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Abstract—Multi-access Edge Computing (MEC) is an emerging computing paradigm that extends cloud computing to the network edge
to support resource-intensive applications on mobile devices. As a crucial problem in MEC, service migration needs to decide how to
migrate user services for maintaining Quality-of-Service when users roam between MEC servers with limited coverage and capacity.
However, finding an optimal migration policy is intractable due to the dynamic MEC environment and user mobility. Many existing
works make centralized migration decisions based on complete system-level information, which can be time-consuming and also lack
good scalability. To address these challenges, we propose a novel learning-driven method, which is user-centric and makes effective
online migration decisions by utilizing incomplete system-level information. Specifically, the service migration problem is modeled as a
Partially Observable Markov Decision Process (POMDP). To solve the POMDP, we design a new encoder network that combines a Long
Short-Term Memory (LSTM) and an embedding matrix for effective extraction of hidden information, and propose a tailored off-policy
actor-critic algorithm for efficient training. The extensive experimental results based on real-world mobility traces demonstrate that our
method consistently outperforms both the heuristic and state-of-the-art learning-driven algorithms, and can achieve near-optimal results
on various MEC scenarios.
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1 INTRODUCTION

R ECENT years have witnessed a booming of emerging
mobile applications such as augmented reality, virtual

reality, and interactive gaming. These applications require
intensive computing power for real-time processing, which
often exceeds the limited computing and storage capabil-
ities of mobile devices. To resolve this issue, Multi-access
Edge Computing (MEC) [1], a new distributed computing
paradigm, was proposed to meet the ever-increasing de-
mands for the Quality-of-Service (QoS) of mobile applica-
tions. MEC provides many computing and storage resources
at the network edge (close to users), which can effectively
cut down the application latency and improve the QoS.
Specifically, a mobile application empowered by the MEC
consists of a front-end component running on mobile de-
vices, and a back-end service that runs the tasks offloaded
from the application on MEC servers [2]. In this way, the
MEC enables mobile devices with limited processing power
to run complex applications with satisfied QoS.
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When considering the user mobility along with the lim-
ited coverage of MEC servers, the communications between
a mobile user and the user service running on an edge
server may go through multiple hops, which would severely
affect the QoS. To address this problem, the service could be
dynamically migrated to a more suitable MEC server so that
the QoS is maintained. Unfortunately, finding an optimal
migration policy for such a problem is non-trivial, due to the
complex system dynamics and user mobility. Many existing
works [3]–[7] proposed service migration solutions based on
Markov Decision Process (MDP) or Lyapunov optimization
under the assumption of knowing the complete system-
level information (e.g., workloads of MEC servers, profiles
of offloaded tasks, and backhaul network conditions). Thus,
they designed centralized controllers (i.e., controllers are
placed on edge servers or central cloud) that make migra-
tion decisions for mobile users in the MEC system.

The aforementioned methods have two potential draw-
backs: 1) in a real-world MEC system, gathering complete
system-level information (e.g., the full network states and
edge servers’ workloads) can bring high communication
overheads [8], [9]. 2) the centralized control approach will
have scalability issues since its time complexity rapidly
increases with the number of mobile users. To address
the above issues, some works proposed decentralized ser-
vice migration methods based on contextual Multi-Armed
Bandit (MAB) [8]–[11], where the migration decisions are
made by the user side with partially observed information.
However, they did not consider the intrinsically large state
space and complex dynamics in the MEC system, which
may lead to unsatisfactory performance. A recent work [12]
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modeled the joint optimization problem of service migration
and path selection as a partially observable Markov decision
process (POMDP) solved by independent Q-learning, which
can be unstable and inefficient when handling the MEC
environment with continuous state space (e.g., data size,
CPU cycle, workload) and complex system dynamics.

To address the aforementioned challenges, we propose
a new Deep Recurrent Actor-Critic based service Migration
(DRACM) method, which is user-centric and can learn to
make online migration decisions with incomplete system-
level information based on Deep Reinforcement Learning
(DRL). DRL is able to solve complex decision-making prob-
lems in various areas, including robotics [13], games [14],
networks [15], etc., making it an attractive approach. Dis-
tinguished from the existing works, we model the service
migration problem as a POMDP with continuous state space
and develop a tailored off-policy actor-critic algorithm to
efficiently solve the POMDP. The main contributions of this
work are listed as follows:

• We model the service migration problem as a POMDP
to capture the intrinsically complex system dynamics in
the MEC. We solve the POMDP by proposing a novel off-
policy actor-critic method, namely DRACM. Specifically,
the distinguishing advantage of this new method is that
it is model-free and can quickly learn effective migration
policies through end-to-end reinforcement learning (RL),
where the agent makes online migration decisions based
on the sampled raw data from the MEC environment with
minimal human expertise.

• A new encoder network that combines a Long Short-Term
Memory (LSTM) and an embedding matrix is designed to
effectively extract the hidden information from the sam-
pled histories. Moreover, a tailored off-policy actor-critic
algorithm with a clipped surrogate objective function is
developed to substantially stabilize the training process
and improve the performance.

• We demonstrate how to implement the DRACM effi-
ciently in an emerging MEC framework, where the migra-
tion decisions can be made online through the inference
of the policy network, while the training of the policy
network can be offline, thus saving the cost of directly
interacting with the MEC environment.

• Extensive experiments are conducted to evaluate the
performance of the DRACM using real-world mobility
traces. The results demonstrate that the DRACM has a
stable training process with high adaptivity to different
scenarios. Furthermore, it outperforms the online baseline
algorithms, and can achieve near-optimal results.

The remainder of this paper is organized as follows. Sec-
tion 2 gives the problem formulation of service migration.
Section 3 presents the DRL backgrounds, POMDP modeling
for service migration, details of the DRACM algorithm, and
the implementation of the DRACM in the emerging MEC
system. In Section 4, we evaluate the performance of the
DRACM and five baseline algorithms on two real-world
mobility traces with various MEC scenarios. We then review
the related works in Section 5. Finally, Section 6 concludes
this paper.

Fig. 1: An example of service migration in MEC.

2 PROBLEM FORMULATION OF SERVICE MIGRA-
TION

As shown in Fig. 1, we consider a heterogeneous multi-
user MEC system where a set of U mobile users (indexed
by u), U = {1, 2, ..., u, ..., U}, move in a geographical
area covered by a set of M MEC servers (indexed by m),
M = {1, 2, ...,m, ...,M}, each of which is co-located with
a base station. In the MEC system, mobile users can offload
their computation tasks to the services provided by MEC
servers. We consider a time-slotted model, where a user’s
location may only change at the beginning of each time slot.
The time-slotted model is widely used to address the service
migration problem [4], [6], [11], which can be regarded as a
sampled version of a continuous-time model. In time slot
t (t = 0, 1, 2, ..., T ), all users generate computation tasks
according to certain stochastic process. We summarise the
main notations of this paper in Table 1.

We define the MEC server that runs the service of a
mobile user u at time slot t as the user’s serving server,
denoted asms

t (u), and the MEC server that directly connects
with the mobile user at time slot t as the user’s local server,
denoted as ml

t(u). In general, the MEC servers are intercon-
nected via stable backhaul links, thus the mobile user can
still access its service via multi-hop communication among
MEC servers when it is no longer directly connected to the
serving server. However, to maintain satisfactory QoS, the
service should be dynamically migrated among the MEC
servers as the user moves. In this paper, we use latency
as the measurement for the QoS that consists of migration,
computation, and communication delays.

When a mobile user changes location, the user makes the
migration decision for the current service and then offloads
computation tasks to the serving server for processing.
Denote the migration decision at time slot t as at (at ∈ M)
thus ms

t (u) = at, where at can be any of the MEC servers
in this area. In general, the migration, computation, and
communication delays are expressed as follows.

Migration delay: The migration delay is incurred when
a service is moved out from the previous serving server.
In general, the migration delay is caused by the service
interruption time during migration, which increases with
the service size and hop distance and involves transmis-
sion, propagation, processing, and queuing delays of service
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data transmission. Formally, the migration delay is a non-
decreasing function of dt [6], [11], [16], which can be defined
as:

B(u, dt) =


0, if dt = 0,

datast (u)

ηt
+ σm

t dt, if dt 6= 0,
(1)

where dt is the distance between the current serving node
ms
t (u) and the previous one ms

t−1(u), σm
t is a positive co-

efficient, ηmt is the network bandwidth along the migration
path, datast (u) is the size of the service that is migrated.
Note that, if dt = 0, no migration is occurred, thus the
migration delay B(u, dt) = 0.

Computation delay: At each time slot, the mobile user
may offload computation tasks to the serving server for
processing. The computing resources of MEC servers are
shared by multiple mobile users to process their applica-
tions. At time slot t, we denote the total data size of the
offloaded task of user u as dataot (u) and the processing
density of the offloaded tasks as κ, thus the required CPU
cycles for processing the offloaded tasks can be calculated as
ct = dataot (u)κ. Furthermore, we define the workload of the
serving server aswt(at), and the total computing capacity of
the serving server as f(at). We consider a weighted resource
allocation strategy on each MEC server, where tasks are
allocated with computation resources proportional to their
required CPU cycles. Therefore, the computation delay of
running the offloaded tasks at time slot t, can be calculated
as

D(at) =
ct

( ct
wt(at)+ct

f(at))
=
wt(at) + ct
f(at)

. (2)

Communication delay: After migrating the service, the
communication delay is incurred when the mobile user
offloads computation tasks to the serving server. Generally,
the communication delay consists of two parts: access delay
between the mobile user and the local server, and backhaul
delay between the local server and the serving server. The
wireless uplink transmission rate from the mobile user to
the local server can be define as

ρt = ω log2

(
1 + SNR(u,ml

t(u))
)
, (3)

where ω is the wireless uplink bandwidth and
SNR(u,ml

t(u)) is the signal-to-noise ratio (SNR) of
the channel between mobile device u and the local server
ml
t(u)). The SNR can be formally defined by

SNR(u,ml
t(u)) =

pu|gt(u,ml
t(u))|2

ωN
, (4)

where pu is the transmission power of the mobile device, N
represents the power spectral density of the white Gaussian
noise, gt(u,ml

t(u)) denotes the channel gain from the mobile
user u to the local server ml

t(u)) at time slot t. Specifically,
the channel gain can be affected by many factors including
the path loss, distance between the user device and the base
station, the channel type, etc. Consequently, the value of gt
is difficult to estimate in real-world MEC systems. At time
slot t, the access delay can be expressed as

R(u) =
dataot (u)

ρt
. (5)

TABLE 1: Summary of Main Notations

Notation Description
u,m Index of the mobile user and the MEC server.

ms
t (u), m

l
t(u) Index of serving server and local server of the

mobile user.
at Migration decision.

datast (u) Size of the service.
ηmt Bandwidth of the migration path.
σm
t Positive coefficient of the migration delay.
dt Hop distance between the current serving server

and the previous one.
dataot (u) Data size of the offloaded tasks.

κ Processing density of the offloaded tasks.
wt(at), f(at) Workloads and computing capacity of the serving

server.
ct Required CPU cycles for processing offloaded

tasks.
ηbht Bandwidth of the backhaul network.
σbh
t Positive coefficient of the backhaul delay.
ρt The upload wireless transmission rate.
ω Bandwidth of the wireless upload channel.
pu Transmission power of the mobile device.

gt(u,ml
t(u)) Channel gain from the mobile user to the local

server.
N White Gaussian noise.
yt Hop distance between the serving server and local

server.
B(u, dt), D(at),

E(u, yt)
Migration delay, computation delay, and

communication delay.

The backhaul delay exists when the serving server
and local server of the mobile user u are different, i.e.,
at 6= ml

t(u). The backhaul delay mainly depends on the
hop distance along the shortest path and the data size of the
offloaded tasks [6], [11], [12]. We denote the hop distance
between the serving server at and local server ml

t(u) as
yt = |at −ml

t(u)| . Generally, the transmission delay of the
computation results can be ignored because of their relative
small data size. Therefore, the backhaul delay can be given
by

P (u, yt) =


0, if yt = 0,

dataot (u)

ηbht
+ σbh

t yt, if yt 6= 0.
(6)

Especially, when the serving server and the mobile user
are directly connected (yt = 0), there is no backhaul cost.
Overall, the total communication delay at time slot t can be
obtained by

E(u, yt) = R(u) + P (u, yt). (7)

Given a finite time horizon T , our objective for the
service migration problem is to obtain optimal migration
decisions, {a1, a2, ..., aT }, so that the sum of all the above
costs (i.e., total delay) is minimal. Formally, the objective is
expressed as:

min
a0,a1,...,aT

T∑
t=0

B(u, dt) +D(at) + E(u, yt),

s.t. at ∈ {1, 2, ...,m, ...,M},
∀u ∈ {1, 2, ..., u, ..., U}.

(8)
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Fig. 2: Graphical model of POMDP.

Obtaining the optimal solution for the above objective
is challenging, which requires knowledge of user mobility
and complete system-level information over the entire time
horizon. However, in real-world scenarios, it is impractical
to gather all the relative information in advance. To address
this challenge, we propose a learning-based online service
migration method that can make efficient migration deci-
sions based on partially observed information. In the next
section, we present our solution in detail.

3 ONLINE SERVICE MIGRATION WITH INCOM-
PLETE INFORMATION

Service migration in MEC is intrinsically a sequential
decision-making problem with a partially observable envi-
ronment (i.e., with incomplete system information), which
can be naturally modeled as a POMDP. We solve the
POMDP with the proposed DRACM method to provide
effective online migration decisions. Before presenting the
details of our solution, we first introduce the necessary
backgrounds.

3.1 Backgrounds of RL and POMDP
Reinforcement learning: RL can solve sequential decision-
making problems by learning from interaction with the
environment. In general, RL uses the formal framework
of MDP, which is defined by a tuple (S,A,P,R, γ), to
represent the interaction between a learning agent and its
environment. Specifically, S is the state space,A denotes the
action space, P is the environment dynamics, R represents
the reward function, and γ is the discounted factor. The
policy, π(·|st), represents the distribution over actions given
a state st. The return from state st, which is defined as
Gt(τ) =

∑T
i=t γ

i−trt, is the sum of discounted rewards
along a trajectory τ := {s0, a0, r0, s1, a1, r1, ..., sT , aT , rT }.
The goal of RL is to find an optimal policy π∗, so that the
expected return, Eτ∼p(τ |π∗)[G0(τ)], is maximal.

The action-value function is defined by the expected
return after taking an action at in state st and thereafter
following policy π, qπ(st, at) = Eπ [Gt|st, at]. An optimal
action-value function, which is defined as q∗(st, at) =
maxπ qπ(st, at), is the maximum action value achievable
by any policy for state st and action at. The valued-based
DRL methods (e.g., deep Q-learning (DQL) [17]) use the
deep neural network to approximate the optimal action-
value function, q∗(st, at; θQ) where θQ are parameters of
the deep neural network. They obtain the optimal policy
by greedily selecting the action with maximal action value,
where at = arg maxa q

∗(st, a; θQ). However, since DQL

indirectly obtains a deterministic policy by training the Q-
network (i.e., a neural network that is used approximate the
action-value function), it generally has a low convergence
rate [18]. The large and complex state space of the MEC
environment exacerbates this issue. Besides, the training
target of DQL is obtained by one-step bootstrapping of
the Q-network, which can be a highly biased estimation
of the true action values. Introducing bias may harm the
convergence of the algorithm, or cause converging to sub-
optimal solutions. The above issues make DQL unfit to solve
the service migration problem since the learned migration
policies may lead to unsatisfied performance. In contrast,
the policy-based methods (e.g., asynchronous actor-critic
[18] and proximal policy optimization [19]) provide good
convergence property for dealing with the complex state
space of the environment. They directly parameterized the
stochastic policy with a deep neural network rather than
using deterministic policy derived from the action-value
function. The parameters of the policy network are updated
by performing gradient ascent on E[G0(τ)]. In this paper,
we build our method (i.e., the DRACM) based on the policy-
based methods and show the performance comparison be-
tween the DQL-based method and the DRACM in Section
4.

Partially Observable Markov Decision Process: MDP
assumes that states include complete information for
decision-making. However, in many real-world scenarios,
observing such states is intractable. Therefore, the POMDP,
an extension of MDP, is proposed as a general model
for the sequential decision-making problem with a par-
tially observable environment, which is defined by a tuple
(Ω,S,A,P,R,O, γ). Fig. 2 shows the graphical model of
POMDP. Specifically, the state st ∈ S is latent and the obser-
vation ot ∈ Ω contains partial information of the latent state
st. O(ot|st, at−1) represents the observation distribution,
which gives the probability of observing ot if action at−1
is performed and the resulting state is st. Since the state is
latent, the learning agent cannot choose its action directly
based on the state. Alternatively, it is possible to inference
the filtering distribution given the complete history of its
past actions and observations p(st|o≤t, a<t) := bt, defined
as belief state. Specifically, the history up to time step t is
defined by Ht = {o0, a0, ..., ot−1, at−1, ot}. If we perform
action at given the current belief state bt and get the next
observation ot+1, then the next belief state is estimated as
follows:

bt+1 =

∫
btO(ot+1|st+1, at)P(st+1|st, at)dst∫ ∫

btO(ot+1|st+1, at)P(st+1|st, at)dstdst+1
. (9)

However, calculating the above equation requires knowl-
edge of the dynamics model and is computationally ex-
pensive [20]. To address this issue, some RL algorithms
[20]–[22] use approximation methods (e.g., variational in-
ference) to explicitly represent the belief state and sampling
latent state from bt as input to the policy. However, these
methods may have high training complexity. Other works
[20], [21] assume the latent states as deterministic states,
which encode the full history (including a long sequence of
observations and actions) by LSTM and use the hidden state
of LSTM as input to the policy. These methods generally
have lower training complexity compared with the former
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ones. LSTM is an appropriate way for latent information
extraction, as it can effectively extract temporal features
from long sequential data. Thus, we use the hidden states
of LSTM to represent the hidden states of the POMDP.
Our algorithm can achieve excellent performance and is
much easier to implement in MEC scenarios compared to
the methods based on inferring the belief state. In the next
subsection, we present the motivations of POMDP modeling
for service migration problem and the detailed definition of
the model.

3.2 POMDP modeling for service migration problem
Key factors that affect the migration decision of a mobile
user at a time slot are the mobility of the user, the offloading
tasks’ profile, the workloads of edge servers, and the re-
source allocations of edge servers, etc. Ideally, the user can
make optimal migration decisions if knowing complete in-
formation related to the decision-making process. However,
some information are hard to obtain for the user side. For
example, at each time slot, the workloads of edge servers
are determined by the task requests from their associated
mobile users and their available computation resources.
However, it is unlikely for a specific mobile user to get such
information before making migration decisions. To make
effective decisions based on partially observable informa-
tion, POMDP is a natural choice to model the problem,
which gives the agent the ability to effectively estimate the
outcome of its actions even when it cannot exactly observe
the state of its environment. In our POMDP modeling,
the mobile user treats the unobserved information (e.g.,
workloads and resource allocations of MEC servers) as a
part of the latent state. Differing from the simplified model
such as MAB, POMDP does not ignore the intrinsic large
state space and complex dynamics of the service migration
problem, thus solving the POMDP can result in more effec-
tive decisions.

The detailed POMDP model of service migration is de-
fined as follows:
• Observation: The observation contains information that is

accessible from the user side, which is defined by a tuple
of the local server ml

t(u), the transmission rate of wireless
network ρt, the required CPU cycles of computation tasks
ct, and the size of transmission data, datat:

ot := (ml
t(u), ρt, ct,dataot ). (10)

Note that the geographical location of the mobile user
is an indirect factor that affects the migration decisions,
which determines the local server associated with the
mobile user and affects the transmission rate (included
in our definition of the observation, Eq. (10)). Therefore,
we define the local server ml

t(u) as a component of the
observation rather than the geographical location of the
mobile user.

• Action: At each time slot, the service can be migrated to
any of the MEC servers in the area. Therefore, an action
is defined as at ∈M.

• Reward: The reward at each time slot is defined as the neg-
ative sum of migration, computation, and communication
delays, which is formally expressed as

rt := − [B(u, dt) +D(at) + E(u, yt)] . (11)

Solving the above POMDP is non-trivial due to the com-
plex dynamics and continuous state space of the MEC en-
vironment. In the next subsection, we present our method,
DRACM, to solve the above POMDP.

3.3 Deep Recurrent Actor-Critic based service Migra-
tion (DRACM)
Fig. 3 shows the overall architecture of the DRACM, which
follows an end-to-end principle with raw history sampled
from the environment as input and the migration decisions
as output. The DRACM consists of two parts: the encoder
network and the learning agent, where the encoder network
learns to effectively represent the latent state of the POMDP
based on the history and the learning agent learns to make
effective migration decisions. The goal of the encoder net-
work is to infer the latent state of the POMDP based on the
observed history:

p(s1:T |o1:T , a1:T−1) =
T∏
t=1

p(st|st−1, at−1, ot). (12)

Here, we include a LSTM to approximate the above function
where the hidden state of the LSTM, ht, is used to represent
the latent state st of the POMDP, thus we have

ht = fenc([o≤t, a<t]; θ) = fenc([ot, at−1], ht−1; θ), (13)

where t ∈ [1, T ], fenc and θ represent the inner process and
parameters of the encoder network, respectively.

To improve the representation ability of the features ut
and at−1, we convert them into embeddings by looking
up a trainable |M| × de matrix, where de is the dimension
of embedding vectors. Subsequently, the action embedding,
user location embedding, and the rest components of the
observation are concatenated as a vector, et, feeding into the
LSTM to produce the hidden state ht.

The learning agent is based on a standard actor-critic
structure. Both actor and critic are parametrized by neural
networks with the hidden state ht as input. We denote
φ and ψ as the parameters of actor and critic networks,
respectively. The actor network aims at approximating the
policy, π(at|ht;φ), which outputs a distribution over the
action space at time step t given ht. Meanwhile, the critic
network, v(ht, ψ), approximates the value function that is
an estimation of the expected return when starting in ht
and following the policy π thereafter.

Denote the trajectory sampled from the environment
following policy π as τ = {o0, a0, r0, ..., oT , aT , rT }. The
critic network can be updated by minimizing the mean
square error of one-step temporal differences δt based on
the sampled trajectories, which is formally defined as

Lcritic(ψ, θ) = Eτ∼p(τ |π)

[
T∑
t=0

δ2t

]
, (14)

δt = r + γv(ht+1;ψ)− v(ht;ψ), (15)

where the ht can be obtained by Eq. (13). The objective of
the actor is to find an optimal policy that maximizes the
accumulated reward, which can be formally expressed as

Lact(φ, θ) = Eτ∼p(τ |π)

[
T∑
t=0

γtrt

]
. (16)
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Fig. 3: The architecture of the DRACM for the service migration problem in MEC. The input observation vector includes
four components: index of the local server, the current average wireless transmission rate, the required CPU cycles of
computation tasks, and the size of transmission data. The output of the actor at each time slot is the probability distribution
over the action space (i.e., feasible migration targets).

Algorithm 1 Deep Recurrent Actor-Critic based service
Migration (DRACM)
Initialize the parameters of behavior policy φ′, behavior
encoder network θ′, target policy φ, target encoder network
θ, and critic network ψ,

1: for k = 0, 1, 2, ..., n do
. % Start sampling process %

2: Synchronize the parameters: θ′ ← θ, φ′ ← φ.
3: Sample a set of trajectories Dτ = {τ0, τ1, ...τn} by

running the behavior policy π′(at|h′t;φ′) in the envi-
ronment, where h′t = fenc([o≤t, a<t]; θ

′).
4: Compute the advantage estimator, Ât, according to

Eq. (21).

. % Start target policy updating process %
5: for j = 0, 1, 2, ...,m do
6: Update the parameters of encoder network θ,

target policy network φ, and critic network ψ,
θ ← θ +∇θLact

c (φ, θ)−∇θLcritic(ψ, θ),
φ← φ+∇φLact

c (φ, θ),
ψ ← ψ −∇ψLcritic(ψ, θ),

by mini-batch gradient updates based on col-
lected trajectories Dτ with Adam.

7: end for
8: end for

The optimal policy can then be obtained by gradient as-
sent through policy gradient with one-step actor-critic [23],
where the gradient of the above objective function can be
calculated by

∇θ,φLact = Eτ∼p(τ |π)

[
T∑
t=0

δt∇θ,φ log π(at|ht;φ)

]
.

(17)

However, directly applying the above on-policy (i.e.,
using the same policy for training and sampling) objective
has some drawbacks when solving the service migration
problem. First, we cannot train the policy network offline
with mini-batches by using on-policy objective. This can

lead to severe sample efficiency problem, since the learning
agent needs to resample trajectories from the environment
after each gradient update. Especially, in the MEC sys-
tem, frequently interacting with the environment to get the
training samples is costly. Second, the on-policy objective
has limited exploring ability, thus the policy can easily get
stuck in a local optima. Third, to reduce the variance of the
objective function, Eq. (17) includes a biased estimator δt.
However, introducing bias may harm the convergence of
the algorithm.

To improve the sample efficiency, an appropriate way
is to apply off-policy (i.e., training a policy different from
that was used to sample the data) algorithm that can train
the policy with mini-batches and reduce the interaction
frequency with the environment. Formally, the off-policy
target can be expressed by:

Lact(φ, θ) = Eτ∼p(τ |π′)

[
T∑
t=0

πt
π′t
γtrt

]
, (18)

where π′(at|h′t;φ′) is the behavior policy for sampling tra-
jectories, which does not participate in gradient updates.
π(at|ht;φ) is the target policy for optimization. πt

π′t
is the

importance sampling ratio which is used to correct the
distribution errors caused by the difference between the
behavior and target policies. However, directly training the
above off-policy target can be unstable and even divergent
[24]. To stabilize the training, inspired by the previous works
on RL [19], [25], [26], we introduce an off-policy training
method with a surrogate objective function:

Lact
c (φ, θ) = Eτ∼p(τ |π′)

[
T∑
t=0

gclip(π′t, πt, Ât) + chH(πt)

]
,

(19)

gclip(π′t, πt, Ât) = min

(
πt
π′t
Ât, clip1+ε

1−ε

(
πt
π′t

)
Ât

)
, (20)

Ât(ht;ψ) =
T∑
l=0

(γλ)lδt+l. (21)
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Fig. 4: The framework of DRACM empowered MEC system.
The data flows in this framework are: 1© the observation ot
and reward rt from the MEC environment, 2© the history
Ht = {o0, a0, ..., at−1, ot} for migration decision-making,
3© the migration action, at, made by the behavior policy, 4©

the collected trajectories uploaded to the experience pool,
5© the parameters of the trained target policy and encoder

networks for service migration.

Here, the clip function, clip1+ε
1−ε, is used to limit the value

of the importance sampling ratio by removing the incentive
for moving the ratio outside of the interval [1 − ε, 1 + ε],
thus it can prevent very large policy updates and stabilize
the training. chH(πt) is a regularization term to further en-
courage exploration during training, where H(πt) denotes
the entropy of the policy and ch is a coefficient. To balance
the trade-off between variance and bias of the training
objective, we utilize the generalized advantage estimator
(GAE) [26], Ât, as given by Eq. (21), where λ ∈ [0, 1] is
used to control the trade-off between bias and variance.
GAE can dramatically reduce the variance of the objective
while keeping a tolerable bias level.

Algorithm 1 summarizes the training process of the
DRACM. Each training loop consists of the sampling pro-
cess and the target policy updating process. In the sam-
pling process, we firstly synchronize the parameters of the
behavior and target networks (include policy network and
encoder network), and then sample a set of trajectories from
the environment using the behavior encoder and policy net-
works. The advantage estimator, Ât, can then be obtained
based on the sampled trajectories. Next, in the target policy
updating process, we conduct training of m loops to update
the parameters of the encoder network, policy network, and
critic network via mini-batch stochastic gradient descent
with Adam [27]. After training, the target policy and encoder
networks can be deployed to the end device for making
online migration decisions by neural network inference.
Specifically, we obtain the sequence of migration decisions
through LSTM inference which has a linear time complexity
of O(n) [28], where n is the number of time slots (i.e., the
input sequence length of the LSTM). In the next subsection,
we discuss how to implement the DRACM in the emerging
MEC system.

3.4 The DRACM empowered MEC framework

The emerging MEC system defined by ETSI consists of three
levels: user level, edge level, and remote level [1]. The user
level includes various mobile devices such as smartphones
and vehicles. The edge level consists of multiple edge
servers where each server provides services for processing
tasks that are offloaded by mobile users. The edge servers
are connected through backhaul links, thus the service can
be migrated among them. The remote level includes data
centers with large storage and computing capacity. Fig. 4
shows the overall framework of integrating the DRACM
into the three-level MEC system. Four key components
(experience collector, migration decision maker, experience pool,
and target policy trainer) of the DRACM are deployed at the
user and remote level:
• At the user level, the experience collector is responsible of

collecting the information of observations and rewards
from the MEC environment (Step 1©). It sends the history
Ht = {o0, a0, ..., at−1, ot} to the migration decision maker
for online decision-making (Step 2©), and the collected
trajectories to the experience pool for the target policy
training (Step 4©). The migration decision maker includes
behavior policy and encoder networks. It downloads pa-
rameters from the target policy trainer as the initial values
of the behavior policy and encoder networks (Step 5©),
and decides the migration actions based on the observed
history (Step 3©).

• At the remote level, the experience pool stores the sampled
trajectories from mobile users. The target policy trainer is in
charge of training the target policy based on the sampled
trajectories.
According to Algorithm 1, the target policy trainer con-

ducts multiple training loops with mini-batch gradient up-
dates based on the collected trajectories in the experience
pool. Note that the training can be offline without directly
interacting with the MEC environment. After training, the
target policy trainer sends the updated parameters of policy
and encoder networks to mobile users for the next-round of
sampling process.

Overall, our proposed system framework enables an
effective offline training process of the policy network and
distributed online decision-making for service migration via
the inference of the trained policy network. To effectively
extract the hidden information from the observation his-
tory, we develop a new encoder network that incorporates
LSTM and an embedding matrix for local information. In
addition, a tailored off-policy actor-critic algorithm with a
clipped surrogate target is designed to improve the sample
efficiency and stability during training.

4 EXPERIMENTS

In this section, we present the comprehensive evaluation
results of the DRACM in detail. Our experiments demon-
strate that: 1) the DRACM has a stable and efficient training
process; 2) the DRACM can autonomously adapt to differ-
ent MEC scenarios including various user’s task arriving
rates, applications’ processing densities, and coefficients of
migration delay. We firstly introduce the experiment settings
based on a real-world MEC environment. Next, we present
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Fig. 5: The central areas of Rome, Italy (8 km × 8 km area bounded by the coordinate pairs [41.856, 12.442] and [41.928,
12.5387]) and San Francisco (8 km × 8 km area bounded by the coordinates pairs [37.709, -122.483] and [37.781, -122.391]).

the baseline algorithms for comparison. Finally, we evaluate
the performance of the DRACM and baseline algorithms in
different MEC scenarios.

4.1 Experiment settings
We evaluate the DRACM with two real-world mobility
traces of cabs in Rome, Italy [29] and San Francisco, USA
[30]. Specifically, we focus our analysis to the central parts
of Rome and San Franscisco, as shown in Fig. 5. We consider
that 64 MEC servers are deployed in each area, where each
MEC server covers a 1 km × 1 km grid with a computation
capacity f = 128 GHz (i.e., four 16-core servers with 2 GHz
for each core). According to [31], the upload rate of real-
world commercial 5G networks is generally less than 60
Mbps. Therefore, in our environment, the upload rate ρt
in each grid is set as 60, 48, 36, 24, and 12 Mbps from a
proximal end to a distal end. The hop distances between
two MEC servers are calculated by Manhattan distance.
The location of an MEC server is represented by a 2-D
vector (i, j) with respect to a reference location at (0, 0). To
calculate the propagation latency, we set the bandwidth of
backhaul network, ηt, as 500 Mbps [32] and the coefficient of
backhaul delay, σbh

t , as 0.02 s/hop [12]. The migration delay
varies with various service sizes and network conditions,
e.g., the migration delay of Busybox (a type of service)
ranges from 2.4 to 3.3 seconds [32] with different bachkhaul
network conditions. Following some related work on MEC
[4], [7], [11], [32], we assume the service size is uniformly
distributed in [0.5, 100] MB and the coefficient of migration
delay σm

t is uniformly distributed in [1.0, 3.0] s/hop during
our training.

At each time slot, the tasks arriving at a mobile user and
those arriving at an MEC server are sampled from Poisson
distributions with rates λup and λsp, respectively. In our ex-
periments, we show the performance of the DRACM under
different task arriving rates of mobile users. According to
the current works [33]–[35], the data size of an offloaded
task in real-world mobile applications often varies from 50
KB (sensor data) [33] to 5 MB (image data) [34]. Hence, we
set the data size of each offloaded task uniformly distributed
in [0.05, 5] MB. Besides, the size of the migration service
generally varies from 0.5 MB to 100 MB [7], [32]. Therefore,
we uniformly sample the service size from [0.5, 100] MB.

TABLE 2: Parameters of the Simulated Environment.

Parameter Value
Number of MEC servers, M 64

Computation capacity of an MEC
server, f

128 GHz

Upload rate of wireless network, ρt {60, 48, 36, 24, 12}
Mbps

Bandwidth of backhaul network, ηt 500 Mbps
Coefficient of backhaul delay, σbh

t 0.02 s/hop
Coefficient of migration delay, σm

t U [1.0, 3.0] s/hop
Data size of the service datast (u), U [0.5, 100] MB
Data size of each offloaded task

dataot (u)
U [0.05, 5] MB

Processing density of an offloaded
task, κ

U [200, 10000]
cycles/bit

User’s task arriving rate λu
p 2 tasks/slot

MEC server’s task arriving rate λs
p U [5, 20]

tasks/slot

TABLE 3: Hyperparameters of the DRACM.

Hyperparameter Value Hyperparameter Value
LSTM Hidd. Units 256 Embedding Dim. de 2
Actor Layer Type Dense Actor Hidd. Units 128
Critic Layer Type Dense Critic Hidd. Units 128

Learning Rate 0.0005 Optimizer Adam
Discount λ 0.95 Discount γ 0.99

Coefficient ch 0.01 Clipping Value ε 0.2

The required CPU cycles of each task can be calculated by
the product of the data size and processing density, κ, which
is uniformly distributed in [200, 10000] cycles/bit, covering
a wide range of tasks from low to high computation com-
plexity [36]. We summarize the parameter settings of our
simulation environment in Table 2.

4.2 Baseline algorithms

We compare the performance of the DRACM to that of six
baseline algorithms:
• Always migrate (AM): A mobile user always selects the

nearest MEC server to migrate at each time slot.
• Never migrate (NM): The service is placed on an MEC

server and never migrate during the time horizon.
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Fig. 6: Average total reward of the DRACM and baseline
algorithms with the mobility traces of Rome.
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Fig. 7: Average total reward of the DRACM and baseline
algorithms with the mobility traces of San Francisco.

• Multi-armed Bandit with Thompson Sampling
(MABTS): Some exiting works [10], [11] solve the
service migration problem based on MAB. According
to the work [11], MABTS uses a diagonal Gaussian
distribution to approximate the posterior of the cost for
each arm and applies Thompson sampling to handle the
trade-off between exploring and exploiting.

• DQL-based migration (DQLM): Some recent works [4],
[5], [12] adapt DQL to tackle the service migration prob-
lem. We directly use a fully connected layer to approx-
imate the action value function that takes the observa-
tion as input. Moreover, we use ε-greedy to control the
exploring-exploiting trade-off as the above works do.

• Deep Recurrent Q-learning based migration (DRQLM):
Deep recurrent Q-learning is a variant DQL method that
can be used to solve POMDP. For fair comparisons, we
use a similar neural network structure as DRACM to
approximate the action-value function for DRQLM, but
use the objective function of the DQL-based method as
the training target.

• Optimal migrate (OPTIM): Assuming the user mobility
trace and the complete system-level information over the
time horizon are known ahead, the service migration
problem can be transformed to the shortest-path problem
[3], [4], which can be solved by the Dijkstra algorithm.

The NM, AM, MABTS, DQLM, DRQLM, and DRACM
algorithms can run online, while the OPTIM is an offline
algorithm which defines the performance upper-bound of
service migration algorithms.

4.3 Evaluation of the DRACM and baseline algorithms
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0

200

400

600

800

1000

1200

1400

av
er

ag
e 

to
ta

l l
at

en
cy

 (s
)

Fig. 8: Average total latency (s) of service migration over
the time horizon (250 minutes) on the testing dataset from
mobility traces of Rome.
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Fig. 9: Average total latency (s) of service migration over
the time horizon (250 minutes) on the testing dataset from
mobility traces of San Francisco.

We first evaluate the training performance of the DQLM,
DRQLM, and DRACM on two different mobility trace
datasets [29], [30]. Each training dataset includes 100 ran-
domly picked mobility traces, where each trace has 100
time slots of three-minute length each. Table 3 lists the
hyperparameters in training. The neural network structure
of the DRQLM is similar to the DRACM with the same
encoder network. The difference is that, rather than using
the actor-critic structure, the DRQLM is based on the Q-
network that includes a fully connected layer with 128
hidden units to approximate the action-value function and
chooses the action with the largest action-value at each time
step. DQLM directly use Q-network to produce the state-
action values without using the encoder network. We train
the DQLM, DRQLM, and DRACM with the same learning
rate, mini-batch size, and number of gradient update steps.

Figs. 6 and 7 show the training results of DRACM,
DRQLM, and DQLM on mobility traces of Rome and San
Francisco, respectively. The other baseline algorithms do not
involve the training process for neural networks, thus we
show their final performance. The network parameters of
DRACM, DRQLM, and DQLM are initialized by random
values, thus they randomly select actions to explore the
environment and achieve the worst results compared to
other baseline algorithms before training. However, the
DRACM quickly surpasses NM and AM after 12 epochs and
keeps growing on both mobility traces. After 25 training
epochs, the average total reward of the DRACM remains
stable, which shows the excellent convergence property of
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Fig. 10: Average total latency (s) of service migration over
the time horizon (250 minutes) with different task arriving
rates of users (mobility traces of Rome).
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Fig. 11: Average total latency (s) of service migration over
the time horizon (250 minutes) with different task arriving
rates of users (mobility traces of San Francisco).

the DRACM. Besides, the final stable results of the DRACM
on both mobility traces beat all baseline algorithms.

To evaluate the generalization ability of the DRACM, we
test the trained target policy on testing datasets of both mo-
bility traces, where each test dataset includes 30 randomly
picked mobility traces that were not included in the training
dataset. We evaluate the testing time of all online algorithms
including MABTS, DQLM, DRQLM, and DRACM on our
laptop with a CPU (2.9 GHz 6-Core Intel Core i7), where
the average testing time is 0.332s, 0.345s, 0.325s, and 0.328s,
respectively. We do not evaluate the testing time of AM,
NM, and RM, since the time complexity of these simple
algorithms is O(1). Figs. 8 and 9 present the results of the
average total latency of DRACM and baseline algorithms
on Rome and San Francisco mobility traces, respectively. We
found the DRACM achieves the best performance compared
to online baseline algorithms on both mobility traces.

Specifically, Fig. 8 shows that the DRACM outperforms
the DQLM, DRQLM and MABTS by 16%, 37%, and 11%,
respectively. Fig. 9 indicates that the DRACM surpasses the
DQLM, DRQLM and MABTS by 39%, 38%, and 22%, re-
spectively. Furthermore, the DRACM achieves near-optimal
results within 12% of the optimum on both mobility traces.

We then test the DRACM and baseline algorithms with
different task arriving rates of users on both mobility traces.
As shown in Figs. 10 and 11, the average total latencies of
all evaluated algorithms increase with the rise of user’s task
arriving rate, since the average number of offloaded tasks
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Fig. 12: Average total latency (s) of service migration over
the time horizon (250 minutes) with different processing
densities (mobility traces of Rome).
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Fig. 13: Average total latency (s) of service migration over
the time horizon (250 minutes) with different processing
densities (mobility traces of San Francisco).

increases at each time slot. The evaluation results show that
the DRACM adapts well among different task arriving rates
of users, where it outperforms the DQLM, DRQLM, and
MABTS in the average total latency by up to 42%, 42%,
and 24%, respectively. Moreover, in all cases, the results of
DRACM are close to the optimal values.

Next, we investigate the performance of the DRACM
with different processing densities. For a real-world mobile
application, the higher is the processing density, the more
computation power is required for processing the appli-
cation. Figs. 12 and 13 depict the average total latency of
DRACM on Rome mobility traces and San Francisco mobil-
ity traces, respectively. We find that the DRACM adapts well
to the change of processing density on both mobility traces,
where it outperforms all online baselines.

Migration delay is another important factor that influ-
ences the overall latency. To investigate the impact of the
migration delay, we evaluate the DRACM and baseline
algorithms on the testing datasets with different coefficients
of migration delay. Intuitively, when the migration delay is
high, a mobile user may not choose to frequently migrate
services. As shown in Figs. 14 and 15, the NM algorithm
keeps the similar performance in all cases while the perfor-
mance of other algorithms drops with the increase of mt

c.
This is because that the NM does not involve the migration
process and thus has no migration delay. In Fig. 14, we
find the MABTS suffers serious performance degradation
as mc

t increases. When the mt
c is low (e.g., mt

c = 1.0), the
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Fig. 14: Average total latency (s) of service migration over
the time horizon (250 minutes) with different coefficients of
migration delay (mobility traces of Rome).
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Fig. 15: Average total latency (s) of service migration over
the time horizon (250 minutes) with different coefficients of
migration delay (mobility traces of San Francisco).

MABTS achieves similar results as the DRACM. However,
when mt

c > 4, the performance of MABTS becomes even
worse than the DQLM and DRQLM. Compared to RL-
based methods like the DQLM and DRACM, MABTS is
“short-sighted” since it only considers the one-step reward
rather than explicitly optimizes the total reward over the
entire time horizon. Overall, the DRACM autonomously
learns to adapt among the scenarios with different migration
delays, which achieves the best performance compared to
the online baselines (with up to 31% improvement over the
MABTS and up to 40% improvement over both DQLM and
DRQLM), and obtains near-optimal results in our experi-
ments.

4.4 Ablation study of the DRACM
As the encoder network and the surrogate objective function
play important roles in DRACM, we conduct ablation study
two show how these parts affect the performance of the
DRACM. To investigate the impact of the encoder network,
we replace the encoder network of DRACM with a fully
connect layer with 256 hidden units, which directly takes the
observation as input. To show the impact of the surrogate
object, we directly use Eq. (16) as the training objective.
The training results are shown in Fig. 16 and Fig. 17 on
Rome and San Francisco mobility traces, respectively. We
found that if we remove the encoder network, the DRACM
converges to a local optima and achieves similar but worse
performance. Moreover, if we remove the surrogate object,

0 20 40 60 80 100
training epoch

2500

2250

2000

1750

1500

1250

1000

av
er

ag
e 

to
ta

l r
ew

ar
d

DRACM
DRACM (without encoder network)
DRACM (without surrogate object)

Fig. 16: Average total reward of the DRACM with the
mobility traces of Rome.
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Fig. 17: Average total reward of the DRACM with the
mobility traces of San.

the training of DRACM is divergent on both mobility traces,
showing the importance of the surrogate objective function.

The DRACM method has many advantages: 1) the
learning-based nature of the DRACM makes it flexible
among different scenarios with few human expertise; 2) the
user-centric design is scalable for the increasing number
of mobile users, where each mobile user makes effective
online migration decisions based on the incomplete sys-
tem information; 3) the tailored off-policy training objective
improves both performance and stability of the training
process; 4) the design of online decision-making and of-
fline policy training makes the DRACM more practical in
real-world MEC systems. Despite the above advantages
of the DRACM algorithm, it still has several limitations.
For example, when handling rapidly changing dynamics of
the MEC environment, the trained policy may not adapt
well and requires retraining. To improve the adaptability
of DRL methods for the rapidly changing environments,
meta reinforcement learning (MRL) is a potential approach
that can learn to fast adapt to unseen environments by
leveraging previous experiences [37]. In our future work,
we will investigate the feasibility to apply MRL to solve
the service migration problem with rapidly changing MEC
environments. Beyond the scope of service migration, the
framework of the DRACM has the potential to be applied to
solve more decision-making problems in MEC systems such
as task offloading and resource allocation [38].
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5 RELATED WORK

Service migration in MEC has attracted intensive research
interests in recent years. Rejiba et al. [2] published a com-
prehensive survey on mobility-induced service migration in
fog, edge, and related computing paradigms. We roughly
classify the related work into centralized control approach
(the central cloud or MEC servers make service migration
decisions for all mobile users) and decentralized control
approach (each mobile user makes its own migration de-
cisions).

Centralized control approach: plenty of works focused
on making centralized migration decisions (i.e., the migra-
tion decisions are made by ether central cloud or edge
servers) based on the complete system-level information
to minimize the total cost. Ouyang et al. [3] converted
the service migration problem as an online queue stability
control problem and applied Lyapunov optimization to
solve it. Zhou et al. [7] aimed at solving service migration
problem for multi-user dense cellular networks. They de-
veloped an energy-efficient online migration method based
on the Lyapunov and particle swarm optimizations. Liu
et al. [39] propose a multi-agent RL based method for the
service migration where agents represent the controllers of
MEC servers. Xu et al. [40] formulated the service migra-
tion problem as a multi-objective optimization framework
and proposed a method to achieve a weak Pareto optimal
solution. Wang et al. [6] formulated the service migration
problem as a finite-state MDP and proposed an approxima-
tion of the underlying state space. They solve the finite-state
MDP by using a modified policy-iteration algorithm. There
are other recent works that tackled the service migration
problem based on RL. Wang et al. [4] proposed a Q-learning
based micro-service migration algorithm in mobile edge
computing. Wu et al. [5] considered jointly optimizing the
task offloading and service migration, and proposed a Q-
learning based method combing the predicted user mobility.
Addad [41] et al. proposed an enhanced network function
virtualization edge computing architecture that incorpo-
rates Q-learning based methods to implement service and
slice migration. These works considered the case where
the decision-making agent knows the complete system-level
information. However, in a practical MEC system, collecting
complete system-level information can be difficult and time-
consuming. Moreover, they adopted the centralized control
approach that may suffer from the scalability issue when
facing a rapidly increasing number of mobile users.

Decentralized control approach: some studies proposed
to make migration decisions by the user side based on
incomplete system-level information. Ouyang et al. [11] for-
mulated the service migration problem as an MAB and pro-
posed a Thompson-sampling based algorithm that explores
the dynamic MEC environment to make adaptive service
migration decisions. Sun et al. [9] proposed an MAB based
service placement framework for vehicle cloud computing,
which can enable the vehicle to learn to select effective
neighboring vehicles for its service. Sun et al. [10] developed
a user-centric service migration framework using MAB and
Lyapunov optimization to minimize the latency with con-
straints of energy consumption. These methods simplify the
system dynamics by modeling with MAB, which ignores the

inherently large state space and complex transitions among
states in a real-world MEC system. Distinguished from the
above works, our method models the service migration
problem as a POMDP that has a continuous state space and
models complex transitions between states. Moreover, our
method is model-free and adaptive to different scenarios,
which can learn to make online service migration decisions
with minimal expert knowledge. More recently, Yuan et al.
[12] investigated the joint service migration and mobility
optimization problem for vehicular edge computing. They
modeled the MEC environment as a POMDP and pro-
posed a multi-agent DRL method based on independent
Q-learning to learn the policy. However, using Q-learning
based method to solve the environment with complex dy-
namics and continuous state space can be unstable and
inefficient. Our evaluation results show that our method can
achieve stabler training and better results than the DQL-
based method.

6 CONCLUSION

In this paper, we proposed the DRACM, a new method
for solving the service migration problem in MEC given
incomplete system-level information. Our method is com-
pletely model-free and can learn to make online migration
decisions through end-to-end RL training with minimal
human expertise. Specifically, the service migration problem
in MEC is modeled as a POMDP. To solve the POMDP,
we designed an encoder network that combines an LSTM
and an embedding matrix to effectively extract hidden in-
formation from sampled histories. Besides, we proposed a
new tailored off-policy actor-critic algorithm with a clipped
surrogate objective to improve the training performance.
We demonstrated the implementation of the DRACM in
the emerging MEC framework, where migration decisions
can be made online from the user side and the training
for the policy can be offline without directly interacting
with the environment. We evaluated the DRACM and five
online baseline algorithms with real-world datasets and
demonstrated that our DRACM consistently outperforms
the online baselines and achieves near-optimal results on
a diverse set of scenarios.
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