEkI1t7tiOiaaULCN5SX4yyevkna95ns1/65ebdSLOsroFJ2hC+SjS9RAt6iJWoiiDD2jV/TmPDkvzrvzsYiWnGLmGP2B8/kDpCKVMg==</latexit>

system of interest
<latexit sha1_base64="/uDwRT2YIj8LLrKaqr1rkyhY3oY=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5L0oseCF48V7Ae0oWy2k3bpZhN2J0II9a948aCIV3+IN/+NSZuDtj4YeLw3w8w8P5bCoON8W5Wt7Z3dvep+7eDw6PjEPj3rmSjRHLo8kpEe+MyAFAq6KFDCINbAQl9C35/fFn7/EbQRkXrANAYvZFMlAsEZ5tLYrpvUIIQ0CqhQCBoM1sZ2w2k6S9BN4pakQUp0xvbXaBLxJASFXDJjhq4To5cxjYJLWNRGiYGY8TmbwjCnioVgvGx5/IJe5sqEBpHOSyFdqr8nMhYak4Z+3hkynJl1rxD/84YJBjdeJlScICi+WhQkkmJEiyToRGjgKNOcMK5FfivlM6YZz2MwRQju+subpNdquk7TvW812q0yjio5JxfkirjkmrTJHemQLuEkJc/klbxZT9aL9W59rForVjlTJ39gff4AaMWUiQ==</latexit><latexit sha1_base64="/uDwRT2YIj8LLrKaqr1rkyhY3oY=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5L0oseCF48V7Ae0oWy2k3bpZhN2J0II9a948aCIV3+IN/+NSZuDtj4YeLw3w8w8P5bCoON8W5Wt7Z3dvep+7eDw6PjEPj3rmSjRHLo8kpEe+MyAFAq6KFDCINbAQl9C35/fFn7/EbQRkXrANAYvZFMlAsEZ5tLYrpvUIIQ0CqhQCBoM1sZ2w2k6S9BN4pakQUp0xvbXaBLxJASFXDJjhq4To5cxjYJLWNRGiYGY8TmbwjCnioVgvGx5/IJe5sqEBpHOSyFdqr8nMhYak4Z+3hkynJl1rxD/84YJBjdeJlScICi+WhQkkmJEiyToRGjgKNOcMK5FfivlM6YZz2MwRQju+subpNdquk7TvW812q0yjio5JxfkirjkmrTJHemQLuEkJc/klbxZT9aL9W59rForVjlTJ39gff4AaMWUiQ==</latexit><latexit sha1_base64="/uDwRT2YIj8LLrKaqr1rkyhY3oY=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5L0oseCF48V7Ae0oWy2k3bpZhN2J0II9a948aCIV3+IN/+NSZuDtj4YeLw3w8w8P5bCoON8W5Wt7Z3dvep+7eDw6PjEPj3rmSjRHLo8kpEe+MyAFAq6KFDCINbAQl9C35/fFn7/EbQRkXrANAYvZFMlAsEZ5tLYrpvUIIQ0CqhQCBoM1sZ2w2k6S9BN4pakQUp0xvbXaBLxJASFXDJjhq4To5cxjYJLWNRGiYGY8TmbwjCnioVgvGx5/IJe5sqEBpHOSyFdqr8nMhYak4Z+3hkynJl1rxD/84YJBjdeJlScICi+WhQkkmJEiyToRGjgKNOcMK5FfivlM6YZz2MwRQju+subpNdquk7TvW812q0yjio5JxfkirjkmrTJHemQLuEkJc/klbxZT9aL9W59rForVjlTJ39gff4AaMWUiQ==</latexit><latexit sha1_base64="/uDwRT2YIj8LLrKaqr1rkyhY3oY=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5L0oseCF48V7Ae0oWy2k3bpZhN2J0II9a948aCIV3+IN/+NSZuDtj4YeLw3w8w8P5bCoON8W5Wt7Z3dvep+7eDw6PjEPj3rmSjRHLo8kpEe+MyAFAq6KFDCINbAQl9C35/fFn7/EbQRkXrANAYvZFMlAsEZ5tLYrpvUIIQ0CqhQCBoM1sZ2w2k6S9BN4pakQUp0xvbXaBLxJASFXDJjhq4To5cxjYJLWNRGiYGY8TmbwjCnioVgvGx5/IJe5sqEBpHOSyFdqr8nMhYak4Z+3hkynJl1rxD/84YJBjdeJlScICi+WhQkkmJEiyToRGjgKNOcMK5FfivlM6YZz2MwRQju+subpNdquk7TvW812q0yjio5JxfkirjkmrTJHemQLuEkJc/klbxZT9aL9W59rForVjlTJ39gff4AaMWUiQ==</latexit>

<latexit sha1_base64="23lpX7U3pH+1LDBfMqpABT3VLxE=">AAAB73icbVDLSgNBEOyNrxhfUY9eFoPgKewGUfEU8KDHKOYByRJ6J5NkyMzsOjMrhCU/4cWDIl79HW/+jZNkD5pY0FBUddPdFcacaeN5305uZXVtfSO/Wdja3tndK+4fNHSUKELrJOKRaoWoKWeS1g0znLZiRVGEnDbD0fXUbz5RpVkkH8w4poHAgWR9RtBYqdW5QSGwe98tlryyN4O7TPyMlCBDrVv86vQikggqDeGoddv3YhOkqAwjnE4KnUTTGMkIB7RtqURBdZDO7p24J1bpuf1I2ZLGnam/J1IUWo9FaDsFmqFe9Kbif147Mf3LIGUyTgyVZL6on3DXRO70ebfHFCWGjy1Bopi91SVDVEiMjahgQ/AXX14mjUrZPy9X7s5K1assjjwcwTGcgg8XUIVbqEEdCHB4hld4cx6dF+fd+Zi35pxs5hD+wPn8AbDbj7k=</latexit>

�R
<latexit sha1_base64="achlBoQuJjUK1ZE4mq61wxYtM4g=">AAAB73icbVA9SwNBEJ2LXzF+RS1tDoNgFe6CqFgFLLSwiGA+IDnC3GaTLNndO3f3hHDkT9hYKGLr37Hz37hJrtDEBwOP92aYmRfGnGnjed9ObmV1bX0jv1nY2t7Z3SvuHzR0lChC6yTikWqFqClnktYNM5y2YkVRhJw2w9H11G8+UaVZJB/MOKaBwIFkfUbQWKnVuUEhsHvXLZa8sjeDu0z8jJQgQ61b/Or0IpIIKg3hqHXb92ITpKgMI5xOCp1E0xjJCAe0balEQXWQzu6duCdW6bn9SNmSxp2pvydSFFqPRWg7BZqhXvSm4n9eOzH9yyBlMk4MlWS+qJ9w10Tu9Hm3xxQlho8tQaKYvdUlQ1RIjI2oYEPwF19eJo1K2T8vV+7PStWrLI48HMExnIIPF1CFW6hBHQhweIZXeHMenRfn3fmYt+acbOYQ/sD5/AGnw4+z</latexit>

�L

<latexit sha1_base64="tSWGUlIHQOtl5Mg5Rz/LQIwS37c=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoMQL2E3SPQY8OIxgnlAsoTZyWwyZnZ2mekVQsg/ePGgiFf/x5t/4yTZgyYWNBRV3XR3BYkUBl3328ltbG5t7+R3C3v7B4dHxeOTlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDv3209cGxGrB5wk3I/oUIlQMIpWanX6Xhkv+8WSW3EXIOvEy0gJMjT6xa/eIGZpxBUySY3pem6C/pRqFEzyWaGXGp5QNqZD3rVU0Ygbf7q4dkYurDIgYaxtKSQL9ffElEbGTKLAdkYUR2bVm4v/ed0Uwxt/KlSSIldsuShMJcGYzF8nA6E5QzmxhDIt7K2EjaimDG1ABRuCt/ryOmlVK16tUr2/KtVrWRx5OINzKIMH11CHO2hAExg8wjO8wpsTOy/Ou/OxbM052cwp/IHz+QN2e45e</latexit>

X1(t)
<latexit sha1_base64="2wqhK6xmpxwABj+sMRnDrVlaOqA=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoMQL2E3SPQY8OIxgnlAsoTZyWwyZnZ2mekVQsg/ePGgiFf/x5t/4yTZgyYWNBRV3XR3BYkUBl3328ltbG5t7+R3C3v7B4dHxeOTlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDv3209cGxGrB5wk3I/oUIlQMIpWanX61TJe9oslt+IuQNaJl5ESZGj0i1+9QczSiCtkkhrT9dwE/SnVKJjks0IvNTyhbEyHvGupohE3/nRx7YxcWGVAwljbUkgW6u+JKY2MmUSB7YwojsyqNxf/87ophjf+VKgkRa7YclGYSoIxmb9OBkJzhnJiCWVa2FsJG1FNGdqACjYEb/XlddKqVrxapXp/VarXsjjycAbnUAYPrqEOd9CAJjB4hGd4hTcndl6cd+dj2ZpzsplT+APn8wd4Ao5f</latexit>

X2(t)

<latexit sha1_base64="0N60dxrsKXQMh44+ZIim3jgLBCU=">AAAB/3icbVDLSsNAFJ34rPUVFdy4GSxCC1KSItVlwU2XFWwbaEOYTKft0MmDmRshxC78FTcuFHHrb7jzb5y2WWjrgcs9nHMvc+f4seAKLOvbWFvf2NzaLuwUd/f2Dw7No+OOihJJWZtGIpKOTxQTPGRt4CCYE0tGAl+wrj+5nfndByYVj8J7SGPmBmQU8iGnBLTkmadNL1OpmpYdzy5D5dLxarpVPLNkVa058Cqxc1JCOVqe+dUfRDQJWAhUEKV6thWDmxEJnAo2LfYTxWJCJ2TEepqGJGDKzeb3T/GFVgZ4GEldIeC5+nsjI4FSaeDryYDAWC17M/E/r5fA8MbNeBgnwEK6eGiYCAwRnoWBB1wyCiLVhFDJ9a2YjokkFHRkRR2CvfzlVdKpVe16tXZ3VWrU8zgK6AydozKy0TVqoCZqoTai6BE9o1f0ZjwZL8a78bEYXTPynRP0B8bnD13BlFg=</latexit>

Hsys(X1(t), X2(t))

t
<latexit sha1_base64="kVrUDmYcuNlrfZkr7F9YDx7BrpU=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0l6sceCF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jps1BWx8MPN6bYWZekEhh0HW/ndLW9s7uXnm/cnB4dHxSPT3rmjjVjHdYLGPdD6jhUijeQYGS9xPNaRRI3gtmt7nfe+LaiFg94jzhfkQnSoSCUbTSA1ZG1Zpbd5cgm8QrSA0KtEfVr+E4ZmnEFTJJjRl4boJ+RjUKJvmiMkwNTyib0QkfWKpoxI2fLS9dkCurjEkYa1sKyVL9PZHRyJh5FNjOiOLUrHu5+J83SDFs+plQSYpcsdWiMJUEY5K/TcZCc4ZybgllWthbCZtSTRnacPIQvPWXN0m3UffcunffqLUaRRxluIBLuAYPbqAFd9CGDjAI4Rle4c2ZOS/Ou/Oxai05xcw5/IHz+QMPSIz6</latexit><latexit sha1_base64="kVrUDmYcuNlrfZkr7F9YDx7BrpU=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0l6sceCF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jps1BWx8MPN6bYWZekEhh0HW/ndLW9s7uXnm/cnB4dHxSPT3rmjjVjHdYLGPdD6jhUijeQYGS9xPNaRRI3gtmt7nfe+LaiFg94jzhfkQnSoSCUbTSA1ZG1Zpbd5cgm8QrSA0KtEfVr+E4ZmnEFTJJjRl4boJ+RjUKJvmiMkwNTyib0QkfWKpoxI2fLS9dkCurjEkYa1sKyVL9PZHRyJh5FNjOiOLUrHu5+J83SDFs+plQSYpcsdWiMJUEY5K/TcZCc4ZybgllWthbCZtSTRnacPIQvPWXN0m3UffcunffqLUaRRxluIBLuAYPbqAFd9CGDjAI4Rle4c2ZOS/Ou/Oxai05xcw5/IHz+QMPSIz6</latexit><latexit sha1_base64="kVrUDmYcuNlrfZkr7F9YDx7BrpU=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0l6sceCF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jps1BWx8MPN6bYWZekEhh0HW/ndLW9s7uXnm/cnB4dHxSPT3rmjjVjHdYLGPdD6jhUijeQYGS9xPNaRRI3gtmt7nfe+LaiFg94jzhfkQnSoSCUbTSA1ZG1Zpbd5cgm8QrSA0KtEfVr+E4ZmnEFTJJjRl4boJ+RjUKJvmiMkwNTyib0QkfWKpoxI2fLS9dkCurjEkYa1sKyVL9PZHRyJh5FNjOiOLUrHu5+J83SDFs+plQSYpcsdWiMJUEY5K/TcZCc4ZybgllWthbCZtSTRnacPIQvPWXN0m3UffcunffqLUaRRxluIBLuAYPbqAFd9CGDjAI4Rle4c2ZOS/Ou/Oxai05xcw5/IHz+QMPSIz6</latexit><latexit sha1_base64="kVrUDmYcuNlrfZkr7F9YDx7BrpU=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0l6sceCF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jps1BWx8MPN6bYWZekEhh0HW/ndLW9s7uXnm/cnB4dHxSPT3rmjjVjHdYLGPdD6jhUijeQYGS9xPNaRRI3gtmt7nfe+LaiFg94jzhfkQnSoSCUbTSA1ZG1Zpbd5cgm8QrSA0KtEfVr+E4ZmnEFTJJjRl4boJ+RjUKJvmiMkwNTyib0QkfWKpoxI2fLS9dkCurjEkYa1sKyVL9PZHRyJh5FNjOiOLUrHu5+J83SDFs+plQSYpcsdWiMJUEY5K/TcZCc4ZybgllWthbCZtSTRnacPIQvPWXN0m3UffcunffqLUaRRxluIBLuAYPbqAFd9CGDjAI4Rle4c2ZOS/Ou/Oxai05xcw5/IHz+QMPSIz6</latexit>

T<latexit sha1_base64="QDKpNsL8DkpKQ273uVOUD4syOu0=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Fjw4rFKv6ANZbPdtEs3m7A7EUroP/DiQRGv/iNv/hs3bQ7a+mDg8d4MM/OCRAqDrvvtbGxube/slvbK+weHR8eVk9OOiVPNeJvFMta9gBouheJtFCh5L9GcRoHk3WB6l/vdJ66NiFULZwn3IzpWIhSMopUeW+VhperW3AXIOvEKUoUCzWHlazCKWRpxhUxSY/qem6CfUY2CST4vD1LDE8qmdMz7lioaceNni0vn5NIqIxLG2pZCslB/T2Q0MmYWBbYzojgxq14u/uf1Uwxv/UyoJEWu2HJRmEqCMcnfJiOhOUM5s4QyLeythE2opgxtOHkI3urL66RTr3luzXu4rjbqRRwlOIcLuAIPbqAB99CENjAI4Rle4c2ZOi/Ou/OxbN1wipkz+APn8wffOYzc</latexit><latexit sha1_base64="QDKpNsL8DkpKQ273uVOUD4syOu0=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Fjw4rFKv6ANZbPdtEs3m7A7EUroP/DiQRGv/iNv/hs3bQ7a+mDg8d4MM/OCRAqDrvvtbGxube/slvbK+weHR8eVk9OOiVPNeJvFMta9gBouheJtFCh5L9GcRoHk3WB6l/vdJ66NiFULZwn3IzpWIhSMopUeW+VhperW3AXIOvEKUoUCzWHlazCKWRpxhUxSY/qem6CfUY2CST4vD1LDE8qmdMz7lioaceNni0vn5NIqIxLG2pZCslB/T2Q0MmYWBbYzojgxq14u/uf1Uwxv/UyoJEWu2HJRmEqCMcnfJiOhOUM5s4QyLeythE2opgxtOHkI3urL66RTr3luzXu4rjbqRRwlOIcLuAIPbqAB99CENjAI4Rle4c2ZOi/Ou/OxbN1wipkz+APn8wffOYzc</latexit><latexit sha1_base64="QDKpNsL8DkpKQ273uVOUD4syOu0=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Fjw4rFKv6ANZbPdtEs3m7A7EUroP/DiQRGv/iNv/hs3bQ7a+mDg8d4MM/OCRAqDrvvtbGxube/slvbK+weHR8eVk9OOiVPNeJvFMta9gBouheJtFCh5L9GcRoHk3WB6l/vdJ66NiFULZwn3IzpWIhSMopUeW+VhperW3AXIOvEKUoUCzWHlazCKWRpxhUxSY/qem6CfUY2CST4vD1LDE8qmdMz7lioaceNni0vn5NIqIxLG2pZCslB/T2Q0MmYWBbYzojgxq14u/uf1Uwxv/UyoJEWu2HJRmEqCMcnfJiOhOUM5s4QyLeythE2opgxtOHkI3urL66RTr3luzXu4rjbqRRwlOIcLuAIPbqAB99CENjAI4Rle4c2ZOi/Ou/OxbN1wipkz+APn8wffOYzc</latexit><latexit sha1_base64="QDKpNsL8DkpKQ273uVOUD4syOu0=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Fjw4rFKv6ANZbPdtEs3m7A7EUroP/DiQRGv/iNv/hs3bQ7a+mDg8d4MM/OCRAqDrvvtbGxube/slvbK+weHR8eVk9OOiVPNeJvFMta9gBouheJtFCh5L9GcRoHk3WB6l/vdJ66NiFULZwn3IzpWIhSMopUeW+VhperW3AXIOvEKUoUCzWHlazCKWRpxhUxSY/qem6CfUY2CST4vD1LDE8qmdMz7lioaceNni0vn5NIqIxLG2pZCslB/T2Q0MmYWBbYzojgxq14u/uf1Uwxv/UyoJEWu2HJRmEqCMcnfJiOhOUM5s4QyLeythE2opgxtOHkI3urL66RTr3luzXu4rjbqRRwlOIcLuAIPbqAB99CENjAI4Rle4c2ZOi/Ou/OxbN1wipkz+APn8wffOYzc</latexit>

<latexit sha1_base64="tSWGUlIHQOtl5Mg5Rz/LQIwS37c=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoMQL2E3SPQY8OIxgnlAsoTZyWwyZnZ2mekVQsg/ePGgiFf/x5t/4yTZgyYWNBRV3XR3BYkUBl3328ltbG5t7+R3C3v7B4dHxeOTlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDv3209cGxGrB5wk3I/oUIlQMIpWanX6Xhkv+8WSW3EXIOvEy0gJMjT6xa/eIGZpxBUySY3pem6C/pRqFEzyWaGXGp5QNqZD3rVU0Ygbf7q4dkYurDIgYaxtKSQL9ffElEbGTKLAdkYUR2bVm4v/ed0Uwxt/KlSSIldsuShMJcGYzF8nA6E5QzmxhDIt7K2EjaimDG1ABRuCt/ryOmlVK16tUr2/KtVrWRx5OINzKIMH11CHO2hAExg8wjO8wpsTOy/Ou/OxbM052cwp/IHz+QN2e45e</latexit>

X1(t)

<latexit sha1_base64="2wqhK6xmpxwABj+sMRnDrVlaOqA=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoMQL2E3SPQY8OIxgnlAsoTZyWwyZnZ2mekVQsg/ePGgiFf/x5t/4yTZgyYWNBRV3XR3BYkUBl3328ltbG5t7+R3C3v7B4dHxeOTlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDv3209cGxGrB5wk3I/oUIlQMIpWanX61TJe9oslt+IuQNaJl5ESZGj0i1+9QczSiCtkkhrT9dwE/SnVKJjks0IvNTyhbEyHvGupohE3/nRx7YxcWGVAwljbUkgW6u+JKY2MmUSB7YwojsyqNxf/87ophjf+VKgkRa7YclGYSoIxmb9OBkJzhnJiCWVa2FsJG1FNGdqACjYEb/XlddKqVrxapXp/VarXsjjycAbnUAYPrqEOd9CAJjB4hGd4hTcndl6cd+dj2ZpzsplT+APn8wd4Ao5f</latexit>

X2(t)

<latexit sha1_base64="cDMSe8mUaqIhQ3Dv40TuS54+rTY=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1iErkrShbosuHFZoS9oQ5lMbtqhk2SYmQglFDf+ihsXirj1K9z5N07aLLT1wMDhnHvn3nt8wZnSjvNtlTY2t7Z3yruVvf2DwyP7+KSrklRS6NCEJ7LvEwWcxdDRTHPoCwkk8jn0/Olt7vceQCqWxG09E+BFZByzkFGijTSyz9osAhyAgDiAWGNBJIlAm46RXXXqzgJ4nbgFqaICrZH9NQwSmkbmG8qJUgPXEdrLiNSMcphXhqkCQeiUjGFgaGzmKC9bnDDHl0YJcJhI88waC/V3R0YipWaRbyojoidq1cvF/7xBqsMbL2OxSDXEdDkoTDnWCc7zwAGTQDWfGUKoZGZXTCcmBJpnUDEhuKsnr5Nuo+5e1Rv3jWqzVsRRRufoAtWQi65RE92hFuogih7RM3pFb9aT9WK9Wx/L0pJV9JyiP7A+fwBKfZdK</latexit>

Time dependent parameters

t
<latexit sha1_base64="kVrUDmYcuNlrfZkr7F9YDx7BrpU=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0l6sceCF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jps1BWx8MPN6bYWZekEhh0HW/ndLW9s7uXnm/cnB4dHxSPT3rmjjVjHdYLGPdD6jhUijeQYGS9xPNaRRI3gtmt7nfe+LaiFg94jzhfkQnSoSCUbTSA1ZG1Zpbd5cgm8QrSA0KtEfVr+E4ZmnEFTJJjRl4boJ+RjUKJvmiMkwNTyib0QkfWKpoxI2fLS9dkCurjEkYa1sKyVL9PZHRyJh5FNjOiOLUrHu5+J83SDFs+plQSYpcsdWiMJUEY5K/TcZCc4ZybgllWthbCZtSTRnacPIQvPWXN0m3UffcunffqLUaRRxluIBLuAYPbqAFd9CGDjAI4Rle4c2ZOS/Ou/Oxai05xcw5/IHz+QMPSIz6</latexit><latexit sha1_base64="kVrUDmYcuNlrfZkr7F9YDx7BrpU=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0l6sceCF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jps1BWx8MPN6bYWZekEhh0HW/ndLW9s7uXnm/cnB4dHxSPT3rmjjVjHdYLGPdD6jhUijeQYGS9xPNaRRI3gtmt7nfe+LaiFg94jzhfkQnSoSCUbTSA1ZG1Zpbd5cgm8QrSA0KtEfVr+E4ZmnEFTJJjRl4boJ+RjUKJvmiMkwNTyib0QkfWKpoxI2fLS9dkCurjEkYa1sKyVL9PZHRyJh5FNjOiOLUrHu5+J83SDFs+plQSYpcsdWiMJUEY5K/TcZCc4ZybgllWthbCZtSTRnacPIQvPWXN0m3UffcunffqLUaRRxluIBLuAYPbqAFd9CGDjAI4Rle4c2ZOS/Ou/Oxai05xcw5/IHz+QMPSIz6</latexit><latexit sha1_base64="kVrUDmYcuNlrfZkr7F9YDx7BrpU=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0l6sceCF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jps1BWx8MPN6bYWZekEhh0HW/ndLW9s7uXnm/cnB4dHxSPT3rmjjVjHdYLGPdD6jhUijeQYGS9xPNaRRI3gtmt7nfe+LaiFg94jzhfkQnSoSCUbTSA1ZG1Zpbd5cgm8QrSA0KtEfVr+E4ZmnEFTJJjRl4boJ+RjUKJvmiMkwNTyib0QkfWKpoxI2fLS9dkCurjEkYa1sKyVL9PZHRyJh5FNjOiOLUrHu5+J83SDFs+plQSYpcsdWiMJUEY5K/TcZCc4ZybgllWthbCZtSTRnacPIQvPWXN0m3UffcunffqLUaRRxluIBLuAYPbqAFd9CGDjAI4Rle4c2ZOS/Ou/Oxai05xcw5/IHz+QMPSIz6</latexit><latexit sha1_base64="kVrUDmYcuNlrfZkr7F9YDx7BrpU=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0l6sceCF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jps1BWx8MPN6bYWZekEhh0HW/ndLW9s7uXnm/cnB4dHxSPT3rmjjVjHdYLGPdD6jhUijeQYGS9xPNaRRI3gtmt7nfe+LaiFg94jzhfkQnSoSCUbTSA1ZG1Zpbd5cgm8QrSA0KtEfVr+E4ZmnEFTJJjRl4boJ+RjUKJvmiMkwNTyib0QkfWKpoxI2fLS9dkCurjEkYa1sKyVL9PZHRyJh5FNjOiOLUrHu5+J83SDFs+plQSYpcsdWiMJUEY5K/TcZCc4ZybgllWthbCZtSTRnacPIQvPWXN0m3UffcunffqLUaRRxluIBLuAYPbqAFd9CGDjAI4Rle4c2ZOS/Ou/Oxai05xcw5/IHz+QMPSIz6</latexit>

<latexit sha1_base64="qa58WASIrzSy/w+c26P3q0hGs+g=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKezuQT0GvHiMYB6SLGF2MpsMmccyMyuEJV/hxYMiXv0cb/6Nk2QPmljQUFR1090Vp5wZ6/vfXmljc2t7p7xb2ds/ODyqHp+0jco0oS2iuNLdGBvKmaQtyyyn3VRTLGJOO/Hkdu53nqg2TMkHO01pJPBIsoQRbJ30SFTmtsgRGlRrft1fAK2ToCA1KNAcVL/6Q0UyQaUlHBvTC/zURjnWlhFOZ5V+ZmiKyQSPaM9RiQU1Ub44eIYunDJEidKupEUL9fdEjoUxUxG7ToHt2Kx6c/E/r5fZ5CbKmUwzSyVZLkoyjqxC8+/RkGlKLJ86golm7lZExlhjYl1GFRdCsPryOmmH9eCqHt6HtUZYxFGGMziHSwjgGhpwB01oAQEBz/AKb572Xrx372PZWvKKmVP4A+/zB7OmkEo=</latexit>

coupling

<latexit sha1_base64="a8ZyonwpyUGYGXz0VDE4dOoomPY=">AAACBHicbVA9SwNBEN2LXzF+nVqmWQyCVbhLoZaBNJYRzQckR9jb2yRL9naP3TkhHCls/Cs2ForY+iPs/Ddukis08cHA470ZZuaFieAGPO/bKWxsbm3vFHdLe/sHh0fu8UnbqFRT1qJKKN0NiWGCS9YCDoJ1E81IHArWCSeNud95YNpwJe9hmrAgJiPJh5wSsNLALTeUBC5TlRpMZITvQKtQGaoSTgduxat6C+B14uekgnI0B+5XP1I0jZkEKogxPd9LIMiIBk4Fm5X6qWEJoRMyYj1LJYmZCbLFEzN8bpUID5W2JQEv1N8TGYmNmcah7YwJjM2qNxf/83opDK+DjMskBSbpctEwFRgUnieCI64ZBTG1hFDN7a2YjokmFGxuJRuCv/ryOmnXqv5ltXZbq9RreRxFVEZn6AL56ArV0Q1qohai6BE9o1f05jw5L86787FsLTj5zCn6A+fzBxMHmFI=</latexit>

Continuous and Stroboscopic
<latexit sha1_base64="yDFRo+n2Rbz14UdsssdwzD01SU0=">AAAB8nicbVA9SwNBEN2LXzF+RS1tFoMQm3AXRC0DFlpYRDAfcDnC3mYvWbK7d+zOCeHIz7CxUMTWX2Pnv3GTXKGJDwYe780wMy9MBDfgut9OYW19Y3OruF3a2d3bPygfHrVNnGrKWjQWse6GxDDBFWsBB8G6iWZEhoJ1wvHNzO88MW14rB5hkrBAkqHiEacErOT3bomUpH9fhfN+ueLW3DnwKvFyUkE5mv3yV28Q01QyBVQQY3zPTSDIiAZOBZuWeqlhCaFjMmS+pYpIZoJsfvIUn1llgKNY21KA5+rviYxIYyYytJ2SwMgsezPxP89PIboOMq6SFJiii0VRKjDEePY/HnDNKIiJJYRqbm/FdEQ0oWBTKtkQvOWXV0m7XvMua/WHi0qjnsdRRCfoFFWRh65QA92hJmohimL0jF7RmwPOi/PufCxaC04+c4z+wPn8AUhrkI4=</latexit>

�L(t)
<latexit sha1_base64="vKWRH7j4sspwT1G8GwUDhMu641s=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BItQL2W3iHoseNBjFfsB26Vk02wbmmyWZFYoS3+GFw+KePXXePPfmLZ70NYHA4/3ZpiZFyaCG3Ddb6ewtr6xuVXcLu3s7u0flA+P2kalmrIWVULpbkgMEzxmLeAgWDfRjMhQsE44vpn5nSemDVfxI0wSFkgyjHnEKQEr+b1bIiXpP1ThvF+uuDV3DrxKvJxUUI5mv/zVGyiaShYDFcQY33MTCDKigVPBpqVealhC6JgMmW9pTCQzQTY/eYrPrDLAkdK2YsBz9fdERqQxExnaTklgZJa9mfif56cQXQcZj5MUWEwXi6JUYFB49j8ecM0oiIklhGpub8V0RDShYFMq2RC85ZdXSbte8y5r9fuLSqOex1FEJ+gUVZGHrlAD3aEmaiGKFHpGr+jNAefFeXc+Fq0FJ585Rn/gfP4AUZWQlA==</latexit>

�R(t)

<latexit sha1_base64="HWiZiE/k7gR72mFIxYfwJBEwRWs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahXkpSRD0WvHisaGuhDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BiMb2b+4xMqzWP5YCYJ+hEdSh5yRo2V7qv0vF+uuDV3DrJKvJxUIEezX/7qDWKWRigNE1Trrucmxs+oMpwJnJZ6qcaEsjEdYtdSSSPUfjY/dUrOrDIgYaxsSUPm6u+JjEZaT6LAdkbUjPSyNxP/87qpCa/9jMskNSjZYlGYCmJiMvubDLhCZsTEEsoUt7cSNqKKMmPTKdkQvOWXV0m7XvMua/W7i0rDzeMowgmcQhU8uIIG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8weFi40/</latexit>

(a)
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Figure 5.2: (a) Schematic of an electronic system connected to two external leads
(terminals) via tunneling rates ΓL,ΓR and driven via periodic control of its parameters
X1, X2, the time dependence of which are sketched in (b). Each terminal (L,R) includes
ingoing and outgoing (←,→) electron (e) and hole (h) scattering states. (c) Two
scattering scenarios are depicted, corresponding to either a continuous coupling to the
leads (dashed lines) or time-pulsed couplings with periodicity T (solid lines).

(Fig. 5.2(b)), and is coupled to two electron reservoirs, labeled L and R, via metallic

leads. The relevant Hamiltonian therefore consists of three parts:

H = Hsys(t) +HT +Hlead, (5.3)

where Hsys(t) =
∑N

j,k=1 c
†
jhj,k(t)ck is the Hamiltonian of the system of interest, which

is assumed to be a generic non interacting system of local fermionic degrees of freedom
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5.3. Conductance for different system-lead couplings

annihilated by the operator cj. The coupling to the external leads is captured by

HT =
∑
α,k

[√
Γαa

†
α,kKαcjα + h.c.

]
, (5.4)

where Kα is the contact matrix between the system and the lead α, with Γα

characterizing the coupling strength, and cjα annihilating a particle in the mode jα.

In a system modeled by spatially discretized sites, jα labels the spatial coordinate of

the system’s site closest to lead α. Finally, the metallic leads are modeled as generic

free fermion reservoirs with constant density of states and linear dispersion:

Hα = vαk
∑
k

[a†α,kaα,k − b†α,kbα,k], (5.5)

where aα,k and bα,k annihilate ingoing and outgoing particles with momentum k in the

reservoir α = L,R. The creation/annihilation operators for energy eigenstates in each

lead can be identified with the momentum creation operators, e.g. bL(E) ≡ bL,k and

aL(E) ≡ aL,k via E = ±vLk respectively.

5.3 Conductance for different system-lead couplings

In order to explore the connection between transport properties and topological

classification in driven systems, we will consider two distinct coupling configurations,

the behaviour of which are plotted in Fig. 5.2(c). Firstly we examine the case of

constant coupling to the leads, as is typical in transport measurement setups, before

comparing this to the scenario with δ-like pulsed coupling, which is of importance for

determining the scattering matrix topological invariants of the system.
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5.3.1 Constant couplings

Using the Floquet scattering matrix S, one can express the time-averaged electronic

current in the lead α by rearranging the expression introduced in Eq. 3.29 [141,142]:

Ieα =
e

h

ˆ ∞
−∞

dE
∑
β 6=α

∑
n

[
|Sαβ(En, E)|2fβ(E)− |Sβα(En, E)|2fα(E)

]
. (5.6)

Here, fα(E) gives the distribution function of particles entering the scatterer through

the channel α. In order to keep this formalism general for superconducting systems,

the channels run over both particle and hole degrees of freedom in each of the external

leads, α, β ∈ {Le, Lh, Re, Rh}.

The current can subsequently be used to find the differential conductance in each

lead via the derivative with respect to the voltage bias Vα: Gα(Vα) = dIeα/dVα. For

simplicity we consider a symmetric voltage bias, V , with respect to the Fermi level of

the superconductor, so that the corresponding Fermi distribution functions are given

by: fLe = f(E− eV ), fLh = f(E+ eV ), fRe = f(E+ eV ) and fRh = f(E− eV ). In the

zero temperature limit, the Fermi distribution functions reduce to step functions and

hence the conductance in the left lead for example, reads

GL(V ) = GLeLh(−V ) +GLeRe(−V )−GLeRh(V ) +
∑
β 6=α

GβLe(V ), (5.7)

where the contribution to the conductance from each element of the scattering matrix

takes the form

Gαβ(V ) =
e2

h

∑
n

|Sαβ(Vn, V )|2. (5.8)

In order to determine the form of the Floquet scattering matrix we employ a
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5.3. Conductance for different system-lead couplings

Green’s function approach. To this end, we note that the evolution of the driven

scattering sample, along with coupled leads, is captured by the effective non-Hermitian

Hamiltonian Hsys(t) − iΣ, where Σ = 1
2

∑
δ ΓδK

†
δKδ is a self energy term accounting

for the coupling between the system of interest and the external leads. The retarded

Green’s function in energy-time representation is then defined as [179]

G(t, E) =
1

i~

ˆ
dτeiEτ/~G(t, t− τ), (5.9)

where G(t, t′) satisfies

(
i~
∂

∂t
−Hsys(t) + iΣ

)
G(t, t′) = δ(t− t′). (5.10)

The Green’s function can be defined in terms of the evolution operator as

G(t, t′) =
1

i~
Θ(t− t′)U(t, t′), (5.11)

where Θ(t− t′) is the Heaviside step function. The evolution operator can be expanded

in terms of the Floquet-state solutions Ψα(t) of the Schrödinger equation, similar to

those defined in Eq. 3.23. The difference in the case that the effective Hamiltonian is

non-Hermitian, is that the eigenspectrum of the Floquet operator F is no longer real:

F |ψα(0)〉 = λα |ψα(0)〉 ,
〈
ψ̃α(0)

∣∣∣F = λα

〈
ψ̃α(0)

∣∣∣ , (5.12)

with λα = exp
[
−i( εα~ − iγα)T

]
. Here, εα defines the quasienergy spectrum, whereas

the coefficient γα denotes the inverse lifetime of the corresponding eigenstate. From

this starting point, one can determine the left and right periodic Floquet states via the
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5.3. Conductance for different system-lead couplings

application of the evolution operator

|Ψα(t)〉 = ei(εα/~−iγα)tU(t, 0) |ψα〉 ,
〈

Ψ̃α(t)
∣∣∣ = e−i(εα/~−iγα)t

〈
ψ̃α

∣∣∣U(0, t). (5.13)

From these definitions the evolution operator can be expanded in terms of the Floquet

states as

U(t, t′) =
∑
α

ei(εα/~−iγα)(t−t′) |Ψα(t)〉
〈

Ψ̃α(t′)
∣∣∣ . (5.14)

Using the definition in Eq. 5.11, we can express the so called Floquet-Green functions

as [179]

Gp(E) =
1

T

ˆ T

0

dteipωtG(t, E) =
∑
r,α

∣∣∣Ψ(p+r)
α

〉〈
Ψ̃

(r)
α

∣∣∣
E − [εα + rω − iγα]

, (5.15)

where the Floquet state harmonics
∣∣∣Ψ(p)

α

〉
, are defined via the Fourier transform

∣∣Ψ(p)
α

〉
=

1

T

ˆ T

0

dteipωt |Ψα(t)〉 ,
〈

Ψ̃(p)
α

∣∣∣ =
1

T

ˆ T

0

dte−ipωt
〈

Ψ̃α(t)
∣∣∣ . (5.16)

From this expression the elements of the Floquet scattering matrix required to find the

conductance across the scattering sample can be accessed via the relation [134,180]

Sαβ(Em, En) = δα,βδm−n,0 − i
√

ΓαΓβGm−njαjβ
(En). (5.17)

It has been demonstrated that the presence of Majorana zero/π modes in driven

systems results in specific features in the zero temperature conductance profile, similar

to the case of static systems given in Eq. 3.42. In contrast to the static case, the

resonance quantisation for a periodically driven system takes the form of a sum-rule [46]
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∑
m

GL(ε0/π +mω) =
2e2

h
, (5.18)

where ε0 = 0 and επ = π
T

= ω/2.

5.3.2 Stroboscopic couplings

Contrary to their static counterparts, there is no direct relationship between the Floquet

scattering matrix and the topological indices of driven systems. Despite this it has been

demonstrated that the topological indices can be formulated in terms of a gedanken

scattering configuration, consisting of instantaneously emitting and absorbing particles

when the coupling to the leads is switched on at discrete times separated by the

driving period T . Between two such coupling times t and t + T , the system evolves

under the influence of the Hermitian Hamiltonian Hsys(t), which defines a unitary

Floquet operator Ft. It can be shown [53, 181], that this configuration corresponds

to a stroboscopic scattering matrix of the form

Sstrob
t (E) =

√
I −WW † −W 1

I − eiETFt
√
I −W †W

eiETFtW
†, (5.19)

where the matrix W encodes the coupling to the leads and, using the notation from

Eq. 5.3, takes the form: W =
∑

δ

√
TΓδKδ.

This stroboscopic scattering describes the situation in which the scattering sample

can only exchange particles with the leads at the beginning and end of each period,

starting at some offset time t with respect to the driving period. The relevant Floquet

operator is defined as

Ft = U(t, 0)FU †(t, 0), (5.20)
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where F = U(T, 0) is the evolution operator for one period starting at the beginning

of the driving cycle. Although the quasienergy spectrum is of course independent of

this offset time t, the stroboscopic scattering matrix can in principle be t dependent,

depending on specifics of the evolution between the coupling times t and t+ T .

Analogous to the case of the single energy static scattering matrix (Eq. 3.11),

the stroboscopic scattering matrix can be used to define a corresponding conductance

averaged over the offset time t, Istrob
α = 1

T

´ T
0
dtIstrob

t,α , where

Istrob
t,α =

e

h

ˆ ∞
−∞

dE
∑
β

[∣∣Sstrob
t,αβ (E)

∣∣2fβ(E)−
∣∣Sstrob

t,βα (E)
∣∣2fα(E)

]
. (5.21)

Once again, we can define the contributions to the stroboscopic conductance from each

element of the scattering matrix at zero temperature as

Gstrob
αβ (V ) =

e2

h

1

T

ˆ T

0

dt
∣∣Sstrob

t,αβ (V )
∣∣2, (5.22)

so that the total conductance reads

Gstrob
L (V ) = Gstrob

LeLh(−V ) +Gstrob
LeRe(−V )−Gstrob

LeRh(V ) +
∑
β 6=α

Gstrob
βLe (V ). (5.23)

The profile of this stroboscopic conductance behaves much in the same way as

its static counterpart defined in Eq. 3.42. In particular, it exhibits quantized

conductance peaks corresponding to the existence of topologically protected Majorana

edge modes. Although both result in quantized conductance peaks in some form, the

exact relationship between the stroboscopic and continuously coupled conductances

remains to be explored.
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We see that (Eq. 5.19), in contrast to the physical conductance associated with

a system that is constantly coupled to the external leads, the stroboscopic scattering

matrix, and consequently the corresponding conductance, are periodic in energy. This

helps to explain why the quantisation rule in Eq. 5.18 required the sum over energies

separated by integer multiples of the driving frequency. Further light is shed upon the

relationship between the two quantities by considering the intermediate scenario for

which the system is continuously coupled to the external leads, but scattered particles

are only recorded at discrete intervals separated by the driving period and starting at

the delay time t. We associate with this process an alternative stroboscopic scattering

matrix S̃t(E) which is a non-unitary construction due the neglected scattered states

flowing in the leads during the intervals between the discrete recording times. This

setup allows us to draw a direct analytical connection between S̃t(E) and the Floquet

scattering matrix (see Appendix A):

S̃t(E) =
∑
k,n

S(En, En+k)e
ikωt. (5.24)

This relationship to the Floquet scattering matrix highlights the need to sum scattering

events over all Floquet sideband energies, En = E + nω, in order to make a

meaningful comparison with the stroboscopic conductance. We therefore define a

summed conductance

G̃α(V ) =
∑
n

Gα(V + nω), (5.25)

which provides a natural quantity to be compared with that defined in Eq. 5.23.
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5.3.3 Weak coupling limit

In order to compare the conductance quantities G̃α(V ) and Gstrob
α (V ), one can make

use of the fact that they both exhibit quantized conductance peaks at V = ε0/π.

Therefore, analysing their behaviour in the vicinity of these resonances can help to

shed light on the relationship between the quantities around the resonant quasienergies.

Furthermore, in the regime for which the coupling strength to the external leads can

be considered small compared with the other energy scales associated with the system

Hamiltonian, these resonances dominate the conductance spectra and hence we may

expect the agreement between the two to extend, to some extent, beyond the resonant

Majorana quasienergies.

In the weak coupling limit, the self energy term Σ from Eq. 5.10 can be treated

as a perturbation to the system Hamiltonian Hsys(t). In particular, the Floquet state

solutions can be approximated as solutions to the Floquet equation for an isolated

system: (
Hsys(t)− i

d

dt

)
|φα(t)〉 = εα |φα(t)〉 . (5.26)

The first order corrections to the quasienergies εα are found to be

γ̃α =
1

T

ˆ T

0

dt 〈φα(t)|Σ|φα(t)〉 . (5.27)

Using the expression for the Floquet scattering matrix in terms of the Floquet-Green

functions in Eq. 5.17, the contributions to the current from each scattering matrix
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element (Eq. 5.6) can be approximated by

|Sαβ(En, E)|2 = ΓαΓβ
∑
ijrr′

〈α|Kα

∣∣∣φ(n+r)
i

〉〈
φ

(r)
i

∣∣∣K†β |β〉 〈β|Kβ

∣∣∣φ(n+r′)
j

〉〈
φ

(r′)
j

∣∣∣K†α |α〉[
E − (εi + rω − iγ̃i)

][
E − (εj + r′ω + iγ̃j)

] .

(5.28)

Here 〈φj|Kα |α〉 gives the tunneling amplitude for scattering into the mode α, running

over both particle and hole degrees of freedom, via the mode φj of the internal system.

Since the coupling strength Γα controls the width of conductance resonances,

the weak coupling regime corresponds to a conductance spectra consisting of sharp

Lorentzian peaks at energies εi + rω and εj + r′ω. As a result, the sums in the previous

expression are dominated by contributions for which these energies coincide or for which

the quasienergies εi are degenerate. Thus, the scattering matrix can be further simplified

as

|Sαβ(En, E)|2 ≈ ΓαΓβ
∑
irk

∣∣∣∑k 〈α|Kα

∣∣∣φ(n+r)
ik

〉〈
φ

(r)
ik

∣∣∣K†β |β〉∣∣∣2
γ̃2
i + (E − εi + rω)2

, (5.29)

where |φik〉 represent the eigenstates corresponding to the degenerate eigenvalue εi.

The degenerate states correspond to the Majorana bound states localized at each end

of the chain. Since these states only couple to one of the external leads, only one will

contribute to the scattering matrix elements and we henceforward drop the sum over

degenerate states k.

The scattering matrix elements in this weak coupling regime can be used to produce

approximations of the matching contribution to the summed conductance at zero
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temperature:

G̃αβ(V ) =
e2

h
ΓαΓβ

∑
irnm

∣∣∣〈α|Kα

∣∣∣φ(n)
i

〉〈
φ

(r)
i

∣∣∣K†β |β〉∣∣∣2
γ̃2
i + (V − εi +mω)2

,

=
e2

h

ΓαΓβ
T 2

∑
im

ˆ T

0

dtdt′

∣∣∣〈α|Kα |φi(t)〉 〈φi(t′)|K†β |β〉
∣∣∣2

γ̃2
i + (V − εi +mω)2

.

(5.30)

Close to the resonant quasi-energies, V ≈ εi/e, the conductance contributions take the

form of a Lorentzian distribution:

G̃αβ(V ) ≈ e2

h

γ̃
(α)
i γ̃

(β)
i

γ̃2
i

L
(eV − εi

γ̃i

)
, (5.31)

where L(x) = (1 + x2)−1 is the Lorentzian function and

γ̃
(α)
i =

1

T

ˆ T

0

Γα|〈α|Kα |φi(t)〉|2, so that γ̃i =
∑
δ

γ̃
(δ)
i . (5.32)

Using the fact that the localization of the Majorana states dictates that they only

contribute to the conductance through Andreev reflection events, along with the

particle-hole symmetry constraint γ̃
(Le)
0,π = γ̃

(Lh)
0,π one sees that for V ≈ ε0/π/e,

G̃(V ) = 2G̃LeLh(V ) ≈ 2e2

h
L
(eV − ε0/π

γ̃0/π

)
. (5.33)

We next turn our attention to deriving a similar expression for the stroboscopic

conductance close to the resonances. In order to facilitate the comparison of the

two quantities, it is necessary to express the stroboscopic conductance in terms of

the unperturbed Floquet state solutions of the Hamiltonian Hsys(t). Consequently, we
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would like to perform a perturbative expansion, in the coupling strength Γα, of the

operator appearing as a fraction in Eq. 5.19. As a first step towards this goal we can

write this operator as a geometric series,

1

I − eiETFt
√
I −W †W

=
∑
k

(
eiETFt

√
I −W †W

)k ≈∑
k

(
eiET ( Ft︸︷︷︸

A0

− 1

2
FtW

†W︸ ︷︷ ︸
ΓA1

)
)k
.

(5.34)

Here we have defined the perturbed operator A = A0 + ΓA1. Expanding A in terms of

its eigenstates and eigenvalues, given by A |xi〉 = xi |xi〉, we can rewrite this expression

as

1

I − eiETFt
√
I −W †W

=
∑
k

(
eiET

∑
i

xi |xi〉 〈xi|
)k

=
∑
i

1

1− eiETxi
|xi〉 〈xi| . (5.35)

The unperturbed Floquet operator Ft = A0 can be expanded in terms of the Floquet

state solutions of the uncoupled Schrödinger equation introduced in Eq. 5.26 as

Ft =
∑
i

e−iεiT |φi(t)〉 〈φi(t)| . (5.36)

The unperturbed eigenstates |φi(t)〉 therefore form the zeroth order term in the

expansion of the eigenstates of A, which will be sufficient for our requirements in the

weak coupling regime. However, we will include the corrections to the eigenvalues xi(t)

up to first order in Γ, so that

xi(t) = e−iεiT +
1

2

〈φi(t)|FtW †W |φi(t)〉
〈φi(t)|φi(t)〉

= e−iεiT
(

1 + T 〈φi(t)|Σ |φi(t)〉︸ ︷︷ ︸
γi(t)

)
. (5.37)
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Using this expansion, the stroboscopic scattering matrix now takes the form

Sstrob
t (E) =

√
I −W †W −W

∑
i

ei(E−εi)T

1− eiETxi(t)
|φi(t)〉 〈φi(t)|W †. (5.38)

In this form it is possible to make meaningful comparisons between the conductance

of the two coupling configurations. Again using the fact that, in the limit of weak

coupling, the conductance profile is dominated by sharp Lorentzian peaks at the

resonant quasienergies εi, the expression for Sstrob
t (E) translates into the following

contributions to the stroboscopic conductance defined in Eq. 5.23:

Gstrob
αβ (V ) =

e2

h
TΓαΓβ

ˆ T

0

dt
∑
i

∣∣∣〈α|Kα |φi(t)〉 〈φi(t)|K†β |β〉
∣∣∣2

|1− ei(V−εi)T (1 + Tγi(t))|2
. (5.39)

At this point we can return to our expression for the conductance summed over

Floquet sidebands for constant couplings, defined in Eq. 5.30. This expression can be

rearranged to a similar form as our stroboscopic conductance using the relation

∑
p

eipωz

A− pω =
TieiAz

eiAT − 1
, (5.40)

so that

G̃αβ(V ) =
e2

h
ΓαΓβ

∑
i

ˆ T

0

dtdt′
|〈α|Kα |φi(t)〉 〈φi(t′)|Kβ |β〉|2

|1− ei(V−εi)T (1 + T γ̃i)|2
. (5.41)

It is clear that, from Eqs. 5.39 and 5.41, there exist clear similarities between the

conductances for continuous and pulsed coupling in the regimes for which this coupling

can be considered weak. Both expressions are clearly dominated by resonances at

the quasienergies, however the parameters controlling the widths of those peaks are

generically different in each case.
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5.3. Conductance for different system-lead couplings

In order to highlight the exact nature of this difference, we can, as we did for the case

of continuously coupled leads, examine the behaviour of the stroboscopic conductance

(Eq. 5.39) at voltage biases close to resonant quasienergies, V ≈ εi/e. In doing so,

one finds that the contributions to the conductance from each element of the scattering

matrix can be further simplified as

Gstrob
αβ (V ) =

e2

h

1

T

ˆ T

0

∣∣∣〈α|Kα |φi(t)〉 〈φi(t)|K†β |β〉
∣∣∣2

γ2
i (t)

L
(eV − εi

γi(t)

)
=
e2

h

1

T

ˆ T

0

γ
(α)
i (t)γ

(β)
i (t)

γ2
i (t)

L
(eV − εi

γi(t)

)
,

(5.42)

where

γ
(δ)
i (t) = Γδ|〈δ|Kδ |φi(t)〉|2, so that γi(t) =

∑
δ

γ
(δ)
i (t). (5.43)

Once again, the particle-hole symmetry of the superconducting system, along with the

localization of the Majorana modes, results in quantized conductance peaks at the

corresponding voltage biases V ≈ εi/e of the form

Gstrob(V ) =
2e2

h

1

T

ˆ T

0

dtL
(eV − ε0/π

γ0/π(t)

)
. (5.44)

5.3.4 Comparison of conductance quantities

The expressions for the conductance due to the Majorana bound states for each of the

coupling configurations, Eq. 5.33 and 5.44, constitute the key results from this chapter.

Their comparison demonstrates that the discrepancy between the two quantities arises

due to the time dependence of the function γi(t), defined in Eq. 5.37, which controls the

widths of the peaks in the conductance profiles. Agreement between the two quantities
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5.3. Conductance for different system-lead couplings

therefore occurs when this function is time independent. The time dependence of γi(t)

is captured by the variance function

Vα =
〈(
γα(t)− 〈γα(t)〉

)2
〉
. (5.45)

This function acts as a figure of merit quantifying the discrepancy between the two

coupling configurations at the resonances. As a more concrete measure of this variation

we can also consider the difference between the two functions integrated around a

particular resonant quasienergy εi:

Di =
1

Γ

ˆ εi+Γ

εi−Γ

dE

[
L
(E − εi

γ̃i

)
− 1

T

ˆ T

0

dtL
(E − εi
γi(t)

)]
. (5.46)

We note that this difference integrated over the entire voltage range vanishes identically:

D∞i =

ˆ ∞
−∞

dE

[
L
(E − εi

γ̃i

)
− 1

T

ˆ T

0

dtL
(E − εi
γi(t)

)]

= πγ̃i −
π

T

ˆ T

0

γi(t)dt = πγ̃i − πγ̃i = 0,

(5.47)

where we have used the definition of γ̃ from Eq. 5.27. Consequently, in the weak

coupling limit, we see that the total weight of the conductance peaks associated with

Majorana modes are identical for the stroboscopic and constant coupling configurations.

In order to explore the difference between the conductance quantities G̃ and Gstrob

for arbitrary values of the voltage bias, we will apply the analysis outlined in this section

to the example of a periodically driven Kitaev chain subject to two different driving

protocols.
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Figure 5.3: Phase space diagram illustrating how the topological phase of the Floquet
Kitaev wire depends upon the Hamiltonian parameters λ0 and λ1 (see Eq. 5.50). (a-
h) Numerical results for the zero temperature differential conductance summed over
energy sidebands G̃ and the stroboscopic conductance Gstrob, plotted as a function of
the total voltage bias between the left and right external leads V = VL − VR. The plot
colours correspond to those in the phase diagram. The conductance is evaluated at
both the four sweet spots, marked by black crosses, as well as the points marked by the
white crosses in each phase: (a,b) Trivial, (c,d) MZM, (e,f) MPM, (g,h) MZM/MPM.
The results were obtained using a chain of 20 sites and with tunneling rates to the
external leads given by ΓL/R/ω = 0.016.

5.4 Transport signatures of a periodically driven

Kitaev chain

In this section we will explore the relationship between the conductance measured

in transport experiments and the topological invariants defined via the stroboscopic

scattering matrix by considering the example of a periodically driven Kitaev chain. For
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5.4. Transport signatures of a periodically driven Kitaev chain

this, we use the same toy model Hamiltonian introduced in Sec. 2.2:

H(w,∆, µ) = −
∑
i

µ(t)a†iai +
∑
i

(
− J(t)

2
a†iai+1 +

∆(t)

2
aiai+1 + h.c.

)
, (5.48)

where the on-site potential µ, the nearest neighbour coupling J and the superconducting

pairing strength ∆ are all now time dependent with a period (T ). We will consider two

different step like driving protocols in which the parameters of the Hamiltonian are

switched instantaneously between two different sets of values.

5.4.1 Protocol 1: Sudden switching between Hamiltonians in

different topological phases

Firstly, we study the scenario in which the Kitaev chain is forced to alternate between

the topologically non-trivial and trivial phases in each half of the cycle [163], so that

the evolution is governed by a Floquet operator of the form

F = e−iH1T/2e−iH0T/2, (5.49)

where

H0 = H(2πλ0/T, 2πλ0/T, 0) and H1 = H(0, 0, 2πλ1/T ). (5.50)

Here H0 is the Hamiltonian at the sweet spot of the static topological phase,

characterised by the existence of Majorana zero modes localized on the final site of

the chain, with zero correlation length.

By allowing the parameters λ0, λ1 to take values in the interval λi ∈ [0, 1], we see

the emergence of four topologically distinct phases which are illustrated in the phase
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5.4. Transport signatures of a periodically driven Kitaev chain

diagram in Fig. 5.3. The phase in which the system resides is evidenced by the presence

or absence of Majorana zero modes and Majorana π modes. Due to the influence of

these Majorana bound states upon the scattering properties, each phase can equally be

characterised by a topological index expressed in terms of the single energy stroboscopic

scattering matrix via

ν0/π =
1

iπ
log det

{
RL(ε0/π)

}
, (5.51)

where RL is the sub-block of the entire stroboscopic scattering matrix describing

reflection in the lead L. The justification for the form of ν follows from the analogous

discussion of static systems in Sec. 3.3 and via comparison with the static invariants

listed in Table 3.1. To gain insight into how this quantity changes as we move across

the phase diagram, it is useful to consider the stroboscopic scattering matrix at the

sweet spots in each phase, which are identified by the relevant Majorana modes being

localized at the left and right most sites of the Kitaev chain. We also consider

the case for which the coupling to the external leads is perfectly transparent, i.e.

W =
∑

δ

√
TΓδKδ =

∑
δKδ. At these special points in the phase diagram, indicated

by the black crosses in Fig. 5.3, there is no possibility of transmission events and the

scattering matrix can be decoupled into a block sum of the reflection sub-matrices in

each lead: S(ε) = RL(ε)⊕RR(ε). Subsequent calculation of the index ν for each sweet

spot yields:

(i) For the trivial phase sweet spot at λ0 = 0 and λ1 = 1/2 we have RL(ε) = RR(ε) =

−ieiεTσz, and the topological indices are:

ν0/π = 0. (5.52)
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(ii) The MZM phase, where the sweet spot is λ0 = 1/2 and λ1 = 0 results in RL(ε) =

eiεT

2
[(1 − eiεT )I − (1 + eiεT )σx] and RR(ε) = eiεT

2
[(1 − eiεT )I + (1 + eiεT )σx], and

the topological indices are:

ν0 = 1 ; νπ = 0. (5.53)

(iii) The sweet spot of the MPM phase is at λ0 = 1/2 and λ1 = 1 with RL(ε) =

eiεT

2
[(−1 − eiεT )I + (1 − eiεT )σx] and RR(ε) = eiεT

2
[(−1 − eiεT )I − (1 − eiεT )σx],

and the topological indices are:

ν0 = 0 ; νπ = 1. (5.54)

(iv) Finally, the sweet spot of the MPM+MZM phase at λ0 = 1 and λ1 = 1/2 gives

RL(ε) = −RR(ε) = eiεTσy and hence

ν0 = 1 ; νπ = 1. (5.55)

These results are directly reflected in the quantized values of Gstrob(V = ε0/π).

In Fig. 5.3(a-h) we plot the zero temperature conductance profiles as a function of

bias voltage V , for two points in each of the distinct phases. These points are marked

by crosses on the phase diagram, with the black crosses corresponding to the four

sweet spots and the white crosses marking points away from these localized limits. The

chain length used in the numerics is sufficiently long for any interaction between the

Majoranas at opposite ends of the wire, and any resultant splitting of the resonances,

to be neglected. Each subplot includes profiles for both G̃(V ) (solid lines), the physical
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5.4. Transport signatures of a periodically driven Kitaev chain

conductance of a constantly coupled system summed over Floquet harmonics, alongside

the stroboscopic conductance Gstrob(V ) (dashed lines) defined via the fictitious pulsed

scattering configuration. For both quantities, we see that resonant Andreev reflection

via the Majorana bound states results in quantized conductance peaks of height 2e2/h

at eV = 0 and/or eV = π/T , corresponding to the existence of Majorana zero and π

modes, respectively.

As discussed in the preceding section, we expect that the conductance profiles

corresponding to the different coupling configurations should differ in the widths of

the resonant peaks due to the difference in the level broadening. For weak coupling,

the conductance traces in Fig. 5.3 demonstrate very good agreement even away

from the Majorana quasienergies eV = 0 and eV = π/T . In order to analyse this

discrepancy in greater detail we plot the integrated difference function D0/π around

the zero and π mode resonances throughout the phase space spanned by λ0, λ1 in Fig.

5.4 (a) and (c) respectively. To complement this, we additionally plot Vα, the function

capturing the time variance of the resonance width γα(t) in Fig. 5.4(b) and (d). The

correlation between the two quantities is clear and confirms that the difference between

the conductances is indeed maximal at points where the offset time dependence of γα(t)

is most pronounced. From the plots, it is evident that these points occur in the phase

for which both Majorana zero and π-modes are present.

Fig. 5.4(e-h) show the stroboscopic and DC conductance traces at points in the

phase diagram close to where the difference function D0,π is maximal, for bias voltages

in close proximity to the resonant quasienergy in question. By focusing on this narrower

range of biases the discrepancy between the quantities becomes visible and, although

small, this difference persists in the limit Γ → 0. In order to determine whether the
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Figure 5.4: (a,c) Density plots illustrating the value of the difference function for both
the zero mode resonance D0 and π mode resonance Dπ respectively throughout the
parameter space (λ0, λ1), with coupling strength ΓL/R/ω = 0.0016. (b,d) Corresponding
plots of the time variance of the function γα(t) controlling the resonance widths.
The comparison between the conductance summed over energy sidebands G̃ and the
stroboscopic conductance Gstrob for selected points are shown in (e-h), again with
coupling strength ΓL/R/ω = 0.0016. (i) Comparison of G̃ (solid lines) and Gstrob

(dashed lines) for increased strength coupling to the external leads Γ, close to the
MZM resonance. (j) Density plot illustrating difference between the stroboscopic and
summed conductances integrated over the entire spectrum throughout the parameter
space, calculated using a coupling strength of ΓL/R/ω = 0.016. All data was obtained
using a chain of n = 20 fermionic sites.
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5.4. Transport signatures of a periodically driven Kitaev chain

discrepancy at the Majorana state resonances is indicative of the difference between

the conductance quantities at all bias voltages, in panel (j) we plot the exact difference

integrated over the entire Floquet energy range from −ω/2 to ω/2. From this plot

we can conclude that the figures of merit D0 and Dπ do a good job of quantitatively

capturing the parameters for which this difference is greatest. Finally, we see from panel

(i) that, upon increasing the coupling strength to the external leads, the agreement

between the conductance quantities at the resonances breaks down and the difference

between them becomes increasingly stark.

5.4.2 Protocol 2: Sudden switching between Hamiltonians

within the trivial topological phase

As a second example, we consider an alternative driving of the Kitaev wire that

comprises of alternating between two topologically trivial Hamiltonians in each half

of the cycle [46], which differ by the value of the chemical potential µi(t):

H0 = H(J,∆, µ0) and H1 = H(J,∆, µ1), (5.56)

such that µ0,1 > J/2. In this case, distinct topological phases can be accessed by

varying the driving frequency ω, resulting in a phase diagram of the form illustrated in

Fig 5.5 (a). We see that this driving protocol results in the existence of the same four

phases as in the previous example, despite the fact that at any instant throughout the

driving the Kitaev chain is in its trivial state.

As for the previous protocol, in Figs. 5.5(d-f) we plot the conductance quantities

for the two coupling configurations, G̃(V ) and Gstrob(V ), and again find that they show
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Figure 5.5: (a) Variation of the bulk quasi energy gaps around εT = 0 and εT = π
over a range of driving frequencies ω. The possible phases over this range are denoted:
Tr=Trivial, MZM=Zero-modes only, MPM=π-modes only and MZM/MPM=Both Zero
and π modes. (b) Illustration of the difference functions for the zero (D0) and π (Dπ)
mode resonances over this range of frequencies and (c) the corresponding behaviour
of the time variance of γi(t) dictating this difference. (d-f) Conductance profiles
for selected driving frequencies comparing the measured conductance summed over
sidebands with the stroboscopic construction. All data was obtained using a chain
length of n = 70 and coupling strength ΓL/R/ω = 0.04.
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good agreement across all values of the bias voltage. Furthermore, the concurrence

between the plots in panels (b) and (c) illustrates that the difference between the

conductances at the zero and π Majorana peaks is well captured by the time variance

of the function γα(t), at all relevant driving frequencies.

While both of the protocols studied are similar in the sense that the discrepancy

between the conductances is small across all voltage biases and is captured by the

difference between the widths of the resonances, there remain aspects of the connection

between the conductances that are protocol-dependent. We notice that the maximum

difference in the first protocol is roughly two orders of magnitude larger than in the

second. This is down to the time dependence of γα(t), which is controlled by how the

eigenstates of the Floquet operator behave as a function of the offset time between the

pulsed stroboscopic coupling and the start of the driving cycle. Specifically, it depends

on the time dependence of the contribution to the eigenstates on the left and right-

most fermionic sites which are coupled to the external leads. In the example of the

first protocol, at the points at which the difference is largest, the relevant eigenstate is

localized entirely upon the first site, n = 1 at t = 0, but as the offset time increases

this localization is shifted almost entirely to the site n = 2 and then back to the

first at t = 0.5T (See Fig. 5.6(a)). This results in a significant time dependence

of γα(t) and consequently a difference between the conductance quantities. This is in

contrast to the second protocol (Fig. 5.6(c,d)), for which the eigenstates are more evenly

distributed throughout the entire chain irrespective of the offset time t. Accordingly,

the contribution on the end-most coupled sites depends little on the variation of t.
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(d) Protocol 2 : !/4J = 0.5

Figure 5.6: Weight of the time-dependent zero-mode Floquet states for an isolated
system |φ0(t)〉 (Eq. 5.26) on each of the fermionic sites in a 1D driven Kitaev wire.
(a) and (b) show solutions from two chosen points from the phase diagram for protocol
1 (see Fig. 5.3), whereas (c) and (d) show points from protocol 2 (see Fig. 5.5(a)).
For each example, the spatial structure of the zero mode is shown for 3 snapshots
throughout the driving period, illustrating the extent of the time dependence. In (a)
the strong time dependence of the weight upon the end sites corresponds to the marked
difference in the stroboscopic and summed conductance quantities at this point in the
phase space. This is contrasted with (b), a point at which the time dependence is
minimal and hence the agreement is good. The examples from protocol 2 show little
dependence on time, corresponding to good agreement between the two conductances.
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5.5 Discussion

Within this chapter, we have explored the connection between the experimentally

accessible Floquet scattering matrix and a related scattering matrix formulated in terms

of a gedanken stroboscopic coupling experiment, from which topological invariants of

periodically driven systems can be formulated. The comparison between these two

quantities provides a platform from which to explore signatures of Floquet topological

phases in transport properties, such as differential conductance, building upon the

relationships between scattering matrix invariants and topological phase classification

already established for non-driven systems.

We have contrasted the electronic transport properties of periodically driven systems

subjected to constant and periodically pulsed coupling to external leads, via the analysis

of both the DC conductance summed over Floquet side-bands and the period-averaged

stroboscopic conductance. In this way, we have demonstrated that the two quantities

are equivalent at the resonant quasienergies associated with the Majorana bound states

and hence see how the stroboscopically defined topological invariant results in quantized

conductance peaks of height 2e2/h, in the sideband summed DC conductance. However,

at arbitrary values of the voltage bias there exists no analytic connection between the

two quantities and the general difference between them is captured by the resonance

widths in the limit of small coupling to the external leads.

We have explored this relationship for the specific example of a driven Kitaev chain

subjected to two different driving protocols, both consisting of instantaneous alterations

of the Hamiltonian parameters half way through the cycle. Both protocols demonstrate

the emergence of four distinct topological phases, distinguished by the presence or

absence of Majorana zero and/or π-modes and characterized by topological invariants
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5.5. Discussion

derived from the stroboscopic scattering matrix. We have seen that, within the weak

coupling regime, the stroboscopic conductance shows good agreement with the DC

conductance summed over sidebands at all bias voltages. Furthermore, in this limit,

the total weights of the Majorana quasienergy conductance peaks integrated over all

bias voltages exactly agree for both quantities. However, we have further studied the

dependence of the difference on the physical parameter space and the driving protocol

in question, finding that generically the discrepancy is larger when the Majorana mode

weight at the end of the chain depends strongly on the offset time between the driving

cycle and the pulsed coupling period. Hence, for generic systems, the stroboscopic

scattering matrix can only be guaranteed to predict the height and total weight of the

conductance peaks associated with the presence of Majorana bound modes.

By exploring the factors which contribute to the discrepancy between the two

conductance quantities being small, we can determine the regimes in which the

stroboscopically defined single energy scattering matrix, containing the relevant

topological invariant for the driven system, can provide a good approximation of

experimentally accessible DC conductance profile.
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Chapter 6

Transport Statistics of a Majorana

Braiding Protocol

This chapter is based upon the results published in the paper:

T. Simons, D. Meidan, and A. Romito. Pumped heat and charge statistics from

Majorana braiding Phys. Rev. B 102, 245420 (2020)

In addition to stimulating the emergence of additional topological phases, not

present in static systems, periodic modulation can also influence the transport

properties of mesoscopic systems when the driving can be considered slow compared

with the scattering time. When coupled to multiple particle reservoirs, the slow driving

of a pair of Hamiltonian parameters is known to stimulate a pumping effect that can

drive a current between different reservoirs in the absence of potential and temperature

biases [6, 54, 182]. Interestingly, this contribution to the current emits a geometrical

formulation, in that it depends only upon the contour traversed in the parameter space,

and can be interpreted as an analogue of the Berry phase [75] accumulated when a
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wavefunction is subjected to some periodic modulation [183]. However, the geometric

phase of interest here is accumulated by the transported observable and is hence more

akin to the Landsberg phase [184, 185], originally developed to describe the driving of

classical dissipative systems. The ability to control currents, particularly in the case of

heat, via an external driving protocol is of profound importance in context of building

quantum thermal machines at the nanoscale [67–71].

Beyond the period averaged pumped current, geometric contributions are also known

to manifest themselves in the full counting statistics, which encode the complete

knowledge of transport process in question, including all higher order fluctuations

[58,186–188]. In recent years, several studies have demonstrated that such fluctuations

can be accessed experimentally [189–193] and such measurements have important

applications in metrology, such as in Johnson thermometry [61, 194]. Importantly,

the presence of geometric contributions within the distribution function describing the

transport means that the exchange fluctuation theorems known for static systems,

introduced in Sec. 4.2.2, cannot be applied in the driven regime, without the

consideration of the additional energy input of the driving source [58–62].

Geometric contributions to transport statistics are of particular interest for scenarios

where the manipulation in question is topologically protected, in which case the

geometric phase accumulated throughout the evolution shares this protection. One such

example, that will form the main focus of this chapter, is the Majorana braiding protocol

outlined in Sec. 2.4. Since they form one of the key building blocks in the pursuit

of the realisation of topological quantum computation [23, 24, 29], understanding the

signatures of such operations is of significant interest, in readiness for potential future

experiments. It is known that heat transport, in particular, is non-trivially affected by
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6.1. Full counting statistics for pumped heat transport

the presence of Majorana zero modes [195–197] and it has been recently demonstrated

that a braiding operation would be expected to prompt a finite heat pumping between

two external leads that, in the low temperature limit, is characterised by a universal

value, independent of the driving details and coupling strength to the leads [57].

Motivated by these findings, it becomes of interest to explore how these topologically

protected geometric contributions are reflected in the full counting statistics of transport

induced by a Majorana exchange and, furthermore, how such contributions affect the

relevant heat exchange fluctuation theorems.

6.1 Full counting statistics for pumped heat trans-

port

Our system of interest throughout this chapter takes the form of that sketched in Fig.

3.1, where our sample of interest is connected toN = 2 particle reservoirs via conducting

leads. With the ultimate goal of studying the behaviour of thermal fluctuation theorems

in driven topological systems, we require access to the full statistical distribution of the

heat transport between these two leads. Consequently, we must calculate the probability

distribution P (Qα, τ) for the heat Qα entering the lead α in some time period τ . This

can be calculated via the characteristic function (CF) χQα(λα), defined as

χQα(λα) =

ˆ
dQαe

iλαQαP (Qα, τ), (6.1)
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6.1. Full counting statistics for pumped heat transport

where λα denotes the counting field. The CF for heat can be calculated analogously to

the case of charge FCS [198] using the following expectation operator,

χQα(λα) = 〈eiλαQ̂→α e−iλαQ̂←α 〉. (6.2)

Here the operators Q̂
→/←
α describe the heat flow associated with ingoing/outgoing

scattering states and can be written as the particle number operators in each direction,

weighted by the energy measured with respect to the chemical potential:

Q̂→α =
τ

h

ˆ ∞
−∞

dE(E − µα)â†α(E)âα(E)

Q̂←α =
τ

h

ˆ ∞
−∞

dE(E − µα)b̂†α(E)b̂α(E).

(6.3)

As discussed in Chap. 3, the ingoing and outgoing particle operators in the external

leads are connected by the scattering matrix S. Since the setup under consideration

consists of just two external leads and we would like to consider superconducting

systems, this relationship can be expressed as



b̂Le(E
′)

b̂Lh(E ′)

b̂Re(E
′)

b̂Rh(E ′)


= S(E ′, E)



âLe(E)

âLh(E)

âRe(E)

âRh(E)


. (6.4)

The CF in Eq. 6.2 has been previously evaluated using a scattering matrix formalism

for the case of charge transfer between superconducting leads in static systems [198].

We extend this analysis hereafter, to the case of heat transport in slowly driven systems.
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6.1. Full counting statistics for pumped heat transport

6.1.1 Slow and small amplitude driving limit

As discussed in Sec. 3.2.1, determining the general form of the inelastic scattering

matrix S(E ′, E) is a highly non-trivial problem. We choose to study a model subjected

to two important approximations. Firstly, we assume that the driving of the system

is slow, so that the driving period is large compared to the electron dwell time in the

scattering region. This corresponds to the limit ~ω � δE, introduced in Eq. 3.37,

where δE corresponds to the scattering matrix resonance width. This will allow us to

utilise the so-called frozen scattering matrix, S(E, t), introduced in Sec 3.2.1. This limit

is appropriate for the study of Majorana manipulation, which must be performed slowly

with respect to other relevant energy scales to avoid excitations out of the degenerate

ground-space. Secondly, we will operate under the assumption that the amplitude of

the driving, in the relevant parameter space of the system, is small. This will allow

the Fourier expansion of S(E, t) to be curtailed at first order and hence only inelastic

scattering events between nearest energy sidebands of energies E ± ~ω are relevant.

This significantly simplifies the calculation of the CF and additionally, in Sec. 6.4,

we demonstrate that the geometric contributions to the transport properties yielded

from this approach can be extended to larger amplitude cycles and in particular to a

Majorana braiding protocol, our chosen system of interest.

With these approximations in mind, we can consider a general system described

by some Hamiltonian H(t) which depends implicitly on time through the periodic

modulation of a set of parameters {Xj(t)} with driving frequency ω:

Xj(t) = Xj,0 +Xj,ωe
i(ωt−ηj) +Xj,ωe

−i(ωt−ηj). (6.5)
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Here, ηj is an arbitrary phase factor. Under the assumption that the amplitude of

this modulation is weak, so that Xj,ω � Xj,0 ∀j, the frozen scattering matrix can be

approximated as [199]

S(ε, t) ≈ S(ε,Xj,0) + Sω(ε)e−iωt + S−ω(ε)eiωt, where S±ω =
∑
j

Xj,ωe
∓iηj ∂S

∂Xj

. (6.6)

By comparison with the zeroth order approximation of the Floquet scattering matrix,

given in Eq. 3.33, one can deduce that the operator responsible for annihilating an

outgoing scattered state can be written as

b̂α(ε) =
∑
β

(
Sαβ(ε)âβ(ε) + Sαβ−ω(ε)âβ(ε+ ω) + Sαβ+ω(ε)âβ(ε− ω)

)
. (6.7)

This expression further highlights that we are restricted to the regime for which only

elastic and nearest-energy sideband scattering events are of relevance.

The evaluation of the heat flow operators defined in Eq. 6.3, and subsequently of the

CF, requires the calculation of the number operators for states traveling both towards

and away from the scattering region, defined as

N̂Le(h)

→ (ε) = â†
Le(h)(ε)âLe(h)(ε) and N̂Le(h)

← (ε) = b̂†
Le(h)(ε)b̂Le(h)(ε). (6.8)

These operators can both be compactly expressed in terms of the ingoing scattering

states in a discretized energy basis as

N̂Le(h)

→(←)(εl) =
∑
α,β
εi,εj

[
PLe(h)

→(←)(εl)
]αβ
εiεj
âα(εi)

†âβ(εj), (6.9)
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using projective matrices P . Since the ingoing scattering matrices are diagonal in both

the discretized energy and electron-hole bases, we have that

[
PLe(h)

εl→

]αβ
εiεj

= δαLe(h)δαβδεiεlδεiεj . (6.10)

Whereas the possibility of inelastic scattering events results in a non-diagonal matrix

being used to define the outgoing number operators:

[
PLe(h)

εl←

]αβ
εiεj

= δεiεl

(
SαL

e(h)

(εl)
)∗(

SL
e(h)β(εl)δεiεj + SL

e(h)β
−ω (εl)δ(εi+ω)εj + SL

e(h)β
ω (εl)δ(εi−ω)εj

)
+δεi(εl+ω)

(
SαL

e(h)

−ω (εl)
)∗(

SL
e(h)β(εl)δ(εi−ω)εj + SL

e(h)β
−ω (εl)δεiεj + SL

e(h)β
ω (εl)δ(εi−2ω)εj

)
+δεi(εl−ω)

(
SαL

e(h)

ω (εl)
)∗(

SL
e(h)β(εl)δ(εi+ω)εj + SL

e(h)β
−ω (εl)δ(εi+2ω)εj + SL

e(h)β
ω (εl)δεiεj

)
.

(6.11)

By expressing the heat flow operators Q̂
→/←
α in terms of the matrices P , the CF in Eq.

6.2 reads

χQξ(λξ) =
〈

exp
(
iτλξ

∑
α,β
εi,εj

[
Cξ
]αβ
εiεj
â†α(εi)âβ(εj)

)
exp
(
− iτλξ

∑
α,β
εi,εj

[
Dξ
]αβ
εiεj
âα(εi)

†âβ(εj)
)〉
,

(6.12)

with Cξ =
∑

i εiP
ξ
εi→, Dξ =

∑
i εiP

ξ
εi← and the sum of the electron and hole number

operator matrices defined as P ξ
εi→ = P ξe

εi→+P ξh

εi→. Under the condition that the matrices

P are projective, as demonstrated in Appendix B, it can be shown [198] that the

expectation values in Eq. 6.12 are evaluated as

χQξ(λξ) =

[
det
(

1− ρ+ ρeiλC
ξ

e−iλD
ξ
)]τ

=

[
det
(
M ξ(λξ)

)]τ
, (6.13)

with M ξ(λξ) = 1 − ρ + ρeiλξ
∑
i εiP

ξ
εi→
(

1 +
∑

i P
ξ
εi←(e−iλξεi − 1)

)
. Here, the relevant
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density matrix ρ is block diagonal in the energy basis, with the block at each energy ε

being given by ραβ(ε) = 〈â†α(ε)âβ(ε)〉 = fα(ε)δαβ.

In general, the matrix M ξ(λξ) will be of block pentadiagonal form in an infinite

energy basis, making the calculation of the determinant a highly non-trivial exercise.

In order to make further analytical progress, we divide the matrices P ξ
εi← into two

contributions as P ξ
εi← = P ξ,0

εi← + P̃ ξ
εi←. Here, P ξ,0

εi← includes only contributions arising

from elastic scattering events that survive in the static limit and P̃ ξ
εi← encompasses all

contributions arising from the periodic driving. This allows us to split the matrix M ξ

in a similar fashion as M ξ = M ξ
0 + M̃ ξ. Where

M ξ
0 = 1− ρ+ ρ exp

(
iλ
∑
i

εiP
ξ
εi→

)(
1 +

∑
i

P ξ,0
εi←(e−iλεi − 1)

)
,

M̃ ξ = ρ exp

(
iλ
∑
i

εiP
ξ
εi→

)(∑
i

P̃ ξ
εi←(e−iλεi − 1)

)
,

(6.14)

with

P ξe,0
εi← =



. . .

0
0 0 0

0 Sαξ
e
(εi)

∗
Sξ

eβ(εi) 0

0 0 0

0
. . .


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and

P̃ ξe

εi← =



. . .

0
Sαξ

e

ω (εi)
∗
Sξ

eβ
ω (εi) Sαξ

e

ω (εi)
∗
Sξ

eβ(εi) Sαξ
e

ω (εi)
∗
Sξ

eβ
−ω (εi)

Sαξ
e
(εi)

∗
Sξ

eβ
ω (εi) 0 Sαξ

e
(εi)

∗
Sξ

eβ
−ω (εi)

Sαξ
e

−ω (εi)
∗
Sξ

eβ
ω (εi) Sαξ

e

−ω (εi)
∗
Sξ

eβ(εi) Sαξ
e

−ω (εi)
∗
Sξ

eβ
−ω (εi)

0
. . .



.

Corresponding expansions can be defined for the matrices P ξh,0
εi← and P̃ ξh

εi←. Through

these definitions, the cumulant generating function (CGF) GQξ(λξ) = lnχQξ(λξ) can

be reduced to the sum of two distinct contributions:

GQξ(λξ) = τ ln
(

det
(
M ξ

0 + M̃ ξ
))

= Gelas
Qξ

(λξ) +Gpump
Qξ

(λξ) (6.15)

where

Gelas
Qξ

(λξ) = τ ln
(

det
(
M ξ

0

))
,

Gpump
Qξ

(λξ) = τ Tr
(

ln
(
I + (M ξ

0 )−1M̃ ξ
))
,

with I denoting the identity matrix. Here, we have assigned the label Gelas
Qξ

(λξ) to

the contribution to the CGF arising from only elastic scattering events that would be

present irrespective of whether or not the system is driven. The remaining contribution,

arising from the driving itself, we call Gpump
Qξ

(λξ). Since we are working in the limit

of weak amplitude parameter modulation, Xj,ω � Xj,0 ∀j, this expression can be

further simplified by only retaining terms up to order O(Xj,ω)2. Performing a Taylor
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expansion of the small driven contribution to the CGF under this assumption results

in the approximation

Gpump
Qξ

(λξ) ≈ τ Tr
(

(M ξ
0 )−1M̃ ξ − 1

2

(
(M ξ

0 )−1M̃ ξ
)2
)
, (6.16)

which leads to a significant simplification of our calculation. Exploiting the block

diagonal nature of the matrix M ξ
0 in the discretized energy basis, and taking the

continuous limit, the static contribution to the CGF reduces to an integral over all

energies:

Gelas
Qξ

(λξ) = τ

ˆ ∞
−∞

dε ln
(

det
(
M ξ

0 (ε)
))
. (6.17)

Similarly, since the dynamic contribution can be expressed in the form of a matrix

trace, the diagonal blocks at each energy can each be evaluated individually and in the

continuous limit we have that

Gpump
Qξ

(λξ) = τ

ˆ ∞
−∞

dεTr

[
M ξ

0 (ε)−1M̃ ξ(ε)− 1

2

(
(M ξ

0 )−1(ε)M̃ ξ(ε)

)2
]
. (6.18)

Eqs. 6.17 and 6.18 enable the determination of the heat transport statistics and

fluctuation theorem for weakly and adiabatically driven systems from scattering

matrices and constitute the first main results of this work.

In the case that the Hamiltonian is subjected to the simultaneous driving of just

two parameters, the dynamic contribution to the CGF can be further separated into

two distinct contributions. The first consists of terms that depend on only one of the

parameters and are hence proportional to X2
j,ω. This contribution remains present in the

case that only one parameter is driven and is independent of the direction of traversal

of the driving contour in parameter space. The remaining contribution is, in contrast,
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geometric in nature and hence only depends upon the path traced out in parameter

space throughout the driving. This contribution, which we denote as Ggeom
Qξ

(λξ), is

independent of the driving frequency and identified by its proportionality to X1,ωX2,ω.

The fact that the sign of this contribution is sensitive to the driving direction allows

for the possibility of this contribution being isolated from the static and non-geometric

pumped contributions in an experiment capable of accessing the FCS of heat transport.

6.1.2 Application to charge transport

Here, we briefly outline how the calculation in the previous section can be applied to

the case of electronic transport properties. Analogously to the case of heat transport,

the CF associated with the transport of charge qξ into the lead ξ in some time τ can

be expressed as

χqξ(λξ) =
〈
eiλξ q̂

→
ξ e−iλξ q̂

←
ξ

〉
, (6.19)

with ingoing and outgoing charge operators defined as

q̂
→(←)
ξ = eτ

ˆ
dε
(
N̂ ξe

→(←)(ε)− N̂
ξh

→(←)(ε)
)

(6.20)

and where e is the unit of electronic charge. This expression reflects the fact that

electrons and holes carry electronic current in opposite directions when traveling in

the same direction, in contrast to the case of heat current. From here, corresponding

expressions for the CGF can be derived and take the form

Gelas
qξ

(λ) =τ

ˆ ∞
−∞

dε ln
(

det
(
M ξ

q,0(ε)
))
.

Gpump
qξ

(λ) =τ

ˆ ∞
−∞

dεTr
(
M ξ

q,0(ε)−1M̃ ξ
q (ε)

)
,

(6.21)
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where now

M ξ
q,0 = 1− ρ+ ρ exp

(
iλξ
∑
i

P ξ
εi→

)(
1 +

∑
i

P ξ,0
εi←(e−iλξ − 1)

)
,

M̃ ξ
q = ρ exp

(
iλξ
∑
i

P ξ
εi→

)(∑
i

P̃ ξ
εi←(e−iλξ − 1)

)
.

(6.22)

In this case, Pεi→(←) = P e
εi→(←)−P h

εi→(←) and the matrices P
e(h)
εi→(←) are defined as in Eq.

6.10 and 6.11. These results are again valid for any cyclically driven system for which

the driving can be considered weak and slow with respect to the scattering time.

6.2 Model: Majorana braiding cycle

In this section, we apply our expressions for the full counting statistics of heat and

charge transport to a concrete example of a topologically non-trivial system subjected

to periodic driving, in the form of a Majorana braiding protocol (see Sec. 2.4). We

consider the minimum setup required to achieve a Majorana exchange using only 1D

p-wave superconducting nanowires, similar to the system illustrated in Fig. 2.5(c).

Executing a braiding by tuning the on-site potential locally along the wire, as described

in Sec. 2.4.2, requires precise control over the system that may be challenging in

practice. Furthermore, the opening and closing of the band gap along the wire increases

the likelihood of unwanted non-adiabatic excitations during the manipulation [200,

201]. A protocol that effectively braids the Majorana operators without physically

manipulating their positions is therefore desirable. Our system of interest consists

of three nanowires arranged in a Y-junction configuration, as sketched in Fig. 6.1(a).

Each of the superconducting wires hosts a MZM at each end, however the interaction of
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6.2. Model: Majorana braiding cycle

Figure 6.1: (a) Y-junction of p-wave superconducting nanowires (blue) with Majorana
zero modes at positions indicted by the green dots. Each of the external Majorana
modes, γx,y,z, are coupled to the central mode with corresponding coupling strengths
∆x,y,z and the modes γx and γy are further coupled to conducting normal metal leads
with strengths ΓL and ΓR. (b) Illustration of the required sequence of couplings to
perform a Majorana exchange, where the solid blue lines illustrate the couplings which
are turned on and dashed lines indicate those that are turned off. White circles indicate
Majoranas with a large Coulomb splitting whereas coloured circles correspond to those
with a vanishly small Coulomb splitting. The small diagrams above each arrow show the
intermediate steps with two couplings turned on and one of the zero energy Majoranas
delocalised over the two corresponding external sites. (c) The corresponding evolution,
C1 +C2 +C3, is shown as a path in spherical parameter space on the left. Also illustrated
is an example of a small amplitude driving contour Cs.
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6.2. Model: Majorana braiding cycle

Figure 6.2: (a) Schematic of a Cooper pair box composed of a superconducting
island (blue), carrying charge Q and superconducting phase ϕ, connected to a bulk
superconductor via a split Josephson junction (grey). A nanowire (yellow) can be
added to the island so that the system can host two MZMs when in the topological
phase. These spatially separated Majoranas can be coupled using the Coulomb charging
energy on the island, which can be tuned by changing the magnetic flux Φ passing
through the Josephson junction. (b) Three Cooper pair boxes connected in a Y-junction
configuration via the tunnel coupling between the three internal MZMs. By controlling
the couplings between MZMs on the same island, this setup can be used to perform a
Majorana exchange.

the three Majoranas that meet in the centre results in the ground-space of the system

being spanned by just four Majorana states: γx, γy, γz and γ0, formed by a linear

combination of the internal Majoranas from each wire. The Y-junction is coupled to

left (L) and right (R) external metal leads, so that the transport properties associated

with the braiding process can be probed. In the following we work in the limit that the

lead temperature can be considered small with respect to both the magnitude of the

superconducting gap in the nanowires and the tunnel coupling strength between the

Majoranas at the centre of the junction. In this way, the transport is only mediated by

the fourfold degenerate ground-space of the system.
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6.2. Model: Majorana braiding cycle

It can be demonstrated that, by systematically modulating the couplings between

each of the external MZMs and the central state γ0, the states γx and γy can be

exchanged [39, 202]. A proposal of how these couplings could be controlled in practice

is illustrated in Fig. 6.2(a). The proposed system consists of a Cooper pair box: a

superconducting island (charge Q, capacitance C) connected to a bulk superconductor

via a split Josephson junction enclosing a magnetic flux Φ. The Hamiltonian describing

such a device consists of the sum of charging and Josephson energies:

HCPB =
Q̂2

2C
+ EJ(Φ) cos(ϕ), (6.23)

where ϕ is the superconducting phase on the island, related to the charge operator as

Q̂ = −2eid/dϕ. The Josephson energy takes the form EJ(Φ) = E0 cos(eΦ/~), with E0

corresponding to the coupling energy to the bulk superconductor [39,201].

The addition of a segment of semiconducting nanowire allows the system to host

two MZMs when in the topologically non-trivial phase. Although the MZMs themselves

are charge neutral quasiparticles, an effective Coulomb interaction exists between them

due to the fact that the charging energy of the Cooper pair box is related to the

fermionic parity, P̂ = iγ1γ2, of the island. This relationship can be expressed through

the following constraint on the eigenstates of HCPB:

Ψ(ϕ+ 2π) = (−1)
1−P

2 Ψ(ϕ), (6.24)

ensuring that the eigenvalues of Q̂ are even multiples of e for P = 1 and odd multiples

for P = −1. It can be shown (see Ref. [39] for a detailed derivation) that, in the limit

that EJ is large compared to the single electron charging energy EC , this condition
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6.2. Model: Majorana braiding cycle

results in a contribution to the effective low energy Hamiltonian of the form

Heff
CPB = −U(Φ)P̂ = −iU(Φ)γ1γ2, (6.25)

where U(Φ) ∝ e−
√

8EJ (Φ)/EC . This leads to a Coulomb coupling between the spatially

separated MZMs that can be controlled via the modulation of the magnetic flux through

the split Josephson junction, avoiding the need for microscopic control of the system.

The Josephson energy could alternatively be controlled electrostatically by the tuning

of a gate voltage to modulate the transparency of the Josephson junction as proposed

in Ref. [26]. The ratio Umin/Umax ∼ e−
√

8E0/EC can be made exponentially small in

the limit E0 � EC . We will see shortly that this factor governs the protection of the

braiding protocol and the associated geometric transport properties.

Fig. 6.2(b) demonstrates how three Cooper pair boxes can be combined to create

the Y-junction setup introduced in Fig. 6.1(a). Despite the existence of the proposals

outlined here, in addition to alternative mechanisms based only upon executing

projective measurements on the system of MZMs [203], the experimental realization

of a Majorana exchange process is yet to be attempted.

The Hamiltonian for the Y-junction describing the time-dependent couplings ∆i

between the external MZMs γi and γ0 can be written as

HY = iγ0
~∆ · ~γ, (6.26)

where ~∆ = (∆x,∆y,∆z) and ~γ = (γx, γy, γz). The complete Hamiltonian for the system

is then given by H = HY +Hcoup +Hleads where the contributions from the coupling to
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6.2. Model: Majorana braiding cycle

the external leads and the leads themselves can be written as

Hcoup =
√

ΓL(cLk − c†Lk)γx +
√

ΓR(cRk − c†Rk)γy,

Hleads =
∑
k

∑
α=L,R

ξαkc
†
αkcαk,

(6.27)

respectively. Here, ΓL/R denote the coefficients associated with particle tunneling

from the leads onto the superconducting Y-junction and ξαk are the energy dispersion

relations in the leads.

It can be shown [39] that the execution of the sequence of Coulomb couplings

illustrated in Fig. 6.1(b) results in the exchange of the Majoranas γx and γy. In

order to better understand this evolution, it is useful to rewrite HY using the basis

vectors of a spherical coordinate system, letting ∆x = ∆ sin θ cosφ, ∆y = ∆ sin θ sinφ

and ∆z = ∆ cos θ, so that

HY = i∆γ0γr, where γr = ~γ · (sin θ cosφ, sin θ sinφ, cos θ),

γθ = ~γ · (cos θ cosφ, cos θ sinφ,− sin θ),

γφ = ~γ · (− sinφ, cosφ, 0),

(6.28)

for ∆ ∈ [0,∞], θ ∈ [0, π] and φ ∈ [0, 2π). The absence of the MZMs γθ and γφ in the

Hamiltonian HY indicates that these states span the two-fold degenerate ground-space

throughout the braiding operation and the evolution of the system now corresponds to

changing the projection of these zero-energy states onto the space of physical Majoranas

γx, γy and γz. The manipulation of the coupling strengths ∆i can then be mapped to a

rotation of γr on the unit sphere as illustrated in Fig. 6.1(c). The exchange operation

then corresponds to the curve C = C1 +C2 +C3. We notice that only two of the Coulomb
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6.2. Model: Majorana braiding cycle

couplings are switched on at any one time during this cycle. This constrains our path

in parameter space to the plane spanned by the two corresponding Majoranas and

hence fixes the contour, making it insensitive to any fluctuations in the two couplings

being driven and only dependent upon the order in which the couplings are switched

on/off. For example, along C1 the parameter φ = arctan(∆y/∆x) is independent of both

driven couplings ∆x and ∆z, so long as ∆y remains switched off. As a consequence,

any geometric contributions to the transport statistics, that only depend upon the

shape of this contour, will also inherit this protection. The robustness of the cycle is

subject to errors of the order of the ratio ∆min
i /∆max

i which, as mentioned previously, is

exponentially suppressed in the limit E0 � EC . It is thought that a ratio ∆min
i /∆max

i ≈

10−5 would be realistically achievable in practice [39,204].

In the energy regime far below the gap associated with the superconducting wires,

∆sc, particle transport between the external leads can only occur via the occupation

of the non-local fermionic state, â = 1
2

(
γθ + iγφ

)
, defined in terms of the ground-space

Majoranas. The degeneracy associated with the occupation of this state is protected by

the particle-hole symmetry of the system and the spatial separation of the constituent

Majoranas. This affords further protection to the energy dependence of the low energy

scattering events facilitated by the occupation of this state and the associated transport

properties.

It can be shown that performing the sequence of couplings sketched in Fig. 6.1(b)

corresponds to the operator â accumulating a phase factor eiΩC , where ΩC denotes the

solid angle enclosed by the curve, C, traversed in parameter space during the cycle.

For the case of the Majorana braiding we have that ΩC = π/2 and this phase factor

shares the topological protection of the braiding operation, as discussed in Sec. 2.4.
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6.2. Model: Majorana braiding cycle

Executing the cycle results in system evolution described by the operator U = e−
π
4
γφγθ ,

corresponding to the desired exchange of the Majoranas γx and γy:

U †γxU = γy and U †γyU = −γx. (6.29)

It should be noted here that a full treatment of the effect of allowing electrons to

coherently scatter between the external leads via the internal system upon the physical

setup of coupled Cooper pair boxes has not been included in this work. Tunnelling

events will certainly lead to changes in the fermionic parity of the system and hence

limit its performance as a qubit when coupled to the leads. However, the assumption

that the driving is slow enough for the scattering to be considered instantaneous should

mean that such tunnelling events have a limited impact upon the evolution associated

with the exchange process. Furthermore, the protection of the path in parameter space

and the scattering properties are only reliant on the suppression of the ratio ∆min
i /∆max

i

and the degeneracy of the ground state and hence these should remain unaffected by the

coherent scattering of electrons from the leads. However, as with all Majorana braiding

proposals, this protection is subject to the issue of quasi-particle poisoning from other

environmental sources, as discussed in Sec. 2.5.

6.2.1 Determining the scattering matrix

Before calculating the FCS associated with the Majorana braiding protocol, we must

first determine the form of the instantaneous scattering matrix S(ε, t) associated with

the Y-junction. This can be achieved via the use of the so-called Mahaux-Weidenmuller
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6.2. Model: Majorana braiding cycle

formula [205]:

S(ε, t) = 1 + 2πiW †(HY (θ(t), φ(t))− ε− iπWW †)−1W. (6.30)

Here, W is the contact matrix describing the coupling between the Y-junction and the

external leads and its form can be deduced from the coupling Hamiltonian Hcoup. In

the basis of the physical MZMs, it takes the form

W =
√

ΓL

(
|γx〉

〈
eL
∣∣− |γx〉 〈hL∣∣ )+

√
ΓR

(
|γy〉

〈
eR
∣∣− |γy〉 〈hR∣∣ ). (6.31)

With this, the specific form of the scattering matrix for the Majorana braiding is found

to be

S(ε) =



SL
eLe 1− SLeLe SL

eRe −SLeRe

1− SLeLe SL
eLe −SLeRe SL

eRe

SL
eRe −SLeRe SR

eRe 1− SReRe

−SLeRe SL
eRe 1− SReRe SR

eRe


,

where SL
eLe = 1− 4πiΓ

(
sin2 φ

ε+ 2πiΓ
+

cos2 θ cos2 φ

ε+ 2πi cos2 θΓ

)
,

SR
eRe = 1− 4πiΓ

(
cos2 φ

ε+ 2πiΓ
+

cos2 θ sin2 φ

ε+ 2πi cos2 θΓ

)
,

and SL
eRe =

4πiε cosφ sin2 θ sinφΓ2

(ε+ 2πiΓ)(ε+ 2πi cos2 θΓ)
.

(6.32)

Here we only show the case of equal coupling to the left and right leads, ΓL = ΓR = Γ,

for brevity. The components of this scattering matrix can be used in Eq. 6.17 and

6.18 in order to determine the heat and charge transfer statistics of a driven Majorana

Y-junction.
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6.2. Model: Majorana braiding cycle

Out[ ]=

Figure 6.3: (a) Real and (b) imaginary parts of the Andreev reflection component of the
scattering matrix for the topological superconducting Y-junction. Results are plotted
for several positions in the parameter space, (θ0, φ0), and for equal coupling to the left
and right external leads ΓL = ΓR.
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6.3. Heat and charge transport statistics for small amplitude cycles

The expressions for the scattering matrix components allow for the identification of

two distinct energy scales that will shape the transport properties of the system. The

energy dependence of the real and imaginary parts of the Andreev reflection component

of the scattering matrix SLe,Lh(ε) are shown in Fig. 6.3(a) and (b) respectively. We see

that the real part comprises of the sum of two peaks centered at ε = 0. The width of the

larger of these two peaks is set by the strength of the coupling to the external leads ΓL/R.

However, at energies close to ε = 0 the behaviour is denominated by a narrower peak

with a width given by ΓR cos2 θ and which is controlled by the location in parameter

space (θ, φ), with the width decreasing as we approach the equator corresponding to

the line θ = π/2.

From Fig. 6.3 we also learn that the real and imaginary components exhibit different

energy dependence in the limit ε → 0. Whereas the real part can be approximated

as constant in this limit, the imaginary part varies linearly with energy and hence

quantities that include this contribution will show sensitivity to the energy dependence

of the scattering matrix, even in the limit T → 0.

6.3 Heat and charge transport statistics for small

amplitude cycles

With the ultimate goal of studying the FCS of a Majorana braiding cycle, we start

by considering the situation wherein our superconducting Y-junction is driven through

some small amplitude cycle in the parameter space (θ, φ). Such cycles also result in

the manipulation of the projection of the MZMs γθ and γφ in the space spanned by

the physical Majoranas, but do not correspond to an exchange process and hence the
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6.3. Heat and charge transport statistics for small amplitude cycles

corresponding contours in parameter space are not protected against fluctuations in

the driving. In this scenario one can utilise our expressions for the elastic and dynamic

contributions to the CGF given in Eq. 6.17 and 6.18 respectively.

In order to focus attention on the contributions to the transport arriving purely from

the periodic driving, we will study the case in which we have no chemical potential or

temperature biases between the leads, so that µL = µR = 0 and TL = TR = T .

Accordingly, the distribution functions for electrons and holes in each lead are identical:

fL
e

in (ε) = fL
h

in (ε) = fR
e

in (ε) = fR
h

in (ε). Our analysis will focus on the energy regime

far below the superconducting gap and upon the case for which the driving can be

considered slow compared to the scattering time, so that ω � ΓL,R � ∆sc.

The CGF provides access to all the higher order cumulants for both heat,M(k)
Qξ

, and

charge, M(k)
qξ , transport in the lead ξ via the derivatives with respect to the counting

field:

M(k)
Qξ

=
∂kGQξ(λξ)

∂(iλξ)k

∣∣∣∣∣
λξ=0

and M(k)
qξ

=
∂kGqξ(λξ)

∂(iλξ)k

∣∣∣∣∣
λξ=0

. (6.33)

6.3.1 Elastic contributions

We first focus upon the contribution to the CGF that would survive in the static limit

and therefore arises from elastic scattering events only. Since this quantity does not

depend upon the driving, these results are valid for arbitrary amplitude cycles. The

elastic component of the CGF for heat transport takes the form

Gelas
QL

(λL) = T
ˆ ∞
−∞

dε ln

(
1 +

1∑
n=−1

Bn(ε)(eiλLεn − 1)

)
, (6.34)
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6.3. Heat and charge transport statistics for small amplitude cycles

where T denotes the period of the driving and the coefficients Bn(ε) take the form

B1(ε) = B−1(ε) = 4|SLe,Re(ε, θ0, φ0)|2f(ε)
(
1− f(ε)

)
. (6.35)

Here, (θ0, φ0) corresponds to the location of the driving cycle centre in parameter

space. Written in this form it becomes evident that heat can only be transferred

to or from the external leads via normal and Andreev transmission events involving

electrons and holes. The coefficients Bn(ε) capture the probability of scattering events

resulting in the transfer of n particles from the lead ξ into other leads. For example, the

transmission of an electron from the left to the right lead will occur with a probability

of |SLeRe(ε)|2f(ε)(1 − f(ε)), as expected. The corresponding expression for charge

transport is found to be

Gelas
qL

(λL) = T
ˆ ∞
−∞

dε ln

(
1 +

2∑
n=−2

Bn(ε)(eiλLn − 1)

)
, (6.36)

where

B−1(ε) = B1(ε) = 4|SLeRe(ε, θ0, φ0)|2f(ε)
(
1− f(ε)

)
,

B−2(ε) = B2(ε) = |SLeLh(ε, θ0, φ0)|2f(ε)
(
1− f(ε)

)
.

In the case of electronic transport, we see that, in addition to transmission events,

Andreev reflection also contributes via the creation or annihilation of Cooper pairs

in the superconducting Y-junction. These processes result in the propagation of an

electronic charge of ±2e, but no energy transport in the form of heat.

Of course, in the absence of chemical potential and temperature biases between the

leads, the contribution to the average heat and charge currents arising from the elastic

CGF are identically zero
〈
Q̂elas

〉
=
〈
q̂elas

〉
= 0. Despite this, the thermal fluctuations
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Charge Noise

Figure 6.4: Period-averaged static contribution to the second cumulant of (a) the
pumped heat and (b) pumped charge throughout the driving of a Majorana Y-junction
centred at (θ0, φ0) = (π/2 − 0.1, π/4), with amplitude θω = φω = 0.01. The noise is
plotted as a function of the external lead temperature T/ΓR, for a driving frequency
ω/ΓR = 0.001. The insets show the temperature dependence of this quantity scaled by
T 5 and T for heat and charge respectively, highlighting the behaviour as T → 0. The
different colours correspond to various values of the coupling between the Y-junction
and the external leads ΓL/ΓR (cf. legend).

in the occupation of ingoing scattering states result in a contribution to the second

cumulant from elastic processes. Such contributions are present in the FCS for both

heat and charge transport and their behaviour as a function of the lead temperature

for each case are illustrated in Fig. 6.4(a) and (b) respectively. For both heat and

charge transport, the elastic contribution to the noise vanishes in the limit T = µ = 0,

in which case the occupation probability of all ingoing states is fixed and no charge or

energy transfer processes take place. From the behaviour sketched in Fig. 6.4, it is

natural to identify two distinct temperature regimes relative to the coupling strength

to the external leads.
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6.3. Heat and charge transport statistics for small amplitude cycles

Thermal noise at low temperature

In the low temperature regime, T � min ΓL/R, the energy dependence of the frozen

scattering matrix can be considered weak and consequently the dominating factor in

the energy dependence of the thermal noise should arise from the combination of Fermi

distribution functions, f(ε), appearing in the elastic component of the CGF (Eqs. 6.34,

6.36). If the scattering matrix is taken to be energy independent, the form of the elastic

CGF implies that the thermal charge noise should vary linearly in T , whereas for the

case of heat this quantity should vary as T 3 [141,199].

The elastic contribution to the second cumulant of both heat and charge transport

for the example of the driven Y-junction are plotted in Figs. 6.4(a) and (b) respectively.

The insets within each plot highlight the behaviour at low temperatures. For the case

of charge transport we see that, as anticipated, the energy dependence of the scattering

matrix can be neglected and that the thermal noise scales linearly with temperature.

Additionally, we see that the dependence upon the coupling strength to the leads is lost

as T → 0; a further consequence of weak energy dependence of the scattering matrix.

Conversely, we find that the thermal contribution to the heat noise maintains its

sensitivity to the scattering matrix energy dependence in the low temperature regime.

One can show that this property arises due to the fact that this contribution is influenced

by the imaginary component of the scattering matrix which, as we see in Fig. 6.3(b),

cannot be considered constant at energies close to ε = 0. In fact, the removal of the

energy dependence of the scattering matrix would result in the elastic part of the second

cumulant for heat being identically zero. The result is that the elastic heat noise scales

as T 5 in the limit T → 0 and that the dependence upon the coupling strength Γ remains

evident at all temperatures.
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6.3. Heat and charge transport statistics for small amplitude cycles

We will soon see that, although the energy dependence of the scattering matrix,

discussed in Sec. 6.2.1, could be neglected for the case of electronic transport thermal

noise, its influence will be present in the transport cumulants arising from the driving,

even in the limit of low temperatures.

Thermal noise at high temperature

As the temperature becomes comparable with the coupling strength to the external

leads, the influence of the scattering matrix energy dependence can no longer be

neglected for both heat and charge transport. Since the transport is facilitated by

the MZMs, the scattering is dominated by low energy states and hence fluctuations

in the occupation of higher energy states do not contribute to the noise, even as T is

increased. Consequently, we find that the rate of increase of the elastic contributions to

the noise slows down at high temperatures, eventually reaching a constant value in the

case of charge current and scaling linearly in T in the case of heat. In Fig. 6.4 it can

clearly be seen that this change occurs at a temperature of the order of the coupling

strength Γ.

6.3.2 Average pumped heat and charge

We next focus upon the more interesting contributions to the FCS for transport

arising from the time-dependent driving of the system. These are the charge and heat

cumulants originating from the pumped contributions to the CGF introduced in Eq.

6.18. We start by considering the first order cumulants, describing the average heat and

charge driven between the leads throughout the cycle. Still assuming the absence of

temperature and chemical potential biases between the leads, one finds that the charge
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6.3. Heat and charge transport statistics for small amplitude cycles

pumped during any modulation of the Majorana Y-junction identically vanishes. This

property occurs as a direct consequence of the particle-hole symmetry of the scattering

processes between the MZMs and the leads. This result is in contrast to previous works

studying adiabtic pumps in the absence of this symmetry, where the driven charge is

found to vary linearly with the driving frequency [199].

In spite of the absence of charge pumping, the driven Y-junction is seen to facilitate

the transfer of a finite heat current between the leads which, in the absence of biases,

arises purely from the geometric contribution to the CGF Ggeom
Qξ

(λξ). This heat can be

expressed as 〈
Qpump
ξ

〉
=
〈
Qgeom
ξ

〉
= 2

ˆ ∞
0

dε ε Q0,ξ(ε)
∂f(ε)

∂ε
, (6.37)

with

Q0,ξ(ε) =

¨
dθdφ

∑
β=Le,Lh,Re,Rh

Im

[
∂Sξ

eβ(ε)

∂θ

∂Sξ
eβ(ε)

∂φ

]
. (6.38)

Expressed in this way, as an integral over an area in parameter space spanned by θ

and φ, the geometric nature of the pumped heat becomes manifest. This quantity

bares no dependence upon the driving frequency but is fixed by the path traversed in

the parameter space. We will see (Sec. 6.4.1) that, since the pumped heat arises solely

from the geometric contribution, this expression is equally valid for arbitrary amplitude

cycles such as the Majorana braiding.

The extension of this expression to the example of a Majorana braiding is of

significant interest due to the fact that the topological protection of this non-Abelian

operation ensures that the path traversed in parameter space, C in Fig. 6.1(c), is

immune to fluctuations in the driving mechanism. Therefore, any transport properties

that are geometric in nature will share this protection. Furthermore, in the limit T → 0
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Figure 6.5: The total heat QL pumped into the left lead throughout the Majorana
braiding process as a function of the lead temperature, in the absence of a temperature
bias. Results are shown for a selection of symmetric lead coupling strengths ΓL/R =
Γ. When scaled by temperature, we see that this purely geometric heat becomes
independent of the coupling strength in the low temperature limit, tending to a universal
value.

the parameter space contour corresponding to the braiding can be mapped onto a fixed

path in scattering matrix space, independent of the coupling strength to the leads.

In this limit, the pumped heat tends to a universal quantized value independent of

fluctuations to both the driving and coupling to the leads [57]:

Q

2T log 2
=

1

4
. (6.39)

This behaviour is illustrated in Fig. 6.5, which shows the pump heat as a function of

temperature for various coupling strengths to the external leads.

As well as this robust quantization in the low temperature limit, the pumped heat

provides further signatures of the presence and manipulation of MZMs and allows them

to be distinguished from Andreev bound states (ABS) that are known to exhibit similar
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transport features in static setups. Specifically, a non-zero pumped heat relies on the

fact that the zero energy fermionic state, defined by the MZMs γθ and γφ, is non-local

in nature and that the projection of the component MZMs onto the physical Majoranas

γx, γy and γz can be manipulated. A localized ABS, on the other hand, would exhibit

no long range coupling with any other bound state at the opposite end of the wire,

as such states would have no connection through the parity operator of the system.

Consequently, modulating the flux passing through the Cooper pair boxes, as outlined

in Sec. 6.2, will only result in heat pumping in the presence of Majorana excitations.

Furthermore, this driven transport cannot be mimicked by simply varying the

coupling strength to the external leads. In this case, any pumping stimulated by, for

example, turning off ΓL would be exactly cancelled when ΓL is restored to its original

value, which is required to ensure that the driving is periodic. Consequently, pumping

a net heat between the leads requires a non-trivial manipulation of the ground state of

the internal system.

6.3.3 Heat and charge noise from pumping

Our expression for the CGF can further be used to analyse the nature of contributions

to the higher order transport cumulants arising from the periodic driving of the

system. The inclusion of time dependent processes allows for noise arising not only

from thermal fluctuations, but additionally from the non-equilibrium nature of the

outgoing scattering states resulting from the possibility of scattering events between

nearest energy sidebands. Such events result in correlations between outgoing particle

distributions at energies within the range ε± ω, which manifest themselves as a source

of noise in the average pumped heat and charge. This contribution to the noise is
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exclusively present when the system is driven and vanishes in the case that the driving

is switched off and inelastic scattering events cease to occur.

Henceforward we will useM(2)
Qξ,geom to denote the part of the driven noise stemming

from the geometric CGF Ggeom
Qξ

(λξ). This is the additional noise appearing when two

parameters are driven simultaneously. The noise arising from the remaining part

of the pumped CGF, that survives when only a single parameter is driven, we call

M(2)
Qξ,pump. These driven contributions to the second cumulant of the heat and charge

transport are shown in Fig. 6.6 and 6.7 respectively. They highlight the existence of

three temperature regimes in which both the heat and charge noise exhibit differing

behaviour.

Low temperature regime: T � ω

In the low temperature regime, the noise associated with the periodic driving dominates

over the thermal noise discussed in Sec. 6.3.1. The key quantity dictating the behaviour

of the noise in this regime is the difference in Fermi occupation functions between

neighboring energy sidebands, f(ε)− f(ε±ω). At low temperature, the energy window

over which this quantity is non-zero is centred around ε = 0, with a width which scales

linearly with ω and is insensitive to the temperature of the leads.

This lack of temperature dependence can be seen in Figs. 6.6(a,d) and 6.7(a,d) for

heat and charge transport respectively. From the insets in each of these panels, it is

also clear that this contribution to the noise persists in the limit T → 0, in contrast to

the case of thermal noise which vanishes in this limit.

The negligible energy dependence of the real part of the scattering matrix around

ε = 0 (cf. Fig. 6.3) would suggest that, at low temperatures, this energy dependence
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Figure 6.6: The pumped contribution to the second cumulant of the heat transport
throughout the driving of a Majorana Y-junction centred at (θ0, φ0) = (π/2−0.1, π/4),
with amplitude θω = φω = 0.01. Plots (d, e, f) show the geometric contribution
whereas (a, b, c) illustrate the remaining non-geometric part. Plots (a, d) show the
second cumulants as a function of temperature, with the inset highlighting the region
T � ω. Panels (b, c, e, f) show the same quantities plotted against frequency. (b, e)
illustrate the behaviour as a function of low frequencies ω < T and (c, f) at high
frequencies ω > T .

should not influence the transport. However, the linear variation of the imaginary

part, along with the behaviour of the scattering matrix derivatives appearing in the

inelastic terms S±ω(ε), mean that this factor cannot be neglected, even in this limit.

This energy dependence manifests itself in the form of a difference in the frequency

dependence between the geometric and non-geometric contributions to the driven noise.

Specifically, for heat transport we see, in Fig. 6.6(c,f), that M(2)
Qξ,pump ∝ ω4 and

M(2)
Qξ,geom ∝ ω5 and for charge, in Fig. 6.7(c,f), thatM(2)

qξ,pump ∝ ω2 andM(2)
qξ,geom ∝ ω3.

This difference in behaviour between the geometric and non-geometric terms occurs

as a result of their differing dependence upon the scattering matrix, as implicit in

Eq. 6.14. Furthermore, the difference between the frequency dependence of the charge

and heat noise is explained by considering that both are underpinned by the same
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Figure 6.7: The pumped contribution to the second cumulant of the charge transport
throughout the driving of a Majorana Y-junction centred at (θ0, φ0) = (π/2− 0.1, π/4)
with amplitude θω = φω = 0.01. Plots (d, e, f) show the geometric contribution
whereas (a, b, c) illustrate the remaining non-geometric part. Plots (a, d) show the
second cumulants as a function of temperature, with the inset highlighting the region
T � ω. Panels (b, c, e, f) show the same quantities plotted against frequency. (b, e)
illustrate the behaviour as a function of low frequencies ω < T and (c, f) at high
frequencies ω > T .

fluctuations and differ only in whether the scattering events are weighted by the energy

absorbed/emitted. In the case of scattering between nearest energy sidebands, this

energy is given by the driving frequency ω.

Mid-temperature regime: ω < T � ΓL,R

When the temperature of the leads is raised beyond the energy associated with the

driving frequency, the temperature takes over as the dominant quantity in determining

the size of the energy window within which scattering events can occur. Panels (a) and

(d) of Figs. 6.6 and 6.7 illustrate this transition via the deviation of the driven noises

away from their corresponding low temperature constant values at approximately T =

ω. In this mid-temperature regime, the behaviour is governed by both the distribution
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functions f(ε), in addition to the energy dependence of the scattering matrix.

Immediately following the transition into this regime, the heat noise initially varies

as T 5 whereas the charge noise goes as T 3. Here, temperature plays the same role as

frequency in the low temperature regime and we have a similar ratio of T 2 between

the quantities for charge and heat transport. This behaviour is well understood and

documented in many previous works [142]. However, as the temperature is increased

further it exceeds the width of the narrower resonance present in the scattering matrix

elements, set by the location of the driving centre in parameter space (θ0, φ0) (cf. Fig.

6.3). We see that this results in non-monotonic behaviour of the driven noise, where

the turning point is independent of the coupling strength to the leads. This also results

in the noise changing sign as the temperature is raised, however we stress that the sum

of the static and driven contributions to the noise remain positive at all temperatures.

Since the existence of this narrower resonance arises due to the fact that the projection

of the zero energy modes in the space of physical Majorans can be controlled, this

corresponding behaviour of the noise is unique to our system of interest and indicative

of the presence of MZMs.

In terms of frequency dependence, both the heat and charge noise now exhibit

the same behaviour. The difference between the non-geometric and geometric

contributions, present in the low temperature regime, does persist at higher T as

illustrated in panels (b) and (e) respectively. Whereas the non-geometric part is

proportional to 1/ω, we see that geometric contribution is now independent of the

driving frequency similar to the average pumped heat discussed previously. Its

geometric nature ensures that M(2)
Q/qξ,geom depends only upon the path traversed in

parameter space and not upon the details of the driving itself.
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High temperature regime: T > ΓL,R

Increasing the temperature beyond the broadening of the scattering matrix resonance,

set by the coupling strength to the external leads, means that the noise is dictated

purely by the energy dependence of the scattering matrix. At high energies, both the

real and imaginary components of the scattering matrix vary as 1/ε2. This results in a

saturation of the charge noise and heat noise that is linear in T . This behaviour can

be seen in panels (a,d) of Figs. 6.6 and 6.7.

Measuring heat and charge transport

We end this section with a brief description of how the driven charge and heat transport

statistics may be detected in practice. The FCS of electronic transport has long been

measurable by use of a quantum point contact capable of detecting single electron

tunnelling events and hence counting electrons [189,190]. Repeating this over many time

intervals allows the construction of the statistical distribution of the charge transport

and subsequently the determination of the average current and noise.

Similar measurements for the case of heat transport can be achieved using quantum

calorimetric techniques, by which the energy of individual particles is converted into a

measurable temperature change [191–193]. Recent advances in this field have lead to

proposals of ultra-sensitive, real-time detection of heat pulses of energy . 100µeV [193].

The challenge when working in the low temperature regime is that, as seen in Fig.

6.5, the pumped heat scales linearly with temperature and is therefore small. For

our braiding setup we require that the energy scales associated with the temperature

and coupling to the external leads are small compared to the superconducting gap,

T,Γ � ∆sc, with ∆sc ∼ 0.2meV and Γ ∼ 0.05meV examples of typical experimental
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parameters [32, 57]. Under these conditions a temperature of T ∼ 20mK, so that

T/Γ ∼ 0.04, would allow access to the low temperature regime in which shot noise

dominates. This would lead to a resultant pumped heat of Q = 0.3µeV per cycle [57],

which is below the latest level of achievable sensitivity. Consequently, with the detection

schemes currently available, it seems only the higher temperature regime of the heat

transport statistics would be accessible in experiments.

6.4 Impact of geometric contributions upon fluctu-

ation theorems

Beyond the cumulants associated with charge and heat transport, we can further explore

the thermodynamics of driven systems by analysing the nature of fluctuation theorems.

In particular, working in the setting of heat transport between two reservoirs, we focus

here upon the Gallavotti-Cohen type exchange fluctuation theorem introduced in Sec.

4.2.2 and formulated as

lim
τ→∞

1

τ
ln

[
Pτ (Q)

Pτ (−Q)

]
=
Q(βR − βL)

τ
, (6.40)

where Pτ (Q) denotes the probability distribution of the heat Q transferred from the

left to the right bath in some time τ and βL,R = 1
kBTL,R

. Although this FT is known

to hold for non-equilibrium stationary systems, it fails to account for the possibility

that heat is exchanged with the source of external driving [61] and previous studies

have indicated that it is the geometric contributions to the heat transfer statistics in

particular, that result in the need for additional correction terms when making the
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Out[ ]=

Figure 6.8: (a) Probability distribution, P (Q), for the heat pumped via the small
amplitude (θω = φω = 0.01) driving of a Majorana Y-junction centred at (θ0, φ0) =
(π

2
−0.01, π

4
). Results are shown for several values of the coupling to the external leads,

ΓL = ΓR = Γ, with an external lead temperature of T/ω = 10. The inset shows
the corresponding behaviour of the fluctuation theorem violation quantifier A(λ) =
|χ(λ)−χ(−λ)| which is identically zero when the Gallavotti-Cohen fluctuation theorem
holds true. (b) Probability distribution for the case of a static Majorana Y-junction at
(θ0, φ0) = (π

2
− 0.1, π

4
). Results are plotted for several temperature gradients, β? and

the inset shows the corresponding behaviour of the fluctuation theorem.
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extension to driven systems [58–62]. The formalism presented in this chapter enables

the computation of such corrections for systems for which the geometric contributions

are topologically protected.

To highlight the fact that it is indeed the cyclic driving of the system that

results in the aforementioned correction terms, we first consider the case of a static

superconducting Y-junction subjected to a temperature bias between the external leads.

Such a system is physically equivalent to a single superconducting nanowire hosting a

MZM at each end. The probability distributions P (QL) for the heat transport that

flows in response to several different temperature gradients β? ≡ βR − βL are plotted

in Fig. 6.8(b). The inset panel demonstrates that, for a static system, the quantity

ln[P (Q)/P (−Q)] corresponds exactly to a straight line of gradient β?, confirming the

validity of the GCFT in this scenario.

Returning now to the case of our periodically driven superconducting Y-junction, we

first note that the GCFT can be reformulated in terms of the presence of the following

symmetry in the characteristic function:

χQξ(λξ) = χQξ(−λξ + iβ?), (6.41)

where β? = 0 for our system of interest, since the temperatures of the external leads are

assumed to be equal and remain constant throughout the modulation of the Y-junction.

Using this symmetry we can define a function capturing the nature of the corrections

to the fluctuation theorem:

A(λξ) = |χQξ(λξ)− χQξ(−λξ)|. (6.42)
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Therefore, a non-zero value of A(λξ) at any value of the counting field, λξ, indicates

the presence of an additional contribution to the GCFT.

For weak amplitude driving of the Y-junction we can calculate the probability

distribution for heat transport via the Fourier transform of the exponentiated total

CGF GQξ(λξ) defined in Eq. 6.15. The probability distributions associated with one

such cycle are plotted in Fig. 6.8(a), for several values of Γ. Despite the absence of

any temperature or chemical potential gradients between the leads, we see that heat

is pumped across the system throughout the cycle and is indicated by the asymmetry

of P (Q) with respect to Q = 0. The inset in panel (a) illustrates the behaviour of the

function A(λξ), which is non-zero around λ = 0 and hence indicative of a correction to

the FT.

The behaviour of A(λξ) also suggests that the magnitude of the correction term is

increasing with the coupling strength to the external leads Γ. This is a consequence

of the increasing translation of P (Q) away from Q = 0, as an increasing heat current

is pumped across the system. However, increasing noise at higher temperatures will

act to obscure any translation of P (Q) and hence decrease the magnitude of the

correction term. Despite the fact that at low temperatures the variance of P (Q) is

found to decrease with increasing coupling strength (cf. Fig. 6.6(a) inset), in the high

temperature regime the static component of the noise becomes linearly dependent upon

Γ and dominates over the driven contributions in this limit.

6.4.1 Extension to arbitrary amplitude pumps

In this section, we illustrate that our results for the correction term of the GCFT can be

extended to include large amplitude driving cycles and hence applied to our example of
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C1
<latexit sha1_base64="wownMZYHAfynx7X+gyf8MetyAzM=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GOxF48V7Ae0oWy2k3bp7ibsboQS+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEAturOt+O6WNza3tnfJuZW//4PCoenzSMVGiGbZZJCLdC6hBwRW2LbcCe7FGKgOB3WDazP3uE2rDI/VoZzH6ko4VDzmjNpeaQ68yrNbcursAWSdeQWpQoDWsfg1GEUskKssENabvubH1U6otZwLnlUFiMKZsSsfYz6iiEo2fLm6dk4tMGZEw0lkpSxbq74mUSmNmMsg6JbUTs+rl4n9eP7HhrZ9yFScWFVsuChNBbETyx8mIa2RWzDJCmebZrYRNqKbMZvHkIXirL6+TzlXdc+vew3WtcVfEUYYzOIdL8OAGGnAPLWgDgwk8wyu8OdJ5cd6dj2VrySlmTuEPnM8f78aNfw==</latexit><latexit sha1_base64="wownMZYHAfynx7X+gyf8MetyAzM=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GOxF48V7Ae0oWy2k3bp7ibsboQS+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEAturOt+O6WNza3tnfJuZW//4PCoenzSMVGiGbZZJCLdC6hBwRW2LbcCe7FGKgOB3WDazP3uE2rDI/VoZzH6ko4VDzmjNpeaQ68yrNbcursAWSdeQWpQoDWsfg1GEUskKssENabvubH1U6otZwLnlUFiMKZsSsfYz6iiEo2fLm6dk4tMGZEw0lkpSxbq74mUSmNmMsg6JbUTs+rl4n9eP7HhrZ9yFScWFVsuChNBbETyx8mIa2RWzDJCmebZrYRNqKbMZvHkIXirL6+TzlXdc+vew3WtcVfEUYYzOIdL8OAGGnAPLWgDgwk8wyu8OdJ5cd6dj2VrySlmTuEPnM8f78aNfw==</latexit><latexit sha1_base64="wownMZYHAfynx7X+gyf8MetyAzM=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GOxF48V7Ae0oWy2k3bp7ibsboQS+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEAturOt+O6WNza3tnfJuZW//4PCoenzSMVGiGbZZJCLdC6hBwRW2LbcCe7FGKgOB3WDazP3uE2rDI/VoZzH6ko4VDzmjNpeaQ68yrNbcursAWSdeQWpQoDWsfg1GEUskKssENabvubH1U6otZwLnlUFiMKZsSsfYz6iiEo2fLm6dk4tMGZEw0lkpSxbq74mUSmNmMsg6JbUTs+rl4n9eP7HhrZ9yFScWFVsuChNBbETyx8mIa2RWzDJCmebZrYRNqKbMZvHkIXirL6+TzlXdc+vew3WtcVfEUYYzOIdL8OAGGnAPLWgDgwk8wyu8OdJ5cd6dj2VrySlmTuEPnM8f78aNfw==</latexit><latexit sha1_base64="wownMZYHAfynx7X+gyf8MetyAzM=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GOxF48V7Ae0oWy2k3bp7ibsboQS+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEAturOt+O6WNza3tnfJuZW//4PCoenzSMVGiGbZZJCLdC6hBwRW2LbcCe7FGKgOB3WDazP3uE2rDI/VoZzH6ko4VDzmjNpeaQ68yrNbcursAWSdeQWpQoDWsfg1GEUskKssENabvubH1U6otZwLnlUFiMKZsSsfYz6iiEo2fLm6dk4tMGZEw0lkpSxbq74mUSmNmMsg6JbUTs+rl4n9eP7HhrZ9yFScWFVsuChNBbETyx8mIa2RWzDJCmebZrYRNqKbMZvHkIXirL6+TzlXdc+vew3WtcVfEUYYzOIdL8OAGGnAPLWgDgwk8wyu8OdJ5cd6dj2VrySlmTuEPnM8f78aNfw==</latexit>

C2
<latexit sha1_base64="iHQgLCA2Ed/lTi+yB+USyKocj/E=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KkkR9FjsxWMF+wFtKJvtpF26uwm7G6GE/gUvHhTx6h/y5r8xaXPQ1gcDj/dmmJkXxIIb67rfzsbm1vbObmmvvH9weHRcOTntmCjRDNssEpHuBdSg4ArblluBvVgjlYHAbjBt5n73CbXhkXq0sxh9SceKh5xRm0vNYb08rFTdmrsAWSdeQapQoDWsfA1GEUskKssENabvubH1U6otZwLn5UFiMKZsSsfYz6iiEo2fLm6dk8tMGZEw0lkpSxbq74mUSmNmMsg6JbUTs+rl4n9eP7HhrZ9yFScWFVsuChNBbETyx8mIa2RWzDJCmebZrYRNqKbMZvHkIXirL6+TTr3muTXv4brauCviKME5XMAVeHADDbiHFrSBwQSe4RXeHOm8OO/Ox7J1wylmzuAPnM8f8UuNgA==</latexit><latexit sha1_base64="iHQgLCA2Ed/lTi+yB+USyKocj/E=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KkkR9FjsxWMF+wFtKJvtpF26uwm7G6GE/gUvHhTx6h/y5r8xaXPQ1gcDj/dmmJkXxIIb67rfzsbm1vbObmmvvH9weHRcOTntmCjRDNssEpHuBdSg4ArblluBvVgjlYHAbjBt5n73CbXhkXq0sxh9SceKh5xRm0vNYb08rFTdmrsAWSdeQapQoDWsfA1GEUskKssENabvubH1U6otZwLn5UFiMKZsSsfYz6iiEo2fLm6dk8tMGZEw0lkpSxbq74mUSmNmMsg6JbUTs+rl4n9eP7HhrZ9yFScWFVsuChNBbETyx8mIa2RWzDJCmebZrYRNqKbMZvHkIXirL6+TTr3muTXv4brauCviKME5XMAVeHADDbiHFrSBwQSe4RXeHOm8OO/Ox7J1wylmzuAPnM8f8UuNgA==</latexit><latexit sha1_base64="iHQgLCA2Ed/lTi+yB+USyKocj/E=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KkkR9FjsxWMF+wFtKJvtpF26uwm7G6GE/gUvHhTx6h/y5r8xaXPQ1gcDj/dmmJkXxIIb67rfzsbm1vbObmmvvH9weHRcOTntmCjRDNssEpHuBdSg4ArblluBvVgjlYHAbjBt5n73CbXhkXq0sxh9SceKh5xRm0vNYb08rFTdmrsAWSdeQapQoDWsfA1GEUskKssENabvubH1U6otZwLn5UFiMKZsSsfYz6iiEo2fLm6dk8tMGZEw0lkpSxbq74mUSmNmMsg6JbUTs+rl4n9eP7HhrZ9yFScWFVsuChNBbETyx8mIa2RWzDJCmebZrYRNqKbMZvHkIXirL6+TTr3muTXv4brauCviKME5XMAVeHADDbiHFrSBwQSe4RXeHOm8OO/Ox7J1wylmzuAPnM8f8UuNgA==</latexit><latexit sha1_base64="iHQgLCA2Ed/lTi+yB+USyKocj/E=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KkkR9FjsxWMF+wFtKJvtpF26uwm7G6GE/gUvHhTx6h/y5r8xaXPQ1gcDj/dmmJkXxIIb67rfzsbm1vbObmmvvH9weHRcOTntmCjRDNssEpHuBdSg4ArblluBvVgjlYHAbjBt5n73CbXhkXq0sxh9SceKh5xRm0vNYb08rFTdmrsAWSdeQapQoDWsfA1GEUskKssENabvubH1U6otZwLn5UFiMKZsSsfYz6iiEo2fLm6dk8tMGZEw0lkpSxbq74mUSmNmMsg6JbUTs+rl4n9eP7HhrZ9yFScWFVsuChNBbETyx8mIa2RWzDJCmebZrYRNqKbMZvHkIXirL6+TTr3muTXv4brauCviKME5XMAVeHADDbiHFrSBwQSe4RXeHOm8OO/Ox7J1wylmzuAPnM8f8UuNgA==</latexit>

C3
<latexit sha1_base64="f9AWxXNHfCP6ztup5LtkpLcFl4g=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GOxF48V7Ae0oWy2k3bp7ibsboQS+he8eFDEq3/Im//GpM1Bqw8GHu/NMDMviAU31nW/nNLa+sbmVnm7srO7t39QPTzqmCjRDNssEpHuBdSg4ArblluBvVgjlYHAbjBt5n73EbXhkXqwsxh9SceKh5xRm0vN4WVlWK25dXcB8pd4BalBgdaw+jkYRSyRqCwT1Ji+58bWT6m2nAmcVwaJwZiyKR1jP6OKSjR+urh1Ts4yZUTCSGelLFmoPydSKo2ZySDrlNROzKqXi/95/cSGN37KVZxYVGy5KEwEsRHJHycjrpFZMcsIZZpntxI2oZoym8WTh+CtvvyXdC7qnlv37q9qjdsijjKcwCmcgwfX0IA7aEEbGEzgCV7g1ZHOs/PmvC9bS04xcwy/4Hx8A/LQjYE=</latexit><latexit sha1_base64="f9AWxXNHfCP6ztup5LtkpLcFl4g=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GOxF48V7Ae0oWy2k3bp7ibsboQS+he8eFDEq3/Im//GpM1Bqw8GHu/NMDMviAU31nW/nNLa+sbmVnm7srO7t39QPTzqmCjRDNssEpHuBdSg4ArblluBvVgjlYHAbjBt5n73EbXhkXqwsxh9SceKh5xRm0vN4WVlWK25dXcB8pd4BalBgdaw+jkYRSyRqCwT1Ji+58bWT6m2nAmcVwaJwZiyKR1jP6OKSjR+urh1Ts4yZUTCSGelLFmoPydSKo2ZySDrlNROzKqXi/95/cSGN37KVZxYVGy5KEwEsRHJHycjrpFZMcsIZZpntxI2oZoym8WTh+CtvvyXdC7qnlv37q9qjdsijjKcwCmcgwfX0IA7aEEbGEzgCV7g1ZHOs/PmvC9bS04xcwy/4Hx8A/LQjYE=</latexit><latexit sha1_base64="f9AWxXNHfCP6ztup5LtkpLcFl4g=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GOxF48V7Ae0oWy2k3bp7ibsboQS+he8eFDEq3/Im//GpM1Bqw8GHu/NMDMviAU31nW/nNLa+sbmVnm7srO7t39QPTzqmCjRDNssEpHuBdSg4ArblluBvVgjlYHAbjBt5n73EbXhkXqwsxh9SceKh5xRm0vN4WVlWK25dXcB8pd4BalBgdaw+jkYRSyRqCwT1Ji+58bWT6m2nAmcVwaJwZiyKR1jP6OKSjR+urh1Ts4yZUTCSGelLFmoPydSKo2ZySDrlNROzKqXi/95/cSGN37KVZxYVGy5KEwEsRHJHycjrpFZMcsIZZpntxI2oZoym8WTh+CtvvyXdC7qnlv37q9qjdsijjKcwCmcgwfX0IA7aEEbGEzgCV7g1ZHOs/PmvC9bS04xcwy/4Hx8A/LQjYE=</latexit><latexit sha1_base64="f9AWxXNHfCP6ztup5LtkpLcFl4g=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GOxF48V7Ae0oWy2k3bp7ibsboQS+he8eFDEq3/Im//GpM1Bqw8GHu/NMDMviAU31nW/nNLa+sbmVnm7srO7t39QPTzqmCjRDNssEpHuBdSg4ArblluBvVgjlYHAbjBt5n73EbXhkXqwsxh9SceKh5xRm0vN4WVlWK25dXcB8pd4BalBgdaw+jkYRSyRqCwT1Ji+58bWT6m2nAmcVwaJwZiyKR1jP6OKSjR+urh1Ts4yZUTCSGelLFmoPydSKo2ZySDrlNROzKqXi/95/cSGN37KVZxYVGy5KEwEsRHJHycjrpFZMcsIZZpntxI2oZoym8WTh+CtvvyXdC7qnlv37q9qjdsijjKcwCmcgwfX0IA7aEEbGEzgCV7g1ZHOs/PmvC9bS04xcwy/4Hx8A/LQjYE=</latexit>

C4
<latexit sha1_base64="1sYI4SobTHS3biSGmXUtXlKilUM=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GOxF48V7Ae0oWy2k3bp7ibsboQS+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEAturOt+O6WNza3tnfJuZW//4PCoenzSMVGiGbZZJCLdC6hBwRW2LbcCe7FGKgOB3WDazP3uE2rDI/VoZzH6ko4VDzmjNpeaw+vKsFpz6+4CZJ14BalBgdaw+jUYRSyRqCwT1Ji+58bWT6m2nAmcVwaJwZiyKR1jP6OKSjR+urh1Ti4yZUTCSGelLFmovydSKo2ZySDrlNROzKqXi/95/cSGt37KVZxYVGy5KEwEsRHJHycjrpFZMcsIZZpntxI2oZoym8WTh+CtvrxOOld1z617D9e1xl0RRxnO4BwuwYMbaMA9tKANDCbwDK/w5kjnxXl3PpatJaeYOYU/cD5/APRVjYI=</latexit><latexit sha1_base64="1sYI4SobTHS3biSGmXUtXlKilUM=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GOxF48V7Ae0oWy2k3bp7ibsboQS+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEAturOt+O6WNza3tnfJuZW//4PCoenzSMVGiGbZZJCLdC6hBwRW2LbcCe7FGKgOB3WDazP3uE2rDI/VoZzH6ko4VDzmjNpeaw+vKsFpz6+4CZJ14BalBgdaw+jUYRSyRqCwT1Ji+58bWT6m2nAmcVwaJwZiyKR1jP6OKSjR+urh1Ti4yZUTCSGelLFmovydSKo2ZySDrlNROzKqXi/95/cSGt37KVZxYVGy5KEwEsRHJHycjrpFZMcsIZZpntxI2oZoym8WTh+CtvrxOOld1z617D9e1xl0RRxnO4BwuwYMbaMA9tKANDCbwDK/w5kjnxXl3PpatJaeYOYU/cD5/APRVjYI=</latexit><latexit sha1_base64="1sYI4SobTHS3biSGmXUtXlKilUM=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GOxF48V7Ae0oWy2k3bp7ibsboQS+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEAturOt+O6WNza3tnfJuZW//4PCoenzSMVGiGbZZJCLdC6hBwRW2LbcCe7FGKgOB3WDazP3uE2rDI/VoZzH6ko4VDzmjNpeaw+vKsFpz6+4CZJ14BalBgdaw+jUYRSyRqCwT1Ji+58bWT6m2nAmcVwaJwZiyKR1jP6OKSjR+urh1Ti4yZUTCSGelLFmovydSKo2ZySDrlNROzKqXi/95/cSGt37KVZxYVGy5KEwEsRHJHycjrpFZMcsIZZpntxI2oZoym8WTh+CtvrxOOld1z617D9e1xl0RRxnO4BwuwYMbaMA9tKANDCbwDK/w5kjnxXl3PpatJaeYOYU/cD5/APRVjYI=</latexit><latexit sha1_base64="1sYI4SobTHS3biSGmXUtXlKilUM=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GOxF48V7Ae0oWy2k3bp7ibsboQS+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEAturOt+O6WNza3tnfJuZW//4PCoenzSMVGiGbZZJCLdC6hBwRW2LbcCe7FGKgOB3WDazP3uE2rDI/VoZzH6ko4VDzmjNpeaw+vKsFpz6+4CZJ14BalBgdaw+jUYRSyRqCwT1Ji+58bWT6m2nAmcVwaJwZiyKR1jP6OKSjR+urh1Ti4yZUTCSGelLFmovydSKo2ZySDrlNROzKqXi/95/cSGt37KVZxYVGy5KEwEsRHJHycjrpFZMcsIZZpntxI2oZoym8WTh+CtvrxOOld1z617D9e1xl0RRxnO4BwuwYMbaMA9tKANDCbwDK/w5kjnxXl3PpatJaeYOYU/cD5/APRVjYI=</latexit>

✓
<latexit sha1_base64="Bm5s1ZgR0EdKuIgxqy/Rt8DrK/I=">AAAB7nicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa9eKxgP6ANZbOdtks3m7A7EUroj/DiQRGv/h5v/hs3bQ7a+mDg8d4MM/PCRApDnvftrK1vbG5tl3bKu3v7B4eVo+OWiVPNscljGetOyAxKobBJgiR2Eo0sCiW2w8ld7refUBsRq0eaJhhEbKTEUHBGVmr3aIzEyv1K1at5c7irxC9IFQo0+pWv3iDmaYSKuGTGdH0voSBjmgSXOCv3UoMJ4xM2wq6likVogmx+7sw9t8rAHcbaliJ3rv6eyFhkzDQKbWfEaGyWvVz8z+umNLwJMqGSlFDxxaJhKl2K3fx3dyA0cpJTSxjXwt7q8jHTjJNNKA/BX355lbQua75X8x+uqvXbIo4SnMIZXIAP11CHe2hAEzhM4Ble4c1JnBfn3flYtK45xcwJ/IHz+QPaf488</latexit><latexit sha1_base64="Bm5s1ZgR0EdKuIgxqy/Rt8DrK/I=">AAAB7nicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa9eKxgP6ANZbOdtks3m7A7EUroj/DiQRGv/h5v/hs3bQ7a+mDg8d4MM/PCRApDnvftrK1vbG5tl3bKu3v7B4eVo+OWiVPNscljGetOyAxKobBJgiR2Eo0sCiW2w8ld7refUBsRq0eaJhhEbKTEUHBGVmr3aIzEyv1K1at5c7irxC9IFQo0+pWv3iDmaYSKuGTGdH0voSBjmgSXOCv3UoMJ4xM2wq6likVogmx+7sw9t8rAHcbaliJ3rv6eyFhkzDQKbWfEaGyWvVz8z+umNLwJMqGSlFDxxaJhKl2K3fx3dyA0cpJTSxjXwt7q8jHTjJNNKA/BX355lbQua75X8x+uqvXbIo4SnMIZXIAP11CHe2hAEzhM4Ble4c1JnBfn3flYtK45xcwJ/IHz+QPaf488</latexit><latexit sha1_base64="Bm5s1ZgR0EdKuIgxqy/Rt8DrK/I=">AAAB7nicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa9eKxgP6ANZbOdtks3m7A7EUroj/DiQRGv/h5v/hs3bQ7a+mDg8d4MM/PCRApDnvftrK1vbG5tl3bKu3v7B4eVo+OWiVPNscljGetOyAxKobBJgiR2Eo0sCiW2w8ld7refUBsRq0eaJhhEbKTEUHBGVmr3aIzEyv1K1at5c7irxC9IFQo0+pWv3iDmaYSKuGTGdH0voSBjmgSXOCv3UoMJ4xM2wq6likVogmx+7sw9t8rAHcbaliJ3rv6eyFhkzDQKbWfEaGyWvVz8z+umNLwJMqGSlFDxxaJhKl2K3fx3dyA0cpJTSxjXwt7q8jHTjJNNKA/BX355lbQua75X8x+uqvXbIo4SnMIZXIAP11CHe2hAEzhM4Ble4c1JnBfn3flYtK45xcwJ/IHz+QPaf488</latexit><latexit sha1_base64="Bm5s1ZgR0EdKuIgxqy/Rt8DrK/I=">AAAB7nicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa9eKxgP6ANZbOdtks3m7A7EUroj/DiQRGv/h5v/hs3bQ7a+mDg8d4MM/PCRApDnvftrK1vbG5tl3bKu3v7B4eVo+OWiVPNscljGetOyAxKobBJgiR2Eo0sCiW2w8ld7refUBsRq0eaJhhEbKTEUHBGVmr3aIzEyv1K1at5c7irxC9IFQo0+pWv3iDmaYSKuGTGdH0voSBjmgSXOCv3UoMJ4xM2wq6likVogmx+7sw9t8rAHcbaliJ3rv6eyFhkzDQKbWfEaGyWvVz8z+umNLwJMqGSlFDxxaJhKl2K3fx3dyA0cpJTSxjXwt7q8jHTjJNNKA/BX355lbQua75X8x+uqvXbIo4SnMIZXIAP11CHe2hAEzhM4Ble4c1JnBfn3flYtK45xcwJ/IHz+QPaf488</latexit>

�
<latexit sha1_base64="lbZtlfIMSkLZDhkbVPebP+XlnW0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKphbaUDbbSbt0swm7G6GE/gYvHhTx6g/y5r9x0+agrQ8GHu/NMDMvTAXXxnW/ncra+sbmVnW7trO7t39QPzzq6CRTDH2WiER1Q6pRcIm+4UZgN1VI41DgYzi5LfzHJ1SaJ/LBTFMMYjqSPOKMGiv5/XTMa4N6w226c5BV4pWkASXag/pXf5iwLEZpmKBa9zw3NUFOleFM4KzWzzSmlE3oCHuWShqjDvL5sTNyZpUhiRJlSxoyV39P5DTWehqHtjOmZqyXvUL8z+tlJroOci7TzKBki0VRJohJSPE5GXKFzIipJZQpbm8lbEwVZcbmU4TgLb+8SjoXTc9teveXjdZNGUcVTuAUzsGDK2jBHbTBBwYcnuEV3hzpvDjvzseiteKUM8fwB87nD0k3jlM=</latexit><latexit sha1_base64="lbZtlfIMSkLZDhkbVPebP+XlnW0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKphbaUDbbSbt0swm7G6GE/gYvHhTx6g/y5r9x0+agrQ8GHu/NMDMvTAXXxnW/ncra+sbmVnW7trO7t39QPzzq6CRTDH2WiER1Q6pRcIm+4UZgN1VI41DgYzi5LfzHJ1SaJ/LBTFMMYjqSPOKMGiv5/XTMa4N6w226c5BV4pWkASXag/pXf5iwLEZpmKBa9zw3NUFOleFM4KzWzzSmlE3oCHuWShqjDvL5sTNyZpUhiRJlSxoyV39P5DTWehqHtjOmZqyXvUL8z+tlJroOci7TzKBki0VRJohJSPE5GXKFzIipJZQpbm8lbEwVZcbmU4TgLb+8SjoXTc9teveXjdZNGUcVTuAUzsGDK2jBHbTBBwYcnuEV3hzpvDjvzseiteKUM8fwB87nD0k3jlM=</latexit><latexit sha1_base64="lbZtlfIMSkLZDhkbVPebP+XlnW0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKphbaUDbbSbt0swm7G6GE/gYvHhTx6g/y5r9x0+agrQ8GHu/NMDMvTAXXxnW/ncra+sbmVnW7trO7t39QPzzq6CRTDH2WiER1Q6pRcIm+4UZgN1VI41DgYzi5LfzHJ1SaJ/LBTFMMYjqSPOKMGiv5/XTMa4N6w226c5BV4pWkASXag/pXf5iwLEZpmKBa9zw3NUFOleFM4KzWzzSmlE3oCHuWShqjDvL5sTNyZpUhiRJlSxoyV39P5DTWehqHtjOmZqyXvUL8z+tlJroOci7TzKBki0VRJohJSPE5GXKFzIipJZQpbm8lbEwVZcbmU4TgLb+8SjoXTc9teveXjdZNGUcVTuAUzsGDK2jBHbTBBwYcnuEV3hzpvDjvzseiteKUM8fwB87nD0k3jlM=</latexit><latexit sha1_base64="lbZtlfIMSkLZDhkbVPebP+XlnW0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKphbaUDbbSbt0swm7G6GE/gYvHhTx6g/y5r9x0+agrQ8GHu/NMDMvTAXXxnW/ncra+sbmVnW7trO7t39QPzzq6CRTDH2WiER1Q6pRcIm+4UZgN1VI41DgYzi5LfzHJ1SaJ/LBTFMMYjqSPOKMGiv5/XTMa4N6w226c5BV4pWkASXag/pXf5iwLEZpmKBa9zw3NUFOleFM4KzWzzSmlE3oCHuWShqjDvL5sTNyZpUhiRJlSxoyV39P5DTWehqHtjOmZqyXvUL8z+tlJroOci7TzKBki0VRJohJSPE5GXKFzIipJZQpbm8lbEwVZcbmU4TgLb+8SjoXTc9teveXjdZNGUcVTuAUzsGDK2jBHbTBBwYcnuEV3hzpvDjvzseiteKUM8fwB87nD0k3jlM=</latexit>

C1
<latexit sha1_base64="wownMZYHAfynx7X+gyf8MetyAzM=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GOxF48V7Ae0oWy2k3bp7ibsboQS+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEAturOt+O6WNza3tnfJuZW//4PCoenzSMVGiGbZZJCLdC6hBwRW2LbcCe7FGKgOB3WDazP3uE2rDI/VoZzH6ko4VDzmjNpeaQ68yrNbcursAWSdeQWpQoDWsfg1GEUskKssENabvubH1U6otZwLnlUFiMKZsSsfYz6iiEo2fLm6dk4tMGZEw0lkpSxbq74mUSmNmMsg6JbUTs+rl4n9eP7HhrZ9yFScWFVsuChNBbETyx8mIa2RWzDJCmebZrYRNqKbMZvHkIXirL6+TzlXdc+vew3WtcVfEUYYzOIdL8OAGGnAPLWgDgwk8wyu8OdJ5cd6dj2VrySlmTuEPnM8f78aNfw==</latexit><latexit sha1_base64="wownMZYHAfynx7X+gyf8MetyAzM=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GOxF48V7Ae0oWy2k3bp7ibsboQS+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEAturOt+O6WNza3tnfJuZW//4PCoenzSMVGiGbZZJCLdC6hBwRW2LbcCe7FGKgOB3WDazP3uE2rDI/VoZzH6ko4VDzmjNpeaQ68yrNbcursAWSdeQWpQoDWsfg1GEUskKssENabvubH1U6otZwLnlUFiMKZsSsfYz6iiEo2fLm6dk4tMGZEw0lkpSxbq74mUSmNmMsg6JbUTs+rl4n9eP7HhrZ9yFScWFVsuChNBbETyx8mIa2RWzDJCmebZrYRNqKbMZvHkIXirL6+TzlXdc+vew3WtcVfEUYYzOIdL8OAGGnAPLWgDgwk8wyu8OdJ5cd6dj2VrySlmTuEPnM8f78aNfw==</latexit><latexit sha1_base64="wownMZYHAfynx7X+gyf8MetyAzM=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GOxF48V7Ae0oWy2k3bp7ibsboQS+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEAturOt+O6WNza3tnfJuZW//4PCoenzSMVGiGbZZJCLdC6hBwRW2LbcCe7FGKgOB3WDazP3uE2rDI/VoZzH6ko4VDzmjNpeaQ68yrNbcursAWSdeQWpQoDWsfg1GEUskKssENabvubH1U6otZwLnlUFiMKZsSsfYz6iiEo2fLm6dk4tMGZEw0lkpSxbq74mUSmNmMsg6JbUTs+rl4n9eP7HhrZ9yFScWFVsuChNBbETyx8mIa2RWzDJCmebZrYRNqKbMZvHkIXirL6+TzlXdc+vew3WtcVfEUYYzOIdL8OAGGnAPLWgDgwk8wyu8OdJ5cd6dj2VrySlmTuEPnM8f78aNfw==</latexit><latexit sha1_base64="wownMZYHAfynx7X+gyf8MetyAzM=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GOxF48V7Ae0oWy2k3bp7ibsboQS+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEAturOt+O6WNza3tnfJuZW//4PCoenzSMVGiGbZZJCLdC6hBwRW2LbcCe7FGKgOB3WDazP3uE2rDI/VoZzH6ko4VDzmjNpeaQ68yrNbcursAWSdeQWpQoDWsfg1GEUskKssENabvubH1U6otZwLnlUFiMKZsSsfYz6iiEo2fLm6dk4tMGZEw0lkpSxbq74mUSmNmMsg6JbUTs+rl4n9eP7HhrZ9yFScWFVsuChNBbETyx8mIa2RWzDJCmebZrYRNqKbMZvHkIXirL6+TzlXdc+vew3WtcVfEUYYzOIdL8OAGGnAPLWgDgwk8wyu8OdJ5cd6dj2VrySlmTuEPnM8f78aNfw==</latexit>

C2
<latexit sha1_base64="iHQgLCA2Ed/lTi+yB+USyKocj/E=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KkkR9FjsxWMF+wFtKJvtpF26uwm7G6GE/gUvHhTx6h/y5r8xaXPQ1gcDj/dmmJkXxIIb67rfzsbm1vbObmmvvH9weHRcOTntmCjRDNssEpHuBdSg4ArblluBvVgjlYHAbjBt5n73CbXhkXq0sxh9SceKh5xRm0vNYb08rFTdmrsAWSdeQapQoDWsfA1GEUskKssENabvubH1U6otZwLn5UFiMKZsSsfYz6iiEo2fLm6dk8tMGZEw0lkpSxbq74mUSmNmMsg6JbUTs+rl4n9eP7HhrZ9yFScWFVsuChNBbETyx8mIa2RWzDJCmebZrYRNqKbMZvHkIXirL6+TTr3muTXv4brauCviKME5XMAVeHADDbiHFrSBwQSe4RXeHOm8OO/Ox7J1wylmzuAPnM8f8UuNgA==</latexit><latexit sha1_base64="iHQgLCA2Ed/lTi+yB+USyKocj/E=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KkkR9FjsxWMF+wFtKJvtpF26uwm7G6GE/gUvHhTx6h/y5r8xaXPQ1gcDj/dmmJkXxIIb67rfzsbm1vbObmmvvH9weHRcOTntmCjRDNssEpHuBdSg4ArblluBvVgjlYHAbjBt5n73CbXhkXq0sxh9SceKh5xRm0vNYb08rFTdmrsAWSdeQapQoDWsfA1GEUskKssENabvubH1U6otZwLn5UFiMKZsSsfYz6iiEo2fLm6dk8tMGZEw0lkpSxbq74mUSmNmMsg6JbUTs+rl4n9eP7HhrZ9yFScWFVsuChNBbETyx8mIa2RWzDJCmebZrYRNqKbMZvHkIXirL6+TTr3muTXv4brauCviKME5XMAVeHADDbiHFrSBwQSe4RXeHOm8OO/Ox7J1wylmzuAPnM8f8UuNgA==</latexit><latexit sha1_base64="iHQgLCA2Ed/lTi+yB+USyKocj/E=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KkkR9FjsxWMF+wFtKJvtpF26uwm7G6GE/gUvHhTx6h/y5r8xaXPQ1gcDj/dmmJkXxIIb67rfzsbm1vbObmmvvH9weHRcOTntmCjRDNssEpHuBdSg4ArblluBvVgjlYHAbjBt5n73CbXhkXq0sxh9SceKh5xRm0vNYb08rFTdmrsAWSdeQapQoDWsfA1GEUskKssENabvubH1U6otZwLn5UFiMKZsSsfYz6iiEo2fLm6dk8tMGZEw0lkpSxbq74mUSmNmMsg6JbUTs+rl4n9eP7HhrZ9yFScWFVsuChNBbETyx8mIa2RWzDJCmebZrYRNqKbMZvHkIXirL6+TTr3muTXv4brauCviKME5XMAVeHADDbiHFrSBwQSe4RXeHOm8OO/Ox7J1wylmzuAPnM8f8UuNgA==</latexit><latexit sha1_base64="iHQgLCA2Ed/lTi+yB+USyKocj/E=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KkkR9FjsxWMF+wFtKJvtpF26uwm7G6GE/gUvHhTx6h/y5r8xaXPQ1gcDj/dmmJkXxIIb67rfzsbm1vbObmmvvH9weHRcOTntmCjRDNssEpHuBdSg4ArblluBvVgjlYHAbjBt5n73CbXhkXq0sxh9SceKh5xRm0vNYb08rFTdmrsAWSdeQapQoDWsfA1GEUskKssENabvubH1U6otZwLn5UFiMKZsSsfYz6iiEo2fLm6dk8tMGZEw0lkpSxbq74mUSmNmMsg6JbUTs+rl4n9eP7HhrZ9yFScWFVsuChNBbETyx8mIa2RWzDJCmebZrYRNqKbMZvHkIXirL6+TTr3muTXv4brauCviKME5XMAVeHADDbiHFrSBwQSe4RXeHOm8OO/Ox7J1wylmzuAPnM8f8UuNgA==</latexit>

C3
<latexit sha1_base64="f9AWxXNHfCP6ztup5LtkpLcFl4g=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GOxF48V7Ae0oWy2k3bp7ibsboQS+he8eFDEq3/Im//GpM1Bqw8GHu/NMDMviAU31nW/nNLa+sbmVnm7srO7t39QPTzqmCjRDNssEpHuBdSg4ArblluBvVgjlYHAbjBt5n73EbXhkXqwsxh9SceKh5xRm0vN4WVlWK25dXcB8pd4BalBgdaw+jkYRSyRqCwT1Ji+58bWT6m2nAmcVwaJwZiyKR1jP6OKSjR+urh1Ts4yZUTCSGelLFmoPydSKo2ZySDrlNROzKqXi/95/cSGN37KVZxYVGy5KEwEsRHJHycjrpFZMcsIZZpntxI2oZoym8WTh+CtvvyXdC7qnlv37q9qjdsijjKcwCmcgwfX0IA7aEEbGEzgCV7g1ZHOs/PmvC9bS04xcwy/4Hx8A/LQjYE=</latexit><latexit sha1_base64="f9AWxXNHfCP6ztup5LtkpLcFl4g=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GOxF48V7Ae0oWy2k3bp7ibsboQS+he8eFDEq3/Im//GpM1Bqw8GHu/NMDMviAU31nW/nNLa+sbmVnm7srO7t39QPTzqmCjRDNssEpHuBdSg4ArblluBvVgjlYHAbjBt5n73EbXhkXqwsxh9SceKh5xRm0vN4WVlWK25dXcB8pd4BalBgdaw+jkYRSyRqCwT1Ji+58bWT6m2nAmcVwaJwZiyKR1jP6OKSjR+urh1Ts4yZUTCSGelLFmoPydSKo2ZySDrlNROzKqXi/95/cSGN37KVZxYVGy5KEwEsRHJHycjrpFZMcsIZZpntxI2oZoym8WTh+CtvvyXdC7qnlv37q9qjdsijjKcwCmcgwfX0IA7aEEbGEzgCV7g1ZHOs/PmvC9bS04xcwy/4Hx8A/LQjYE=</latexit><latexit sha1_base64="f9AWxXNHfCP6ztup5LtkpLcFl4g=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GOxF48V7Ae0oWy2k3bp7ibsboQS+he8eFDEq3/Im//GpM1Bqw8GHu/NMDMviAU31nW/nNLa+sbmVnm7srO7t39QPTzqmCjRDNssEpHuBdSg4ArblluBvVgjlYHAbjBt5n73EbXhkXqwsxh9SceKh5xRm0vN4WVlWK25dXcB8pd4BalBgdaw+jkYRSyRqCwT1Ji+58bWT6m2nAmcVwaJwZiyKR1jP6OKSjR+urh1Ts4yZUTCSGelLFmoPydSKo2ZySDrlNROzKqXi/95/cSGN37KVZxYVGy5KEwEsRHJHycjrpFZMcsIZZpntxI2oZoym8WTh+CtvvyXdC7qnlv37q9qjdsijjKcwCmcgwfX0IA7aEEbGEzgCV7g1ZHOs/PmvC9bS04xcwy/4Hx8A/LQjYE=</latexit><latexit sha1_base64="f9AWxXNHfCP6ztup5LtkpLcFl4g=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GOxF48V7Ae0oWy2k3bp7ibsboQS+he8eFDEq3/Im//GpM1Bqw8GHu/NMDMviAU31nW/nNLa+sbmVnm7srO7t39QPTzqmCjRDNssEpHuBdSg4ArblluBvVgjlYHAbjBt5n73EbXhkXqwsxh9SceKh5xRm0vN4WVlWK25dXcB8pd4BalBgdaw+jkYRSyRqCwT1Ji+58bWT6m2nAmcVwaJwZiyKR1jP6OKSjR+urh1Ts4yZUTCSGelLFmoPydSKo2ZySDrlNROzKqXi/95/cSGN37KVZxYVGy5KEwEsRHJHycjrpFZMcsIZZpntxI2oZoym8WTh+CtvvyXdC7qnlv37q9qjdsijjKcwCmcgwfX0IA7aEEbGEzgCV7g1ZHOs/PmvC9bS04xcwy/4Hx8A/LQjYE=</latexit>

C4
<latexit sha1_base64="1sYI4SobTHS3biSGmXUtXlKilUM=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GOxF48V7Ae0oWy2k3bp7ibsboQS+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEAturOt+O6WNza3tnfJuZW//4PCoenzSMVGiGbZZJCLdC6hBwRW2LbcCe7FGKgOB3WDazP3uE2rDI/VoZzH6ko4VDzmjNpeaw+vKsFpz6+4CZJ14BalBgdaw+jUYRSyRqCwT1Ji+58bWT6m2nAmcVwaJwZiyKR1jP6OKSjR+urh1Ti4yZUTCSGelLFmovydSKo2ZySDrlNROzKqXi/95/cSGt37KVZxYVGy5KEwEsRHJHycjrpFZMcsIZZpntxI2oZoym8WTh+CtvrxOOld1z617D9e1xl0RRxnO4BwuwYMbaMA9tKANDCbwDK/w5kjnxXl3PpatJaeYOYU/cD5/APRVjYI=</latexit><latexit sha1_base64="1sYI4SobTHS3biSGmXUtXlKilUM=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GOxF48V7Ae0oWy2k3bp7ibsboQS+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEAturOt+O6WNza3tnfJuZW//4PCoenzSMVGiGbZZJCLdC6hBwRW2LbcCe7FGKgOB3WDazP3uE2rDI/VoZzH6ko4VDzmjNpeaw+vKsFpz6+4CZJ14BalBgdaw+jUYRSyRqCwT1Ji+58bWT6m2nAmcVwaJwZiyKR1jP6OKSjR+urh1Ti4yZUTCSGelLFmovydSKo2ZySDrlNROzKqXi/95/cSGt37KVZxYVGy5KEwEsRHJHycjrpFZMcsIZZpntxI2oZoym8WTh+CtvrxOOld1z617D9e1xl0RRxnO4BwuwYMbaMA9tKANDCbwDK/w5kjnxXl3PpatJaeYOYU/cD5/APRVjYI=</latexit><latexit sha1_base64="1sYI4SobTHS3biSGmXUtXlKilUM=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GOxF48V7Ae0oWy2k3bp7ibsboQS+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEAturOt+O6WNza3tnfJuZW//4PCoenzSMVGiGbZZJCLdC6hBwRW2LbcCe7FGKgOB3WDazP3uE2rDI/VoZzH6ko4VDzmjNpeaw+vKsFpz6+4CZJ14BalBgdaw+jUYRSyRqCwT1Ji+58bWT6m2nAmcVwaJwZiyKR1jP6OKSjR+urh1Ti4yZUTCSGelLFmovydSKo2ZySDrlNROzKqXi/95/cSGt37KVZxYVGy5KEwEsRHJHycjrpFZMcsIZZpntxI2oZoym8WTh+CtvrxOOld1z617D9e1xl0RRxnO4BwuwYMbaMA9tKANDCbwDK/w5kjnxXl3PpatJaeYOYU/cD5/APRVjYI=</latexit><latexit sha1_base64="1sYI4SobTHS3biSGmXUtXlKilUM=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GOxF48V7Ae0oWy2k3bp7ibsboQS+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEAturOt+O6WNza3tnfJuZW//4PCoenzSMVGiGbZZJCLdC6hBwRW2LbcCe7FGKgOB3WDazP3uE2rDI/VoZzH6ko4VDzmjNpeaw+vKsFpz6+4CZJ14BalBgdaw+jUYRSyRqCwT1Ji+58bWT6m2nAmcVwaJwZiyKR1jP6OKSjR+urh1Ti4yZUTCSGelLFmovydSKo2ZySDrlNROzKqXi/95/cSGt37KVZxYVGy5KEwEsRHJHycjrpFZMcsIZZpntxI2oZoym8WTh+CtvrxOOld1z617D9e1xl0RRxnO4BwuwYMbaMA9tKANDCbwDK/w5kjnxXl3PpatJaeYOYU/cD5/APRVjYI=</latexit>
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Figure 6.9: An illustration of how the difference between contour integrals in opposite
directions for arbitrary amplitude cycles can be broken down into the sum of similar
differences on smaller cycles. This result is due to the cancellation of the integrals along
the interior sides of the smaller cycles and is valid upon division of the contour C into
an arbitrary number of smaller cycles {Ci}.

a Majorana braiding cycle. Central to this extension is the fact that the total CGF for

an arbitrary small amplitude cycle can be written as a sum of geometric and dynamical

contributions: GQξ(λξ) = Ggeom
Qξ

(λξ) + Gdyn
Qξ

(λξ). Here, the dynamical component

contains both the static contributions and the part of the driven contributions that

is not geometric in nature. Our numerical simulations show the dynamical part of the

GCF obeys the GC symmetry for all λ and hence any correction term in the FT arises

solely from geometric contributions. Using this fact, an equivalent indicator of FT

corrections can be defined as

Ageom(λξ) = |χgeom
Qξ

(λξ)− χgeom
Qξ

(−λξ)|, (6.43)

where χgeom
Qξ

(λξ) = exp
(
Ggeom
Qξ

(λξ)
)
. This quantity, in contrast to A(λξ), can be

calculated for arbitrary amplitude driving cycles.
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6.4. Impact of geometric contributions upon fluctuation theorems

To see the validity of this extension, it is useful to notice that the generating

function is dependent upon the direction in which we traverse the contour in parameter

space induced by the driving. We denote the clockwise and counter-clockwise CGFs

as G�Qξ(λξ) and G	Qξ(λξ) respectively. The difference between these two functions,

DQξ(λξ) = G�Qξ(λξ)−G
	
Qξ

(λξ), will clearly change sign under time reversal. This allows

the calculation of this quantity for a large amplitude cycle by breaking down the area

enclosed by the contour in parameter space into smaller segments, within which the

weak amplitude approximation is valid. This reasoning is sketched in Fig. 6.9. We can

write each of the directional generating functions for each small cycle as closed contour

integrals in the parameter space as G�Qξ(λξ) =
ı
C
ds dt

ds
GQξ(λξ, θ, φ). The subtraction of

this integral along contours with opposing orientation results in the cancellation of the

interior contributions, leaving only the desired line integral around the boundary of the

larger cycle:

DQξ(λξ) =

ˆ T
0

dt
(
G	Qξ(λξ, t)−G

�
Qξ

(λξ, t)
)

=


C

ds
dt

ds
GQξ(λξ, θ, φ)−

‰
C

ds
dt

ds
GQξ(λξ, θ, φ)

=
∑
i

[
Ci

dsi
dt

dsi
GQξ(λξ, θ, φ)−

‰
Ci

dsi
dt

dsi
GQξ(λξ, θ, φ)

]
.

(6.44)

In this way, we can obtain the quantity DQξ(λξ) for arbitrary amplitude cycles by

summing the contributions from cycles in which the small amplitude approximation is

valid. Taking the limit of infinitesimally small interior cycles, this technique can be

used to determine DQξ(λξ) for contours of arbitrary shape and size via the integration

over the area enclosed by the contour. The quantity DQξ(λξ) isolates the contribution

to the CGF that is sensitive to pumping direction and hence, for a small amplitude,
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6.4. Impact of geometric contributions upon fluctuation theorems

Out[ ]=

Figure 6.10: Absolute value (a) and argument (b) of the geometric contribution to the
heat transport characteristic function χgeom(λ) for the case of a Majorana braiding
protocol. Results are plotted for several values of the external lead temperature.
Asymmetry of this function in λ indicates an apparent violation of the Gallavotti-Cohen
type fluctuation theorem.

two parameter pump, this quantity corresponds exactly to 2Ggeom
Qξ

(λξ). This therefore

enables the calculation of the FT correction function Ageom(λξ) for arbitrary amplitude

driving cycles.

We plot the absolute value and argument of the geometric contribution to the CF,

χgeom
Qξ

(λξ), for a Majorana braiding process in Figs. 6.10(a) and (b) respectively. From

this one can deduce that, although the real part fulfills the GC symmetry, this symmetry

is not present in the imaginary component of the CF, which is found to be antisymmetric

around λξ = 0. Consequently, the correction function, in this example, can be written

as

Ageom(λξ) = 2
∣∣∣χgeom

Qξ
(λ) sin

(
arg(χgeom

Qξ
(λξ))

)∣∣∣. (6.45)

In the case of a Majorana braiding, this non-zero correction to the GCFT stems solely

from the cyclic variation of the system’s internal parameters in the form of a non-trivial

rotation of the degenerate ground-space. The lack of requirement for modulation of the
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6.5. Discussion

properties of the external leads and the energy level of the internal system, along with

the fact that the ground state facilitating the transport is degenerate, makes this system

distinct from those appearing in previous studies of topologically trivial systems that

highlight the existence of the same correction term [58, 188]. In the Y-junction setup

the relevant driving parameters, which appear in geometric transport properties, are

not the physical parameters (the magnetic flux passing through the Cooper pair boxes)

that would be driven if the process was carried out experimentally. In the case of

the braiding operation, this allows for the possibility that the contour appearing in

the geometric contribution to the FCS, and consequently in the FT correction term, is

immune to fluctuations in the value of the driving parameters in addition to the driving

frequency for T � ω.

We can also briefly comment on the temperature dependence of the correction term

by noting that two competing factors must be taken into account. Although the pumped

heat increases as a function of T , illustrated by the increasing gradient of arg
(
χgeom
Qξ

(λξ)
)

in Fig. 6.10(b), we also know that the second cumulant of the pumped heat,M(2)
Qξ

varies

as T 5. This increased variance, indicated by the rate of decay of |χgeom
Qξ

(λξ)|2 plotted

in Fig. 6.10(a), leads to the overlap of the probability distributions P (Q) and P (−Q)

and hence a reduction in the correction to the GCFT.

6.5 Discussion

A system driven in an periodic cycle shows corrections to thermodynamic fluctuation

theorems which depend on geometric properties of the cycle, as opposed to its dynamical

features. Here we have studied the statistics of heat transfer for slowly driven cycles

associated with the topologically protected evolution of a quantum system, specifically,
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an exchange of Majorana excitations present in 1D superconducting nanowires. We

have first obtained general expressions for the statistics of heat transfer from scattering

matrices, which extend known results for the charge transport full counting statistics.

This approach was then utilized to highlight features unique to the presence of Majorana

zero modes in the heat and charge current noise and additionally analyse the nature of

the Gallavotti-Cohen type exchange fluctuation theorem for this driven system.

We have successfully demonstrated that our initial approach, based upon the

approximation of weak amplitude driving, can be extended to explore the geometric

transport features of arbitrary amplitude cycles and showed that the heat transfer

associated with Majorana braiding induces a correction to a Gallavotti-Cohen type

fluctuation theorem. As opposed to analogous corrections in non-topological systems,

which require cyclical variation of the external lead properties, coupling strengths to

the leads or energy level of the internal system [58, 188], our contribution stems solely

from a cycle in the system’s parameter space, at constant temperature gradient, and is

a result of the coherent dynamics of the driven degenerate ground state of the internal

system. Moreover, in the limit of slow driving, this correction term is purely geometric

in nature and hence inherits the topological protection of the braiding operation against

small, slow fluctuations of the driving.

Since it relies upon the non-local nature of the fermionic mode defined by the

MZMs, the analysis of the heat transport could potentially provide an invaluable

alternative to charge transport signatures of topological excitations, that are difficult

to discriminate from other features of the system such as localized Andreev bound

states [37, 38]. The quantized nature of the pumped heat further provides a signature

of the execution of a non-trivial manipulation of the zero modes themselves. Finally,
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the identification of corrections to transport fluctuation theorems, in terms of quantum

coherent contributions to scattering processes, allows for further investigation to

incorporate such contributions in properly modified fluctuation theorems.
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Chapter 7

Majorana Y-junction as a Heat

Engine

As demonstrated in Chap. 6, the manipulation of Majorana zero-modes within a

superconducting nanowire Y-junction results in the pumping of heat between coupled

fermionic reservoirs. This setup therefore resembles the behaviour of a thermal machine

operating via a genuinely quantum cycle by which, depending on the initial parameters,

the manipulation of a working substance can be used to transform heat into useful work

or use work to pump heat from cold to hot reservoirs resulting in refrigeration [63–66].

Since the topologically protected nature of the Majorana braiding protocol results in a

highly controlled contribution to the driven heat current [57], it is interesting to explore

the thermodynamic properties of this process and assess the Y-junction’s performance

as a geometric thermal machine. The content of this chapter is based upon preliminary,

as yet unpublished, results.
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7.1. Model of the Y-junction as a thermal machine

Figure 7.1: Schematic of a Majorana braiding driven thermal machine. The
superconducting Y-junction introduced in Sec. 6.2 is coupled to hot and cold fermionic
reservoirs with a temperature bias of ∆T . The execution of the braiding cycle, in
addition to the temperature gradient, stimulates the flow of heat Qtr between the
reservoirs. The work done W by the driving also results in an additional flow of heat
into the system.

7.1 Model of the Y-junction as a thermal machine

We are interested in determining the thermodynamic performance of the driven

Majorana Y-junction as a working substance in a quantum thermal machine. As such,

we consider the scenario sketched in Fig. 7.1, in which the Y-junction is coupled to two

external metal leads now held at different temperatures TL = T−∆T and TR = T+∆T .

Apart from the coupling to the leads, the Y-junction is considered closed so that energy

is only exchanged with the source of driving and dissipated into the leads. We will
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7.1. Model of the Y-junction as a thermal machine

again be concerned with the slow driving regime introduced in the previous chapter.

Additionally, we are interested in the case for which the temperature gradient ∆T is

small enough so that the heat that flows as a result of this bias is comparable to the

heat flow induced by the Majorana braiding protocol. In this regime, under the right

conditions, it will be possible to realise the case for which a net heat current flows from

the cold to the hot reservoirs and hence refrigeration occurs.

7.1.1 Heat, work and entropy production

In addition to the heat transport induced between external reservoirs by both the

temperature gradient and adiabatic modulation of the internal system, the driving is

itself a source of heating that results in dissipation in the leads [63,130,206]. Together

these contributions make up the total heat flux Qα entering each lead α after a single

driving period

Qα = Eα − µαNα, (7.1)

with Qα and Nα the energy and particle fluxes entering the lead α respectively. In order

to focus solely on energy currents, throughout the following we will set µα = 0 ∀ α. In

the case of a setup involving just two external leads, the component of the heat arising

due to transport Qtr,α will necessarily satisfy the condition

Qtr,L = −Qtr,R ≡ Qtr. (7.2)
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7.1. Model of the Y-junction as a thermal machine

The additional work performed by the parameter driving can therefore be isolated as

the additional heat generated by the driving

W = QL +QR. (7.3)

It is also interesting to consider the entropy current induced by the driving of such

a thermal machine. This is defined as the sum of the entropy production in each of the

leads throughout the process:

S =
QL

TL
+
QR

TR
. (7.4)

Expanding to first order in the temperature bias ∆T this can be expressed as the sum

of two distinct contributions [206]:

ST ≈ QL +QR +
(QR −QL)∆T

T
= W +

Qtr∆T

T
. (7.5)

Here the first term corresponds to the work done by the driving forces, whereas the

second term describes the work required to drive the Qtr against the thermal bias ∆T .

7.1.2 Efficiencies

Depending upon the direction of heat transport between the hot and cold reservoirs,

the driven Majorana Y-junction has the potential to operate as either a heat engine or

a refrigerator. In the case that heat is transported from the hot to cold reservoir, the

resultant change in free energy can be used to perform useful work upon the source of
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7.1. Model of the Y-junction as a thermal machine

the driving. The efficiency of such a heat engine can be defined as

ηhe =
−W
Qtr

, (7.6)

the value of which is bounded by the Carnot efficiency ηhe
C = ∆T/T .

Refrigeration occurs in the case that the work done by the external driving force

is used to pump heat from the cold to the hot reservoir. The corresponding efficiency

quantifier, often referred to as the coefficient of performance (COP), is given by

ηfr =
−Qtr

W
, (7.7)

where positive Qtr is defined so as to describe heat flowing in the direction of the thermal

gradient. This quantity is bounded by the reciprocal of the Carnot efficiency for the

heat engine: ηfr
C = T/∆T .

Additionally, the driven Y-junction can be used as a heat pump, even in the absence

of a temperature gradient between the leads, as discussed in Chap. 6. In this case the

heat can be pumped in either direction and the only source of dissipation arises from

the modulation of the parameters {Xj}. As such, the efficiency of this process is defined

by the unbounded quantity

ηhp =
|Qtr|
W

. (7.8)

As demonstrated in Chap. 6, in the slow driving limit the only contribution to the heat

flux entering each lead is that of the driven contribution Qtr and hence the efficiency

of such a pump will continue to increase as the driving frequency ω → 0.
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7.2. Determining the heat current using the scattering matrix formalism

7.2 Determining the heat current using the scatter-

ing matrix formalism

In order to include the effect of thermal dissipation, and hence analyse the efficiency

of the Y-junction as a thermal machine, it is necessary to include contributions of

O(ω2) and hence make use of the first order expansion of the Floquet scattering matrix

introduced in Eq. 3.34. In the following derivation we mostly follow the method outlined

in [207]. The heat current flowing in the lead α is defined as

IQα = 〈ÎQ,inα (t)− ÎQ,out
α (t)〉, (7.9)

using the ingoing (outgoing) heat current operators ÎQ,inα (ÎQ,out
α ) defined in Eq. 3.7.

The heat current operators can equally be reformulated as

〈Î in
α (t)〉 =

ˆ ∞
−∞

dεεφin
α,α(t, ε),

〈Îout
α (t)〉 =

ˆ ∞
−∞

dεεφout
α,α(t, ε),

(7.10)

with φin/out(t, ε) given by the Wigner transformation of the relevant expectation values:

φin
αβ(t, ε) =

ˆ ∞
−∞

dε̃ εeiε̃t/h

〈
a†β

(
ε+

ε̃

2

)
aα

(
ε− ε̃

2

)〉

φout
αβ (t, ε) =

ˆ ∞
−∞

dε̃ εeiε̃t/h

〈
b†β

(
ε+

ε̃

2

)
bα

(
ε− ε̃

2

)〉
.

(7.11)

Using the fact that the outgoing particle operators can be expressed in terms of the

two-energy dependent scattering matrix as b†(ε1) =
´
dε2S(ε1, ε2)a†(ε2) along with the
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7.2. Determining the heat current using the scattering matrix formalism

expectation values of uncorrelated ingoing channels given in Eq. 3.8, we have that

〈b†β(ε2)bα(ε1)〉 =
∑
γ

¨
dε3dε4Sα,γ(ε1, ε3)δ(ε3 − ε4)fγ(ε4)S†γ,δ(ε4, ε2). (7.12)

In order to determine φout
α (t, ε) in terms of the scattering matrix, we note that taking

the Wigner transform of a convolution of the form

G(ε1, ε2) =

ˆ
dε3C(ε1, ε3)D(ε3, ε2), (7.13)

results in a Moyal product of Wigner transforms

G(ε, t) = C(ε, t) ∗D(ε, t), (7.14)

where C(ε, t) ∗ D(ε, t) = C(ε, t) exp
(
i
2

(←−
∂ ε

−→
∂ t −

←−
∂ t

−→
∂ ε

))
D(ε, t). Consequently, the

Wigner transform of the expectation value in Eq. 7.12 can be expressed as

φout
αβ (t, ε) =

∑
γ

[
Sαγ(ε, t) ∗ fγ(ε)

]
∗ S†γβ(ε, t), (7.15)

with the Wigner transform of the full scattering matrix given by

S(ε, t) =

ˆ
dε̃e−iε̃tS

(
ε+

ε̃

2
, ε− ε̃

2

)
. (7.16)

As in the previous chapters of this thesis, we are concerned with scattering events

via some internal system modelled by the periodic Hamiltonian H0(t), with time

dependence induced through the modulation of some set of internal parameters {Xj(t)}.

As outlined in Sec. 3.2.1, in the event that the parameter variation is slow enough,
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7.2. Determining the heat current using the scattering matrix formalism

the Wigner transformed scattering matrix S(ε, t) can be expanded about the frozen

scattering matrix S(ε, t) in powers of the velocities Ẋj, up to terms of order ω2 [207,208]:

S(ε, t) ≈ S(ε, t) +
∑
j

ẊjAj(ε, t) +
∑
ij

ẊiẊjBij(ε, t) +
∑
j

ẌjCj(ε, t). (7.17)

As first introduced in Eq. 6.30, the frozen scattering matrix can be expressed in the

form

S(ε, t) = 1 + 2πiW †GR(ε, t)W, (7.18)

with the frozen retarded Green’s function of the internal system given by GR(ε, t) =

(H0(t)− ε− iπWW †). It can be demonstrated, by term by term comparison with the

expansion of the full retarded Green’s function GR, that the matrices Aj, encoding the

first order corrections to the frozen scattering matrix, can be calculated as [208]

Aj(ε, t) = πW †

(
∂GR

∂ε

∂H0

∂Xj

GR −GR∂H0

∂Xj

∂GR

∂ε

)
W. (7.19)

The matrices Bij(ε, t) and Cj(ε, t) will make no contribution to the forthcoming

expansion of the outgoing operator φout after accounting for the condition of unitarity

imposed upon the full scattering matrix S(ε, t), as outlined in Appendix C [207].

Using the adiabatic approximation of the scattering matrix (Eq. 7.17) to evaluate

the Moyal product from Eq. 7.15, gives rise to a corresponding expansion of φout in

powers of the parameter driving velocity:

φout ≈ φout(0) + φout(1) + φout(2). (7.20)

In the following we examine the nature of each term in this expansion individually.
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Zeroth order

The zeroth order contribution comes from the frozen scattering matrix only:

φ
out(0)
αβ =

∑
γ

SαγfγS
†
γβ. (7.21)

The contribution to the heat current IQ arising from this zeroth order term corresponds

to the heat that flows due to any temperature or chemical potential bias between the

external leads. Considering terms up to second order in the temperature bias ∆T this

leads to a contribution to the transported heat Qtr of the form

Qgrad
tr =

ˆ T
0

dt

ˆ ∞
−∞

dεε2
∆T

T

∂f(ε)

∂ε
|SLR(ε, t)|2. (7.22)

Unlike the geometric nature of the contribution to the transported heat arising directly

from the driving, this contribution corresponds to the direct heat flow from the hot to

the cold reservoir and acts against the efficiency of the machine as a refrigerator. Since

this heat current is time-independent, it becomes particularly harmful to the efficiency

in the limit of slow driving.

First order

The first order contribution to the outgoing operator is expanded as [207]

φ
out(1)
αβ =

[
AρS† + SρA† +

i

2

(∂S
∂ε
ρ
∂S†

∂t
− ∂S

∂t
ρ
∂S†

∂ε

)
+
i

2

(
S
∂ρ

∂ε

∂S†

∂t
− ∂S

∂t

∂ρ

∂ε
S†
)]

αβ

,

(7.23)
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with ραβ(ε) = fα(ε)δαβ a diagonal matrix whose elements correspond to the distribution

function of each scattering channel and A(ε, t) =
∑

j ẊjAj(ε, t). In the absence of a

temperature difference between the leads, so that fα(ε) = f(ε) ∀ α, this contribution

reduces to the heat current pumped between the left and right leads as investigated in

Chap. 6:

Qpump
tr =

ˆ T
0

dt

ˆ ∞
−∞

dεε
∂f(ε)

∂ε

∑
β

Im

[
SLβ

∂S∗Lβ
∂t

]

=

ˆ ∞
−∞

dεε
∂f(ε)

∂ε

˛ ∑
j,β

dXj Im

[
SLβ

∂S∗Lβ
∂Xj

]
.

(7.24)

In this form, this contribution to the transported heat is manifestly geometric in nature

and hence only depends upon the path traversed in parameter space throughout the

driving cycle.

The remaining component of the heat flux, arising from the first order term of the

outgoing operator φout(1), contributes to the work done by the driving forces through

the cycle. This contribution to the work is also geometric and up to second order in

the small parameters Xj and ∆T can be expressed as

W geom =
∑
j

ˆ ∞
−∞

dε

˛
dXjΛj

∆T

T
,

with Λj =
∂f(ε)

∂ε

(
2ε2 Re[AjσzS

†] + ε2 Im
[∂S
∂ε
σz
∂S†

∂Xj

]
+ ε Im

[
Sσz

∂S†

∂Xj

])
+ ε2

∂2f(ε)

∂ε2
Im
[
Sσz

∂S†

∂Xj

]
.

(7.25)

Here σz is the Pauli z-matrix acting in the basis of the left and right leads. This

geometric contribution corresponds exactly to work required to overcome the thermal

bias and pump the heat Qpump
tr from the cold to the hot reservoir.
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Second order

Since we are interested in studying systems for which the temperature gradient between

the leads is small, we only include the terms that are second order in the parameter

velocity that arise in the absence of a temperature difference between the external leads.

Using Eq. C.6 in Appendix C, this contribution then simplifies to [207]

φ
out(2)
αβ =

1

2

∂2f

∂ε2

[
∂S

∂t

∂S†

∂t

]
αβ

+
i

2

∂f

∂ε

[
A
∂S†

∂t
+ S

∂A†

∂t
+
i

2

(
∂2S

∂t2
∂S†

∂ε
+
∂S

∂ε

∂2S†

∂t2
− ∂2S

∂ε∂t

∂S†

∂t
− ∂S

∂t

∂2S†

∂ε∂t

)]
αβ

.

(7.26)

This contribution results in a strictly positive heat flux flowing from the driven scatterer

into each of the external leads and hence constitutes a dissipative component of the total

work done by the driving forces W . This term is not geometric in nature and increases

with the driving frequency ω, as will be demonstrated numerically in the results that

follow.

The expressions derived in this section allow for the determination of the heat

current IQα (t) flowing in the lead α, up to second order in the velocity of the driven

Hamiltonian parameters Xj(t). These will now be utilized to analyse the efficiency of

driven Majorana Y-junction as a quantum thermal machine.

7.3 Results

We start by considering the scenario for which the braiding process pumps heat in the

absence of a temperature gradient between the external reservoirs. In Fig. 7.2(a) we

plot both the purely geometric pumped heat Qtr, alongside the work performed by the
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Figure 7.2: (a) Pumped heat Qtr and work done by the driving W as a function of lead
temperature for a Majorana braiding exchange in the absence of a temperature gradient,
∆T = 0. The inset gives a closer view of the behaviour of W at low temperatures. We
used a coupling strength to the external leads of ΓL = ΓR = 0.01T and a driving
frequency of ω = 0.02T . (b) Using the same system parameters, we plot the behaviour
of the coefficient of performance ηhp versus T . (c) The coefficient of performance is
plotted as a function of driving frequency. The COP is unbounded in the slow driving
limit as the heat dissipated by the driving tends to zero and the geometric pumped
heat remains unchanged.

drivingW as a function of the lead temperature T . We see that, for all temperatures, Qtr

is positive, indicating that heat is pumped from the left to the right reservoirs, although

this directional flow would be flipped if the driving protocol was executed in reverse.

This pumped heat exhibits a maximum where T becomes comparable with the energy

scale associated with the coupling strength to the external leads. This is a consequence

of the energy window, within which scattering events can occur, exceeding the width

of the resonance in the energy dependence of the scattering matrix, which is set by the

coupling strength. Similarly, the dissipated heat W is positive at all temperatures and
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exhibits a maximum value at a much smaller temperature in comparison to that of the

pumped heat (see inset).

The values of pumped heat and work can subsequently be used to calculate the

coefficient of performance ηhp of this Majorana heat pump, the behaviour of which is

illustrated in Fig. 7.2(b). We see that the COP increases linearly with T in the low

temperature regime, within which the pumped heat is increasing and the heat dissipated

by the driving is falling. Beyond this regime, as the pumped heat drops below its

optimum value, the rate of COP increase slows down. Fig. 7.2(c) demonstrates how

the COP varies as a function of driving frequency. As expected, we see that the COP

diverges in the adiabatic limit due to the constant nature of the geometric pumped heat

Qtr and the suppression of the heat dissipated by the driving, which varies linearly with

the driving frequency. The detrimental effect of this dissipation leads the COP to fall

monotonically as the frequency is increased.

Next we assess the performance of the braiding operation as a refrigerator by

applying a temperature gradient between the external leads. In Fig. 7.3(a) we again

illustrate the behaviour of Qtr and W , this time as a function of ∆T . The addition of

the temperature bias means that the heat driven from the cold to the hot reservoir is

now in constant competition with the heat flowing in the opposite direction due to the

gradient Qgrad
tr . Eq. 7.22 indicates that this contribution varies linearly with ∆T and

hence results in the decreasing linear dependence of the total transported heat seen in

Fig. 7.3(a). The work W performed by the driving also consists of a combination of

two distinct contributions in the presence of a temperature bias. The addition of the

geometric contribution from Eq. 7.25, corresponding to the energy input required to

drive the pumped heat against the increasing temperature gradient, results in the weak
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7.3. Results

������

Figure 7.3: (a) Transported heat Qtr and work done by the driving W as a function
of the temperature gradient between the hot and cold leads for a Majorana braiding
exchange. We used a coupling strength to the external leads of ΓL = ΓR = 0.01T and
a driving frequency of ω = 0.02T . In this regime the braiding operation results in a
refrigeration effect, pumping heat from the cold to the hot bath. (b) Using the same
system parameters, we plot the behaviour of the coefficient of performance ηfr versus
∆T . We plot the COP normalized by the maximum Carnot value in addition to the raw
value. (c) The normalized coefficient of performance is plotted as a function of driving
frequency ω for ∆T/T = 0.0025. The COP becomes negative for lower frequencies,
where the static heat flow due to the temperature gradient dominates and the system
no longer operates as a refrigerator.

linear dependence upon the temperature gradient.

Measurement of the transported heat and work by use of quantum calorimetric

techniques [191–193], introduced at the end of Sec. 6.3.3, would again require extremely

high sensitivity given that the quantities of interest are small relative to the temperature

of the leads, as seen in Fig. 7.3(a). Ensuring that transport is restricted to the

degenerate ground-space of the Majorana Y-junction requires that T � ∆sc ∼ 0.2meV

[32, 57]. Consequently, the values of Qtr and W plotted in Fig. 7.3 would be beyond
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7.3. Results

the current best estimates of achievable sensitivity, corresponding to the detection of

heat pulses of ∼ 100µeV [193].

Fig. 7.3(b) illustrates the performance of the Majorana Y-junction as a refrigerator.

The dotted line plots the COP ηfr and demonstrates that this decreases linearly with

the temperature bias. This feature is again a result of the increasing heat flow due to

the temperature difference, that acts to reduce the net heat pumped in the direction

desirable for refrigeration and hence also decreases the overall efficiency. Conversely,

taking the ratio of the raw COP and its maximum Carnot efficiency, ηfr/ηfr
C , results in

a bell shaped curve with an optimal value of ∆T . This can be explained by the fact

that the Carnot COP for refrigeration is given by ηtr
C = T/∆T . As a consequence,

for small ∆T we would expect the ratio to vary linearly with ∆T , before the increase

in temperature gradient reduces the desired heat flux and forces the efficiency back

towards zero.

Fig. 7.3(c) also indicates the existence of a optimal driving frequency that maximises

the normalized COP. In the slow driving limit the static heat flow Qgrad
tr , which is

directly proportional to the driving period, dominates and eventually eliminates the

refrigeration effect entirely, indicated by the frequency at which the COP reaches zero.

Driving at higher frequencies favours the pumped component of the heat transport

Qpump
tr and thus results in an increasing COP. However, this increase is halted by the

increasing dissipative component of the work exerted on the system by the external

driving forces.
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7.4 Discussion

We have utilized the heat pumping effect induced by the slow manipulation of Majorana

zero modes within a Y-junction of superconducting nanowires in order to analyse the

system’s performance as a thermal machine. Such a machine is interesting in the sense

that its operation relies only upon the manipulation of the internal system’s degenerate

ground state, without modulating its energy or the properties of the external leads.

By analysing the refrigeration performance of a Majorana exchange, we determined

that it is the geometric contributions to both the heat transport Qtr and the work

done by the external driving W that result in useful heat-work conversion, boosting the

coefficient of performance. This observation is in agreement with a recent study by B.

Bhandari et al. [63], in which they show that a machine operating purely geometrically

would achieve the Carnot efficiency ηC [63,69]. Additionally, for a machine based upon a

Majorana exchange operating in this geometric limit, the efficiency would only depend

upon the shape of the contour in parameter space associated with the driving and

hence would share the topological protection against fluctuations to both the internal

system and to the driving mechanism itself, as outlined in Sec. 6.2. This potential for a

robust driven heat current represents a clear advantage of utilizing such a topologically

protected operation as a thermal machine, however this should be offset by the low

efficiencies, relative to the Carnot limit, found when using the parameters studied here.

However, the non-geometric contributions to both Qtr and W act as a source of

entropy production and are hence detrimental to the efficiency of the pumping process.

In terms of heat transport this non-geometric contribution is the steady-state heat flow

from the hot to the cold bath that varies linearly with both the temperature gradient and

driving period. With regards to the work, non-geometric terms arise in the form of heat
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dissipated into the leads due to frictional effects of the driving, which are proportional

to the driving frequency. These terms result in the emergence of optimal values of

driving frequency and temperature gradient that maximize coefficient of performance.

This analysis could be further extended by considering the performance of the driven

Y-junction as a heat engine, for which the heat flow is used to perform useful work. One

should also, in addition to efficiency, consider the parameters for which the machine

operates at maximum power, defined by the useful work performed for a heat engine

and the heat removed from the cold bath in the refrigeration regime. Besides the

lead temperature and driving frequency, it would also be of interest to analyse how

driving along alternative contours in the parameter space of the Y-junction influences

the performance.

Investigation of this system could be further extended by making use of the full

counting statistics derived in Chap. 6 to analyse the nature of thermodynamic

uncertainty relations in the context of this model. Such relations provide limits upon

the precision of non-equilibrium currents in terms of the entropy production of the

system [209]. They can further be used to provide tighter bounds upon the efficiency

of thermal machines and their extension to periodically driven systems, for which

geometric contributions to the transport become significant, is a subject of recent

interest [210–212].
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Chapter 8

Conclusions

In this thesis we have explored the impact of periodic driving upon the transport

properties of mesoscopic systems hosting topologically protected excitations, with a

particular focus upon Majorana zero modes. Firstly, in Chap. 5, we considered a

system for which periodic driving results in the fabrication of additional topological

phases compared to the system’s static counterpart. It is known that such phases can be

identified by the value of topological invariants obtained from a stroboscopic scattering

matrix for pulsed coupling to the external leads. Although the experimentally accessible

DC conductance is known to exhibit quantized peaks, corresponding to the existence of

Majorana modes, when summed over Floquet sidebands, the exact relationship between

the stroboscopic scattering matrix and the transport properties was yet to be fully

understood.

We have attempted to shed further light on this relationship by comparing the DC

conductance summed over Floquet sidebands with the period-averaged stroboscopic

conductance for two distinct driving protocols of a 1D superconducting nanowire. We

demonstrated that, in the limit of weak coupling to the external leads, the discrepancy
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between the two quantities is captured by the difference in the widths of the resonant

conductance peaks. In particular, it is the dependence of the resonance widths upon the

offset time between the external driving and the pulsed coupling period that controls

the discrepancy between the conductance quantities, with the difference larger when

the weight of the Majorana mode upon the endmost sites depends strongly upon this

offset time. This study provides a platform from which to explore signatures of Floquet

topological phases in transport properties, building upon the relationships between

scattering matrix invariants and topological phase classification established for non-

driven systems.

In Chap. 6, we instead focus upon the effect of driving in terms of the slow

manipulation of topologically protected zero modes, in the guise of a Majorana

braiding protocol. We showed that the periodic nature of the system manipulation

results in a geometric contribution to the full counting statistics of the transport,

in addition to the dynamical part. In contrast to previous studies, this additional

contribution was found to be present after only the manipulation of the degenerate

ground state, as opposed to the properties of the external leads or the energy levels

of the internal system. As a result, the parameters relevant for calculating these

geometric contributions, defining the rotation of the zero energy modes in the space of

the Majoranas physically coupled to the leads, do not correspond to the parameters of

the system that would be driven in practice to initiate the braiding. The contour in this

parameter space traced out throughout the protocol, which completely determines any

geometric transport properties, is therefore independent of fluctuations in the driving

mechanism. Furthermore, the degeneracy of the ground state, via which scattering

events take place in the low temperature limit, is also protected by the topology of the

168



system.

We saw that the geometric contribution to the FCS leads to the braiding driving a

finite heat current when connected to external free fermion reservoirs and that, since

purely geometric in nature, this pumped heat shares the topological protection of

the braiding operation itself. This robust heat current could potentially provide a

signature of Majorana exchange for the next generation of experiments concerning the

manipulation of topological superconducting systems.

Furthermore, we have explored the influence of the MZMs upon the temperature

and frequency dependence of the heat and charge current noise, in addition to the

consequences of the geometric contribution on the probability generating function in

regards to exchange fluctuation theorems. We see that the presence of such a term

results in a deviation from the standard form of the steady-state fluctuation theorems

for heat exchange and arises due to the additional consideration of the energy exchange

between the system and the external driving mechanism. In contrast to other works in

which this geometric correction term is discussed, here we demonstrate its emergence

after only driving a rotation of the degenerate ground-space of the internal system.

Furthermore, in the case of the Majorana exchange, the geometric nature of this

correction term means that it too shares the robust protection associated with the

operation.

Finally, we have delved further into the thermodynamic properties of the Majorana

braiding by examining its performance as a quantum thermal machine, for which the

work performed by the external driving can be utilized to pump heat against a thermal

gradient. The topologically protected nature of this pumped heat makes the driven

Y-junction a particularly interesting candidate to study in this regard.
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We see that non-geometric contributions to the heat transport and work exerted by

the driving result in a competition between the desired heat pumping effect and the

heat current flowing in response to the temperature bias across the device, as well as the

frictional losses arising from the operation of the driving mechanism itself. These factors

result in the suppression of the coefficient of performance, characterizing the Majorana

exchange’s capabilities as a refrigeration device, and hence allow for the identification

of optimal temperature biases and driving frequencies that maximize efficiency.
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Appendix A

Relationship between the Floquet

and stroboscopic scattering

matrices

Here we derive Eq. 5.24 of the main text, which gives the relationship between the

stroboscopically defined scattering matrix which maintains a constant coupling to the

external leads S̃t(E) and the full Floquet scattering matrix S(E,E ′). We start by

considering the form taken by the outgoing annihilation operators in the case that only

scattering events separated by integer multiples of the driving period T , starting at

some time t, are taken into account:

bα(t+ nT ) =
∑
β,m

ˆ
dt′S(t+ nT, t′)αβaβ(t′)δ(t′ − (t+mT ))

=
∑
β,m

Sα,β(t+ nT, t+mT )aβ(t+mT ).

(A.1)
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Using the Fourier transform for this stroboscopic scenario, we have that

bα(E) =
∑
n

eiE(t+nT )bα(t+ nT )

=
∑
β,n,m

Sαβ(t+ nT, t+mT )

ˆ
dE ′aβ(E ′)eiE(t+nT )−iE′(t+mT ).

(A.2)

This operator is equivalent to that defined in terms of our stroboscopic scattering matrix

with constant coupling, so that

bα(E) = S̃t,αβ(E)aβ(E). (A.3)

From this, we can determine a relationship between the two scattering matrices:

∑
nm

Sαβ(t+ nT, t+mT )eiE(t+nT )−iE′(t+mT ) = S̃t,αβ(E)δ(E − E ′),

=⇒ Sαβ(t+ nT, t+mT ) =

ˆ
dEe−iE(n−m)T S̃t,αβ(E).

(A.4)

The two-time Floquet scattering matrix can also be expressed in terms of scattering

between energies E and En = E + nω as

S(t, t′) =
∑
n

ˆ
dEe−iE(t−t′)+inωt′S(E,En). (A.5)
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In the case that the two times are separated by an integer multiple of the driving

frequency, we have that

S(t+ nT, t+mT ) =
∑
l

ˆ
dEe−iE(nT−mT )+ilωtS(E,El)

=
∑
l,p

ˆ
dEe−i(E+pω)(nT−mT )+ilωtS(Ep, Ep+l)

=

ˆ
dEe−iE(n−m)T

{∑
lp

eilωtS(Ep, Ep+l)
}
.

(A.6)

By comparison of this expression with that in Eq. A.4, we can determine the

relationship between the scattering matrices introduced in Eq. 5.24 of the main text:

S̃t(E) =
∑
nm

einωtS(Em, Em+n). (A.7)
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Appendix B

Projective nature of the number

operator matrices

Here we will show how products of number operators, defined in Sec. 6.1.1, which act at

the same or different energies can be simplified in order to demonstrate their projective

nature. In order to do this we must first consider several relationships that can be

obtained from the unitarity of the scattering matrix. Treating the discretized particle

energy levels as ingoing and outgoing propagation channels, we can write the scattering

matrix in block form,

Ŝ =



. . . 0
Sαβω (εi) Sαβ(εi) Sαβ−ω(εi)

Sαβω (εi+1) Sαβ(εi+1) Sαβ−ω(εi+1)

Sαβω (εi+2) Sαβ(εi+2) Sαβ−ω(εi+2)

0
. . .


. (B.1)
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By writing the scattering matrix in this form we can immediately see that its unitarity

gives us the following useful relations:

|Sαβ(εi)|2 + |Sαβω (εi)|2 + |Sαβ−ω(εi)|2 = I, (B.2a)

Sαβ(εi)S
βγ
ω (εi+1)

†
+ Sαβ−ω(εi)S

βγ(εi+1)
†

= 0, (B.2b)

Sαβ−ω(εi)S
βγ
ω (εi+2)

†
= 0. (B.2c)

These relationships can be further simplified by considering the symmetric nature of

each of the blocks, so that Sαβ(εi)
†

= Sαβ(εi)
∗

and Sαβ±ω(εi)
†

= Sαβ±ω(εi)
∗
.

Now let us consider, for example, the square of the outgoing number operator matrix

at energy εi:

P 2
εi← = (P e

εi← + P h
εi←)2 = (P e

εi←)2 + (P h
εi←)2 + P e

εi←P
h
εi← + P h

εi←P
e
εi←.

First considering the top left non-zero element of the matrix for the squared electron

term, we have that

{(P e
εi←)2}ii =Sα1

ω (εi)
∗
S1β
ω (εi)S

β1
ω (εi)

∗
S1γ
ω (εi) + Sα1

ω (εi)
∗
S1β(εi)S

β1(εi)
∗
S1γ
ω (εi)

+Sα1
ω (εi)

∗
S1β
−ω(εi)S

β1
−ω(εi)

∗
S1γ
ω (εi)

=Sα1
ω (εi)

∗
(
S1β
ω (εi)S

β1
ω (εi)

∗
+ S1β(εi)S

β1(εi)
∗

+ S1β
−ω(εi)S

β1
−ω(εi)

∗)
S1γ
ω (εi)

=Sα1
ω (εi)

∗
S1γ
ω (εi) = {P e

εi←}ii,
(B.3)

where in the final step we have made use of the unitarity relation given in Eq. B.2a. The

same reasoning can be applied to the other components of the matrix and in the case

of the outgoing number operator for holes. Hence we can conclude that (P e
εi←)2 = P e

εi←
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and (P h
εi←)2 = P h

εi←. Next considering the cross-terms in the expansion we see that,

{P e
εi←P

h
εi←}ii =Sα1

ω (εi)
∗
S1β
ω (εi)S

β2
ω (εi)

∗
S2γ
ω (εi) + Sα1

ω (εi)
∗
S1β(εi)S

β2(εi)
∗
S2γ
ω (εi)

+Sα1
ω (εi)

∗
S1β
−ω(εi)S

β2
−ω(εi)

∗
S2γ
ω (εi)

=Sα1
ω (εi)

∗
(
S1β
ω (εi)S

β2
ω (εi)

∗
+ S1β(εi)S

β2(εi)
∗

+ S1β
−ω(εi)S

β2
−ω(εi)

∗)
S2γ
ω (εi)

=0,

(B.4)

where once again we have used Eq. B.2a. This results hold for all elements of the

matrices P e
εi←P

h
εi← and P h

εi←P
e
εi← and hence we have demonstrated the projective nature

of the outgoing number operator matrices at each energy: P 2
εi← = Pεi←.

Next we will show that, in addition to this result, the sum of the matrices Pεi← over

all energies is also itself a projector. In order to do this we will evaluate the product

(∑
i

P e
εi← + P h

εi←

)2

.

Due to the shape of the P matrices given in Eq. 6.11, we find that the only non-zero

contributions to this product take the form:

(
P e
εi← + P h

εi←

)(
P e
εj← + P h

εj←

)
where |i− j| ≤ 2. (B.5)

For the case in which i = j we have already shown that these matrices are projectors.

Next considering the case |i− j| = 1, we will first consider the elements of the matrix

P e
εi←P

e
εi±1←. In particular the top left non-zero element of this matrix will be of the

176



form

{P e
εi←P

e
εi+1←}i−1i =Sα1

ω (εi)
∗
S1β(εi)S

β1
ω (εi+1)

∗
S1γ
ω (εi+1) + Sα1

ω (εi)
∗
S1β
−ω(εi)S

β1(εi+1)
∗
S1γ
ω (εi+1)

=Sα1(εi)
∗
(
S1β(εi)S

β1
ω (εi+1)

∗
+ S1β

−ω(εi)S
β1(εi+1)

∗
)
S1γ
ω (εi+1)

=0.

{P e
εi←P

e
εi−1←}i−1i =Sα1

ω (εi)
∗
S1β
ω (εi)S

β1(εi−1)
∗
S1γ
ω (εi−1) + Sα1

ω (εi)
∗
S1β(εi)S

β1
−ω(εi−1)

∗
S1γ
ω (εi−1)

=Sα1
ω (εi)

∗
(
S1β
ω (εi)S

β1(εi−1)
∗

+ S1β(εi)S
β1
−ω(εi−1)

∗)
S1γ
ω (εi−1)

=0.

(B.6)

Here we have used the relation given in Eq. B.2b and this relationship can be shown

to hold true for every element of this matrix. In the case of holes, we also have that,

{P h
εi←P

h
εi+1←}i−1i =Sα1

ω (εi)
∗
S1β(εi)S

β1
ω (εi+1)

∗
S1γ
ω (εi+1) + Sα1

ω (εi)
∗
S1β
−ω(εi)S

β1(εi+1)
∗
S1γ
ω (εi+1)

=Sβ1(εi)
∗
S1γ
ω (εi)

(
S1β(εi)S

β1
ω (εi+1)

∗
+ S1β

−ω(εi)S
β1(εi+1)

∗
)
S1γ
ω (εi+1)

=0.

(B.7)

In the same way, it can be shown that the product terms between electrons and holes

are also zero, so that
(
P e
εi←+P h

εi←

)(
P e
εj←+P h

εj←

)
= 0 when |i− j| = 1. Finally for the

case of |i− j| = 2, we will again consider as an example the top left non-zero element

of the relevant matrix:

{P e
εi←P

e
εi+1←}i−1i+1 =Sα1

ω (εi)
∗
S1β
−ω(εi)S

β1
ω (εi+2)

∗
S1γ
ω (εi+2)

=0,

(B.8)

by Eq. B.2c. We have hence demonstrated the projective nature of the sum of the
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number operator matrices,

(∑
i

P e
εi← + P h

εi←

)2

=
∑
i

P e
εi←

2 + P h
εi←

2
=
∑
i

P e
εi← + P h

εi←. (B.9)
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Appendix C

Unitarity condition of the

scattering matrix

Here we will demonstrate how the unitarity of the full Floquet scattering matrix,

∑
n

ˆ
dεSmn(ε′, ε)S†nk(ε, ε

′′) = δ(ε′ − ε′′)δmk, (C.1)

results in different constraints upon the matrices appearing in the slow driving

expansion introduced in Eq. 7.17 from Chap. 7. Taking the Wigner transform of

this expansion results in the requirement that

∑
n

Smn(ε, t) ∗ S†nk(ε, t) = δmk. (C.2)

In the following we insert the expansion of the Wigner transformed scattering matrix

into this expression and collect terms of the same order in the driving frequency.
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Zeroth order

To zeroth order in the frequency we have the unitarity condition of the frozen scattering

matrix: ∑
n

SmnS
†
nk = δmk. (C.3)

First order

Up to first order in the frequency the unitary condition can be expressed as

∑
n

[
SmnS

†
nk + AmnS

†
nk + SmnA

†
nk +

i

2

(
∂Smn
∂ε

∂S†nk
∂t
− ∂Smn

∂t

∂S†nk
∂ε

)]
= δmk, (C.4)

with A(ε, t) =
∑

i ẊiAi(ε, t). Using the zeroth order condition this leads to the following

constraint:

∑
n

[
AmnS

†
nk + SmnA

†
nk

]
= −

∑
n

i

2

(
∂Smn
∂ε

∂S†nk
∂t
− ∂Smn

∂t

∂S†nk
∂ε

)
. (C.5)

Second order

Expanding up to second order in frequency and using the relationships given in Eq.

C.3 and C.5 gives

0 =
∑
n

[
AmnA

†
nk + Smn(B†nk + C†nk) + (Bmn + Cmn)S†nk

+
i

2

(
∂Amn
∂ε

∂S†nk
∂t
− ∂Amn

∂t

∂S†nk
∂ε

)
+
i

2

(
∂Smn
∂ε

∂A†nk
∂t
− ∂Smn

∂t

∂A†nk
∂ε

)

− 1

8

(
∂2Smn
∂ε2

∂2S†nk
∂t2

+
∂2Smn
∂t2

∂2S†nk
∂ε2

− 2
∂2Smn
∂ε∂t

∂2S†nk
∂t∂ε

)]
,

(C.6)
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with B(ε, t) =
∑

ij ẊiẊjBij(ε, t) and C(ε, t) =
∑

i ẌiCi(ε, t). This relationship is used

to show that the matrices B(ε, t) and C(ε, t) do not contribute to the expansion of the

outgoing operator φout in the limit of small temperature bias.
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