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Abstract

In this paper, an approach that makes use of knuckle creases and fin-

gernails for person identification is presented. It introduces a framework

for automatic person identification that includes localisation of the region

of interest (ROI) of many components within hand images, recognition and

segmentation of the detected components using bounding boxes, and similar-

ity matching between two different sets of segmented images. The following

hand components are considered: i) the metacarpophalangeal (MCP) joint,

commonly known as the base knuckle; ii) the proximal interphalangeal (PIP)

joint, commonly known as the major knuckle; iii) the distal interphalangeal

(DIP) joint, commonly known as the minor knuckle; iv) the interphalangeal

(IP) joint, commonly known as the thumb knuckle, and v) the fingernails.

Crucial elements of the proposed framework are the feature extraction and

similarity matching. This paper exploits different deep learning neural net-
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works (DLNNs), which are essential in extracting discriminative high-level

abstract features. We further use various similarity measures for the match-

ing process. We validate the proposed approach on well-known benchmarks,

including the 11k Hands dataset and the Hong Kong Polytechnic Univer-

sity Contactless Hand Dorsal Images known as PolyU. The results indicate

that knuckle patterns and fingernails play a significant role in the person

identification framework. The 11K Hands dataset results indicate that the

left-hand results are better than the right-hand results and the fingernails

produce consistently higher identification results than other hand compo-

nents, with a rank-1 score of 100%. In addition, the PolyU dataset attains

100% in the fingernail of the thumb finger.

Keywords: Biometric, Hand, Segmentation, Feature extraction, Deep

learning, Fine-tuning, Similarity matching, Person Identification

1. Introduction

The interest and demand for automated person identification have sig-

nificantly increased and led to growing development in computer vision and

machine learning. Identification and verification are types of personal au-

thentication that allow access to buildings, cars, computers, and mobile de-5

vices and are vital in various other applications. There are traditional ways

to verify user authentication, such as user credentials and one-time passwords

(OTPs), to protect data from unauthorised access. However, these conven-

tional methods have significant limitations; they might be lost, hacked, or

stolen. Biometric identification is one of the most reliable solutions that over-10

come the earlier drawbacks and authorise safe access. Person identification
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is based on detecting, segmenting and extracting pattern information to find

valid individuals. A recognition system is a field of study that combines ad-

vanced machine learning, including DLNN, and biometrics from individuals

based on their physical and behavioural traits [1, 2]. These traits can be the15

ear [3], face [4], hand gesture [5], finger-vein [6], or fusion of finger vein and

knuckle pattern [2].

More attention has been paid to the characteristics of the hand. The

hand biometric is critical in the human identification system because many

distinctive features are available in hands, which can distinguish and identify20

the individual [7]. The approaches of extracting features can be divided

into two main categories. The first category includes traditional techniques

that deal with many visual characteristics. However, the traditional feature

descriptor method is problem-specific and usually requires intervention to

choose the descriptor [8, 9]. The second and most recent technique is the25

DLNN, which outperforms the traditional methods in many applications [2].

DLNN algorithms improve the recognition performance in different do-

mains such as object localisation, pattern recognition, and image segmenta-

tion [10]. Furthermore, transfer learning of a DLNN that has been trained

in a specific domain can be employed for another task and can be used in30

biometric systems. For example, these systems can use a fusion of the bio-

metrics as mentioned above of finger veins, and finger knuckles [2], or different

knuckle patterns for person identification [11]. In this survey, many studies

used DLNN in the biometric systems for person identification [12]. How-

ever, the survey did not include knuckle patterns or fingernails for biometric35

systems. DLNN in the form of convolutional neural networks (CNNs) and
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transfer learning have been employed in various biometric systems, which

used knuckle patterns and fingernails [10, 11]. These systems can be based

on primary biometrics, such as face [13], iris [14], fingerprint [15], and finger-

vein [6].40

The current research introduces a unique framework for automatic per-

son identification using hand components such as knuckles and fingernails.

The detection, recognition, segmentation and matching of distinct regions

are part of the proposed system. We extended the previously introduced

method known as the person identification based on f ingernails and dor-45

sal knuckle patterns (PIFK) [10]. In this paper, we experiment with fine-

tuning DenseNet201 for feature extraction and utilise Bray-Curtis (BC) dis-

tance metric for the features’ comparisons. The reason for selecting the

DenseNet201 and Bray-Curtis combination for extracting features and match-

ing is that among many base CNN models and similarity metrics these com-50

bination achieved good performance.

1.1. Feature extraction of finger knuckles patterns and fingernails

In pattern recognition problems, feature extraction is very critical. Fea-

tures are used to map the characteristics of an object and are essential to

support the matching process [16]. Coding methods[17, 18]; subspace ap-55

proaches [19]; [20]; and texture analysis methods [21] can be categorised

as the common algorithms for knuckle crease recognition [16]. This work

explores the initial study for person identification by focusing on the skin

folds, and crease patterns on the major knuckle [22]. This technique in the

following study [23] essentially aligned the hand based on its shape before60

extracting the features, which increases the system’s performance.
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Sid et al. [24] offered a biometric system based on the finger knuckle pat-

tern (FKP) that employs a DLNN technique called discrete cosine transform

network (DCTNet) and a support vector machine (SVM) classifier. The pro-

posed DCTNet design consists of a convolution layer, a binary hashing, and65

a block-wise histogram extraction. Gao et al. [25] executed a reconstruc-

tion in the Gabor filter response and applied a score level adaptive binary

fusion algorithm to fuse the matching distances before and after reconstruc-

tion adaptively. Zhai et al. offered a batch-normalised CNN with a DLNN

approach [26]. More distinguishing characteristics may be retrieved using the70

suggested CNN, satisfying recognition performance.

DLNN was used by Chlaoua et al. [27] to construct a multimodal bio-

metric system based on images of FKP modalities. The principal component

analysis network (PCANet) extracted FKP characteristics. Joshi et al. [28]

trained a Siamese CNN for FKP detection using images collected from a pre-75

processed knuckle ROI. The Euclidean distance is used in network training to

maximise the dissimilarity between images from different subjects or fingers

and reduce the distance between images from the same finger.

Choudhury et al. [29] offered a solution for personal identification based

on DLNN and combining two biometric traits, fingernail plates and finger80

knuckles. Kim et al. [30] propose a biometric method based on a finger-

wrinkle image captured by a smartphone camera. A deep residual network

is used to improve identification performance that has been impacted by

misalignment and lighting variance during the image capture stage. Thapar

et al. [31] proposed matching the whole dorsal finger rather than just the85

major/minor ROIs. FKIMNet, a Siamese-based CNN matching framework

5



that generates 128-D image features, is employed by including a dynamically

adaptable margin, hard negative mining, and data augmentation. Usha et

al. [32], Jaswal et al. [33], and Sadik et al. [34] provided an overview of the

suggested FKP-based authentication techniques.90

The fingernail biometric trait is another physiological characteristic that

can play a significant role in the person identification and authentication

system [35]. However, the requirements of a particular biometric trait to fully

satisfy security applications have not yet been met [36]. The work reported

in this paper [36] is the first attempt at developing a biometric framework95

based on the usability of such characteristics obtained from low-resolution

nail-plate images. According to nail anatomy research [37], only the nail plate

regrows when new cells are formed. Therefore, throughout a person’s life,

the spacing between the grooves of the nail bed remains relatively constant.

Thus, unlike other traits that vary with age, these nail surface characteristics100

may be precious for identification over an individual’s whole lifespan [36].

The fingernail ridge patterns that form on the outer nail surface are very

distinguishable, even in the case of identical twins [38] or between various

fingernails of an individual. The rigid nail structure resists any breakdown or

environmental influences, except for abnormalities produced by nail illnesses105

and disorders, making the nail surface ridge pattern preferable to other bio-

metric characteristics for identification [37]. The fingernail could expose to

many diseases that lead to nail deformation. Examples of these diseases are

Onychomychosis, Psoriasis and Beau’s line [39] [36].

In this work [40], a deep learning approach for human authentication110

based on the fingernail and finger knuckle print was proposed, and AlexNet
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is used as a pre-trained model. Normalisation and fusion techniques were

combined at different levels [40]. In this study [10], end-to-end deep CNNs

were used to extract discriminative high-level abstract features from knuckle

patterns and fingernails. The matching procedure was based on the Bray-115

Curtis similarity. The index, middle, and ring fingernail plates were fused at

the rank level utilising the Ant Colony Optimization approach in this study

[41]. Three unique pre-trained models, AlexNet, ResNet-18, and DenseNet-

20 were used to extract deep learning feature sets of the three nail plates

[41].120

1.2. Contributions and outline of this paper

The paper contributions can be summarised as follows:

1. A new framework for person identification is presented known as the

person identification based on f ingernails and dorsal knuckles (PIFK+),

contains a combination of dorsal hand components detection, segmen-125

tation, feature extraction and matching.

2. The paper investigates many base models of CNN for the best per-

formance based on feature extraction and similarity metrics. Then,

fine-tuning using the best performing model, the DenseNet201, a sub-

set of the 11kHands [42] and PolyU [43] datasets based on each hand130

component to improve the retrieval of features.

3. Utilising the best matching metric, the Bray-Curtis, for estimating the

similarity per hand’s component.

The improvement in this work is in the feature extraction stage, in

which we fine-tune the DenseNet201 on segments of hands from the135
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well-known datasets 11kHands [42], and PolyU [43]. The remainder

of this paper is structured as follows: section 2 explores the proposed

framework (PIFK+), section 3 shows the results and discussion, and

section 4 contains the conclusion of this paper.

2. The person identification based on fingernails and knuckles (PIFK+)140

An overview architectural diagram of the developed PIFK+ framework is

presented in figure 1. Figure 2, 3, and 4 display the stages of the framework

in more details. The PIFK+ is expanded from the recently published method

in [10].

These stages will be explained in the following sub-sections:145

Figure 1: An overview schematic diagram of the developed framework for person identifi-

cation based on dorsal fingernails and knuckle patterns (PIFK+)
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2.1. First phase: Knuckle and fingernail regions detection and segmentation

from the hand image

This subsection explores the first phase of the developed framework (PIFK+).

This phase is essential before the feature extraction phase. In this stage, the

detection, localisation, projection, segmentation, resizing, and re-scaling were150

conducted from the original hand image as displayed in figure 2. The out-

comes from this step are 19 parts for each hand. These parts are various

hand components: the base knuckles or MCP, major knuckles or PIP, minor

knuckles or DIP, major knuckles of the thumb or IP, and fingernails of both

right and left hands.155

To detect the location of a hand region like a knuckle and fingernail,

the method devoted to this purpose is multi-view bootstrapping for hand

pose estimation [44]. This method detects the keypoints of the hand’s major

components. The original image of the hand was resized to 224× 224 to get

the best result of the keypoint localisation. The detected keypoints from the

resized image were then mapped to the original high-definition image to get

a bigger size segmented image. The keypoints obtained were then utilised to

segment each hand image. After segmentation, the sub-images were re-scaled

(normalised), which allows the original pixel values from the sub-images to

range from 0 to 1. The approach of multi-view bootstrapping for hand pose

estimation uses a keypoint detector d(.). The keypoint detector maps an

input image of the hand I ∈ IR w×h×3, where w indicates the vertical and

h indicates the horizontal dimension of the image and three corresponds to

the RGB channels, to P components located in x positions as follows:

d(I) 7→ {(xp, cp) for p ∈ [1...P ]}, (1)
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each confidence score cp is associated with a location xp that corresponds

to one component p, such as PIP or DIP. A hand has a total of 19 components.

We followed the detection and segmentation method to find a bounding

box per hand’s major component, as introduced in [10]. Figure 2 shows the

stages of the hand sub-images segmentation.160

Figure 2: Sample of the localisation including keypoints/landmarks detection and bound-

ing boxes estimation for fingernail and knuckle crease regions.

The detection approach from [44] is extended to segment each hand com-

ponent. The segmentation was done by estimating the size of each region’s

bounding box based on the identified centre point. As a result, the required

area may be divided into two stages. In the first stage, using the multi-view

bootstrapping approach to determine the centre of the segmented section,165

we can re-define the keypoint as follows:

10



yp, zp ← xp, (2)

where yp and zp are the location of the point in the x-axis and y-axis,

respectively.

The second stage involves defining the bounding box by specifying a

height and width per type of component to the centre point. Next, we170

estimated a margin of pixels (a) and (b) to both axes around a detected

keypoint. A rectangular box was then defined as illustrated in figure 2 to

produce a segment (S) using the following equation:

S =



yp + b

yp − b

zp + a

zp − a

(3)

2.2. Second phase: feature extraction

Traditional image processing methods have been popular in many com-175

puter vision applications for decades. However, these methods often require

extensive human intervention [45] in the design of the feature extractor. This

paper uses these abstract high-level features extracted from each segmented

part of the hand. In the beginning, we tried many base models of CNN to

evaluate the best-performing model in the ’11k Hands’ dataset. We found180

that the base model of DenseNet201 and the Bray-Curtis for feature extrac-

tion and similarity measuring achieved excellent results in different parts

of the hands. Figure 5 presents the most base (pretrained) models with
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high performance in different sub-images from the right and left hands in

the ’11k Hands’ dataset. We then attempted to fine-tune parts of the seg-185

mented images per ROI from the ’11k Hands’ and ’PolyU’ datasets using the

DenseNet201 model as feature extractors.

We chose to fine-tune the DenseNet201 model among various DLNNs,

such as VGG16, ResNet50V2, MobileNet, and others. Because this model

showed high performance for extracting high-level and abstract features [10,190

11]. Regarding the fine-tuning, the first 700 layers were frozen from the orig-

inal model of DenseNet201. We then added 2D global average pooling, batch

normalisation with 0.90 momentum, dropouts equal to 0.5, dense with 4096

vectors, a Relu activation function, 0.6 dropouts, batch normalisation with

0.9 momentum, and a classification layer with 170 dimensions and softmax195

activation function. The network was trained with 150 epochs. A stochastic

gradient descent was used as the learning optimisation, the learning rate was

0.001, with a Nesterov momentum of 0.9, and the loss function was categor-

ical cross-entropy as illustrated in figure 3. Finally, the same network was

retrained with all its layers and settings with 100 epochs.200

Several types of augmentations were applied to the training samples be-

fore fine-tuning to reduce the problem of small training data. The aug-

mentation includes rescaling the pixels from 0 to 1, horizontal flipping, a

randomised rotation range of 30, a randomised width and height shift range

value of 30, and a randomised zoom in the range of 0.9 to 1.1. The training205

data was enriched with these augmentations, which enhanced model learning.
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Figure 3: A demonstrative diagram of the fine-tuning of the DenseNet201 layers for feature

extractor.

2.3. Third phase: Similarity estimation and matching

The third phase is the similarity evaluation and decision (matching). This

paper assessed many metrics, such as the Bray-Curtis, Cosine, and Cityblock,

with the feature extractor of the base models mentioned above. The best210

recognition results are then used for the next fine-tuning stage to improve

the performance further. The similarity metric is the inverse of the distance

metric and measures the similarity between two segments of a person’s hand.

These hand segments were first mapped to feature spaces using the feature

extractors. Each feature vector length is 4096. Secondly, the similarity met-215
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rics were used to match individuals per hand component. Figure 4 presents

a sample diagram of this stage. A brief definition of the similarity metrics is

in the following sub-sections:

Figure 4: An illustrative diagram of the similarity measuring using the Bray-Curtis metric.

Suppose we have two segments, which are Sa and Sb. Their vectors can

be represented as Sa = (a1, a2, ..., ap) and Sb = (b1, b2, ..., bp). We can define220

the various distance metric as the following:

The Bray-Curtis (BC) metric. is a distance of two vectors for two segments

that can be indicated as dBC(Sa, Sb) and defined as follows:

dBC(Sa, Sb) =

∑P
i=1 |ai − bi|∑P
i=1 |ai + bi|

(4)

The Cosine (C) metric. can measure the distance between two vectors as

follows:
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C(Sa, Sb) =
Sa.Sb

∥Sa∥∥Sb∥
(5)

The Cityblock (CB) metric. may calculate the distance between two vectors

as shown in 6. Suppose the vectors are composed of two dimensions (x, y),

the CB can be defined as the following:

CB(Sa, Sb) = ∥xSa − xSb
∥+ ∥ySa − ySb

∥ (6)

The degree of similarity (Sim) between two vectors is the inverse of the

distance (Dis). The shorter the distance between two vectors, the greater the

degree of similarity, and vice versa, and may be described as Sim(Sa, Sb) =

1−Dis(Sa, Sb). As follows, the closest match found using a similarity metric

corresponds to the ID as follows [10]:

ˆID = argmin{Dis} = argmax{Sim} (7)

The proposed framework of PIFK+ is outlined by Algorithm 1 in the form

of a pseudo-code.225
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Algorithm 1: The proposed framework of PIFK+

Data: Dataset from 11kHands and PolyU

1 while Hand image (I) is available do

2 Detect the keypoints of the hand d(I) using (1);

3 Re-define the center point using (2);

4 Define the bounding box of the segmented component using (3);

5 Discard any non-well-segmented sub-image;

6 end

7 Collect sub-images of each component as a dataset;

8 for p← 1 to 19 do

9 Split the dataset to training, validation, and testing;

10 Set the network configuration; Generate images augmentation;

Train with defined epochs; Produce the network weight (W) of

the best validation accuracy; Extract features from the pairs Sa

and Sb using W;

11 Calculate the similarity using (4);

12 if

dBC(Sa, Sb) ≃ 0

then

13

Sa, Sb ∈ ID

14 end

15 if

dBC(Sa, Sb) ≃ 1

then

16

Sa, Sb /∈ ID

17 end

18 end
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3. Result and discussion

The experiment we performed aimed to identify a person from a group

of individuals based on the input of hand images. This section will evaluate

the proposed framework on the 11k Hands and PolyU datasets.230

3.1. Datasets description

There are many benchmarks for hand images, such as CASIA [46], Bospho-

rus [47], IITD [47], GPDS150hand [48], however they consist of only the palm

side of the hand. The 11k Hands benchmark contains RGB images of the dor-

sal and palm surface of 190 subjects’ right and left hands. The images have a235

resolution of 1600 x 1200 pixels. In this paper, we are interested in the dorsal

only for the person identification. The number of the right-hand segments is

54, 404, and of the left hand is 52, 369. We used 47,719 and 46,890 segmented

images from the left and right 11k Hands dataset, respectively, for the train-

ing and validation of the fine-tuned model. We also divided the dataset into240

77% and 33% in training and validation. The testing part included different

sets of sub-images. There were 380 sub-images in the query and 2,517 in

the gallery for the left hands. They were 380 sub-images in the query, and

2,517 sub-images in the gallery for the left-hands. Also, 380 sub-images in

the query and 4,528 sub-images in the gallery for the right-hands.245

The Hong Kong Polytechnic University Contactless Hand Dorsal Images

Database [43] was also considered, which consisting of 4650 surfaces of the

right-hand dorsal images in a flat position from 501 subjects. These images

with resolution (1600×1200 pixels) were captured using mobile and handheld

cameras. However, this dataset has only the right hands, which limits its use250

17



of the dataset. The training and validation total sub-images were 75,312, and

we divided the data into 77% and 33% in training and validation, respectively.

The testing included 916 and 6,426 segmented images in the query and gallery

sets, respectively.

3.2. Experimental protocol255

The identification framework in our experiments matches two different

sub-images taken from the same person and vice versa. We evaluated our

framework using a rank-1 recognition rate, cumulative matching character-

istic (CMC) and standard deviation (SD). The rank-1 of recognition can be

defined as follows:

rank–1 =
Ni

N
× 100, (8)

where Ni is the number of samples that were correctly assigned to the

correct person, and N is the total number of samples that were attempted

to be recognised.

The CMC, which indicates the accuracy performance of rank − n [49],

was also utilised to demonstrate the overall performance. The datasets used260

to evaluate the suggested strategy, and the outcomes will be described in the

next section.

The SD is a metric that reflects how widely the data is spread out in a

given space. The samples are highly close to the mean when the standard

deviation is extremely low. On the other hand, a high standard deviation265

indicates that the samples are spread out over a wide range of values [50].

The function of SD can be defined as follows:
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SD =

√∑
(xi − x̄)2

N
, (9)

where xi is the sample’s value, either matched indicated by the value 1

or not-matched indicated by the value 0, and the value x̄ is the mean of the

matched samples.270

3.3. Pre-processing phase

As shown in figure 1, the pre-processing phase was explained in sub-

section 2. Therefore, the details of PIFK+ about this phase will be covered

in this sub-section.

Step 1: Detection and recognition of the knuckle creases and fingernails:275

The detection of the knuckle creases and fingernails is described in sub-

section 2.1. First, the image is resized to 224 × 224, and fingernails and

knuckle creases were identified and localised using the Multi-view Bootstrap-

ping method [44]. Then, automatic indexing of each segmented ROI was

utilised. The total number of indexes was 19 distributed in different hand280

regions. Finally, the keypoints locations were mapped to the original high-

definition size of the image. The dimensions of the bounding boxes were then

estimated in terms of width and height.

Step 2: Resizing and re-scaling: The segmented images were resized into

224× 224 pixels and re-scaled. The resizing was important to be compatible285

with the feature extractor model.

Step 3: The query and library data sets: The data was structured into

the query and library sets in this step. We considered an evaluation of the

method Leave-One-Out Cross-Validation (LOOCV) to evaluate the proposed
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algorithm’s performance. The LOOCV had only one fold. Furthermore,290

because the samples were independent, each prediction in the identification

problem was independent of the others [51]. As a result, we considered only

one sub-image of a subject per ROI in the query. As a result, we had 20

sub-images of 20 different subjects per component in the query set. The rest

sub-images were 239 of the same subjects per component in the library. We295

also had 19 ROI per individual of the left and right hand, respectively.

We disregarded 87 images of left hands and 6 right hands in the 11k

Hands dataset due to inaccurate keypoint detection. Following segmentation

due to erroneous detection, 428 sub-images of left-hand segments and 573 of

right-hand segments were eliminated. The total number of eliminated sub-300

images in the PolyU collection was 5,733 out of 88,392. Disregarded images

and sub-images were not included in the framework evaluation, which has

been considered a limitation of the study.

3.4. Deep learning for feature extractor

For visual object recognition, deep learning has become the dominant305

machine learning approach [52]. In this paper, we evaluate the recognition

performance using two different steps. In the first phase, we investigated

many base models of CNN pretrained on the popular database’ ImageNet’

to extract the features from sub-images. The architecture is varied among

these pretrained models. However, they shared a significant and complicated310

structure that significantly impacted the model performance [53]. Study-

ing many models is to identify the most sophisticated ones in extracting

discriminative features. This step is crucial and leads to better individual

identification. Interestingly, the best performing base models in terms of
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rank-1 recognition accuracy, from highest to lowest, are DenseNet201 [53],315

MobileNet [54], MobileNetV2 [24], DenseNet169, and ResNet50V2 [55]. Fig-

ure 5 and table 1 display the best base models in rank-1 recognition rate

from the right and left hands in the ’11k Hands’ dataset.

Figure 5: Count of each model showing on rank-1 accuracy for fingernails and knuckles-

print regions the ’11k Hands’ dataset.

Table 1: The rank-1 recognition accuracy of 11k-hands

database (shown in %) using different pretrained models

and similarity distances.

Side Region Finger Rank-1 Distance model

Left Base Knuckle Thumb 87.83 Bray-Curtis DenseNet201

Index 82.01 Bray-Curtis ResNet50V2

Middle 80.95 Cityblock DenseNet201
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Ring 98.94 Cosine DenseNet201

Little 99.47 Cosine MobileNetV2

Major Knuckle Thumb 86.77 Cosine MobileNet

Index 85.63 Cosine MobileNet

Middle 86.70 Bray-Curtis MobileNetV2

Ring 99.47 Cosine MobileNet

Little 100 Bray-Curtis DenseNet169

Minor Knuckle Index 84.12 Cosine MobileNet

Middle 86.77 Bray-Curtis DenseNet201

Ring 99.47 Bray-Curtis DenseNet201

Little 99.47 Cityblock DenseNet201

Fingernail Thumb 87.83 Bray-Curtis DenseNet169

Index 91.00 Cosine MobileNet

Middle 100 Bray-Curtis DenseNet201

Ring 99.47 Bray-Curtis DenseNet201

Little 89.00 Cosine MobileNet

Right Base Knuckle Thumb 85.26 Brycurtis DenseNet201

Index 81.57 Brycurtis DenseNet201

Middle 80.00 Brycurtis MobileNetV2

Ring 80.00 Bray-Curtis MobileNetV2

Little 83.15 Bray-Curtis DenseNet169

Major Knuckle Thumb 84.21 Brycurtis DenseNet201

Index 83.15 Brycurtis DenseNet201

Middle 85.18 Cosine MobileNet
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Ring 83.68 Bray-Curtis DenseNet201

Little 80.00 Bray-Curtis MobileNetV2

Minor Knuckle Index 80.00 Brycurtis MobileNetV2

Middle 85.18 Brycurtis ResNet50V2

Ring 83.15 Brycurtis DenseNet169

Little 80.00 Bray-Curtis MobileNetV2

Fingernail Thumb 85.78 Cosine MobileNet

Index 90.00 Bray-Curtis MobileNet

Middle 91.05 Bray-Curtis MobileNet

Ring 93.68 Bray-Curtis MobileNet

Little 84.73 Cosine MobileNet

This paper evaluated the results of the first step in the experiment us-

ing the rank-1 recognition accuracy as displayed in the table 1 w.r.t. the320

’11k-hands’ benchmark. This study considered several distance metrics and

pretrained models to identify the best-performing ones. Table 1 demonstrates

the best distances and models performing on the base, major, minor knuckles,

and fingernails of five fingers on the left and right hands of the ’11k-hands’

database. Surprisingly, the results, as shown in table 1, indicate that the left325

components of the hand are more identifiable than the right ones. We also

observed that the identifiability of fingernail patches from both hand sides

is relatively higher than different knuckle patches. This result may refer to

the nail being consistent, having a unique shape, and the proposed approach

performing exceptionally well.330
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Figure 5 refers to the best models that appear on rank-1 accuracy among

all regions of both hands. From the highest to the lowest, we can observe that

the best models are DenseNet201, MobileNet, MobileNetV2, DenseNet169,

and ResNet50V2. In addition, many distance metrics are studied to examine

their impact on the matching result. Indeed, many distances appeared on335

rank-1 accuracy; however, we showed the most repeated distance between

different regions. We can notice that Brycurits, cosine, and city-block are

the most achieved distances, from the highest to the lowest on rank-1.

In the second phase, fine-tuning the DenseNet201 model was considered

for extracting features. Figure 3 displays the structure of the retrained340

DenseNet201 model. This model was considered because it showed the best

performance, as demonstrated by the phase one results. The base model

of DenseNet201 [52] was originally pretrained on the well-known ImageNet

dataset. This model has many advantages: DenseNets201 naturally scales

to hundreds of layers, providing no optimization challenges; DenseNets201345

requires fewer parameters and processing time.

We achieved high performances in training and validation using the fine-

tuned DenseNet201 in subsets of each ROI from 11k Hands and PolyU. The

last fully connected (FC) layer was utilized from the fine-tuned model to

extract the features per hand component. Finally, pairs of the query and350

library feature vectors were generated from the last FC layer to calculate the

similarity using Bray-Curtis.

3.5. Similarity estimation and matching

Estimating the similarity between two sub-images of the same hand is

a part of the matching process. In the matching process, one segmented355
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image from the query can match with one or more corresponding segmented

image(s) in the library. We estimated the similarity based on the feature

vectors gained from the last FC layers of the fine-tuned DenseNet201 model

as described in section 2.2. We then utilised the Bray-Curtis similarity metric

for the matching process. As a result, the proposed PIFK+ framework gained360

a high performance compared to the state-of-the-art methods. Table 2 shows

our proposed framework’s rank-1 recognition rate and standard deviation

(SD) and a comparison of our method and other state-of-the-art methods.

Table 2: The rank-1 recognition rate (shown in %) and

SD for the 11k Hands and PolyU datasets.

Region Finger Method 11k Hands-L 11k Hands-R PolyU

Fingernail Thumb Our (Rank-1) 100 95.00 100

Our (SD) 0 0.22 0

PIFK [10] 87.83 84.21 93.81

[11] - - -

Index Our (Rank-1) 100 100 95.83

Our (SD) 0 0 0.2

PIFK [10] 89.42 88.95 90.40

[11] - - -

Middle Our (Rank-1) 100 100 91.83

Our (SD) 0 0 0.27

PIFK [10] 90.48 89.47 87.65

[11] - - -

Ring Our (Rank-1) 100 100 93.88
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Table 2: The rank-1 recognition rate (shown in %) and

SD for the 11k Hands and PolyU datasets.

Region Finger Method 11k Hands-L 11k Hands-R PolyU

Our (SD) 0 0 0.24

PIFK [10] 93.65 91.58 85.10

[11] - - -

Little Our (Rank-1) 100 100 95.83

Our (SD) 0 0 0.2

PIFK [10] 84.13 80.00 87.30

[11] - - -

Minor Knuckle Index Our (Rank-1) 100 95.00 91.67

DIP Our (SD) 0 0.22 0.27

PIFK [10] 84.66 76.84 72.47

[11] 86.35 89.56 74.81

Middle Our (Rank-1) 100 95.00 85.71

Our (SD) 0 0.22 0.35

PIFK [10] 85.19 82.11 68.92

[11] 93.69 93.17 84.57

Ring Our (Rank-1) 100 95.00 91.84

Our (SD) 0 0.22 0.27

PIFK [10] 84.13 77.89 71.46

[11] 91.45 89.56 80.80

Little Our (Rank-1) 100 95.00 91.67

Our (SD) 0 0 0.2
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Table 2: The rank-1 recognition rate (shown in %) and

SD for the 11k Hands and PolyU datasets.

Region Finger Method 11k Hands-L 11k Hands-R PolyU

PIFK [10] 81.48 76.84 78.43

[11] 83.91 80.83 73.25

Major Knuckle Thumb Our (Rank-1) 95.00 95.00 91.11

PIP Our (SD) 0.22 0.22 0.28

PIFK [10] 85.71 84.21 76.83

[11] - - -

Index Our (Rank-1) 100 95.00 97.87

Our (SD) 0 0.22 0.14

PIFK [10] 82.45 83.16 79.71

[11] 93.28 93.93 91.23

Middle Our (Rank-1) 100 95.00 93.75

Our (SD) 0 0.22 0.24

PIFK [10] 85.11 82.54 76.64

[11] 94.70 95.26 88.90

Ring Our (Rank-1) 90.00 95.00 91.49

Our (SD) 0.30 0.22 0.28

PIFK [10] 80.95 83.68 83.23

[11] 94.30 92.03 90.34

Little Our (Rank-1) 95.00 100 97.87

Our (SD) 0.22 0 0.14

PIFK [10] 83.07 75.79 82.06
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Table 2: The rank-1 recognition rate (shown in %) and

SD for the 11k Hands and PolyU datasets.

Region Finger Method 11k Hands-L 11k Hands-R PolyU

[11] 88.59 86.34 88.57

Base Knuckle Thumb Our (Rank-1) 100 100 79.59

MCP Our (SD) 0 0 0.40

PIFK [10] 87.30 85.26 58.35

[11] - - -

Index Our (Rank-1) 100 90.00 95.92

Our (SD) 0 0.3 0.19

PIFK [10] 78.84 81.58 64.34

[11] 78.82 84.82 62.38

Middle Our (Rank-1) 100 95.00 97.96

Our (SD) 0 0.22 0.14

PIFK [10] 80.95 77.37 67.27

[11] 84.32 85.96 61.49

Ring Our (Rank-1) 100 80.00 97.96

Our (SD) 0 0.22 0.14

PIFK [10] 80.42 77.37 66.47

[11] 76.99 73.62 57.16

Little Our (Rank-1) 100 100 97.96

Our (SD) 0 0 0.14

PIFK [10] 84.13 80.53 67.94

[11] 83.71 81.78 59.16
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Table 2: The rank-1 recognition rate (shown in %) and

SD for the 11k Hands and PolyU datasets.

Region Finger Method 11k Hands-L 11k Hands-R PolyU

Figure 6: The CMC of the proposed PIFK+; the a) base; b) major; c) minor knuckles; d)

fingernails of the left hand; e) base; f) major; g) minor h) fingernails of the right hands

from the 11k Hands dataset; i) base; j) major; k) minor l) fingernails of the right hands

from the PolyU dataset.

The CMC of the knuckles and fingernails of the left (chart a-d) and

right (chart e-h) hands in the 11k Hands are illustrated in figure 6. The365
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left hand—including the fingernails and knuckles from 11K Hands—is more

recognisable than the right hand for most of the fingers, as shown by the

results (see table 2 and figure 6). This result also complies with the study

shown in [10]. We also found that fingernail sub-images from both left and

right hands from the 11k Hands and PolyU datasets achieved better results370

than the recognition using all knuckle sub-images. We can observe that the

SD is close to 0 when the rank-1 is the highest value and is more than 0

when the rank-1 is lower than 100. These results are shown in table 2 and

the CMC chart 6.

In general, the proposed framework PIFK+ outperformed the state-of-the-375

art methods [10, 11, 31]. We had the best results for both hands in almost

all fingernails. The fingernails rank-1 accuracies were 100% in the 11k Hands

dataset and 100% on the thumb and ring finger in the PolyU dataset. Over-

all, we can observe that the DIP/minor knuckles got minimal performance

compared to the other hand components in all datasets. However, the PIP380

components’ performance was slightly better than the DIP components in

both datasets. The MCP components were also higher than the PIP and

DIP in the two datasets. The PIP obtained a rank-1 accuracy of 100% in

the index and middle fingers in the left hands and right little finger of the

11k Hands dataset and 97.87% in the index and little fingers in the PolyU385

dataset, compared to the middle finger that achieved 94.70% and 85.11% in

the left-hands of the 11k Hands dataset in [11], and [10], respectively.

The DIP component in each finger of the left 11k Hands dataset achieved

a rank-1 accuracy of 100%, whereas the one in the ring finger obtained 91.84%

in the PolyU dataset. This observation is also valid among the right-hand390
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parts of the PolyU dataset. The PIP outperforms the DIP component,

with rank-1 accuracies of 97.87% for the index and little fingers. For the

MCP/base knuckle component, we gained 100% in most fingers in the 11k

Hands dataset and 97.96% in the middle, ring, and little fingers from the

PolyU datasets in comparison to [10], and [11] that got lower results using395

the same component as displayed in table 2.

Although there is a lack of studies similar to our approach, we compared

our study with the previous most similar ones like [10, 31, 11]. In addition,

we analysed the fingernails of our result with this method [31]. We found

that the proposed framework PIFK+ achieved excellent performance for most400

fingers, with a rank-1 accuracy of 100%. However, this method [31], which

scored 94.83% in the fingernail identification, did not specify which hand

(right or left) or finger the component locate. The best performance was

98.60% using the fusion of the right hands in the major, minor, fingernail,

and finger components in the [31] method using the PolyU dataset. However,405

in our work, using only one component, such as the fingernail of the thumb

finger, we achieved a higher result with a rank-1 score of 100%. The study

in [11] gained 100% in the fusion of all components and fingers of a hand.

However, we achieved a 100% in most components of the fingernail in the

index, middle, ring, and little finger of the 11kHands dataset and the thumb410

finger of the left hands in the 11k Hands and PolyU datasets.

4. Conclusion

PIFK+ is a comprehensive framework for automated person identifica-

tion for forensic and security applications presented in this study, where

31



the hand image plays a significant role in identifying a person. The frame-415

work used the dorsal surface of the five human hand components (fingernails,

MCP, PIP, DIP, and IP joints of the five fingers). The proposed approach

PIFK+ utilises all 19 hand components from two popular datasets: the 11k

Hands and PolyU datasets. The approach fine-tunes segmented subsets per

component using the DenseNet201 model and applies the Bray-Curtis sim-420

ilarity metric to extract abstract features and find the corresponding pairs’

similarities. In addition, the framework automatically labels and generates

bounding boxes around the detected hand components. We evaluated the

proposed approach on these two most common datasets, and our results out-

perform the state-of-the-art methods. Furthermore, we discovered intriguing425

facts about the hands and their components. Such as the continuous dif-

ference in outcomes between the left and right hands, favouring the left. In

addition, the fingernails were found to be the best-performing components in

both datasets. Developing the framework using other fine-tuned CNN mod-

els for feature extraction may be considered for future studies. Furthermore,430

evaluating both the quality-segmented images and real-world poor-quality

segmented images due to false ROI localisation in the recognition system

may be relevant to future studies.
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