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ABSTRACT
We introduce AutoEnRichness, a hybrid approach that combines empirical and analytical
strategies to determine the richness of galaxy clusters (in the redshift range of 0.1 ≤ z ≤ 0.35)
using photometry data from the Sloan Digital Sky Survey Data Release 16, where cluster rich-
ness can be used as a proxy for cluster mass. In order to reliably estimate cluster richness, it is
vital that the background subtraction is as accurate as possible when distinguishing cluster and
field galaxies to mitigate severe contamination. AutoEnRichness is comprised of a multi-stage
machine learning algorithm that performs background subtraction of interloping field galax-
ies along the cluster line-of-sight and a conventional luminosity distribution fitting approach
that estimates cluster richness based only on the number of galaxies within a magnitude range
and search area. In this proof-of-concept study, we obtain a balanced accuracy of 83.20 per
cent when distinguishing between cluster and field galaxies as well as a median absolute per-
centage error of 33.50 per cent between our estimated cluster richnesses and known cluster
richnesses within r200. In the future, we aim for AutoEnRichness to be applied on upcoming
large-scale optical surveys, such as the Legacy Survey of Space and Time and Euclid, to esti-
mate the richness of a large sample of galaxy groups and clusters from across the halo mass
function. This would advance our overall understanding of galaxy evolution within overdense
environments as well as enable cosmological parameters to be further constrained.

Key words: galaxies: clusters: general – methods: statistical – methods: observational –
methods: data analysis – techniques: photometric

1 INTRODUCTION

Galaxy clusters are the densest conglomerations of galaxies to have
assembled in the Universe, containing tens to thousands of individ-
ual galaxies. The study of galaxy clusters is extremely important in
astrophysics and cosmology research. For example, examining the
mass profile of overdense environments (e.g. Carlberg et al. 1997;
Geller et al. 1999; Biviano & Girardi 2003; Pointecouteau et al.
2005; Voigt & Fabian 2006; Johnston et al. 2007; Sanderson & Pon-
man 2010; Umetsu et al. 2011; Rines et al. 2013); understanding
the evolution of large scale structure throughout cosmic time (e.g.
Davis et al. 1985; Castander et al. 1995; Tsai & Buote 1996; Huss
et al. 1999; Carlberg et al. 2000; Kneissl et al. 2001; Wilson 2003;
Cohn & White 2005; Kravtsov & Borgani 2012) or mapping the
distribution of clusters within the Universe (e.g. Davis et al. 1982;
Bahcall 1988; de Lapparent 1994; Carlstrom et al. 2002; Refregier
2003; Weinberg 2005; Van Waerbeke et al. 2013; Planck Collabora-
tion et al. 2014; Dannerbauer et al. 2019). It would be beneficial for
future studies if reliable, accurate and scalable methods are devel-
oped that can provide mass estimates for a large sample of clusters.

Historically, in order to estimate the mass of clusters, re-
searchers have regularly turned to optical surveys for determin-

ing cluster richness, where cluster richness can provide a proxy
of cluster mass such that the number of galaxies within a cluster
is expected to scale with cluster mass. For example, the Abell cat-
alogue (Abell 1958) was the first comprehensive large scale clus-
ter catalogue to establish a measurement system for cluster rich-
ness, where cluster richness was defined as the number of galaxies
counted within a specific radius and between two magnitude limits
(i.e. the bright limit is the magnitude of the third brightest clus-
ter galaxy whilst the faint limit is two magnitudes dimmer than
the magnitude of the third brightest cluster galaxy). Similarly, the
Zwicky catalogue (Zwicky et al. 1961) was another comprehensive
large scale cluster catalogue that established its own measurement
system for cluster richness, where cluster richness was defined as
the number of galaxies counted within an isopleth (i.e. the apparent
boundary where the cluster density is twice that of the field density)
and also between two magnitude limits (i.e. the bright end limit is
the magnitude of the brightest cluster galaxy whilst the faint end
limit is three magnitudes dimmer than the magnitude of the bright-
est cluster galaxy). We note that our definition of richness in this
paper is the number of cluster galaxies up to an absolute magnitude
faint-end r filter limit of −20.5 and within an r200 radius.

In more recent times, a variety of automated methods have
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been developed that enable cluster mass or richness to be estimated
without the need for extensive manual processing, such as utilis-
ing linking algorithms within redshift space (e.g. Huchra & Geller
1982; Yang et al. 2005; Calvi et al. 2011; Farrens et al. 2011; Wen
et al. 2012; Tempel et al. 2016; Rodriguez & Merchán 2020), em-
ploying template fitting algorithms within colour-magnitude space
(e.g. Postman et al. 1996; Kepner et al. 1999; Koester et al. 2007;
Dong et al. 2008; Szabo et al. 2011; Rykoff et al. 2014) or train-
ing machine learning algorithms on observational/simulated mea-
surements to indirectly estimate cluster mass (e.g. Ntampaka et al.
2019; Cohn & Battaglia 2019; Ho et al. 2019; Gupta & Reichardt
2020; Yan et al. 2020; de Andres et al. 2022; Lin et al. 2022).

Alternative approaches to determine cluster mass commonly
include X-ray, caustic and weak lensing methods. From which, X-
ray methods assume that the intracluster gas within a cluster is un-
der hydrostatic equilibrium in order to calculate the cluster mass
required to produce the observed X-ray emissions, based on X-ray
temperature and surface brightness measurements (e.g. Balland &
Blanchard 1995; Ettori et al. 2013; Amodeo et al. 2016); caustic
methods assume a cluster has spherical symmetry in order to cal-
culate the cluster mass required to generate an estimated average
escape velocity for cluster galaxies, based on galaxy position and
velocity measurements (e.g. Diaferio & Geller 1997; Diaferio et al.
2005; Alpaslan et al. 2012); whilst weak lensing methods make no
physical assumptions about a cluster to estimate the cluster mass
required to produce the observed gravitational lensing of light from
background objects, based on light distortion and magnification
measurements (e.g. Hoekstra et al. 2013; van Uitert et al. 2016;
McClintock et al. 2019). Although, these methods have somewhat
time-consuming and expensive prerequisites (e.g. conducting deep
X-ray observations, requiring complete spectroscopic analysis, ob-
taining high quality image data for performing weak lensing anal-
ysis), whereas methods involving optical photometry are typically
quicker and cheaper to obtain and analyse the resultant data.

We note that determining cluster richness from the direct
counting galaxies within a cluster is limited by the projection effect
(Frenk et al. 1990; van Haarlem et al. 1997; Reblinsky & Bartel-
mann 1999; Costanzi et al. 2018; Sunayama et al. 2020), where van
Haarlem (1996) estimated that approximately one third of the clus-
ters in the Abell catalogue may have had their richnesses severely
misestimated due to contamination from the projection effect. This
effect arises when foreground or background galaxies are in the
same line-of-sight as the cluster itself, which means it is difficult to
accurately associate galaxies to a cluster unless spectroscopic red-
shifts for each galaxy are known. However, this is time-consuming
especially when working with large sample sizes, as it is dependent
on the preciseness of the distance measurement required.

In the literature, various statistical and non-statistical back-
ground subtraction methods have been utilised to address the pro-
jection effect when obtaining counts of cluster galaxies without
the need for distance measurements. One typical way is to count
the number of field galaxies within a known control field sam-
ple, which can be used as a direct reference to subtract a propor-
tional number of galaxies from a cluster’s overall population to
account for field galaxies (e.g. Kodama et al. 2001; Stott et al.
2007; Wylezalek et al. 2014). Another way is to define an annuli
around the apparent outer perimeter of a cluster, which assumes that
the annuli is far enough away to likely not contain cluster galax-
ies, such that a proportional number of galaxies can be subtracted
from a cluster’s overall population to account for field galaxies (e.g.
Popesso et al. 2005; Goto et al. 2003; Popesso et al. 2004). A fur-
ther approach is to establish colour cuts for differentiating between

cluster and field galaxies, where most of the galaxies within a clus-
ter will appear to have similar colours especially if they are at the
same redshift (i.e. red-sequence galaxies), whilst galaxies in the
field will appear more randomised in terms of colour, especially if
they are at different redshifts (e.g. Boué et al. 2008; Owers et al.
2017; Strazzullo et al. 2019). However, the approaches described
here may not provide a robust or precise enough background sub-
traction, which is essential for accurately estimating cluster rich-
nesses, due to these methods either being statistical or not assessing
the true membership status of each cluster galaxy.

For this paper, we describe in detail a novel hybrid method,
nominally known as AutoEnRichness, to perform background sub-
traction and estimate cluster richnesses by employing a multi-stage
machine learning algorithm and a conventional luminosity distribu-
tion fitting approach respectively. The first key stage of our hybrid
method involves training the multi-stage machine learning algo-
rithm to differentiate between cluster and field galaxies. This ap-
proach is completely data-driven to automatically capture under-
lying relationships for maximising the accuracy of cluster galaxy
identification. The second key stage of our hybrid method involves
learning the best fit parameters for a luminosity distribution fitting
function to enable the estimation of cluster richness from the lu-
minosity distribution of individual clusters. This approach has a
strong theoretical basis that depends only on the brightness of the
cluster galaxy population within a given search radius of a cluster.
Our proposed strategy will be beneficial to provide researchers in
the field with well-founded estimates of cluster richness as well as
consistency and robustness against line-of-sight effects to mitigate
severe contamination.

We present this paper with the following structure. Firstly, in
§2 we divide our methodology into five subsections, where §§2.1
describes the preparation of a photometric dataset to train a back-
ground subtraction model; §§2.2 describes the mechanisms of a
multi-stage machine learning algorithm that is used as our back-
ground subtraction model; §§2.3 describes our strategy for estab-
lishing a scaling relation to estimate r200 of clusters; §§2.4 de-
scribes the preparation of a photometric dataset to train a luminos-
ity distribution fitting function and §§2.5 describes the mechanisms
of a luminosity distribution fitting function to estimate cluster rich-
ness. In §3 we outline our results across three subsections, where
§§3.1 describes the model tuning analyses of our learned back-
ground subtraction model, scaling relation and luminosity distri-
bution fitting function; §§3.2 describes the overall performance of
our methodology on unseen clusters in various test sets and §§3.3
describes the importance of input features to our background sub-
traction model. Lastly, §4 discusses our findings and §5 summarises
this paper.

We assumed the following ΛCDM cosmological parameters
H0 = 71 km s−1 Mpc−1, Ωm = 0.27 and ΩΛ = 0.73.

2 METHODOLOGY

A brief outline of our multi-stage method to estimate the richness
of a cluster can be seen in Figure 1. From which, the following
subsections will describe our workflow in more detail.

2.1 Preparation of a photometric dataset to train a
background subtraction model

To train our background subtraction model, we employed clus-
ter galaxies that were identified by the Szabo et al. (2011) clus-
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Estimating Galaxy Cluster Richness 3

Figure 1. This figure shows a flowchart of the various steps in our multi-
stage method to estimate the richness of a cluster, where the start of the
flowchart is the first step whilst the end of the flowchart is the last step.

ter catalogue (hereafter we refer to this cluster catalogue as the
AMF11 catalogue) with an estimated photometric redshift be-
tween 0.1 ≤ z ≤ 0.35. We note that the AMF11 catalogue applied
matched filters1 to galaxies observed in the Sloan Digital Sky
Survey Data Release 6 (SDSS-II DR6, Adelman-McCarthy et al.
2008), where clusters were detected from maximising the likeli-
hood of the matched filters whilst cluster galaxy membership iden-
tification was based on the proximity of the galaxy from the cluster

1 The matched filters were constructed from modeling positional, bright-
ness and redshift information of cluster and field galaxy distributions.

center within r200
2 as well as whether the likelihood difference (i.e.

the difference in likelihood of detecting a cluster with and without
the presence of the galaxy) was above a specified threshold. The
reason we decided to use the cluster galaxies from the AMF11 cat-
alogue was because they assessed the cluster membership status of
each galaxy based on their contribution to a combination of various
cluster profiles (i.e. radial surface density, luminosity and redshift).
In addition, their selection method does not discriminate between
‘blue’ and ‘red’ cluster galaxies, which means it is representative
of different galaxy types in clusters.

We cross-matched these cluster galaxies with galaxies ob-
served in the Sloan Digital Sky Survey Data Release 16 (SDSS-IV
DR16, Ahumada et al. 2020) to obtain the following fifteen features
that are based on SDSS-IV DR16 photometry3: u, g, r, i, z, u− g,
g− r, r− i, i− z, u− r, g− i, r− z, u− i, g− z and u− z. For a clus-
ter galaxy to be successfully cross-matched, the input astronomical
coordinates must be within 1 arcsecond from the astronomical co-
ordinates of a galaxy within SDSS-IV DR16 as well as satisfying
additional observing flags. These flags are as follows: the observed
object should be a ‘primary’ observation4 and must be classified as
a galaxy object type by the SDSS photometric pipeline. We also en-
sured that our cluster galaxy sample only contained galaxies with
a unique SDSS object identifier to prevent accidentally including
galaxies that may have been selected multiple times within our
search radius due to very small angular separation between over-
lapping line-of-sight galaxies and errors in the astrometry. In ad-
dition, we did not include cluster galaxies that were within 1646
arcseconds (i.e. 3 Mpc at z = 0.1) of a subsample (see §§2.3 for
further details) of cross-matched5 clusters from the Wen & Han
(2015) cluster catalogue (hereafter we refer to clusters from this
catalogue as WH15 clusters) and Rykoff et al. (2014) cluster cata-
logue (hereafter we refer to clusters from this catalogue as redMaP-
Per clusters). This ensured that these clusters remained unseen for
later usage in §§2.3. Furthermore, we applied a cut within colour-
magnitude space (i.e. if greater than the 99.75th percentile in r and
g−r) to remove any cluster galaxies that still appeared to have spu-
rious photometry. It should be noted that throughout this work, we
used r and g− r to visualise cluster and field galaxies in colour-
magnitude diagrams due to g − r straddling the 4000Å break of
cluster galaxies in our working redshift range.

Correspondingly, we also required a field galaxy6 sample to
train our background subtraction model to differentiate between
cluster and field galaxies. However, we were unable to find a siz-
able catalogue containing identified field galaxies. This meant that
we had to manually search for ‘field’ regions that did not visu-
ally appear to contain clusters from the full WH15 and redMaP-

2 We refer to r200 as the radius containing a mean density that is two hun-
dred times greater than the critical density of the Universe.
3 We employed full-sky dust reddening maps (Schlegel et al. 1998; Schlafly
& Finkbeiner 2011) to account for galactic extinction.
4 We note that SDSS uses the term ‘primary’ to refer to the best imaging
observation recorded for a survey object if it was seen multiple times during
an observing run in an SDSS plate, whilst other observations of the object
are known as ‘secondary’.
5 This involved identifying clusters that were within 70 arcseconds (i.e. 250
kpc at z = 0.225) of each other in astronomical coordinate space and within
±0.04(1 + z) (see Wen et al. (2009) for further explanation) of each other in
redshift space. In addition, the clusters had to be observed within SDSS-IV
DR16 between a redshift range of 0.1 ≤ z ≤ 0.35.
6 We refer to interloping galaxies along a clusters line-of-sight as field
galaxies.
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4 M. C. Chan and J. P. Stott

Per cluster catalogues. This resulted in the identification of forty
different ‘field’ regions, where the resultant astronomical sky map
displaying the position of clusters and our proposed ‘field’ regions
can be seen in Figure S1 (available online). We sampled galaxies
from SDSS-IV DR16 that were within these ‘field’ regions. This in-
volved applying a 1372 arcseconds (i.e. 2.5 Mpc at z = 0.1) search
radius on each of the ‘field’ regions as well as reusing the same
observing flags mentioned earlier within this section to obtain our
field galaxy sample. The astronomical coordinates and number of
observed field galaxies for each ‘field’ region are provided in Table
1. We did not include field galaxies that were within 10 arcsec-
onds from the cluster galaxies in the AMF11 catalogue to remove
cluster galaxies that may have accidentally been included as part of
the field regions. We also did not include field galaxies that were
within 1646 arcseconds (i.e. 3 Mpc at z = 0.1) of the same sub-
sample of cross-matched WH15 and redMaPPer clusters mentioned
earlier within this section to ensure that the clusters remained un-
seen for later usage in §§2.3. Furthermore, we removed any field
galaxies that were not within the same region of colour-magnitude
space as our cluster galaxy sample, based on the observed mini-
mum and maximum values for the cluster galaxies in r and g− r.
This was intended to encourage our background subtraction model
to learn to be more proficient at classifying galaxies with similar
photometric properties. Subsequently, this yielded a total of 83315
field galaxies that had the same fifteen photometry features as our
cluster galaxy sample. For this paper, we assumed that these field
galaxies can be considered as ‘actual’ field galaxies.

We decided to set the redshift values of galaxies in our clus-
ter and field galaxy samples to be based only on the photometric
redshifts estimated by SDSS-IV DR16. This would enable a more
straightforward comparison between the redshift distributions of
both samples if they were measured via the same approach. We
note that SDSS-IV DR16 applied the kd-tree nearest neighbor fit
algorithm (see Csabai et al. (2007) for further details) to estimate
the photometric redshifts of individual galaxies. We also used their
estimated photometric redshifts to further constrain galaxies within
our cluster galaxy sample to only be between a redshift range of
0.1 ≤ z ≤ 0.35, whereas galaxies within our field galaxy sample
were not redshift restricted to mimic field galaxies appearing along
the line-of-sight of clusters. Although, we note that galaxies were
not required to have photometric redshifts available to be included
in our field galaxy sample. In addition, we computed the r filter ab-
solute magnitudes for the cluster and field galaxies based on their
photometric redshifts and corresponding K corrections7.

We note that our background subtraction model will learn to
identify all cluster galaxies between a redshift range of 0.1 ≤ z ≤
0.35, which may result in overcounting of cluster galaxies within
a cluster if there are other clusters along the line-of-sight. To limit
this effect, we decided to establish colour-magnitude boundaries
within colour-magnitude space when applying our background sub-
traction model. These boundaries are designed to capture the major-
ity of the population of cluster galaxies at specific redshifts. We first
computed the median values of r and g−r for cluster galaxies in our
cluster galaxy sample across redshift intervals of ±0.005 that are
centered in redshift bins from 0.105 to 0.345 with step sizes of 0.01,
as shown in Figure 2. We then manually determined appropriate

7 In order to estimate the amount of K correction required, we performed
linear interpolation between redshift and r filter K corrected values de-
termined from a simple stellar population model (see Bruzual & Charlot
(2003) for further details).

Right ascension Declination Number of observed galaxies
(degrees) (degrees)

5.10408 21.0611 4488
5.77875 2.30955 7049
9.14699 33.7121 4030
10.4395 -3.84934 5377
21.3533 -3.02485 5595
23.0452 30.3202 5664
26.0012 23.8818 5024
28.3683 20.8955 2748
29.8579 11.0895 5108
38.6421 -8.10943 5168
113.919 28.0332 5223
115.323 15.458 6310
121.916 0.109439 5518
129.971 51.2851 4753
143.518 63.0839 4564
144.097 47.3992 4929
158.633 56.6154 5982
166.196 20.0867 5861
177.951 65.8863 5733
196.86 15.2355 5885

207.127 65.0462 5711
214.632 3.77235 6109
219.239 62.0499 6009
226.958 54.9023 5346
231.26 -0.0179 6696

235.973 18.662 7669
236.823 39.221 6421
238.422 58.5216 6760
255.233 18.8401 6079
263.834 28.0521 3565
316.524 -6.36219 6273
316.54 -1.56952 5201

326.258 -6.56724 6597
332.263 28.8328 4580
332.498 19.5978 4043
333.873 24.14 4214
340.098 4.71022 4252
353.561 33.6502 4239
357.0789 -4.69765 5103
359.369 17.4744 5809

Table 1. This table contains the astronomical coordinates (J2000) and num-
ber of observed galaxies that were sampled from our forty different pro-
posed ‘field’ regions using a 1372 arcseconds (i.e. 2.5 Mpc at z = 0.1) search
radius. We note that the number of observed galaxies does not include field
galaxies that were within 10 arcseconds of the galaxies in our cluster galaxy
sample nor did we include field galaxies that were within 1646 arcseconds
(i.e. 3 Mpc at z = 0.1) of a subsample of cross-matched WHL and redMaP-
Per clusters.

lower and upper boundaries of rmedian − 0.01 ≤ rmedian ≤ r + 0.4
and g− rmedian − 0.05 ≤ g− r ≤ g− rmedian + 0.4 for each redshift
bin. This would result in ‘L-shaped’ boundaries around the cluster
galaxies at a given redshift, where an example of the ‘L-shaped’
boundaries for cluster galaxies at z = 0.225 is shown in Figure 3.
We then applied these colour-magnitude boundaries to our clus-
ter galaxy sample across redshift bin sizes of 0.01 to remove any
cluster galaxies that were not within the colour-magnitude bound-
aries at their respective redshift. Subsequently, this yielded a to-
tal of 60663 cluster galaxies that were available to train our back-
ground subtraction model. For this paper, we assumed that these
cluster galaxies can be considered as ‘actual’ cluster galaxies.

In Figure S2 (available online), it can be seen that our cluster

MNRAS 000, 1–29 (2022)



Estimating Galaxy Cluster Richness 5

Figure 2. This figure shows a colour-magnitude diagram (using apparent
magnitudes) of the median r and g− r for cluster galaxies at different red-
shift intervals from our cluster galaxy sample.

Figure 3. This figure shows an example of the colour-magnitude boundaries
(green dotted lines) for cluster galaxies (red cross) between 0.22 < z < 0.23
from our cluster galaxy sample, where only galaxies that are between the
colour-magnitude boundaries will be considered as part of a cluster at that
redshift.

and field galaxies were taken from different areas across SDSS-IV
DR16. This meant that our cluster and field galaxy samples were
likely to be representative of the whole population of cluster (be-
tween a redshift range of 0.1 ≤ z ≤ 0.35) and field galaxies. More-
over, in Figures 4, S3 and S4 (available online), it can be seen that
our field galaxy sample had an overall noticeable disparity to our
cluster galaxy sample within colour-magnitude space. This some-
what validated our approach for obtaining the field galaxies given
the underlying differences in photometry between the majority of
the cluster and field galaxies. Although, we also observed some
overlap of the ‘blue’ and faint cluster galaxies with bright field
galaxies. We expect that it may be more difficult for our background
subtraction model to differentiate between the galaxy classes within
these overlap regions of colour-magnitude space. Furthermore, in
Figure 5 we display the photometric redshift, r filter apparent mag-
nitude and r filter absolute magnitude distributions of galaxies in

Figure 4. This figure shows colour-magnitude diagrams (using apparent
magnitudes) of the cluster (red cross) and field (blue circle) galaxies in our
cluster and field galaxy samples that were observed within SDSS-IV DR16.
The non-dashed contour lines represent the density of data points for cluster
galaxies whilst the dashed contour lines represent the density of data points
for field galaxies.

our cluster and field galaxy samples. It can be seen that we had
fewer cluster and field galaxies at lower redshifts when compared
to those at higher redshifts. This indicated that we would need to
sample equally across different redshifts to prevent our background
subtraction model from being biased towards any particular red-
shift. We note that the number of field galaxies decreased signif-
icantly after z = 0.4 due to the observing limitations of SDSS-IV
DR16 at higher redshifts, where SDSS-IV DR16 had a r filter lim-
iting magnitude of 22.2. We also noticed that there was a gradual
drop in the number of cluster and field galaxies towards fainter
magnitudes due to the incompleteness of cluster galaxies in the
AMF11 catalogue and observing limitations of SDSS-IV DR16 re-
spectively.

Finally, we partitioned our cluster and field galaxy samples
into three different subsets, known as the training, validation and
test sets. In particular, the training set would be used to train our
background subtraction model, the validation set would be used to
tune its hyper-parameters and the test set would be used to obtain
an unbiased estimate of the predictive performance of our back-
ground subtraction model. This involved randomly selecting 450,
150 and 150 cluster galaxies within fixed redshift bin sizes of 0.01
across a redshift range of 0.1 ≤ z ≤ 0.35 to be within our training,
validation and test sets, which resulted in a total of 11250, 3750
and 3750 cluster galaxies respectively. We also randomly selected
33750, 11250 and 11250 field galaxies to be within our training,
validation and test sets respectively. It should be noted that we ap-
plied sampling weights8 when selecting field galaxies to be within

8 The amount of sampling weightage applied to each field galaxy in our
training and validation sets was based on the resultant likelihood of the r
filter apparent magnitude for the field galaxy under a normal distribution
that was constructed from the mean and standard deviation of the r filter
apparent magnitudes of cluster galaxies in our training and validation sets.
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6 M. C. Chan and J. P. Stott

Figure 5. This figure shows histograms of the photometric redshift (top im-
age), r filter apparent magnitude (middle image) and r filter absolute magni-
tude (bottom image) of galaxies in our cluster (red) and field (blue) galaxy
samples after being cross-matched with galaxies observed within SDSS-
IV DR16, where the cluster galaxies had to be between a redshift range of
0.1 ≤ z ≤ 0.35. It should be noted that we only display field galaxies that
had an available photometric redshift in the top and bottom images.

our training and validation sets to ensure that the r filter apparent
magnitudes of the field galaxies overlapped with the r filter ap-
parent magnitudes of the cluster galaxies. This would expose our
background subtraction model to a larger proportion of the more
difficult instances (i.e. cluster and field galaxies that had very sim-

We also shifted the computed means by −1 in our training and validation
sets to ensure that the cluster and field galaxy distributions overlapped at
all r filter apparent magnitudes. In addition, we note that sampling with
replacement was used when selecting field galaxies to be within our training
and validation sets.

ilar photometry) during its training. Furthermore, we wanted our
training, validation and test sets to remain as realistic as possible.
As such, we permitted the number of field galaxies to outnumber
(i.e. we assumed that having three field galaxies for every cluster
galaxy was appropriate) the number of cluster galaxies with these
sets. Although, we only permitted random sampling (i.e. equal sam-
pling weightage) of field galaxies in our test set. These properties
can be seen in Figure 6.

2.2 Using a multi-stage machine learning algorithm to
perform background subtraction

We employed an unsupervised deep learning algorithm, known as
an autoencoder (AE, Rumelhart et al. 1985), as the first stage of our
background subtraction model. Our overall objective for using an
AE is to train it to learn to accurately reconstruct input data. The
mechanism behind the AE can be separated into three main stages,
that are known as the encoder network, bottleneck and decoder net-
work. The overall architecture for a typical AE is shown in Figure
7.

The encoder network is composed of fully-connected layers
that are responsible for processing an input dataset by performing
nonlinear transformations of the input data into a compressed rep-
resentation. This is achieved by decreasing the number of nodes
in the fully-connected layers as the size of the encoder network
increases. The compression is maximised within the bottleneck,
where the number of nodes in the bottleneck determines the amount
of compression. The underlying objective of the bottleneck is to
obtain the lowest dimensional representation of the data that cap-
tures the most generalisable aspects about the data. From which, the
compressed data is then passed to the decoder network for recon-
struction. This involves decompressing the compressed data back
into its original input dimensionality by increasing the number of
nodes in the fully-connected layers as the size of the decoder net-
work increases. If the AE is properly trained, the reconstructed fea-
ture values should closely resemble the feature values of the input
data. Overall, an AE can be considered as a type of dimensionality
reduction-based algorithm since it focuses on reducing the dimen-
sionality of the input data. However, we reconfigure its function-
ality from a dimensionality reduction-based algorithm into an out-
lier detection algorithm by also examining the differences between
the reconstructed outputs and the input data. We note that the de-
coder network has the same but reversed architecture to the encoder
network, where the number of nodes in the fully-connected layers
increases rather than decreases as the size increases.

In order to train the AE to generate accurate reconstructions,
we used the mean squared error as our loss function. This measured
the similarity between all of the input and reconstructed feature
values of galaxies via the following equation:

Mean Squared Error =
1
n

n∑
i=1

(yi − ŷi)2 , (1)

where n is the number of input features, y is the input feature
values and ŷ is the reconstructed feature values.

We set the batch size, learning rate, optimiser algorithm9 and
architecture layout10 to be tunable hyper-parameters, where the full
hyper-parameter search space is shown in Table 2.

9 We recommend the reader to refer to Ruder (2016) for an overview of
different optimiser algorithms.
10 We considered the number of nodes in the bottleneck to be the most
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Estimating Galaxy Cluster Richness 7

Tunable hyper-parameter name Hyper-parameter search space

Batch size 256 or 512 or 1024 or 2048

Learning rate 0.0001 or 0.001 or 0.01 or 0.1

Optimiser algorithm Adaptive Moment Estimation (Adam) or Adaptive Delta (Adadelta) or Adaptive Gradient Optimiser
(Adagrad) or Adam Based On The Infinity Norm (Adamax) or Adam With Nesterov Momentum (Nadam)

or Stochastic Gradient Descent (SGD) or Root Mean Squared Propagation (RMSprop)

Architecture layout (number of
nodes and hidden layers in the

encoder network and bottleneck)

1 (13 nodes in first hidden layer, 11 nodes in second hidden layer, 9 nodes in third hidden layer, 7 nodes in
the fourth hidden layer and 1 node in the bottleneck) or 2 (13 nodes in first hidden layer, 11 nodes in

second hidden layer, 9 nodes in third hidden layer, 7 nodes in the fourth hidden layer and 3 nodes in the
bottleneck) or 3 (13 nodes in first hidden layer, 11 nodes in second hidden layer, 9 nodes in third hidden

layer, 7 nodes in the fourth hidden layer and 5 nodes in the bottleneck)

Table 2. This table contains a list of tunable hyper-parameters for the AE as well as the range of values that were explorable in the hyper-parameter space via
random search. We also set a maximum of ten thousand trainable epochs as well as enabling early stopping of the model training if the validation loss had not
decreased by 0.001 over fifty epochs from the best observed validation loss. Furthermore, we again remind the reader that the encoder and decoder networks
had reversed symmetrical designs, so we did not specify the number of nodes or hidden layers for the decoder network within this table.

We employed a separate machine learning algorithm, known
as logistic regression (see Morgan & Teachman (1988) for further
details), as the second stage of our background subtraction model.
This served to convert the outputs of the AE into class predictions.
In particular, we used the known class labels as the target variable
and the mean squared error between the input and reconstructed
feature values as the input variable, where if an input was poorly
reconstructed by the AE then the corresponding mean squared er-
ror will be large too. From which, the logistic regression algorithm
determines whether a galaxy should be classified as a cluster or
field galaxy (i.e. the galaxy class with the higher predicted proba-
bility) when given the mean squared error of each galaxy. In this
work, we decided to use the defaulted hyper-parameter values for
the logistic regression algorithm (N.B. without regularisation) in
the Scikit-Learn (Pedregosa et al. 2011) machine learning library
since we primarily wanted to examine the influence of the AE in our
background subtraction model. We expect that tuning the hyper-
parameters for the logistic regression algorithm may slightly im-
prove the overall predictive performance of our background sub-
traction model but this can be explored further in future work. It
should be noted that the logistic regression algorithm minimised
the following loss function during its training:

Log Loss = −
1
n

n∑
i=1

yilog(pi) + (1− yi)log(1− pi) , (2)

where n is the number of inputs, y is the true class value (i.e.
either 0 or 1) and p is the predicted probability (i.e. between 0 and
1) of being a galaxy class. This loss function measured the differ-
ence between predicted probability and true class value of galaxies.

We utilised a random search (see Bergstra & Bengio (2012)

significant component of an AE’s architecture since it is influential in the
amount of generalization learned. We decided that the number of nodes in
the bottleneck should be a tunable hyper-parameter whilst the number of
nodes for the hidden layers in the encoder and decoder networks would
remain fixed.

for further details) strategy to examine the predictive perfor-
mance of our background subtraction model with different hyper-
parameter combinations, where random search is a computation-
ally efficient approach that does not need to examine every hyper-
parameter combination. Instead, it considers that hyper-parameter
optimization can be characterised by a Gaussian process, such that
only a minority of hyper-parameter combinations are actually im-
portant. For example, we can assume that a randomly selected
hyper-parameter combination has a ninety-five per cent probabil-
ity of being situated within the top five per cent of all possible
hyper-parameter combinations from the optimum after conducting
only sixty iterations of random search. At the same time, we em-
ployed a Monte Carlo cross-validation (see Morgan & Teachman
(1988) for further details) strategy to examine the variability of the
predictive performance of our background subtraction model with
different weight initialisations and dataset compositions. This in-
volved repeated random sampling of new training, validation and
test sets over ten iterations to measure the average predictive perfor-
mance across the ten iterations. Ideally, we aimed to select a hyper-
parameter combination that offered consistency and good predic-
tive performance.

To determine the optimal hyper-parameter combination of our
background subtraction model, we utilised the trapezium rule to
compute the area under a precision-recall curve (AUCPR, Boyd
et al. 2013) for each hyper-parameter combination, which is based
on the following set of equations:

Precision =
TP

TP + FP
, (3)

Recall =
TP

TP + FN
, (4)

AUCPR =

∫
Precision d (Recall) , (5)

where TP is the number of correctly classified ‘actual’ cluster
galaxies, FP is the number of incorrectly classified ‘actual’ clus-
ter galaxies and FN is the number of incorrectly classified ‘actual’
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Figure 6. This figure shows colour-magnitude diagrams (using apparent
magnitudes) of the cluster (red cross) and field (blue circle) galaxies in our
training (top image), validation (middle image) and test (bottom image) sets
that were observed within SDSS-IV DR16.

Figure 7. This figure shows an example of the architecture layout for a typ-
ical AE. The AE is composed of three main stages that are known as the
encoder network, bottleneck and decoder network, where the nodes in each
hidden layer are fully-connected to the nodes of the adjacent hidden layers.
We also employed a rectified linear unit (ReLU, Nair & Hinton 2010) acti-
vation function with ‘He uniform’ (He et al. 2015) weight initialisation for
each hidden layer in the encoder network, bottleneck and decoder network,
whilst a linear activation function with ‘Glorot uniform’ (Glorot & Ben-
gio 2010) weight initialisation was used for the output layer of the decoder
network. In addition, we initialised all biases to zeros. It should be noted
that we utilised the Keras deep learning framework (Chollet et al. 2015) to
construct the AE.

field galaxies. Briefly, this metric measured the proportion of pre-
dictions that were predicted as cluster galaxies as well as the pro-
portion of ‘actual’ cluster galaxies that were recovered across all
class probability thresholds. It is ideal for assessing the predictive
performance of a model that focuses on correctly identifying ‘rare’
instances (i.e. when there is a class imbalance). The optimal hyper-
parameter combination would maximise the AUCPR for galaxies
in our validation set.

Next, we determined the corresponding optimal class prob-
ability threshold when using the optimal hyper-parameter combi-
nation. This involved comparing the F1 score (Lipton et al. 2014)
yielded for each class probability threshold (i.e. from 0 to 1 with
class probability threshold step sizes of 0.01) via the following
equation:

F1 Score = 2
(

Precision x Recall
Precision + Recall

)
. (6)

This metric was similar to AUCPR in functionality except it
only considered the predictive performance at a specific class prob-
ability threshold. The optimal class probability threshold would
maximise the F1 score for galaxies in our validation set.

Lastly, we determined the overall classification accuracy of
our background subtraction model at distinguishing between clus-
ter and field galaxies in our test set. This involved computing the
balanced accuracy (Brodersen et al. 2010) when using the optimal
class probability threshold and optimal hyper-parameter combina-
tion via the following equation:

Balanced Accuracy =
1
2

(
TP

TP + FN
+

TN
TN + FP

)
, (7)

where TP is the number of correctly classified ‘actual’ clus-
ter galaxies, TN is the number of correctly classified ‘actual’ field
galaxies, FP is the number of incorrectly classified ‘actual’ cluster
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galaxies and FN is the number of incorrectly classified ‘actual’ field
galaxies. The primary advantage of using balanced accuracy rather
than conventional classification accuracy is that balanced accuracy
takes into account class imbalance whereas conventional classifi-
cation accuracy assumes equal class sizes when measuring the pre-
dictive performance of a binary classification model.

2.3 Establishing a scaling relation to estimate r200

It is beneficial to measure the richness of clusters within a char-
acteristic radius (e.g. r200, r500, r2500) because it enables a more
straightforward comparison of cluster richness across different
cluster catalogues. We decided to establish a scaling relation that
predicts values for the characteristic radius of cross-matched WH15
and redMaPPer clusters from §§2.1. We note that WH15 used a
friend-of-friend grouping algorithm on galaxies with known spec-
troscopic or photometric redshifts to identify clusters in the Sloan
Digital Sky Survey Data Release 12 (SDSS-III DR12, Alam et al.
2015) whilst redMaPPer used a red-sequence fitting algorithm on
galaxies within colour-magnitude space to identify clusters in the
Sloan Digital Sky Survey Data Release 8 (SDSS-III DR8, Ai-
hara et al. 2011). Subsequently, we obtained a total of 6064 cross-
matched WH15 and redMaPPer clusters between a redshift range
of 0.1 ≤ z ≤ 0.35. We decided to use these clusters because they
were found via two conventional approaches for cluster detection.
This enabled us to directly compare the consistency of richness es-
timates from using our novel cluster galaxy identification technique
versus other cluster galaxy identification techniques. In this proof-
of-concept study, we choose to employ only a subsample of 1000
cross-matched WH15 and redMaPPer clusters when creating our
scaling relation for time efficiency.

We also decided to use r200 as our characteristic radius since
the cluster galaxies in our training and test sets from the AMF11
catalogue were originally sampled within r200. In particular, we
utilised r200 values that were estimated by WH15 as the depen-
dent variable in our scaling relation, where their r200 estimates
were computed via a scaling relation between r200 measurements
from X-ray/weak lensing observations and total luminosity in the
r band of all the identified cluster galaxies. For this work, we as-
sumed that these r200 values can be considered as ‘actual’ r200 val-
ues. In Figure S5 (available online), we noticed that there was a
strong linear relationship between WH1511 and redMapper rich-
ness12. This means that we can directly compare our predicted rich-
nesses with the richness estimates of redMaPPer. Furthermore, we
noticed that there was a non-linear relationship between r200 and
both WH15 and redMaPPer richnesses which was in accordance
with the empirical richness-size relation observed in Hansen et al.
(2005), where our ‘actual’ r200 values appeared to have greater vari-
ability at lower richnesses. As such, we expected that our scaling
relation would have greater variability in r200 at lower richnesses
too.

We then partitioned the cross-matched WH15 and redMaPPer

11 We refer to the RL∗ variable from the WH15 catalogue as WH15 rich-
ness, where they computed cluster richness by measuring the total luminos-
ity of identified galaxy members as a function of the typical luminosity of
galaxies in the r filter.
12 We refer to the λ/S variable from the redMaPPer catalogue as redMaP-
Per richness, where they computed cluster richness by determining an ex-
pected richness which would yield the observed projected density, i fil-
ter magnitudes and multiple colour indices of the identified red-sequence
galaxies.

clusters into a training set and test set. We nominally referred to
these sets as the CMWR (i.e. cross-matched WH15 and redMaP-
Per) training and test sets to avoid confusion with the training and
test sets created in §§2.1. The purpose of having the CMWR train-
ing set was to determine the best fit coefficients of our scaling
relation whilst the purpose of having the CMWR test set was to
measure the predictive performance of our learned scaling relation.
Since we knew the spectroscopic redshift of the CMWR clusters,
we segmented them into fixed redshift bin sizes of 0.01. This en-
sured that our training and test sets contained clusters from across
the redshift scale via stratified sampling13. This involved randomly
allocating approximately half of the clusters within each redshift
bin into both sets, which resulted in our CMWR training and test
sets containing 500 clusters each. The spectroscopic redshift and
richness distributions of clusters in our CMWR training and test
sets can be seen in Figure 8.

Next, we applied a search radius of 2.5 Mpc at each cluster’s
spectroscopic redshift as well as reapplying the same observing
flags mentioned in §§2.1 to acquire galaxies from SDSS-IV DR16.
This gave us a total of 2020690 galaxies, where our CMWR train-
ing set consisted of 1005167 galaxies and our CMWR test set con-
sisted of 1015523 galaxies. We then applied our background sub-
traction model and colour-magnitude boundaries to count the num-
ber of cluster galaxies within each cluster. We established a linear
scaling relation that was based on the number of identified cluster
galaxies as an independent variable and r200 as the dependent vari-
able. This involved learning the best fit coefficients by minimising
the residual sum of squares between the dependent and independent
variables in a linear regression algorithm from the Scikit-Learn
machine learning library, where we again used the defaulted hyper-
parameter values for the linear regression algorithm. We note that
our cross-matched WH15 and redMaPPer cluster sample contained
many clusters with low richness but only a few clusters with high
richness. As such, we decided to assign the WH15 richness of each
cluster as individual weights in the linear regression algorithm to
minimise the effect of overfitting to potential outliers from clusters
with low richness.

2.4 Preparation of a photometric dataset to estimate
individual cluster richnesses

In order to measure richness within r200 of individual clusters, we
first approximated r200 for clusters in our CMWR training and
test sets using the learned scaling relation from §§2.3 to reacquire
galaxies within r200 from SDSS-IV DR16. We nominally referred
to these new sets as the CMWR-r200 training and test sets to avoid
confusion with the CMWR training and test sets created in §§2.3.
Similar to before, the purpose of having the CMWR-r200 training
set was to determine the best fit coefficients of a luminosity distribu-
tion fitting function whilst the purpose of having the CMWR-r200
test set was to measure the predictive performance of the learned lu-
minosity distribution fitting function. We obtained a total of 299807
galaxies in our CMWR-r200 training set and 306953 galaxies in
our CMWR-r200 test set. The resultant color-magnitude diagrams
of galaxies in our CMWR-r200 training and test sets is shown in
Figure 9.

13 Stratified sampling is a strategy that minimises selection bias by splitting
a dataset into new distributions that approximately resemble the original
distribution.
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Figure 8. This figure shows histograms of the cluster spectroscopic redshift
(top image) and WH15 richness (bottom image) distributions of clusters
in our CMWR training (green) and test (purple) sets that were between a
redshift range of 0.1 ≤ z ≤ 0.35.

2.5 Using a luminosity distribution fitting function to
estimate individual cluster richnesses within r200

We adopted a similar approach to the methodology described in
Schechter (1976) to estimate the richness of individual clusters.
Schechter (1976) showed that it was possible to use a luminosity
distribution fitting function (i.e. the Schechter function) to do this.
Briefly, this involved fitting the function to a composite luminosity
distribution of cluster galaxies in order to determine best fit param-
eter values of the function. Then Schechter (1976) assumed that
the best fit parameter values for M∗ and α can be applied univer-
sally to the luminosity distribution of individual clusters to locally
fit for n∗ and thus estimate cluster richness. The Schechter function
is expressed via the following equation:

n(M)dM = [0.4ln(10)]n∗[100.4(M∗−M)]α+1e−100.4(M∗−M)
dM , (8)

where M is absolute magnitude, n∗ is the number of galaxies
per unit magnitude, M∗ is the ‘characteristic’ magnitude at which
the distributions of faint and bright galaxies rapidly changes and α

is the faint end slope parameter that describes the distribution of
galaxies fainter than M∗. We note that M∗ and α directly influence
the steepness of the bright and faint ends in the Schechter function
whilst n∗ varies based on the observed number of galaxies within
magnitude bins.

Firstly, we applied our background subtraction model and
colour-magnitude boundaries to identify cluster galaxies from the
CMWR-r200 training set. We then performed Chi-squared fitting14

with initialisation bounds for M∗ (i.e. between −30 and −15), n∗

(i.e. between 0 and positive infinity) and α (i.e. between −2 and −1)
when fitting the Schechter function to a composite luminosity dis-
tribution that consisted of a subsample of identified cluster galaxies
which appeared to have high completeness (i.e. greater than 90 per
cent when using a base-10 logarithmic scale for the counts) be-
tween a restricted r filter absolute magnitude (i.e. between −25 and
−21.5) and redshift (i.e. between 0.1 and 0.15) range. At the same
time, we also explored various r filter absolute magnitude bin sizes
(i.e. from 0.01 to 3 with step sizes of 0.01) to obtain an optimal r
filter absolute magnitude bin size that minimised the Chi-squared
fitting error and yielded galaxies across five or more r filter abso-
lute magnitude bins. Furthermore, we approximated the uncertainty
in the number of identified cluster galaxies within each magnitude
bin by assuming that the uncertainty followed a Poisson sampling
hypothesis15 when fitting the Schechter function. From which, we
determined an optimal absolute magnitude bin size and best fit pa-
rameter values for M∗, n∗ and α, where we also assumed that the
best fit parameter values for M∗ and α can be applied universally to
the luminosity distribution of individual clusters.

We remind the reader that our background subtraction model
had not yet been corrected for the incompleteness of faint galax-
ies from observing limitations. This meant that we had to derive
completeness corrections for the luminosity distribution (i.e. using
r filter absolute magnitudes) of individual clusters at different red-
shifts. Initially, we grouped the identified cluster galaxies from the
CMWR-r200 training set into redshift intervals of ±0.04(1 + z) that
were centered in redshift bins from 0.105 to 0.345 with step sizes of
0.01, where identified cluster galaxies from different redshifts can
go into multiple bins. Next, we fitted a 100 per cent completeness
line across adjacent r filter apparent magnitude bins16 that were on
the bright side of the peak and within the completeness limit of the
AMF11 catalogue for each redshift interval. We then approximated
the completeness fraction of the faintest r filter apparent magni-
tude bin (N.B. we considered the two faintest magnitude bins on
the bright side of the peak beyond z > 0.14 and three faintest mag-
nitude bins on the bright side of the peak beyond z > 0.33 as the in-
completeness of galaxies became more visibly noticeable for more

14 We used the curve fit function from the SciPy Python library (Virtanen
et al. 2020) to perform Chi-squared fitting of the Schechter function, which
returned the best fit parameter values that minimised the Chi-squared fit-
ting error and also returned an estimated covariance matrix of the best fit
parameter values.
15 A Poisson sampling hypothesis assumed that the distribution of galaxies
is dictated by a Poisson process, such that the standard deviation of the
counts within each magnitude bin was based on the square root of the count
(Schechter 1976).
16 We used an r filter apparent magnitude bin size that corresponded to the
optimal r filter absolute magnitude bin size. In addition, when working with
the luminosity distribution of individual clusters we only considered cluster
galaxies within an r filter absolute magnitude range of −25 to −20.5, where
−20.5 was the r filter absolute magnitude limit that was used to determine
WH15 richness in Wen & Han (2015).
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Figure 9. This figure shows colour-magnitude diagrams (using apparent magnitudes) of galaxies in our CMWR-r200 training (left image) and test (right image)
sets that were within an r200 search radius and observed within SDSS-IV DR16.

magnitude bins at higher redshifts) by calculating the fraction in
the expected number of cluster galaxies (i.e. based on the 100 per
cent completeness line) to the observed number of cluster galaxies
(i.e. identified by our background subtraction model).

We applied these completeness fractions to the luminosity dis-
tribution of individual clusters by multiplying the observed count of
the faintest (N.B. we again considered the two faintest magnitude
bins on the bright side of the peak beyond z> 0.14 and three faintest
magnitude bins on the bright side of the peak beyond z > 0.33) r fil-
ter absolute magnitude bin17 on the bright side of the peak by the
completeness fraction of the corresponding r filter apparent magni-
tude bin within the nearest redshift interval. We then replaced the
uncertainty range of the observed count in the magnitude bin with
this computed completeness correction value as the new lower and
upper uncertainty limits when performing Chi-square fitting. This
ensured that the Schechter function did not fit to incomplete r filter
absolute magnitude bins.

Finally, we estimated cluster richnesses within r200 by inte-
grating18 the locally fit Schechter function. This gave us the ex-
pected number of cluster galaxies within r200 that had an r filter ab-
solute magnitude brighter than −20.5. We also compared our esti-
mated cluster richnesses with WH15 richnesses, spectroscopic red-
shift, ‘actual’ r200 and redMaPPer richnesses in order to examine
the predictive performance of the optimal r filter absolute magni-
tude bin size and best fit parameters for M∗ and α in the Schechter
function. We note that WH15 richness was specific to r200 whereas
redMaPPer richness was specific to redMaPPer’s own scaling ra-
dius rather than r200. This meant that we could directly quantify
the error between our estimated cluster richnesses and WH15 rich-
nessses by using root mean squared error as a metric.

17 Since our completeness fractions were measured in r filter apparent
magnitudes, we had to convert between r filter apparent magnitudes and r
filter absolute magnitudes to determine the relevant completeness fraction.
18 We utilised the incomplete Gamma function (see Equation 27 in
Schechter (1976)) to compute the integral.

3 RESULTS

3.1 Model tuning analyses

3.1.1 Analysis of our trained background subtraction model

We conducted ten iterations of Monte Carlo cross-validation to
measure the variability of the predictive performance of our back-
ground subtraction model, as well as conducting sixty iterations of
random search on the tunable hyper-parameters of our background
subtraction model, to determine an optimal hyper-parameter com-
bination that maximised the AUCPR of galaxies in our validation
set. It can be seen in Table S1 (available online) that the optimum
hyper-parameter combination was as follows: optimal batch size
= 2048; optimal learning rate = 0.0001; optimal optimiser algo-
rithm = RMSprop and optimal architecture layout = 3. This opti-
mum hyper-parameter combination yielded a mean AUCPR value
of 40.24 per cent with a standard deviation of 1.85 per cent for
galaxies in our validation set. Furthermore, it can be seen in Ta-
ble S2 (available online) that the optimum class probability thresh-
old was 0.29, when using the optimum hyper-parameter combina-
tion. This optimum class probability threshold yielded a F1 score
of 48.92 per cent for galaxies in our validation set.

3.1.2 Analysis of our established scaling relation to estimate r200

We constructed a scaling relation using clusters in our CMWR
training set to estimate the r200 of each cluster when given the
number of cluster galaxies identified by our background subtrac-
tion model as an input. The best fit coefficients of our scaling rela-
tion were determined by minimising the weighted residual sum of
squares between the independent and dependent variables, where
our scaling relation is defined via the following equation:

predr200 = (3.39±0.23)ngal + (950.65±25.25) , (9)

where predr200 is the predicted r200, ngal is the number of
cluster galaxies identified within a 2.5 Mpc search radius at each
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cluster’s spectroscopic redshift and the uncertainty represents the
standard error of the parameter estimates. In Figure 10, it can be
seen that there was a larger drop in the number of cluster galaxies
identified by our background subtraction model at higher redshifts
(i.e. z > 0.3) when compared to the number of identified cluster
galaxies at lower redshifts with the same ‘actual’ r200 values. This
was likely due to cluster galaxies at higher redshifts having larger
observed photometric errors, which made it more difficult for our
background subtraction model to identify these cluster galaxies. We
note that we obtained a Pearson correlation coefficient value of 0.39
between the number of identified cluster galaxies and ‘actual’ r200
variables. We also observed that both WH15 and redMaPPer rich-
nesses appeared to somewhat linearly increase with ‘actual’ r200
and the number of identified cluster galaxies. Furthermore, in Fig-
ure 11, we compared the predictive performance of our predicted
r200 with the ‘actual’ r200, where we found that our predicted r200
was quite comparable to the ‘actual’ r200 across all cluster sizes.
Although, we noticed there was greater variability in the predicted
r200 at lower cluster richnesses, where we obtained a root mean
squared error of 218.14 and a median absolute percentage error of
11.89 per cent between our predicted and ‘actual’ r200 values.

3.1.3 Analysis of the best fit parameters for a luminosity
distribution fitting function to estimate individual cluster
richnesses Within r200

We used a Chi-squared fitting approach to determine the best fit
parameters of the Schechter function when fitting to a composite
luminosity distribution that consisted of a subsample of identified
cluster galaxies from our CMWR training set with high complete-
ness. We also simultaneously determined an optimal r filter abso-
lute magnitude bin size that minimised the Chi-squared fitting error
and yielded galaxies across five or more r filter absolute magnitude
bins. In Table S3 (available online), we identified an optimal r fil-
ter absolute magnitude bin size of 0.52 that had corresponding best
fit parameter values of M∗ = −22.81 with a standard deviation of
±0.5; n∗ = 159.82 with a standard deviation of ±154.62 and α =

−1.99 with a standard deviation of ±0.37. In Figure 12, we display
the composite luminosity distribution and fitted Schechter function
using the optimal r filter absolute magnitude bin size and best fit
parameter values.

We then used the optimal r filter absolute magnitude bin size
and best fit parameter values for M∗ and α to fit the Schechter func-
tion to the luminosity distribution of individual clusters from our
CMWR-r200 training set. This enabled us to estimate individual
cluster richnesses by integrating the locally fit Schechter function.
Subsequently, we obtained a root mean squared error of 18.06 and
a median absolute percentage error of 34.33 per cent between our
estimated cluster richnesses and WH15 richnesses within r200. In
Figure 13, we noticed that WH15 richnesses had a strong linear
correlation with our estimated cluster richnesses. We also observed
that spectroscopic redshifts seemed to have no distinguishable cor-
relation with our estimated cluster richnesses. In addition, we no-
ticed that there was a strong linear correlation between ‘actual’
r200, redMaPPer richnesses and our estimated cluster richnesses.
These results confirmed that our approach to estimate individual
cluster richnesses was appropriate since we did not train any of our
models to minimise cluster richness prediction error but we still ob-
tained strong correlations with WH15 and redMaPPer richnesses.
Furthermore, we were aware that our CMWR-r200 training set con-
tained clusters that were not truly unseen, as we had utilised these
clusters before to create our scaling relation. Although, it was still

interesting to test our methodology on clusters that were seen and
unseen to compare differences in predictive performance.

3.2 Overall performance analyses with test sets

We further assessed our entire methodology on clusters belonging
to our various test sets to obtain an unbiased evaluation of the true
predictive performance of our models. Firstly, we applied our back-
ground subtraction model to cluster and field galaxies in our test set.
This yielded a F1 score of 72.81 per cent and a balanced accuracy
of 83.20 per cent when using the optimal hyper-parameter combi-
nation and optimal class probability threshold for our background
subtraction model. In Figure 14, we display a direct comparison of
the ‘actual’ and predicted cluster and field galaxies. It can be seen
that our background subtraction model learned to correctly clas-
sify almost all of the field galaxies surrounding the cluster galaxies
but it made more incorrect classifications in regions where the ‘ac-
tual’ cluster and field galaxies had greater overlap within colour-
magnitude space. Meanwhile, in Figure 15, we compared the num-
ber of cluster and field galaxies identified by our subtraction model
across redshift bin sizes of 0.01. At lower redshifts (i.e. z ≤ 0.45),
we noticed that our background subtraction model slightly under-
estimated (i.e. misclassified ‘actual’ field galaxies as cluster galax-
ies or misclassified ‘actual’ cluster galaxies as field galaxies) the
overall number of ‘actual’ cluster and field galaxies. In particu-
lar, we noticed a larger drop in the number of identified ‘actual’
cluster galaxies between 0.3 ≤ z ≤ 0.35, which was similar to our
observation in Figure 10. Correspondingly, at higher redshifts (i.e.
z > 0.45), we found that our background subtraction model cor-
rectly classified almost all of the galaxies. In Figures 16 and 17, we
compared the number of cluster and field galaxies identified by our
subtraction model across r filter apparent and absolute magnitude
bin sizes of 0.1 respectively. In both magnitude distributions, we
noticed that our background subtraction model slightly underesti-
mated the overall number of ‘actual’ cluster galaxies at all mag-
nitudes. We also noticed that our background subtraction model
slightly underestimated the overall number of ‘actual’ field galaxies
at intermediate brightnesses (i.e. between 16.5 and 20.5 in r filter
apparent magnitude and between −24 and −20 in r filter absolute
magnitude) but correctly classified almost all of the other fainter
and brighter ‘actual’ field galaxies. Furthermore, in Figure 18 we
examined the proportion of ‘red’ and ‘blue’ ‘actual’ cluster galax-
ies that were identified by our background subtraction model at dif-
ferent redshifts. We found that our background subtraction model
identified 84.32 per cent of ‘red’ ‘actual’ cluster galaxies and re-
covered 73.11 per cent of ‘blue’ ‘actual’ cluster galaxies between
a redshift range of 0.1 ≤ z ≤ 0.35. This indicated that our back-
ground subtraction model was more confident at identifying ‘red’
‘actual’ cluster galaxies than ‘blue’ ‘actual’ cluster galaxies, which
was likely due to the ‘blue’ ‘actual’ cluster galaxies having greater
overlap with field galaxies within colour-magnitude space.

We then applied our learned scaling relation and colour-
magnitude boundaries to clusters in our CMWR test set to approxi-
mate r200 for each cluster. In Figure 19, we noticed that the number
of identified cluster galaxies and ‘actual’ r200 was relatively consis-
tent with our learned scaling relation from Figure 10. From which,
we obtained a Pearson correlation coefficient value of 0.50 between
the number of identified cluster galaxies and ‘actual’ r200 variables
in Figure 19. We also noticed that our predicted and ‘actual’ r200
values in Figure 20 was similar to the overall trend observed in Fig-
ure 11, where we obtained a root mean squared error of 200.86 and
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Figure 10. This figure shows our scaling relation (black dotted line) to estimate the r200 of clusters. It used the ‘actual’ r200 of clusters from our CMWR
training set as a dependent variable and the number of cluster galaxies identified by our background subtraction model within a 2.5 Mpc search radius at each
cluster’s spectroscopic redshift as an independent variable. We also display the corresponding spectroscopic redshift (left image), WH15 richness (middle
image) and redMaPPer richness (right image) of each cluster.

Figure 11. This figure shows a direct comparison of r200 predicted by our
scaling relation with the ‘actual’ r200 of clusters from our CMWR training
set.

a median absolute percentage error of 11.66 per cent between our
predicted and ‘actual’ r200 values in Figure 20.

Finally, we examined the predictive performance of the opti-
mal r filter absolute magnitude bin size and best fit parameter val-
ues for M∗ and α in the Schechter function on individual clusters in
our CMWR-r200 test set. In Figure 21, we noticed that the overall
trends between our estimated cluster richnesses and WH15 rich-
nesses with spectroscopic redshifts, ‘actual’ r200 and redMaPPer
richnesses were again consistent with Figure 13, where our esti-
mated cluster richnesses had no distinct correlation with spectro-
scopic redshifts and our estimated cluster richnesses linearly in-
creased with ‘actual’ r200 and redMaPPer richnesses. Subsequently,
we obtained a root mean squared error of 18.04 and a median ab-
solute percentage error of 33.50 per cent between our estimated
cluster richnesses and WH15 richnesses within r200.

Figure 12. This figure shows the best fit Schechter function (black dotted
line) overlaid on a composite luminosity distribution (using r filter abso-
lute magnitudes) that consisted of a subsample of identified cluster galaxies
from our CMWR-r200 training set with an optimal r filter absolute magni-
tude bin size of 0.52. The best fit parameter values and their respective stan-
dard deviations are displayed in the top right corner of the figure. The x-axis
error bars display the width of each r filter absolute magnitude bin and the
y-axis error bars display the standard deviation of the observed count within
each r filter absolute magnitude bin when assuming a Poisson sampling hy-
pothesis.

3.3 Examining the importance of input features to our
background subtraction model

In Figure 22, we examined the importance of each input feature to
our background subtraction model. This involved randomly shuf-
fling the data of each input feature and then applying our back-
ground subtraction model on the dataset to observe how the shuf-
fled feature impacted the predictive performance. This strategy is
known as permutation feature importance testing (Breiman 2001),
where the permutation scores were based on the number of ‘actual’
cluster galaxies identified by our background subtraction model. In
particular, a lower permutation score for an input feature implied
greater reliance of our background subtraction model on that spe-
cific input feature to provide good predictive performance, because
randomly shuffling the data for an important input feature would re-
sult in fewer ‘actual’ cluster galaxies being identified. We applied
this permutation feature importance test to galaxies in our test set,
which originally contained 3750 cluster galaxies. Subsequently, we
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Figure 13. This figure shows a direct comparison between our estimated cluster richnesses and WH15 richnesses of clusters from our CMWR-r200 training
set when using the optimal r filter absolute magnitude bin size and best fit parameter values for M∗ and α. We also display the corresponding spectroscopic
redshifts (left image), ‘actual’ r200 (middle image) and redMaPPer richness (right image) for each cluster. The x-axis error bars display the standard deviation
of the locally fit n∗ when computing the integral of the Schechter function to determine our estimated cluster richnesses.

Figure 14. This figure shows a direct comparison of the colour-magnitude diagrams (using apparent magnitudes) for the ‘actual’ (left image) and predicted
(right image) cluster (red cross) and field (blue circle) galaxies in our test set.

observed that g, r, i, z, u−g, u− r, g− i and g− z appeared to have
greater significance to our background subtraction model whereas
u, g− r, r − i, i− z, r − z, u− i and u− z appeared to have lesser
significance to our background subtraction model. Although, it is
important to note that our background subtraction model had effec-
tively utilised all the input features since the number of identified
‘actual’ cluster galaxies for each input feature was still only a frac-
tion of the original number of ‘actual’ cluster galaxies.

4 DISCUSSION

In Figure 5, we observed that the photometric redshift distribution
of galaxies in our cluster galaxy sample was skewed towards higher
redshifts, such that higher redshift cluster galaxies were overrepre-
sented. To achieve a fair representation of cluster galaxies at dif-
ferent redshifts in our background subtraction model, we randomly
sampled a fixed number of cluster galaxies within fixed redshift bin
sizes of 0.01 when creating our training, validation and test sets.

This ensured that our background subtraction model was exposed
to equal numbers of cluster galaxies at various redshifts within
colour-magnitude space. We also exposed our background subtrac-
tion model to equal numbers of cluster and field galaxies during
its training. This was to ensure a fair representation of the different
galaxy classes in our background subtraction model.

We initially constrained our training sample to only spectro-
scopically confirmed cluster galaxies from the AMF11 catalogue
but we quickly noticed that the training sample itself had a signif-
icant drop in the number of faint cluster galaxies across all red-
shifts when compared to the non-spectroscopically confirmed clus-
ter galaxies. As such, we decided not to adopt this constraint when
training our background subtraction model. Furthermore, we did
not utilise spectroscopically confirmed field galaxies since it was
difficult to acquire a sample that was representative of all potential
foreground and background galaxies encountered within a random
field. Although, in future work this may be possible since the num-
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Figure 15. This figure shows histograms of the number of identified cluster (left image) and field (right image) galaxies in our test set when using fixed redshift
bin sizes of 0.01. The blue fill with black dotted lines represents the original number of ‘actual’ cluster or field (N.B. we only display field galaxies that had an
available photometric redshift) galaxies within each redshift bin. The red points represent the number of cluster or field galaxies identified by our background
subtraction model within each redshift bin, the green crosses represent the number of ‘actual’ cluster or field galaxies identified by our background subtraction
model within each redshift bin and the x-axis error bars display the width of each redshift bin.

Figure 16. This figure shows histograms of the number of identified cluster (left image) and field (right image) galaxies in our test set when using fixed r filter
apparent magnitude bin sizes of 0.1. The blue fill with black dotted lines represents the original number of ‘actual’ cluster or field galaxies within each r filter
apparent magnitude bin. The red points represent the number of cluster or field galaxies identified by our background subtraction model within each r filter
apparent magnitude bin, the green crosses represent the number of ‘actual’ cluster or field galaxies identified by our background subtraction model within each
r filter apparent magnitude bin and the x-axis error bars display the width of each r filter apparent magnitude bin.

ber of spectroscopically confirmed cluster and field galaxies would
naturally increase over time.

When constructing our scaling relation, we employed ‘actual’
r200 values that were estimated from a scaling relation (see Equa-
tion 1 in Wen et al. (2012)) that was based on the total r filter lumi-
nosity of identified cluster galaxies within a 2.5 Mpc radius from
the cluster center at each clusters redshift. This meant that the er-
rors from their estimated r200 values would have carried over into
our estimated r200 values too. In future work, we could instead con-
sider employing r200 values from X-ray cluster catalogues as X-ray
emission measurements are not as significantly influenced by pro-
jection effects (Ebeling et al. 2010). This would improve the overall
precision of our ‘actual’ r200 values and thus improve the precision
of our cluster richness estimates within r200. Furthermore, we can
establish a scaling relation for any radii, not only r200, as long as we
have sufficient data to enable the construction of a scaling relation
for the radii.

In Figures 13 and 21 we did not observe any redshift biases

in our estimated cluster richnesses after we applied completeness
corrections to account for fewer observed galaxies at the faint end
of the luminosity distribution of individual clusters. This indicated
that incompleteness of our cluster galaxy sample from the AMF11
catalogue had a bigger impact on estimating cluster richnesses than
incompleteness from misclassifications by our background subtrac-
tion model. Although, in Figures 10, 15 and 19 we observed a larger
drop in the number of identified cluster galaxies at higher redshifts
(i.e. z > 0.3) when compared to the number of identified cluster
galaxies at lower redshifts. We believed that this could be due to
the cluster galaxies at higher redshifts having larger photometric
errors than cluster galaxies at lower redshifts, which can be seen
in Figure 18 by the increased scatter between data points as red-
shift increased. Naturally, this would make it more difficult for our
background subtraction model to identify them. As such, we would
expect there to be fewer cluster galaxies identified at higher red-
shifts, since we did not truly account for cluster galaxies having
larger photometric errors at higher redshifts in our background sub-
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Figure 17. This figure shows histograms of the number of identified cluster (left image) and field (right image) galaxies in our test set when using fixed r filter
absolute magnitude bin sizes of 0.1. The blue fill with black dotted lines represents the original number of ‘actual’ cluster or field (N.B. we only display field
galaxies that had an available photometric redshift) galaxies within each r filter absolute magnitude bin. The red points represent the number of cluster or field
galaxies identified by our background subtraction model within each r filter absolute magnitude bin, the green crosses represent the number of ‘actual’ cluster
or field galaxies identified by our background subtraction model within each r filter absolute magnitude bin and the x-axis error bars display the width of each
r filter absolute magnitude bin.

Figure 18. This figure shows a comparison of the ‘red’ and ‘blue’ ‘actual’
cluster galaxies (black cross) in our test set that were identified (red cross)
by our background subtraction model at different redshifts, where we as-
sumed that galaxies above the blue dashed line were ‘red’ and galaxies be-
low the blue dashed line were ‘blue’.

traction model. In the future, it would be beneficial to obtain and
utilise a larger cluster galaxy sample when training our background
subtraction model, which would hopefully reduce this effect by ex-
posing the model to more examples. It may also be beneficial to
employ an algorithm that can learn to interpolate regions within
colour-magnitude space in order to account for the larger photo-
metric errors at higher redshifts, such as a variational autoencoder
(Kingma & Welling 2013).

In this work, we used the Schechter function to fit to the lumi-
nosity distribution of identified cluster galaxies, where it was im-
portant to review the cluster membership status of each individual
galaxy in order to minimise severe contamination from bright inter-
loping field galaxies when fitting the Schechter function. Although,
we were aware of alternative luminosity functions that could be
used to fit to the luminosity distribution of cluster galaxies. Two

other commonly used luminosity functions19 include the Zwicky
function (Zwicky 1957) and Abell function (Abell 1975). Briefly,
the Zwicky function is fitted by considering the difference in mag-
nitude of each cluster galaxy from the brightest cluster galaxy
whereas the Abell function is fitted by combining two separately
fitted analytical functions. This means that the Zwicky function re-
quires identifying the brightest cluster galaxy beforehand whereas
the Abell function is not continuous at all luminosities. We decided
to use the Schechter function over these other luminosity functions
because the Schechter function did not have strict prerequisite con-
ditions and offers continuity (i.e. it was composed of a power law
and an exponential function) at all luminosities (Sarazin 1986).

We fitted the Schechter function to a composite luminos-
ity distribution that consisted of a subsample of identified cluster
galaxies with high completeness to obtain best fit parameter values
of M∗ = −22.81 with a standard deviation of ±0.5; n∗ = 159.82 with
a standard deviation of ±154.62 and α = −1.99 with a standard de-
viation of ±0.37. We did not allow α to be greater than −1 or lesser
than −2 when performing Chi-squared fitting, as we assumed that
it would be unphysical for the number of cluster galaxies to be de-
creasing or increasing rapidly at fainter magnitudes respectively.
We also did not set any specific bounds for M∗ and n∗, since these
parameters were more dependent on the given data. We attempted
to compare our best fit parameter values for M∗ and α to the best fit
parameter values of M∗ and α found in the literature from cluster
studies to determine whether our best fit parameter values for M∗

and α were appropriate as ‘universal’ values. However, we found
that the literature contained a wide range of values for M∗ and α
that depended on a variety of different factors (e.g. photometric
system used, magnitude range examined, redshift range examined,
cluster mass range examined, composition of galaxy types in clus-
ter sample, background subtraction method used). Although, we
noticed that some typical values obtained for M∗ and α span ap-
proximately from −23 to −20 and −2.1 to −0.8 respectively (e.g.
Oegerle et al. 1987; Oegerle & Hoessel 1989; Valotto et al. 1997;

19 We recommend the reader to refer to Sarazin (1986) for an overview of
different luminosity functions.
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Figure 19. This figure is equivalent to Figure 10 except we overlaid our learned scaling relation (black dotted line) on clusters in our CMWR test set.

Figure 20. This figure is equivalent to Figure 11 except it compared the
predicted and ‘actual’ r200 of clusters in our CMWR test set.

Rauzy et al. 1998; Paolillo et al. 2001; Popesso et al. 2005). This
suggested that our assumptions for M∗ and α were not unreason-
able.

We remind the reader that our approach for estimating cluster
richness was based only on the number of cluster galaxies identified
by our background subtraction model within a defined magnitude
range and given search area. This would be particularly beneficial
for cosmological studies (Sarazin 1986), such as comparing sim-
ulated and observed halo mass functions (e.g. Castro et al. 2016;
Yennapureddy & Melia 2019), since it would reduce the complexity
of modeling an appropriate selection function to correct for biases
from post-processing (e.g. incorrect star/galaxy classification, de-
blending/interpolation issues, misestimated photometric redshifts)
or survey conditions (e.g. flux limitations, oversaturation by bright
stars, different aperture sizes) (Melin et al. 2005). In addition, our
background subtraction method provides robustness when estimat-
ing cluster richness along any line-of-sight environment since it as-
sesses the cluster membership status of galaxies based only on their
photometric measurements. This is not easily achievable when us-
ing simple statistical-based or colour-based background subtraction
methods. Furthermore, our background subtraction method does
not require us to make any assumptions about the properties of
the cluster and field galaxies since these properties are self-learned

by the AE algorithm. This means that our background subtraction
method is not intrinsically biased towards selecting different galaxy
types.

In future work, it would be interesting to examine the appli-
cability of our background subtraction method on different usage
cases. These include studying the properties and evolution of iden-
tified cluster galaxies or deciding spectroscopic follow-ups of po-
tential galaxy members in clusters or measuring the observed radial
density, luminosity and redshift profiles of clusters. We also aim to
extend this current work by also establishing an empirical scaling
relation between our richness estimates and cluster dark matter halo
masses, that have been inferred via weak gravitational lensing, in
order to construct an observed halo mass function for constraining
cosmological parameters. In addition, we intend to integrate our
background subtraction method with our own cluster finder model
(Deep-CEE, Chan & Stott 2019) and photometric redshift estima-
tor model (Z-Sequence, Chan & Stott 2021) to mask or remove
interloping line-of-sight galaxies in image data or photometric cat-
alogue data respectively to further minimise their model predictions
errors.

We note that there are various other types of conventional
machine learning algorithms20 available, aside from AE’s, which
could be used for the task of performing background subtrac-
tion. These could include the K-nearest neighbours algorithm (Fix
1951), K-means algorithm (Macqueen 1967), isolation forest algo-
rithm (Liu et al. 2008), support vector machine algorithm (Cortes
& Vapnik 2009) and XGBoost algorithm (Chen & Guestrin 2016).
The reason we chose to utilise an AE over other conventional ma-
chine learning algorithms was due to the fact that an AE is a deep
neural network, which is capable of self-learning the importance
of input features. On the other hand, most conventional machine
learning algorithms require important features to be manually ex-
tracted in order to attain good predictive performance, which can
be time-consuming and difficult to do when there are many com-
plex features (Liang et al. 2017; Notley & Magdon-Ismail 2018; O’
Mahony et al. 2019; Liu et al. 2022).

When training our background subtraction model, we used
a Monte Carlo cross-validation strategy to determine an optimal
hyper-parameter combination that offered the best predictive per-
formance possible across different weight initialisations by per-
forming random subsampling of our training and validation sets.
Although, this may have resulted in some galaxies not being

20 We recommend the reader to refer to https://pyod.readthedocs.
io/en/latest/pyod.models.html for an extensive list of outlier detec-
tion algorithms (Zhao et al. 2019).
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Figure 21. This figure is equivalent to Figure 13 except it was applied to unseen clusters from the CMWR-r200 test set.

Figure 22. This figure shows the importance (N.B. a lower permutation
score signifies greater importance) of each input feature to our background
subtraction model, where the permutation score was based on the number
of ‘actual’ cluster galaxies identified by our background subtraction model
after randomly shuffling the data for each input feature.

utilised at all (i.e. if the galaxy was not randomly chosen to be
in any of our training, validation or test sets), which is not max-
imising data efficiency. In future work, we could employ a k-fold
cross-validation strategy (Bengio & Grandvalet 2004) for hyper-
parameter tuning and model evaluation. This would improve data
efficiency and model generalisation as our background subtraction
model would be evenly examined across all available data during
its training and testing phases.

We performed permutation feature importance testing to de-
termine which input features were deemed as important by our
background subtraction model when identifying ‘actual’ cluster
galaxies. From which, we found that the following input features
displayed high significance: g, r, i, z, u−g, u−r, g− i and g−z. This
tells us that our background subtraction model had learned to utilise
most of the available photometric information in high dimensional
colour-magnitude space. This was more efficient than only utilis-
ing a two dimensional colour-magnitude diagram, which is typi-
cally used when attempting to detect cluster galaxies within colour-
magnitude space (e.g. Yee et al. 1999; Gladders & Yee 2005; Stott
et al. 2009; Valentinuzzi et al. 2011). We believe that these spe-
cific input features were important to our background subtraction
model due to two main reasons. Firstly, in Figure 14 it can be seen
that the majority of the cluster and field galaxy population can be
distinguished via filter magnitudes within colour-magnitude space.

This explained why our background subtraction model prioritised
several filter magnitudes when performing background subtraction.
Secondly, in Figure 14 it can also be seen that a minority of clus-
ter galaxies overlapped with field galaxies within colour magnitude
space. This explained why our background subtraction model also
prioritised several colours in combination with the filter magnitudes
to distinguish between these overlapping cluster and field galaxies.
Based on these reasons, it is not unreasonable to assume that our
background subtraction model can recognise the broad spectral fea-
tures (e.g. 4000Å break) and overall shape of the observed spectral
energy distribution21 of cluster galaxies22 at different redshifts.

In future work, it would be interesting to examine the impact
from including additional features such as galaxy sizes, morphol-
ogy and surface brightness as inputs for our background subtraction
model. However, we note that we cannot easily reapply our method
to galaxy surveys that do not readily provide information for all
our required input features. Furthermore, our background subtrac-
tion model is not provided with redshift information as an input
feature when distinguishing between cluster and field galaxies. In-
stead, we wanted our background subtraction model to self-learn
about the photometric properties of cluster galaxies belonging to
different redshift intervals, which is similar to how photometric red-
shifts of individual galaxies are estimated by empirical algorithms.

5 CONCLUSION

We present a proof-of-concept study of AutoEnRichness, a hybrid
empirical and analytical approach that uses a multi-stage machine
learning algorithm and a conventional luminosity distribution fit-
ting approach to perform background subtraction and estimate clus-
ter richnesses respectively. We utilised photometric data from the
SDSS-IV DR16 to train our background subtraction model, which
learned to reconstruct the photometry of cluster galaxies in order to
distinguish between cluster and field galaxies. We then examined
the predictive performance of our background subtraction model at
distinguishing between cluster and field galaxies in a test set, which
resulted in a balanced accuracy of 83.20 per cent. Subsequently, we
constructed a scaling relation that estimated r200 when given the
number of cluster galaxies identified by our background subtraction

21 We recommend the reader to refer to Kennicutt (1992) for further details
on the observed spectral energy distribution of different galaxies.
22 Clusters typically have a majority population of elliptical and lenticular
galaxies with a minority population of spiral galaxies (Dressler 1980).
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model within a search radius of 2.5 Mpc at each cluster’s spectro-
scopic redshift. We utilised this learned scaling relation to resam-
ple galaxies within an r200 radius for each cluster. Next, we fitted
the Schechter function to a composite luminosity distribution that
consisted of a subsample of cluster galaxies identified by our back-
ground subtraction model within r200 that had high completeness.
We used a Chi-squared fitting approach to determine an optimal r
filter absolute magnitude bin size of 0.52 and best fit parameter val-
ues of M∗ = −22.81 with a standard deviation of ±0.5; n∗ = 159.82
with a standard deviation of ±154.62 and α = −1.99 with a stan-
dard deviation of ±0.37. We then used the optimal r filter absolute
magnitude bin size and best fit parameter values for M∗ and α to fit
the Schechter function to the luminosity distribution of individual
clusters. We estimated cluster richnesses within r200 by computing
the integral of the locally fit Schechter function. Lastly, we applied
the optimal r filter absolute magnitude bin size and best fit param-
eter values for M∗ and α to another test set of clusters to obtain
a median absolute percentage error of 33.50 per cent between our
estimated cluster richnesses and WH15 richnesses within r200. We
note that the only cluster prerequisites for AutoEnRichness were
the astronomical coordinates of the approximate cluster location as
well as an initial cluster redshift estimate for computing appropri-
ate cluster radii. We intend for AutoEnRichness to be combined
with the Deep-CEE (Chan & Stott 2019) and Z-Sequence (Chan
& Stott 2021) algorithms to obtain the key measurements (i.e. po-
sition from cluster detection and distance from redshift estimation
respectively) needed for conducting astrophysics and cosmology
research. In future work, it would be beneficial to develop a data
pipeline that integrates AutoEnRichness with these other methods
into an end-to-end process in preparation for usage on upcoming
large-scale galaxy surveys, such as the Legacy Survey of Space and
Time (Ivezić et al. 2019) and Euclid (Laureijs et al. 2011; Euclid
Collaboration et al. 2019).
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DATA AVAILABILITY

The AMF11 catalogue (Szabo et al. 2011) of individ-
ual cluster galaxies is publicly available on Vizier via:
http://vizier.u-strasbg.fr/viz-bin/VizieR-3?
-source=J/ApJ/736/21/mg. The SDSS-IV DR16 (Ahu-
mada et al. 2020) photometry data of individual galax-
ies is also publicly available on Vizier via: http:
//vizier.u-strasbg.fr/viz-bin/VizieR?-source=V/154.
Furthermore, the WH15 (Wen & Han 2015) and redMaP-
Per v6.3 (Rykoff et al. 2014) cluster catalogues can be
found publicly via: http://vizier.u-strasbg.fr/
viz-bin/VizieR-3?-source=J/ApJ/807/178/table3
and http://risa.stanford.edu/redmapper/.
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Supplementary material (online)

Figure S1. This figure displays a sky map of the astronomical coordinates (J2000) for the WH15 
and redMaPPer clusters (red cross) as well as the astronomical coordinates of our forty different 
proposed ‘field’ regions (blue circle).

Figure S2. This figure displays a sky map of the astronomical coordinates (J2000) for the cluster 
(red cross) and field (blue circle) galaxies that had been cross-matched with galaxies observed 
within SDSS-IV DR16.



Figure S3. This figure displays a correlation matrix heatmap (top image) and scatterplots (bottom 
image) of features (i.e. filters and colours) from optical photometry data of galaxies in our cluster 
galaxy sample. The colourbar for the correlation matrix heatmap represents the strength and 
direction of the linear correlation between features.



Figure S4. This figure is the same as Figure S3 except it is showing galaxies in our field galaxy 
sample.



Figure S5. Top image: this figure displays a direct comparison between redMaPPer and WH15 
richness for a subsample of cross-matched WH15 and redMaPPer clusters between a redshift range 
of 0.1 ≤ z ≤ 0.35. Middle image: this figure displays a direct comparison between redMaPPer 
richness and r200 values determined by WH15 for a subsample of cross-matched WH15 and 
redMaPPer clusters between a redshift range of 0.1 ≤ z ≤ 0.35. Bottom image: this figure displays a 
direct comparison between WH15 richness and r200 values determined by WH15 for a subsample of 
cross-matched WH15 and redMaPPer clusters between a redshift range of 0.1 ≤ z ≤ 0.35.



Table S1. This table displays the randomly selected hyper-parameter (i.e. batch size, learning rate, 
optimiser algorithm and architecture layout) combinations for tuning our background subtraction 
model on galaxies in our validation set using sixty iterations of random search. We also display the 
mean and standard deviation of the resultant AUCPR from performing ten iterations of Monte Carlo
cross-validation on each random search iteration.

Random search iteration Batch size Learning rate Optimiser algorithm Architecture layout AUCPR (per cent) [mean] AUCPR (per cent) [standard deviation]
1 512 0.0001  'RMSprop' 5 39.87 1.52
2 2048 0.01  'Adadelta' 1 34.03 2.46
3 2048 0.001  'Adam' 5 38.93 1.27
4 1024 0.1  'Adadelta' 5 38.94 2.14
5 512 0.001  'SGD' 5 38.41 3.71
6 2048 0.0001  'Adagrad' 3 33.68 1.22
7 256 0.001  'Adam' 1 39.95 1.41
8 2048 0.0001  'Adadelta' 1 34.02 0.35
9 256 0.1  'Adadelta' 1 37.74 2.95
10 256 0.0001  'Adadelta' 1 34.15 0.37
11 1024 0.001  'Adadelta' 1 35.29 1.97
12 1024 0.0001  'Nadam' 1 39.28 2.05
13 512 0.0001  'RMSprop' 1 38.93 2.38
14 256 0.1  'Adadelta' 5 39.18 1.30
15 1024 0.0001  'Nadam' 5 39.23 2.36
16 256 0.01  'Adagrad' 1 39.17 2.47
17 512 0.0001  'Nadam' 3 38.65 1.63
18 512 0.1  'Nadam' 1 34.08 0.34
19 1024 0.1  'Adam' 3 35.82 3.34
20 2048 0.1  'SGD' 5 38.48 1.51
21 1024 0.01  'Adagrad' 3 39.00 3.01
22 256 0.1  'Nadam' 5 34.08 0.34
23 1024 0.1  'Adamax' 5 37.88 3.12
24 1024 0.0001  'Adadelta' 3 33.74 0.98
25 2048 0.001  'RMSprop' 1 39.50 2.07
26 1024 0.01  'Nadam' 1 38.99 2.12
27 256 0.01  'Adadelta' 3 38.89 1.69
28 512 0.001  'Nadam' 3 39.51 1.43
29 512 0.01  'Adagrad' 1 38.52 3.34
30 256 0.0001  'Adamax' 3 38.05 1.25
31 512 0.001  'SGD' 3 38.20 1.90
32 1024 0.1  'Adagrad' 5 37.83 2.89
33 512 0.01  'Adamax' 1 38.51 2.72
34 1024 0.01  'Adam' 3 37.15 2.08
35 256 0.001  'Adagrad' 1 36.44 2.80
36 1024 0.1  'Adadelta' 3 38.08 2.24
37 2048 0.001  'Adadelta' 1 33.83 2.25
38 256 0.1  'Adam' 1 34.08 0.34
39 1024 0.0001  'Adagrad' 5 34.09 1.48
40 512 0.01  'Adadelta' 1 37.93 2.83
41 1024 0.0001  'Adamax' 5 40.03 1.24
42 2048 0.0001  'Adam' 5 39.26 2.00
43 256 0.01  'Nadam' 5 39.15 2.27
44 2048 0.0001  'RMSprop' 3 40.24 1.85
45 1024 0.1  'Nadam' 5 34.08 0.34
46 512 0.0001  'Adam' 5 37.64 2.09
47 2048 0.001  'Nadam' 1 39.38 2.45
48 1024 0.1  'Nadam' 3 34.08 0.34
49 512 0.1  'Adadelta' 3 39.29 1.38
50 1024 0.0001  'RMSprop' 1 39.36 2.19
51 2048 0.0001  'RMSprop' 1 38.92 2.20
52 256 0.0001  'Adagrad' 1 34.73 1.61
53 256 0.001  'SGD' 1 37.09 2.16
54 1024 0.01  'RMSprop' 1 37.56 3.23
55 512 0.001  'Adamax' 5 38.17 2.19
56 1024 0.0001  'SGD' 3 33.55 2.83
57 512 0.01  'SGD' 5 38.79 2.05
58 1024 0.001  'SGD' 1 34.61 3.00
59 1024 0.01  'Adadelta' 5 37.68 1.74
60 256 0.01  'RMSprop' 5 38.93 1.80



Table S2. This table displays the resultant F1 scores on galaxies in our validation set when using 
different class probability thresholds with the optimal hyper-parameter combination for our 
background subtraction model. It should be noted that an F1 score of 0 signifies that no cluster 
galaxies were identified at the given class probability threshold.

Class probability threshold F1 score (per cent)
0 40.00

0.01 42.43
0.02 42.66
0.03 42.81
0.04 42.96
0.05 43.07
0.06 43.26
0.07 43.38
0.08 43.49
0.09 43.59
0.1 43.67
0.11 43.76
0.12 43.87
0.13 44.03
0.14 44.19
0.15 44.36
0.16 44.54
0.17 44.77
0.18 44.97
0.19 45.15
0.2 45.32
0.21 45.62
0.22 45.99
0.23 46.32
0.24 46.83
0.25 47.47
0.26 47.96
0.27 48.31
0.28 48.69
0.29 48.92
0.3 48.69
0.31 45.18
0.32 19.17
0.33 0.00
0.34 0.00
0.35 0.00
0.36 0.00
0.37 0.00
0.38 0.00
0.39 0.00
0.4 0.00
0.41 0.00
0.42 0.00
0.43 0.00
0.44 0.00
0.45 0.00
0.46 0.00
0.47 0.00
0.48 0.00
0.49 0.00
0.5 0.00
0.51 0.00
0.52 0.00
0.53 0.00
0.54 0.00
0.55 0.00
0.56 0.00
0.57 0.00
0.58 0.00
0.59 0.00
0.6 0.00
0.61 0.00
0.62 0.00
0.63 0.00
0.64 0.00
0.65 0.00
0.66 0.00
0.67 0.00
0.68 0.00
0.69 0.00
0.7 0.00
0.71 0.00
0.72 0.00
0.73 0.00
0.74 0.00
0.75 0.00
0.76 0.00
0.77 0.00
0.78 0.00
0.79 0.00
0.8 0.00
0.81 0.00
0.82 0.00
0.83 0.00
0.84 0.00
0.85 0.00
0.86 0.00
0.87 0.00
0.88 0.00
0.89 0.00
0.9 0.00
0.91 0.00
0.92 0.00
0.93 0.00
0.94 0.00
0.95 0.00
0.96 0.00
0.97 0.00
0.98 0.00
0.99 0.00

1 0.00



Table S3. This table displays the computed Chi-square fitting errors when fitting the Schechter 
function to a composite luminosity distribution that consisted of a subsample of identified cluster 
galaxies from our CMWR-r200 training set that visually appeared to have high completeness. We 
also display the best fit parameter values for M*, n* and a as well as their respective standard 
deviations when using different r filter absolute magnitude bin sizes. In addition, we display the 
number of bins that contain at least one identified cluster galaxy. It should be noted that we do not 
display the results of bin sizes that have fewer than five bins with identified cluster galaxies nor do 
we display the results of bin sizes that do not have successful fits.

Bin size Chi-square fitting error Number of bins with galaxies M* M* [standard deviation] n* n* [standard deviation] α α [standard deviation]
0.01 102.140920976604 147 -25.3072697006017 7.28783936301292 0.164112608931114 1.38199927866705 -2 0.466629082092991
0.02 76.5453069917579 87 -22.8960081024292 1.09379460105731 4.71921420366664 9.20338546553196 -2 0.580632607165434
0.03 68.1745019597015 65 -22.4908977078703 0.790075482406013 12.70439476778 18.952694149263 -1.99999999999989 0.599104919143905
0.04 61.266861269483 50 -22.415789304908 0.756339770593328 19.3568690083877 27.8274793059772 -1.99999999999799 0.608973124211291
0.05 39.6185650543927 43 -22.6222052707545 0.672513724488882 18.3176186296316 23.2838977629391 -1.99999999999999 0.486524958545581
0.06 36.5625019331505 37 -22.6258973735442 0.626947096373978 21.9653980090031 26.0819814894214 -1.99999999999946 0.458571758087398
0.07 33.5900501761644 33 -22.6099206948986 0.602242351450481 26.3737283301809 30.2193978863726 -1.99999999998887 0.451033803392379
0.08 29.6385878283548 28 -22.5816910642751 0.591756403834509 31.7971766662677 35.8707702408829 -1.99999999999999 0.452169800589196
0.09 20.3637951180156 27 -22.6746874027806 0.521101827728886 31.5718547496863 31.5686519817016 -1.99999999999869 0.393056307595776
0.1 16.5530148685729 23 -22.6582443109673 0.569061669900563 36.3423806202571 39.4465302657616 -1.99999999999955 0.421022202247245
0.11 13.0767631976711 21 -22.6755620489245 0.55251309291653 39.2543259599577 41.4152567582025 -1.99999999999977 0.408316979552766
0.12 15.2459769970052 19 -22.7247184161576 0.591396789212753 39.7619946638302 44.3787960605664 -2 0.411200351509468
0.13 9.14827055635872 19 -22.6183758110969 0.458502287321535 52.1384807705458 45.3748880546628 -1.95453486711378 0.371591371552821
0.14 11.7492730266906 18 -22.643331608495 0.462615820139636 52.7951370756613 47.0475807096035 -1.98924101376699 0.367764744434002
0.15 10.9037429665667 16 -22.4923685847581 0.448002369078026 74.7956455459639 61.8368875874148 -1.88377867043106 0.397289759070223
0.16 16.7722783477289 15 -22.5384337422092 0.475641293653476 70.5894407833445 64.5502898072399 -1.97587961393189 0.404297179863603
0.17 4.15402355091424 15 -22.7292157905515 0.466124335935932 56.9967978748963 51.1443097694934 -2 0.351042953646424
0.18 12.7790690539623 14 -22.6591309218703 0.490607883863879 65.8069565315428 62.2084888857685 -1.99999999999884 0.381498515390209
0.19 10.1521887967407 13 -22.7126392343591 0.531049352235773 64.521848195881 65.4523309529134 -2 0.389521040297862
0.2 7.99147466406507 12 -22.7208482829558 0.537766203637089 67.4775596294566 69.1927939236387 -2 0.390696836606222
0.21 4.29404454893266 12 -22.7778047368944 0.507161177536059 65.6184421027745 63.563335472533 -2 0.363575936524285
0.22 5.67230887264036 11 -22.7623890236569 0.525989016830309 70.1952555544012 70.3336011457905 -2 0.374685241450145
0.23 3.92256129130857 11 -22.705216487009 0.489026439161547 80.1076053301875 75.3087082850019 -2 0.369199150776928
0.24 8.17416297511997 10 -22.5708249356802 0.46728589789064 104.425526335234 92.3190354948186 -1.94542652350871 0.390175180596096
0.25 4.29832445617372 10 -22.7749629261976 0.504034834908083 78.5599805972613 75.5810214476751 -1.99999999999975 0.360888114340128
0.26 1.5900013241842 10 -22.7543979409332 0.456121860305321 84.6673328318602 74.3374090694452 -2 0.340403198275327
0.27 4.97043601393654 9 -22.7326239407067 0.537509637953644 90.2958645221638 92.7197761899969 -2 0.390545267175811
0.28 4.10694483459387 9 -22.7361583932848 0.475351264466895 94.4841506940494 85.5761639766845 -1.97909263203428 0.356655435560158
0.29 2.43440108474398 9 -22.7735764454752 0.483748588363934 91.7522170908038 85.1097978159416 -2 0.353263598483103
0.3 5.15205257540701 8 -22.7918350993829 0.571519770757192 92.0936083899066 99.5684604796216 -2 0.393299649494388
0.31 5.90218198017966 8 -22.7496055699693 0.512441830655374 101.027295842528 99.0607465472664 -1.99999999999849 0.374980540977817
0.32 10.1014409330581 8 -22.7068155761029 0.46673483659344 110.104060272333 99.3073073368942 -2 0.361982802750744
0.33 5.96846341699309 8 -22.7391063048754 0.46925404584864 109.201691285243 98.8710176390871 -2 0.356791209942564
0.34 1.12105000461229 8 -22.7478245333539 0.440292188347238 112.250370963957 95.4874446889144 -2 0.336758675291583
0.35 3.12523238008784 7 -22.7822285687626 0.546318661436639 109.623965612747 113.882723095951 -1.9999999999999 0.387253819700969
0.36 3.03061687353762 7 -22.7241788039726 0.52765200413997 122.841382114879 123.931590655044 -2 0.390054298402819
0.37 1.48984677624025 7 -22.7309176072148 0.46076140879309 125.422731293451 111.639466908686 -2 0.354493289723339
0.38 2.36115567803497 7 -22.758776999429 0.469319697928797 123.406631037008 111.329064686043 -2 0.350817563549449
0.39 0.603516773400222 7 -22.6964112181343 0.413245262968147 140.371839664555 112.444496886239 -1.98962179171752 0.334505631972704
0.4 0.637438766276678 6 -22.7621355562676 0.547164384340818 130.14248212713 135.853063636089 -2 0.394672140845081
0.41 1.03851432178477 6 -22.7388960765666 0.539100941022473 137.925294842631 142.459296913682 -1.9999999999998 0.398317582214352
0.42 0.617019282021179 6 -22.7836403833345 0.52063968702413 132.412600884289 131.908715973817 -2 0.377789372068514
0.43 1.00222006125957 6 -22.7669424142399 0.497083941926808 138.844175703839 132.560878756468 -2 0.368534172557065
0.44 1.3854524348229 6 -22.735461750642 0.442508674389626 149.866239382466 127.730806309675 -1.98775443119698 0.344888791011023
0.45 2.09325476913197 6 -22.7542533890697 0.455514311827121 147.815629869087 129.964796940122 -2 0.347242980067736
0.46 2.06708478166107 6 -22.7198920761451 0.449235034517127 159.112883886869 138.59783627731 -2 0.353667237181105
0.47 1.91277317747975 6 -22.7134175644432 0.4158846753342 164.305815020088 133.021223122312 -1.99999999999996 0.33502131248639
0.48 3.09959702941975 5 -22.7133128234714 0.526534407663765 168.666330230149 170.028242094597 -1.991839331825 0.400161540375978
0.49 2.99396275206369 5 -22.7586216420838 0.530865270015062 160.296570599804 163.000668703465 -1.99999999999998 0.391406599797717
0.5 3.01068130899773 5 -22.7996514653902 0.532221118709986 154.04407380113 156.784199434023 -1.99999999999812 0.383433470402977
0.51 1.10735348985882 5 -22.8207986936304 0.529542207845286 153.028828033463 154.869239126894 -1.99999999999999 0.37851641868231
0.52 0.566621255611028 5 -22.8082232056862 0.504804314046596 159.821770266413 154.624246072466 -1.99360356962263 0.370844073513688
0.53 0.804364552288225 5 -22.5216510211879 0.418951220094654 274.838166240616 202.702584893226 -1.77308302024065 0.391484698263154
0.54 2.39612065033725 5 -22.5437634518665 0.441778546861592 265.78170850412 210.927359077781 -1.8183753728052 0.401173098435923
0.55 1.46317886420762 5 -22.4701482130265 0.382373057404958 310.083447783411 206.11140981392 -1.74205611806367 0.377492189289949
0.56 1.51574912980039 5 -22.5086962590682 0.39050000766944 297.455379636805 203.562572401559 -1.75836724883236 0.375135903611389
0.57 1.45663254988623 5 -22.5602264810274 0.402236411508689 278.002178944076 199.230027703658 -1.79306653623351 0.372083907644912
0.58 0.719369820743466 5 -22.6910262019285 0.426822999134624 223.608144930381 178.401952889802 -1.90202692521294 0.3585602913609
0.59 0.589469793678187 5 -22.603110886294 0.376524243377872 267.158181157209 183.285827177277 -1.83213557762778 0.345949650208558
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