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Abstract 

This paper adopts the quantile stochastic frontier framework in order to construct eco-efficiency 
measures. Using the estimates from the quantile stochastic frontier, the eco-performance of the 
U.S. states for nitrogen oxides (NOX), carbon dioxide (CO2), and sulfur dioxide (SO2) emissions 
is evaluated. Numerical Bayesian inference is applied by utilizing Markov Chain Monte Carlo 
techniques. A decoupling analysis involving the evaluation of the nonsynchronous change 
among states’ economic output and environmental degradation levels is also performed. The 
findings suggest that the U.S. states’ have followed a decoupling process among their GDP and 
emission levels over the period 1990-2017. The eco-efficiency estimates derived from the 
quantile stochastic frontier suggest that the eco-productivity levels of the U.S. states have 
improved over time. This finding is verified across all quantiles and is reflected on the findings 
obtained from the decoupling analysis   
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1. Introduction 

The cornerstone of sustainability analysis is the investigation of environmental and 

economic (E-E) performance. According to Koskela and Vehmas (2012) this E-E relationship 

can be operationalized through the construction of eco-performance or eco-efficiency 

indicators. Huppes and Ishikawa (2005) suggests that eco-efficiency is an instrument for 

evaluating sustainability measuring the exchange between environmental quality and economic 

welfare. Koskela and Vehmas (2012, p.548) describe different types of eco-efficiency. The first 

one is simply indicates how more output can be obtained from less natural resources. The 

second definition is based on maximizing value added with less environmental damage, 

whereas, the third is focused on minimizing the environmental damage from the obtained 

economic output. Finally a fourth type of eco-efficiency relates to management strategy.  

Aparicio et al. (2020) assert that eco-efficiency models (Korhonen and Luptacik, 2004; 

Kuosmanen and Kortelainen, 2005), are not based on the axiomatic production efficiency 

theoretical framework but rather aggregate environmental damage with economic outputs. They 

can be constructed either by assuming the minimization of environmental damage given the 

economic outputs, or by maximizing the economic output given the environmental damages. 

There are two types of approaches under which the eco-efficiency estimators can be 

constructed. The first one is based on parametric methodological framework known as 

Stochastic frontier approach (SFA; Aigner et al., 1977) and the other which is based on 

nonparametric methodological framework known as data envelopment analysis (DEA; Charnes 

et al., 1978; Banker et al., 1984). The most popular eco-efficiency indicator is the DEA based 

indicator introduced by Kuosmanen and Kortelainen (2005, hereafter KK). As has been stressed 

by several studies (Gómez-Limón et al., 2012; Zhu et al., 2018; Vásquez-Ibarra et al., 2020), 

the DEA based eco-efficiency estimator are so popular because it provides benchmark targets, 

can handle multiple inputs and outputs and from modelling point of view does not assume any 

functional forms among the environmental pressures and economic outcomes. However, as 

Tsionas (2002, 2003, 2012) and Kumbhakar and Tsionas (2006, 2008, 2020) assert that SFA 

approaches account for measurement errors and can separate inefficiency from noise. In 

addition when assuming a specific distribution on the errors, the SFA approach allows the 

researcher to obtain observation specific inefficiency measures. Given those advances and to 

our knowledge there are only two studies utilizing the SFA framework on the measurement of 

eco-efficiency. The first study was conducted by Orea and Wall (2017) applying the SFA 

framework in order to evaluate the eco-efficiency levels of 50 Spanish dairy farms. The second 

study is conducted by Song and Chen (2019) and evaluates the eco-efficiency levels of grain 

production in Chinese regions.  
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Our research builds and extents these two studies by utilizing quantile SFA models1 

introduced recently by Tsionas (2020) and in  order to measure U.S. states’ eco-efficiency 

levels over the period 1990-2017. According to Assaf et al. (2020) and Tsionas et al. (2020) the 

proposed methodological approach for eco-efficiency measurement poses several 

methodological advances compared to the standard SFA approaches. Specifically, every 

quantile of the conditional distribution of the economic output (or environmental damage) is 

allowed to have a quantile specific inefficiency. Therefore the adopted methodological 

approach relates a specific quantile one side error term with the economic output to 

environmental degradation specification. Therefore based both on the asymmetric Laplace and 

on the half-normal errors, the model enable us to estimate US states’ specific quantile technical 

eco-inefficiency levels. In addition every quantile has a different eco-frontier technology 

provide us with greater flexibility in our analysis accounting for potential heterogeneity. 

Moreover, we adopt a symmetric generalized McFadden functional form in our estimation, 

which according to Kumbhakar (1994) is more flexible compared to Cobb-Douglas and 

Translog specifications usually applied in the SFA approaches. Finally, among other 

components, quantiles as treated as parameters in our approach using Markov chain Monte 

Carlo (MCMC) methods in order to obtain posterior distributions. Therefore, even though we 

analyze all quantiles the most likely (optimal) quantile is also estimated. Finally, in accordance 

with the quantile SFA eco-efficiency estimates, we complement US states’ eco-efficiency 

estimation by applying a decoupling analysis. The notion of decoupling is strongly relates to 

eco-efficiency analysis, investigating states’ nonsynchronous change among economic output 

and environmental degradation  (OCED, 2002). Specifically, as in similar studies (among 

others, De Freitas and Kaneko, 2011; Andreoni and Galmarini, 2012; Conrad and Cassar, 2014; 

Moutinho et al., 2018; Yang et al., 2018), we follow the methodological approach introduced 

by Tapio (2005) in order to estimate the decomposition of decoupling among US states’ 

economic growth from nitrogen oxides (NOx), carbon dioxide (CO2), and sulfur dioxide (SO2) 

emissions. The structure of the paper is as follows: Section 2 reviews the studies utilizing the 

KK eco-efficiency indicator, whereas Section 3 describes our data and presents the quantile 

SFA based eco-efficiency measure. Section 4 analyses our empirical findings, whereas the last 

Section concludes our paper.    

2. Literature review 

The relative literature of the measurement of eco-efficiency is heavily based on the 

DEA methodology (Zhou et al., 2018). Following the eco-efficiency methodological approach 

of Kortelainen and Kuosmanen (2007, KK) they introduce an eco-efficiency indicator 

                                                 
1The quantile estimation of efficiency measurement has drawn attention both under the nonparametric 
(Aragon et al., 2005; Daouia and Simar, 2007; Jradi and Ruggiero, 2019) and under the parametric 
(Bernini et al., 2004; Knox et al., 2007; Liu et al., 2008; Jradi et al., 2019) methodological framework. 
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analyzing consumer durables. The contribution of the proposed model is based on the 

evaluation of eco-efficiency performance in terms of absolute scale shadow prices. Similarly, 

Kuosmanen and Kortelainen (2007) present a DEA based environmental cost–benefit analysis 

derived by the KK eco-efficiency measure. The advantage of the proposed measure lies on the 

fact that prices are endogenous determined by the model, whereas, the overall measurement is 

based on absolute shadow prices. Moreover, Kortelainen (2008) based on the DEA eco-

efficiency indicator presents a Malmquist productivity index presenting an eco-productivity 

measure alongside with its decomposition. The eco-productivity index is then applied on a 

sample of 20 EU countries during 1990-2003. Zhang et al. (2008) provides a slack-based 

version of the KK eco-efficiency DEA estimator. By utilizing several pollutants, they measure 

the eco-efficiency levels of 30 provinces in China. They provide evidence of a positive 

correlation among provinces’ GDP per capita levels and their estimated eco-efficiency levels. 

Moreover, Cha et al., (2008) provide a global worming eco-efficiency indicator based on Kyoto 

Mechanism projects, utilizing in a DEA framework the value added of a system as an output 

and its global warming influence as an input. Picazo-Tadeo et al. (2011) using the KK indicator 

in order to measure farming eco-efficiency for a sample of 171 Spanish farms. Their results 

suggest that the agri-environmental programs applied to the Spanish agricultural sector 

enhanced farming eco-efficiency levels. Camarero et al., (2013) in a first stage analysis, they 

utilize the KK indicator in order to estimate 22 OECD countries’ eco-efficiency levels over the 

period 1980-2008. Then in a second stage analysis they perform the Phillips and Sul (2007) test 

in order to identify eco-efficiency convergence clubs. Their findings signify an overall 

identification of five convergence clubs. Similarly, Camarero et al., (2014) utilizing a 

directional distance function approach evaluate 27 EU countries’ eco-efficiencies levels during 

1990-2009. Then by applying the convergence approach by Phillips and Sul (2007), the 

existence of eco-efficiency convergence clubs among the EU countries is evaluated. Their 

findings suggest the existence of 6 convergence eco-efficiency clubs. In the same manner, 

Gómez-Calvet et al. (2016) utilize a slack-free directional distance function in order to construct 

an eco-efficiency indicator for the 27 EU countries over the period 1993-2010. Then in a second 

stage analysis their findings suggest that the eco-efficiency convergence is not a continuous 

process. In their study Godoy-Durán et al. (2017) suggest that the eco-efficiency indicator has 

been accepted by the environmental economic literature as a sustainability indicator. They 

apply an eco-efficiency indicator on a sample of small-scale family farms in southeast Spain. 

They provide evidence that environmental innovation improves farms’ eco-efficiency levels. 

Analyzing Polish regional eco-efficiency levels Rybaczewska-Błażejowska and Masternak-

Janus (2018), reveal that heavy industry remains as the main source of the generation of Polish 

environmental pressures. Moreover, for the case of Latin America Moutinho et al., (2018) 

measure countries’ eco-efficiency levels over the period 1994-2013. They utilize an eco-
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Malmquist productivity index decomposing countries’ eco-productivity levels into eco-

technical efficiency and eco-technological change levels. Grovermann et al. (2019) in a first 

stage analysis, measure the eco-efficiency levels of 79 countries. Then in seconds stage analysis 

they apply a truncated regression suggesting that education and legal rights affect the estimated 

eco-efficiency levels. Broadstock et al., (2019) using conditional eco-efficiency estimators 

provide evidence that corporate choices on environmental, social, and governance (ESG) 

strategic investment compliance affect firms’ eco-efficiency levels. Ina different context, Tang 

et al. (2020) evaluated the eco-efficiency levels of 30 Chinese provinces over the period 1986 

to 2016 utilizing and eco-Malmquist-Luenberger productivity indicator. Kounetas et al., (2020) 

provide an order-m eco-efficiency frontier which is robust to atypical values and sample 

characteristics. In a second stage analysis they perform different convergence approaches 

investigating whether the order-m eco-efficiency indicators converge overtime. Using a sample 

of 1572 firms over the years 2009–2017, Trinks et al., (2020) estimate a carbon efficiency 

model which is based on KK eco-efficiency indicator. They define carbon efficiency indicator 

as the ratio of target-to-actual carbon emissions and provide an association between firms’ 

financial performance and their carbon efficiency levels. Finally, Gamboa et al. (2020) utilize 

an eco-efficiency indicator in a sample of 367 smallholder farmers, providing evidence of low 

eco-efficiency levels among producers due to extensive use of mineral fertilizers.   

3. Description of variables and methodological framework 

3.1. Description of variables 

Based on the notion of eco-efficiency as described by Kuosmanen and Kortelainen 

(2005) we use regional GDP (measured in millions of 2009 USD) as the states’ value-added 

levels. Regional GDP has been extracted from Bureau of Economic Analysis (BEA) and is 

adjusted from inflation. In addition, we use: nitrogen oxides (NOx), carbon dioxide (CO2), and 

sulfur dioxide (SO2) as the main pollutants of our eco-efficiency model. All pollutants are 

measured in metric tons and have been extracted from U.S. Energy Information Administration 

(EIA). Table 1 presents the descriptive statistics of the variables used for all the states over the 

entire period (1990-2017). 

3.2. The eco-inefficiency model 

The eco-efficiency estimator has been introduced by Kuosmanen and Kortelainen 

(2005) and it is based on the ability of an economy to grow by controlling the environmental 

pressures. Formally, the eco-efficiency indicator can be defined as: 
𝜙𝜙

∑ 𝑢𝑢𝑖𝑖𝑧𝑧𝑖𝑖𝐵𝐵
𝑖𝑖

≤ 1 .            (1) 

In equation (1) 𝑢𝑢𝑖𝑖 represent the weights which are nonnegative and assigned to environmental 

pressures 𝑧𝑧𝑖𝑖 (i.e. the pollutants), whereas, 𝜙𝜙 represents the value added (i.e. GDP). Moreover, 

we can express (1) as: 
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𝜙𝜙 ≤ ∑ 𝑢𝑢𝑖𝑖𝑧𝑧𝑖𝑖𝐵𝐵
𝑖𝑖=1 .                 (2) 

Then in the SFA context (2) can be expressed as: 

𝜙𝜙 = 𝛼𝛼0 + ∑ 𝑢𝑢𝑖𝑖𝑧𝑧𝑖𝑖 + 𝜇𝜇𝑖𝑖 − 𝜓𝜓𝑖𝑖,𝐵𝐵
𝑖𝑖=1 𝑖𝑖 = 1, . . . ,𝑛𝑛.       (3) 

In its general form eco-efficiency estimation can be obtained from: 

𝜙𝜙𝑖𝑖 = 𝑧𝑧′𝑖𝑖𝛾𝛾 + 𝜇𝜇𝑖𝑖 − 𝜓𝜓𝑖𝑖, 𝑖𝑖 = 1, . . . ,𝑛𝑛.         (4) 

Note that the error component is decomposed as: 𝜀𝜀𝑖𝑖 = 𝜇𝜇𝑖𝑖 − 𝜓𝜓𝑖𝑖, where, 𝜓𝜓𝑖𝑖 represents the eco-

inefficiency and 𝜇𝜇𝑖𝑖 the noise. Based on the quantile SFA model introduced by Tsionas (2020) 

(4) will take the following form:  

𝜙𝜙𝑖𝑖 = 𝑧𝑧′𝑖𝑖𝛾𝛾(𝑘𝑘) + 𝜇𝜇𝑖𝑖(𝑘𝑘) − 𝜓𝜓𝑖𝑖(𝑘𝑘), 𝑖𝑖 = 1, . . . ,𝑛𝑛,              (5) 

where 𝑘𝑘  represents the different quantiles (0 < 𝑘𝑘 < 1) , and the additional parameters 

𝛾𝛾, 𝜇𝜇𝑖𝑖 and 𝜓𝜓𝑖𝑖  can vary by the quantiles. Equation (5) is based on the quantile regression 

considering the following Laplace density: 

𝑝𝑝(𝜇𝜇) ∝ 𝜏𝜏−1 exp �−𝜏𝜏−1|𝜇𝜇|�𝑘𝑘𝐼𝐼[0,∞)(𝜇𝜇) + (1 − 𝑘𝑘)𝐼𝐼(−∞,0](𝜇𝜇)��,           (6) 

with the following likelihood function: 
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Table 1: Descriptive statistics 

YEAR STAT GDP (Millions 
USD) 

CO2 emissions 
(Metric tonnes) 

SO2 emissions 
(Metric tonnes) 

NOX emissions 
(Metric tonnes) YEAR STAT GDP (Millions 

USD) 
CO2 emissions 

(Metric tonnes) 
SO2 emissions 

(Metric tonnes) 
NOX emissions 

(Metric tonnes) 

1990 mean 183554.316 76615644.784 606334.353 312206.922 2004 mean 283878.225 97528688.549 404266.863 162472.000 
 std 223339.782 76311885.414 821732.036 293315.321  std 339933.603 92977598.900 493543.240 133964.084 

1991 mean 183233.086 76488851.255 601663.941 310318.373 2005 mean 293747.598 99758359.333 405472.275 155337.137 
 std 220204.903 76257873.724 831492.625 296223.149  std 353372.197 95033421.496 508952.257 125506.379 

1992 mean 188701.291 77344121.922 589423.686 303072.627 2006 mean 302264.622 97604617.686 373472.980 148997.922 
 std 222900.911 76014479.733 804918.775 284042.336  std 367176.181 94975405.211 469715.091 123700.303 

1993 mean 192466.274 80668729.412 586897.745 313594.157 2007 mean 307011.041 99883626.902 354576.353 143137.647 
 std 224465.120 80598235.892 796434.077 295185.927  std 373847.320 95127405.115 452300.248 122084.537 

1994 mean 201397.784 81887780.431 567527.216 305924.490 2008 mean 306087.724 97412239.647 307050.902 130596.980 
 std 230762.423 79470087.241 769892.676 281554.623  std 372115.842 92788572.046 376383.304 112403.249 

1995 mean 208368.860 82904804.078 484865.961 249885.176 2009 mean 298009.396 89000299.137 234130.353 93939.216 
 std 238793.904 80998186.739 569275.972 246198.998  std 363801.696 86579809.990 288616.303 77322.966 

1996 mean 217362.687 85763907.490 509462.627 253889.137 2010 mean 304830.131 93670428.039 211782.353 97687.216 
 std 249105.891 84608198.278 618605.997 254287.603  std 371623.845 91012892.868 259171.008 79918.447 

1997 mean 228706.986 88600843.922 528614.941 254917.294 2011 mean 309049.943 89689048.235 189999.608 94369.059 
 std 263613.878 86757827.199 634763.644 250868.997  std 377348.732 92098631.578 242638.515 82435.819 

1998 mean 238565.096 92219588.902 528018.863 253282.275 2012 mean 315368.159 84583324.588 145253.725 84224.549 
 std 277171.059 89741315.218 624967.518 246407.024  std 389284.916 86248553.596 173129.822 73671.662 

1999 mean 249675.420 92796168.471 503661.529 233548.980 2013 mean 320278.200 85247311.294 141520.784 84841.255 
 std 293744.905 90372860.428 590516.625 225580.748  std 400516.304 87121085.701 167546.050 75733.798 

2000 mean 259921.463 96895468.431 466815.961 221102.941 2014 mean 327638.037 85030755.882 135453.216 82367.176 
 std 310973.564 93937364.559 544052.199 210191.770  std 413583.018 86486308.780 165175.053 72236.024 

2001 mean 261955.755 94847322.471 438210.471 207446.235 2015 mean 336836.659 79664794.627 99912.667 71531.294 
 std 313007.949 89933060.792 512479.308 187912.916  std 431311.418 80729764.473 119114.100 63596.576 

2002 mean 266708.902 95057376.078 426722.824 203671.843 2016 mean 341995.459 75623565.176 70852.275 63929.294 
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 std 318050.430 92032756.463 504604.333 185345.268  std 440728.001 77629264.747 85531.933 59025.941 

2003 mean 273756.341 95886050.980 417482.706 177714.706 2017 mean 348761.867 72539214.588 64974.471 59049.490 

  std 327268.890 92191219.235 507216.130 155995.251   std 451597.177 77510903.135 87569.504 55551.869 

 

 
 
Table 2: Decoupling criteria 
 

Environmental pressures GDP Elasticities Characterization 
ΔCO2>0 ΔNOX>0 ΔSO2>0 ΔGDP>0 𝜃𝜃 > 1.2 Negative Decoupling (Expansionary Negative Decoupling) 
ΔCO2>0 ΔNOX >0 ΔSO2>0 ΔGDP<0 𝜃𝜃 < 0 Negative Decoupling (Strong Negative Decoupling) 
ΔCO2<0 ΔNOX <0 ΔSO2<0 ΔGDP<0 0 ≤ 𝜃𝜃 ≤ 0.8 Negative Decoupling (Weak Negative Decoupling) 
ΔCO2>0 ΔNOX >0 ΔSO2>0 ΔGDP>0 0 ≤ 𝜃𝜃 ≤ 0.8 Decoupling (Weak Decoupling) 
ΔCO2<0 ΔNOX <0 ΔSO2<0 ΔGDP>0 𝜃𝜃 < 0 Decoupling (Strong Decoupling) 
ΔCO2<0 ΔNOX <0 ΔSO2<0 ΔGDP<0 𝜃𝜃 > 1.2 Decoupling (Recession Decoupling) 
ΔCO2>0 ΔNOX >0 ΔSO2>0 ΔGDP>0 0.8 ≤ 𝜃𝜃 ≤ 1.2 Link (Growing Link) 
ΔCO2<0 ΔNOX <0 ΔSO2<0 ΔGDP<0 0.8 ≤ 𝜃𝜃 ≤ 1.2 Link (Recession Link) 
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𝐿𝐿𝑘𝑘(𝛾𝛾, 𝜏𝜏;𝜙𝜙,𝑍𝑍) ∝ 𝜏𝜏−𝑛𝑛 exp �−𝜏𝜏−1 ∑ |𝑛𝑛
𝑖𝑖=1 𝜙𝜙𝑖𝑖 − 𝑧𝑧′𝑖𝑖𝛾𝛾|�𝑘𝑘𝐼𝐼[0,∞)(𝜙𝜙𝑖𝑖 − 𝑧𝑧′𝑖𝑖𝛾𝛾) + (1 − 𝑘𝑘)𝐼𝐼(−∞,0](𝜙𝜙𝑖𝑖 −

𝑧𝑧′𝑖𝑖𝛾𝛾)��.                      (7) 

Given that 𝑝𝑝(𝑤𝑤𝑖𝑖) = exp(−𝑤𝑤𝑖𝑖) , the Laplace distribution having set 𝜎𝜎𝜇𝜇 = (2𝜏𝜏)1/2  can be 

defined as: 

𝑝𝑝(𝜇𝜇𝑖𝑖|𝑤𝑤𝑖𝑖) ∝ �𝜎𝜎𝜇𝜇2𝑤𝑤𝑖𝑖�
−12 exp �− 𝜇𝜇𝑖𝑖

2

2𝜎𝜎𝜇𝜇2𝑤𝑤𝑖𝑖
�𝑘𝑘𝐼𝐼[0,∞)(𝜇𝜇𝑖𝑖) + (1 − 𝑘𝑘)𝐼𝐼(−∞,0](𝜇𝜇𝑖𝑖)��.   (8) 

Also, from equation (5) is assumed that 𝜓𝜓𝑖𝑖 ∼ 𝒩𝒩+(0,𝜎𝜎𝜓𝜓2) with a density of 𝜀𝜀𝑖𝑖 defined as: 

 

𝑝𝑝(𝜀𝜀𝑖𝑖) ∝ 𝜏𝜏−1𝜎𝜎𝜓𝜓−1� exp �−𝜏𝜏−1|𝜀𝜀𝑖𝑖|�𝑘𝑘𝐼𝐼[0,∞)(𝜀𝜀𝑖𝑖) + (1
∞

0

− 𝑘𝑘)𝐼𝐼(−∞,0](𝜀𝜀𝑖𝑖)� −
1

2𝜎𝜎𝜓𝜓2
𝜓𝜓𝑖𝑖2� 𝑑𝑑𝜓𝜓𝑖𝑖. 

(9) 

In addition, the posterior can be defined as2: 

𝑝𝑝𝑘𝑘(𝛾𝛾, 𝜏𝜏,𝜎𝜎𝜓𝜓, {𝜓𝜓𝑖𝑖}𝑖𝑖=1𝑛𝑛 |𝜙𝜙, 𝑧𝑧) ∝ 𝜏𝜏−𝑛𝑛𝜎𝜎𝜓𝜓−𝑛𝑛 ⋅ 𝑝𝑝(𝛾𝛾, 𝜏𝜏,𝜎𝜎𝜓𝜓) ⋅  exp �−𝜏𝜏−1 ∑ |𝑛𝑛
𝑖𝑖=1 𝜙𝜙𝑖𝑖 − 𝑧𝑧′𝑖𝑖𝛾𝛾 +

𝜓𝜓𝑖𝑖|�𝑘𝑘𝐼𝐼[0,∞)(𝜙𝜙𝑖𝑖 − 𝑧𝑧′𝑖𝑖𝛾𝛾 + 𝜓𝜓𝑖𝑖) + (1 − 𝑘𝑘)𝐼𝐼(−∞,0](𝜙𝜙𝑖𝑖 − 𝑧𝑧′𝑖𝑖𝛾𝛾 + 𝜓𝜓𝑖𝑖)� −
1

2𝜎𝜎𝜓𝜓
2 ∑ 𝜓𝜓𝑖𝑖2𝑛𝑛

𝑖𝑖=1 �       (10) 

Moreover, we can treat {𝑤𝑤𝑖𝑖}𝑖𝑖=1𝑛𝑛  as parameters and, in turn, (10) can be expressed as: 

 𝑝𝑝𝑘𝑘(𝛾𝛾,𝜎𝜎𝜇𝜇 ,𝜎𝜎𝜓𝜓, {𝜓𝜓𝑖𝑖}𝑖𝑖=1𝑛𝑛 , {𝑤𝑤𝑖𝑖}𝑖𝑖=1𝑛𝑛 |𝜙𝜙, 𝑧𝑧) ∝ 𝜎𝜎𝜇𝜇−𝑛𝑛𝜎𝜎𝜓𝜓−𝑛𝑛 ⋅ exp �− 1
2𝜎𝜎𝜇𝜇2

∑ �𝜙𝜙𝑖𝑖−𝑧𝑧′𝑖𝑖𝛾𝛾+𝜓𝜓𝑖𝑖�
2

𝑤𝑤𝑖𝑖

𝑛𝑛
𝑖𝑖=1 �𝑘𝑘𝐼𝐼[0,∞)(𝜙𝜙𝑖𝑖 −

𝑧𝑧′𝑖𝑖𝛾𝛾 + 𝜓𝜓𝑖𝑖) + (1 − 𝑘𝑘)𝐼𝐼(−∞,0](𝜙𝜙𝑖𝑖 − 𝑧𝑧′𝑖𝑖𝛾𝛾 + 𝜓𝜓𝑖𝑖)� −
1

2𝜎𝜎𝜓𝜓
2 ∑ 𝜓𝜓𝑖𝑖2𝑛𝑛

𝑖𝑖=1 − ∑ 𝑤𝑤𝑖𝑖𝑛𝑛
𝑖𝑖=1 �.        (11) 

Then the priors can be defined as:  

 

𝑝𝑝(𝛾𝛾|𝜎𝜎𝜇𝜇 ,𝜎𝜎𝜓𝜓) ∝ 1,

𝑝𝑝(𝜎𝜎𝜇𝜇) ∝ 𝜎𝜎𝜇𝜇
(𝑛𝑛𝜇𝜇+1) exp �−

𝑘𝑘𝜇𝜇
2𝜎𝜎𝜇𝜇2

�

𝑝𝑝�𝜎𝜎𝜓𝜓� ∝ 𝜎𝜎𝜓𝜓
�𝑛𝑛𝜓𝜓+1� exp �−

𝑘𝑘𝜓𝜓
2𝜎𝜎𝜓𝜓2

� .

,   (12) 

From (12) the prior parameters are 𝑛𝑛𝜇𝜇 ,𝑛𝑛𝜓𝜓,𝑘𝑘𝜇𝜇 ,𝑘𝑘𝜓𝜓 ≥ 0.3 In addition we set: 

 𝑝𝑝(𝑘𝑘) ∝ 1, 0 ≤ 𝑘𝑘 ≤ 1, (13) 

whereas the conditional posterior can be defined as:  

 𝑝𝑝(𝑘𝑘|𝛾𝛾, 𝜏𝜏,𝜎𝜎𝜓𝜓, {𝜓𝜓𝑖𝑖,𝑤𝑤𝑖𝑖}𝑖𝑖=1𝑛𝑛 ,𝜙𝜙, 𝑧𝑧) ∝ exp (𝐷𝐷𝑘𝑘) , 0 ≤ 𝑘𝑘 ≤ 1, (14) 

where 𝐷𝐷 = −𝜏𝜏−1 ∑ �𝐼𝐼[0,∞)(𝜙𝜙𝑖𝑖 − 𝑧𝑧′𝑖𝑖𝛾𝛾 + 𝜓𝜓𝑖𝑖) − 𝐼𝐼(−∞,0](𝜙𝜙𝑖𝑖 − 𝑧𝑧′𝑖𝑖𝛾𝛾 + 𝜓𝜓𝑖𝑖)�𝑛𝑛
𝑖𝑖=1 .  

 

4. Empirical findings 

As a first step, we perform a decoupling analysis based on the work by Tapio (2005) 

and then in a second stage analysis we present our findings derived from the proposed eco-

                                                 
2See Appendix for technical details regarding the estimation of posterior conditional distributions. 
3We set 𝑛𝑛𝜇𝜇 ,𝑛𝑛𝜓𝜓 = 1, 𝑘𝑘𝜇𝜇 , 𝑘𝑘𝜓𝜓 = 10−4, which corresponds to a flat prior. 
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efficiency indicator. According to De Freitas and Kaneko (2011) and Moutinho et al. (2018) 

the decoupling analysis can be used in accordance with other eco-performance indicators 

presenting useful insights among environmental damages and economic output. In fact, both 

the proposed eco-efficiency and the decoupling indicator is based on the notion of “impact 

decoupling” which is based on the growth of economic output alongside with the deterioration 

of environmental damages (UNEP, 2011). Tapio (2005), based on elasticities of decoupling 

indicators introduced a decoupling index. Specifically, the decoupling index of the three 

pollutants can be expressed as: 

𝜃𝜃(𝐶𝐶𝑂𝑂2,𝐺𝐺𝐷𝐷𝐺𝐺) =
𝛥𝛥𝐶𝐶𝑂𝑂2
𝐶𝐶𝑂𝑂2
𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥
𝛥𝛥𝛥𝛥𝛥𝛥

,𝜃𝜃(𝑆𝑆𝑂𝑂2,𝐺𝐺𝐷𝐷𝐺𝐺) =
𝛥𝛥𝑆𝑆𝑂𝑂2
𝑆𝑆𝑂𝑂2
𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥
𝛥𝛥𝛥𝛥𝛥𝛥

, 𝜃𝜃(𝑁𝑁𝑂𝑂𝑋𝑋 ,𝐺𝐺𝐷𝐷𝐺𝐺) =
𝛥𝛥𝑁𝑁𝑂𝑂𝑋𝑋
𝑁𝑁𝑂𝑂𝑋𝑋
𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥
𝛥𝛥𝛥𝛥𝛥𝛥

.         (15) 

Table 2 presents the characterizations of the obtained decoupling measure based on the 

estimated values of the three decoupling indexes. Specifically, according to Tapio (2005) the 

estimated elasticities and the growth among the states’ GDP levels and the environmental 

pollutants can characterize the obtained decoupling states as: “Expansionary Negative 

Decoupling”; “Strong Negative Decoupling”; “Weak Negative Decoupling”; “Weak 

Decoupling”; “Strong Decoupling”; “Recession Decoupling”; “Growing Link” and “Recession 

Link”. These detailed characterizations can be grouped in three general states: “Decoupling”; 

“Negative Decoupling” and “Link”.      

We construct the decoupling indicators for the U.S. states over three non-overlapping 

periods (1990-1999; 2010-2009; 2010-2017)4. Based on those periods we first analyze the 

differences among the variables. Figure 1a clearly presents an overall GDP growth over the 

examined periods being more pronounced during the period 1990-1999. According to Krueger 

and Kumar (2004) the U.S. economy during the 90s outperformed. The higher economic growth 

rates during that period was mainly driven by the extensive consumption of new goods and 

services (Greenwood and Uysal, 2005). Also, it is noticeable from Fig.1 that during that period 

all pollutants had a positive change with the greatest positive change to be reported for CO2 

emissions (Fig. 1d). It is obvious that the increased demand and the consumption of goods and 

services (i.e. energy, extensive trade, etc.) has caused emissions to increase among that period. 

However, for the other two examined periods (i.e. 2000-2009; 210-2017) the positive change 

for the pollutants is reported but they are less pronounced compared to the 1990-1999 period. 

Similarly, Fig. 2 presents the densities of the constructed decoupling indexes (DI). The plots 

suggest that for the periods 2010-2009 and 2010-2017 the majority of the states’ DI values is 

negative, being more emphatic for the cases of SO2 and NOX and less pronounced for CO2 

emissions. However, for the period 1990-1999 the majority of states report positive DI values  

                                                 
4The analytical estimations of the obtained elasticities "𝜃𝜃" are available upon request. The overlapping 
time periods was chosen based on the remarks raised by Jorgenson and Wilcoxen (1990) regarding the 
adjusting period from short-run to steady-state. 
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Figure 1: Density plots of decoupling and eco-efficiency components 
 

a 

 

b 

 
c 

 

d 

 
 
with the exception of NOX emissions. These findings are not surprising since during the 1990s, 

U.S. economic growth was mainly driven by “unrestricted” energy use. Leflaive (2008) reports 

that it has been until 2007 which the “Energy Independence and Security Act” was signed 

concentrated to regulations regarding energy efficiency and  the  usage of  renewable energy 

among U.S. states. Song et al. (2019) provide similar findings suggesting that U.S. development 

is experiencing a strong decoupling. Interesting enough from both Fig. 1 and Fig. 2 we can see 

that some of distributions appear to be similar. Therefore, it is interesting to see if both the 

estimated changes and the DI indexes have been differentiated during the examined periods. 

For that reason we perform on the estimated measures a bootstrapped based test introduced by 

Li et al. (2006), for testing the mean equality among two densities. Table 3 presents our findings 

comparing in a pair manner the estimated density of every measure among the examined 

periods. Under the null hypothesis the distribution of means are equal. The results presented 

suggest that for the case of ΔGDP the null hypothesis is rejected only between the period 1990-

1999 and 2000-2009. Similarly, in all cases the null hypothesis is rejected for ΔCO2 and for DI 
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SO2, whereas, for some other cases like ΔSO2 and DI NOx the null hypothesis could not be rejected. 

According to Environmental Protection Agency U.S. SO2 emissions have decreased by 75% over the last 

decade, whereas, gas emissions generated from power plants have also decreased by 20%.5  
 

Figure 2: Density plots of decoupling indexes 

 
a

 

b

 
c

 

 

 
 
 
 
 
 
 
 
 
 
Table 3: Results of Li et al. (2009) test for mean equality 
                                                 
5https://www.epa.gov/newsreleases/epas-2019-power-plant-emissions-data-demonstrate-significant-
progress 
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GDP Change DI CO2  

 2000-2009 2010-2017  2000-2009 2010-2017 
1990-1999 2.127895*** 4.351936 1990-1999 11.95207 0.4327193*** 
2000-2009  -4.661233 2000-2009  1.407984*** 

       

CO2 Change DI SO2  
 2000-2009 2010-2017  2000-2009 2010-2017 

1990-1999 9.695959*** 14.93176*** 1990-1999 10.80082*** 17.31155*** 
2000-2009  1.714191* 2000-2009  1.247155*** 

       

SO2 Change DI NOx  
 2000-2009 2010-2017  2000-2009 2010-2017 

1990-1999 6.092738 6.448754* 1990-1999 14.77057 13.95677 
2000-2009  -1.110785 2000-2009  -1.739764 

       
NOx Change       

 2000-2009 2010-2017    
1990-1999 0.7852268 9.95035***    
2000-2009   8.012885***       

*** Null of equality is rejected at the 0.1% level 
*Null of equality is rejected at the 5% level 

 
 

Moreover, Table 4, presents the different decoupling classifications of the U.S. states. 

The results for the case of states’ CO2 emissions in relation to their GDP levels, suggest that 13 

states during the period 1990-1999 are reported as “Negative Decoupling” with the majority of 

cases characterized as “Expansionary Negative Decoupling” (i.e. ΔCO2>0; ΔGDP>0; 𝜃𝜃 >

1.2). However, for the next two examined periods (2010-2019 and 2010-2017) the results 

suggest that the majority of states are in a “Decoupling” juncture and in most cases 

characterized as “Strong Decoupling” (i.e. ΔCO2<0; ΔGDP>0; 𝜃𝜃 < 0). For the case of SO2 

emissions we have a similar picture. Specifically, during the period 1990-1999, seven states 

report a “Negative Decoupling” characterized as “Expansionary Negative Decoupling” (i.e. 

ΔSO2>0; ΔGDP>0; 𝜃𝜃 > 1.2). Similarly, as in the case of CO2 emissions, in the majority of 

cases the next two periods (2010-2009; 2010-2017) suggest a “Strong Decoupling” juncture 

among the US sates (i.e. ΔSO2<0; ΔGDP>0; 𝜃𝜃 < 0). In contrast for the case of NOX emissions 

our findings suggest that for all examined periods a “Decoupling” juncture is reported, with the 

majority of cases to be characterized as “Strong Decoupling” (i.e. NOΧ<0; ΔGDP>0; 𝜃𝜃 < 0). 

Strong decoupling for the U.S. economy is also reported by Song et al. (2019) especially during 

the period 2014-2016, characterized by high economic development levels.

 Furthermore, Fig. 3 reports the weights of pollutants across various quantiles. As we 

move across to the 90% quantile the weights of the so-called acidification pollutants (NOΧ and 
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SO2) remained quite similar across the different quantiles. However, the weight for the CO2 

emissions (global warming pollutant) has been increased from the 25% quantile onwards. 

Figure 3: Densities of the weights of pollutants by quantile 
 

 
 
 

Similarly, Fig. 4 presents the estimated eco-inefficiencies levels over the various 

quantiles. We notice that the 10% and 25% quantiles signify similar eco-inefficiency levels. In 

addition, the 75% and the 90% quantile suggest a similar increase of states’ eco-inefficiency 

levels, whereas, the median quantile indicates large concentration of eco-inefficiency levels 

around 0.18. Our findings support the study by Kounetas et al., (2020) reporting states’ 

relatively high eco-efficiency levels. In addition, it is noticeable that both the 50% and the 90% 

quantile appear to have long left tails (negatively skewed) suggesting that we have dispersed 

eco-inefficiencies among the states. As a result, in both quantiles, states’ mean eco-inefficiency 

levels are located on the left from the peak of the eco-inefficiency distribution.  

 

 

 

 

 

 

 

 

Figure 4: Densities of the US states’ technical eco-inefficiency levels by quantile 
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In addition, Fig. 5 presents sample distributions of posterior means of the eco-productivity 

change (ECOPG) and its components, eco-technical change (ECOTC) and eco-efficiency 

change (ECOEC). The ECOPG and their components have been calculated per two years for 

the entire period (i.e. 1990-1991;1991-1992;1992-1993,…,2016-2017). The eco-productivity 

contains state’s ability to catch-up to the eco-frontier and its ability to move the eco-frontier 

(𝐸𝐸𝐶𝐶𝑂𝑂𝐺𝐺𝐺𝐺 = 𝐸𝐸𝐶𝐶𝑂𝑂𝐸𝐸𝐶𝐶 + 𝐸𝐸𝐶𝐶𝑂𝑂𝐸𝐸𝐶𝐶). Specifically, Fig. 5d suggests that states’ eco-productivity 

levels is positive mainly driven by their eco-technical change levels. However, it is also reported 

that states’ eco-efficiency levels are low and, in some cases, negative suggesting the inability 

of some states to catch-up the eco-frontier over the examined period. Moreover, Fig.5a presents 

the 𝐸𝐸𝐶𝐶𝑂𝑂𝐺𝐺𝐺𝐺  levels by quantile. All measures are slightly different having a unimodal 

distribution, with the posterior of 75% quantile to be bimodal. Also, in the 90% quantile we can 

find evidence that some states’ eco-productivity levels can be also negative. For the case of 

eco-efficiency change (Fig.5b) the 10%, 25% and 90% quantiles have little dissimilarities, 

having their peak just above zero (positive ECOEC). In contrast the posterior of 75% quantile 

is bimodal, having the lower peak in the area of negative eco-efficiency change values. Clearly 

our findings suggest that many states report negative eco-efficiency change values over the 

examined period. In contrast when looking states eco-technical change (Fig.5c) we can see a 

clear difference among the quantiles. Specifically, ECOTC is positive for all quantiles with a 
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Table 4: States’ decoupling classifications 
 

  CO2 SO2 NOX 

State Name 1990-1999 2000-2009 2010-2017 1990-1999 2000-2009 2010-2017 1990-1999 2000-2009 2010-2017 

Alaska Strong Negative 
Decoupling 

Strong 
Decoupling 

Recession 
Decoupling 

Recession 
Decoupling 

Strong 
Decoupling 

Recession 
Decoupling 

Strong Negative 
Decoupling 

Strong 
Decoupling 

Strong Negative  
Decoupling 

Alabama 
Expansionary 

Negative 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling Weak Decoupling Strong 

Decoupling 
Strong 

Decoupling 
Strong 

Decoupling 
Strong 

Decoupling 
Strong 

Decoupling 

Arkansas Weak Decoupling Weak Decoupling Strong 
Decoupling Weak Decoupling Strong 

Decoupling 
Strong 

Decoupling 
Strong 

Decoupling 
Strong 

Decoupling 
Strong 

Decoupling 

Arizona Weak Decoupling Weak Decoupling Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

California Weak Decoupling Strong 
Decoupling 

Strong 
Decoupling 

Expansionary 
Negative 

Decoupling 

Strong 
Decoupling 

Strong 
Decoupling Weak Decoupling Strong 

Decoupling 
Strong 

Decoupling 

Colorado Weak Decoupling Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Connecticut Weak Decoupling Strong 
Decoupling 

Recession 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Recession 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Recession 
Decoupling 

District of 
Columbia 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Expansionary 
Negative 

Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Delaware Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Florida Growing Link Strong 
Decoupling 

Strong 
Decoupling Weak Decoupling Strong 

Decoupling 
Strong 

Decoupling Weak Decoupling Strong 
Decoupling 

Strong 
Decoupling 

Georgia Weak Decoupling Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Hawaii Strong Negative 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong Negative 
Decoupling 

Strong 
Decoupling Weak Decoupling Strong Negative 

Decoupling 
Strong 

Decoupling 
Strong 

Decoupling 

Iowa Growing Link Weak Decoupling Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Idaho 
Expansionary 

Negative 
Decoupling 

Growing Link 
Expansionary 

Negative  
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling Weak Decoupling Strong 

Decoupling Growing Link 

Illinois 
Expansionary 

Negative 
Decoupling 

Weak Decoupling Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Indiana Weak Decoupling Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 
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Kansas Weak Decoupling Strong 
Decoupling 

Strong 
Decoupling 

Expansionary 
Negative 

Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Kentucky Weak Decoupling Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Louisiana 
Expansionary 

Negative 
Decoupling 

Strong 
Decoupling 

Recession 
Decoupling 

Expansionary 
Negative 

Decoupling 

Strong 
Decoupling 

Recession 
Decoupling Weak Decoupling Strong 

Decoupling 
Weak Negative  

Decoupling 

Massachusetts Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Maryland Growing Link Strong 
Decoupling 

Strong 
Decoupling Weak Decoupling Strong 

Decoupling 
Strong 

Decoupling Weak Decoupling Strong 
Decoupling 

Strong 
Decoupling 

Maine 
Expansionary 

Negative 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling Weak Decoupling Strong 

Decoupling 
Strong 

Decoupling 

Expansionary 
Negative 

Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Michigan Weak Decoupling Weak Negative 
Decoupling 

Strong 
Decoupling Weak Decoupling Recession 

Decoupling 
Strong 

Decoupling 
Strong 

Decoupling 
Recession 

Decoupling 
Strong 

Decoupling 

Minnesota Weak Decoupling Strong 
Decoupling 

Strong 
Decoupling Weak Decoupling Strong 

Decoupling 
Strong 

Decoupling 
Strong 

Decoupling 
Strong 

Decoupling 
Strong 

Decoupling 

Missouri Growing Link 
Expansionary 

Negative 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Expansionary 
Negative 

Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Mississippi 
Expansionary 

Negative 
Decoupling 

Weak Decoupling Strong 
Decoupling Weak Decoupling Strong 

Decoupling 
Strong 

Decoupling Weak Decoupling Strong 
Decoupling 

Strong 
Decoupling 

Montana Weak Decoupling Strong 
Decoupling 

Strong 
Decoupling 

Expansionary 
Negative 

Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

North Carolina Growing Link Strong 
Decoupling 

Strong 
Decoupling Weak Decoupling Strong 

Decoupling 
Strong 

Decoupling Weak Decoupling Strong 
Decoupling 

Strong 
Decoupling 

North Dakota Weak Decoupling Strong 
Decoupling 

Strong 
Decoupling Growing Link Strong 

Decoupling 
Strong 

Decoupling Weak Decoupling Strong 
Decoupling 

Strong 
Decoupling 

Nebraska Growing Link Growing Link Strong 
Decoupling Weak Decoupling Growing Link Strong 

Decoupling 
Strong 

Decoupling Weak Decoupling Strong 
Decoupling 

New Hampshire Strong 
Decoupling Growing Link Strong 

Decoupling 
Strong 

Decoupling 
Strong 

Decoupling 
Strong 

Decoupling 
Strong 

Decoupling 
Strong 

Decoupling 
Strong 

Decoupling 

New Jersey 
Expansionary 

Negative 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

New Mexico Weak Decoupling Weak Decoupling Strong 
Decoupling Weak Decoupling Strong 

Decoupling 
Strong 

Decoupling 
Strong 

Decoupling 
Strong 

Decoupling 
Strong 

Decoupling 

Nevada Weak Decoupling Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 
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New York Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Ohio Weak Decoupling Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Oklahoma Growing Link Weak Decoupling Strong 
Decoupling Weak Decoupling Strong 

Decoupling 
Strong 

Decoupling 
Strong 

Decoupling 
Strong 

Decoupling 
Strong 

Decoupling 

Oregon 
Expansionary 

Negative 
Decoupling 

Weak Decoupling Strong 
Decoupling 

Expansionary 
Negative 

Decoupling 

Strong 
Decoupling 

Strong 
Decoupling Weak Decoupling Strong 

Decoupling 
Strong 

Decoupling 

Pennsylvania Weak Decoupling Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Rhode Island 
Expansionary 

Negative 
Decoupling 

Growing Link Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Expansionary 
Negative 

Decoupling 

Expansionary 
Negative 

Decoupling 
Weak Decoupling Strong 

Decoupling 

South Carolina 
Expansionary 

Negative 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling Weak Decoupling Strong 

Decoupling 
Strong 

Decoupling 
Strong 

Decoupling 
Strong 

Decoupling 
Strong 

Decoupling 

South Dakota Growing Link Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Expansionary 
Negative 

Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Tennessee Weak Decoupling Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Texas Weak Decoupling Strong 
Decoupling 

Strong 
Decoupling Weak Decoupling Strong 

Decoupling 
Strong 

Decoupling 
Strong 

Decoupling 
Strong 

Decoupling 
Strong 

Decoupling 

Utah Weak Decoupling Weak Decoupling Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling 

Virginia 
Expansionary 

Negative 
Decoupling 

Strong 
Decoupling 

Strong 
Decoupling Growing Link Strong 

Decoupling 
Strong 

Decoupling Weak Decoupling Strong 
Decoupling 

Strong 
Decoupling 

Vermont Weak Decoupling Strong 
Decoupling 

Expansionary 
Negative 

 Decoupling 

Expansionary 
Negative 

Decoupling 

Strong 
Decoupling 
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unimodal distribution for the 10%, 25% and 75% quantile, but with a bimodal distribution of 

the 90% quantile. The reported positive eco-technical change complements our previous 

decoupling analysis suggesting that states’ growth rates in the majority of the cases are obtained 

by reducing the negative environmental impact. Our findings complement those presented by 

Leflaive (2008) suggesting that from early 1990s US government have invested on a flexible 

innovation system policies, which are based on decentralization and on the enhancement of 

states’ environmental technology innovation.            

                 
Figure 5: Densities of the US states’ productivity levels and components by quantile  
 

 
Finally, the marginal posterior of 𝑘𝑘 is reported in Fig. 6 (see Appendix for details). In fact, as 

stressed by Assaf et al. (2020) and Tsionas et al. (2020) the main advantage of the methodology 

adopted is the utilization of Bayesian estimation treating the quantile 𝑘𝑘  as a parameter. 

Specifically, Fig. 6 presents the optimal quantile 𝑘𝑘∗ as has been derived from its marginal 

posterior distribution. The results suggest that the dominant model is near the 90th percentile. 

Given that the 90% quantile is the most likely (or optimal) gives an idea about a representation 
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regarding our sample. However, as clearly stated by Assaf et al. (2020) other functions at 

different values of quantiles must also be examined in order to provide us with different 

valuable insights of the states’ eco-inefficiencies fluctuations.  

   Figure 6: Density of the marginal posterior of the optimal quantile  
 

 
 
5. Conclusions 

The paper adopts the newly introduced quantile stochastic frontier framework (Tsionas, 

2020) in order to construct eco–efficiency measures for the U.S. states over the period 1990-

2017. Based on the quantile regression in the stochastic frontier framework we present how 

eco-efficiency indicators can be constructed. The eco-efficiency indicators are quantile specific 

and are based both on asymmetric Laplace and on half-normal errors. Moreover, we treat 

quantiles as parameters and with the adoption of Markov chain Monte Carlo (MCMC) methods 

we estimate posterior distributions. In principle, the examination of different eco-efficiency 

quantiles allows us to have a better view of the estimated eco-efficiencies. However, with the 

obtained posterior distribution of the quantiles we are able to indicate the optimal (most likely) 

quantile. In addition when we estimate the eco-efficiencies we utilize a globally concave 

symmetric generalized McFadden form, which provide us with greater flexibility compared to 

other functional forms used in SFA studies (i.e. Cobb-Douglas, translog, etc.).  

Our empirical findings suggest that even though in absolute terms the U.S. economy is 

regarded as one of the largest emitter of pollutants (Rodríguez et al., 2018), our decoupling 

analysis indicates that over the examined period U.S. states are in a decoupling juncture for all 

the evaluated pollutants. This finding is aligned with our eco-productivity analysis suggesting 

positive eco-productivity growth among the states. In fact this outcome is also a result from the 
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environmental regulations of US government, which are based on the enhancement of flexible 

innovation system policies among the U.S. regions (Leflaive, 2008). As the United States 

Environmental Protection Agency (EPA) reports6 from 1990 to 2017, U.S. has managed to 

reduce their emissions by 74% through the implementation of different environmental policies. 

  
Appendix: Posterior conditional distributions for Gibbs sampling. 

As explained by Tsionas (2020), from equation (11) we can obtain: 

 

𝑝𝑝𝑘𝑘(𝜎𝜎𝜇𝜇|𝛾𝛾,𝜎𝜎𝜓𝜓, {𝜓𝜓𝑖𝑖}𝑖𝑖=1𝑛𝑛 , {𝑤𝑤𝑖𝑖}𝑖𝑖=1𝑛𝑛 ,𝜙𝜙,𝛧𝛧)

∝ 𝜎𝜎𝜇𝜇
−(𝑛𝑛+𝑛𝑛𝜇𝜇+1) exp �−

𝐾𝐾𝜇𝜇
2𝜎𝜎𝜇𝜇2

�, 
(A1) 

where 𝐾𝐾𝜇𝜇 = 𝑘𝑘𝑣𝑣 + ∑ �𝜙𝜙𝑖𝑖−𝑧𝑧′𝑖𝑖𝛾𝛾+𝜓𝜓𝑖𝑖�
2

𝑤𝑤𝑖𝑖

𝑛𝑛
𝑖𝑖=1 �𝑘𝑘𝐼𝐼[0,∞)(𝜙𝜙𝑖𝑖 − 𝑧𝑧′𝑖𝑖𝛾𝛾 + 𝜓𝜓𝑖𝑖) + (1 − 𝑘𝑘)𝐼𝐼(−∞,0](𝜙𝜙𝑖𝑖 − 𝑧𝑧′𝑖𝑖𝛾𝛾 +

𝜓𝜓𝑖𝑖)�,  

 

𝑝𝑝𝑘𝑘(𝜎𝜎𝜓𝜓|𝛾𝛾,𝜎𝜎𝜇𝜇 , {𝜓𝜓𝑖𝑖}𝑖𝑖=1𝑛𝑛 , {𝑤𝑤𝑖𝑖}𝑖𝑖=1𝑛𝑛 ,𝜙𝜙,𝛧𝛧)

∝ 𝜎𝜎𝜓𝜓
−(𝑛𝑛+𝑛𝑛𝜓𝜓+1) exp �−

𝐾𝐾𝜓𝜓
2𝜎𝜎𝜓𝜓2

�, 
(A2) 

where 𝐾𝐾𝜓𝜓 = 𝑘𝑘𝜓𝜓 + ∑ 𝜓𝜓𝑖𝑖2𝑛𝑛
𝑖𝑖=1 ,  

 𝑝𝑝𝑘𝑘(𝑤𝑤𝑖𝑖|𝛾𝛾,𝜎𝜎𝜇𝜇 ,𝜎𝜎𝜓𝜓, {𝜓𝜓𝑖𝑖}𝑖𝑖=1𝑛𝑛 ,𝜙𝜙,𝛧𝛧) ∝ exp �−𝑤𝑤𝑖𝑖 − 𝛺𝛺𝑖𝑖𝑤𝑤𝑖𝑖−1� ,𝑤𝑤𝑖𝑖 > 0, (A3) 

where 𝛺𝛺𝑖𝑖 = 1
2𝜎𝜎𝜇𝜇2

(𝜙𝜙𝑖𝑖 − 𝑧𝑧′𝑖𝑖𝛾𝛾 +𝜓𝜓𝑖𝑖)2�𝑘𝑘𝐼𝐼[0,∞)(𝜙𝜙𝑖𝑖 − 𝑧𝑧′𝑖𝑖𝛾𝛾 + 𝜓𝜓𝑖𝑖) + (1 − 𝑘𝑘)𝐼𝐼(−∞,0](𝜙𝜙𝑖𝑖 − 𝑧𝑧′𝑖𝑖𝛾𝛾 +

𝜓𝜓𝑖𝑖)�,  

𝑝𝑝𝑘𝑘(𝜓𝜓𝑖𝑖|𝛾𝛾,𝜎𝜎𝜇𝜇 ,𝜎𝜎𝜓𝜓, {𝑤𝑤𝑖𝑖}𝑖𝑖=1𝑛𝑛 , ;𝜙𝜙,𝛧𝛧) ∝ exp �− (𝜆𝜆𝑖𝑖+𝜓𝜓𝑖𝑖)2

2𝜎𝜎𝜇𝜇2𝑤𝑤𝑖𝑖
�𝑘𝑘𝐼𝐼[0,∞)(𝜆𝜆𝑖𝑖 + 𝜓𝜓𝑖𝑖) + (1 − 𝑘𝑘)𝐼𝐼(−∞,0](𝜆𝜆𝑖𝑖 +

𝜓𝜓𝑖𝑖)� −
1

2𝜎𝜎𝜓𝜓
2 𝜓𝜓𝑖𝑖2},𝜓𝜓𝑖𝑖 ≥ 0,                         (A4) 

where 𝜆𝜆𝑖𝑖 = 𝜙𝜙𝑖𝑖 − 𝑧𝑧′𝑖𝑖𝛾𝛾.  

The conditional posterior distribution of 𝛾𝛾 is given by:  

𝑝𝑝𝑘𝑘(𝛾𝛾|𝜎𝜎𝜇𝜇 ,𝜎𝜎𝜓𝜓, {𝜓𝜓𝑖𝑖}𝑖𝑖=1𝑛𝑛 , {𝑤𝑤𝑖𝑖}𝑖𝑖=1𝑛𝑛 ,𝜙𝜙,𝛧𝛧) ∝

exp �− 1
2𝜎𝜎𝜇𝜇2

∑ �𝜙𝜙𝑖𝑖−𝑧𝑧′𝑖𝑖𝛾𝛾+𝜓𝜓𝑖𝑖�
2

𝑤𝑤𝑖𝑖

𝑛𝑛
𝑖𝑖=1 �𝑘𝑘𝐼𝐼[0,∞)(𝜙𝜙𝑖𝑖 − 𝑧𝑧′𝑖𝑖𝛾𝛾 + 𝜓𝜓𝑖𝑖) + (1 − 𝑘𝑘)𝐼𝐼(−∞,](𝜙𝜙𝑖𝑖 − 𝑧𝑧′𝑖𝑖𝛾𝛾 +𝜓𝜓𝑖𝑖)�� .

    

(A5) 

Therefore,  

 

𝑝𝑝𝑘𝑘(𝛾𝛾|𝜎𝜎𝜇𝜇 ,𝜎𝜎𝜓𝜓, {𝜓𝜓𝑖𝑖}𝑖𝑖=1𝑛𝑛 , {𝑤𝑤𝑖𝑖}𝑖𝑖=1𝑛𝑛 ,𝜙𝜙,𝛧𝛧) ∝

exp �−
1

2𝜎𝜎𝜇𝜇2
(𝜙𝜙 + 𝜓𝜓 − 𝛧𝛧𝛾𝛾)′𝑊𝑊−1(𝜙𝜙 +𝜓𝜓 − 𝛧𝛧𝛾𝛾)�𝑘𝑘𝑛𝑛𝑜𝑜(𝛾𝛾,𝜓𝜓) + (1 − 𝑘𝑘)𝑛𝑛−𝑛𝑛𝑜𝑜(𝛾𝛾,𝜓𝜓)�� ,

  

where 𝑛𝑛𝑜𝑜(𝛾𝛾,𝜓𝜓) = ∑ 𝐼𝐼[0,∞)
𝑛𝑛
𝑖𝑖=1 (𝜙𝜙𝑖𝑖 − 𝑧𝑧′𝑖𝑖𝛾𝛾 + 𝜓𝜓𝑖𝑖), 𝑊𝑊 = 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑[𝑤𝑤1, . . . ,𝑤𝑤𝑛𝑛].            (A6) 

                                                 
6 https://www.epa.gov/air-trends/air-quality-national-summary 
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From (A6) when 𝑘𝑘 = 1 (or zero) we can obtain:  

 𝛾𝛾|𝜎𝜎𝜇𝜇 ,𝜎𝜎𝜓𝜓, {𝜓𝜓𝑖𝑖}𝑖𝑖=1𝑛𝑛 , {𝑤𝑤𝑖𝑖}𝑖𝑖=1𝑛𝑛 ,𝜙𝜙,𝛧𝛧 ∼ 𝒩𝒩𝑞𝑞(𝛾𝛾�,𝛭𝛭), (Α7) 

where 𝛾𝛾� = (𝛧𝛧′𝑊𝑊−1𝛧𝛧)−1𝛧𝛧′𝑊𝑊−1(𝜙𝜙 + 𝜓𝜓), 𝛭𝛭 = 𝜎𝜎𝜇𝜇2(𝛧𝛧′𝑊𝑊−1𝛧𝛧)−1.  
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