Pumice attrition in an air-jet

Jones, T.J. and Russell, J.K. and Lim, C.J. and Ellis, N. and Grace, J.R. (2017) Pumice attrition in an air-jet. Powder Technology, 308. pp. 298-305. ISSN 0032-5910

[thumbnail of Jones_etal_2017_GreenOA]
Text (Jones_etal_2017_GreenOA)
Jones_etal_2017_GreenOA.pdf - Accepted Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (835kB)

Abstract

We present the results from a series of jet-attrition experiments performed using a standard ASTM device (ASTM D5757-00) on naturally occurring ash-sized (b 2 mm) pumice, a product of explosive volcanic eruption compris- ing highly porous silicate glass. We investigate the effect of both feed grain size and attrition duration on the pro- duction of fines. We utilize a wet methodology for fines collection to ensure recovery of the total grain size distribution for each experimental run. The experiments convert a restricted size range of pumice particles to a bimodal population of parent and daughter particles. The bimodal distribution develops even after short (~ 15 min) attrition times. With increased attrition time, the volume of daughter particles increases and the mode migrates to finer grain sizes. Jet attrition efficiency depends heavily on the particle size of the feed; our data show little attrition for a feed of 500 μm vs. highly efficient attrition for a 250 μm feed. Our rates of attrition for pumice are extremely high compared to rates recovered from experiments on limestone pellets. Fines pro- duction data are well modeled by: mfines m0 bed ¼ 0:291 1−e−0:312t where m0bed is the initial mass of particles in the bed, t is in hours, and the two adjustable coefficients dictate the long time limiting behaviour (0.291) and the rate at which the limit is reached (−0.312). This functional form provides more realistic limits in time while preserving a zero intercept and defining a plateau for long residence times

Item Type:
Journal Article
Journal or Publication Title:
Powder Technology
Additional Information:
This is the author’s version of a work that was accepted for publication in Powder Technology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Powder Technology, 308, 298-305, 2017 DOI: 10.1016/j.powtec.2016.11.051
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/1500/1500
Subjects:
?? pumiceattritionmillingash productionfines production modelastm d5757-00general chemical engineeringchemical engineering(all) ??
ID Code:
176267
Deposited By:
Deposited On:
06 Oct 2022 13:30
Refereed?:
Yes
Published?:
Published
Last Modified:
11 Aug 2024 00:37