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Abstract 16 

Invasive species have historically been a problem derived from global trade and 17 

transport. To aid in the control and management of these species, Species Distribution Models 18 

(SDMs) have been used to help predict possible areas of expansion. Our focal organism, the 19 

African Armyworm (AAW), has historically been known as an important pest species in Africa, 20 

occurring at high larval densities and causing outbreaks that can cause enormous economic 21 

damage to staple crops. The goal of this study is to map the AAW’s present and potential 22 

distribution in three future scenarios for the region, and the potential global distribution if the 23 

species were to invade other territories, using 40 years of data on more than 700 larval 24 

outbreak reports from Kenya and Tanzania. The present distribution in East Africa coincides 25 

with its previously known distribution, as well as other areas of grassland and cropland, which 26 

are the host plants for this species. The different future climatic scenarios show broadly similar 27 

potential distributions in East Africa to the present day. The predicted global distribution 28 

shows areas where the AAW has already been reported, but also shows many potential areas 29 

in the Americas where, if transported, environmental conditions are suitable for AAW to thrive 30 

and where it could become an invasive species. 31 

 32 

Keywords 33 
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Introduction 36 

 Global trade and transport have historically led to the movement of organisms, mostly 37 

for domestication, farming, etc. where they are in a controlled environment 1,2. However, 38 

some movements of species are unintentional and can result in species becoming invasive in 39 

these new areas 3-5. Invasive species, therefore, can produce massive economic and 40 

environmental damage due to their ability to spread without limitations 6-8; and insects, being 41 

the most diverse group of organisms on Earth, are also one of the most invasive 9. Some of the 42 

major problems caused by invasive insects include human disease vectors and agricultural and 43 

forest pests 10, often impacting the health and economy of the countries affected 11. Some 44 

well-known recent examples of invasive agricultural pests are the cotton bollworm, 45 

Helicoverpa armigera (Hübner), the diamondback moth, Plutella xylostella (Linnaeus), and the 46 

fall armyworm, Spodoptera frugiperda (J. E. Smith) 12-14. 47 

 The African Armyworm (AAW) is the larval stage of the noctuid moth Spodoptera 48 

exempta (Walker, 1856). Like other armyworms 15, AAW is considered a major pest species, 49 

historically the most important after locusts in parts of Africa 16,17. AAW often occurs at high 50 

larval densities, causing outbreaks and, therefore, significant economic damage to crops and 51 

pasturelands 16,18. The species is widely distributed across sub-Saharan Africa, where it 52 

especially affects Central, Eastern and Southern Africa, but the presence of the species has also 53 

been reported in Arabia, Southeast Asia, and Australia 20-22. AAW caterpillars are a major pest 54 

of cereals and grasses, including some of the most economically important crops such as 55 

maize, rice or  wheat 23. Generally, low-density populations of the larvae persist throughout 56 

the continent, usually going unnoticed as they are in small numbers and have a cryptic 57 

coloration 24. Many studies (e.g. 25-27) have pointed out that it is after the first (short) rainy 58 

season in East Africa (around November or December) that the ‘primary’ (first) outbreaks 59 

occur. These outbreaks are caused by the mating and oviposition of the adult moths emerging 60 
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from the low-density (dry season) populations, which are dispersed and scattered by the rainy 61 

season winds and end up concentrating in patchy areas where rainfall occurs 28,29, that is 62 

thought to be due to convergent wind flows 24. After these primary outbreaks, the long rainy 63 

season initiates a series of ‘secondary’ outbreaks, throughout eastern and central Africa, which 64 

may cause massive damage to crops, and can be monitored and predicted thanks to 65 

meteorological observation and monitoring 28,30,31. In some countries, like Zambia, its maize 66 

production in 2012-2013 was reduced by 11% due to AAW attack 32 and in 2017 it was 67 

estimated that 30% - 40% of the crop production could have been lost due to this pest 33. 68 

Since at least 1930, AAW outbreaks and moth trap data, as well as some meteorological 69 

data, have been collected in the most affected countries, including Kenya and Tanzania 16,22 . 70 

Subsequently, these data have been digitised and incorporated into data management and 71 

information systems, such as WormBase 34, which was developed in the 1990s to aid in the 72 

prediction of AAW outbreaks. In the present study, we use forty years of AAW outbreak data 73 

to model the environmental suitability of the pest.  74 

Species Distribution Models (SDMs) are modern tools that are used to characterize and 75 

predict the present and future distribution of a species, using species distribution data and 76 

environmental variables that affect, directly or indirectly, the species´ ecological niche or 77 

environmental suitability 35-37. This provides a very useful tool for pest management activities, 78 

as it can help identify areas where the species might be present or vulnerable areas for the 79 

pest 38-40. SDMs have been used to model the environmental suitability of other similar pest 80 

species, such as the fall armyworm, S. frugiperda, FAW, which is native to the Americas, but 81 

has recently invaded and spread throughout sub-Saharan Africa, into areas where the African 82 

armyworm is endemic 14. This work was used to predict new areas in the world that could be 83 

suitable for FAW expansion, including parts of Asia and Oceania; predictions that have 84 

subsequently been realised (https://www.fao.org/fall-armyworm/monitoring-tools/faw-85 
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map/en/). Although the distribution of S. exempta in Africa and Arabia has been well 86 

established for at least 40 years 22, and much is known about its feeding and migratory 87 

behaviour 16, there is little information about its broader environmental requirements.  88 

In this study, we generate the first  predictive environmental suitability models for the 89 

African armyworm, using species distribution modelling techniques. We use occurrence data 90 

from reported larval outbreaks in Kenya and Tanzania, and variable selection methods to 91 

define the principal environmental variables that affect the geographical distribution of S. 92 

exempta. The generated models, which are local to Kenya and Tanzania, predict the present 93 

and future environmental suitability of the species under three different future-climate 94 

scenarios. For predicting the present suitability, we used the outbreak data from 1969-1990 95 

and contrasted the generated model with the rest of the data, from 1991-2008. This meant we 96 

validated our model against data that are more independent than used in the majority of SDM 97 

studies, a highly recommended approach 41. For the three future climate scenario models, we 98 

used all the outbreak data from Kenya and Tanzania, from 1969 to 2008 to forecast the 2061-99 

2080 time period. We also model the global environmental suitability for the species by 100 

extrapolating these local data to the rest of the world to assess its invasion potential. Finally, 101 

we determine if models suggest that the African armyworm’s future distribution will likely 102 

intersect areas of cropland, which could demonstrate a need for preventive and control 103 

measures to target the vulnerable areas before they are attacked. 104 

 105 

Results 106 

Variable selection 107 

The variable selection through PCA narrowed the environmental suitability 108 

components to five (Table 1). The variables are related to temperature and precipitation, and 109 

the AAW response to them can be seen in Figure 1. Bioclim 07 (temperature range throughout 110 

https://www.fao.org/fall-armyworm/monitoring-tools/faw-map/en/
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the year) suggests that AAW do best in locations where the temperature variation is greater 111 

than around 12oC annually. Variable Bioclim 08 is related to temperature during the wettest 112 

quarter and seems to suggest that AAW prefer temperatures between 15-25°C during the 113 

rainy season, and anything greater than 25°C is much less suitable. Variable Bioclim 15 is 114 

related to the seasonality of precipitation and suggests that AAW do best when rainfall varies 115 

by around 80-100 mm annually. Finally, Bioclim 13 and 17 are related to the amount of 116 

precipitation during the wet and dry season, respectively. During the wettest month, it seems 117 

to require a minimum of around 100 mm rain, but also seems to have a maximum of around 118 

300 mm rain, above which it is less suitable, perhaps indicating its susceptibility to floods. 119 

During the driest quarter, it seems to be more versatile and can tolerate a wide range of 120 

precipitation, but there appears to be a minimum rainfall of around 10mm, indicating that is 121 

also susceptible to drought. 122 

 123 

Model performance 124 

The receiver operation characteristic (ROC) curve is a graphical way of illustrating the 125 

model’s ability to distinguish between binary classes at various threshold settings, and area 126 

under the curve (AUC) of the ROC is a value that measures the degree to which these classes 127 

can be distinguished between. This means that the closer to 1 the AUC value is, the better the 128 

model will be at separating classes, which in this case would be the environmental suitability 129 

of the species. AUC values of our models are considered to be ‘excellent’ 42, and TSS, values are 130 

considered ‘moderate’ and ‘substantial’ 43, therefore showing a good performance of the 131 

models, and that they are robust and accurate (Table 2). This indicates that the ecological 132 

suitability suggested by the generated models resemble the real probability of occurrence of 133 

the species, and therefore, its possible distribution. 134 

 135 
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Environmental suitability of S. exempta  136 

Present-time environmental suitability models for the AAW in Kenya and Tanzania (Fig. 137 

2A) show high suitability in the south and west of Kenya and the north and centre of Tanzania. 138 

These areas coincide with the occurrence points from the outbreak data used (blue dots in Fig. 139 

2A); outbreaks are usually reported on crops such as maize, so it is likely that environmental 140 

suitability overlaps with agricultural land use. These suitable areas also coincide with sub-141 

humid and tropical highlands; the paler or non-suitable areas coincide with more arid 142 

conditions, such as north-eastern Kenya 44. Figure 2B shows a land use map extracted from 45, 143 

indicating that the vegetation in the suitable areas of our model (Fig. 2A) are mainly 144 

grasslands, savannas and croplands. Regarding the prediction of the 1991-2008 outbreaks, all 145 

the points (yellow dots in Fig 2A) seem to fall in areas with medium to high suitability, with 146 

AUC = 0.90, considered as ‘excellent’ 42,  which indicates the model can accurately predict the 147 

areas that are suitable for outbreaks in the near future. 148 

 149 

Future and worldwide environmental suitability scenarios 150 

Figure 3 presents three maps that show the difference in environmental suitability 151 

between present-time and three different CO2 emission scenarios between 2061 and 2080 in 152 

Kenya and Tanzania. The outputs of the three scenarios are very similar to each other. 153 

Scenario SSP1-2.6 (a gradual decline in CO2 emissions) show fewer gained areas (74,075 km2) 154 

than lost (109,500 km2), and the same happens with the extreme CO2 emission increase 155 

scenario - SSP5-8.5 (70,425 km2 of gained areas; 161,425 km2 of lost areas). Gained areas 156 

(109,625 km2) for scenario SSP3-7.0 (gradual increase in CO2 emissions), are however similar  157 

to the lost areas (106,350 km2). These results depict a future where the species seems to have 158 

a limited spread. Gained areas coincide mainly with cropland and grassland 46,47. This all 159 

suggests that climate change might help the AAW distribution to expand and take over areas 160 
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of grassland and cropland; but also limit its expansion in other areas where too many 161 

emissions might destroy these grasses and crops.  162 

 The world environmental suitability model shows a marked high suitability in tropical 163 

areas, especially related to high, but not extreme, temperatures and precipitation (Fig. 4). It 164 

appears that the suitability overlaps the distribution of grasses, which is historically the main 165 

food source of the AAW, as it is noticeable in the Savannas, Pampas and Veldts, and seems to 166 

be delimited by arid areas and tropical deserts (e.g. Sahara, Kalahari, Atacama, etc.) as well as 167 

areas of extreme rainfall like rainforests (e.g. Amazon, Congo River Basin, South East Asia and 168 

Australian). However, as the models have only been constructed with climatic variables and 169 

not land use rasters, we cannot be completely certain that these forested areas could be 170 

suitable if converted to agriculture. 171 

When looking at the recorded distribution of AAW globally 22 (Fig 5), it very much 172 

resembles the world environmental suitability model (Fig. 4). Grey areas show where the 173 

projections are extrapolated outside of the climate conditions used to build the SDM, 174 

according to the results of the MESS approach 48. Projections in these areas should be treated 175 

with extreme caution, as there is no way of knowing how accurate they are. In Africa, there is 176 

high suitability in the eastern, western, and central areas, where larval infestations have been 177 

recorded, even on the west of southern Africa. Madagascar is also predicted to be suitable for 178 

AAW outbreaks, although no larval infestations have been recorded there to our knowledge, 179 

but moth specimens have been found, indicating the possibility of being there. In Arabia, 180 

which has extensive larval infestations, only a limited area is predicted to be suitable, and with 181 

only medium suitability, probably due to it not being a very suitable climate, but in practice, 182 

irrigation could have permitted its viability and expansion. There is very high suitability in the 183 

west and south of India, and Sri Lanka (Fig. 4, 5), which coincides with the ghats where grasses 184 

are present, but the species has not yet been recorded there. Many AAW larval infestations 185 
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and outbreaks have been reported in southern (but not northern) parts of Southeast Asia and 186 

the western Australian coast, coinciding with areas of medium to high suitability. With the 187 

exception of Hawaii 49 – where the model shows high suitability - the species has never been 188 

reported in the Americas. Nonetheless, the model does predict very high environmental 189 

suitability in some countries like Brazil, Colombia and Mexico (Figure 4), which sets an alarm 190 

for its potential distribution and settlement if the species was to reach those areas. All this 191 

indicates that the model has been able to predict most of the actual worldwide distribution, 192 

using a database limited to a relatively small area in East Africa, and therefore, that it is a 193 

robust model.  194 

 195 

Discussion 196 

 In a world in which crop production often revolves around extensive monocultures, 197 

and global changes in climate and trade facilitate the spread of insect crop pests, there is 198 

increased potential for the introduction and spread of invasive species 50-52. Understanding the 199 

environmental requirements of potentially invasive crop pests can identify areas at threat and 200 

facilitate targeted monitoring. Some authors have previously tried to do this by generating 201 

current or potential Species Distribution Models. Examples include important invasive pest 202 

species, such as the cotton bollworm, H. armigera, the diamondback moth, P. xylostella, the 203 

gypsy moth, Lymantria dispar (L.), the spotted wing drosophila, Drosophila suzukii 204 

(Matsamura), the European paper wasp,  Polistes dominula (Christ), and the fall armyworm, S. 205 

frugiperda 12-14,53,54. In this study we have constructed SDMs for the African armyworm, S. 206 

exempta, a pest endemic to sub-Saharan Africa. Our results identify those climatic variables 207 

that seem most important in determining the geographical distribution of AAW and provide a 208 

robust SDM for Kenya and Tanzania in the present time, as well as three different future 209 

climate change scenarios. We expand this to a predictive worldwide model that identifies 210 
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areas, especially in the Americas and South Asia, where AAW has the potential to become 211 

invasive if it were introduced. 212 

 Selected variables for the environmental suitability of African armyworm outbreaks 213 

are mainly related to annual temperature variation and precipitation, especially during the 214 

wettest quarter, which is the rainy season. The rainy season plays an important role in the 215 

movement of AAW adults in Africa, as the winds that occur during it are key for the dispersal 216 

of the adult moths. Existing literature 24,27,30,55 indicates that adult moths migrate along the 217 

dominant winds to grassland areas or crops, where they feed, causing subsequent larval 218 

outbreaks in nearby areas where they can disperse or migrate to. Precipitation outside the 219 

rainfall season is important for the low density populations of AAW that persist in these areas 220 

where outbreaks have occurred, during the dry season, as it stimulates the growth of grasses, 221 

providing the AAW with suitable habitats for feeding and breeding 56, which could explain why 222 

variables like ‘precipitation seasonality’ or ‘precipitation of the driest quarter’ have been 223 

identified as important explanatory variables. Nonetheless, the areas where outbreaks occur 224 

(which we modelled) are not always the same as the ones where low-density populations 225 

settle (which we did not explicitly model). Temperature changes affect the species distribution 226 

too because, being ectotherms, their development and survival are temperature-dependent 57.  227 

 The local present-time model depicts a robust environmental suitability for S. exempta 228 

in Kenya and Tanzania (Fig. 2A). Low environmental suitability coincides with arid or semi-arid 229 

areas, which may seem evident as extreme temperatures and dry conditions are not ideal for 230 

the development of its eggs and pupae 57,58. Indeed, water and ambient humidity scarcity can 231 

affect the water balance of insects, impacting their survival, development and even their 232 

population dynamics, as seen in similar species, the FAW 59. Climatic conditions in these areas 233 

can also affect its suitability indirectly. For example, changes in the water content and 234 

concentration of nitrogen and other minerals of the host plants, can negatively impact AAW 235 
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adults’ fitness 60. Additionally, plants that grow in arid or semi-arid areas are not suitable host 236 

plants of the AAW 16, which mainly feeds on Graminae, and these require a certain level of 237 

humidity for their development. According to the generated model, sub-humid and tropical 238 

highlands are the most suitable areas for the AAW and, the known distribution of the AAW, 239 

besides the biology of the species, coincide with these areas. During the dry season, low-240 

density armyworm populations are usually found in the highlands as the low temperatures 241 

extend their development 16, which may explain why these tropical highlands are highly 242 

suitable. Looking at land cover and vegetation maps (e.g. 45,46), the vegetation present in the 243 

suitable areas are mainly grasslands, savannas and croplands, which are the main host plants 244 

for the AAW.  245 

 The predictions of the environmental suitability for the 1991-2008 outbreaks (not 246 

included in the training dataset), appear to be accurate and robust, indicating that modelling 247 

present environmental suitability can be useful to predict outbreaks in the near future. These 248 

predictions can also be combined with population dynamic studies to predict outbreaks of the 249 

next few years, like other authors have previously done 31,61,62. 250 

 Local future-scenario models (Fig. 3) are useful to predict where the species might be 251 

present in some years’ time. It is evident that climate change is altering the environmental 252 

conditions, therefore redesigning where species can live. It has been thoroughly documented 253 

that the distribution of many species is shifting to new areas, as well as disappearing from 254 

others 63-65. This is especially important in pest management as predicting new areas could 255 

help set control measures for those areas and prevent outbreaks 40,66,67. Although we produced 256 

models for three different CO2 emission scenarios, they all portray similar results, where there 257 

are suitable areas being both gained and lost. A positive side to this similarity in suitability is 258 

that management and control plans will probably be effective in all scenarios. On the other 259 

hand, it is interesting that such an aggressive pest like the AAW is predicted to show a slow 260 
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expansion of their distribution, if compared to other similar pest species like processionary 261 

moths (Thaumetopoea spp.) or the box tree moth (Cydalima perspectalis) 68,69. Climate change 262 

will likely alter the environmental suitability of all living organisms as it challenges their 263 

physiological limits 70, and there is evidence that the geographical distribution of crop pests is 264 

moving increasingly polewards in response to climate change 71,72. Due to this, it would be 265 

assumed that the expansion of the suitable areas would be much quicker or extensive, but 266 

these results might indicate the contrary, that climate change could reduce the suitable areas 267 

for its expansion. Factors affected by climate change, such as temperature, rainfall and relative 268 

humidity, seem to have mostly positive effects on fecundity and development of migratory 269 

pests like locusts 73,74. However, for other lepidopteran pest species, like H. armigera, climate 270 

change has negatively affected its survival and reproduction 75,76. Climate change is also 271 

reducing the amount of rainfall, which has had an impact on the ecosystem dynamics and 272 

vegetation structure of grasses in South Africa reducing grassland areas 77, but also grass 273 

productivity, shifting these grasslands to shrubland and other tree-dominated biomes 78,79. As 274 

grasses are the main food source for the AAW, it is coherent that all these lost suitable areas in 275 

our future scenario models might correspond to grass areas shifting to other vegetation 276 

patterns.  277 

 Global environmental suitability in the African continent resembles very much the 278 

previously reported distribution of African armyworm 22 and appears in nearly all the same 279 

areas, that is, sub-humid areas, grasslands and croplands. Haggis’ study indicated that AAW 280 

has been recorded in India, South-East Asia, and Australia, where the models do predict a high 281 

environmental suitability, even though their presence there had not been used to generate it. 282 

This shows that the models are competent and can predict real areas where the species might 283 

expand into. There are areas, nevertheless, where the model does not predict high suitability, 284 

but the species has been recorded, like some parts of Indonesia, Arabia, and southern Africa. 285 

This could be due to the sample size and its limited geographic extent. Many authors (e.g. 80,81) 286 
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have reviewed this issue and it does seem to affect the accuracy and performance of SDMs. As 287 

our database is limited to Kenya and Tanzania, the selected variables will extrapolate to areas 288 

where the conditions are similar, that is why the prediction of suitability outside the tropics is 289 

not as accurate, as shown by the results of the MESS approach. Projections into colder regions 290 

seem likely to be inaccurate due to the variable response (Fig. 1), which have a clear upper 291 

limit. However, projections into areas with higher or lower precipitation rate might be more 292 

trustworthy due to a wider tolerance to change in precipitation 27. Nonetheless, the worldwide 293 

model seems to predict an accurate environmental suitability in general. 294 

In the global environmental suitability model, areas where the AAW has not been recorded 295 

but have a high suitability are intriguing. These are mostly in the Americas, especially between 296 

the tropics, where the climatic variables define the AAW’s niche. They also include coastal 297 

regions where there are grasses, like Pampas; or open woodlands, but also avoid tropical 298 

rainforests or arid areas due to their extreme conditions. The global environmental suitability 299 

of the AAW mirrors the environmental suitability and distribution of the FAW 14 which has very 300 

similar environmental requirements, making them potentially competing species. The FAW, 301 

which is native to the American continent, was introduced into Africa, probably due to 302 

transportation of plants and crops, and rapidly spread to become one of the most important 303 

crop pests on the continent. Another example of this is H. armigera, which made a jump from 304 

Africa and Europe to the American continent 13. The global model suggests that a similar thing 305 

could happen with the AAW on the American continent if it were introduced. Countries like 306 

Brazil, which is one of the world’s biggest maize producing countries could, in time, become 307 

hotspots for the AAW and enhance this global problem. Our models, and the variables used 308 

however, do not consider anthropogenic factors that could increase the migration and 309 

dispersal of S. exempta, such as global connectivity and human-mediated transport 82, as it has 310 

been done for the fall armyworm 14. If considered in future studies, this could confirm our 311 

findings about S. exempta ability to disperse throughout the American continents, which has 312 
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already been considered as a potential risk 83. This manifests the importance of revisiting and 313 

tightening international agricultural biosecurity, as invasive species are transported to new 314 

territories in a daily basis, aggravating the problem 84,85. 315 

Characterizing the climatic variables that explain or delineate the AAWs niche will help 316 

with a better understanding of the species’ biology and its possible management 86. Future and 317 

global scenario models based on climatic variables, like the ones used in this study, are 318 

important to understand how invasive pest species might react to climate change or new areas 319 

if they are transported there. In fact, IPM studies often use these SDMs and niche 320 

characterization  87 of important pest species such as the fall armyworm, S. frugiperda 15, 321 

underlying its importance. However, to understand how the species will disperse in space and 322 

time, models should be used as part of a bigger research effort, including natural competence, 323 

or anthropogenic factors, such as bias in outbreak reporting, land use and management, 324 

transport, etc.  325 

Finally, it is worth noting that SDMs are generally only used to predict suitable abiotic 326 

environments and seldom include detailed information regarding the presence of potential 327 

competitor species or natural enemies. Invasive fall armyworms have rapidly expanded 328 

throughout the African continent and globally 90,91. It is considered a very aggressive and 329 

cannibalistic alien pest 92,93 and feeds on a range of plant species, including the cereals and 330 

grasses that AAW specialises in, meaning there is a possibility of displacement, as it appears to 331 

be doing with other sympatric species, such as the Asiatic pink stem borer, Sesamia inferens 332 

(Walker) or the maize stalk borer, Busseola fusca (Füller) 94,95.  Given this, it is possible that 333 

although our SDM suggests that parts of the Americas are environmentally suitable for AAW to 334 

invade, in this environment it would be potentially competing with the native FAW, which is 335 

much more aggressive than AAW and is likely to be the stronger intra-guild competitor. It is 336 
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therefore possible that AAW has previously reached the Americas but has failed to establish 337 

there due to competitive interactions with FAW or other natural enemies. 338 

 339 

Materials and methods 340 

Distribution data compilation 341 

The presence records for Kenya and Tanzania were obtained from an updated version 342 

of WormBase 34, which is a data management and information system that includes AAW 343 

outbreak and trap data for both countries since 1969. Outbreak data were used for the 344 

present study, where only presence records with defined geographic coordinates, following 345 

the WGS84 geographic coordinate system were used. Presence points that were inaccurate 346 

and duplicates were filtered using ArcGIS Pro. In total, 721 occurrence points, from 1984 to 347 

2008, were obtained.  568 occurrence points were recorded from the years 1969-1990, and 348 

were used to make the first model, which predicted the current distribution. 349 

Environmental data 350 

Species Distribution Models (SDMs) require selecting biotic and/or abiotic 351 

environmental variables that relate to the distribution of the modelled species 41, and to 352 

minimize uncertainties in modelling predictions it is important to understand which variables 353 

are more significant to the species by performing a good variable selection 96.  354 

Variables used in this study were the WorldClim Version 2 97 bundle of 19 global 355 

climatic layers from 1970-2000 in a 5 x 5 km resolution; and WorldClim CMIP Phase 6 (CIMP6) 356 

98 global climatic layers for future suitability models. We selected the 2061-2080 period for the 357 

BCC-CSM2-MR General Circulation Model (GCM) 99 and three Shared Socio-economic Pathway 358 

(SSP): SSP1-2.6, which shows a gradual decline in emissions; SSP3-7.0, which would be an 359 
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intermediate scenario where the CO2 emissions continue to rise in a similar fashion to now; 360 

and SSP5-8.5, which shows a dramatic rise in CO2 emissions 100.  361 

Variable selection 362 

In previous modelling studies for the fall armyworm 14, the variable selection was 363 

based on the life-history and environmental requirements for the species. Nonetheless, other 364 

studies 101-103 suggest other analyses, such as Ecological Niche Factor Analysis (ENFA) or 365 

Principal Component Analysis (PCA), may be more robust, as they result in uncorrelated 366 

variables. This both eliminates information that might be redundant and means that the 367 

forecasts are not affected by changes in the correlation between environmental variables 368 

between time periods or regions. We followed the methodology described by Gómez-Undiano, 369 

2018 103, a method derived from Petipierre et al., 2017 101, which showed that a PCA resulted in 370 

a more accurate variable selection for better models. Therefore, we did a PCA with all the 371 

previously chosen variables and reduced the number to some main ones, based on the 372 

variance explained in the presences of S. exempta; this being the variables that had the 373 

greatest loadings on some of the PCA axes. The variables used for the future predicted 374 

suitability were the same as the ones resulting in the PCA, but from the 2021-2040 bundle. The 375 

variable selection was carried out in R v.4.0.2 104 using RStudio v.1.3.1093. 376 

Modelling environmental suitability 377 

SDMs can be generated only with presence points but this can result in inaccurate and 378 

biased models 105, so often, absence points are used too. However, absences are difficult to 379 

obtain, especially for mobile species like insects. However, studies suggest that selecting 380 

pseudo-absences, which could be generated randomly, helps to improve the quality of the 381 

models and their accuracy 105-107. We followed the BIOMOD modelling algorithm 108, using the 382 

‘biomod2’ package 109 in R for pseudo-absence generation, and selected 700 pseudo-absence 383 

points for the local distribution models in Kenya and Tanzania, to match the number of 384 
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occurrences 107. When extrapolating pseudo-absence data to the rest of the World, some 385 

authors 110,111 suggest delimiting a geographical background to which the species could 386 

reasonably disperse, can improve SDM. We generated a background area (for the Worldwide 387 

ensemble model) of the limited area of Kenya and Tanzania to reduce extrapolation of the 388 

variables to non-analogue areas.  389 

Predicting global suitability from a limited area, such as Kenya and Tanzania, means 390 

that predictions could be extrapolated to areas with very different climate to Kenya and 391 

Tanzania, which could be highly erroneous. To ensure the predictions are only made in areas 392 

with conditions similar to those in the data used to construct SDMs, the Multivariate 393 

Environmental Similarity Surface (MESS) 48 was calculated using the R package ‘dismo’ 112. 394 

Choosing one modelling statistic method can be challenging because different 395 

methods have advantages and disadvantages and tend to produce variable predictions. 396 

However, ensemble modelling results in producing more robust and reliable models 113,114. We 397 

created an ensemble that includes five algorithms based on logistic regression and machine 398 

learning: artificial neural networks (ANN), classification tree analysis (CTA), flexible 399 

discriminant analysis (FDA), generalised additive models (GAM), generalised linear models 400 

(GLM), MaxEnt, random forest (RF) and Surface Range Model (or BIOCLIM). This process was 401 

undertaken using default parameters from the ‘biomod2’ package in R. 402 

To evaluate the accuracy and robustness of the ensembled models, internal validation, 403 

which is included by default in the ‘biomod2’ setting, was used. We split the distribution data 404 

randomly into two, with 70% being used for the SDM calibration and 30% the validation set, 405 

using the area under the curve (AUC) of the receiver operation characteristic (ROC), and true 406 

skill statistic (TSS). 100 replicas were generated for each algorithm used, and models for which 407 

validation with AUC>0.7 or TSS>0.6 were selected to generate the final ensembles. Although 408 

studies generally use a 70% - 30% data split for the training and testing data e.g. 14,115, we also 409 
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generated additional models with different data-splits (10, 20, 30, 40, 50, 60, 80 and 90%) to 410 

ensure the model validation was robust (Supplementary materials). External validation of the 411 

predictive model was constructed using outbreak data from 1969-1990 was also performed, by 412 

calculating the AUC of the model against the outbreak points from 1991-2008 as the validation 413 

set.  414 

In total, three ensemble models showing environmental suitability for S. exempta were 415 

generated: 1) a predictive local model using recent (1970-2000) environmental conditions for 416 

Kenya and Tanzania and outbreak data sub-sample from years 1969  to 1990, which was 417 

validated against more recent data (1991-2008); 2) a present-time local model for Kenya and 418 

Tanzania using all outbreak data (1969 to 2008) with three projections for three CO2 emission 419 

scenarios (A. SSP1-2.6; B. SSP3-7.0; and C. SSP5-8.5) between 2061-2080; and, 3) a Worldwide 420 

present-time model using all outbreak data (1969 to 2008). 421 

 When looking at the future-scenario models, it is sometimes difficult to determine 422 

which are new areas that are more or less suitable for S. exempta. To make it easier to 423 

visualise, we converted the future scenario model projections and the present time model 424 

(using all the outbreak data) into binary maps using the cut-off values, based on TSS, of each 425 

projection. Then we combined each future scenario model projection with the present time 426 

one to get a categorical map showing new suitable and non-suitable areas. 427 

 428 

Data availability statement 429 

The datasets generated during and/or analysed during the current study will be available in the 430 

DRYAD repository, after the manuscript is accepted [https://datadryad.org/stash/share/t-431 

EgQOweHgcOHQ_paK1ao6PQuRsnjkGCSh63_HD4n00] with DOI number 432 

[https://doi.org/10.5061/dryad.sbcc2fr9b]. 433 
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Figure legends 746 

Figure 1. Response of S. exempta presences and absences to the selected variables. Bioclim_07 747 

is temperature annual range, Bioclim_08 is mean temperature of the wettest quarter, 748 

Bioclim_13 is precipitation of the wettest month, Bioclim_15 is precipitation seasonality, and 749 

Bioclim_17 is precipitation of driest quarter. 750 

Figure 2. A) S. exempta present-time environmental suitability model for Kenya and Tanzania. 751 

Points are the occurrence points from the outbreak data used for the models; B) Land cover 752 
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map for Kenya and Tanzania (after 45). Maps were generated in R v.4.0.2 104 (https://www.r-753 

project.org/) using RStudio v.1.3.1093 (https://www.rstudio.com/). 754 

Figure 3. S. exempta future environmental suitability maps for Kenya and Tanzania for 3 755 

different CO2 emission scenarios and two different time periods. A) 2021-2040 SSP1-2.6, B) 756 

2021-2040 SSP3-7.0, C) 2021-2040 SSP5-8.5, D) 2061-2080 SSP1-2.6, E) 2061-2080 SSP3-7.0, 757 

and F) 2061-2080 SSP5-8.5. Gained areas are areas where the present-time model predicts as 758 

non-suitable, and the future-time model as suitable; lost areas are areas where the present-759 

time model predicts as suitable, and the future-time model as non-suitable. Maps were 760 

generated in R v.4.0.2 104 (https://www.r-project.org/) using RStudio v.1.3.1093 761 

(https://www.rstudio.com/). 762 

Figure 4. S. exempta present-time worldwide environmental suitability model. Grey areas 763 

represent uncertainty, calculated through MESS approach 48. The map was generated in R 764 

v.4.0.2 104 (https://www.r-project.org/) using RStudio v.1.3.1093 (https://www.rstudio.com/). 765 

Figure 5. Recorded worldwide S. exempta larval infestations and moth specimens (reproduced 766 

with permission after 22) overlapping figure 4 environmental suitability model. The map was 767 

generated in R v.4.0.2 104 (https://www.r-project.org/) using RStudio v.1.3.1093 768 

(https://www.rstudio.com/). 769 
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 776 

 777 

 778 

 779 

Tables 780 

VARIABLE NAME DESCRIPTION 

Bioclim 07 Temperature annual range 

Bioclim 08 Mean temperature of the wettest quarter 

Bioclim 13 Precipitation of the wettest month 

Bioclim 15 Precipitation seasonality 

Bioclim 17 Precipitation of driest quarter 

 781 

Table 1. Variables selected by the PCA for the S. exempta environmental suitability models. 782 

 783 

 784 
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 786 

 787 

 788 

 789 

 790 

 791 
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 792 

 793 

 794 

 795 

MODEL AUC TSS 

PREDICTIVE LOCAL MODEL  

(1969-2000) 

0.90 ± 0.01 0.62 ± 0.002 

 PRESENT-TIME LOCAL ALL DATA MODEL  

(1969-2008) 

0.88 ± 0.02  0.59 ± 0.003 

PRESENT-TIME GLOBAL ALL DATA MODEL  

(1969-2008)  

0.98 ± 0.03 0.99 ± 0.002 

 796 

Table 2. Internal evaluation statistics for the generated Species Distribution Models (SDMs) 797 

generated. AUC and TSS values are average values ± standard deviation for the algorithms 798 

used in the SDMs.  799 

 800 


