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Abstract—The upper boundary of time delay is often required
in traditional telesurgery control design, which would result in
infeasibility of telesurgery across regions. To overcome this issue,
this paper introduces a new control framework based on deep
deterministic policy gradient (DDPG) reinforcement learning
(RL) algorithm. The developed framework effectively overcomes
the phase difference and data loss caused by time delays, which
facilitates the restoration of surgeon’s intention and interactive
force. Kalman filter (KF) is employed to blend multiple surgeons’
commands and predict the final local commands, respectively.
The control framework ensures synchronization tracking per-
formance and transparency. Prior knowledge of time delay is
therefore not required. Simulation and experiment results have
demonstrated the merits of the proposed framework.

Index Terms—Telesurgery, deep deterministic policy gradient,
reinforcement learning, time delay.

I. INTRODUCTION

TELEOPERATION provides surgeons with the ability to
operate on the patient side remotely, where the human

intention can be transferred through communication channels
[1]–[4]. Teleoperation mechanism isolates surgeons from the
patient’s neighbouring, which fulfills the medical requirements
for diagnosis and treatment of infectious diseases [5] and
surgical operations [6].

Time delay induced by distanced communication is a critical
issue in the control design of telesurgery. Reported literature
focused on the time-delay stability of teleoperation, which can
be mainly categorized into wave-variable-based, predictive-
based and adaptive-based control (refer to the classic reviews
[7]–[9]). In specific, adaptive control based on universal ap-
proximation properties has shown great potential to handle
teleoperation systems with external disturbances [10]. Haptic
feedback with application to eye surgery was discussed in [11],
where a passivity-based approach with impedance parameter
optimization was used. It has been shown that time delay
in the communication channel is ideally less than 180ms
[12] in terms of realizing haptic communication. For cross-
regional teleoperation, prescribed-time control is possible to
overcome the large latency issue [13], [14]. However, prior
knowledge of time delays and their derivatives required in the
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Fig. 1. Dual DDPG-based multilateral telesurgery framework diagram (The
time step and the argument of variables are omitted).

aforementioned works is difficult to obtain in advance. Thus,
overcoming large latency without prior information is still an
open challenge.

Additionally, traditional telesurgery relies on the surgeon’s
full control of the robot on the patient’s side, which would
result in the surgeon’s fatigue and degrade the surgery per-
formance. To overcome this problem, introducing multiple
surgeons with separate interfaces could reduce subjective op-
eration errors effectively and therefore reduce the physical and
mental workload of each surgeon. The normalisation technique
was used to assign the authority weights in dual-user haptic
systems [15], which was further applied in the subsequent
teleoperation works [16], [17]. However, the above authority
factors are pre-determined as constants such that the incorrect
commands under large weights cannot be compensated for,
which would weaken the coordination role of the multiple
operators.

In this paper, we introduce a new deep RL based control
framework for multilateral telesurgery, where dual KFs are
utilized to blend surgeons’ commands online and predict the
final local signal on the remote side. The DDPG algorithm is
employed to generate the optimized policy, which corrects the
phase difference and data loss caused by unknown latency. The
contributions are twofold: 1) The developed control frame-
work enables the synchronization tracking and transparency
performance simultaneously for telesurgery systems; 2) Prior
knowledge of latency is not necessary in the multilateral
collaboration scenarios.

II. CONTROL DESIGN

The overall control framework is depicted in Fig. 1, where a
DDPG-based agent and a KF module are configured on local
and remote side, respectively. The KF module on the local side
fuses the multiple surgeons’ commands to generate smooth
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trajectories, while the KF on the remote side aims at filtering
the final command for the remote robot. DDPG-based agent
facilitates the reduction of phase difference caused by time
delay. It is noted that the variables in Fig. 1 are defined in
Cartesian space.

Surgeons’ position commands (i.e., xl1 and xl2) are firstly
fused in the KF module with the blended output (xlf ). A
DDPG-based agent (DDPG1) is then trained offline to add
the specific instantaneous bias into the delayed signal (xld)
depending on its velocity and acceleration, namely ẋld and
ẍld, in the presence of forward time delay Tl. The optimization
of DDPG1 is guided through the properly designed reward
function, which minimizes the instantaneous signal error xle.
The resulting signal xrc is then filtered through the second
KF module, which helps overcome the adverse effect caused
by the time step output in the neural networks. Furthermore, a
state feedback controller such as PID controller determines the
control torque for the remote robot, which updates the end-
effector state and interactive force (grouped by Xr = [xr fr])
of the remote robot online. The other DDPG-based agent
(DDPG2) is developed to enhance the transparency for the
overall teleoperation system, thereby providing operators with
estimated interactive forces and end-effector states in the
presence of backward time delay (Tr).

A. Kalman Filter Module

The KF modules at the local and remote side assume the
linear process system as:

ξijk = Aiξij(k−1) +Biuijk + ωik, ωik ∈ N (0,Wik), (1)

xijk = Cijξijk + vijk, vijk ∈ N (0, Rj
ik), (2)

where k ∈ N+ is the sample-step index with N+ being the
positive integers. The subscript i ∈ {l, r} stands for the local
and remote side, respectively. The superscript j ∈ {1, 2}
denotes operators 1 and 2 on the local side, which only works
for i = l. ξljk ≜ [xljk, ẋljk] and ξrk ≜ [xrck, ẋrck]. uijk is
the acceleration vector, ωik the process noise with covariance
Wik = E[ωikω

T
ik], Ai the state transition matrix, Bi the control

matrix, xijk the observed state, Cij the projection matrix, and
vijk the observation noise with covariance Rj

ik = E[vijkvT
ijk].

At each sample, the state estimation and correction are derived
by:

ξ∗ijk = Aiξ̂ij(k−1) +Biuijk, (3)

ξ̂ijk = ξ∗ijk +Kj
ik(xijk − Cijξ

∗
ijk), (4)

where ξ∗ijk is the state estimation, ξ̂ijk is the corrected state,
and Kj

ik is the Kalman gain expressed as:

Kj
ik = P j

i(k−1)C
T
ij [CijP

j
i(k−1)C

T
ij +Rj

ik]
−1, (5)

P j
ik = Ai(P

j
i(k−1) −Kj

ikCijP
j
i(k−1))A

T
i +Wik. (6)

In particular, the blended local command xlf is obtained
via track-to-track KF fusion such that

xlf = xl1k+(P 1
lk−P 12

lk )(P 1
lk+P 2

lk−P 12
lk −P 21

lk )−1(xl2k−xl1k)
(7)

where P 12
lk = (P 21

lk )T is the cross covariance matrix between
xl1k and xl2k, which is given by:

P 12
lk =(I −K1

lkCl1)AlP
12
l(k−1)A

T
l (I −K2

lkCl2)
T

+ (I −K1
lkCl1)Wl(k−1)(I −K2

lkCl2)
T (8)

where I is the identity matrix.

B. DDPG based Latency Compensator

In order to compensate for the latency, we adopt the same
DDPG structure for two agents at local and remote side,
which is composed of two neural networks, namely the deep
Q network (critic network) that estimates the value function
(9), and the policy network (actor network) that generates the
optimal action

Q̂i(sik, aik) =

NiQ∑
j=1

ϕj
ikσicj(sik, aik), µ̂i(sik) =

Niµ∑
j=1

θjikσiaj(sik),

(9)
where Q̂i(sik, aik) is the estimation of value function
Qi(sik, aik) for state sik and action aik = µi(sik) at the
kth sample. µ̂i(sik) is the estimation of optimal policy for
sik. NiQ and Niµ are the number of basis functions in the
output layer. ϕj

ik and θjik are the j-th network weights for the
output layer. σicj and σiaj are the basis functions for the critic
and actor networks, respectively. It is noted that the argument
of the variables will be omitted without specific emphasis
for simplicity. A dense model is used as the basis function
while the ReLu is chosen as the activation function for both
networks. Given the set of the whole weight parameters of
the critic network as ϕi, the following cost function can be
derived:

J(ϕi) =
1

Ni

Ni∑
k=1

(yik −Qi(sik, aik))
T
(yik −Qi(sik, aik)),

(10)
and

yik = rik + γiQ
t
i(si(k+1), µ

t
i(si(k+1))), (11)

where Ni is the number of transitions in the mini-batch
experience, rik is the immediate reward, and γi ∈ (0, 1) is the
discount factor. Qt

i and µt
i are the target value and policy. With

the gradient descent method, one can obtain the parameters
updated by minimizing (10)

ϕi ← ϕi − αQ
i ∇ϕi

J(ϕi) (12)

where αQ
i is the learning rate of the critic network. With the

same mini-batch experience to search for the optimal policy,
the actor network updates the parameters by approximating
the deterministic policy gradient [18]:

∇θiQi(si, ai) ≈
1

Ni

Ni∑
k=1

∇aik
Qi(sik, aik)∇θiµi(sik) (13)

where the set of the whole weight parameters of the actor
network is denoted by θi. Let αµ

i be the learning rate of the
actor network, the weight parameters of the actor network is
therefore updated by

θi ← θi − αµ
i ∇θiQi(si, ai). (14)
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Given that τ ≪ 1 is a positive constant, combining (12) and
(14) yields the weight parameters of the target critic and actor
networks softly updated by

ϕt
i ← τϕi + (1− τ)ϕt

i, θti ← τθi + (1− τ)θti . (15)

The reward function is defined as:

rνik =


−ri1Xν

iek
if Xν

iek
> ϵi1

ri2 if ϵi1 ≤ Xν
iek
≤ ϵi2

ri3 else
(16)

where the superscript ν ∈ N+ is the ν-th entry of the
corresponding vector. Xν

lek
≜ xν

lek
= |xν

rck
− xν

lfk
|, xrc is the

resulting signal on the remote side, and xlf is the filtered signal
generated on the local side. Similarly, Xν

rek
≜ |X̂ν

rk
− Xν

rk
|,

in which X̂r includes the post-compensation state and force
feedback by DDPG2. ϵi1 and ϵi2 are positive thresholds to
evaluate the tracking error. The reward parameters ri1 > 0,
0 < ri2 < ri3 can be predefined according to tasks.

Remark 1. The reward parameters and thresholds in (16)
can be user-defined according to synchronization tracking
and transparency requirements. ϵi1 and ϵi2 in the judging
condition represent the desirable accuracy in transient/steady-
state process, respectively, which are subject to measurement
accuracy. The reward parameters depend on the demand of
surgery requirements. In general, large ri1 and ri3 are required
to compensate for the phase difference.

Remark 2. The following procedures are summarized
when implementing the proposed dual DDPG algorithm in
telesurgery: (i) determine the KF system matrices, reward pa-
rameters and thresholds according to Remark 1, (ii) collect the
surgeon’s motor data (xlf ) and remote interaction information
(Xr), (iii) develop actor and critic networks and update the
network parameters as (9)-(15) on local and remote sides,
respectively.

III. SIMULATION AND EXPERIMENT

The control framework is firstly tested through simulation in
comparison with [19]. The remote manipulator is chosen as a
SCARA planar robot, while the local commands are generated
by dual 7-DoF Omega.7 interfaces (Force Dimension Inc.,
Switzerland). The parameters of both KFs are empirically
set as follows: Ai =

[
1 10−3

0 1

]
, Bi =

[
10−6/2 0

0 10−6/2

]
,

Wi0 =
[
10−12/36 10−10/12

10−10/12 10−8/4

]
, P j

i0 =
[
1015 0
0 1015

]
, Cij = [1, 0],

Rj
i0 = 10−6, ξi10 = [0,−0.21]T, ξi20 = [0, 0.09]T for

i ∈ {l, r} and j ∈ {1, 2}. To guarantee the safety requirements
of the experimental setup, we employ the local regression
using weighted linear least squares and polynomial model
before implementing xrf . Similarly with [19], [20], we select
the tissue damping and stiffness coefficients as D = 10N·s/m
and K = 250N/m for remote palpation, which is a key step
in clinical surgery. The critic network is composed of three
hidden layers with five neurons each, and one output layer
with two neurons, while the actor network one hidden layer
with three neurons. Adaptive Moment Estimation (ADAM) is
employed with the learning rate αQ

i = 0.01 and αµ
i = 0.01.

The discount factor is set as 0.99, mini-batch size 100, noise

variance 0.01, and variance decay rate 10−5. The RL agents
are trained using the generated trajectories for 20 episodes and
each episode consisting of 2000 steps, where each step size
is 0.01s. A boundary of [−1, 1] is set for the output of the
RL module. The agent is trained under random time delay in
the range of [0.1, 1]s. ϵi1 = 0.1, ϵi2 = 0.01, ri1 = ri3 = 10,
ri2 = 2 for i ∈ {l, r}.
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Fig. 2. Cartesian position tracking profiles.
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Fig. 3. Cartesian velocity tracking profiles.

The simulation results in the case of Tl = 0.5s are shown in
Figs. 2 and 3. We use the normalised root-mean-squared error
(NRMSE) to evaluate the degree of local intention restoration
quantitatively, with the xrc-xlf pair as example:

NRMSE(x#p
rc ) =

√
1
N

∑N
k=1(x

#p
rck − x#p

lfk)
2

max(x#p
lfk)−min(x#p

lfk)
(17)

where N = 2000. p ∈ {1, 2} denotes the x- and y-direction,
respectively. Comparative simulation results are summarized
in Tab. I, where the pairs xrc-xlf , ẋrc-ẋlf , and f̂r-fr are
tested in three latency cases, namely T1 = (0.3 + δ1)s,
T2 = (0.6 + δ2)s, T3 = (0.8 + δ3)s, δ1 ∼ N(0.1, 0.004),
δ2 ∼ N(0.2, 0.006), and δ3 ∼ N(0.2, 0.006).

We have also carried out experiments to validate the pro-
posed control framework. A KUKA iiwa 14 robot is used as
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the remote side controlled by dual 7-DoF Omega. 7 interfaces
via local area network (LAN). An additional 0.5s delay is
added to test the control performance. The filtered signal xlf

is sent to the remote robot through the Robot Operating System
(ROS). The control period for each loop is set as 5ms. The
experimental results including the end-effector position and
velocity are directly collected from the controller in real time,
as shown in Figs. 4 and 5.

TABLE I
PERFORMANCE METRICS UNDER BILATERAL CONTROLLER [19] AND THE

PROPOSED DUAL-DDPG (D-D) FRAMEWORK IN THREE CASES OF TIME
DELAYS.

NRMSE
Tl,Tr T1 T2 T3

[19] D-D [19] D-D [19] D-D

x#1
rc (m) 0.064 0.042 0.085 0.068 0.103 0.073

x#2
rc (m) 0.036 0.033 0.064 0.061 0.077 0.056

ẋ#1
rc (m/s) 0.132 0.095 0.294 0.081 0.292 0.098

ẋ#2
rc (m/s) 0.131 0.083 0.342 0.090 0.254 0.091
f̂#1
r (N) 0.064 0.044 0.108 0.087 0.127 0.105

f̂#2
r (N) 0.564 0.036 0.586 0.062 0.597 0.086

Fig. 4. Cartesian position tracking profiles in experiment.

Fig. 5. Cartesian velocity tracking profiles in experiment.

It can be observed from Tab. I that, compared with tradi-
tional bilateral control [19], the accurate restoration of the
less-delayed human command signal is realized with signif-
icant decrease in the instantaneous error. Fig. 4 shows the
effectiveness of the proposed approach in dealing with time
delays, where the end-effector of the remote robot can follow

the local position command in x and y coordinate without
phase difference. The corresponding RMSEs are 0.0192m and
0.0086m in terms of Cartesian position tracking. The velocity
tracking profile is depicted in Fig. 5, where the RMSEs of
the tracking errors in x and y coordinate are 0.0042m/s and
0.0014m/s, respectively.

IV. CONCLUSION

In this paper, a new control framework has been presented
for multilateral telesurgery. Based on Kalman filter and the
DDPG algorithm, the human command and interactive force
can effectively be transferred between the local and remote
side without phase difference, thereby eliminating the adverse
effect caused by unknown time delay. The prior knowledge of
time delay is not necessary to be known. The proposed frame-
work allows for multilateral collaboration to blend subjective
decisions, which enables the synchronization tracking and
transparency performance simultaneously. User assessment
and in-vivo telesurgery experiments with external disturbances
will be implemented in the future.
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