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Abstract 

As a result of recent developments, alkane derivatives have been used in many applications, 

including sensors for safety and security. This thesis provides a theoretical contribution to these 

developments by exploring molecular junctions formed from nearly 40 alkane derivatives 

including linear chains and rings. This study also employs 4 different anchor groups such as 

amine, thiol, direct carbon and thiomethyl.    

Within this thesis, I will provide a simple introduction to the theoretical tools used to explore 

electron transport through single-moelcule junctions. In Chapter 2, Density Functional Theory 

(DFT) and its applications within the SIESTA code will be discussed. This allows computation 

of ground state wave functions for molecules and provides the underlying Hamiltonians for 

molecular junctions which are used as a starting point for transport calculations.  Chapter 3, 

provides the theoretical framework that is used to calculate electron transport properties such 

as electrical conductance 𝐺 and thermopower 𝑆. This is based on Green’s and Dyson’s equation 

and is embodied in the   GOLLUM code, which is the second major tool used during in this 

thesis. In chapter 3, I present some solutions of Green’s functions for infinite and semi-infinite 

chains and the transmission coefficient equations that implemented in the GOLLUM code. 

Chapter 4 is the first results chapter in this thesis, which provides thorough and vigorous 

theoretical investigations about series of alkane chains using different anchor groups including 

amine (NH2), thiol (S), direct carbon contact (C), and thiomethyl (SMe). Thus, I demonstrate 

the impact of using different terminal groups on the electrical conductance of alkane molecules. 

As expected, the conductance of alkane chains decreases exponentially with length, regardless 

of the type of anchor groups. However, the precise value of the conductance differs from one 

anchor to another.  
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The theoretical predictions of the four anchors are checked against the STM measurements and 

are found to be well supported by the experimental measurements.         

 Chapter 5 is the second results chapter in my thesis, and investigates a series of alkane chains 

and their corresponding symmetric and asymmetric alkane rings were explored. The electrical 

conductance and Seebeck coefficient of three linear chains and six rings were investigated 

using DFT. Remarkably, I found that the conductances of the double-branched alkane rings 

were smaller than those of the corresponding individual chains and much smaller than the value 

predicted by Kirchhoff’s law. This result is well supported by previous published work.  The 

Seebeck coefficients of the rings were also higher than those of the corresponding chains, 

which is consistent with the presence of phase coherent tunnelling in the alkane rings. Further 

characterizations of asymmetric rings found that their conductances and Seebeck coefficients 

were between those of their corresponding shorter and longer chains. With the elongation of 

the longer chain, the conductance of the asymmetric ring became close to that of the shorter 

chain. This suppression of conductance in symmetric rings agrees with experimental results 

using the scanning tunneling microscope break junction (STM-BJ) method. 
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Chapter 1 

 

 
 

 1.1 Molecular electronics and thermopower 

 

Since Moore’s law was first proposed in 1965, thousands of studies have been carried out to 

seek ways to continue this historical trend. Over time, the length scale of electronic 

components, such as transistors, has become smaller and smaller, and is now approaching the 

nano or molecular scale [1]. The crucial challenges, both theoretical and experimental, in this 

area are the fabrication of devices at the sub-10 nm scale and the exploration of their properties. 

A reduction in the size of electronic components was proposed in 1974, when Aviram and 

Ratner suggested the substitution of silicon chips by molecules [2]; their idea provided the 

foundation for the field of molecular electronics. Since then, the efforts of experts from many 

disciplines combining experiment and theory has vastly expanded the field. A significant 

achievement has been the development of computational and modelling tools to obtain 

theoretical results which closely match experimental measurements. Meanwhile, the latest 

experimental techniques, such as scanning tunnelling microscopy (STM) break junctions [4], 

allow the investigation of the electronic properties of a single molecule. 

During the past couple of decades, the theory of molecular-scale electronics has further 

advanced, in part by comparing predictions of material-specific transport codes, such as 

SMEAGOL and GOLLUM [5, 6] with state-of-the-art experiments. Notable examples include 

studies of transport through long conjugated wires [7-10] graphene nanoribbons and graphene 

break junctions [11-25]. These studies have revealed the crucial role played by conformation 

[26, 27] and connectivity [28-30] in determining the electrical conductance of single molecules. 
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 More recently, theories of phonon transport at the nanoscale [31, 32] have been generalised to 

describe phonon transport at the molecular scale [33-35]. These studies highlight the role of 

electrodes in controlling phonon scattering at interfaces and suggests that exploration of 

alternative electrode materials such as platinum, palladium or even iron [36,37] may be a 

fruitful route to controlling the flow of heat at the molecular scale. In a more exotic direction, 

the use of superconducting electrodes is now being explored, in which superconducting 

interference effects associated with Andreev scattering [38-42] coexist with quantum 

interference effects associated with frontier orbitals in molecular-scale junctions [43,44].  

As well as explorations of electrical and thermal conductance, there has been much progress in 

understanding the thermoelectrical properties of single-molecule junctions [45-48], stimulated 

in part by reports of high Seebeck coefficients of order 161 μVK−1  for PEDOT: PSS organic 

films [49]. In this regard, thermoelectricity in fullerenes and nanotubes has led to the 

observation that the sign of the Seebeck coefficient in fullerenes and nanotubes can be switched 

by pressure, strain and inter-molecular interactions [50-55]. Interestingly, many of the quantum 

interference effects observed and predicted in single-molecule junctions are now being scaled 

up into self-assembled monolayers [56-58], leading to new thin-film materials, whose room-

temperature transport properties are controlled by quantum effects. These developments 

suggest that the field of single molecule electronics has a tremendous future for the design of 

new functional materials. 

 

 

 



1.2 Thesis outine 

In this thesis, I present the main equations and theoretical tools that constitute the foundation 

of these projects. In chapter 2, density functional theory as a method for solving the 

Schrödinger equation is reviewed. The Hohenberg-Kohn theorems and the Kohn-Sham ansatz 

are described. The functional forms of the exchange and correlation energy in the local density 

approximation and the generalized gradient approximation are explained. The SIESTA code is 

introduced along with some fine details of the calculations, such as the use of pseudopotentials 

and finite basis sets [59-62].  

In Chapter 3, I discuss single electron charge transport through molecules by introducing 

quantum transport theory, with some examples of how to calculate the transmission coefficient 

for different systems using the Hamiltonian and Green’s functions.  

In Chapter 4 I investigate a series of alkane chains using different linker groups including amine 

(NH2), thiol (S), direct carbon contact (C), and thiomethyl (SMe). In this chapter, I nominated 

8 molecules including 4 odd and 4 even number of -CH2 units, each with 4 different anchor 

groups (4 x 8). So, in total, I investigate 32 alkane chains. I found that the conductance of 

alkane chains decreases with length regardless to the type of linker groups, however, 

conductance values differ by changing the terminal group; (Au-C) conductance values were 

the highest, while (Au-Amine) yielded the lowest conductance values. For instance, 

conductances of C4, C5 and C6 were -1, -1.75 and -2.1 with (Au-C) respectively. Similarly, -3, 

-3.5 and -4.0 are for the same chains with (Au-Amine) respectively. Furthermore, according to 

the DFT simulations investigation, one could classify the anchor groups based on their 

conductance order directed carbon > thiol > thiolmethyl > amine. The DFT conductance 

prediction of the 4 anchors is well-supported by many STM experimental measurements [63-

76].   
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Chapter 5, is the second result chapter, where I investigated three even alkane chains C6, C8 

and C10 terminated with thiomethyl anchors. Their conductances decrease with increasing 

length and were found to be log10 𝐺 ≈ -3.7, -4.2 and -5.0. 

Furthermore, I analyzed symmetric and asymmetric rings formed from alkane chains. For 

symmetric rings, I selected three rings, namely C6C6, C8C8 and C10C10 and found that the C6C6 

ring has the highest conductance compared to C8C8 and C10C10. I found their conductances 

have a classical behaviour. In addition, for asymmetric rings, C6C8, C6C10 and C8C10, their 

patterns are not so different from the symmetric rings. The C6C8 ring has the smallest cavity, 

and comparing C6C8 with C6C10, it was found that the latter has the largest conductance. 

The most important and controversial prediction in this chapter is the validity of the Kirchhoff's 

law in the nano-scale structures. Surprisingly, the conductances of alkane chains were found to 

be higher than their corresponding ring conductances, which is in marked contrast with the 

behaviour of classical electrical conductors.  

Since this study includes, symmetric and asymmetric rings. I formed three families, based on 

the common branch C6, C8 and C10.  Family-6 consists of C6C6, C6C8 and C6C10, which 

possessed a non-classical trend. On the other hand, families-8 and -10, both follow a classical 

behaviour.  

This chapter also covers the thermoelectric properties such as the Seebeck coefficients of the 

studied molecules, which are found to vary inversely with their conductances.  To benchmark 

my theoretical models, I tested them against the STM measurements. I found that the DFT 

predictions and simulations are well supported by the STM measurements for the 9 alkane 

derivatives [77-82]. 

Finally, in chapter 6, I present the conclusions of this thesis and discuss future work. 
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Chapter 2 

 

Density Functional Theory 

This chapter introduces the density functional theory (DFT) formalism as well as the SIESTA 

DFT code, which is employed in all of the electronic structure computations in this thesis. 

The initial step in determining the molecule's electron transport characteristics is to use DFT 

to obtain a mean-field Hamiltonian. However, since the Hamiltonian only pertains to the 

isolated molecule, it must still be linked to semi-infinite leads to form a molecular junction, 

as described in the next chapter. 

2.1 Introduction 

It is necessary to have a reliable source of structural and electronic information in order to 

describe the behaviour of molecular electronic devices. In this chapter, I will give a brief 

summary of density functional theory (DFT) and the SIESTA (Spanish Initiative for Electronic 

Simulations with Thousands of Atoms) code [6], which I utilised extensively during my PhD 

studies as a theoretical tool for investigating both qualitatively and quantitatively the 

architectures of molecules, charge densities, and band structures. SIESTA is a collection of 

algorithms and a fully integrated software programme for performing DFT calculations on a 

large number of atoms (1000) in a matter of hours, days, or weeks. The fundamental principle 

of DFT is that every physical attribute of a complex system composed of several interacting 

particles can be represented as a function of the system's ground state density. The proof of the 

existence of such a functional was first presented by Hohenberg and Kohn [4] in 1964. 

However, the proof does not provide us any information on the shape of the functional. 

However, an ansatz proposed by Kohn and Sham [7] opened the door to applications for 

realistic physical systems. Since then, DFT has been a common tool in theoretical physics and 



molecular chemistry. This chapter will give an overview of the principles of DFT and all of its 

numerical applications. The literature is quite broad and deals with the subject with 

considerably more detail [1-3,8]. I will begin by outlining the several alternative approaches to 

the many body issue, and then I will demonstrate the Hartree-Fock technique and the 

Hohenberg-Kohn theorems, followed by a demonstration of the Kohn-Sham ansatz. Next, I 

distil the most often used functional forms, which are critical in applied numerical analysis. I 

also focus on localised base sets, pseudo-atomic orbits defining the number space of the Hilbert 

computations in this thesis, and Basis Set Superposition Error Correction (BSSE) and 

Counterpoise Correction (CP). 

2.2 The Schrödinger Equation and Variational Principle 

The Schrödinger equation, which is time independent and non-relativistic, may be used to 

describe any non-relativistic multi-particle system: 

 

H𝜓𝑖(𝑟1, 𝑟2, … , 𝑟𝑁 , �⃗⃗�1, �⃗⃗�2, … , �⃗⃗�𝑀

= 𝐸𝑖𝜓𝑖(𝑟1, 𝑟2, … , 𝑟𝑁 , �⃗⃗�1, �⃗⃗�2, … , �⃗⃗�𝑀) 

 

                                 (2.1) 

 

In the above equation  𝜓𝑖  is the wavefunction of the  𝑖𝑡ℎ molecular orbital of the system, 𝑟𝑖 is 

the position of i-th electron, 𝑅𝐼is the position of I-th nucleus, 𝐸𝑖 is the energy of the state and 

𝐻 is the Hamiltonian operator of a system consisting of  N-electrons and M-nuclei that contains 

the interaction of particles with each other. The Hamiltonian operator of such a system can be 

written as a sum of five terms given by [4, 5, 7, 11, 13, 40, 41]. 
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𝐻 = −
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𝑁
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⏞                
𝑈𝑒𝑛
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𝑁

𝑖≠𝑗
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8𝜋𝜀𝑜
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𝑀

𝑛≠𝑛′

𝑀

𝑛=1

⏞                    
𝑈𝑛𝑛

 

            (2.2) 

 

Where 𝑖 and 𝑗 denote the N-electrons while 𝑛 and 𝑛  run over the M-nuclei in the system, 𝑚𝑒 

and 𝑚𝑛 are the mass of electron and nucleus respectively, 𝑒 and 𝑍𝑒 are the electron and nuclear 

charge respectively. The position of the electrons and nuclei are denoted as 𝑟𝑖⃗⃗⃗  and �⃗⃗�𝑛  

respectively, and  𝛻2 is the Laplacian operator, in Cartesian coordinates is defined as 

𝛻𝑖
2 =

𝜕2

𝜕𝑥𝑖
2 +

𝜕2

𝜕𝑦𝑖
2 +

𝜕2

𝜕𝑧𝑖
2 

According to equation (2.2), the terms, 𝑇𝑒 is the kinetic energy of electrons, while 𝑇𝑛  is denoted 

as kinetic energy of nuclei in the system. Additionally, the last three terms describe the potential 

part of the Hamiltonian; the term 𝑈𝑒𝑛 represents the attractive electrostatic interaction between 

nuclei and electrons in the system. The electron-electron(𝑈𝑒𝑒) and nuclear-nuclear (𝑈𝑛𝑛) are 

the repulsive part of the potential respectively [1, 6, 7, 11, 40] 

We can separate the Hamiltonian (Equation 2.2) into two parts. The first part contains the 

kinetic terms of the nuclei and the repulsive electrostatic potential between the nuclei and the 

attractive potential felt by the electrons due to the positively charged nuclei. This part is 

system specific and will determine the geometric properties of the physical problem. The 

second part of the Hamiltonian contains terms which only depend on the electrons. This part 
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file:///C:/Users/alotaibt/Desktop/My_Thesis/Chapters2&amp;3.docx%23_ENREF_3
file:///C:/Users/alotaibt/Desktop/My_Thesis/Chapters2&amp;3.docx%23_ENREF_6
file:///C:/Users/alotaibt/Desktop/My_Thesis/Chapters2&amp;3.docx%23_ENREF_13


is universal in all problems. Hence, we can rewrite the Hamiltonian for the electronic degrees 

of freedom as: 

𝐻 = ∑𝑉𝑒𝑥𝑡 (𝑟𝑖
𝑖

⏞      
)

𝑛𝑢𝑐𝑙𝑒𝑖−𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 

−
ℏ2

2𝑚𝑛
∑𝛻𝑖

2

𝑖

⏞      
+

𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑡𝑒𝑟𝑚

1

8𝜋𝜀𝑜
∑

𝑒2

|𝑟𝑖⃗⃗⃗ − 𝑟�⃗⃗⃗�|𝑖≠𝑗

⏞          
𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛−𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛

               (2.3) 

Where 𝑉𝑒𝑥𝑡 contains the system-specific nuclei terms from Eq. 2.2. Working with Hartree 

atomic units are convenient. This means that in the following, we adopt the convention that the 

length scale is set by the hydrogen atom's Bohr radius,𝑎𝑜 , the energy scale is set by the 

hydrogen atom's ground state, the mass scale is set by the electron mass, me, the charge scale 

is set by the electron's elementary charge, e, the angular momentum scale is set by the reduced 

Planck's constant, ħ, and the electric force scale is set by 
1

4𝜋𝜀𝑜
. 

We can compute any physical quantities we are interested in after solving the Schrödinger 

equation 2.1 and obtaining the wave function, 𝜓, However, even on a contemporary 

supercomputer, diagonalization of the general issue is essentially unfeasible for small system 

sizes-merely a handful of atoms.  

In fact, solving the full Hamiltonian represented by (2.2) is impossible for a system consisting 

of a large number of electrons and nucleons except the hydrogen atom. Therefore, we should 

find some mathematical approximations to reduce the degree of freedom of a system. One of 

the important approximations is Born-Oppenheimer approximation that will be discussing in 

detail in the following section. 

2.3 Born-Oppenheimer approximation 

We know already the solution of Schrödinger equation represented in 2.1 with Hamiltonian 

shown in 2.2 is a wavefunction of all the electrons and nucleons. Since we know finding this 

wavefunction for a complicated system is impossible. Born and Oppenheimer, however, have 
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shown it is possible to get that wavefunction as solution of many-body Hamiltonian 2.2 by 

dividing the Hamiltonian into independent effective electron and nucleon parts which can be 

solved independently. Since we know that the mass of nucleons is about 2000 times larger than 

mass of electrons. Therefore, relaxation of the electrons is faster than the nucleons into their 

ground states. So, we can consider nucleons as fixed within the relaxation time of the electrons. 

Moreover, the wavefunctions of nucleons could be assumed to be independent of the electron's 

positions. In this case, we can write the solution of 2.1 could be written as the product of an 

independent nucleon wavefunction 𝜒 and an electron wavefunction 𝜙  

ψ(𝑟𝑖,𝑅𝐼) = 𝜒(𝑅𝐼) 𝜙(𝑟𝑖,𝑅𝐼)                                                                                                    (2.4) 

By compensating 2.5 and 2.3 in 2.1 

𝜒(𝑅𝐼)  ∑ (− 
ℏ2

2 𝑚𝑖

𝑁
𝑖=1  ∇𝑖

2)𝜙(𝑟𝑖,𝑅𝐼)+ ∑ (− 
ℏ2

2 𝑀𝐼

𝑀
𝐼=1  ∇𝐼

2) 𝜒(𝑅𝐼) 𝜙(𝑟𝑖,𝑅𝐼)+

 𝜒(𝑅𝐼)  
1

4 𝜋 𝜀0
 
1

2 
 ∑  

𝑒2

|𝑟𝑖−𝑟𝑗|
𝑁
𝑖≠𝑗 𝜙(𝑟𝑖,𝑅𝐼)+ 

1

4 𝜋 𝜀0
 
1

2 
 ∑  

𝑒2𝑍𝐼𝑍𝐽

|𝑅𝐼−𝑅𝐽|
𝜒(𝑅𝐼) 𝜙(𝑟𝑖,𝑅𝐼)−

𝑀
𝐼≠𝐽

 
1

4 𝜋 𝜀0
  ∑  

𝑒2𝑍𝐼
|𝑟𝑖−𝑅𝐽|

𝜒(𝑅𝐼) 𝜙(𝑟𝑖,𝑅𝐼) = 𝐸 𝜒(𝑅𝐼) 𝜙( 𝑟𝑖,𝑅𝐼) 
𝑁𝑀
𝑖𝐼=1                                                         (2.5) 

The second term in 2.6 can be expanded using the product rule of a differential operator 

 ∇𝐼
2[ 𝜒(𝑅𝐼) 𝜙(𝑟𝑖,𝑅𝐼)]= 𝜒(𝑅𝐼)∇𝐼

2
 𝜙(𝑟𝑖,𝑅𝐼)+2 ∇𝐼 𝜒(𝑅𝐼) ∇𝐼 𝜙(𝑟𝑖,𝑅𝐼) + 𝜙(𝑟𝑖,𝑅𝐼)∇𝐼

2𝜒(𝑅𝐼)          (2.6) 

From the equation 2.7, we see that the first term, the variation of the electronic wavefunction 

as a function of the nucleon position, equals zero duo to the nucleons are considered to be 

stationary within the relaxation time of the electrons. For the second term, it is the electron-

phonon interaction which can be zero if we assume that we have a low temperature. Of 

course, we have only one term in the equation 2.7. By substituting 2.7, only one term, in the 

full Schrödinger equation 2.6. 

If we are going to introduce a new term, an effective Hamiltonian 𝐻𝑒 that describes only the 

electron's motion by assuming the nuclei are stationary. 



𝐻𝑒 = ∑ (− 
ℏ2

2 𝑚𝑖

𝑁
𝑖=1  ∇𝑖

2) +
1

4 𝜋 𝜀0
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𝑁
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𝑁𝑀
𝑖𝐼=1                                   (2.7) 

{𝐻𝑒𝜙(𝑟𝑖,𝑅𝐼) + ∑  𝜙(𝑟𝑖,𝑅𝐼)(− 
ℏ2

2 𝑀𝐼

𝑀
𝐼=1  ∇𝐼

2) + 
1

4 𝜋 𝜀0
 
1

2 
 ∑  

𝑒2𝑍𝐼𝑍𝐽

|𝑅𝐼−𝑅𝐽|
 𝜙(𝑟𝑖,𝑅𝐼)}  𝜒(𝑅𝐼) =

𝑀
𝐼≠𝐽

𝐸 𝜒(𝑅𝐼) 𝜙( 𝑟𝑖,𝑅𝐼)                                                                                                                   (2.8) 

And an effective Schrödinger equation could be written as following  

 𝐻𝑒 𝜙 = 𝐸𝑒 𝜙                                                                                                                        (2.9) 

Similarly, we introduce the nucleon Hamiltonian 𝐻𝑁 that has only kinetic and interaction 

terms of the nucleon 

𝐻𝑁 = ∑ (− 
ℏ2

2 𝑀𝐼

𝑀
𝐼=1  ∇𝐼

2) −
1

4 𝜋 𝜀0
 
1

2 
 ∑  

𝑒2𝑍𝐼𝑍𝐽

|𝑅𝐼−𝑅𝐽|
 𝑀

𝐼≠𝐽                                                                  (2.10) 

And a nucleon Schrödinger equation could be written as following  

𝐻𝑁 𝜒 = 𝐸𝑁 𝜒                                                                                                                       (2.11) 

The total energy of the system is simply the sum of the two energies 

𝐸 = 𝐸𝑒 + 𝐸𝑁                                                                                                                       (2.12) 

It is clear that the Born-Oppenheimer approximation allows to us to separate the full 

Hamiltonian of the system which has M nuclei and N electrons into two Hamiltonian, the 

effective(electron)Hamiltonian represented by the equation 2.8 and the nucleon Hamiltonian 

shown in the equation 2.11. By using the DFT, we solve first the electron Hamiltonian, after 

that we deal the nucleon Hamiltonian as equation of motion classically. Right now, I am 

going to show some methods and approximations mathematically how to use the DFT to 

calculate the electron (effective) Hamiltonian. 
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2.4 The Hohenberg-Kohn Theorems 

P. Hohenberg and W. Kohn demonstrated in 1964 [4] that there is a relationship between the 

ground state energy and the density, 𝜌(𝑟) ,of an interacting electron system. The Hohenberg-

Kohn theorems are two simple but strong statements: 

a) The external potential, 𝑉𝑒𝑥𝑡, is a density-specific functional (𝑟). Given that 𝑉𝑒𝑥𝑡 fixes the 

system's Hamiltonian, 𝐻, it is obvious that the complete many-body ground state is a unique 

functional of  𝜌(𝑟). 

 b)   The ground state, 𝐸𝐻𝐾  , is a ground state density  𝜌(𝑟).  

It is a straightforward matter of reduction ad absurdum to demonstrate the validity of the first 

theorem presented above. Assume we have two external potentials, 𝑉𝑒𝑥𝑡
1  and 𝑉𝑒𝑥𝑡

2 , that vary by 

a constant. Assume that the two external potentials provide the same ground-state density 𝜌(𝑟). 

Each system's Hamiltonians are designated by   𝐻(1) and  𝐻(2)  and, since they vary, they will 

have distinct ground-state wavefunctions,  𝜓(1) and 𝜓(2).  We have  𝜓(2) since it is not a ground 

state of 𝐻(1), we have: 

 

Similarly: 

The simplified assumption is that our ground states are non-degenerate. The problem has been  

𝐸(1) = 〈𝜓(1)|𝐻(1)|𝜓(1)〉〈𝜓(2)|𝐻(1)|𝜓(2)〉       (2.13) 

𝐸(2) = 〈𝜓(2)|𝐻(2)|𝜓(2)〉〈𝜓(1)|𝐻(1)|𝜓(1)〉      (2.14) 

 



formulated to incorporate degeneracies in the literature [13, 42]. We can rewrite equation 2.15: 

Also, equation 2.16: 

When we combine equations 2.16 and 2.17, we get the following contradiction:  

𝐸(1) + 𝐸(2) < 𝐸(1) + 𝐸(2) 

Two or more potentials may vary by no more than a constant and can produce the same ground-

state density, hence it is impossible for there to be two such potentials. 

The second theorem is just as easy to prove as the first. Consider the following equation for the 

system's total energy, 𝐸: 

The kinetic term,  𝑇 and internal interaction of the electrons,  𝐸𝑖𝑛𝑡 , are, by definition, universal. 

Consider a system with a ground-state density of  𝜌𝑜 , an external potential of   𝑉𝑒𝑥𝑡  , and a 

wavefunction of  𝜓0 . According to the first theorem,  𝜌𝑜 determines the Hamiltonian, therefore 

for any density and wave function, 𝜓, other than the ground state, we get: 

 

〈𝜓(2)|𝐻(1)|𝜓(2)〉 = 〈𝜓|𝐻(2)|𝜓(2)〉〈𝜓(2)|𝐻(1) − 𝐻(2)|𝜓(2)〉                                                                                   

= 𝐸(2) + ∫ 𝑑𝑟 (𝑉𝑒𝑥𝑡
(1)(𝑟) − 𝑉𝑒𝑥𝑡

(2)(𝑟)) ρo (r)                                                        

       

〈𝜓(2)|𝐻(1)|𝜓(2)〉 = 𝐸(2) + ∫ 𝑑𝑟 (𝑉𝑒𝑥𝑡
(1)(𝑟) − 𝑉𝑒𝑥𝑡

(2)(𝑟)) 𝜌𝑜 (𝑟)  
 

𝐸(𝜌) = 𝑇(𝜌) + 𝐸𝑖𝑛𝑡(𝜌) + ∫ 𝑑𝑟𝑉𝑒𝑥𝑡(𝜌)(𝑟)           (2.17) 

 

2.15 

2.16 
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This reduces the functional density of the ground, 𝜌𝑜, equation 2.19. As a result, if we know 

the functional:  𝑇(𝜌) + 𝐸𝑖𝑛𝑡(𝜌)  , we can extract the ground-state of the system and compute 

all ground-state attributes by minimising equation 2.19. 

2.5 The Kohn-Sham Theorems 

We have already shown that by acquiring the ground-state density, we can calculate the ground-

state energy, and it is theoretically possible to compute the ground-state energy by getting the 

ground-state density. The precise form of the functional indicated in equation 2.10, however, 

is unknown. The kinetic term as well as the internal energy of the interacting electrons cannot 

be represented as a function of density in general. The solution was introduced by Kohn and 

Sham in 1965 [7].   

The original Hamiltonian can be substituted, according to Kohn and Sham, with an effective 

Hamiltonian of non-interacting particles, with a real external potential having the same ground-

state density as the original system. Because this is not a defined recipe, it is merely an ansatz, 

but a non-interacting problem is far easier to resolve. Contrary to equation 2.10, the functional 

energy of the ansatz Kohn-Sham will have the formula: 

𝑇𝐾𝑆  is the non-interacting system's kinetic energy. The kinetic energy of the interacting system 

was employed in equation 2.19.  𝑇 the distinction is known as the exchange correlation 

functional, 𝐸𝑥𝑐 , equation 2.22. 

𝐸𝑜 = 〈𝜓0|𝐻|𝜓0〉  <  〈𝜓|𝐻|𝜓〉 = 𝐸          (2.18) 

 

𝐸𝐾𝑆(𝜌) =  𝑇𝐾𝑆(𝜌) + +∫ 𝑑𝑟𝑉𝑒𝑥𝑡(𝑟)𝜌(𝑟) + 𝐸𝐻(𝜌) + 𝐸𝑥𝑐(𝜌)              (2.19) 



The Hartree functional, 𝐸𝐻 , represents the electron-electron interaction using the Hatree-Fock 

method and has the following form: 

This is a roughly 𝐸𝑖𝑛𝑡  version, as previously defined. Again,  𝐸𝑥𝑐 refers to the difference. As 

a result, the exchange correlation functional,  𝐸𝑥𝑐 , represents the difference between the exact 

and approximation solutions to the kinetic energy term and the electron-electron interaction 

term. Its definition is as follows: 

In practice, the first three functionals of equation 2.22 are easily defined and account for the 

majority of the contribution to ground-state energy. In comparison, the exchange correlation 

functional makes a minor contribution. Despite decades of investigation, there is no exact 

remedy. The next part discusses several excellent approximations that have been developed. 

2.6 The Exchange Correlation Functionals 

Several modifications on the exchange and correlation energy have been published in the 

literature. The first successful form was the Local Density Approximation (LDA) [29, 30], 

That depends on the density only, and hence is functional locally. Then the next step was the 

Generalized Gradient Approximation (GGA) [18-21], Including the density derivative, it also 

includes neighbourhood information and is thus semi-local. One of the most commonly used 

approximations in density functional theory is LDA and GGA. 

         𝐸𝐻(𝜌) =  
1

2
∫
𝜌(𝑟)𝜌(𝑟′)

|𝑟 − 𝑟′|
 𝑑𝑟𝑑𝑟′ 

                 (2.20) 

                                           (2.14)                       

 

𝐸𝑥𝑐(𝜌) =  (𝐸𝑖𝑛𝑡(𝜌) − 𝐸𝐻(𝜌)) + (𝑇(𝜌) − 𝑇𝐾𝑆(𝜌))           (2.21) 
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LDA and GGA can't be considered the only possible functionals. Some of these functionals are 

tailored to fit specific needs of basis sets used in solving the Kohn-Sham equations, equation 

2.12 and a large category is the so-called hybrid functionals (e.g. B3LYP [43], HSE [35] and 

Meta hybrid GGA [34, 36]), which combine the LDA and GGA forms. 

One of the most recent and universal features, the Van der Waals density functional (vdW-DF) 

[37], contains non-local terms and has proven to be very accurate in systems where dispersion 

forces are important [38, 39]. 

Following sections will provide a brief introduction to the Local Density Approximation and 

the Generalized Gradient Approximation. 

2.6.1 Local Density Approximation (LDA) 

 

The exchange correlation functional in LDA simply depends on the local density. This 

approximation can be expected to produce satisfactory results for systems where the density 

does not change too rapidly. 

In some ways, the LDA is the most basic representation of the exchange and correlation energy. 

It is a basic yet powerful functional, and it is known to be correct for graphene and carbon 

nanotubes, as well as where the electron density is not changing rapidly. For example, for atoms 

that have d and f-type orbits, a bigger inaccuracy is expected. But LDA has numerous 

drawbacks: the band gap in semiconductors and insulators is sometimes underestimated with a 

significant inaccuracy, for example. So, it is advisable to try to improve the functionality. 

2.6.2 Generalized Gradient Approximation (GGA) 

 

When derivatives are included in the functional form of the exchange and correlation energies 

the GGA is obtained. In this condition there is no closed form for the functional exchange, so 

analytical solutions have to have been used to calculate the correspondence contributions. Just 



as in the case of the LDA there exist many parameterizations for the exchange and correlation 

energies in GG [17- 20]. 

For the approximation of exchange-correlation energies in the DFT, LDA and GGA are two of 

the most widely utilized approximations. Several functionalities, beyond LDA and GGA, are 

also provided. Tests are performed on diverse materials to test functional properties for a wide 

range of systems and then statistical comparisons are performed to establish valid data. 

2.7 Pseudopotentials 

I have demonstrated how to transform a huge interacting problem into an effective non-

interacting problem using the Kohn Sham formalism and an exchange-correlation functional. 

This greatly simplifies the situation from a physical point of view. When molecules with a 

significant number of atoms are involved, however, the calculation becomes too massive and 

computationally intensive to use. By introducing pseudopotentials, the number of core 

electrons in an atom can be reduced. Pseudopotentials were first introduced by Fermi in 1934 

[14, 15] and since then methods have evolved from creating not so realistic empirical 

pseudopotentials [16, 22] to more realistic ab-initio pseudopotentials [24, 27]. 

Electrons can be classified into two types: core and valence.  Valence electrons occupy the 

outermost shells of an atom while core electrons are those occupying the innermost shells. As 

long as core electrons are restricted around the nucleus, the only valence electron states overlap 

when atoms are brought together. This makes it possible to remove the core electron and 

replace it with a pseudopotential that allows the valence electrons to still be screened as if the 

core electrons are still present. This dramatically lowers the number of electrons in a system 

and reduces the time and stored properties of molecules that contain a significant number of 

electrons. 
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2.8 SIESTA  

For the purpose of this thesis, all DFT calculations were performed using the SIESTA (Spanish 

Initiative for Electronic Simulations) package. It is used for obtaining the relaxed geometry of 

the given structures as well as to perform calculations to explore their electronic characteristics. 

SIESTA is a self-consistent density functional theory code that enables efficient calculations 

to be performed using norm-conserving pseudo-potentials and linear combination of atomic 

orbital (LCAO) basis sets  [46]. Additional theoretical information regarding the SIESTA code 

and what it enables can be found in [47, 48]. DFT simulations can be performed in two distinct 

modes, namely a standard self-consistent field diagonalisation technique used for solving the 

Kohn-Sham equations and a second technique in which a modified energy functional is directly 

minimised [49]. The following sections will present a description of specific components of 

SIESTA as well the process by which they are implemented in the code.   

2.9 Conclusion 

 In summary, density functional theory (DFT), as a method for solving the Schrödinger 

equation has been reviewed, and the Hohenberg-Kohn theorems and the Kohn-Sham ansatz 

have been explained. In addition, the functional forms of the exchange and correlation energy 

in the local density approximation and the generalized gradient approximation are illustrated. 

Finally, the SIESTA code was introduced, along with some fine details of the calculations, 

such as the use of pseudopotentials. 
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Chapter 3 

 

Theory of Quantum Transpor 

 

Chapter 2 discussed density functional theory, which is a method for determining the electrical 

structure of an isolated molecule. The next step is to connect this isolated molecule to semi-

infinite leads and compute the transmission coefficient across a system. My methodology is 

based on the Green's function scattering formalism, discussed in this chapter and used 

throughout the thesis. 

By combining scattering theory and Green's functions, we describe the electric and 

thermoelectric characteristics of nanoscale systems sandwiched between a number of 

macroscopic sized electrodes. 

3.1 Introduction 

This chapter begins with a brief overview of the Landauer formula . After that, as an example,  

I discuss a one-dimensional tight-binding chain, along with its retarded Green's function. 

Thereafter, I show that the Green's function and Dyson's equation are directly related to the 

transmission coefficient of scattering region by breaking the periodicity at a single 

connection. Using these methods, we will calculate the transmission coefficients of mesoscopic 

conductors having arbitrarily complex geometries. The fundamental assumption underlying 

this approach, is that the system is described by a time-independent mean-field Hamiltonian 

and that inelastic scattering within the scattering region is negligible, so that the energy 𝐸 of 

an electron passing through the scattering region is conserved. 



3.2 Landauer formula and thermoelectric coefficient  

Seebeck, Peltier and Thompson developed the relationship between heat, current, temperature 

and voltage at the turn of the 19th century [1]. The Seebeck effect explains the production of 

electrical current as a result of a temperature difference, while the Thompson and Peltier effects 

explain the cooling or heating of a current-carrying conductor [2]. A deeper mechanism can be 

imagined where a temperature difference is ∆T and a voltage differecne ∆𝑉 occurs in the 

system that causes heat and charge fluctuations. For heat (𝒬) and charge (𝐼) currents in the 

linear response regime, the common Landauer-Büttiker formulas can be generalised to 

determine the thermoelectric coefficients of a device with two terminals. The system is 

composed of a scattering region that is connected to two leads, which are themselves connected 

to a pair of electron reservoirs. These left (𝐿) and right (𝑅) reservoirs are assigned chemical 

potentials  𝜇𝐿 and 𝜇𝑅, temperatures T𝐿 and T𝑅. 

The electron current (I) and heat current ( Q.) [3-5] caused by electrons can be expressed as 

follows:   

 

                                  

 

 

 

 

Here, 𝑇(𝐸) is the transmission coefficient, 𝑓𝐿,𝑅(𝐸) is the Fermi –Dirac distribution and takes 

this formula  𝑓𝐿(𝐸) =
1

𝑒

𝐸−𝜇𝐿
𝑘𝐵𝑇 +1

 , 𝑓𝑅(𝐸) =
1

𝑒

𝐸−𝜇𝑅
𝑘𝐵𝑇 +1

  , (chemical potential ) 𝜇𝐿 = 𝐸𝐹 + 𝑒 𝑉𝑏/2  

and 𝜇𝑅 = 𝐸𝐹 − 𝑒 𝑉𝑏/2 . 

(3.1) 

(3.2) 

= 
2𝑒

ℎ
∫  𝑑𝐸 𝑇(𝐸)[ 𝑓𝐿(𝐸) − 𝑓𝑅(𝐸)]
∞

−∞
        I   

 

 Q.  =  
2

ℎ
∫  𝑑𝐸 (𝐸 − 𝐸𝐹) 𝑇(𝐸)[ 𝑓𝐿(𝐸) − 𝑓𝑅(𝐸)]
∞

−∞
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In addition, 𝑇 is the temperature, 𝑘𝐵 is Boltzmann’s constant and 𝑒 is the charge of an 

electron.  

Applying Taylor expansion of 𝑓𝐿,𝑅(μ, T) at μ = 𝐸𝐹 , 𝑇 =   
𝑇𝐿+𝑇𝑅

2
   and in the case of small 

temperature difference and bias with respect to the first order only. 

𝑓𝐿(𝜇𝐿 , 𝑇𝐿) = 𝑓 (𝐸𝐹, 𝑇) +
𝜕𝑓(𝐸𝐹,𝑇)

𝜕μ
(𝜇𝐿 − 𝐸𝐹) +

𝜕𝑓(𝐸𝐹,𝑇)

𝜕T
(𝑇𝐿 −  𝑇)                                       (3.3) 

𝑓𝑅(𝜇𝑅 , 𝑇𝑅) = 𝑓 (𝐸𝐹, 𝑇) +
𝜕𝑓(𝐸𝐹,𝑇)

𝜕μ
(𝜇𝑅 − 𝐸𝐹) +

𝜕𝑓(𝐸𝐹,𝑇)

𝜕T
(𝑇𝑅 −  𝑇)                                     (3.4) 

Using the last two equations 

𝑓𝐿 − 𝑓𝑅 =
𝜕𝑓(𝐸𝐹,𝑇)

𝜕μ
(𝜇𝐿 − 𝜇𝑅) +

𝜕𝑓(𝐸𝐹,𝑇)

𝜕μ
(𝑇𝐿 − 𝑇𝑅)                                                               (3.5) 

            = −(
𝑑𝑓(𝐸)

𝑑𝐸
)
μ=𝐸𝐹,𝑇

 (𝑒 ΔV) − (
𝑑𝑓(𝐸)

𝑑𝐸
)
μ=𝐸𝐹,𝑇

 
𝐸−𝐸𝐹

𝑇𝜊
 (ΔT) 

Next, I am going to compensate the equation (3.5) in the equations (3.1) and (3.2). 

𝐼 =  
2𝑒

ℎ
∫  𝑑𝐸𝑇(𝐸)[−(

𝑑𝑓(𝐸)

𝑑𝐸
)
μ=𝐸𝐹,𝑇

 ((𝑒 ΔV) + 
𝐸−𝐸𝐹

T
 (ΔT)) ]

∞

−∞
                                         (3.6) 

Q. = 
2

ℎ
∫  𝑑𝐸 (𝐸 − 𝐸𝐹)𝑇(𝐸)[− (

𝑑𝑓(𝐸)

𝑑𝐸
)
μ=𝐸𝐹,𝑇

 ((𝑒 ΔV) + 
𝐸−𝐸𝐹

T
 (ΔT)) ]

∞

−∞
                         (3.7) 

Let me introduce a new term 𝐿𝑛 : 

𝐿𝑛 = ∫ (𝐸 − 𝐸𝐹)
𝑛 𝑇 (𝐸) (−

𝜕𝑓(𝐸,𝑇)

𝜕𝐸
)𝑑𝐸  

∞

−∞
                                                                         (3.8)       

Now, equations (3.6) and (3.7) could be written as following  

𝐼 =  
2𝑒

ℎ
[
𝐿1

𝑇
  (ΔT) + 𝑒 𝐿0(∆V)]                                                                                               (3.9) 

Q. = 
2

ℎ
[
𝐿2

𝑇
 (ΔT) + 𝑒 𝐿1(∆V)]                                                                                             (3.10) 



Now, I can express equations (3.9) and (3.10) in a matrix as following: 

( I
Q.
) =

2

ℎ
 (
e2𝐿0

e

𝑇
𝐿1

e 𝐿1 
1

𝑇
𝐿2
) (∆V

∆T
 )                                                                                            (3.11) 

Again, it is considered that Fermi level of the whole system in the equilibrium, therefore, μ =

𝐸𝐹 , 𝑇 =   
𝑇𝐿+𝑇𝑅

2
 

Now, I am going to discuss special cases of equation (3.11). First, in case of ΔT = 0, then,  

𝐺 = (
2 e2

ℎ
) 𝐿0     (𝐺 = (𝐼/ 𝑉) is electrical conductance and h is the Plank’s constant)    (3.12)                                                  

           = (
2 e2

ℎ
) ∫  𝑇 (𝐸) (−

𝜕𝑓(𝐸,𝑇)

𝜕𝐸
) 𝑑𝐸 

∞

−∞
                                                                         (3.13) 

    Secondly, when 𝑇 goes to zero ( 𝑇 → 0)                 

lim
𝑇→0

(−
𝜕𝑓(𝐸,𝑇)

𝜕𝐸
) = 𝛿 (𝐸 − 𝐸𝐹)                                                                                            (3.14)     

From equations (3.12 and 3.14) 

      𝐺 =  (
2 e2

ℎ
) ∫  𝑇(𝐸) 𝛿 (𝐸 − 𝐸𝐹) 𝑑𝐸 

∞

−∞
                                                                        (3.15) 

By using the mathematical delta function formula 

∫  𝑓(𝑥) 𝛿 (𝑥 − 𝑎) 𝑑𝑥 =  𝑓(𝑎) 
∞

−∞
                                                                                       (3.16) 

From equations (3.15 and 3.16), I obtain the Landauer formula 

       𝐺 =  𝐺0 𝑇(𝐸𝐹)                                                                                                            (3.17) 

 Where 𝐺0 is the quantum of conductance  𝐺0 =
2𝑒2

ℎ
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A third special case of equation (3.11) occurs when total electron current 𝐼 = 0, which yields 

an expression for Seebeck coefficient  𝑆 = −(
∆V

∆T
)I=0 

𝑆 = −(
∆V

∆T
)I=0 = 

1

𝑒T 
 
𝐿1

𝐿0
                                                                                                       (3.18)                                                                                                       

I can rewrite equation (3.11) again in terms of 𝐺 and 𝑆  

 ( I
Q.
) = (

𝐺 𝐺𝑆
𝐺𝑆𝑇 𝐾

) (∆V
∆T
 )                                                                                                  (3.19) 

(∆V
Q.
) = (

1/𝐺 −S
∏ 𝐾𝑒

) ( I
∆T
)                                                                                                    (3.20) 

Where                                                                                                   

Π =  
1

𝑒 
 
𝐿1 

𝐿0
=  𝑆𝑇     ( Π is Peltier coefficient)                                                                     (3.21)                                                                            

𝐾𝑒 = k − 𝑆
2 𝐺𝑇 =

2

ℎT 
(𝐿2 −

(𝐿1)
2

𝐿0
 )    (  𝐾𝑒 is thermal conductance due to electrons)       (3.22)                        

The thermoelectric figure of merit is  𝑍𝑇𝑒  = 𝑆
2 𝐺𝑇

𝐾𝑒
= 

(𝐿1)
2 

𝐿0𝐿2−(𝐿1)2
                                       (3.23) 

 

 

 

 

 

 

 

 



3.3 Green’s function for the double-infinite chain in one- dimension 

In this section, my goal is to find the Green’s function for the double-infinite chain system as 

shown in Figure 3.1. In this system, I have a double-infinite chain with (𝜀0) represents the 

site energy of each atom in the lead. Also, (−𝛾) represents the coupling between atoms in the 

lead. 

 

 

 

Figure 3. 1. Double-infinite chain in one- dimension on-site energies 𝜀𝑜 and couplings−𝛾.  

We know that the Schrödinger equation can be written  

𝐻 |𝜑| = 𝐸 |𝜑|                                                                                                                     (3.24) 

Whereas the Green’s function equation 

(𝐸 − 𝐻)𝐺 = 1                                                                                                                    (3.25) 

The equation (3.25) could be written 

𝐸 𝐺𝑖𝑗 − ∑ 𝐻𝑖𝑙 𝐺𝑙𝑗 = 𝛿𝑖𝑗    
∞
𝑙=−∞                                                                                            (3.26) 

I will compensate in the equation (3.26) in two cases ( 𝑙 ≠ 𝑗  𝑎𝑛𝑑 𝑙 = 𝑗) 

𝜀0 𝐺𝑙𝑗 − 𝛾 𝐺𝑙+1,𝑗  − 𝛾 𝐺𝑙−1,𝑗 − 𝐸 𝐺𝑙𝑗 = 0                                                                           (3.27) 

𝜀0 𝐺𝑙𝑙 − 𝛾 𝐺𝑙+1,𝑙  − 𝛾 𝐺𝑙−1,𝑙 − 𝐸 𝐺𝑙𝑙 = −1                                                                         (3.28) 

Guess 

       + ∞ - ∞ 

−𝜸 −𝜸 −𝜸 −𝜸 −𝜸 −𝜸 

𝑙-2 𝑙+2 𝑙+1 

 

𝑙-1 

 
𝑙 

𝜀𝑜 𝜀𝑜 𝜀𝑜 𝜀𝑜 𝜀𝑜 𝜀𝑜 𝜀𝑜 
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𝐺𝑙𝑗 = {
∅𝑙 = 𝐴 𝑒

𝑖𝑘𝑙        𝑙 ≥ 𝑗

𝜑𝑙 = 𝐵 𝑒
−𝑖𝑘𝑙   𝑙 ≤ 𝑗

                                                                                              (3.29) 

The retarded Greens function, 𝐺𝑙𝑗, describes the response of a system at a certain point 𝑙 to a source at 

a certain point 𝑗. An excitation of this type will result in two waves that travel outward from the point 

of excitation as shown in Figure 3.3. 

 

 

   

     

     

 

 

 

  Figure 3. 2. The structure of retarded Green's function of an infinite one-dimensional chain. 

The excitation at 𝑙 = 𝑗 causes wave to propagate left and right with amplitudes 𝐵 and 𝐴 

respectively. 

The Green’s function must be continuing at 𝑙 = 𝑗 (see Figure 3.2) 

𝐴 𝑒𝑖𝑘𝑗 = 𝐵 𝑒−𝑖𝑘𝑗 

𝐴 = 𝐶 𝑒−𝑖𝑘𝑗     𝑎𝑛𝑑  𝐵 = 𝐶 𝑒𝑖𝑘𝐽                                                                                          (3.30) 

From the last equations 

𝐺𝑙𝑗 = {
   𝐶 𝑒𝑖𝑘(𝑙−𝑗)       𝑙 ≥ 𝑗

𝐶 𝑒𝑖𝑘(𝑗−𝑙)     𝑙 ≤ 𝑗
                                                                                                (3.31) 

Substituting (3.31) in the equation (3.28) 

𝑗=𝑙 
  

      

𝑙+1 

  

𝑙-1 

  
𝜀𝑜 𝜀𝑜 𝜀𝑜 

Excitation point 

𝜑𝑙 = 𝐵 𝑒−𝑖𝑘𝑙 ∅𝑙 = 𝐴 𝑒𝑖𝑘𝑙 

Left moving Right moving 



  𝜀0 𝐶 − 𝛾 𝐶 𝑒
𝑖𝑘  − 𝛾 𝐶 𝑒−𝑖𝑘 − 𝐸 𝐶 = −1                                                                           (3.32)                                                                      

𝐶 =
1

2 𝑖 𝛾 sin (𝑘)
=

1

 𝑖 ℎ 𝑣  
                                                                                                         (3.33) 

𝐺𝑙𝑗 =
𝑒𝑖𝑘|𝑙−𝑗|

 𝑖 ℎ 𝑣  
    (Green's function for the double-infinite chain-)                                         (3.34) 

  𝐺𝑙𝑗 =
𝑒𝑖𝑘|𝑙−𝑗|

 𝑖 ℎ 𝑣  
+ 𝐴 𝑒𝑖𝑘𝑙+ 𝐵 𝑒−𝑖𝑘𝑙       (general solution)                                                    (3.35)                                                   

3.4 Green’s functions for the semi-infinite chain in one- dimension 

Here, this system is the similar with the previous one, except that one lead is infinite in one 

direction and it is finite for the opposite side as shown in Figure 3.3. 

 

 

 

 

  

 

 

Figure 3. 3. Semi-infinite chain in one- dimension with on-site energies 𝜀𝑜 and couplings−𝛾 . 

 

Based on equation (3.35) for the current system  

𝐺𝑙𝑗 =
𝑒𝑖𝑘|𝑙−𝑗|

 𝑖 ℎ 𝑣  
+ 𝐴 𝑒−𝑖𝑘𝑙                                                                                                      (3.36) 

From the figure, I can extract the boundary condition for this system 

I will consider the number of atoms is P 

𝜀0 𝜀0 𝜀0 𝜀0 𝜀0 𝜀0 𝜀0 - ∞ 

−𝜸 −𝜸 −𝜸 −𝜸 −𝜸 −𝜸 

𝑝 

Excitation point 

𝑒−𝑖𝑘(𝑙−𝑗) 𝑒𝑖𝑘(𝑙−𝑗) 



59 

 

𝐺𝑝+1,𝑗 = 0                                                                                                                          (3.37) 

From the last two equations 

𝐴 = −
𝑒−𝑖𝑘 𝐽

 𝑖 ℎ 𝑣  
 𝑒2𝑖𝑘(𝑃+1)                                                                                                         (3.38) 

Plugging (3.38) in the equation (3.36) 

𝐺𝑙𝑗 =
𝑒𝑖𝑘(𝑙− 𝐽)−𝑒−𝑖𝑘(𝑙+ 𝐽) 𝑒2𝑖𝑘(𝑃+1)    

 𝑖 ℎ 𝑣  
    (Green’s functions for the semi-infinite system)       (3.39) 

Now, in case of 𝑙 = 𝑝 

𝐺𝑝𝑗 =
𝑒𝑖𝑘(𝑝− 𝐽)[1− 𝑒2𝑖𝑘]    

 𝑖 ℎ 𝑣  
                                                                                                       (3.40) 

Now, when 𝑙 = 𝑝 = 𝑗 

𝐺𝑝𝑝 = −
𝑒𝑖𝑘 

 𝛾  
                      (Surface Green's function)                                                     (3.41)                                                                                                    

 

3.5 Dyson’s equation and Green’s function for a scattering system 

In this section, I will prove the Dyson’s equations based on the idea of the Green’s function 

that I have discussed before. In this system, as presented in Figures 3.4 and 3.5, I have a double-

infinite chain with (𝜀𝐿 , 𝜀𝑅) represent the site energy of each atom in the left and right leads 

respectively where (𝜀0) is a site energy for each atom in the scattering region (SR). Also, 

(−𝛾) represents the coupling between atoms for both leads whereas (–𝛼)  and  (−𝛽) are the 

coupling between the left and right leads with S.R respectively. These transport calculations 

following the derivation of Lambert, mentioned in [6-7]. 

For only the scatterer area, I can calculate the Green’s function easily, since the Hamiltonian 

of the scatterer is finite with total number of atoms is (𝑁) . 



Where ℎ𝐵 represents the Hamiltonian of the SR 

𝑔𝐵 = (𝐸 − ℎ𝐵)
−1                                                                                                               (3.42) 

However, if we are interested in finding the Green’s function for the whole system (two leads 

and the SR), I cannot use the equation (3.42), because the Hamiltonian representing the whole 

scattering system is not finite. In other words, the Hamiltonian for this system is infinite matrix. 

In this case, I should find another approach that avoiding us in dealing with the infinite matrix.  

I am going to deal with this system in two cases, one of them is before the perturbation 𝛼 =

𝛽 = 0 (as shown in Figure 3.4) and the second case is after the perturbation 𝛼 𝑎𝑛𝑑 𝛽 ≠ 0 (as 

shown in Figure 3.5). 

 

 

 

 

Figure 3. 4. A one-dimensional scatterer connected to one-dimensional leads before 

perturbation 𝛼 = 𝛽 = 0.   

 

 

 

Figure 3. 5. A one-dimensional scatterer connected to one-dimensional leads after 

perturbation  𝛼 𝑎𝑛𝑑 𝛽 ≠ 0. 

 

0 𝑁 + 1 

- ∞ 𝜀𝑅 
 

𝜀0 
 

𝜀0 
 

+ ∞ 

−𝜸 −𝜸 

𝑁 1 

𝜀𝑅 
 

SR 

𝜀𝐿 

 
𝜀𝐿 

 

0 𝑁 + 1 

- ∞ 𝜀0 𝜀𝐿 𝜀𝐿 𝜀0 + ∞ 

−𝜸 −𝜸 

𝑁 1 

SR 

−𝜷 −𝜶 

𝜀𝑅 𝜀𝑅 
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 Before the perturbation, the Hamiltonian could be written as following: 

𝐻𝑜 = (

𝐻 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑒𝑚𝑖 − 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒 𝑙𝑒𝑎𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡 0 .
0 ℎ𝐵 0
. 0 𝐻 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑒𝑚𝑖 − 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒 𝑙𝑒𝑎𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡

)          (3.43) 

Similarly, before the perturbation, the Green’s function could be written as following 

𝑔𝑜 = (

𝑔 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑒𝑚𝑖 − 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒 𝑙𝑒𝑎𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡 0 .
0 𝑔𝐵 0
. 0 𝑔 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑒𝑚𝑖 − 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒 𝑙𝑒𝑎𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡

)            (3.44) 

After the perturbation (𝛼 𝑎𝑛𝑑 𝛽 ≠ 0) 

𝐻1 =

(

 
 

0 ⋯ .

⋮ ⋮
. ⋯ 0)

 
 

 

 

So, it is clear that the total Hamiltonian H 

𝐻 = 𝐻𝑜 + 𝐻1                                                                                                                      (3.45) 

The total Green’s function (Whole system includes left and right leads and the S.R) could be 

written G 

(𝐸 − 𝐻)𝐺 = 1 

(𝐸 − 𝐻𝑜 − 𝐻1)𝐺 = 1                                                                                                          (3.46) 

The solution for the equation (3.46) is 𝐺 = 𝑔 + 𝑔 𝐻1 𝐺                                                    (3.47) 

By multiplying (3.47) by(𝐸 − 𝐻𝑜) in both sides and multiplying by 𝑔−1 

𝐺 = (𝑔−1 − 𝐻1)
−1                                                                                                              (3.48) 

𝐺 = (𝑔−1 − ℎ1)
−1        (Dyson's equation)                                                                         (3.49)                     



=(

𝐺00 𝐺01 𝐺0𝑁 𝐺0𝑁+1
𝐺10 𝐺11 𝐺1𝑁 𝐺1𝑁+1
. . . .

𝐺𝑁+1 0 . . 𝐺𝑁+1,𝑁+1

) = (
𝐺𝐴𝐴 𝐺𝐴𝐵
𝐺𝐵𝐴 𝐺𝐵𝐵

)                                                       (3.50) 

I can see from the Dyson’s equation; we have converted from the dealing with infinite matrix 

into finite matrix. 

Let A represents the leads and B represents the SR 

Where  𝑔𝐴 represents the Green’s function for the semi-infinite leads before the perturbation 

and 𝑔𝐵 represents the Green’s function for the SR before the perturbation. 

𝑔 = (
𝑔𝐴 0
0 𝑔𝐵

)                                                                                                                    (3.51)                                                                                 

    𝑔𝐵 = (
𝑔11 𝑔1𝑁
𝑔𝑁1 𝑔𝑁𝑁

) = (𝐸 − ℎ𝐵)
−1                                                                                  (3.52)                                                                

𝑔𝐴 = (
𝑔00 𝑔0,𝑁+1
𝑔𝑁+1,0 𝑔𝑁+1,𝑁+1

) =   (
−
𝑒𝑖𝑘 

 𝛾  
  0

0 −
𝑒𝑖𝑘 

 𝛾  
  
)                                                             (3.53) 

ℎ1= (
𝐻𝐴𝐴 𝐻𝐴𝐵
𝐻𝐵𝐴 𝐻𝐵𝐵

) = (

0 0 −𝛼 0
0 0 0 −𝛽
−𝛼 0 0 0
0 −𝛽 0 0

)                                                                                               (3.54) 

 

From the Dyson’s equation (3.49) and equations (3.52-3.54) 

(𝑔−1 − ℎ1) 𝐺 = 1 =  (
1  0
0 1  

) 

= (
𝑔𝐴
−1𝐺𝐴𝐴 −𝐻𝐴𝐵 𝐺𝐵𝐴 𝑔𝐴

−1𝐺𝐴𝐵 − 𝐻𝐴𝐵 𝐺𝐵𝐵
−𝐻𝐵𝐴 𝐺𝐴𝐴 + 𝑔𝐵

−1𝐺𝐵𝐴 −𝐻𝐵𝐴 𝐺𝐴𝐵 + 𝑔𝐵
−1𝐺𝐵𝐵

) = (
1  0
0 1  

)                                       (3.55)                                    
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From the equation (3.55) 

𝐺𝐴𝐴 = 𝑔𝐴 + 𝑔𝐴𝐻𝐴𝐵 𝐺𝐵𝐴                                                                                                     (3.56) 

𝐺𝐵𝐵 = 𝑔𝐵 + 𝑔𝐵𝐻𝐵𝐴 𝐺𝐴𝐵                                                                                                     (3.57) 

𝐺𝐴𝐵 = 𝑔𝐴𝐻𝐴𝐵 𝐺𝐵𝐵                                                                                                              (3.58) 

𝐺𝐵𝐴 = 𝑔𝐵𝐻𝐵𝐴 𝐺𝐴𝐴                                                                                                               (3.59) 

From the equations (3.56-3.59) I will end up with the following questions 

𝐺𝐴𝐴 = (𝑔𝐴
−1 − 𝛴𝐴𝐴)

−1                                                                                                        (3.60) 

Where 𝛴𝐴𝐴 = 𝐻𝐴𝐵 𝑔𝐵𝐻𝐵𝐴      self-energy                                                                            (3.61) 

𝐺𝐵𝐵 = (𝑔𝐵
−1 − 𝛴𝐵𝐵)

−1                                                                                                        (3.62) 

Where 𝛴𝐵𝐵 = 𝐻𝐵𝐴 𝑔𝐴𝐻𝐴𝐵      self-energy                                                                           (3.63)                                                          

In the next section, I will take some applications related to Green’s function and Dyson’s 

equations. 

3.6 Green’s functions and Dyson’s equation applications 

In this section, I introduce two examples about Green’s functions and Dyson’s equation 

applications. For the first example, destructive quantum interference (DQI), low conductance, 

is shown in transmission coefficient plots while the second example, constructive quantum 

interference (CQI), high conductance, is presented.     

3.6.1 A dangling system 

In this system, I have a double-infinite chain and one dangling atom with site energy(𝜀1), 

whereas (𝜀0) represents the site energy of each atom in the lead. Also, (−𝛾) represents the 



coupling between atoms in the lead and (−𝛼)  is the coupling between the dangling atom and 

an atom in the lead. 

 

 

 

 

                                              Figure 3. 6. A dangling system. 

 

First, let A represents the leads and B represents the SR where 𝑔𝐴 represents the Green’s 

function for the double-infinite leads before the perturbation and 𝑔𝐵 represents the Green’s 

function for the SR before the perturbation. 

As I have studied this system before and I found that  

𝑔𝐴 = 𝑔00(𝑙=𝑗=0) =
1

𝑖ℎ𝑣
                                                                                                         (3.64) 

𝑔𝐵 represents the Green’s function for the SR before perturbation 

(𝐸 − 𝐻𝐵)
−1  𝑔𝐵 = 1                                                                                                          (3.65)                                                                                                

𝑔𝐵 = (𝐸 − 𝐻𝐵)
−1 =

1

𝐸−𝜀1
                                                                                                  (3.66) 

After the perturbation(𝛼 ≠ 0) 

ℎ1 = (
𝐻𝐴𝐴 𝐻𝐴𝐵
𝐻𝐵𝐴 𝐻𝐵𝐵

) = (
0 −𝛼
−𝛼 0

)                                                                                      (3.67) 

Self-energy   𝛴𝐵𝐵 =  𝐻𝐵𝐴 𝑔𝐴  𝐻𝐴𝐵                                                                                     (3.68)                                                                                 

  

        + ∞ - ∞ 

−𝜸 −𝜸 −𝜸 

𝜀𝑜 𝜀𝑜 𝜀𝑜 𝜀𝑜 

𝜀1 

−𝜶 
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𝛴𝐵𝐵 =
𝛼2

𝑖 ℎ 𝑣
                                                                                                                           (3.69) 

𝐺𝐵𝐵 = (𝑔𝐵
−1 − ∑𝐵𝐵 )−1 = ((𝐸 − 𝜀1) −

𝛼2

𝑖 ℎ 𝑣
)

−1

                                                             (3.70) 

𝐺𝐴𝐴 = 𝐺𝐴𝐴 = 𝑔𝐴 + 𝑔𝐴𝐻𝐴𝐵 𝐺𝐵𝐴                                                                                           (3.71) 

𝐺𝐴𝐴 = 𝐺00 =
1

𝑖 ℎ 𝑣
+ (

𝛼

𝑖 ℎ 𝑣
)2  (

1

(𝐸−𝜀1)−
𝛼2

𝑖 ℎ 𝑣

)                                                                          (3.72) 

The transmission amplitude (𝑡) 

𝑡 = (𝑖 ℎ 𝑣) 𝐺00 = 1 + 
1

𝑖 ℎ 𝑣
 

𝛼2

(𝐸−𝜀1)−
𝛼2

𝑖 ℎ 𝑣

                                                                               (3.73) 

The transmission coefficient (T) 

𝑇 =  |𝑡|2 = 
1

1+
𝛼4

(ℎ 𝑣)2 (𝐸−𝜀1)
2

                                                                                                   (3.74) 

Note that if 𝐸 = 𝜖1, then 𝑇(𝐸) = 0. Ie an anti-resonance occurs at 𝐸 = 𝜖1. This is known as 

destructive quantum interference (DQI) and is shown in Fig. 3.7. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

Figure 3. 7. Transmission coefficients of dangling system against electron energy E. In this 

system 𝛼= 0.6, 𝛾=1and 𝜀1=0.   

Figure 3.7 shows that 𝜀1 value is responsible for the position of (DQI). 

 

3.6.2 A scattering system with only one atom   

As a further example, consider the simple system, shown in the Figure 3.8, in which there is 

only one atom in the scattering region (SR) with site energy(𝜀0), whereas (𝜀𝐿)and (𝜀𝑅) are site 

energies for the atoms in the left and right leads respectively. In addition, (−𝛾) is the coupling 

between neighbouring atoms, whereas (–𝛼)  and  (−𝛽) are the coupling between the left and 

right leads with S.R respectively. 

 

 

 

DQI 

I 



67 

 

 

 

 

 

Figure 3. 8. Open system with only one atom in the SR before the perturbations 𝛼, 𝛽. 

If sub-system A represents the leads and sub-system B represents the SR, then, 𝑔𝐴 represents 

the Green’s function for the semi-infinite leads before the perturbation (ie when 𝛼 = 𝛽 = 0) 

and 𝑔𝐵 represents the Green’s function for the SR before the perturbation.   

𝑔𝐴 = (

−𝑒𝑖𝑘 

𝛾
0

0
−𝑒𝑖𝑘 

𝛾

)                                                                                                            (3.75) 

Here, for simplicity, I will consider that 𝛾𝐿 = 𝛾𝑅 = 𝛾 

𝐻𝐵(represents the Hamiltonian of the SR) 

𝑔𝐵 = (𝐸 − 𝐻𝐵)
−1 =

1

𝐸−𝜀0
                                                                                                  (3.76) 

Before the perturbation, the Hamiltonian could be written as following 

𝐻𝑜 = (

𝜀0 0 0
0 𝜀0 0
0 0 𝜀0

)                                                                                                           (3.77) 

After the perturbation as shown in the Figure 3.9, the Hamiltonian could be written as 

following. 

 

 

−𝜸 

SR 

𝜀0 + ∞ - ∞ 

−𝜸 −𝜸 −𝜸 

2 0 1 

−𝜶 −𝜷 

𝜀𝐿 𝜀𝑅 𝜀𝑅 𝜀𝑅 𝜀𝐿 𝜀𝐿 



 

 

 

 

Figure 3. 9. Open system with only one atom in the SR after the perturbation. 

 

After the perturbation(𝛼 ≠ 0) 

ℎ1= = (
𝐻𝐴𝐴 𝐻𝐴𝐵
𝐻𝐵𝐴 𝐻𝐵𝐵

) = (

𝜀0 0 −𝛼
0 𝜀0 −𝛽
−𝛼 −𝛽 𝜀0

)                                                                         (3.78)                                                                         

𝐻𝐴𝐴 = (
𝜀0 0
0 𝜀0

  )                                                                                                                (3.79) 

  𝐻𝐵𝐵 = 𝜀0 ,  𝐻𝐵𝐴 = (−𝛼 −𝛽)and  𝐻𝐴𝐵 = (
−𝛼
−𝛽) 

Self-energy for this system 𝛴𝐴𝐴 = 𝐻𝐴𝐵 𝑔𝐵 𝐻𝐵𝐴                                                                  (3.80) 

𝛴𝐴𝐴 = 
1

𝐸−𝜀0
 (
𝛼2 𝛼𝛽

𝛼𝛽 𝛽2
  )                                                                                                    (3.81) 

𝐺𝐴𝐴 = (𝑔𝐴
−1 − 𝛴𝐴𝐴)

−1                                                                                                         (3.82) 

Let D= 
1

𝐸−𝜀0
  

𝐺𝐴𝐴 = 
1

𝛾2 𝑒− 2𝑖𝑘+𝛾 𝐷 𝑒− 𝑖𝑘 (𝛼2+𝛽2) 
 (
−𝛾𝑒− 𝑖𝑘 − 𝐷𝛽2 𝐷 𝛼 𝛽

𝐷𝛼 𝛽 −𝛾𝑒− 𝑖𝑘 − 𝐷𝛼2
  )                            (3.83) 

𝐺𝐴𝐴 = (
𝐺00 𝐺02
𝐺20 𝐺22 

  )                                                                                                           (3.84) 

 

−𝜸 

SR 

𝜀0 + ∞ - ∞ 

−𝜸 −𝜸 −𝜸 

2 0 1 

−𝜶 −𝜷 

𝜀𝐿 𝜀𝑅 𝜀𝑅 𝜀𝑅 𝜀𝐿 𝜀𝐿 
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𝑇 =  |𝑡|2 = |𝑖 ħ 𝑣|2|𝐺02|
2 

 

𝑇 =
4 (𝛾 𝛼 𝛽)2  𝑠𝑖𝑛2(𝑘)

[
𝛾2 

 𝐷
cos(2𝑘)+𝛾(𝛼2+𝛽2)cos (𝑘)]

2

+[
𝛾2 

 𝐷
sin(2𝑘)+𝛾(𝛼2+𝛽2)sin (𝑘)]

2                                               (3.85)   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 10. Transmission coefficient versus energy E for only one atom in the SR. 

 

As shown in Fig. 3.10, the transmission coefficient now possess a resonance at 𝐸 = 0, which 

is a signature of constructive quantum interference (CQI). 

 

 



3.6.3 Breit-Wigner resonance 

By playing with the maths and using some trigonometric identities, the equation (3.85) could 

be written as following: 

𝑇(𝐸) =
4 Γ𝐿Γ𝑅

(𝐸−𝜎)2+(Γ𝐿+Γ𝑅)2
                                                                                                      (3.86)   

In this case equation (3.86) reduces to the well-known Breit-Wigner formula [8]. 

Where Γ𝐿 = 
𝛼2 sin (𝑘)

𝛾
   , Γ𝑅 =

𝛽2 sin (𝑘)

𝛾
    , 𝜎 = 𝜎𝐿 + 𝜎𝑅 , 𝜎𝐿 = 

𝛼2 cos (𝑘)

𝛾
    and 𝜎𝑅 = 

𝛽2 cos (𝑘)

𝛾
     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11.  Breit-Wigner peak in one transmission spectra 𝑇(𝐸). The longer dashed red 

vertical line shows the on-resonance position 𝐸 = 𝜎𝐿 + 𝜎𝑅 while the two shorter dashed red 

lines represent the position 𝐸 = 𝜎𝐿 + 𝜎𝑅 – ( Γ𝐿 + Γ𝑅) and 𝐸 = 𝜎𝐿 + 𝜎𝑅 + Γ𝐿 + Γ𝑅  at half 

𝜎𝐿 + 𝜎𝑅 − (Γ𝐿 + Γ𝑅) 
𝜎𝐿 + 𝜎𝑅 + Γ𝐿 + Γ𝑅 

 

𝜎𝐿 + 𝜎𝑅 

 

Γ𝐿 + Γ𝑅 

𝑇𝑀𝑎𝑥 =
4 Γ𝐿Γ𝑅
Γ2
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maximum value (left to right). In consequence, the corresponding half width of half 

maximum value is Γ𝐿 + Γ𝑅. 

 Some features of the equation (3.86) are as follows: 

1. The maximum transmission coefficient could be found by taking the first derivative 

for the equation (3.86) and equalizes it to zero when  𝐸 = 𝜎𝐿 + 𝜎𝑅 . 

 

  

2. When   Γ𝐿≪ Γ𝑅 , transmission coefficient on resonance is approximately equal to  

             

 

 

3.7 Conclusion 

 In conclusion, I have discussed single electron charge transport through molecules by 

introducing quantum transport theory. The theoretical basis for calculating electronic and heat 

transport was described, including Green’s function methods for obtaining the transmission 

coefficient of semi-infinite leads connected to a scattering region. Therefore, the transmission 

coefficient has been computed using Green's functions, Dyson’s equation and scattering 

theory for some simple systems. In addition, the Landauer-Büttiker formula can be used to 

determine thermoelectric coefficients, such as Seebeck coefficient 𝑆 , for a two-terminal 

device. I have also proved that systems showing constructive quantum interference (CQI), 

their transmission coefficient equations could be converted to the Breit-Wigner formula. 

 

   

𝑇𝑀𝑎𝑥 =
4 Γ𝐿Γ𝑅
Γ2

 

 

𝑇 ≈
4 Γ𝐿
Γ𝑅
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Chapter 4 

 

Further investigations of anchoring groups on linear alkane chains 

4.1 Introduction 

This chapter provides thorough and vigorous theoretical investigations about series of alkane 

chains using different anchor groups including amine (NH2), thiol (S), direct carbon contact 

(C), and thiomethyl (SMe). However, I will discuss briefly the alkane chains conductance with 

(Au-SMe) in this chapter because this anchor will be investigated deeply in chapter 5. 

Here, I shall demonstrate the impact of using different terminal groups on the conductance of 

alkane molecules. This study includes eight molecules with four different anchor groups. Thus, 

I am going to investigate 32 alkane linear chains. 

At the end of anchor group calculations, I shall test my theoretical predictions against 

experimental measurements that gathered form the literature.    

4.2 Motivation 

Oil and natural gas are the most important sources for alkanes.  Oil contains liquid alkanes 

while higher alkanes (solid)s, occur as residues from oil distillation (tar), such as asphalt lakes 

known as the Pitch Lake [1]. Cycloalkanes with one ring have the general formula 

CnH2n compared with the general formula 𝐶𝑛𝐻(2𝑛+2) for acyclic alkanes. Cycloalkanes have 

two fewer hydrogen atoms than alkanes, because another carbon–carbon bond is needed to 

form the ring [2]. 

In today's world, alkane chains have been used in many applications, such as sensors that could 

be used in safety and security fields globally. Here, in this chapter, I am focusing on studying 

the conductance of alkane chains with different anchor groups. 

https://www.sciencedirect.com/topics/chemistry/hydrogen-atom


4.3 Optimised DFT Structures of Isolated Molecules 

In this chapter, I am going to investigate different type of alkane linear chains. Mainly, I divide 

the chains into two types, odd and even groups, according to their number of -CH2 units. Each 

group consists of four molecules based on their molecular length. For the odd group, I choose 

the following: C3, C5, C7 and C9, while for the even group C4, C6, C8 and C10. For both odd 

and even groups, 4 different anchor groups have been employed including amine, thiol, direct 

carbon contact and thiomethyl. Therefore, in total I am going to investigate 32 alkane chains.   

(Note: the last anchor thiomethyl is going to be investigated in more detail in chapter 5).                        

4.3.1 Geometries of the isolated alkane chains terminated with an amine anchor  

The optimum geometries of the isolated molecules were obtained by relaxing the molecules 

until all forces on the atoms were less than 0.01 eV / Å. Eight alkane chains with different 

lengths are going to be explored (4 odd and 4 even). The 8 chains are all terminated with two 

amine anchors (NH2), as shown in Figure 4.1.  The odd numbered molecules are as follows: 

C3, C5, C7 and C9, as shown in left panel of Figure 4.1, while the even molecules are: C4, C6, 

C8 and C10, as shown in the right panel of Figure 4.1 (top to bottom respectively). 

 

 

 

 

 

Figure 4. 1. Alkane chains: Fully relaxed isolated molecules, of different length 3-10 carbon 

atoms. (Left panel) shows the odd chains C3, C5, C7 and C9 while (right panel) represents the 

even ones C4, C6, C8 and C10, both chains are terminated with amine anchors.    



75 

 

4.4 Frontier orbitals for the studied molecules 

Tables 4.1-4.3 show the theoretical frontier orbitals of the 8 isolated molecules. The plots below 

show iso-surfaces of the HOMO and LUMO along with their energies for the alkane chains, 

C3 to C10 in the gas phase. Local density approximation (LDA) was chosen to be the exchange 

correlation functional. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4. 1. Comparison between the Frontier molecular orbitals of alkane chain, including 

C3, C4 and C5 in the gas phase. 

 

 

 

 

Table 4. 2. Comparison between the frontier molecular orbitals of alkane chain, including C6, 

C7 and C8 in the gas phase.  
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Table 4. 2. Comparison between the frontier molecular orbitals of alkane chain, including C9 

and C10 in the gas phase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   
   



Table 4. 3. Comparison between the frontier molecular orbitals of alkane chain, including C9 

and C10 in the gas phase. 
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4.5 Binding energy of linear chains on gold 

To calculate the optimum binding distance of the alkane molecules with amine as anchor 

groups binding to the gold (111) surfaces, DFT and the counterpoise method were used, which 

removes basis set superposition errors (BSSE). The binding distance was defined as the 

distance between the gold surface and the terminal end group/atom of the molecule. The ground 

state energy of the total system was calculated using SIESTA and is denoted EAB
AB . The energy 

of each monomer was then calculated in a fixed basis, which is achieved through the use of 

ghost atoms in SIESTA. Hence the energy of the individual molecule in the presence of the 

fixed basis is defined as EA
AB  and for the isolated gold as EB

AB. The binding energy (B.E) is then 

calculated using the following equation:  

Figure 4.2, shows the binding energy of an alkane chain (i.e: C6). The amine anchor possesses 

a weak bond to an under-coordinated gold-electrode atom compared to other anchors such as 

thiol.  The equilibrium distance (i.e. the minimum of the binding energy curve), for NH2 anchor 

is found to be approximately 3 Å, with binding energy of approximately -0.15 eV. 

 

 

 

 

 

 

 

 

 

 Binding Energy = EAB
AB − EA

AB − EB
AB               (4.1) 

𝒅 (𝑨°) 



Figure 4. 2. An example of alkane molecule terminated with an amine anchor on a gold tip :( 

Left) Binding energy of C6 alkane molecule to gold as a function of molecule-contact distance. 

The equilibrium distance (i.e. the minimum of the binding energy curve) is found to be 

approximately 3 Å, for Au-Amine. (Right) its idealised ad-atom configuration at the Au lead 

interface Au-Amine. Key: C = grey, H = white, N = blue, Au = dark yellow. 

 

4.6 DFT Calculations 

Using the density functional code SIESTA [3] (for more detail see section 2.7 in chapter 2), 

the optimum geometries of the isolated molecules were obtained by relaxing the molecules 

until all forces on the atoms were less than 0.01 eV / Å. A double-zeta plus polarization orbital 

basis set, norm-conserving pseudopotentials, an energy cut-off of 250 Rydbergs defined the 

real space grid were used and the local density approximation (LDA) was chosen to be the 

exchange correlation functional.  I also computed results using GGA and found that the 

resulting transmission functions were comparable with those obtained using LDA [4-10]. (for 

more detail see chapter 2). 

After relaxing each molecular junction with lengths varying from n = 3 to n = 10, I calculated 

the electrical conductance using the Gollum quantum transport code [11]. From the ground 

state Hamiltonian, the transmission coefficient, the room temperature electrical conductance 𝐺 

was obtained, as described in the sections below.  

4.7 Optimised DFT Structures of Compounds in their Junctions 

Some examples of optimised DFT structures for alkane chains are shown in the section 4.3.1, 

while Figure 4.3 illustrates them in their junctions. 
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Figure 4. 3. Examples of fully relaxed alkane derivatives in Au|molecule|Au junctions. (Left 

panel) shows odd number of linear chains C3, C5, C7 and C9 (top to bottom) connected to gold 

electrodes via amine anchor groups. (Right panel) shows even number of linear chains C4, C6, 

C8 and C10 (top to bottom) with the same anchor groups. 

4.8 Transport calculations  

Here, the GOLLUM transport code is used to calculate the transmission coefficients T(E) for 

alkane chains with terminal groups (Amine) binding to the gold (111) surfaces. I will 

investigate the transmission coefficients T(E), in more detail and I shall compare the 

conductance against some experimental measurements.  

4.8.1 Transmission coefficient of alkane chains with Amine as terminal group 

 

Previous published studies [12-28], predict the Fermi energy is near the middle of the HOMO-

LUMO gap regardless to the type of the anchor group. In this theoretical investigation, I choose 

the DFT-predicted Fermi level (black-dashed line of Figure 4.4) to compare with experimental 



measurements. The transmission coefficients of the alkane chains with (Au-Amine) of different 

lengths (n=3-10) are shown in Figures (4.4 and 4.5). 

  

 

 

 

 

 

Figure 4. 4. Transmission coefficient curves of alkane chains . (Left panel) and (right panel) 

represent transmission coefficients T(E) of alkane chains with odd (left) and even (right) 

number of carbon atoms against electron energy E. 

 

 

 

 

 

 

 

Figure 4. 5. Transmission coefficient curves of alkane chains with (Au-Amine) for both odd 

and even number of carbon atoms of linear chains against electron energy E. 
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Figures 4.4 and 4.5, illustrate the relationship between transmission coefficient and the length 

of alkane chains. As expected, the conductance decreases exponentially with increasing the 

length of the chain from 3 to 10 -CH2 units.  The amount of the decreasing in the conductance 

value (ie the decay constant) is approximately constant and as follows -3.0, -4.0, -4.9 and -5.7 

for even chains C4, C6, C8 and C10 respectively. Similarly, -2.72, -3.5, -4.30 and -5.31 for odd 

chains C3, C5, C7 and C9 respectively. Figure 4.6 shows a conductance comparison between 

odd and even alkane chains (green and purple lines).  

 

 

 

 

 

 

 

 

 

Figure 4. 6. Length dependence of the conductance of a single-molecule Au| linear chains |Au 

junction with Au-Amine covalent bonds connecting the ends of the alkane to gold electrodes. 

The purple line and the green dashed line show the DFT conductances for odd and even number 

of -CH2 units respectively. 

4.8.2 Comparison between theory and experiment of amine anchor 

 

To test my simulations, I shall check the DFT calculations against STM measurements. For 

this comparison, I found two different sets of measurements for the studied molecules (group-



1 [15] and group-2 [16]). For some reason, the two experimental groups managed to measure 

only the even chains as shown in Table 4.4.          

Table 4. 3. Conductances of two STM measurements and DFT simulations of linear alkane 

chains terminated with NH2 anchors.  Simulations are taken at the DFT-predicted Fermi (𝐸 −

𝐸𝐹 = 0 𝑒𝑉). 

Chains 
DFT conductance   

𝑙𝑜𝑔(𝐺/𝐺°) 

STM conductance   

𝑙𝑜𝑔(𝐺/𝐺°) 

group-1 

STM conductance 

𝑙𝑜𝑔(𝐺/𝐺°)   

group-2 

C3 -2.72 == == 

C4 -3.0 -2.69 -3.04 

C5 -3.5  == == 

C6 -4 -3.52 -4 

C7 -4.30 == == 

C8 -4.9 -4 -5 

C9 -5.31 == == 

C10 -5.7 -5 -6 

 == No experimental value is available.  

To have a better understanding of this comparison, I plot these results as shown in Figure 4.7. 

This Figure shows that my simulations accurately predict the conductance trend of these alkane 

chains. It also illustrates how the experimental measurements vary from one STM device to 

another (blue- against red-line). This difference is understandable due to many parameters for 

instance, solvent, temperature and so on. My simulations results (black-line), agree well with 

group-2 than group-1.    

To obtain the decay constant, the slope of each line is taken and the DFT-slope is compared 

with the STM-slopes. The DFT-line possesses a slope of approximately -0.42, and STM-slopes 

are -0.37 and -0.49 (group-1 and group-2 respectively).  
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Figure 4. 7.  STM measreaments versus DFT simulation of alkane chains terimenated with NH2 

anchor. Two set of measurements from different experimental group (blue- and red-line), and 

DFT calculations (black-line).     

4.9 Studied alkane chains with thiol as terminal group 

I shall repeat the same calculations that have been described in above sections (amine anchor). 

For the thiol anchor, the hydrogen atoms from both ends have removed when attached to the 

Au electrodes. In the following sections, I will study linear alkane chains consisting of 8 

molecules based on the molecular length and terminated with SH. 

4.9.1 Geometries of the isolated alkane chains terminated with a thiol anchor 

The 8 chains are all terminated with two thiol anchors (SH), as shown in Figure 4.9.  The odd 

number of molecules are as follows: C3, C5, C7 and C9, as shown in left panel of Figure 4.9, 

while the even molecules are: C4, C6, C8 and C10, as shown in the right panel of Figure 4.9 (top 

to bottom respectively). 



 

 

 

 

 

 

 

Figure 4. 8. Alkane chains: Fully relaxed isolated molecules, of different length 3-10 carbon 

atoms. (Left panel) shows the odd chains C3, C5, C7 and C9 while (right panel) represents the 

even ones C4, C6, C8 and C10, both chains are terminated with thiol anchors. 

4.10 Frontier orbitals for studied molecules  

The plots below show iso-surfaces of the HOMO and LUMO along with their energies of the 

alkane chains, including C3 to C10 in the gas phase as shown in Tables 4.5-4.7. 
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Table 4. 4. Comparison between the frontier molecular orbitals of alkane chain, including C3, 

C4 and C5 in the gas phase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    



Table 4. 5. Comparison between the frontier molecular orbitals of alkane chain, including C6, 

C7 and C8 in the gas phase. 
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Table 4. 6. Comparison between the frontier molecular orbitals of alkane chain, including C9 

and C10 in the gas phase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  



4.11 Binding energy of linear chain on gold  

Figure 4.9, shows the binding energy of an alkane chain (i.e: C4). The theiol anchor possesses 

a strong bond to under-coordinated gold electrode compared to other anchors such as amine.  

The equilibrium distance (i.e. the minimum of the binding energy curve), for theioether anchor 

is found to be approximately 2.4 Å, with binding energy of approximately -2.0 eV. 

 

 

  

 

 

 

 

 

 

 

Figure 4. 9. An example of alkane molecule terminated with a thiol anchor on a gold tip :( Left) 

Binding energy of C4 alkane molecule to gold as a function of molecule-contact distance. The 

equilibrium distance (i.e. the minimum of the binding energy curve) is found to be 

approximately 2.4 Å, for Au-S. (Right) its idealised ad-atom configuration at the Au lead 

interface Au-thiol. Key:  C = grey, H = white, S = light yellow, Au = dark yellow. 

 

4.12 Optimised DFT Structures of Compounds in their Junctions 

Here are a few examples of optimised DFT structures of the alkane chains, in their junctions 

as shown in the Figure 4.10. 

𝒅 (𝑨°) 
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Figure 4. 10.  Examples of fully relaxed alkane derivatives in Au|molecule|Au junctions. 

(Left panel) shows odd number of linear chains C3, C5, C7 and C9 (top to bottom) connected to 

gold electrodes via thiol anchor groups. (Right panel) shows even number of linear chains C4, 

C6, C8 and C10 (top to bottom) with the same anchor groups. 

4.13 Transmission coefficient of alkane chains with Thiol as terminal group 

The Fermi energy is predicted to be approximately HOMO dominated due to the presence of 

thiol anchor group [12-14]. In this study, I choose the DFT-predicted Fermi level (black-dashed 

line of Figure 4.11) to compare with the experimental results. The transmission coefficients of 

the alkane chains with (Au-S) of different lengths (n=3-10) are shown in  

Figures 4.11and 4.12. 

 



 

 

 

 

 

 

 

 

 

Figure 4. 11. Transmission coefficients curves of alkanes chains with (Au-S) . (Left panel) and 

(right panel) represent transmission coefficients T(E) of alkane chains with odd (left) and even 

(right) number of carbon atoms against electron energy E. 

 

 

  

 

 

 

 

 

 

 

Figure 4. 12. Transmission coefficients of alkanes chains with (Au-S) for both odd and even 

number of carbon atoms of linear chains against electron energy E. 
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Figures 4.11 and 4.12, illsutrate the relationship between transmission coefficient and the 

length of alkane chains. Again, as expected, the conductance decreases exponentially with 

increasing length of the chain from 3 to 10 -CH2 units.  The amount of the decreasing in the 

conductance value is approximately constant and as follows -2, -3, -3.8 and -4.65 for even 

chains C4, C6, C8 and C10 respectively. Similarly, -1.57, -2.54, -3.3 and -4.14 for odd chains 

C3, C5, C7 and C9 respectively, as shown in Figure 4.13.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 13. Length dependence of the conductance of a single-molecule Au| linear chains |Au 

junction with Au-S covalent bonds connecting the ends of the alkane to gold electrodes. The 

purble line and the green dashed line show the DFT conductances of odd and even number of 

-CH2 units respectively.  

4.13.1 Comparison between theory and experiment of thiol anchor 

To benchmark my simulations, I am going to compare the DFT calculations with STM 

measurements. For this purpose, I found a set of measurements for the studied molecules [13]. 



Again, the experimental measurements are available only the even chains C6, C8 and C10 as 

shown in Figure 4.14.          

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 14. STM measreaments versus DFT simulation of alkane chains terimenated with 

thiol anchor. The black dashed line shows the DFT calculations whereas the red line represents 

experimental measurements of C6, C8 and C10 

 

Figure 4.14 shows my simulations accurately predict the conductance trends of these alkane 

chains. At the chosen DFT Fermi energy, excellent agreement between the DFT predictions 

and STM measurements of C6, C8 and C10 chains is obtained.  

Up to this point, I have explored two anchors amine and thiol. For comparison purposes, the 

DFT simulations of the two anchors are shown in the left panel of Figure 4.15, while STM 

measurements are shown in the right panels. The STM results support these simulation 

predictions.    
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Figure 4. 15. Chain-length dependence of the single-junction Au |alkane linear chain | Au 

conductance for two different terminal groups. (Left panel) and (right panel) represent 

logarithmic conductances of DFT and STM (left to right), as a function of length for two 

different terminal groups Au- Amine (theoretical blue-dashed line of left panel and 

experimental blue and blue-dot lines of right panel) and Au-S (theoretical red-dashed line of 

left panel and experimental red line of right panel).  

4.14 Alkane chains with carbon as a terminal group 

Up to this point, I have investigated 2 linker groups including amine and thiol. The next linker 

to be explored in this study is the direct carbon anchor.     

4.14.1 Geometries of the isolated alkane chains terminated directly with a carbon 

anchor 

Again 8 alkane chains with different length are going to be discovered (4 odd and 4 even). The 

8 chains are all terminated with two carbon anchors (CH3), as shown in Figure 4.16.  The odd 

number of molecules are as follows: C3, C5, C7 and C9, as shown in left panel of Figure 4.16, 

while the even molecules are: C4, C6, C8 and C10, as shown in the right panel of Figure 4.16 

(top to bottom respectively). 



 

 

 

 

 

 

 

Figure 4. 16.  Alkane chains: Fully relaxed isolated molecules, of different length 3-10 carbon 

atoms. (Left panel) shows the odd chains C3, C5, C7 and C9 while (right panel) represents the 

even ones C4, C6, C8 and C10, both chains are terminated with carbon anchors (CH3). 

 

4.15 Frontier orbitals for the studied molecules  

The plots below show iso-surfaces of the HOMO and LUMO along with their energies of the 

alkane chains, including C3 to C10 in the gas phase as shown in Tables 4.8- 4.10. 
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Table 4. 7. Comparison between the frontier molecular orbitals of alkane chain, including C3, 

C4 and C5 in the gas phase. 

 

 

 

 

 

 

 

 

 

Table 4. 8. Comparison between the frontier molecular orbitals of alkane chain, including C6, 

C7 and C8 in the gas phase. 

 

 

 

 

 

 

 

  

 

 

 

 

 

 
   



Table 4. 9. Comparison between the frontier molecular orbitals of alkane chain, including C3, 

C4 and C5 in the gas phase. 
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Table 4. 9. Comparison between the frontier molecular orbitals of alkane chain, including C9 

and C10 in the gas phase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



4.16 Binding energy of linear chain on gold 

The counterpoise method is employed again to calculate the binding energy of alkane linear 

chains (as shown in Figure 4.18) in the presence of Au-C bond; ie. I just repeat the same 

procedure that described in the section 4.7 and using the equation (4.1). Figure 4.17 shows the 

binding energy of an alkane chain. This curve has a strong binding to an under-coordinated 

gold apex atom; the Au-C covalent binding energy is approximately -1.8 eV. 

Figure 4.17, shows the binding energy of an alkane chain (i.e: C5). The carbon direct anchor 

also possesses a strong bond to under-coordinated gold electrode compared to other anchors 

such as amine.  The equilibrium distance (i.e. the minimum of the binding energy curve), for 

carbon direct anchor is found to be approximately 2.3 Å, with binding energy of approximately 

-1.8 eV. 

 

 

 

 

 

 

 

 

  

Figure 4. 17. An example of alkane molecule terminated with a carbon on a gold tip :( Left) 

Binding energy of C alkane molecule to gold as a function of molecule-contact distance. The 

equilibrium distance (i.e. the minimum of the binding energy curve) is found to be 

𝒅 (𝑨°) 
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approximately 2.3 Å, for Au-C. (Right) its idealised ad-atom configuration at the Au lead 

interface Au-thiol. Key:  C = grey, H = white, Au = dark yellow. 

4.17 Optimised DFT Structures of Compounds in their Junctions 

Figure 4.18 shows some examples of optimised DFT structures of alkane direct anchor chains 

in Au-Au junctions.  It is worth mentioning, that one of the 3 hydrogen atoms of the methyl 

group has removed to form a direct carbon gold bond.    

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 4. 18. Examples of fully relaxed alkane derivatives in Au|molecule|Au junctions. (Left 

panel) shows odd number of linear chains C3, C5, C7 and C9 (top to bottom) connected to gold 

electrodes via direct carbon anchor groups. (Right panel) shows even number of linear chains 

C4, C6, C8 and C10 (top to bottom) with the same anchor groups. 



4.18 Transmission coefficient of alkane chains with carbon as terminal group 

For the direct carbon-gold bond, the Fermi energy is predicted to be HOMO dominated due to 

the presence of the (Au-C) anchor group. In this study, again I choose the DFT-predicted Fermi 

level (black-dashed line of Figure 4.19) to compare with the experimental results. 

 

 

 

 

 

 

 

 

 

Figure 4. 19. Transmission coefficients curves of alkanes chains with (C-Au) . (Left panel) 

and (right panel) represent transmission coefficients T(E) of alkane chains with odd (left) and 

even (right) number of carbon atoms against electron energy E. 
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Figure 4. 20. Transmission coefficients of alkanes chains with (C-Au) for both odd and even  

carbon atoms of linear chains against electron energy E.  

Figures 4.19 and 4.20, determine the relationship between transmission coefficient and the 

length of alkane chains. Meaning, the conductance decreases exponentially with increasing the 

length of the chain from 3 to 10 -CH2 units.  The rate of the decrease in the conductance is 

approximately constant and as follows -1, -2.1, -3.1 and -4.0 for even chains C4, C6, C8 and 

C10 respectively. Similarly, -0.75, -1.75, -2.56 and -3.40 for odd chains C3, C5, C7 and C9 

respectively.  

 

 

 

 

 

 

 

 

Figure 4. 21. Length dependence of the conductance of a single-molecule Au| linear chains |Au 

junction with C-Au covalent bonds connecting the ends of the alkane to gold electrodes. The 

purble line and the green dashed line show the DFT conductances of odd and even number of 

-CH2 units respectively. 

 



4.18.1 Comparison between theory and experiment of carbon anchor  

As demonstrated with amine and thiol anchors, I shall examine the DFT calculations against 

STM measurements. For the comparison purpose, I have found a set of experimental 

measurements that includes 3 even linear chains C4, C6 and C8 [17] as shown in Figure 4.22.          

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 22. STM measreaments versus DFT simulation of alkane chains terimenated with 

carbon anchor. The black dashed line shows the DFT calculations where the red line represents 

experimental measurements. 

Figure 4.22, demonstrates the accuracy of the DFT predictions for the slope, although the 

theoretical conductance values are higher than the measured ones.  
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4.19 Transmission coefficient of alkane chains with Thiomethyl as terminal group 

Following the same procedure described in sections 4.3 - 4.18 (amine, thiol and direct carbon 

anchors). I shall briefly investigate the thiomethyl anchor by employing only 3 linear chains 

and I am going to investigate this anchor in more detail in chapter 5 (sections 5.3-5.8), as I will 

use these linear chains to test the Kirchhoff’s law.     

Here, I increase the length of the chain by adding two -CH2 units to form 3 molecules and as 

follows: C6, C8 and C10. The three chains are terminated with two thiomethyl anchors (SMe) 

as shown in Figure 4.23. 

 

 

 

 

 

Figure 4. 23. Alkane chains: Fully relaxed isolated molecules, of different length of carbon 

atoms, mainly even chains C4, C6, C8 and C10, and all are terminated with SMe anchors. 

 

 

 

 

 

 

(a) 

(b) 

(c) 



 

 

 

 

 

 

 

 

 

 

Figure 4. 24. Transmission coefficient curves of alkanes chains . Transmission coefficient T(E) 

curves of even alkane chains against electron energy E.   

 

The same message of the other anchors was found; ie an exponential decrease in conductance 

with increasing length is obtained. In the next section, I would like to finish this thorough 

investigation of alkane chains with different 4 terminal groups, by making a comparison 

between DFT predictions and STM measurements.   

 

4.20 STM versus DFT Conductance of four different terminal groups 

In this section, I shall compare the conductance G of 4 different linear chains based on the 

terminal group. Each chain of these possesses different length. In DFT simulations the 

molecular length varies from 3 to 8 -CH2 units, with 4 linker groups including NH2, C, S and 

SMe. Similarly, for STM measurements except the molecular length is usually shorter mainly 

3 or 4 chains for each anchor. 
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Figure 4. 25. Chain-length conductance dependence of Au |alkane linear chain | Au junctions 

for four different terminal groups. Logarithmic conductance of DFT and STM (left to right), 

as a function of the chain length of four different terminal groups Au- C (purple line), Au-S 

(green line), Au-SMe (blue line) and Au-Amine (red line). 

 

The DFT simulations predict that the conductances follow the order C > S > SMe > NH2 (left 

panel). The DFT prediction order for the 4 anchors is well supported by STM measurements 

(right panel), as shown in Figure 4.25. In general, the theoretical conductances are slightly 

higher than the measured ones, in agreement with literature values.  

 

 

 

 

 

 

 

 



4.21 Exponential decay 𝜷 calculations  

Formula 4.2 uses to calculate the 𝛽 factor of linear alkane chains [29]. The conductance 𝐺 

was observed to decay exponentially with length (𝑛).  

𝐺

𝐺°
= 𝐴 𝑒−𝛽 𝑛                                                                                                                         (4.2) 

Solving (4.2) with respect to 𝛽   

− 𝛽 = 𝑙𝑜𝑔 ( 
𝐺𝑛+1

𝐺°
 ) − 𝑙𝑜𝑔 ( 

𝐺𝑛

𝐺°
 )                                                                                          (4.3)                                                                                                                         

Where 𝑛 is number of methylene -CH2 units, 𝛽 is decay constant per -CH2 unit and 𝐴 is a 

constant will be discussed in detail later. In addition, 𝐺𝑛 and 𝐺𝑛+1 represent logarithmic 

conductance for each two neighbouring points (see Figure 4.25). 

Table 4.11 shows 𝛽 values for the 4 different linker groups that employ in this study. 𝛽 

represents the efficiency of electron transport along alkane chains and is regarded as an 

important parameter [29]. 

Table 4. 11.  𝛽 values for different alkane chain length C3 to C10 terminated with four 

different anchor groups. 

     

Range 0.5− 0.54 0.4−0.42 0.4 0.4−0.5 

 

 

𝛽𝐴𝑛𝑐ℎ𝑜𝑟 

𝑟 

𝛽𝐶 

 

𝛽𝑆 

 

𝛽𝑆𝑀𝑒 

 

𝛽𝑁𝐻2 

 

In the above table, 𝛽𝐶 ,𝛽𝑆, 𝛽𝑆𝑀𝑒  and 𝛽𝑁𝐻2 represent 𝛽 values for 

alkane chains terminated with C, S, SMe and amine respectively.  
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Table 4.11, demonstrates that 𝛽 factors vary slightly form one anchor to another. For example, 

the direct carbon anchor possesses the  𝛽 and it varies from 0.5 to 0.54. All in all, one could 

tell that 𝛽 factor range from 0.4 to 0.54 per -CH2 unit for the 4 anchors.  

On the other hand, 𝐴 constant simply represents Y-intercept values which could be used to 

calculate the distance between tow desired lines by taking the difference between their 

constants (see Figure 4.25). 

Table 4.12 represents  𝐴 values for the 4 different linker groups that were used in this study.  

Table 4. 12.  𝐴 constant values for different alkane chain length C3 to C10 terminated with 

four different anchor groups. 

     

 

Theo. 5. 8 0.5 0.18 0.05 𝐴𝐶 > 𝐴𝑆 > 𝐴𝑆𝑀𝑒 > 𝐴𝑁𝐻2 

 

 

Table 4.12 demonstrates 𝐴 constant varies form one anchor to another. For example, the 

amine anchor possesses the lowest 𝐴 with value 0.05. The second lowest 𝐴 is the thiomethyl 

anchor with 0.018 followed by the thiol with 0.5. On the other hand, the direct carbon anchor 

shows the highest 𝐴 with 5.8. Additionally, Table 4.12 shows that the order of A constant is 

taking the same order of G ( 𝐺𝐶 > 𝐺𝑆 > 𝐺𝑆𝑀𝑒 > 𝐺𝑁𝐻2 ).  

 

 

 

𝐴𝐴𝑛𝑐ℎ𝑜𝑟 

𝑟 

𝐴𝐶  

 

𝐴𝑆 

 

𝐴𝑆𝑀𝑒  

 

𝐴𝑁𝐻2 

 

order 

 

In the above table, 𝐴𝐶  ,𝐴𝑆, 𝐴𝑆𝑀𝑒   and 𝐴𝑁𝐻2 represent 𝐴 values for 

alkane chains terminated with C, S, SMe and amine respectively.  



4.21.1 Comparison between theory and experiment of 𝜷 factor 

 

In sections above, theory simulations have been checked against experimental measurements 

of the 4 studied anchors in different molecular lengths. Here, I shall examine the predicted 𝛽 

and 𝐴  values to the measured ones.   

Table 4. 13. DFT prediction and STM measurement 𝛽 factor comparison of different 

molecular alkane chain lengths for 4 different anchor groups including thiol, thiomethyl, 

direct carbon and amine. The experimental molecular lengths for direct carbon are: C4, C6 

and C8 , thiol C6, C8 and C10, thiomethyl C6, C8 and C10 and amine C4, C6, C8 and C10, while 

for theory C3 to C10. 

   

  

Theo. 0.5− 0.54 0.4−0.42 0.4 0.4−0.5 

Exp. 0.35−0.4 [31] 0.34−0.5 [29] 0.4−0.56[𝑜𝑢𝑟]  0.48−0.5[29] 

    

Table 4.13 reveals that the theoretical  𝛽 factors are generally higher than the experimental 

ones, however, one could notice there is an excellent agreement between the DFT predictions 

and the STM measured 𝛽 factors.  

Additionally, 𝐴 constants have been compared with some experimental results with the same 

anchors shown in Table 4.14. 

Table 4. 14. DFT prediction and STM measurement 𝐴 constants comparison of different 

molecular alkane chain lengths for 4 different anchor groups including thiol, thiomethyl, 

direct carbon and amine. The experimental molecular lengths for direct carbon are: C4, C6 

 
𝛽𝑁𝐻2 

 

𝛽𝐶 

 

𝛽𝑆𝑀𝑒 

 

𝛽𝐴𝑛𝑐ℎ𝑜𝑟 

𝑟 

𝛽𝑠 
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and C8 , thiol C6, C8 and C10, thiomethyl C6, C8 and C10 and amine C4, C6, C8 and C10, while 

for theory C3 to C10. 

     

 

Theo. 5. 8 0.5 0.18 0.05 𝐴𝐶 > 𝐴𝑆 > 𝐴𝑆𝑀𝑒 > 𝐴𝑁𝐻2 

Exp. 0.35[31] 0.4[29] 0.16[𝑜𝑢𝑟] 0.08[29] 𝐴𝐶 ≈ 𝐴𝑆 > 𝐴𝑆𝑀𝑒 > 𝐴𝑁𝐻2 

 

 

Based on Table 4.14, the 𝐴 constant values follow the same order experimentally and 

theoretically. However, there is a significant gap in 𝐴𝐶  values theoretically and 

experimentally while DFT predictions and STM measurements agree exceptionally well on 

the remaining 𝐴 constants. 

4.21 Conclusion 

In summary, I have studied the frontier orbitals of different moleculars starting from C3 to C8, 

with four4 different anchors including thiol, thiomethyl, direct carbon and amine, so, in total 

32 linear chains have been investigated. The iso-surface plots show different behaviours of 

localised and delocalised weights of the HOMO and LUMO orbitals for the different linkers. 

These 4 linkers bind to gold metal differently, meaning that some bind more strongly than 

others; for instance thiol binds 7 times more strongly than thioether.  

The conductance varies from one anchor to another and the order is C > S > SMe > NH2. The 

DFT predicted order is well-supported by STM measured values for the same anchors that I 

gathered from the literature. The 𝛽 factor and 𝐴 values have also predicted and examined 

against the STM measured and an excellent agreement was found for the 4 linkers.          

 

𝐴𝐴𝑛𝑐ℎ𝑜𝑟 

𝑟 

𝐴𝐶  

 

𝐴𝑆 

 

𝐴𝑆𝑀𝑒  

 

𝐴𝑁𝐻2 

 

order 
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Chapter 5  

Non-classical electron transport in the sigma systems of alkane rings 

The following investigation was carried out in collaboration with the experimental group led 

by Professor Zhong-Ning (State Key Laboratory of Structural Chemistry, Fujian Institute of 

Research on the Structure of Matter, Chinese Academy of Sciences), who synthesised the 

studied molecules and Professor Wenjing Hong (State Key Laboratory of Physical Chemistry 

of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, Xiamen 

University), who conducted the experiments.  In this chapter, I will present our joint theoretical 

and experimental work on the electron transport in alkane derivatives, and the results presented 

here were submitted: 

“Highly insulating alkane rings with destructive σ-interference”  

Wenqiang Cao, Alaa Al-Jobory, Qian-Chong Zhang, Jingyao Ye, Abdullah Alshehab, Kai Qu, Turki 

Alotaibi, Hang Chen, Junyang Liu, Ali. K. Ismael, Zhong-Ning Chen, Colin J. Lambert and Wenjing 

Hong. 

 

In chapter 4, I have comprehensively investigated 32 linear alkane chains classified by 4 

different terminal anchors including amine, direct carbon, thiol and thiomethyl.  In this chapter, 

I shall investigate a series of alkane chains terminated with thiomethyl and their corresponding 

symmetric and asymmetric alkane rings, calculate their electrical conductances and Seebeck 

coefficients using DFT-based simulations. Remarkably, I find that the conductances of the 

double-branched alkane rings are smaller than those of the corresponding individual chain 

(which is in agreement with previously published report38) and much smaller than the value 

predicted by Kirchhoff’s law. The Seebeck coefficients of the rings are also higher than those 

of the corresponding chains, which is consistent with the presence of phase coherent tunnelling 

in the alkane rings. Further characterizations of asymmetric rings reveal that their conductances 



117 

 

and Seebeck coefficients are between those of their corresponding shorter and longer chains. 

With the elongation of the longer chain, the conductance of the asymmetric ring becomes close 

to that of the shorter chain. This suppression of conductance in symmetric rings agrees with 

experimental results using the scanning tunnelling microscope break junction (STM-BJ) 

method. 

 

5.1 Motivation 

Characterising the electrical conductance of ring-like molecules is of interest, not only because 

they possess more than one path for electron transport, which can lead to non-classical 

behaviour, but also because rings of different sizes have the potential to bind selectively to 

analyte molecules, with potential sensing applications. Here, I report a combined theoretical 

and experimental study of electron transport through alkyl rings formed from segments of 

length n and m alkyl units connected via sulphur atoms to form rings. Results are presented for 

both the electrical conductances and Seebeck coefficients of CmCn rings formed from branches 

n,m = 6,6; 6,8; 6,10; 8,8; 8,10 and 10,10 and also for Cm chains with n = 6, 8, and 10 alkyl 

units. The conductances of the n,n symmetric rings are found to decay exponentially with n, 

but at a slower rate than the linear chains. Remarkably, both theory and experiment reveal that 

the electrical conductances of the symmetric CnCn rings are lower than their asymmetric 

counterparts, with the C6C6 less than both C6C8 and C6C10, the C8C8 less than both C8C6 and 

C8C10 and the C10C10 less than both C10C8 and C10C6. This highly non-classical behaviour is 

a signature of phase-coherent tunnelling and quantum interference within the 𝜎 systems of 

these non-conjugated molecules. The symmetric rings are also found to possess the highest 

Seebeck coefficients, with measured values -29, -31 and -26.7 𝜇𝑉/𝑘 for C6C6, C8C8 and C10C10 

respectively, which is consistent with my theoretically predicted trends. 

 



5.3 Optimized DFT Structures of Isolated Molecules 

I divide the research here in three groups depending on the geometrical details of the studied 

molecules including alkane chains, symmetric and asymmetric rings. Each group consists of 

three molecules based on their molecular length. For more information about the transport 

calculations use in this chapter, see sections 3.2-3.6 in chapter 3. 

5.3.1 Geometries of the isolated alkane chains  

 

As I mentioned above, the first group of this chapter is alkane chains. For this group, I choose 

three molecules by increasing the length of the chain by two -CH2 units and as follows: C6, C8 

and C10. The three chains are terminated with two thiomethyl anchors (SMe), as shown in 

Figure 5.1 (top to bottom respectively).   

 

 

   

  

 

Figure 5. 1. Alkane chains: Fully relaxed isolated molecules, with 6, 8 and 10 carbon atoms 

(excluding the 2 carbon atoms within the SMe anchors). (a), (b) and (c): represent C6, C8 and 

C10 chains with (SMe) top to bottom respectively.  

5.3.2 Geometries of the isolated symmetric alkane rings  

 

In this section, I combine two alkane chains (-CH2 units) to form a ring with two sulphur atoms 

acting as anchor groups. These rings have identical branches (upper and lower). This group 

(a) 

(b) 

(c) 
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consists of the following three rings C6C6, C8C8 and C10C10 , as shown in Figure 5.2 (the cavity 

increases by four -CH2 units).      

   

  

 

 

 

 

 

Figure 5. 2. Alkane symmetric rings: Fully relaxed isolated symmetric rings, with 6-6, 8-8 

and 10-10 carbon atom branches: (a), (b) and (c): represent C6C6, C8C8 and C10C10 rings 

with (SMe) top to bottom respectively.  

 

5.3.3 Geometries of the isolated asymmetric alkane rings   

 

The procedure of forming symmetric rings will now be repeated, here. However I shall use the 

first group (chains) to create three asymmetric rings. These rings do not have identical branches 

(n,m) such as, C6C8 (C6 combined with C8 through 2 sulphur atoms acting as anchor groups, 

see Fig. 5.3a), C6C10 (C6 combined with C10 through 2 sulphur atoms acting as anchor groups, 

see Fig. 5.3b) and C8C10 (C8 combined with C10 through 2 sulphur atoms acting as anchor 

groups, see Fig. 5.3c) . As shown in the Figure 5.3 (the cavity increases by two -CH2 units, 14, 

16 and 18 for C6C8, C6C10 and C8C10 respectively). 

 

(a) 

(b) 

(c) 



    

 

 

 

 

 

 

  

Figure 5. 3. Alkane asymmetric rings:  Fully relexed isolated asymmetric rings, with 6-8, 6-

10 and 8-10 carbon atom branches. (a), (b) and (c): represents C6C8, C6C10 and C8C10 rings 

with (SMe) top to bottom respectively. 

5.4 Frontier orbitals of the studied molecules 

Tables 5.1-5.3 show the frontier orbitals of the isolated molecules. The plots below show iso-

surfaces of the HOMO, LUMO, HOMO-1 and LUMO+1 along with their energies of the 

three groups (chain, symmetric and asymmetric rings). 

 

 

 

 

(a) 

(b) 

(c) 
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Table 5. 1. Comparison between the Frontier molecular orbitals of alkane chain, including 

C6, C8 and C10 in the gas phase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
   



Table 5. 2.  Frontier molecular orbitals of asymmetric rings, including C6C8, C6C10 and 

C8C10in the gas phase. 

 

 

 

 

 

 

 

 

 

 

Table 5. 2. Frontier molecular orbitals of symmetric rings, including C6C6, C8C8 and C10C10 

in the gas phase. 
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Table 5. 3.  Frontier molecular orbitals of asymmetric rings, including C6C8, C6C10 and 

C8C10in the gas phase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   



5.5 Binding energy of two terminal groups on gold 

 The binding energy method has been described in chapter 4 (see section 4.5), and the studied 

molecules have been shown in sections 5.3.1-5.3.3. Now, I am ready to calculate the binding 

energies of alkane chains terminated with SMe and the corresponding rings terminated with S, 

as shown in the right panel of Figure 5.4.  In the section 4.14 of chapter 4, I already calculated 

the Au-S covalent binding energy, which was approximately -2 eV and its corresponding 

equilibrium distance was found to be approximately 2.4 Å. Here, I shall repeat the same 

procedure that described in the section 4.7 and using the equation (4.1) to calculate (Au-SMe) 

binding energy.  Left panel of Figure 5.4 shows a comparison between the binding energy of 

an alkane chain with (Au-SMe) and a ring with (Au-S). The Au-SMe covalent binding energy 

is approximately -0.3 eV. It is clear that the S biding energy is stronger than Au-SMe by 

approximately 7 times. 

 

 

 

 

 

 

 

Figure 5. 4. An example of alkane molecule terminated with a thiol anchor and thiomethyl on 

a gold tip :( Left) Binding energy of C4 alkane chain and C6C6 symmetric ring to gold as a 

function of molecule-contact distance. The equilibrium distances (i.e. the minimum of the 

binding energy curve) are found to be approximately 2.4 and 2.8 Å, for Au-S and Au-SMe (red 

𝒅 (𝑨°) 
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and green curves).  (Right) its idealised ad-atom configuration at the Au lead interface Au-thiol 

and Au-SMe. Key:  C = grey, H = white, S = light yellow, Au = dark yellow.  

 

5.6 DFT Calculations 

After relaxing each molecule of the studied group, I calculated the electrical conductance using 

the GOLLUM quantum transport code [1]. From the ground state Hamiltonian, the 

transmission coefficient, the room temperature electrical conductance 𝐺 and Seebeck 

coefficient 𝑆 were obtained, as described in the sections below. 

5.7 Optimised DFT Structures of Compounds in their Junctions 

 Figure 5.5 illustrates 3 alkane chains in Au junctions including C6, C8 and C10.  

 

 

 

 

 

 

 

Figure 5. 5. Examples of fully relaxed alkane derivatives in Au|molecule|Au junctions: (a), (b) 

and (c).  6, 8 and 10 linear chains connect to gold electrodes via thiomethyl anchor groups (Au–

SMe).  

(a

) 

(b) 

(c) 



5.8 Transport calculations  

The transmission coefficients T(E), obtained from using the GOLLUM transport code [1-3], 

were calculated for alkane chains and rings with different terminal groups such as S and SMe 

binding to the gold (111) surfaces. I shall investigate in detail the transmission coefficients 

T(E), conductance G and Seebeck coefficient S with different anchor groups, then I will 

compare them against experimental results.  

5.8.1 Transmission coefficient of alkane chains using (Au-SMe) as terminal group 

 The Fermi energy is predicted to be approximately mid-gap due to the presence of the SMe 

anchor group [4-18]. In this study, I choose the DFT-predicted Fermi level (black-dashed line 

of Figure 5.6), to compare with the experimental results. The transmission coefficients of the 

alkane chains of different lengths (n=6, 8 and 10) are shown in Figure 5.6. 

 

 

 

 

 

 

 

Figure 5. 6.Transmission coefficients of alkanes with 6, 8 and 10 carbon atoms. Transmission 

coefficients T(E) of alkane chains against electron energy E, alkane chain C6 (black-line), 

alkane chain C8 (blue-line), and alkane chain C10 (red-line).  
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As expected, it is clear from Figure 5.6 that conductance of alkane chains decreases as the 

length of the molecule increases. The actual logarithmic conductances are -3.7, -4.2 and -5.0 

for C6, C8 and C10 respectively.  In the following sections, I will examine conductance 

behaviour for both symmetric and antisymmetric rings. 

5.8.2 Transmission coefficient of alkane rings using (Au-S) as terminal group 

The transmission coefficients T(E) were calculated for both the symmetric alkane rings C6C6, 

C8C8 and C10C10, as shown in Figure 5.7, and the asymmetric alkane rings C6C8, C6C10 and 

C8C10 shown in the Figure 5.9. Figure 5.8 shows the transmission coefficients of the symmetric 

rings. 

 

  

 

 

 

 

Figure 5. 7. Examples of alkane ring derivatives in Au|molecule|Au junctions: (a), (b) and 

(c): A double-branch n = 6, 8 and 10 alkane symmetric rings with (Au-S).  

(a) 

(b) 

(c) 



 

 

 

 

 

 

 

Figure 5. 8. Transmission coefficient curves of alkane symmetirc rings. Transmission 

coefficients T(E) of alkane symmetric rings against electron energy E, alkane ring size C6C6 

(black-line), alkane ring size C8C8 (blue-line), and alkane ring size C10C10 (red-line).  

 

The conductance of the symmetric rings decreases as the size of these rings increases as shown 

in Figure 5.8.  The logarithmic conductances are -4.14, -4.38 and -5.10 for C6C6, C8C8 and 

C10C10 alkane symmetric rings respectively. The transmission coefficients curves are still 

showing the expected behaviour for both alkane chains and its symmetric rings.  

For asymmetric rings, shown in the Figure 5.9, I examined the three different sizes, C6C8, 

C8C10 and C6C10. The two branches of these rings are not equal, meaning, one of the branches 

is longer/shorter by two carbon atoms C6C8 and C8C10 rings while for C6C10 the difference 

between the two branches is four carbon atoms. 
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Figure 5. 9. Examples of alkane ring derivatives in Au|molecule|Au junctions: (a), (b) and 

(c):  The length of top-branches are n = 6, 6 and 8 while bottom- branches n=8, 10 and 10 

asymmetric alkane rings with (Au–S).  

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 10. Transmission coefficient curves of alkane asymmetirc rings. Transmission 

coefficients T(E) of alkane asymmetric rings against electron energy E, alkane ring size C6C8 

(black-line), alkane ring size C6C10 (blue-line), and alkane ring size C8C10 (red-line).  

(a) 

(b) 

(c) 



The conductance of asymmetric rings shows the same trend as the symmetric rings (see Fig. 

5.10), with a decreasing conductance as the size of the rings increases as shown in Figure 5.10. 

The logarithmic conductances are -3.30, -3.73 and -4.31 for C6C8, C6C10 and C8C10 

asymmetric rings.   

So far, conductances of alkane chains, symmetric and asymmetric rings behave conventionally, 

meaning that the conductances decrease, as the lengths or cavity sizes of the molecules 

increase.  In the following section, I shall apply the Kirchhoff’s law to these nano-scale 

structures, and I will examine the trend of conductance, to check whether their behaviour is 

classical or non-classical.  

5.9 Applying the Kirchhoff’s law in the Nano-scale structures 

Classically, when electrical circuits are connected in parallel as shown in Figure 5.11, the 

current has multiple pathways that can travel through them.  

Kirchhoff’s superposition law states that the total conductance of an electronic circuit in a 

parallel configuration is the sum of the conductance of the individual branches (𝐺𝑡𝑜𝑡𝑎𝑙=𝐺1 +

𝐺2) [19-22]. 

 

 

 

 

  

Figure 5. 11. Electrical circuit with resistors (R1 and R2), where they connected in parallel. 

The total resistance is: 

1

𝑅𝑡𝑜𝑡𝑎𝑙
=

1

𝑅1
+

1

𝑅2
                                                                                                                     (5.2) 
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𝑤ℎ𝑒𝑟𝑒  𝐺 =
1

𝑅
  (Ampere/Volt =Siemens)                                                                            (5.3) 

From equations (5.2) and (5.3) 

𝐺𝑡𝑜𝑡𝑎𝑙=𝐺1 + 𝐺2                                                                                                                     (5.4) 

 I now examine the question: does Kirchhoff’s law work for the nano-scale structures 

examined in this chapter?  

To answer this question, I am going to compare the conductances of three alkane chains, where 

the electrons have only one passible path to travel as shown in the Figure 5.12(a) against their 

corresponding symmetric rings. In this case (rings), electrons have more than one passible path 

as shown in the Figure 5.12(b).  

 

 

 

 

 

 

 

 

Figure 5. 12. Different scenarios for quantum circuits. (a): The conductance of a molecule is 

G (due to there is only one pathway). (b): Classically, the conductance of a ring formed from 

two conductors connect in parallel, is equal to the sum of the individual conductances (𝐺1 +

𝐺2). 

 

𝐺𝑡𝑜𝑡𝑎𝑙=𝐺1 + 𝐺2? 

 

𝐺 

 (𝑎) 

 

(𝑏) 

 



Now, if the Kirchhoff’s law works on the studied molecules (chains and rings), then surely the 

conductances of rings (C6C6, C8C8 and C10C10) should be higher than conductances of chains 

(C6, C8 and C10).     

5.9.1 Conductance of linear chain versus symmetric rings 

Here, I am going to investigate the conductance of alkane chains against the conductance of 

symmetric rings. Also, I am going to check the validity of Kirchhoff’s law in these nano-scale 

structures. 

Table 5 .4 summarises the comparison between conductances of chains and symmetric alkane 

rings at the DFT-predicted Fermi (𝐸 − 𝐸𝐹 = 0). This table proves that the conductances of 

alkane rings with two parallel conductance paths are lower than those of the corresponding 

linear chains with only one conductance path. This behaviour is a non-classical trend, meaning, 

it does not follow the Kirchhoff's law.   

Table 5. 4. Conductances of linear chains, C6, C8 and C10, and alkane symmetric rings, C6C6, 

C8C8 and C10C10. These results are determined at the DFT-predicted Fermi (𝐸 − 𝐸𝐹 = 0). 

Molecule 
Conductance 

 𝑙𝑜𝑔(𝐺/𝐺°) 

C6 -3.7 

C6C6 -4.14 

C8 -4.2 

C8C8 -4.38 

C10 -5.0 

C10C10 -5.10 
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5.9.2 Conductance of linear chains versus asymmetric rings 

In section 5.9.1, I made a comparison between conductances of linear chains and their 

corresponding symmetric rings (C6C8, C6C10 and C8C10). Here, I shall repeat the same 

comparison, however, this time with asymmetric rings including C6C8, C6C10 and C8C10. 

The conductance of linear chains C6, C8 and C10 and their asymmetric rings C6C8, C6C10 and 

C8C10 are investigated in three categories. The first category is denoted C6-branch, where there 

is at least on branch with 6 carbon atoms and it consists of C6, C6C8 and C6C10. The second 

category is denoted C8-branch, where there is at least on branch with 8 carbon atoms and it 

consists of C8, C6C8 and C8C10. The last category, category is denoted C10-branch, where there 

is at least one branch with 10 carbon atoms and consists of C10, C6C10 and C8C10. 

Table 5 .5 summarises the comparison between conductances of linear chains and asymmetric 

rings at the DFT-predicted Fermi (𝐸 − 𝐸𝐹 = 0). The comparison here is more complicated than 

in Table 5.2, since the two branches are not equal. Therefore, this requires comparing each 

chain against two different rings and as follows: C6 versus C6 C8 and C6 C10, C8 versus C6 C8 

and C8 C10 and C10 versus C8 C10 and C6 C10.  This Table shows three different trends: the 

conductances of alkane rings with two parallel conductance paths are: equal to or higher or 

lower than those of the corresponding linear chains with only one conductance path.  

The conductance of chain C6 is lower than G of C6C8 and roughly equal to G of C6C10, 

similarly, for C8 G is lower than C6C8 and slightly higher than C8 C10. In contrast, the 

conductance of the larger chain C10 is lower than both rings C8C10 and C6C10. I can conclude 

that for small and medium chains C6 and C8 the conductance sits between the two conductances 

of the different cavity ring sizes, while for the large chain C10 the conductance is lower than 

both rings.  



These results are reasonable, if we consider the number of carbon atoms in each branch. To 

accommodate this point, G of C6 is lower than C6C8 , because this cavity has 14 carbon atoms, 

whereas G of C6 is roughly equal to C6C10 that possesses a bigger cavity (16 carbon atoms). 

Similarly, G of C8 is lower than C6C8 (small cavity) and slightly higher than C8C10 (large 

cavity). 

For the long chain C10`, G is lower than both C8C10 and C6C10, however. In other words, it is 

closer to the large cavity (C8C10), than the small cavity (C6C10), which follows the same trend 

of short and medium chains C6 and C8.          

 The above behaviour partially does not agree with Table 5.2 results, which suggests there is a 

classical and a non-classical trend. I will discuss this point in more detail in the next section 

focusing on alkane rings. 

Table 5. 5. Conductances of linear chains, C6, C8 and C10, and asymmetric alkane rings 

including C6C8, C6C10 and C8 C10. These results are determined at the DFT-predicted Fermi 

(𝐸 − 𝐸𝐹 = 0). 

Molecule 
Conductance  

 𝑙𝑜𝑔(𝐺/𝐺°) 
Molecule 

Conductance  

 𝑙𝑜𝑔(𝐺/𝐺°) 
Molecule 

Conductance  

 𝑙𝑜𝑔(𝐺/𝐺°) 

C6 -3.70  C8 -4.20 C10 -5.0 

C6 C8 -3.30 C6 C8 -3.30 C6 C10 -3.73 

C6 C10 -3.73 C8 C10 -4.31 C8 C10 -4.31 
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5.10 Classical and non-classical trends (families) 

In this section, I compare the transmission coefficients of 3 rings that have the same number of 

carbon atoms in one of the branches (the common branch), while the number of carbon atoms 

is bigger or smaller in the second branch. Based on that, I have created three families of alkane 

rings, as shown in Table 5.6.  Family-6 includes C6C6, C6C8 and C6C10 rings, here, the common 

branch is C6 and their corresponding transmission coefficients in the Figure 5.13.  Family-8, 

includes C8C6, C8C8 and C8C10 rings and the common branch is C8 and their corresponding 

transmission coefficients in the Figure 5.14. Finally, for family-10, the common branch is C10 

and it includes C6C10, C8C10 and C10C10 rings and their corresponding transmission 

coefficients in Figure 5.15. 

Table 5. 6. Shows three families: family-6, family-8 and family-10. Each family includes three 

rings, the three rings have a common branch. The common branches of the three rings are C6, 

C8 and C10 (family-6, family-8 and family-10 respectively).  

 

 Common branch 

C6 

Common branch  

C8 

Common branch  

C10 

Family-6 C6C6 C6C8 C6C10 

Family-8 C8C6 C8C8 C8C10 

Family-10 C10C6 C10C8 C10C10 

 

 

 

 

 

 

Family 



 

 

 

 

 

 

  

Figure 5. 13. Transmission coefficient curves of the three alkane rings of family-6. 

Transmission coefficients T(E) of family-6 against electron energy E. 

 

 

 

 

 

 

 

Figure 5. 14. Transmission coefficient curves of the three alkane rings of family-8. 

Transmission coefficients T(E) of family-8 against electron energy E. 
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Figure 5. 15. Transmission coefficient curves of the three alkane rings of family-10. 

Transmission coefficients T(E) of family-10 against electron energy E 

  

Figure 5.13 clearly demonstrates that family-6 transmission coefficients possess a non-

conventional trend, because the C6C6 ring (the smallest cavity in this family) has the lowest 

conductance, while the C6C8 ring (the second biggest cavity in this family) has the largest 

conductance (𝐺 =-4.14 and -3.30 respectively). It is worth mentioning, that the conductance 

of C6C10 ring lies in between C6C6 and C6C8.        

In contrast, family-8 and -10 transmission coefficients show a conventional trend, meaning, 

the larger the cavity the smaller the conductance. The more classical behaviour is clearly shown 

in a large family such as family-10, where the conductance of different cavities follows the 

order C6C10 > C8C10 > C10C10 as shown in Figure 5.15. This trend is less obvious in the medium 

family (family-8), where the conductance of the three rings follows C6C8 > C8C10 ≈ C10C10 as 

shown in Figure 5.14. 



Figures 5.13, 5.14 and 5.15 suggest that small cavities (i.e: family-6), tend to follow a non-

conventional trend, whereas large cavities (i.e: family-10), tend to follow a conventional trend. 

Figure 5.16, demonstrates the conventional and non-conventional trend for the three families, 

these results are summarised in Table 5.5. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 16. Conventional and non-conventional tunnelling transport of three families. The 

theoritical  conductances of three alkane ring families: small cavity family C6 including C6C6, 

C6C8 and C6C10, medium cavity family C8 including C8C8, C6C8 and C8C10, and large cavity 

family C10 including C10C10, C6C10 and C8C10. 

 

 



139 

 

Table 5. 7. Conductances of three families: small, medium and large (family-6, family-8 and 

family-10), each family includes three different cavities. These values are determined at the 

DFT-predicted Fermi energy (𝐸 − 𝐸𝐹 = 0 𝑒𝑉). 

Family-6 Family-8 Family-10 

Small 

cavity 

Conductance 

𝑙𝑜𝑔(𝐺/𝐺°) 

Medium 

cavity 

Conductance 

𝑙𝑜𝑔(𝐺/𝐺°) 

Large 

cavity 

Conductance 

𝑙𝑜𝑔(𝐺/𝐺°) 

C6C6 -4.14 C6C8 -3.30 C6C10 -3.73 

C6C8 -3.30 C8C8 -4.38 C8C10 -4.31 

C6C10 -3.73 C8C10 -4.31 C10C10 -5.10 

 

Up to this point, I have theoretically investigated and predicted some relationships employing 

9 alkane molecule derivatives. The next step is to test my theoretical DFT simulations against 

the STM measured values.      

 

 

 

   

 

 

 

 

 

 



5.10.1 Comparison between theoretical simulations and experimental measurements 

As it mentioned before, this project is a cooperative investigation between theory and 

experiment. In this section, I will use the STM measurements to test my DFT-simulations and 

predictions for some electronic properties including conductance and charge transport for the 

9 alkane derivatives. 

My theoretical simulations predict that the Kirchhoff’s law is not applicable in alkane=based 

nanoscale structures. To prove this point, I made 6 comparisons, where I compared the 

conductance of 3 single path such as alkane linear chains C6, C8 and C10 against the 

conductance of 3 symmetric alkane rings (double even path), such as C6C6, C8C8 and C10C10.  

Then, I employed the same 3 single path molecules to check their conductances versus those 

of asymmetric rings (double uneven path), such as C6C8, C6C10 and C8 C10 and find the case 

with asymmetric rings is more delicate due to the fact that the two paths are not equal.        

My DFT simulations about comparing single path versus double even path is shown in Figures 

5.6 and 5.8, where the transmission coefficient curves for C6, C8 and C10 and C6C6, C8C8 and 

C10C10 plot for different electron energy, although I restrict the comparison at the DFT-

predicted Fermi energy (black-dashed line). These results demonstrate that the conductance of 

single path is higher than double path. The three comparisons contradict Kirchhoff’s law (see 

section 5.9), as clearly shown in Table 5.4.  

The validity of my simulations is now going to be tested by the STM measurements. The right 

panel of Figure 5.17 shows the experimental comparison between linear chains and rings. The 

measurements prove my simulations to be accurate, meaning that Kirchhoff’s law doesn’t work 

in alkane derivatives.        
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Figure 5. 17.  Testing the validity of DFT predictions (the Kirchhoff’s law validity).  

Conductance comparison of linear chains (blue lines) and alkane rings (red lines).  (Left panel) 

represents DFT predictions while (right panel) STM experimental measurements. Note: n = 

C6, C8 and C10 for chains and C6C6, C8C8 and C10C10 for rings. 

Figure 5.18, shows the actual comparison between the theory and experiment for 12 alkane 

molecules. In general, the DFT calculations are higher than STM measurements. However, the 

difference decreases with decreasing the length/cavity of the molecules, for instance at n=6.     

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

Figure 5. 18. Length dependence conductance of Au|chains/rings|Au junction, with Au–SMe 

for chains and Au-S for rings covalent bonds connecting the ends of the alkane to the gold 

electrodes. The blue and dashed blue lines represent the DFT simulations while the red and 

dashed red lines represent the STM measurements. 

After demonstrating that Kirchhoff’s law does not work in the case of chains versus symmetric 

rings, I am going to test that again but this time against asymmetric rings such as C6C8, C6C10 

and C8C10.  

Since the two branches of the rings are not equal, I am going to compare each linear chain 

against to 2 rings and as follows: small C6 versus C6C8 or C6C10, medium C8 versus C6C8 or 

C8C10 and large C10 versus C6C10 or C8C10.  

 

 

  



143 

 

As I mentioned above, the case here is more delicate. In general, the DFT simulations suggest 

that the conductances of rings are higher than the linear chain C6 < C6C8 and C6 ≈ C6C10. In 

contrast, the STM measurements suggest the opposite C6 > C6C8 and C6 > C6C10 as shown in 

Figure 5.19.   

Again, in general, the DFT simulations suggest that the conductances of rings are higher than 

the linear chain C8 < C6C8 and C8 ≈ C8C10. For this group the STM measurements agrees with 

the DFT prediction C8 < C6C8 and C6  < C8C10 as shown in Figure 5.20.   

  

 

 

 

 

 

 

 

Figure 5. 19.  Comparison between DFT simulations against STM measurements of the small 

group, C6 versus C6C8 or C6C10.  The red dashed- line represents the theory while the blue 

dashed- line represents the experiment. 



 

 

 

 

 

 

 

 

 

 

 

Figure 5. 20.  Comparison between DFT simulations against STM measurements of the 

medium group, C8 versus C6C8 or C8C10.  The red dashed- line represents the theory while 

the blue dashed- line represents the experiment. 
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Figure 5. 21.  Comparison between DFT simulations against STM measurements of the 

medium group, C10 versus C6C10 or C8C10.  The red dashed- line represents the theory while 

the blue dashed- line represents the experiment. 

Figure 5.21 clearly shows that both simulations and measurements suggest that the 

conductances of rings are higher than the linear chain C10 < C6C10 and C10 < C8C10. Overall, I 

would conclude that in general the DFT simulations predict the conductance of rings is higher 

than chains. The STM measurements prove that to be correct for two groups medium and large 

as shown in Figures 5.20 and 5.21.   

In section 5.10 above, I created 3 families: family-6, family-8 and family-10, each family 

consists of 3 rings. Theoretically, I predicted a relationship for each family as shown in Figure 

5.16. DFT simulations predict a non-classical trend for family-6 and a classical trend for 

family-8 and family-10. These predictions will now be checked against the STM 

measurements. Figure 5.22 shows the STM measurements for the 3 families (black-stars). By 

comparing them against the predictions (red-stars), one excellent agreement is obtained, 

especially for the larger cavity (family-10).    

 

 

       

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 22. Conventional and non-conventional tunnelling transport. Comparison between 

the theory and experimental conductances of three alkane ring families: small, medium and 

large cavities C6, C8 and C10 respectively. 
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5.10.2 Units of the Y-axis   

 

One can notice that the Y-axes in the sub-plots of Figure 5.22 are not on the same scale. I will 

now amend the 3 panels of Figure 5.22 to be all from -3 to -6 on Y-axes. The reason behind 

amending Figure 5.22, is to see a clear picture that helps to understand the trend in each family.  

Using the same scales, the top panel of Figure 5.23 (family-6), shows approximately a 

horizontal line (black arrow), meaning there is no significant change in the conductance of the 

3 rings.  One explanation for this behaviour, could be that in this family the common branch 

among the 3 rings is C6 (C6C6, C6C8 and C6C10,), and this path is the shortest in each ring. This 

suggests that the electrons tend to take the shortest path, and this is why the conductance is 

independent of increasing the size of the cavity (12, 14 and 16 carbon atoms). 

Having that in mind, family-8 includes C6C8, C8C8 and C8C10 rings and the common branch 

for this family is C8, however, the common branch here is not the shortest branch in C6C8 and 

this is the conductance of C6C8 is higher than C8C8 and C8C10 (black arrow-1). Applying the 

same idea elucidates why the conductances of C8C8 and C8C10 are approximately equal 

(common equal shortest branch, black arrow-2), as shown in the middle panel of Figure 5.23.      

Let us apply the same idea to a large family such as family-10, where the common branch is 

C10, and the shortest branch differs from one ring to another C6, C8 and C10. According to our 

assumption, the conductance should decrease by increasing the cavity size of the 3 rings (16, 

18 and 20 carbon atoms). This behaviour is clearly shown in the lower panel of Figure 5.23 

(black arrow). 

These theoretical simulations and the insight they provide are well supported by the STM 

measurements.  



To conclude the conductance comparison in the above sections, the conductances of the n,n 

symmetric rings are found to decay exponentially with n, but at a slower rate than the linear 

chains. Remarkably, both experiment and theory reveal that the electrical conductances of the 

symmetric CnCn rings are lower than their asymmetric counterparts, with the C6C6 less than 

both C6C8 and C6C10, the C8C8 less than both C8C6 and C8C10 and the C10C10 less than both 

C10C8 and C10C6.  

  

 

 

 

 

 

 

 

 

 

 

Figure 5. 23. Same plotting scale of Y-axes (amending Figure). Family 6, family 8 and family 

10, (top to bottom). 
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5.11 Seebeck coefficient  

After computing the electronic structures and properties including transmission coefficients 

T(E) for the 9 alkane derivatives (3 linear chains, 3 symmetric rings and 3 asymmetric rings), 

thermoelectric properties such as Seebeck coefficients 𝑆 is going to be computed for the same 

studied molecules. 

For more detail about the thermopower see section 3.2 in chapter 3 [23-29]. Here, I will briefly 

describe the thermoelectric simulations.   

 To calculate the Seebeck coefficient of the studied molecular junctions, it is useful to 

introduce the non-normalised probability distribution 𝑃(𝐸) defined by 

Where 𝑓(𝐸)the Fermi-Dirac is function and T(𝐸) are the transmission coefficients and whose 

moments 𝐿𝑛 are denoted as follows 

Where 𝐸𝐹 is the Fermi energy. The thermopower, 𝑆, is then given by  

Where 𝑒 is the electronic charge. 

 

 

 𝑃(𝐸) = −T(𝐸)
𝑑𝑓(𝐸)

𝑑𝐸
                 (5.5) 

 𝐿𝑛 = ∫𝑑𝐸𝑃(𝐸)(𝐸 − 𝐸𝐹)
𝑛                 (5.6) 

 𝑆(𝑇) = −
1

|𝑒|𝑇

𝐿1
𝐿0

                 (5.7) 



It is worth mentioning, that I am going to use the same classifications that I used in the 

conductance section. Alkane linear chains are denoted C6, C8 and C10. Symmetric alkane 

rings are denoted C6C6, C8C8 and C10C10 and asymmetric alkane rings are denoted C6C8, 

C6C10 and C8C10.  

5.11.1 Seebeck coefficients of linear chains  

In this section, I shall study Seebeck coefficients of the 3 alkane linear chains, where n=6, 8 

and 10, as shown in the Figure 5.5. 

Figure. 5.24 shows the thermopower 𝑆 evaluated at room temperature for different energy 

ranges 𝐸𝐹 − 𝐸𝐹
𝐷𝐹𝑇 of the 3 chains. This Figure shows that the sign of the Seebeck coefficient 

is negative for the 3 chains. The negative 𝑆  is due to the fact that the DFT-predicted Fermi 

(𝐸 − 𝐸𝐹 = 0 𝑒𝑉), is slightly closer to LUMO than HOMO as shown in Figure 5.24 (black-

dashed line). On the other hand, terminal group such as thiomethyl (SMe), could be HOMO or 

LUMO dominated according to many theoretical and experimental studies, but I am going test 

the sing and value against the 𝑆  measurements. 

Figure 5.24, predict that the Seebeck coefficients of medium and large (C8 and C10) chains to 

be similar and higher than the small chain C6, with -15.0 and -14.6 (𝜇𝑉/𝐾). One could notice 

that, the 𝑆 increases with increase the length from 6 to 8 carbon atoms. 
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Figure 5. 24. Seebeck coefficient S as a function of Fermi energy EF for 3 alkane chains. 

Seebeck coefficient S of alkane chains of size C6, alkane chain C8, and alkane chain C10. 

5.11.2 Seebeck coefficient of symmetric alkane rings 

The second group in this study is the symmetric rings, which includes small cavity C6C6, 

medium cavity C8C8, and large cavity C10C10 shown in the Figure 5.7. 

 

 

 

 

 

 

 

Figure 5. 25. Seebeck coefficients S as a function of Fermi energy EF for 3 alkane symmetric 

rings. Small symmetric rings of size C6C6, medium size C8C8, and large size C10C10. 

 



Figure 5.25 above again, shows a negative sign for the 3 symmetric rings, which suggest that 

the Fermi level is in the vicinity of LUMO than HOMO as shown in Figure 5.25 (black-dashed 

line). 

Figure 5.25, predict that the Seebeck coefficient of the medium ring C8C8 possesses the highest 

Seebeck coefficient with value of -31.4 (𝜇𝑉/𝐾) followed by the small ring C6C6 value of -29.7 

(𝜇𝑉/𝐾) then the lowest value -26.7 (𝜇𝑉/𝐾)  for C10C10. 

5.11.3 Seebeck coefficient of asymmetric alkane rings 

The third group in this study is asymmetric rings, which includes small cavity C6C8, medium 

cavity C6C10, and large cavity C8C10 shown in the Figure 5.9. 

 

 

 

 

 

 

 

Figure 5. 26. Seebeck coefficients S as a function of Fermi energy EF for 3 alkane rings. 

Seebeck coefficients S of asymmetric alkane rings of small cavity C6C8, medium cavity C6C10, 

and large cavity C8C10 respectively.  

Figure 5.26 above agrees with Figures 5.25 and 5.24 about the negative sign, which again 

suggests that the Fermi level is in the vicinity of LUMO than HOMO as shown in Figure 5.26 

(black-dashed line). 
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Figure 5.26, predict that the Seebeck coefficient of the small cavity C6C8 possesses the highest 

Seebeck coefficient with value of -18.0 (𝜇𝑉/𝐾) followed by the medium cavity C8C10 value 

of -16.8 (𝜇𝑉/𝐾)  then the lowest value -11.0 (𝜇𝑉/𝐾) for C6C10. The above simulations suggest 

that the case is more complicated in asymmetric rings. 

5.11.3 Comparison between theoretical simulations and experimental measurements  

 

In section 5.10.1, I compared my theoretical predictions of conductance against the STM 

measurements. Here, I am going to do the same for Seebeck coefficients. It is worth mentioning 

that our collaborator at Xiamen University for technical reason could not measure the Seebeck 

coefficient for the 9 alkane molecules.  For simplicity, I will present the thermopower 

comparison as a table, where it shows the measured STM values against the DFT predictions.   

For alkane linear chains, DFT predicts an increase in 𝑆 value by moving from small to medium 

then a decrease from medium to large chains. The first prediction is well supported by the STM 

measurements and I cannot check the second prediction as there is no measurements for the 

large chain as shown in Table 5.8 (top). 

For symmetric alkane rings, DFT again predicts similar trend, a slight increase in 𝑆 value by 

moving from small to medium (~ -30 to -31𝜇𝑉/𝐾) then decrease from medium to large cavity. 

Again, the STM measurements agree well with this prediction, and I cannot check the second 

prediction for the same reason as shown in Table 5.8 (middle). 

For asymmetric rings, DFT predicts an opposite trend, means decrease in 𝑆 value by moving 

from small to medium (~ -18 to -11𝜇𝑉/𝐾) then an increase from medium to large cavity. The 

STM measurements support the first prediction, and the second prediction cannot be checked 

as shown in Table 5.8 (bottom). 



Finally, the DFT-predicted sign (negative), of the Seebeck coefficient has been proven to be 

correct for 9 alkane derivatives.    

Table 5. 8. DFT predicted versus STM measured Seebeck coefficients of 9 alkane derivatives 

in 𝜇𝑉/𝐾 unit.   

 

 

  

 

C6 -6.76  -10.0 

C8 -15.90  -15.0 

C10 == -14.6 

 

C6C6 -19.23  -29.7 

C8C8 -24.94  -31.4 

C10C10 == -26.7 

 C6C8 -14.53  -18.0 

C6C10 -10.22 -11.0 

C8C10 == -16.8 

                    == No experimental value is available. 

 

 

 

 

 

 

 

Linear 

chains 

Symmetric 

rings 

Asymmetric 

rings 

Molecule 

type 

Measured 

Seebeck 

coefficient 

 

Calculated 

Seebeck 

coefficient 

 

Molecule  



155 

 

5.12 Conclusion 

 In conclusion, I investigated three alkane chains C6, C8 and C10 with thiomethyl anchors and 

found that their conductances decrease when the length of chains increases. Thus, the DFT 

logarithmic conductance of C6 was -3.7 where the conductance of C8 and C10 were -4.2 and -5 

respectively.  

 Furthermore, I formed symmetric and asymmetric rings from the alkane chains, and I found 

their conductances also have a conventional behaviour. For symmetric rings, I selected three 

rings, namely C6C6, C8C8 and C10C10, and C6C6 has the highest conductance with -4.14 

comparing with C8C8 and C10C10. In addition, for asymmetric rings, C6C8, C6C10 and C8C10, 

their patterns are not so different from the symmetric rings. C6C8 owns the smallest cavity, 

comparing with C6C8 and C6C10, has the largest logarithmic conductance of -3.30.  

The most important and unexpected prediction in this chapter is the applicability Kirchhoff's 

law in the nano-scale structures. Surprisingly, the conductances of alkane chains were higher 

than that of their corresponding rings, which completely disagrees with classical rules for 

combining conductances in parallel. Since this study includes, symmetric and asymmetric 

rings. I formed three families based on the common branch C6, C8 and C10.  Family-6 consists 

of C6C6, C6C8 and C6C10, which has a non-classical trend. For families-8 and -10, they both 

have a conventional behaviour.  

This chapter also covers the thermoelectric properties such as Seebeck coefficients. For linear 

chains, for example, a C8 has approximately the largest value of Seebeck coefficient, -15 𝜇𝑉/𝑘 

comparing with C6 and C10.  

Finally, the DFT predictions and simulations are well supported by the TSM measurements for 

the 9 alkane derivatives. 



Figure 5.27 illustrates and summarizes trend of 𝐺 for alkane chains and its corresponding rings. 

 

Figure 5. 27. Schematic illustration of chapter 5 summarized the trend of G for chains and 

rings.  
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Chapter 6 

 

Conclusion and Future Work 

 

6.1 Conclusion 

In this thesis, I have introduced the principle equations and tools that are used as basis for my 

work, including the Schrödinger equation, density functional theory (DFT), and the SIESTA 

code that implements DFT and solves those equations. Moreover, I have presented the theory 

of single-electron transport, which starts from the Hamiltonian, computes Green’s functions 

and then obtains the transmission coefficient. These methods are described in detail in Chapters 

2 and 3, respectively.  

Chapter 4 is considered as the first original-results chapter of this thesis, where I started by 

investigating  series of alkane chains using different linker groups including amine (NH2), thiol 

(S), direct carbon contact (C), and thiomethyl (SMe). In this chapter, I nominated 8 molecules 

(4 odd and 4 even), with four different anchor groups. Thus, I have explored in total 32 

molecules of alkane chains.  I investigated the influence of using different terminated groups 

on alkane molecules conductance. As expected, the trend of alkane chains conductance was 

found to be conventional, regardless to the type of linker groups. However, conductance values 

of these linkers were different depending on the nature of each a terminated group. My 

theoretical simulations on alkane chains were tested by experimental measurements and an 

excellent agreement was found.    

 Chapter 5, is my second results chapter. I investigated three alkane chains C6, C8 and C10 

terminated with thiomethyl anchor, again the same result was found (conductance increases 

with decreasing the length of chain).  



 Furthermore, I formed symmetric and asymmetric rings from the alkane chains and found their 

conductances have a conventional behaviour. For symmetric rings, I selected three rings, 

namely C6C6, C8C8 and C10C10. C6C6 has the highest conductance with -4.14 compared to 

C8C8 and C10C10. In addition, for asymmetric rings, C6C8, C6C10 and C8C10, their patterns are 

not so different from the symmetric rings. C6C8 owns the smallest cavity, comparing with C6C8 

and C6C10, however, it possesses the largest conductance -3.30 .  

The most important and controversial prediction in this chapter is the comparison between 

linear chains against rings (Kirchhoff's law). Surprisingly, conductances of alkane chains were 

higher than their corresponding ring conductances, which completely disagrees with classical 

rules for combining electrical conductances. Since this study includes, symmetric and 

asymmetric rings. I formed three families based on the common branch C6, C8 and C10.  

Family-6 consists of C6C6, C6C8 and C6C10, which has a non-classical trend. For families-8 

and -10, they both have a classical behaviour.  

This chapter also presents a study of the Seebeck coefficients of the above molecules. For linear 

chains, for example, C8 has approximately the largest value of Seebeck coefficient, -15 𝜇𝑉/𝑘 

comparing with C6 and C10.  

Finally, the DFT predictions and simulations are well supported by the STM measurements for 

the 9 alkane derivatives.  
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6.2 Future work 

In this thesis, I have investigated approximately 32 alkane chains molecules with four anchor 

groups including amine (NH2), thiol (S), direct carbon contact (C), and thiomethyl (SMe). The 

conductance was found to be sensitive to the anchor type and to complete this story, I am 

planning to employ other linker groups, such as pyridine, cyanide, DBHT and TMS. The 

current study shows that the direct carbon contact possesses the highest conductance, whereas 

the amine is the lowest.  Similar idea could be applied to the alkane rings. 

Another avenue for future exploration is to use different electrodes, for instance graphene [1, 

2], platinum or palladium [3] and examine their effect on fluctuation in  G and S , which might 

be even higher thermopowers.  

I also studied alkane rings in this thesis, which typically have small cavities and contain only 

two types of atoms: carbon and hydrogen. As part of my future plans, I will also investigate 

large rings that consist of oxygen atoms as shown in Figure 6.1 [4,5]. During this stage, I am 

interested in studying the trend of conductance and Seebeck coefficient, perhaps, I will get a 

new behaviour that I did not discover yet in this thesis.  

 

 

 

 

Figure 6. 1. The structure of 1,4,7,10,13,16-Hexaoxacyclooctadecane molecule. 
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