Euclid preparation: XXI. Intermediate-redshift contaminants in the search for z>6 galaxies within the Euclid Deep Survey

UNSPECIFIED (2022) Euclid preparation: XXI. Intermediate-redshift contaminants in the search for z>6 galaxies within the Euclid Deep Survey. Astronomy and Astrophysics. ISSN 1432-0746 (In Press)

[thumbnail of Euclid_XXI_vanMierlo]
Text (Euclid_XXI_vanMierlo)
Euclid_XXI_vanMierlo.pdf - Accepted Version
Available under License Creative Commons Attribution.

Download (5MB)

Abstract

(Abridged) The Euclid mission is expected to discover thousands of z>6 galaxies in three Deep Fields, which together will cover a ~40 deg2 area. However, the limited number of Euclid bands and availability of ancillary data could make the identification of z>6 galaxies challenging. In this work, we assess the degree of contamination by intermediate-redshift galaxies (z=1-5.8) expected for z>6 galaxies within the Euclid Deep Survey. This study is based on ~176,000 real galaxies at z=1-8 in a ~0.7 deg2 area selected from the UltraVISTA ultra-deep survey, and ~96,000 mock galaxies with 25.3$\leq$H<27.0, which altogether cover the range of magnitudes to be probed in the Euclid Deep Survey. We simulate Euclid and ancillary photometry from the fiducial, 28-band photometry, and fit spectral energy distributions (SEDs) to various combinations of these simulated data. Our study demonstrates that identifying z>6 with Euclid data alone will be very effective, with a z>6 recovery of 91(88)% for bright (faint) galaxies. For the UltraVISTA-like bright sample, the percentage of z=1-5.8 contaminants amongst apparent z>6 galaxies as observed with Euclid alone is 18%, which is reduced to 4(13)% by including ultra-deep Rubin (Spitzer) photometry. Conversely, for the faint mock sample, the contamination fraction with Euclid alone is considerably higher at 39%, and minimized to 7% when including ultra-deep Rubin data. For UltraVISTA-like bright galaxies, we find that Euclid (I-Y)>2.8 and (Y-J)<1.4 colour criteria can separate contaminants from true z>6 galaxies, although these are applicable to only 54% of the contaminants, as many have unconstrained (I-Y) colours. In the most optimistic scenario, these cuts reduce the contamination fraction to 1% whilst preserving 81% of the fiducial z>6 sample. For the faint mock sample, colour cuts are infeasible....

Item Type:
Journal Article
Journal or Publication Title:
Astronomy and Astrophysics
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/3100/3103
Subjects:
?? astronomy and astrophysicsspace and planetary science ??
ID Code:
175825
Deposited By:
Deposited On:
12 Sep 2022 14:40
Refereed?:
Yes
Published?:
In Press
Last Modified:
19 Aug 2024 23:53