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Abstract— With the increasing penetration of distributed 
renewable energy (DERs), the electrical grid is experiencing, 
on a daily basis, rapid and massive fluctuations in power and 
voltage profiles. Fast and precise control strategies in real-
time have played an important role to ensure that the power 
system operates at an optimal status. Solving real-time 
optimal power flow (OPF) problems while satisfying the 
operational constraints of the community microgrid (CMG) 
is considered a promising technique to control the 
fluctuations of renewable sources and loads. This paper 
adopts a new deep reinforcement learning algorithm (DRL), 
called Twin-Delayed Deep Deterministic Policy Gradient 
(TD3), to solve the real-time OPF with consideration of DERs 
and distributed energy storages (DESs) in the CMG. 
Training and testing of the algorithm are conducted on an 
IEEE 14-bus test system. Comparative results show the 
effectiveness of the proposed algorithm.   

Keywords: Reinforcement Learning (RL), Deep Reinforcement 
Learning (DRL), Optimal Power Flow (OPF), Twin-Delayed 
Deep Deterministic Policy Gradient (TD3), Community 
Microgrid (CMG). 

I. INTRODUCTION 

Community microgrids (CMGs) have emerged as an 
effective method to accommodate new energy sources like 
solar photovoltaics (PVs) and wind turbines (WTs) in the 
power system. The high penetration of these sources into 
the power system has become clearly observed due to 
climate change, and environmental protection. Distributed 
energy resources (DERs), like PVs and WTs, are 
distinguished by their uncontrollability and intermittency, 
thus making the operator of the grid not be able to control 
and predict their generation. The penetration of DERs has 
formed huge challenges to the grid operators to ensure that 
the modern power systems operate at high efficiency and 
reliability.  Dealing with these challenges requires a faster 
solution to the high-dimension non-convex real-time OPF 
problems. 

In recent years, a number of promising methods have 
been proposed to solve the OPF problem. Reference [1] 
uses the swarm intelligent method to solve the OPF 
problem. However, the nonlinear characteristic of the 
loads, generators, and other devices that connect to the 
system makes this optimization method inefficient to find 
the optimum solution for the OPF problem [2]. On the 
other hand, evolutionary optimization algorithms have 
emerged as techniques to transact with the nonlinear 
characteristics of the OPF problem. However, these 
techniques require plenty of time or a relatively small 
space of policies to reach the optimal solution [3]. 

Reference [4] proposes a stochastic optimization (SO) 
method to solve the OPF problem. This method depends 
on finding the distribution of uncertain variables like loads 
and PVs in the OPF problem. However, the SO requires a 
large amount of time to calculate a number of scenarios 
that are used to form the uncertainty distribution [5]. In 
contrast to the SO, model predictive control (MPC) 
algorithm is proposed in [6] to solve the multi-phase OPF 
problem. The MPC algorithm is a very efficient method to 
reach an optimum solution; however, the performance of 
the algorithm relies mainly on the prediction precision of 
the load and renewable energy generation in the power 
grids, which is difficult to achieve in reality [7]. 

On the other side, machine learning (ML) has gained 
wide popularity in recent years, due to its superior ability 
to take fast decision making even with existing high 
uncertain variables in the power systems. ML is able to 
extract useful information from historical data and uses 
this information to solve an OPF problem. Among the ML 
approaches, reinforcement learning (RL) is considered an 
efficient approach to tackle the real-time OPF problem due 
to its capability to learn the best strategies to reach 
optimum solutions by searching historical data [8]. 

Reference [9] proposes Double Deep Q Learning 
(DDQN), which is a deep RL (DRL) algorithm to solve the 
stochastic OPF by considering the uncertainty of the load 
demand and wind turbines. The deep neural network 
(DNN) that is used in this reference works as an action-
value function approximator.  However, the DDQN works 
by discretizing the action space. Since the OPF is a 
continuous optimization problem, the discretization of the 
action space leads to loss of some information; thus, 
DDQN may converge to suboptimal solutions [10]. 

A number of RL algorithms have been used to deal 
with continuous environments. In [11], Deep 
Deterministic Policy Gradient (DDPG) is used to solve 
real-time OPF by adjusting the active and reactive power 
of the generators. The proposed approach is tested on the 
IEEE 118-bus system and the simulation results show that 
the DDPG reached the optimum solution much faster than 
the interior-point method. Reference [12] uses a state-of-
art ML method which is based on Deep Policy Gradient 
(DPG), called Proximal Policy Optimization (PPO), to 
solve real-time OPF. The PPO is highly effective to work 
with high-dimensional and continuous action space like 
OPF. Moreover, PPO is able to take multiple actions at the 
same time, which gives this method superiority over the 
traditional ML methods. The proposed approach is tested 
on the IEEE 33-bus system, and the simulation results 

Proceedings of the 27th International Conference on 
Automation & Computing, University of the West of 
England, Bristol, UK, 1-3 September 2022 



demonstrate that PPO can provide a more resilient control 
strategy than the stochastic programming method. 
      Inspired by the recent researches, this paper presents a 
new ML algorithm with continuous action search to solve 
real-time alternating current (AC) OPF (ACOPF) in the 
CMG that is equipped with DERs and distributed energy 
storages (DESs). The real-time ACOPF problem is 
formulated as Markov decision process (MDP), and then 
the twin-Delayed Deep Deterministic Policy Gradient 
(TD3) is used to solve the MDP. This paper takes into 
consideration the uncertainty of the WTs, PVs, and load 
demand, and the objective is to minimize the total power 
loss by controlling the active and reactive power of the 
DERs and DESs. The RL agent has been developed to 
ensure the CMG is operating under safe and reliable 
conditions, meaning that the agent actions must satisfy all 
operational constraints. 

II. PROBLEM FORMULATION 

A CMG can be represented as a set of buses 𝒩 that 
are connected with each other by transmission lines (TLs), 
where 𝒩 is a set of positive integers. The TLs can be 
represented as a matrix ℰ = 𝒩 × 𝒩 that demonstrates the 
relation between buses within a CMG. All CMG devices 
  𝒟  are connected to single or several buses, which might 
withdraw power from the grid, e.g., loads, or inject power 
into the grid, e.g., DERs. Each bus 𝑖 ∈  𝒩 in the CMG can 
be represented by several variables that determine its 
status, including a current 𝐼௜ , voltage level 𝑉௜, active power 

 𝑃௜
(bus) and reactive power  𝑄௜

(bus). The active or reactive 
power injection into or withdrawal from the bus can be 
obtained by calculating the active and reactive power of 
the device  d ∈ 𝒟 that connects with it. The devices in the 
CMG are divided into three subsets 𝒟஽ாோ, 𝒟௅ ,and   𝒟஽ாௌ.  
 𝒟஽ாோ  represent the DER that can only inject power into 
the CMG, while  𝒟௅  is passive loads that can only 
withdraw power from the CMG. On the other hand, 
𝒟஽ாௌ is a storage unit that can inject and consume power 
into/from the grid. The proposed CMG works in 
connection with the main grid, which is used to provide a 
voltage reference and also to balance the power level in the 
CMG. 

The objective function of the OPF problem, as shown 
in (1), is to minimize the power loss while the security 
constraints are satisfied. The optimization horizon is one 
day, and the time interval (timestep) is a 15- minutes, and 
thus 96 time steps a day. 

min ෍ 𝑃𝒟ಽ,௟௢௦௦ +

ଽ଺ିଵ

௧ୀ଴

𝑃 𝒟ವಶೃ,௟௢௦௦ +  𝑃 𝒟ವಶೄ,௟௢௦௦                    (1) 

where  𝑃𝒟ಽ,௟௢௦௦ is the total transmission energy loss that 
occurs as a result of leakage in TLs.  𝑃 𝒟ವಶೄ,௟௢௦௦ is the total 
energy loss that happens due to leakage in storage units. 
This loss occurs because DESs have charging and 
discharging efficiency factors η. 𝑃 𝒟ವಶೃ,௟௢௦௦ is the total 
energy loss that happens when the generation of DER is 
curtailed. This curtailment is necessary when the 
generation power of the DER is higher than the required 

power capacity of TLs. 𝑃𝒟ಽ,௟௢௦௦, 𝑃 𝒟ವಶೄ,௟௢௦௦  and 𝑃 𝒟ವಶೃ,௟௢௦௦  
can be calculated by using (2), (3), and (4), respectively. 

 

𝑃𝒟ಽ,௟௢௦௦ =       ෍  𝑃ௗ,௧ାଵ

ௗ∈𝒟ಽ

                                                    (2) 

𝑃 𝒟ವಶೄ,௟௢௦௦ = ෍  𝑃ௗ,௧ାଵ

ௗ∈𝒟ವಶೄ

(1 − η)                                   (3) 

𝑃 𝒟ವಶೃ,௟௢௦௦ = ෍ 𝑃௚,௧ାଵ
(௠௔௫)

௚∈𝒟ವಶೃ

    −   𝑃௚,௧ାଵ                          (4) 

where  𝑃௚,௧ାଵ
(௠௔௫) is the maximum generation power of the 

DER, and  𝑃௚,௧ାଵ is the renewable energy production after 
curtailment.  𝑃ௗ,௧ାଵ in (2) is transmission energy loss that 
occurs in TLs as a result of passing power to the loads, 
while  𝑃ௗ,௧ାଵ(1 − η) in (3) is a power loss of the batteries. 
       The solution of the OPF problem must be considered 
the DERs, DESs, and network constraints. Equations (5), 
and (6) represent the physical limitation of DERs and 
DESs, while (7) and (8) are used to add an additional 
constraint on the reactive power injection when the active 
power of the DERs or DESs are close to the maximum 
value. Equations (9) and (10) represent additional 
constraints on the active power injection/withdrawal of 
storage units. The DESs cannot withdraw (charge) an 
active power when the current state of charge  𝑆𝑜𝐶ௗ,௧ 

indicates that the storage unit is full 𝑆𝑜𝐶ௗ  . On the other 
hand, DESs would not be able to inject (discharge) an 
active power when the  𝑆𝑜𝐶ௗ,௧ is empty  𝑆𝑜𝐶ௗ.  

𝑃௚ ≤ 𝑃௚ ≤ 𝑃𝑔                                              ∀𝑔 ∈ 𝒟஽ாோ,஽ாௌ (5) 

 𝑄௚ ≤ 𝑄௚ ≤ 𝑄
௚  

                                       ∀𝑔 ∈ 𝒟஽ாோ,஽ாௌ  (6) 

𝑄௚ ≤ 𝜏௚
(ଵ)

𝑃௚ + 𝜌௚
(ଵ)

                                  ∀𝑔 ∈ 𝒟஽ாோ,஽ாௌ  (7) 

𝑄௚ ≥ 𝜏௚
(ଶ)

𝑃௚ + 𝜌௚
(ଶ)

                                  ∀𝑔 ∈ 𝒟஽ாோ,஽ாௌ  (8) 

𝑃௚ ≥
1

Δt η
൫𝑆𝑜𝐶௚,௧ିଵ − 𝑆𝑜𝐶௚൯                      ∀𝑔 ∈ 𝒟஽ாௌ   (9) 

𝑃௚ ≤
𝜂

Δ𝑡
(𝑆𝑜𝐶௚,௧ିଵ − 𝑆𝑜𝐶௚)                        ∀𝑔 ∈ 𝒟஽ாௌ  (10) 

where 𝜏௚
(ଵ)

, 𝜏௚
(ଶ)

, 𝜌௚
(ଵ)

, and 𝜌௚
(ଶ)are constant values and Δ𝑡 is 

the time difference during (𝑡, 𝑡 + 1) 
      Two types of network constraints are considered in this 
paper, which must be satisfied all the time. The first 
constraint is the voltage magnitude of the buses which 
must be within acceptable limits, as is given in (11). The 
second constraint, as is shown in (12), represents the 
maximum value of the apparent power that can flow from 
bus 𝑖 to bus 𝑗.   
𝑉௜  ≤  𝑉௜,௧     ≤   𝑉௜                                                 ∀𝑖 ∈ 𝒩(11) 

 𝑆௜௝,௧  ≤      𝑆௜௝,௧                                                      ∀𝑒௜௝ ∈ ℰ(12) 
 

III.  MARKOV DECISION PROCESS 
OVERVIEW 

 
The MDP is used to model the CMG framework, 

which can be divided into four parts: (𝜉, 𝒜 , ℝ, 𝑃), 
representing state space, action space, reward function and 
transition function, respectively. The goal of the RL agent 
is to lean an optimal policy π∗ by continuously interacting 



with the CMG environment to maximize a cumulative 
reward as depicted in Fig. 1. As the optimization of the 
real-time OPF is a sequential decision-making problem, 
the RL agent receives a vector of state 𝑠௧ ∈ 𝜉  and reward 
𝑟௧ିଵ ∈  ℝ at timestep t. Based on this information, the 
agent provides actions 𝑎௧ ∈  𝒜  to the CMG environment.  

 
Fig. 1 The environment framework 

The environment adds a next load demand 𝑃𝒟ಽ,௧ାଵ, and 
maximum generation of PVs 𝑃௉௏,௧ାଵ

௠௔௫  and WTs 𝑃ௐ்,௧ାଵ
௠௔௫  

before curtailment to the agent actions. Then, the next state 
function receives 𝑎௧, 𝑃𝒟ಽ,௧ାଵ  , 𝑃௉௏,௧ାଵ

௠௔௫ and 𝑃ௐ்,௧ାଵ
௠௔௫  and uses 

the Newton-Raphson method to determine all bus voltages 
of the CMG and the active and reactive power of the main 
grid. 
         The next state function updates the values of all the 
currents, voltages, active and reactive powers of the CMG, 
resulting in a new state 𝑠௧ାଵ ∈ 𝜉   which are sent to the RL 
agent to process again. Furthermore, it uses (13) to 
calculate the reward 𝑟௧:  

𝑟௧ = clip  ൬±𝑟clip , − ቀΔ𝐸௅௢௦௦,௧:௧ାଵ + 𝜆𝜙(𝑠௧ାଵ)ቁ൰         (13) 
where Δ𝐸௅௢௦௦,௧:௧ାଵ is the total power loss, and  𝜙(𝑠௧ାଵ) is 
a penalty term associated with excess limitation of the 
operating constraints, 𝜆 is a weighing hyperparameter. 𝑟clip 
is used to make the reward function within a finite range 
±𝑟clip. The agent uses (13) to learn optimal policy π∗ that 
minimizes the power loss while the operational constraints 
are satisfied. 
A.  State space 𝜉 
      The state space 𝜉 is used to describe the CMG 
environment and also used as the input of RL algorithm. 
𝑠௧ ∈ 𝜉  includes the active and reactive powers 
𝑃ௗ,௧

ௗ௘௩௜௖௘ , 𝑄ௗ,௧
ௗ௘௩௜௖௘  of all devices in the environment d ∈ 𝒟, 

charge level of the storage unit (𝑆𝑜𝐶ௗ), 𝑑 ∈ 𝒟஽ாௌ, the 

maximum power generated from DERs  𝑃௚
(௠௔௫) at time 𝑡. 

The environment reaches a terminal state 𝜉௧௘௥  when 𝑡 =
96 timesteps or Newton-Raphson method could not find a 
solution to (14) as a result of the actions that are taken by 
the RL agent. 
 

 𝑃௜
(௕௨௦)

+ 𝑖 𝑄௜
(௕௨௦)

= 𝑉௜𝐼௜
∗                                     ∀𝑖 ∈ 𝒩(14) 

where 𝐼௜
∗ is the complex conjugate of the current Ii. 

B.  Action space 𝒜 

     Given the state 𝑠௧ ∈ 𝜉  of the CMG at a specific 
timestep 𝑡, actions 𝑎௧ ∈  𝒜   are taken by the RL agent to 
determine the curtailment value of active power or reactive 
power of the DERs, and to set the active power or reactive 
power injection into or withdraw from DESs. These 
actions must satisfy the constraints of DERs, DESs, and 
network stability all the time. 
 
C.  Transition function 𝑃 
      Since the WTs and PVs power generation and load 
demand for next timestep are stochastic, the state 

transitions of  ቄ𝑃௚,௧ାଵ
(௠௔௫)

ቅ
௚∈ 𝒟ವಶೃ

and ൛𝑃 ,௧ାଵൟ
ௗ∈𝒟ಽ 

are 

dependent on the CMG randomness. State transition in the 
CMG occurs in three steps as is shown in Fig.1. Once the 
agent selects actions 𝑎௧, the environment combines the 
next step power generation and the load with selected 
actions and passes them to the next state function which 
maps the next state 𝑠௧ାଵ ∈ 𝜉 with current (state 𝑠௧, 
action 𝑎௧) pair and determines the reward. 
 
D.  Reward function ℝ 
      ℝ represents the reward signal after action 𝑎௧ is taken 
in 𝑠௧ and it is defined as:  
𝑟௧ = 

 ൞
clip ቀ±𝑟clip, −൫Δ𝐸௅௢௦௦௧:௧ାଵ + 𝜆𝜙(𝑠௧ାଵ)൯ቁ 𝑖𝑓 𝑠௧ାଵ ∉  𝜉௧௘௥  

−
𝑟clip

1 − 𝛾
                                                            𝑖𝑓 𝑠௧ାଵ  ∈  𝜉௧௘௥

(15) 

where 𝛾 is a constant value. 
Using a clipping parameter 𝑟clip   in reward function is to 
ensure that any transition from a non-terminal to a terminal 
state produces a very high negative reward. The objective 
of the clipping function is to encourage the RL agent to 
lean a policy π* that avoids all the scenarios that might 
make the CMG collapse.   
      The total power loss Δ𝐸௅௢௦௦,௧:௧ାଵconsists of three parts 
as defined in (2)-(4). Equation (16) is used to represent all 
the power loss in the CMG. 

Δ𝐸௅௢௦௦,௧:௧ାଵ = ෍  𝑃ௗ,௧ାଵ

ௗ∈𝒟ಽ

   +   ෍  𝑃ௗ,௧ାଵ

ௗ∈𝒟ವಶೄ

(1 − η)  

+   ෍ (𝑃௚,௧ାଵ
(௠௔௫)

 −  𝑃௚,௧ାଵ)    

ௗ∈𝒟ವಶೃ

    (16) 

The penalty term 𝜙(𝑠௧ାଵ) adds a high negative reward 
when the agent violates the operating constraints. The 
penalty term can be obtained as: 

Φ(𝐬௧ାଵ) = (    ෍ ቀ𝑚𝑎𝑥൫0, ห𝑉௜,௧ାଵห − 𝑉௜൯

௜ ∈𝒩

+ 𝑚𝑎𝑥൫0, 𝑉௜ − ห𝑉௜,௧ାଵห൯ቁ

+ ෍ max൫0, ห𝑆௜௝,௧ାଵห − 𝑆௜௝ , ห𝑆௝௜,௧ାଵห

௘೔ೕ∈క

− 𝑆௜௝൯)                                                 (17) 

where ห𝑆௜௝,௧ାଵห  ≠ ห𝑆௝௜,௧ାଵห due to TL loss. The first part of 
(17) represents the limits of the allowed voltage at each 
bus, which is necessary to maintain the stability of the 
CMG. The second part is referred to the maximum rating 
of the power that can flow in the TLs. This constraint is 



essential to prevent TLs from overheating. This reward 
Φ(𝐬௧ାଵ) is defined to have a higher negative value than 
energy loss Δ𝐸௅௢௦௦,௧:௧ାଵ, because unsatisfying the network 
constraints can lead to damaging the CMG infrastructure. 
 

IV. OPTIMIZATION METHODS 
 
A.  MPC  
       
      An MPC algorithm is used to solve the multi-stage 
OPF problem to evaluate the RL agent's performance in a 
specific environment. An MPC algorithm can efficiently 
solve the OPF problem, especially if the prediction of load 
demand and DERs generation is highly accurate over the 
optimization horizon. 
 
B.  TD3 algorithm  
      The goal of the TD3 agent is to minimize the total 
power loss without violating the network constraints or 
shedding the load. The agent controls the power outputs of 
DERs and DESs under different load conditions. The RL 
agent trains through historical data which is called offline 
training and then applies this model in real-time 
application. 
 
      TD3 is a DRL approach that combines DQN with 
DDPG. The TD3 is an actor-critic approach that contains 
both the actor-network and the critic network. The critic 
network is a Q-value network that takes states and actions 
as inputs and the output of this network is the estimated Q-
value function. The actor-network performs policy 
improvement to update the policy according to the Q-value 
function that generates the critic-network. In other words, 
the actor-network produces an action for the following 
state. The critic network is in charge to evaluate the policy 
(policy evaluation) by generating Q-value estimated and 
computing the difference (temporal difference) between 
this value and the value generated by the actor-network. 
Instead of maximizing the Q-value function, the critic 
network evaluates the gradient of the Q-value to find the 
orientation of the change action for getting a higher Q-
value estimated. Consequently, the actor-network updates 
its weights in the direction of the gradient of the loss 
function. TD3 is called "twin" because it uses two critic-
networks, two actor networks, and two Bellman equations. 
Also, it is called "delayed", because the policy is updated 
less than the Q-value function. This delayed update makes 
the value estimation have a lower variance. Therefore, 
lower variance means better policy. TD3 uses action 
smoothing and utilizes this technique to trade-off between 
exploitation and exploration. TD3 adds noise to the target 
action, to make it harder for the policy to exploit Q-
function errors by smoothing out Q along with changes in 
action. 
 
      TD3 uses the backpropagation method on the critic 
loss to determine the parameters of the networks. It 
updates the parameters of the actor-network every two 
iterations by implementing the gradient ascent on the 
output of the first critic network. As is shown in Fig.2, the 

TD3 agent takes the states of the CMG as inputs and 
according to optimal policy, the agent provides actions to 
the environment.  

 
Fig. 2 Interaction process between the TD3 agent and CMG environment. 
 

V. CASE STUDY 

A.   Network architecture  

      The proposed approach (TD3) is tested on an open-
source OPF environment called Gym-ANM [13], which 
provides the researchers the ability on designing its own 
microgrid topology, OPF equations, and modifying the 
characteristics of loads, DERs, and DESs, and testing RL 
algorithms. The proposed topology of the CMG used in 
this paper is shown in Fig.2. The CMG is connected with 
the main grid, and consists of fourteen buses, where solar 
PVs and WTs work as DERs in buses 2, 3, 7, and 10, 
respectively, while, the DESs (ES in Fig. 2) are located in 
buses 8 and 12. The rated power of the WTs and solar PVs 
are 50 KW and 35 KW, respectively.  The capacity of the 
installed DESs are 200 KWh. The charging and 
discharging efficiency η are both set as 90%. The 
characteristics of all CMG devices is summarized in Table 
1. 

B.   Experimental details 

      In this section, the performance of TD3 and other DRL 
algorithms are compared against the MPC algorithm with 
a perfect forecast of the CMG data. These algorithms are 
tested on a modified IEEE 14-bus system. Training set is 
created by generating random data for each load and DER 
for seven days (672-time steps) as shown in Fig. 3. The RL 
agents will be trained for 200 episodes with these data. The 
performance of the RL agents are tested in five random 
days, which represent the testing set. To make the CMG 



model close to reality, the weather is supposed to be cloudy 
on Day 1, which means the generation of solar PV is zero 
as is shown in Fig. 4. Moreover, the weather on Day 2 is 
assumed to be windy which means the wind turbine 
generate power at the maximum limits as shown in Fig 5. 
The weather in the rest of the testing set is presumed to be 
normal as shown in Fig 6. It is worthy to mention that the 
MPC algorithm is fed by perfect forecast data which means 
the forecasted data error is 0%. In reality, it is impossible 
to predict the future load demand and DERs generation 
with a 0% error rate.  
 

TABLE 1.   Descriptions of each device (loads, DERs, DESs)  
 

Number 
of 
devices 

Type 
of 
device 

𝑷𝒅 
(KW) 

𝑷𝒅 
(KW) 

𝑸
𝒅
 

(KVAR) 

𝑸𝒅 

(KVAR) 

𝜼 

1 Load - 
-20 

 

- - - 

2 PV 35 
0 

35 -35 - 

3 Load 0 
-20 

- - - 

4 WT 50 
-50 

50 -50 - 

5 Load 0 
-15 

- - - 

6 PV 35 
0 

35 -35 - 

7 Load 0 
-20 

- - - 

8 DES 50 
-50 

50 -50 0.9 

9 Load 0 
-20 

- - - 

10 Load 0 
-20 

- - - 

11 Load 0 
-20 

- - - 

12 WT 50 
-50 

50 -50 - 

13 DES 50 
-50 

50 -50 0.9 

14 Load 0 
-20 

- - - 

15 Load 0 
-20 

- - - 

16 Load 0 
-20 

- - - 

 
 

 
Fig. 3 Cumulative consumption and generation for training data. 

 
Fig. 4      Cumulative consumption and generation for in Day 1 (PV=0) 
 

 
Fig. 5   Cumulative consumption and generation in Day 2 (WT=high). 

 

 
Fig. 6 Cumulative consumption and generation for rest of the testing set. 
 

C.     Performance evaluation 

         Equation (15) is used to evaluate the performance of 
the proposed algorithms, and we make a comparison with 
the simulation results between TD3 algorithm and other 
DRL algorithms, e.g., PPO, soft actor-critic (SAC), 
DDPG, and Advantage Actor-Critic (A2C). Moreover, we 
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compare the results of all DRL algorithms against the MPC 
approach. 

D.    Comparison results  
     As shown in Fig 7, among all the DRL algorithms, the 
proposed approach (TD3) has the minimum power loss, 
except on the day 3. This indicates that the performance of 
the TD3 algorithm outperforms A2C, SAC, PPO and 
DDPG in terms of power loss minimization. MPC results 
are also given in Fig 7 (black dashed curve), which is 
plotted as the benchmark to demonstrate the optimal 
results obtained by the traditional optimization method.  
Although the performance of the MPC method is better 
than the TD3 algorithm on all testing days, it is not suitable 
to solve real-time OPF since it takes much longer time to 
find an optimal solution. The results show that TD3 is 3.8 
times faster than MPC. As highlighted before, MPC cannot 
work efficiently without having perfect forecasted data. 
 

 
Fig. 7 Power loss minimization results of different approaches for five 
random days. 
 
 

 
VI. CONCLUSION  
 

      The increasing penetration of solar PVs, WTs, and 
energy storages present major challenges for the operation 
of the CMG.  In this paper, DRL based approach is 
proposed for management of the CMG under uncertainties. 
The real-time OPF problem is formulated as an MDP, then 
the TD3 is used to extract optimal operation of the CMG 
by using DRL from the historical data. The proposed 
algorithms are tested on IEEE 14-bus system and the 
simulation results show that the TD3 algorithm 
outperforms the state-of-art DRL algorithms like PPO and 
A2C. 
      Future work includes exploring improvements in the 
performance of the proposed method in terms of how to 
enhance the optimality while preserving the feasibility at 
the same time. We will also use long-time data to train the 
models and real data for validation of the models. We 

intend to include hyperparameters optimization and use 
practical data to test the algorithm in our future work. 
Furthermore, more realistic system operation conditions 
should be applied to validate the robustness of the 
proposed method. 
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