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Abstract

In this thesis, we present proof-of-concept studies that describe how

data-driven techniques can be applied to observational data in or-

der to detect and estimate properties of galaxy clusters, which are

the largest gravitationally bound objects to have assembled in the

Universe. Given the significance of clusters in astrophysics and cos-

mology, it is important to develop automated methods that are able

to efficiently detect and process a large sample of clusters from ex-

isting photometric datasets, in preparation for upcoming large-scale

galaxy surveys. This can be achieved by employing machine learning

algorithms that are suited at solving the tasks at hand. In particular,

algorithms that can self-learn the importance of features from the la-

belled data of known clusters, which minimises the amount of manual

input required to make accurate predictions.

Initially, we demonstrate how a popular object detection algorithm

can be applied to wide-field colour images to identify and predict

the astronomical coordinates of clusters. We then demonstrate how

a novel ensemble regression algorithm can be applied to line-of-sight

galaxies within colour-magnitude space to estimate the photometric

redshift of clusters. Finally, we present a hybrid empirical and ana-

lytical model that performs background subtraction of field galaxies

along the line-of-sight of clusters within colour-magnitude space and

then estimates the richness of clusters within a characteristic radius.

We also compare our findings with the results of existing conventional

techniques to examine the overall predictive performance of our meth-

ods at generalising to unseen instances. Furthermore, we note that

our methods can be combined together into a sequential data pipeline



to create a comprehensive catalogue that contains key characteristics

(e.g. position, distance, mass) of observed clusters for conducting

astrophysical and cosmological research.
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Chapter 1

Introduction

1.1 Key characteristics of galaxy clusters

Galaxy clusters sit at the top of the hierarchical mass assembly of gravitationally

bound objects. The formation of clusters has been taking place since the early

epochs of the Universe from initial density perturbations, through to a series

of mergers and accretion of matter (Kravtsov & Borgani, 2012). This build-up

process is considered as complete when a cluster has become virialised, where the

total gravitational potential energy of the cluster is equal to twice the negative

total kinetic energy of its galaxy members, in order to establish a stable and

self-gravitating equilibrium.

It is common to categorise clusters based on their optical morphology (e.g.

Zwicky et al. 1961; Abell 1965; Bautz & Morgan 1970; Rood & Sastry 1971).

These categories can be broadly grouped as regular and irregular, where regular

clusters have a spherical appearance and a noticeable core region (e.g. the Coma

cluster of galaxies), whilst irregular clusters have a non-spherical appearance and

no noticeable core region (e.g. the Hercules cluster of galaxies). It is also typical

to find the brightest cluster galaxy situated at the bottom of the gravitational

potential well of clusters (Lin & Mohr, 2004), where brightest cluster galaxies are

one of the most luminous and largest types of galaxies to exist in the Universe.

The intrinsic properties of clusters encompass a wide range of values, such
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that clusters can be further divided into subcategories based on their optical

richness (Bahcall, 1999). These subcategories can be broadly grouped as ‘poor’

and ‘rich’, where poor clusters have intrinsic properties towards the lower end of

the scale (e.g. the Fornax cluster of galaxies) when compared with rich clusters

(e.g. the Perseus cluster of galaxies). For instance, the number of galaxies found

in poor and rich clusters can vary from tens to thousands inside a relatively small

volume, with a radius that can stretch from hundreds of kpc to several Mpc. The

velocities of galaxy members in poor and rich clusters can reach from hundreds

of km s−1 to thousands of km s−1, with the total mass of clusters spanning from

1013 to 1015 solar masses.

It is important to note that galaxies make up the smallest fraction (i.e. ap-

proximately 3 per cent) of the total mass in clusters (Pratt et al., 2019). A large

fraction (i.e. approximately 12 per cent) of the total mass in clusters is found

in the hot gas that permeates the intra-cluster medium, where temperatures can

range from several keV to tens of keV due to the shock heating of infalling gas into

the deep potential well of clusters (Takizawa & Mineshige, 1998). The dominant

fraction (i.e. approximately 85 per cent) of the total mass in clusters exists in the

form of dark matter, which has a strong gravitational influence within clusters

such that it constrains the majority of galaxy members from dispersing due to

their relatively high peculiar velocities (Zwicky, 1937). Although, for the work

in this thesis we will mainly focus on describing the optical attributes of clusters

since we only employ optical data to study clusters.

Observational measurements of clusters are essential for validating the physi-

cal behaviour of simulated clusters, where simulations are powerful tools to prag-

matically examine the inner workings of clusters as well as probe the nature of

large-scale structure. For example, numerous models have been proposed to de-

scribe the density profile (e.g. Navarro et al. 1997; Moore et al. 1999; Navarro

et al. 2004; Merritt et al. 2006) of hypothetical dark matter halos, where dark

matter halos contain relatively high concentrations of dark matter that fully en-

compass clusters such that they are not affected by cosmological expansion. These

models have subsequently been applied to simulations to unravel the evolution of

galaxies in overdense environments (e.g. Sensui et al. 1999; Ghigna et al. 2000;

Bullock et al. 2001; Takahashi et al. 2002). Moreover, numerous models of the
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halo mass function (e.g. Press & Schechter 1974; Sheth & Tormen 1999; Jenkins

et al. 2001; Tinker et al. 2008) have been derived from cosmological simulations,

where the halo mass function describes the number density of dark matter halos

per unit mass at different redshifts for specific cosmological assumptions. These

models have subsequently been applied to observations of clusters to constrain

the precision of cosmological parameters in cosmological models (e.g. Rozo et al.

2009; Vikhlinin et al. 2009; Planck Collaboration et al. 2016a; Bocquet et al.

2019).

The population of galaxies in a cluster can be roughly divided into two distri-

butions that are nominally known as the ‘red-sequence’ and ‘blue-cloud’ (Eales

et al., 2018). The term red-sequence refers to an apparent narrow ridgeline that

is visible within colour-magnitude space consisting of early-type galaxies (i.e.

elliptical and lenticular galaxies) that are ‘red’ in colour due to the lack of star-

formation in these galaxies. It should be noted that there is a slight tilting

of the red-sequence within colour-magnitude space, where brighter red-sequence

galaxies are redder than fainter red-sequence galaxies. This is mainly due to the

brighter red-sequence galaxies being more massive than the fainter red-sequence

galaxies (Kodama & Arimoto, 1997), such that these galaxies retain more metals

within their systems after internal supernovae events and thus there is a higher

concentration of metallicity in the atmospheres of their stellar populations. Cor-

respondingly, the term blue-cloud refers to an apparent loose clumping that is

visible within colour-magnitude space consisting of late-type galaxies (i.e. spiral

and irregular galaxies) that are ‘blue’ in colour due to high star-formation rates

in these galaxies.

Environmental processes within clusters also impact the star-formation rate

of galaxies by reducing the amount of cold gas and dust available for the galax-

ies to create new stars via gravitational collapse. This effect can be seen in the

morphology-density relation (Dressler 1980a; Dressler et al. 1997) of galaxies in

clusters, where early-type galaxies are typically found in high density environ-

ments whilst late-type galaxies are typically found in low density environments.

The environmental processes that drive this effect mainly involve ram-pressure

stripping (Gunn & Gott, 1972), tidal stripping (Gallagher & Ostriker, 1972) and

strangulation (Larson et al., 1980). For ram-pressure stripping, this process blows
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the cold gas and dust out from galaxies when the galaxies move through the clus-

ter and collide with the hot gas of the intra-cluster medium. For tidal stripping,

the cold gas and dust are tugged out from galaxies when they gravitationally

interact with each other (e.g. flybys or mergers) within a cluster. Strangulation

restricts the access of galaxies to fresh cold gas and dust, due to the hot gas in the

intra-cluster medium heating up any infalling gas, which prevents it from accu-

mulating to form new stars. We note that these environmental processes have a

more profound influence towards the inner regions of a cluster, where the density

of galaxies and the density of hot gas in the intra-cluster medium is considerably

higher.

Many of the known characteristics of clusters have been learned through the

tireless efforts of researchers that have mostly worked with relatively small and

selective samples of clusters. It is needless to say that there are still many clus-

ters in the Universe that have yet to be discovered or properly examined. It is

therefore extremely important to develop cluster cataloguing methods that can

perform efficient and effective data-processing from modern observing strategies.

As a result, this will enable larger and more diverse samples of clusters to be

studied and thus further enhance our current understandings of astrophysics and

cosmology.

1.2 History of galaxy cluster cataloguing

One of the earliest documented observations of a galaxy cluster in the literature

was by Charles Messier in 1781 as part of his catalogue of nebulae and star

clusters (Messier, 1781). He noted that there was a large collection of nebulae in

the direction of the Virgo constellation, which would later become known as the

Virgo Cluster. Further observations of nebulae would continue to be catalogued

over the subsequent centuries by various researchers (e.g. Herschel 1785; Dunlop

1828; Herschel 1864; Lassell & Marth 1867; Schultz 1875; Searle 1880; Dreyer

1888; Bailey 1908; Curtis 1918; Innes 1924).

It was not until 1929 that nebulae were widely recognised as extra-galactic

objects, when Edwin Hubble published his work (Hubble, 1929b) showing that the
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Andromeda nebula was most likely an entirely separate galaxy. He calculated that

it was too distant to be part of our own galaxy by using the period-luminosity

relationship of observed Cepheid variable stars within the Andromeda nebula.

This finding helped to pave the way for a new era of discoveries and exploration

in extra-galactic astronomy.

From 1947 to 1957, Charles Shane and Carl Wirtanen conducted one of the

first large-scale galaxy surveys from the Lick Observatory to count galaxies in

the northern hemisphere. In 1954, they published a preliminary study of their

observations (Shane & Wirtanen, 1954), which indicated that galaxies are not

randomly distributed but tend to cluster together into groupings. This result

subsequently signified the importance of conducting cluster cataloguing as an

effective means of examining the overall distribution of matter in the Universe.

In the following years, the first major cluster catalogue to be published was by

George Abell in 1958 (Abell 1958, N.B. for the remainder of this thesis we refer

to the clusters in this catalogue as Abell clusters), where clusters were detected

through manual inspection of photographic plates from the Palomar Sky Survey

(Abell, 1959). For this catalogue, a successful cluster detection had to satisfy the

following selection criteria: the cluster must have at least 50 members within a

(1.7 arcminute)/(z) radius of the cluster centre; the cluster must have at least

50 members within two magnitudes fainter than the third brightest member; the

cluster must be between a redshift range of 0.02 ≤ z ≤ 0.2. He documented the

key characteristics of 2712 observed clusters, such as the position (i.e. based on

astronomical coordinates), distance (i.e. based on the magnitude of the tenth

brightest galaxy member) and richness (i.e. based on the number of observed

galaxies within a magnitude range and within a fixed search radius after applying

a statistical background subtraction to account for field galaxies). It should be

noted that richness is a direct proxy of the mass of clusters via the mass-richness

relation (Johnston et al., 2007).

Not long afterwards, another major cluster catalogue was published by Fritz

Zwicky et al. in 1961 (Zwicky et al. 1961, N.B. for the remainder of this thesis

we refer to the clusters in this catalogue as Zwicky clusters), where clusters were

also detected through manual inspection of photographic plates from the Palomar

Sky Survey. For this catalogue, a successful cluster detection had to satisfy the
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following selection criteria: the cluster must have at least 50 members within a

density boundary that is twice the density of the local field; the cluster must have

at least 50 members within three magnitudes fainter than the brightest member.

They also documented the key characteristics of 9700 observed clusters, such as

the position (i.e. based on astronomical coordinates), distance (i.e. based on

the magnitude and angular size of galaxy members) and richness (i.e. based on

the number of observed galaxies within a magnitude range and within a density

isopleth1 map after applying a statistical background subtraction to account for

field galaxies).

However, it should be noted that the manual inspection of photographic plates

to detect the Abell and Zwicky clusters is an extremely inefficient method. This

is because it is very time-consuming to physically examine every single object

within the images. In addition, it is difficult for other researchers to replicate

this method in order to check for systematic errors in human-made measure-

ments. Although, since the creation of these catalogues, numerous researchers

have proposed new automated approaches that can efficiently perform large-scale

cataloguing of clusters. We will now briefly describe several notable automated

cluster cataloguing methods that have been developed for determining the key

characteristics of clusters.

Turner & Gott (1976) developed a surface density searching algorithm that

detects clusters by examining the measured astrometry information of individual

galaxies from galaxy surveys. To obtain position measurements, this approach

initially involves defining a circular border around each galaxy, where the ra-

dius of the circular border varies depending on the local surface density within a

user-specified angular radius. Lastly, regions that have galaxies with overlapping

circular borders are merged together as galaxy members of a clump, which indi-

cates the presence of a cluster. To obtain distance measurements, this approach

relies on cross-matching identified galaxy members with external reference cata-

logues to determine their radial velocities and thus the average radial velocity or

average redshift of the identified galaxy members in clusters can be computed,

which are both direct proxies of the distance of clusters via Hubble’s law (Hubble,

1An isopleth is a contour line that highlights positions of similar values (e.g. density) within
a map.
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1929a). However, this approach does not specifically describe how to determine

the mass of clusters but the number of identified galaxy members found within

the radius of the clumps could be used to determine cluster richness.

Huchra & Geller (1982) developed a galaxy linking algorithm that detects

clusters by examining the measured astrometry, photometry and distance infor-

mation of individual galaxies from galaxy surveys. To obtain position measure-

ments, this approach involves applying a friends-of-friends algorithm that links

pairs of galaxies together based on whether the observed lengths of their angular

and redshift separations are less than or equal to corresponding angular and red-

shift separation thresholds. These thresholds vary depending on the local number

density, which is computed by integrating a galaxy luminosity function with a

faint-end absolute magnitude limit that corresponds to the limiting magnitude of

the galaxy survey at the average redshift of the galaxy pairing. Lastly, overdense

regions are identified if they contain a grouping of linked galaxies, which indi-

cates the presence of a cluster. To obtain distance measurements, this approach

adopts the redshift values of individual galaxies that have already been measured

by external reference catalogues and thus the average redshift of identified galaxy

members could be computed to determine the distance of clusters. To obtain

mass measurements, this approach computes the mass-to-light ratio based on the

total luminosity of identified galaxy members, velocity dispersion of identified

galaxy members and the size of the grouping of linked galaxies. We note that

later on in this thesis we use cluster catalogues that have been created from an

adapted version of this approach by Wen et al. (2012) and Wen & Han (2015)

(N.B. for the remainder of this thesis we refer to the clusters in these catalogues

as the WHL12 and WH15 clusters respectively).

Postman et al. (1996) developed a filter matching algorithm that detects clus-

ters by examining the measured astrometry and photometry of individual galaxies

from galaxy surveys. To obtain position measurements, this approach initially

constructs filter profiles that are based on analytical models of the surface density

and luminosity of cluster and field galaxies at specific redshift intervals. The filter

profiles are combined into a likelihood function that is then applied onto grids

of the survey area, which results in the generation of a likelihood map. Lastly,

each grid is examined to identify regions containing galaxies that maximise the
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likelihood of the filter profiles at the best fit redshift interval, which indicates the

presence of a cluster. To obtain distance measurements, this approach involves

matching the observed filter profiles to the expected filter profiles at specific red-

shift intervals to determine the redshift of clusters. To obtain mass measurements,

this approach establishes a scaling relation to compute cluster richness based on

the strength of the signal for the observed filter profiles. We note that later on

in this thesis we use a cluster catalogue that has been created from an adapted

version of this approach by Szabo et al. (2011) (N.B. for the remainder of this

thesis we refer to the clusters in this catalogue as AMF11 clusters).

Annis et al. (1999) developed a centroid finding algorithm that searches for

the brightest cluster galaxy of clusters by examining the measured astrometry

and photometry of individual galaxies from galaxy surveys. To obtain position

measurements, this approach initially measures the likelihood of all galaxies be-

ing brightest cluster galaxies by comparing their filter magnitudes and colours

with the photometric properties of typical brightest cluster galaxies at specific

redshift intervals, where galaxies that have the highest likelihood out of all the

neighbouring galaxies are assumed to be brightest cluster galaxies. The likeli-

hood of the remaining neighbouring galaxies being associated with the identified

brightest cluster galaxies is then measured. This involves examining whether

the galaxies have filter magnitudes and colours that are consistent with an ex-

pected colour-magnitude relation (i.e. red-sequence galaxies) originating from

the identified brightest cluster galaxies. Lastly, overdense regions are identified if

they contain galaxies that maximise the likelihood of being red-sequence galaxies

around the brightest cluster galaxies, which indicates the presence of clusters.

To obtain distance measurements, this approach involves matching the observed

brightest cluster galaxies and red-sequence galaxies to the expected brightest clus-

ter galaxies and red-sequence galaxies at specific redshift intervals to determine

the redshift of clusters. To obtain mass measurements, this approach counts the

number of identified galaxy members within a radius and brightness range to

determine cluster richness.

Gladders & Yee (2000) developed a red-sequence fitting algorithm that de-

tects clusters by examining the measured astrometry and photometry of indi-

vidual galaxies from galaxy surveys. To obtain position measurements, this ap-
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proach initially defines overlapping slices within colour-magnitude space based on

a model of the red-sequence at specific redshift intervals. The probability that a

galaxy belongs within each slice is then computed, where galaxies that have low

probabilities within a slice are removed from the slice. Next, weights are com-

puted for each galaxy within the slices based on their absolute magnitude and

probability. The surface density of the projected angular positions of galaxies is

also computed and then combined with the weights to form a new probability

map. Lastly, a user-specified probability threshold is applied to the probability

map to identify overdense regions that have a strong red-sequence, which indi-

cates the presence of a cluster. To obtain distance measurements, this approach

involves finding out which slice contains the most identified galaxy members to

determine the redshift of clusters. However, this approach does not specifically

describe how to determine the mass of clusters but the number of probable galaxy

members found within a slice could be used to determine cluster richness. We

note that later on in this thesis we use a cluster catalogue that has been created

from an adapted version of this approach by Rykoff et al. (2014) (N.B. for the

remainder of this thesis we refer to the clusters in this catalogue as redMaPPer

clusters).

Goto et al. (2002) developed a cut and enhancement algorithm that detects

clusters by examining the measured astrometry and photometry of individual

galaxies from galaxy surveys. To obtain position measurements, this approach

initially applies a multitude of cuts to galaxies within colour space, where the cuts

are designed to detect galaxies at specific redshift intervals. It should be noted

that each cut is applied independently, such that any galaxy found within the cuts

is considered as a detected galaxy. The angular separation and colour differences

between the detected galaxies is then computed to generate a weighted map,

where galaxies that are close together within angular and colour space receive

large weighting. Lastly, a density-searching algorithm is applied to the weighted

map to identify overdense regions that are above a user-specified density thresh-

old and contain a minimum number of galaxies within the cuts, which indicates

the presence of a cluster. To obtain distance measurements, this approach in-

volves finding out which cut contains the most detected galaxies to determine

the redshift of clusters. To obtain mass measurements, this approach counts the
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number of identified galaxy members within a radius and brightness range to

determine cluster richness.

It is worth noting that these described approaches for cluster cataloguing work

mainly in optical/near-infrared wavelengths, where there has been an abundance

of data collected by large-scale galaxy surveys over the past few decades (e.g.

the Las Campanas Redshift Survey, Shectman et al. 1996; the Centre for Astro-

physics 2 Redshift Survey, Falco et al. 1999; the IRAS PSCz Redshift Survey,

Saunders et al. 2000; the Canadian Network for Observational Cosmology Field

Galaxy Redshift Survey, Yee et al. 2000; the Sloan Digital Sky Survey, York

et al. 2000; the Two Degree Field Galaxy Redshift Survey, Colless et al. 2001; the

DEEP Extragalactic Evolutionary Probe 2 Redshift Survey, Davis et al. 2003; the

Millennium Galaxy Catalogue Survey, Liske et al. 2003; the VIsible Multi Object

Spectrograph Very Large Telescope Deep Survey, Le Fèvre et al. 2005; the United

Kingdom Infra-red Telescope Infrared Deep Sky Survey, Lawrence et al. 2007; the

zCOSMOS Redshift Survey, Lilly et al. 2007; the WiggleZ Dark Energy Survey,

Blake et al. 2008; the Six Degree Field Galaxy Survey, Jones et al. 2009; the

Galaxy And Mass Assembly Redshift Survey, Baldry et al. 2010; the Wide-field

Infrared Survey Explorer All Sky Survey, Wright et al. 2010; the Two Micron

All-Sky Survey Redshift Survey, Huchra et al. 2012; the Dark Energy Survey,

Dark Energy Survey Collaboration et al. 2016; the Dark Energy Spectroscopic

Instrument Legacy Imaging Surveys, Dey et al. 2019; the Hyper Suprime-Cam

Subaru Strategic Program, Ishikawa et al. 2020).

In recent times, there has also been growing efforts to conduct cluster cata-

loguing with observational data from X-ray (e.g. Voges et al. 1999; Ebeling et al.

2001; Böhringer et al. 2004; Mehrtens et al. 2012; Liu et al. 2022b), Sunyaev-

Zeldovich (e.g. Reichardt et al. 2013; Planck Collaboration et al. 2014; Planck

Collaboration et al. 2016b; Ricci, M. et al. 2020; Hilton et al. 2021) and weak

gravitational lensing surveys (e.g. Miyazaki et al. 2002; Hetterscheidt et al. 2005;

Wittman et al. 2006; Dietrich et al. 2007; Gavazzi & Soucail 2007), where these

surveys are especially convenient for providing a means of validating cluster de-

tections in optical/near-infrared galaxy surveys or vice versa. We will now briefly

describe how clusters can be catalogued in each of these survey types.
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For X-ray surveys, X-ray radiation is mainly emitted through the thermal

bremsstrahlung of charged particles in the hot gas of the intra-cluster medium,

which results in the projection of extended X-ray sources that can be detected

via X-ray telescopes. The distance of clusters can be directly determined by

measuring the redshift of spectral features in X-ray gas spectra. The mass of

clusters can be directly determined from combining measurements of the X-ray

gas density with X-ray gas temperature (N.B. assuming that the X-ray gas in the

intra-cluster medium is under hydrostatic equilibrium).

For Sunyaev-Zeldovich surveys, line-of-sight cosmic microwave background

photons experience inverse Compton scattering when they encounter energetic

electrons in the intra-cluster medium of clusters (i.e. the Sunyaev-Zeldovich [SZ]

effect, Sunyaev & Zeldovich 1972), which results in fluctuations of the cosmic mi-

crowave background that can be detected via microwave telescopes. The distance

of clusters can be approximated from combining measurements of the angular size

of the cosmic microwave background fluctuation with X-ray surface brightness of

the intra-cluster medium. The mass of clusters can be indirectly determined

by establishing a scaling relation between the strength of the cosmic microwave

background fluctuations with cluster masses that have been measured from other

techniques (e.g. weak gravitational lensing).

For weak gravitational lensing surveys, the theory of general relativity suggests

that larger masses have a greater influence on the curvature of the surrounding

spacetime and thus there is a greater bending of the path taken by light, which

results in the apparent non-random alignment of background galaxies (N.B. as-

suming that background galaxies are randomly orientated) behind a cluster that

can be detected via high-resolution wide-field telescopes. However, there is yet to

be an effective way of measuring the distance of clusters with weak gravitational

lensing. Although, the mass of clusters can be directly determined by comput-

ing the cluster mass required to produce the observed alignment of background

galaxies.

The scale of cluster cataloguing is expected to increase significantly over the

upcoming decades as larger and more sensitive state-of-the-art telescopes are

currently being built/deployed for conducting future large-scale galaxy surveys

(e.g. SPHEREx All-Sky Optical to Near-Infrared Spectral Survey, Doré et al.

11



1.3 Framework of machine learning

2016; the Legacy Survey of Space and Time, Ivezić et al. 2019; the James Webb

Space Telescope Advanced Deep Extragalactic Survey, Endsley et al. 2020; the

Nancy Grace Roman Space Telescope High Latitude Survey, Eifler et al. 2021;

the Euclid Wide Survey, Scaramella et al. 2021). The completion of these data-

intensive surveys will enable the next generation of researchers to probe further

down the halo mass function as well as investigate the cluster population at even

higher redshifts.

1.3 Framework of machine learning

Computers have revolutionised the way scientists conduct experiments ever since

their creation by Charles Babbage in 1822 (Babbage & Davy, 1822). Evidently,

without the assistance of computers, any type of analyses must be done manually

by scientists. This is not practical in the modern information era, where working

with large amounts of data has become the norm. As such, the automatic pro-

cessing of information is highly desirable, to enable scientists to instead prioritise

on developing theories and drawing conclusions from results.

During the 1950s, initial breakthroughs in the field of microelectronics (Moore,

1965) were important for the future of computing. These early developments

would enable computers to evolve from executing simple calculations to perform

more complex functions. Ultimately, this lead to the birth of a new scientific

field, that was named as ‘artificial intelligence’ during a research conference at

Dartmouth College in 1956 (McCarthy et al., 2006), where the term ‘artificial

intelligence’ relates to the usage of machines to mimic intelligent behaviour.

Soon afterwards, a new branch developed under this field that focused on

exploring how algorithms could self-learn from data to make accurate and ro-

bust data-driven decisions. This branch was coined as ‘machine learning’ in a

publication by Arthur Samuel in 1959 (Samuel, 1959), where he described how a

computer can be programmed to learn to play a game of checkers better than an

average player could. This showcased the potential of how computers could be

effectively utilised to make well-informed future choices from learning underlying

relationships in historical data.
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A notable publication by Frank Rosenblatt in 1958 introduced a novel algo-

rithm, known as a ‘perceptron’ (Rosenblatt, 1958), which was inspired from ear-

lier works (e.g. Rashevsky 1935; Mcculloch & Pitts 1943; Hebb 1949; Culbertson

1950; McCulloch 1950; Ashby 1952; Hayek 1952; Kleene 1956; Minsky 1956; Utt-

ley 1956) that described how neurons in the brain process signals. Essentially, the

perceptron can be seen as a ‘universal approximator’ that learns to find optimal

weight coefficients for input features by updating the weights (initialised with

random values) until the difference between the predicted and expected outputs

are minimised. In machine learning, this is known as optimising the objective

function, where the objective function is defined by the user to instruct an al-

gorithm on what it should learn to do (i.e. minimise or maximise an objective

depending on the choice of function for a given task). From which, the perceptron

makes decisions by determining whether the sum of the product between the data

of the input features and learned weight coefficients is above or below a decision

threshold, as shown in Figure 1.1. This initial work would subsequently influence

the development of more advanced machine learning algorithms.

In more recent times, the use of state-of-the art machine learning algorithms

has become popular and widespread amongst many scientific fields where data is

in abundance. For example, searching for exotic particles from high-energy colli-

sions (Baldi et al., 2014); mapping of geological rocktypes (Harvey & Fotopoulos,

2016); optimising superconductor circuit designs (Menke et al., 2018); predicting

isotropic lifetimes of heavy nuclei (Pérez & Balatsky, 2019); discovering chemi-

cals with desired attributes (Tkatchenko, 2020); monitoring animal biodiversity

(Chalmers et al., 2021) and modeling biological sequences (Muntoni et al., 2021).

The branch of machine learning can be further divided into the following

three sub-branches: supervised learning (Cunningham et al., 2008); unsupervised

learning (Ghahramani, 2004) and reinforcement learning (Arulkumaran et al.,

2017). These sub-branches employ different learning approaches to govern the

overall behaviour of machine learning algorithms, where an appropriate choice of

sub-branch to use is dependent on the given task. We will now briefly discuss the

learning approach of each sub-branch.

A supervised learning approach uses labelled data to evaluate the prediction

errors of an algorithm, where it is the preferred approach in classification and re-
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Figure 1.1: This figure displays a schematic diagram of the overall functionality
of the perceptron algorithm at processing information from the input to output
nodes, where n represents an input feature, In represents an input feature value, wn

represents a weight for the input feature, S represents the dot product between the
input feature values and their corresponding weight values, θ represents the decision
threshold and P represents the output class prediction. We note that all of the
weights are updated at the same time during training, where the change in weight
value is determined by the resultant class prediction error of an instance. The
decision threshold is also learned during training by setting I0 = 1 and w0 = −θ,
which is known as the bias term. In addition, the output node is based on a unit
step function. This diagram was inspired by Raschka & Mirjalili (2017).
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gression tasks. Classification-based algorithms (e.g. decision trees, Breiman et al.

1984; support vector machine, Cortes & Vapnik 1995; naive Bayes, Rish 2001)

should be provided with training data containing discrete labels to constrain the

algorithm to learn to accurately predict the class of instances, such as classifying

different types of amino acids based on their molecular properties (Barati Fari-

mani & Aluru, 2018). Regression-based algorithms (e.g. ridge regression, Hoerl

& Kennard 1970; lasso regression, Tibshirani 1996; linear regression, Altman &

Krzywinski 2015) should be provided with training data containing continuous

labels to constrain the algorithm to learn to accurately predict the outcome of

instances, such as estimating the amount of rainfall based on observed cloud con-

ditions (Meyer et al., 2016). We note that some machine learning algorithms are

capable of conducting classification and regression tasks, such as decision trees

and support vector machine.

An unsupervised learning approach allows an algorithm to explore and dis-

cover patterns or structures within unlabelled data, where it is the preferred

approach in clustering and dimensionality reduction tasks. Clustering-based al-

gorithms (e.g. k-means, Macqueen 1967; Gaussian mixture, Duda & Hart 1973;

agglomerative hierarchical, Müllner 2011) attempt to group together instances

that have similar attributes, such as identifying plants that may be part of the

same species based on physical features of the plants (Hall et al., 2017). Dimen-

sionality reduction-based algorithms (e.g. principal component analysis, Pearson

1901; singular value decomposition, Stewart 1993; kernel principal component

analysis, Schölkopf et al. 1997) attempt to transform the feature space of data

into a compressed representation that retains important information whilst also

lessening noise, such as reducing the significance of redundant features in sensor

data (Varshney & Willsky, 2011).

A reinforcement learning approach associates environmental interactions of an

algorithm with rewards to encourage desirable behaviour, where it is the preferred

approach in tasks with sequential actions. Sequential action-based algorithms

(e.g. temporal difference learning, Sutton 1988; Q-learning, Watkins & Dayan

1992; policy gradient, Sutton et al. 1999) are trained by assessing the state of

an environment after specific objectives have been met from a series of decisions

by the algorithm. This encourages actions that result in positive rewards and
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discourages actions that result in negative rewards, such as deploying a self-

driving car that performs maneuvers based on real-time road and traffic conditions

(Kiran et al., 2022).

In order to maximise the performance of machine learning algorithms, it is

important to tune their hyper-parameters (i.e. external algorithmic settings that

cannot be automatically learned but need to be manually configured). This can be

achieved by using popular tuning strategies such as grid search (Hsu et al., 2003),

random search (Bergstra & Bengio, 2012) and Bayesian optimisation (Snoek et al.,

2012). Although, the appropriate choice of tuning strategy to use is dependent on

the complexity of the hyper-parameter search space. We will now briefly discuss

the methodology of each tuning strategy.

A grid search strategy examines the performance of every hyper-parameter

combination, to determine the optimal hyper-parameter configuration. This

strategy is only suitable for machine learning algorithms with a small number

of hyper-parameters that are known to be highly influential, since it becomes

more computationally expensive to examine every hyper-parameter combination

when the size of the search space increases.

A random search strategy examines the performance of randomly sampled

hyper-parameter combinations, to determine a near-optimal hyper-parameter

configuration after conducting a specified number of sampling iterations. This

strategy is effective for machine learning algorithms with an intermediary to

large number of hyper-parameters, since it does not need to examine every hyper-

parameter combination. It is also a cost efficient strategy when computational

power is an issue.

A Bayesian optimisation strategy examines the performance of hyper-parameter

combinations that have been sampled by a selection function, to determine a

near-optimal hyper-parameter configuration. The selection function samples new

hyper-parameter values that are likely to improve the performance of a machine

learning algorithm based on a probability distribution of the performance of pre-

viously examined hyper-parameter combinations. This strategy is effective for

machine learning algorithms with an intermediary number of hyper-parameters

that have complex relationships, since it constructs a model of the probability

space.
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It is also important to ensure that machine learning algorithms do not signif-

icantly overfit (e.g. only learns to model noise) or underfit (e.g. performs worse

than random guessing) to the data during training, as this reduces the overall ef-

fectiveness of algorithms at conducting a given task. This issue can be addressed

by splitting the data into training and testing sets, which would allow algorithms

to be cross-validated across different subsamples of the data to measure the true

model performance. Some commonly used cross-validation strategies to assess

algorithms are known as holdout cross-validation (Kohavi, 1995), k-fold cross-

validation (Bengio & Grandvalet, 2004) and Monte Carlo cross-validation (Xu

& Liang, 2001), where an appropriate choice of cross-validation strategy to use

mainly depends on the available computing power. We will now briefly discuss

the methodology of each cross-validation strategy. For simplicity, we will only

mention the training and test sets but it should be noted that a validation set is

also used when hyper-parameter tuning is involved.

A holdout cross-validation strategy involves randomly partitioning the data

into a training set and a testing set, where the algorithm is trained exclusively on

the training set and tested exclusively on the test set. This cross-validation strat-

egy has low computational costs, which makes it suitable when working with large

amounts of data, since the algorithm is only trained and assessed once on these

two sets. However, due to the immutable nature of this cross-validation strategy,

it would result in a less accurate evaluation of the true model performance when

compared to the k-fold and Monte Carlo cross-validation strategies.

A k-fold cross-validation strategy involves randomly partitioning the data into

a ‘k’ number of folds, where the algorithm is tested on each fold whilst also being

trained on the remaining folds to measure the average performance across the

folds. The computational cost of this cross-validation strategy is dependent on the

number of folds used, where a larger number of folds would yield a more accurate

evaluation of the true model performance but at higher computational costs since

the algorithm will need to be trained and assessed on all folds. In addition, due

to the mutable nature of this cross-validation strategy, it would result in a more

accurate evaluation of the true model performance when compared to the holdout

cross-validation strategy.
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A Monte Carlo cross-validation strategy involves randomly partitioning the

data into a training set and a testing set over a ‘N’ number of iterations, where

the algorithm is trained and tested on the sets created within each iteration to

measure the average performance across the iterations. The computational cost

of this cross-validation strategy is dependent on the number of iterations used,

where a larger number of iterations would yield a more accurate evaluation of the

true model performance but at higher computational costs since the algorithm

will need to be trained and assessed on ‘N’ training and test sets. Similar to k-fold

cross-validation, this cross-validation strategy also has a highly mutable nature,

which would result in a more accurate evaluation of the true model performance

when compared to the holdout cross-validation strategy.

The deployment of a machine learning algorithm into production can be sum-

marised in a series of development stages. The first stage is typically the data

and algorithmic pre-processing stage, which may involve some of the following

events: exploring relationships in the data; deciding whether machine learning

is appropriate for the given task; deciding the learning approach; sampling the

data; transforming the data; removing outliers from the data; selecting relevant

features; splitting the data into training, validation and test sets; selecting rele-

vant machine learning algorithms; selecting evaluation metrics. The second stage

is typically the learning stage, which may involve some of the following events:

training machine learning algorithms on instances in the training set; tuning

hyper-parameters of the selected machine learning algorithms on instances in

the validation set; selecting the machine learning algorithm that displays the

best overall performance on instances in the validation set. The third stage is

typically the assessment stage, which may involve some of the following events:

applying a cross-validation strategy to examine how well the trained machine

learning algorithm performs on unseen instances in the test set; deciding whether

the trained machine learning algorithm is ready for deployment or requires addi-

tional training/testing.
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1.4 History of machine learning in astronomy

The application of machine learning in astronomy has been relatively successful

from when it was first utilised over a few decades ago. Given the vast number of

individual objects that can be observed in astronomical surveys, it would be ex-

tremely time-consuming to catalogue objects without the assistance of automated

tools. Especially, in the era of modern astronomy, where the total amount of data

collected from astronomical surveys can range from terabytes to petabytes. As

such, the integration of machine learning into data processing pipelines is an es-

sential step towards automating historical procedures, which subsequently enables

scientists to quickly gather and study large samples.

The earliest applications of machine learning in astronomy can be traced back

to the 1990s, where machine learning was increasingly being used to classify

astronomical objects (e.g. Fayyad et al. 1993; Djorgovski et al. 1994; Serra-Ricart

1994; Naim 1995; Weir et al. 1995; Owens et al. 1996).

A notable example is the task of distinguishing between stars and galaxies,

which was traditionally approached using methods such as deciding a line of

separation in density plots of the observed distributions (e.g. Kron 1980; Dickey

et al. 1987; Kurtz et al. 1985; Heydon-Dumbleton et al. 1989) or matching the

shape of the observed distributions with templates (e.g. Sebok 1979; Valdes

1982; Oegerle et al. 1986; Maddox et al. 1990). However, these methods do not

make use of all the available information of objects, which meant that they would

only be practical under specific conditions (e.g. within restricted brightness and

image size regimes). Instead, Odewahn et al. (1992) described how to train an

artificial neural network, using a set of 14 different image parameters, to classify

whether images from the Palomar Sky Survey contained stars or galaxies. From

which, they obtained a classification accuracy of approximately 95 per cent when

identifying stars and galaxies across a wide range of brightnesses and image sizes

without needing to make prior assumptions.

Another notable example is the task of classifying galaxies based on their mor-

phological appearance, which was traditionally done by the manual eyeballing of

human experts (e.g. Hubble 1926; Morgan 1958; de Vaucouleurs 1959; van den

Bergh 1960). Undeniably, this method is impractical to replicate for very large
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samples of galaxies. Instead, Storrie-Lombardi et al. (1992) described how to

train an artificial neural network, using a set of 13 distance-independent mea-

surements, to classify the morphology of galaxies from the ESO-LV catalogue

(Lauberts & Valentijn, 1989). From which, they showed that the predictions of

the trained neural network algorithm was in good agreement with manual eye-

ball classifications of five different galaxy morphologies (i.e. E, S0, Sa+Sb, Sc+Sd

and Irr). Subsequently, these initial examples showcase the potential of employing

machine learning in astronomy applications and how it can be effectively utilised

to improve existing procedures.

During the 2000s, machine learning began to be applied to a wider variety of

astronomy tasks as a means of gaining further insight into data or replacing ex-

isting conventional methods. We will now outline several applications of machine

learning in astronomy from this period.

Fuentes & Gulati (2001) described how to train a k-nearest neighbour al-

gorithm to predict stellar atmospheric parameters when given either spectra,

spectral indices or spectral lines as an input. They demonstrate that a machine

learning approach can be used to quantify the impact of different spectral features

for obtaining accurate parameter estimates.

Estrada-Piedra et al. (2004) described how to train an ensemble of locally

weighted regression algorithms to determine the age of stellar populations in

galaxies when given high resolution spectra as an input. They demonstrate that

the prediction time of a machine learning approach was much more efficient than

an exhaustive search approach with similar levels of precision for predictions.

Wadadekar (2005) described how to train a support vector machine algorithm

to estimate the photometric redshift of galaxies when given filter magnitudes

and flux radii as inputs, where the support vector machine algorithm attempts

to fit a hyperplane that minimises the margin of error (i.e. satisfying a user-

specified prediction error threshold) between the data points and the hyperplane

within the given feature space. They demonstrate that the overall prediction

errors yielded by a machine learning approach was much lower than conventional

template fitting methods.

d’Abrusco et al. (2007) described how to train a multi-stage machine learn-

ing model to generate a three dimensional map of astronomical objects in the
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Universe. Initially, they trained an artificial neural network algorithm to es-

timate the redshift of galaxies using photometric data, which helped to break

degeneracies in photometry of nearby and distant objects. Then, they applied

a dimensionality reduction algorithm to transform a photometric feature space

into a low-dimensional projection, which visually compressed similar objects to-

gether within the projection. Lastly, they used an agglomerative hierarchical

algorithm to trace large-scale structure based on the apparent groupings along

with the estimated photometric redshifts of galaxies, which separated the spatial

distributions of different object types. Overall, they demonstrate that a machine

learning approach can replace human interpretations of the visual appearance of

large-scale structure in the Universe.

By the 2010s, further technology advancements in improving computer pro-

cessing power via hardware accelerators (Thompson et al., 2020) would enable

deep learning algorithms (LeCun et al., 2015) to be applied more frequently to

astronomy tasks, where deep learning algorithms had evolved from research on

experimenting with deeper configurations of the artificial neural network algo-

rithm. One of the primary benefits of employing deep learning algorithms over

traditional machine learning algorithms is that deep learning algorithms can au-

tomatically learn the importance of input features whereas traditional machine

learning algorithms have a greater reliance on feature engineering2 to perform

well. This means that using a deep learning approach further reduces the amount

of human input required, especially when working with raw datasets that con-

tain many input features. We will now also outline several applications of deep

learning in astronomy from this period.

Charnock & Moss (2017) described how to train a recurrent neural network

algorithm to classify different types of supernovae when given photometric light

curves as an input, where the unique looping architecture of a recurrent neural

network algorithm enables it to process a sequence of inputs from different time

steps to make predictions. They demonstrate that a deep learning approach is

2Feature engineering is part of the data pre-processing stage that involves selecting relevant
features or transforming the feature space in order to reduce the dimensionality and complexity
of an existing dataset. This helps machine learning algorithms to learn more efficiently by
removing noise that could negatively impact the overall predictive power.
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more time efficient than other conventional methods with similar levels of accu-

racy for examining early-epoch light curves of supernovae, which is advantageous

for deciding whether to conduct spectroscopic follow-up observations before the

supernovae become too faint to observe.

Shen et al. (2017) described how to train an autoencoder algorithm to recover

gravitational wave signals that are immersed within actual instrumental and en-

vironmental noise. They demonstrate that a deep learning approach significantly

outperforms other conventional denoising methods at processing low signal-to-

noise data containing weak gravitational wave signals, which is valuable since the

majority of observed gravitational waves have very weak signals.

Ackermann et al. (2018) described how to train a convolutional neural network

algorithm to distinguish between a non-interacting galaxy and galaxy mergers

when given a multi-band colour image as an input. They demonstrate that only

a deep learning approach can match accuracy levels of human classifiers, which

was not achievable with conventional galaxy merger detection methods.

Mishra et al. (2019) described how to train a generative adversarial network

algorithm to simulate temperature anisotropy maps of the cosmic microwave

background. They demonstrate that a deep learning approach can replicate the

outputs of traditional cosmological simulation software within a much shorter

running time-frame, which will be beneficial for future large-scale studies of the

cosmic microwave background due to traditional cosmological simulation software

being computationally expensive and time-consuming to run.

The examples we have described so far, have shown the wealth of astronomy

tasks that machine learning can be applied to. We expect that in the remainder

of the 2020s and beyond, machine learning will continue to play a major role in

replacing many existing conventional approaches in astronomy with state-of-the-

art automated tools. In particular, for the remainder of this thesis we focus our

attention on the tasks of galaxy cluster detection, cluster redshift estimation and

cluster richness estimation, where the application of machine learning in these

tasks is still in its infancy.
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1.5 This thesis

The overall aim of the work in this thesis is to demonstrate how modern data

science methods can be utilised to develop automated algorithms that serve to

efficiently and accurately process large quantities of observational data of clusters

in large-scale galaxy surveys. This provides researchers with a set of powerful

data-driven tools that minimise the need for making strong prior assumptions

when measuring the key characteristics of clusters throughout the Universe, which

ultimately improves our current understandings of astrophysics and cosmology.

Each of the main chapters in this thesis can be briefly summarised as follows:

• In chapter 2 we trained an object detection algorithm on a set of wide-

field colour images of cross-matched Abell and WHL12 clusters between

0.1 < z < 0.2 that had been observed in the Sloan Digital Sky Survey Data

Release 9. We utilised transfer learning of internal parameters in the object

detection algorithm, which reduced training time by reusing tuned internal

parameters from an already pre-trained object detection model. In addition,

we constrained the object detection algorithm to learn to recognise the

observable characteristic features of clusters within a fixed radius from the

cluster cores. We applied the trained object detection algorithm on unseen

redMaPPer clusters to examine the overall accuracy at detecting clusters

as well as examining the overall precision of our astronomical coordinate

estimates.

• In chapter 3 we created a photometric dataset of line-of-sight galaxies within

a fixed radius of cross-matched WHL12 and redMaPPer cluster cores be-

tween 0.05 ≤ z ≤ 0.6 that had been observed in the Sloan Digital Sky

Survey Data Release 9, where the clusters had their photometric redshifts

determined by WHL12. We trained an ensemble regression algorithm to

estimate the redshift of clusters by computing the average redshift of the

k-nearest neighbour line-of-sight galaxies found in bootstrapped versions of

the photometric dataset. In addition, we integrated a sequential feature se-

lection strategy into the ensemble regression algorithm, which ensured that

it only utilised photometry features that minimised the redshift prediction
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error. We applied the trained ensemble regression algorithm on unseen

WHL12 and redMaPPer clusters to examine the overall precision of our

redshift estimates.

• In chapter 4 we first trained a reconstruction algorithm to replicate the pho-

tometry of individual cluster galaxies that were identified by AMF11 be-

tween 0.1 ≤ z ≤ 0.35 in the Sloan Digital Sky Survey Data Release 16. We

also sampled individual field galaxies from manually identified field regions.

The algorithm then learned to distinguish between cluster and field galaxies

based on the resultant reconstruction error, where cluster galaxies yielded

smaller reconstruction errors and field galaxies yielded larger reconstruc-

tion errors. Next, we used cross-matched WH15 and redMaPPer clusters to

establish a scaling relation that approximated the characteristic radius of

clusters, where the scaling relation was between characteristic radius values

determined by WH15 and the number of cluster galaxies identified by the

algorithm within a fixed radius at the cluster redshift. We reapplied this

learned scaling relation to the cross-matched WH15 and redMaPPer clus-

ters and then resampled galaxies within the characteristic radius. Lastly,

we obtained best fit parameter values from fitting the Schechter function

to a composite luminosity distribution of identified cluster galaxies from

cross-matched WH15 and redMaPPer clusters. We then used the best fit

parameter values of the Schechter function to estimate the richness of in-

dividual clusters within a characteristic radius by refitting and integrating

the Schechter function on the luminosity distribution of identified cluster

members belonging to individual clusters. We measured the overall accu-

racy of the trained algorithm on unseen individual cluster and field galaxies

from AMF11 and the field regions respectively. We also applied the best fit

parameter values of the Schechter function on unseen cross-matched WH15

and redMaPPer clusters to examine the overall precision of our richness

estimates.

Throughout this thesis, we adopted a Lambda cold dark matter cosmology

with H0 = 71 km s−1 Mpc−1, Ωm = 0.27 and ΩΛ = 0.73.
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Chapter 2

Deep-CEE I: Fishing for galaxy

clusters with deep neural nets
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Abstract

We introduce Deep-CEE (Deep Learning for Galaxy Cluster Extraction

and Evaluation) in this proof-of-concept study of a novel deep learning

technique that works directly with wide-field colour imaging to search

for galaxy clusters without the need for photometric catalogues. This

technique is complementary to traditional methods and could also be

used in combination with them to confirm cluster candidates. We

use a state-of-the-art object detection algorithm, that is adapted to

localise and classify clusters from other astronomical objects in SDSS

imaging. As there is an abundance of labelled data for clusters from

previous classifications in publicly available catalogues, we do not need

to rely on simulated data. This means we keep our training data as

realistic as possible, which is advantageous when training a deep learn-

ing algorithm. Ultimately, we will apply our model to surveys such

as the Legacy Survey of Space and Time and Euclid to probe wider

and deeper into unexplored regions of the Universe. This will produce

large samples of both high redshift and low mass clusters, which can

be utilised to constrain both environment-driven galaxy evolution and

cosmology.
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2.1 Introduction

Throughout the 1950s to 1980s the astronomer George Abell and several others

composed the Abell catalogue of rich galaxy clusters in the northern and southern

hemispheres, where the completed catalogue ended up containing 4073 clusters

in total (Abell et al., 1989). George Abell used a magnifying glass to manu-

ally examine photographic plates and looked specifically for over-dense regions of

galaxies. This would be one of the last times a major wide-field cluster search

was conducted manually by eye.

Since then a variety of techniques have been developed to search for clus-

ters. One of the primary techniques for extracting clusters from imaging data

is red-sequence fitting. Unlike the manual search method used by George Abell,

this technique is applied to photometric catalogue data extracted from imag-

ing, as opposed to the images themselves. In the charge-coupled device era,

this catalogue-based technique has proven to be an efficient alternative to by-eye

searches. In addition, both X-ray emission and the SZ effect reveal the presence

of clusters through the properties of the hot intracluster medium. Furthermore,

we remind the reader that clusters contain large concentrations of dark matter as

well as tens to thousands of individual member galaxies, which means that their

presence can be inferred via weak gravitational lensing.

However X-ray, SZ and weak gravitational lensing techniques will also need to

optically confirm their candidate clusters, as there are contaminants (e.g. active

galactic nuclei or nearby galaxies) and line-of-sight coincidences (e.g. unrelated

low mass groups at different redshifts) that can conspire to give false positive

detections. This confirmation has typically been done manually, which is time

inefficient and can introduce biases that result in an uncertain selection function.

Therefore, an approach that can produce fast and precise analysis of imaging

data would be advantageous to both search for or confirm clusters.

The Legacy Survey of Space and Time (LSST, Ivezić et al. 2019) is soon to

begin operations at the Vera Rubin Observatory, which is currently under con-

struction in Chile with an expected first-light in 2023. LSST will be the deepest

wide-field galaxy survey ever conducted, performing multiple scans of the entire

southern sky over ten years, with an estimated 15 TB of data generated per night.
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Correspondingly, Euclid (Scaramella et al., 2021) is a wide-field space telescope

that is due to commence operation in 2023. It will conduct a weak gravitational

lensing and galaxy clustering survey to probe the nature of dark matter and dark

energy across a 15000 square degree region of sky with an estimated 0.3 PB of

data generated per year over six years. This means that data mining techniques

will be required to analyse the enormous outputs of these telescopes. LSST and

Euclid are expected to observe thousands of previously unknown clusters across

a wide range of masses and redshifts but cataloguing them presents a significant

challenge.

Deep learning is very applicable in modern astronomy due to the abundance of

data collected from past and present telescope surveys. This makes it a preferable

technique when conducting data mining tasks such as classification and regres-

sion. However, at the time of this work a deep learning approach had yet to

be developed for detecting and determining properties of clusters from optical

wide-field imaging data.

A convolutional neural network (CNN, Fukushima 1980) is a particular type

of deep learning algorithm that has been widely successful in the field of computer

vision, where CNNs are designed to mimic the human brain at learning to perceive

objects by activating specific neurons upon visualising distinctive patterns and

colours. It is typical to train and utilise CNNs for processing high-dimensional

features directly from digital images into a meaningful output with minimal hu-

man involvement. LeCun et al. (1998) first introduced a deep learning approach

using CNNs to classify uniquely handwritten digits in images from the Modified

National Institute of Standards and Technology (MNIST, LeCun et al. 2010)

dataset achieving a classification error rate of less than 1 per cent.

It should be noted that conventional CNNs are adept at learning to recognise

the visual features of objects but rather naive at self-determining their positions

in an image since they process an image as a whole instead of its constituent parts.

In this work, we aim to develop a deep learning approach that can efficiently lo-

calise and classify clusters in images. Szegedy et al. (2013) first demonstrated a

deep learning approach to perform object detection in images by modifying the

architecture of CNNs into modules that are specific to classification and local-
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isation tasks, where objects with importance are classed as ‘foreground’ whilst

everything else is considered as ‘background’.

TensorFlow (Abadi et al., 2015) is an open source data science library

that provides many high level application programming interfaces (API) for deep

learning. One of these is the object detection API3 (Huang et al., 2016) that

contains multiple state-of-the-art deep learning algorithms, which are specifically

designed to either enhance the speed or accuracy of an object detection model.

These include Single Shot Detection (SSD, Liu et al. 2015) and Faster Region-

based CNN (Faster R-CNN, Ren et al. 2015).

Huang et al. (2016) tested different object detection algorithms on images

from the Common Objects in Context (COCO, Lin et al. 2014) dataset. In

particular, they found that the Faster R-CNN algorithm returned high precision

for predictions and was suitable for large input images during training and testing.

However, the algorithm took a relatively long time to train and was slow at

generating predictions. Correspondingly, they found that the SSD algorithm was

relatively quick to train and produced fast predictions, but the overall precision

of predictions was lower when compared to the Faster R-CNN algorithm. From

which, we decided to choose the Faster R-CNN algorithm as we preferred accuracy

over speed for predictions.

We organise this chapter in the following format. We split §2.2 into two

subsections to outline our methodology. In §§2.2.1 we explain the concept behind

the Deep-CEE model and in §§2.2.2 we describe the procedure to create the

training and test sets. We also split §2.3 into two subsections to outline our

results. In §§2.3.1 we analyse the performance of our model with the test set

and in §§2.3.2 we assess our model on an unseen dataset. In §2.4 we discuss the

limitations and future applications of our model. Finally, in §2.5 we summarise

this work.

3The full list of object detection algorithms can be found via https://github.com/ten

sorflow/models/blob/master/research/object detection/g3doc/tf1 detection zoo.md

and https://github.com/tensorflow/models/blob/master/research/object detection

/g3doc/tf2 detection zoo.md
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2.2 Method

2.2.1 Deep learning method

We used a supervised learning approach to train the Faster R-CNN algorithm

(Ren et al., 2015) by providing it labelled images. The architecture of the al-

gorithm can be seen in Figure 2.1. It is comprised of three different individual

networks that work collectively to make predictions. These three networks are

called the Feature Network (FN), Region Proposal Network (RPN) and Detection

Network (DN). To train our model, we used a joint end-to-end training approach,

which means we allowed the outputs from all the networks to be generated before

all trainable layers are updated. In addition, we assigned one ground truth box

per image, where the definition of the ground truth box can be found in §§2.2.2.

We note that the learnable parameters in the RPN and DN were learned from

scratch whereas pre-trained parameters were used for the FN. Throughout this

subsection we adopted a similar methodology and hyper-parameters4 as described

in Ren et al. (2015) and Huang et al. (2016). We set a learning rate of 0.0002,

momentum of 0.9, gradient clipping threshold of 10 and a mini-batch size of one.

We used random initialisation of weights from a zero-mean truncated Gaussian

distribution with a standard deviation of 0.01 for weights in the RPN. We used

variance scaling initialisation (Glorot & Bengio, 2010) from a uniform distribu-

tion for weights in the DN. We also initialised bias values for the trainable layers

in the RPN and DN to be zero.

4The definitions of typical hyper-parameters in a neural network is explained in more detail
in Ruder (2016).
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Figure 2.1: This figure displays a high-level overview of the architecture for the Faster R-CNN algorithm which contains
the Feature Network, Region Proposal Network and Detection Network. The output from each network is used as the
input for the next network. The architecture of the algorithm is similar to the system demonstrated in Figure 2 from
Ren et al. (2015). For simplicity, the Inception-v2 architecture is not displayed fully but it should be noted that
‘Mixed 4e’ is used as the final layer of the Feature Network (Huang et al., 2016). The full details of the Inception-v2
architecture can be found in Ren et al. (2018). The RPN and DN loss functions are only active during the training phase.
A softmax activation function (Nwankpa et al., 2018) is used for performing classification of proposed boxes whilst a
linear activation function is used for performing regression of coordinates.
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2.2.1.1 Feature network

The FN is found at the beginning of the Faster R-CNN algorithm and takes an

image as its input. We applied transfer learning (Torrey & Shavlik, 2009) by using

a pre-trained CNN called Inception-v2 (Szegedy et al., 2015) as the architec-

ture of the FN. Inception-v2 consists of convolution layers, rectified linear unit

(ReLU, Nair & Hinton 2010) activation functions, pooling layers, fully-connected

(FC) layers and a softmax activation function. We note that we did not include

the FC layers and softmax activation function for the FN since we only wanted

to perform feature extraction in this network. The convolution layers and ReLU

activation function were responsible for extracting non-linear features from an

image (e.g. straight lines, edges, curves, blobs). The pooling layers were respon-

sible for down-sampling the image to form a compressed feature map. The reason

we chose to use the Inception-v2 architecture as opposed to other architectures

(e.g. VGG16 (Simonyan & Zisserman, 2014) and AlexNet (Krizhevsky et al.,

2012)) is that it has been specifically designed to reduce the overall number of pa-

rameters that need to be learned. This requires less computational cost to train

the algorithm, while still retaining high accuracy. We note that Inception-

v2 had been pre-trained to recognise objects from the COCO dataset, which

contains images of commonly found objects in daily life (e.g. vehicles, animals,

digital devices, accessories). This means we did not need to fully recalibrate the

weights and biases in this network since they were sufficiently optimised at find-

ing generic structures, where training every single weight and bias from scratch

in this network would be computationally inefficient. Furthermore, we did not

alter the architecture of Inception-v2.

2.2.1.2 Region proposal network

The RPN is found after the FN and it consists of a shallow architecture of con-

volution layers with a ReLU activation function that is specific only to the first

convolution layer. The weights and biases in the first convolution layer were

shared for classification and localisation tasks whilst the remaining convolution

layers were separated into parallel convolution layers, with independent weights

and biases for each task. The RPN takes the feature map output from the FN as
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its input. The role of the RPN was to determine the position of meaningful ob-

jects within an image. In the first convolution layer, a 3× 3 pixel sliding window

was used with zero-padding5 and a pixel stride of one, which translates to every

sixteenth pixel in the original image. At the centre of each sliding window, an

‘anchor’ is placed. Each anchor has a set number of different sized boxes gener-

ated around it, where the box dimensions and number of boxes was dependent on

user-specified scaling and aspect ratios. From which, we set scaling ratios of 0.25,

0.5, 1.0 and 2.0 and aspect ratios of 0.5, 1.0 and 2.0. These ratios should reflect

the dimensions of the ground truth boxes across all images. We note that a scal-

ing ratio of 1.0 relates to a box of 256 × 256 pixels in the original image, where

setting other values for the scaling ratio results in additional larger or smaller

boxes at each anchor whilst setting other values for the aspect ratio results in

boxes that have adjusted widths and heights with respect to each scaling ratio.

In total, there were twelve boxes of different sizes at each anchor. In the final

convolution layers, a 1 × 1 pixel sliding window was used with no-padding6 and

a pixel stride of one, which ensured a fixed dimensionality for the output of this

layer.

The meaningfulness of objects was determined by calculating the amount of

overlap between anchor boxes and the ground truth box in an image, where boxes

that had a 70 per cent overlap or more with the ground truth box was assigned

as a positive ‘foreground’ label whereas a negative ‘background’ label had a 30

per cent overlap or less. We calculated the overlap between two boxes as the

percentage of the area overlap as a function of the total area of both boxes. In

addition, boxes that had values between these overlap thresholds were ignored.

We considered positive labelled boxes as meaningful objects and negative labelled

boxes as irrelevant objects. From which, 128 positive labelled boxes and 128

negative labelled boxes were randomly chosen in each image to update the weights

and biases. If there were fewer than 128 positive labelled boxes in an image, then

additional negative labelled boxes with the next highest percentage overlap were

chosen to represent positive labelled boxes. The RPN subsequently learned to

5This involved adding additional layers of pixels around the edge of an image with values
of zero, which helped to preserve the dimensions of the input as it passed through the layer.

6This means that no additional pixels were added around the edge of an image.
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identify positive ‘foreground’ objects and negative ‘background’ objects. Any

box that was assigned a high probability by the RPN of containing a positive

‘foreground’ object was then passed onto the next stage in the Faster R-CNN

algorithm. However, any box that was assigned a high probability by the RPN

of containing a negative ‘background’ object was disregarded. Backpropagation

(BP, Rumelhart et al. 1986) and stochastic gradient descent (SGD, Bottou 2010)

was used to train the weights and biases in RPN7. We note that SGD is a variant

of the conventional gradient descent (GD, Ruder 2016) algorithm, where the

difference between SGD and GD is that SGD has a randomised component (e.g.

random sampling/augmentation of the data) during each training iteration whilst

GD has no randomised component.

Two additional steps were applied to limit the number of boxes for faster

computation. Firstly, any box which extended outside the image borders was

disregarded after the boxes were generated. Secondly, non-maximum suppression

(NMS, Hosang et al. 2017) was used to keep the highest overlapping box with the

ground truth box and also disregarded any remaining boxes that had a 70 per

cent overlap or more with this box. These steps are repeated on the remaining

boxes, such that the next box with the highest overlap was kept and any other

box with a 70 per cent overlap or more with this box was also disregarded. This

procedure continued until 300 boxes or fewer remained for each image.

We utilised two loss functions (log loss and smooth L1 loss) to calculate pre-

diction errors of the RPN. The log loss function (Martinez & Stiefelhagen, 2018)

worked with the output of a softmax activation function, which created a proba-

bilistic distribution for each proposed box, such that the sum of the class probabil-

ities for a proposed box equaled one. This function is described via the following

equation:

Lcls(pi, p
∗
i ) = −p∗i log(pi)− (1− p∗i )log(1− pi), (2.1)

where pi is the predicted probability of a box and p∗i is zero or one depending

7We note that BP with respect to box coordinate proposals from the RPN was disabled as
Huang et al. (2016) found that it caused the training to be unstable.
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on whether the box was negatively or positively labelled respectively. The log loss

function calculated the objectness error for boxes being predicted as ‘foreground’

and ‘background’.

The smooth L1 loss function (Girshick, 2015) only considered positive labelled

boxes in this work. It used the linear activation function to take into account the

distance between the centre coordinates of the ground truth box and proposed

boxes, and also the difference in size of the boxes when compared to the ground

truth box. This function is described via the following equation:

Lreg(x) =
{ 0.5x2, if |x| < 1,
|x| − 0.5, otherwise,

. (2.2)

where x = (ti − t∗i ) is the localisation error between the ground truth and

proposed boxes. The smooth L1-loss function penalised the localisation error by

taking the absolute value (behaves like L1-loss) for large errors and the square

value (behaves like L2-loss) for small errors (Ng, 2004). This encouraged stable

regularisation of the weights and biases.

The proposed boxes from the RPN were merged with the feature map from

the FN, such that each box was overlaid on an ‘object’. An ROI-pooling8 (region-

of-interest) layer was combined with remaining unused convolution layers of the

Inception-v2 architecture to further extract features from the feature map. The

ROI-pooling layer was ultimately responsible for merging the convolutional filter

values within each box to ensure that every box contained the same number of

values. This speeds up computations later on in the Faster R-CNN algorithm, as

having fixed sized outputs leads to faster convergence.

2.2.1.3 Detection network

The DN is found at the end of the Faster R-CNN algorithm and is composed of

FC layers. The purpose of an FC layer was to combine all the outputs from the

previous layer, this allowed for the algorithm to utilise all the processed informa-

tion to effectively make decisions. The FC layers were run in parallel, such that

8It should be noted that Tensorflow’s ‘crop and resize’ operation was used for the ROI-
pooling layer (Huang et al., 2016). This involved using bilinear interpolation to generate new
cropped feature maps associated to each box from the previous feature map.
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the weights and biases were split between classification and localisation. One of

these two FC layers consisted of 2 neurons to categorise the outputs for classi-

fication, the other FC layer consisted of 4 neurons to predict the properties for

box regression. Similar to the procedure for RPN, 16 positive and 48 negative

labelled boxes were randomly chosen within each image to train the weights and

biases in the DN, where boxes that had a 50 per cent overlap or more with the

ground truth box was assigned as positive ‘foreground’ labels or otherwise nega-

tive ‘background’ labels. Additional negative boxes with the next highest overlap

were assigned as positive labels if there were fewer than 16 positive labelled boxes.

The log loss function, softmax activation function, smooth L1 loss function and

linear activation function was again used to calculate the classification and local-

isation errors of the DN, where each loss function was also associated to its own

FC layer. NMS was applied again using a 60 per cent threshold to reduce the

number of overlapping boxes until 100 boxes or fewer remained per class. The

weights and biases in the FC layers were also trained via BP and SGD7. We note

that classification error was measured by comparing the assigned label of each

box with the label of the ground truth box whilst localisation error was measured

by calculating the difference between the pixel coordinates, height and width of

the positive labelled boxes with the ground truth box.

Finally, since we decided to adopt a joint end-to-end training approach we

could instead combine the loss functions of the RPN and DN into one multi-

tasking loss function (Huang et al., 2016) to train the algorithm rather than

training the RPN and DN separately. This is more computationally efficient as

it simultaneously takes into account of all the prediction errors for the proposed

boxes with the ground truth boxes. Therefore, the total loss of the algorithm

was represented as the weighted sum of the objectness/classification and box

regression losses. This multi-tasking loss function is described via the following

equation:
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L({pi}, {ti}) = α
1

N

∑
i

Lcls(pi, p
∗
i )

+β
1

N

∑
i

p∗iLreg(ti, t
∗
i ),

(2.3)

where i is the proposed box index number in each mini-batch, pi is the pre-

dicted probability of a proposed box, ti represents the height, width, centre x

and y coordinates of a proposed box, α and β are balancing weights for the ob-

jectness/classification and regression terms where α = 1 and β = 2, p∗i signifies

whether the proposed box has a positive or negative label, t∗i is the height, width,

centre x and y coordinates of the ground truth box and N is the number of an-

chors used for calculating this loss function in each mini-batch. In addition, Lcls

is objectness/classification loss and p∗iLreg is box regression loss for only positive

labelled boxes.

2.2.2 Galaxy cluster catalogue sample and image prepro-

cessing

The WHL12 catalogue applied the friends-of-friends grouping algorithm (Huchra

& Geller, 1982) on astrometry, photometry and distance data from the Sloan

Digital Sky Survey Data Release 8 (SDSS-III DR8, Aihara et al. 2011) to detect

clusters. They identified 132684 clusters in the redshift range of 0.05 ≤ z <

0.8, where the resultant catalogue used Monte Carlo simulations to obtain an

estimated completeness of greater than 95 per cent for detecting clusters with

mass greater than 1.0× 1014 M� inside an r200 radius9 and in the redshift range

of 0.05 ≤ z < 0.42. We used Abell clusters that were identified by the WHL12

catalogue to obtain the labelled data needed to create a training set. We chose

the Abell clusters because our technique uses visual inspection of images in a

9r200 is the radius at which the mean density of the cluster is 200 times greater than the
critical density of the Universe.
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similar manner to that performed by George Abell and is therefore appropriate

for this proof-of-concept work.

We did not train the Faster R-CNN algorithm on the entire WHL12 catalogue,

as this was a pilot study to test the applicability of the Faster R-CNN algorithm

at detecting clusters on a sample set. We utilised photometric redshift values

that were estimated by the WHL12 catalogue as the photometric redshift of the

Abell clusters. From which, we limited the photometric redshift range of clusters

to 0.1 < z < 0.2, as we wanted to maximise the signal-to-noise available and

avoid nearby clusters that could fill the field-of-view. We set a N200 threshold of

more than 20 observed galaxy members inside r200 to limit the number of poorly

populated clusters, which may have a lower signal-to-noise. From applying these

constraints, we obtained a sample set of 497 Abell clusters. We also utilised clus-

ter richness values that were estimated by the WHL12 catalogue as the richness

of the Abell clusters, where richness was originally defined by Wen et al. (2012)

via the following equation:

RL∗ =
L200

L∗
, (2.4)

where RL∗ is the cluster richness, L200 is the total r-band luminosity of galaxy

members within r200 and L∗ is the typical luminosity of galaxies in the r-band.

We note that the brightest cluster galaxy (BCG) is a giant elliptical galaxy

that is usually located in the vicinity of the spatial and kinematic centre of a

cluster (Stott et al., 2008). We converted the right ascension (RA) and declina-

tion (Dec) of the BCGs, that had been determined by the WHL12 catalogue, to

pixel coordinates. We adopted these pixel coordinates as the centre coordinates

for the ground truth boxes. We also set a box size that had dimensions of ap-

proximately 250 kpc around the centre coordinates at each cluster’s photometric

redshift (i.e. box length and width of 500 kpc), where the box size dimensions

roughly corresponded to the optical core radius of clusters (Girardi et al., 1995).

We also restricted Dec to be greater than 0 degrees in order to reduce the amount

of data near the galactic plane, where there is a higher concentration of stars that

may introduce significant foreground contamination.
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The imaging camera on the SDSS telescope has a pixel size scaling of 0.396

arcsec pixel−1. The SDSS telescope utilises five broadband imaging photometry

filters that are referred to as u, g, r, i, z. These photometry filters cover a

wavelength range of approximately 3000 to 11000 Å (Fukugita et al., 1996). We

decided to use the g, r, i filters but not the u and z filters, as the filter response

of the SDSS telescope is poorer at these wavelengths. We fixed each image size

to 2000 × 2000 pixels (approximately 1443 × 1443 kpc at redshift z = 0.1 and

2588 × 2588 kpc at redshift z = 0.2) to capture the wider context in an image.

It should be noted that the Faster R-CNN algorithm also intrinsically lowers the

resolution of input images to a user-defined fixed dimensionality of 1000 × 1000

pixels for computational efficiency.

To make our wide-field colour images, we first ensured that the images10

taken from the publically available Sloan Digital Sky Survey Data Release 9

(SDSS-III DR9, Ahn et al. 2012) were set to the same scaling and aspect ratios.

We then stacked the g, r, i filter images to RGB channels and applied a non-

linear transformation to ‘stretch’ each image channel, where we experimented

with linear, square root and logarithmic transformations. The transformations

were responsible for adjusting the contrast of images within lower and upper

flux limits after mapping the images onto an apparent brightness scale. These

procedures helped to reduce background noise, dim extremely bright objects as

well as make stars and galaxies more distinguishable. From which, we found that

applying the square root function was better for visualizing galaxy structure and

colour. This benefits the Faster R-CNN algorithm by decreasing the learning

complexity of the features.

In Ren et al. (2015), it is stated that one of the properties of the Faster R-

CNN algorithm is translational invariance, which means the algorithm should be

robust at finding translated objects. Although, to ensure that the algorithm did

not learn positional bias we exposed the algorithm to clusters that were situated

at random image positions. Firstly, we applied a uniform random offset to the

coordinates of clusters which resulted in an even spread of cluster positions across

all images, where a cluster could be found anywhere within 270 arcseconds of the

10The imaging data for SDSS-III DR9 can be found via NASA’s SkyView (http://skyvie
w.gsfc.nasa.gov) online database (McGlynn et al., 1998).
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x and y planes from the image centre. We applied this random offset to images in

the sample set an additional three times, which increased the size of the sample set

to 1988. This also introduced additional negative boxes for the algorithm to learn

since each image contained a slightly different background. Secondly, we allowed

the algorithm to horizontally flip images during training, where each image had

a 50 per cent chance of being flipped. This approach can double the size of the

training sample if all images are flipped once but this approach does not affect

the size of the testing sample. Since clusters can be observed from any orientation

in an image, we found these augmentation techniques to be appropriate.

We performed hold-out validation on the sample set to create a training set

and a test set, which are approximated representations of the full population.

The training set was made up of ∼90 per cent of clusters (i.e. 1784 clusters) from

the sample set and the test set was made up of the remaining ∼10 per cent (i.e.

204 clusters). In Figure 2.2, we show the astronomical coordinates for clusters

in the training and test sets as well as the astronomical coordinates for all the

clusters in the WHL12 catalogue. In Figure 2.3, we show distributions of the

photometric redshift, r-band magnitudes for BCGs and richness of clusters in the

training set. Lastly, in Figure 2.4, we show the distribution of cluster positions

in images from the training and test sets.

2.3 Results

2.3.1 Model analysis with test set

We trained our model with graphics processing unit (GPU) support for a max-

imum of 25000 steps to ensure the algorithm had enough training time to suffi-

ciently learn to minimise prediction errors. We note that the number of steps is a

tunable hyper-parameter that can shorten or extend the run-time of model train-

ing. In Figure 2.5, we found that the algorithm generalised well as the total loss

stabilised at approximately 3000 steps, where a step represents one iteration per

mini-batch size of one from the dataset through the algorithm. For a competent

model, the total loss should not fluctuate significantly during training.
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Figure 2.2: This figure displays a map of astronomical coordinates using the
J2000 epoch system of clusters in the training set (red pentagons), test set (black
squares) and full WHL12 catalogue (green circles).
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Figure 2.3: This figure displays the distributions of properties for clusters in the
training set. This includes the photometric redshift, r-band magnitude of the BCG
and richness (from top to bottom row respectively).
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Figure 2.4: This figure displays the distribution of cluster positions in images from
the training set (top row) and test set (bottom row). The points were determined
by calculating the difference in arcseconds between the uniform random offset and
the true coordinates of the clusters at their respective photometric redshift.
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Figure 2.5: This figure displays the total loss (see Equation 2.3) which considers
the objectness/classification and localisation errors of clusters in the test set during
training. We stopped model training after 7458 steps since the total loss appeared
to stabilise, where each point represents the total loss recorded at different step
intervals. The values of these points can be found in Table A1.
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We could also examine the training performance of the RPN and DN via their

respective loss functions, where we measured the objectness and box regression

loss in the RPN as well as the classification and box regression loss in the DN. Ob-

jectness/classification loss measured whether boxes were likely to contain ground

truth objects whilst box regression loss measured the exactness of the dimen-

sions between the positive labelled boxes and ground truth boxes. We note that

smaller loss values indicated that prediction values were becoming more similar

to the ground truth values. In Figure 2.6, we found that each of the losses also

eventually stabilised at approximately 3000 steps, where the RPN appeared to be

better generalised than the DN since there were fewer fluctuations in the losses at

higher steps, in particular for the objectness/classification losses. This could be

explained by two possible reasons: either the training was suited for identifying

generic ‘cluster-like’ structures in images but improvements could be made to

enhance the final classification of clusters, or we needed to allow our model to

train for more steps.

We note that the Abell clusters in the test set had appeared in the training

set too but since the image positions of the clusters and their surrounding image

environments had been shifted, we assumed the images to be somewhat unique.

This would be a useful test of the localisation performance of our model.

To evaluate our model we used common metrics such as precision, recall and

F1 score (Goutte & Gaussier, 2005). Although, we did not measure the model

performance on true negatives, since there were many other astronomical objects

aside from clusters to consider in the images. We expected that finding a cluster

would be relatively rare due to stars, galaxies and image artifacts populating

the field-of-view. From which, our approach only searched for clusters rather

than attempting to classify all objects, such that we treated any other object

as non-clusters. The final output of our model was a ‘confidence’ score that

was generated for every proposed box, where a high confidence score meant a

high probability of an object being a ‘real’ cluster. We aimed to determine a

threshold for the confidence score that returned high precision and high recall

ratios. This involved running our model on the test set using different confidence

score thresholds to examine the number of true positives (TP), false positives

(FP) and false negatives (FN) returned.
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Figure 2.6: This figure displays training losses of the RPN and the DN are
represented in (a), (b), (c) and (d). Where (a) displays the RPN objectness loss,
(b) displays the RPN box regression loss, (c) displays the DN classification loss and
(d) displays the DN box regression loss. The training of the model was stopped
after 7458 steps when the total loss had minimal fluctuations, see Figure 2.5. The
value for each point in (a),(b),(c) and (d) can be found in Table A1.
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We also aimed to define a distance threshold by calculating a linear distance

between the predicted and ground truth centre coordinates, where the predicted

cluster centre was assumed to be at the same redshift as the ground truth cluster

centre. We would only apply this distance threshold during the model analysis,

as we wanted to distinguish whether a predicted object should be considered as

a TP or FP detection in order to assess classification and localisation errors.

We note that TPs refers to the number of proposed boxes that score greater

than the confidence score threshold and has a predicted centre within the distance

threshold of the ground truth centre. FPs refers to the number of proposed

boxes that score greater than the confidence score threshold but does not have a

predicted centre within the distance threshold of the ground truth centre. FNs

refers to the number of ground truth clusters without a successful prediction

above the confidence score threshold within the distance threshold.

We calculated the precision and recall ratios using the number of TPs, FPs

and FNs for each confidence score threshold. Precision (also known as purity) is

a ratio that considers the total number of ground truth objects returned by our

model when compared with the total number of predictions, where precision is

described via the following equation:

Precision =
TP

TP + FP
. (2.5)

Recall (also known as completeness) considers the total number of ground

truth objects returned by our model when compared with the total original num-

ber of ground truth objects, where recall is described via the following equation:

Recall =
TP

TP + FN
. (2.6)

Precision-Recall (PR) curves are typically used as visual tools to examine the

performance of a model, especially when a class population imbalance exists in

a dataset (Davis & Goadrich, 2006). We note that each point on a PR curve

refers to the precision and recall ratio at a specific cut-off threshold. We explored

eleven cut-off thresholds for confidence scores ranging from 0 to 100 per cent to

calculate the corresponding F1 score at each confidence score threshold.
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Figure 2.7: This figure displays colour images (a), (b) and (c) of three different
Abell clusters from the test set. The J2000 coordinates for each cluster are as fol-
lows: (a) RA: 222.78917 and Dec: 14.61203, (b) RA: 180.19902 and Dec: 35.58229
and (c) RA: 137.49464 and Dec: 60.32841. The predicted confidence scores and
properties for the clusters in (a), (b) and (c) can be found in Table 2.1.

F1 score is the harmonic mean between the precision and recall ratios at each

confidence score threshold (Chase Lipton et al., 2014). We aimed to maximise

the F1 score for our model in order to find the optimal balance between precision

and recall, where F1 score is described via the following equation:

F1 Score = 2

(
Precision x Recall

Precision + Recall

)
(2.7)

We also analysed three individual clusters (a), (b) and (c) in the test set that

had contrasting predicted confidence scores. The colour images of these three

clusters can be seen in Figure 2.7. From Table 2.1, we found that (c) had the

lowest confidence score, whilst (a) had the highest. This was likely because even

though (c) had a high richness value, it was at a higher redshift which meant

its galaxies would appear fainter. Additionally (b) had a lower richness than (c)

but it was estimated to have a higher confidence score, this was likely because

it was at a lower redshift. This indicated that clusters at a lower redshift with

brighter galaxies were more likely to receive higher confidence scores than their

fainter counterparts at higher redshift. However, it seemed that a cluster would

also need to have high richness in order to achieve a very high confidence score.

As a demonstration of our model, we chose a confidence score threshold of 80 per

cent for the remainder of this subsection.

Furthermore, we investigated how the environment (actual or contaminants)

48



2.3 Results

ID Confidence
Score (%)

Photometric
Redshift

r-band Magnitude of the
BCG

Richness

(a) 98 0.1474 14.99 78.49
(b) 51 0.1303 16.19 35.90
(c) 20 0.1875 16.73 58.44

Table 2.1: This table displays the predicted confidence scores and properties of
each cluster in Figure 2.7.

surrounding a cluster in an image can influence the detections by our model.

We visually inspected multiple high-scoring candidate clusters from four different

images in the test set. In Figure 2.8, we observed a predicted candidate cluster

that lies at a linear distance of 88 kpc from the ground truth centre, where we

assumed that the predicted galaxy was at the same redshift as the ground truth

galaxy when calculating the linear distance. We observed that multiple possible

candidate galaxies could be classified as the BCG of the cluster. Since we trained

our model to predict a BCG as the cluster centre, we would expect one of the

galaxies in Figure 2.8 to be chosen. However, we found that our model was unable

to definitively determine the ground truth cluster centre if there were multiple

BCG-like galaxies close together within an image, such as in the event of an

on-going cluster merger. Instead our model found an average position of the

galaxies, which is likely more appropriate for such systems. Wen & Han (2013)

developed an approach to determine the dynamical state of a cluster based on

astrometry, photometry and distance data to quantify a relaxation parameter

‘Γ’, which considered factors such as morphological asymmetry, ridge flatness

and normalised deviation. They defined the relaxation parameter for Γ ≥ 0 as

representing a relaxed cluster state and Γ < 0 as an unrelaxed cluster state,

such that a more positive/negative value would imply a more relaxed/unrelaxed

dynamical state respectively. We cross-matched the cluster in Figure 2.8 with

Wen & Han (2013), which suggested that the cluster was in a very unrelaxed

dynamical state with a relaxation parameter value of Γ = −1.43±0.08 indicating

a possible on-going merger.

In Figure 2.9, we found another predicted candidate cluster that lies at a linear

distance of 158 kpc from the ground truth centre. We used spectroscopic measure-
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Figure 2.8: This figure displays the ground truth and predicted centre coordi-
nates, where there is a linear separation of 88 kpc with respect to the photometric
redshift of z = 0.1788 for the ground truth cluster. The J2000 coordinates of the
ground truth cluster is RA: 191.85623 and Dec: 35.54509.

ments from SDSS/Baryon Oscillation Spectroscopic Survey (BOSS, Eisenstein

et al. 2011) to determine the spectroscopic redshift of the galaxies. We identified

the spectroscopic redshift of the predicted ‘BCG’ as z = 0.15765 ± 0.00003 and

the spectroscopic redshift of the ground truth BCG as z = 0.19282 ± 0.00003.

This meant that while the galaxies are in the same line-of-sight, they are likely

not part of the same gravitationally-bound system. From which, our model was

unable to determine the ground truth BCG since the predicted BCG-like galaxy

had stronger visual features and was at a lower redshift.

We found that our model identified two BCG-like galaxies in Figure 2.10 as

potentially two separate cluster centres that were within each other’s respective

optical core radius. One of the two candidate objects had a predicted centre

coordinate that was nearby to the ground truth centre whilst the other object

was further at a linear distance of 220 kpc away. We found the spectroscopic

redshift of the predicted ‘BCG’ to be z = 0.16209 ± 0.00002 whilst the ground

truth BCG had a spectroscopic redshift of z = 0.15990 ± 0.00002. We cross-

matched this cluster with Wen & Han (2013), which suggested the cluster had a

relaxation parameter value of Γ = −0.61 ± 0.09. This value implied the cluster
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Figure 2.9: This figure displays the ground truth and predicted centre coordi-
nates, where there is a linear separation of 158 kpc with respect to the photometric
redshift of z = 0.1618 for the ground truth cluster. The J2000 coordinates of the
ground truth cluster is RA: 161.20657 and Dec: 35.54042.

was in an unrelaxed dynamical state but to a lesser extent than the cluster seen

in Figure 2.8, such that this cluster was not experiencing an on-going merger but

was likely in a possible pre-merger or post-merger state.

In Figure 2.11, we found that our model was able to detect a cluster candidate

which was far from the ground truth centre at a linear distance of 1163 kpc. We

noticed that the predicted centre was located on top of a BCG-like object. We

found the spectroscopic redshift of the predicted ‘BCG’ to be z = 0.10608 ±
0.00002 and the ground truth BCG spectroscopic redshift to be z = 0.14551 ±
0.00003. This indicated that the two objects were clearly physically unrelated,

therefore we identified the candidate object as a separate cluster. Using the

NASA/IPAC Extragalactic Database11, we cross-matched this cluster candidate

as ‘MSPM 08519’ with a heliocentric redshift of z = 0.1055 in the Smith et al.

(2012) galaxy groups and clusters catalogue.

We decided that an appropriate distance threshold value would be between

88 and 158 kpc based on the predictions in Figures 2.8 and 2.9. We noticed at

11The NASA/IPAC Extragalactic Database (NED) is operated by the Jet Propulsion Lab-
oratory, California Institute of Technology, under contract with the National Aeronautics and
Space Administration.

51



2.3 Results

Figure 2.10: This figure displays the ground truth and predicted centre coordi-
nates (the one that does not overlap directly with the ground truth), where there is
a linear separation of 220 kpc with respect to the photometric redshift of z = 0.1603
for the ground truth cluster. The J2000 coordinates of the ground truth cluster is
RA: 353.35867 and Dec: 9.42395.

these distances, the detections were visually far enough apart to cleanly constrain

probable individual clusters from potential cluster mergers and line-of-sight over-

lapping clusters. This helped us to differentiate between cases of TP and FP

detections in our model analysis. From which, we selected a distance threshold

of 100 kpc for the remainder of this work.

For example, in Figures 2.10 and 2.11 we observed secondary detections made

by our model. We would categorise these as FP detections, since the detections

did not satisfy our set criteria for TPs. However, we note that FPs could also

be actual clusters, such as is the case for Figure 2.11. This implied that FPs

may consist of candidate clusters that need further verification or require cross-

matching to existing cluster catalogues, where it would not be inappropriate to

label these FP detections as new cluster candidates. Although, in Figure 2.9, we

found that no successful detections were made on the ground truth cluster within

the distance threshold. We would categorise this ground truth cluster as a FN

whereas the detection would be categorised as a FP. This suggested that FNs may

consist of clusters that do not appear to have an obvious overdensity of galaxies
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Figure 2.11: This figure displays the ground truth and predicted centre coor-
dinates (the one that does not overlap directly with the ground truth), where
there is a linear separation of 1163 kpc with respect to the photometric redshift
of z = 0.1368 for the ground truth cluster. The J2000 coordinates of the ground
truth cluster is RA: 186.96341 and Dec: 63.38483.
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Confidence
score

threshold
(%)

# TP # FP # FN Precision Recall F1
Score

0 203 60997 1 0.003317 0.9951 0.006612
10 198 538 6 0.2690 0.9706 0.4213
20 197 391 7 0.3350 0.9657 0.4975
30 193 302 11 0.3899 0.9461 0.5522
40 191 243 13 0.4401 0.9363 0.5987
50 188 202 16 0.4821 0.9216 0.6330
60 181 163 23 0.5262 0.8873 0.6606
70 177 119 27 0.5980 0.8676 0.7080
80 165 72 39 0.6962 0.8088 0.7483
90 136 29 68 0.8242 0.6667 0.7371
100 0 0 204 0.00 0.00 0.00

Table 2.2: This table displays the total number of TPs, FPs and FNs returned
by our model on images from the test set, where the precision, recall and F1 score
ratios were calculated for each confidence score threshold.

and do not contain distinctive BCG-like galaxies. These findings contribute to

how distinguishable clusters would appear at the output of the Faster R-CNN

algorithm.

In Figure 2.12, we observed that high precision diminishes recall and high

recall diminishes precision, where a low precision ratio would result in a large

number of unverified candidate objects whilst a low recall ratio would result in

many known clusters not being detected. From Table 2.2, we noticed that an 80

per cent confidence score threshold had the greatest F1 score, which indicated

that this confidence score threshold was the most effective at balancing precision

and recall for cluster detections in the test set.

We subsequently analysed the linear distance between all of the predicted

centre coordinates from the ground truth centre using an 80 per cent confidence

score threshold. We note that when we were initially deciding on an appropriate

distance threshold value, we disregarded any detection further than 250 kpc from

the ground truth centre from being considered as a TP prediction, since the

detection would lie outside the optical core radius. In Figure 2.13, we found that
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Figure 2.12: This figure displays the precision versus recall ratios from the test
set, where each point represents the ratios at different confidence score thresholds.
The values of each point can be found in Table 2.2. We did not include the precision
and recall ratio for the 100 per cent confidence score threshold, as it provided no
conclusive evaluation of the model performance.
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only a minority of ground truth clusters had predicted centre coordinates near to

250 kpc, whereas a distance threshold of 100 kpc contained 70 per cent of all of

the predictions and returned 81 per cent of the total ground truth clusters in the

test set when using an 80 per cent confidence score threshold.

We calculated the standard error of regression (i.e. root mean squared error)

for position estimates by our model to determine the average difference between

the predicted and ground truth centre coordinates, where the standard error of

regression is described via the following equation:

σestimate =

√∑
(Y − Y ′)2

N
, (2.8)

where σestimate is the standard error of regression, Y is the ground truth value,

Y
′

is the predicted value and N is the number of estimates (L. McHugh, 2008).

We obtained a σestimate value of 17.42 kpc for TP predictions in the test set.

We could also estimate a 95 per cent confidence interval for all predicted centre

coordinates to be approximately within ±1.96 × σestimate√
N

of ground truth centre

coordinates (Altman & Bland, 2005).

In Figure 2.14, we visually compared the positions of detected ground truth

clusters from the test set with their original locations in Figure 2.4. We found that

our model did not show bias towards any particular location in an image. This

suggested that the uniform random offset in §§2.2.2 was effective at constraining

positional bias.

In Figure 2.15, we compared the photometric redshift, r-band magnitude of

the BCG and richness distributions of detected ground truth clusters with their

original distributions from the test set. We aimed to determine whether our

model exhibited bias towards any of these properties. From which, we performed

a two sample Kolmogorov-Smirnov (KS) test (Smirnov, 1939) to test whether

the original and detected distributions violated the null hypothesis. Since the

KS test is non-parametric, the distributions did not need to have normality. We

calculated test statistic values of 0.06275, 0.07335 and 0.02193 for the photometric

redshift, r-band magnitude of the BCG and richness distributions respectively.

We set α = 0.05 as the level of significance to obtain a critical value of 0.1281

(see Equation 3.1 in Gail & Green (1976)). Since the test statistic values were
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Figure 2.13: This figure displays the distribution of the linear distance between
predicted and ground truth centre coordinates in test set images when using an 80
per cent confidence score threshold for all predictions (top row) and all predictions
within the distance threshold (bottom row).
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Figure 2.14: This figure displays a comparison of the centre coordinate offset
between detected ground truth clusters (red circles) and the original list of uniform
random offset values (blue circles) of ground truth clusters in the test set from
Figure 2.4.
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smaller than the critical value at α = 0.05, we cannot reject that the original and

returned distributions were statistically the same.

2.3.2 Comparison to redMaPPer galaxy clusters

The redMaPPer catalogue detected clusters by using the red-sequence fitting

technique on the photometric data of individual galaxies to search for a dis-

tinctive red-sequence with their nearby line-of-sight galaxies in colour-magnitude

space. Rykoff et al. (2014) also applied their method to galaxies in SDSS-III

DR8, to create a catalogue of ∼25, 000 candidate clusters in the redshift range of

0.08 < z < 0.55. We reapplied the same testing constraints as used in §§2.2.2 on

the redMaPPer clusters, where these clusters must be in the photometric redshift

range of 0.1 < z < 0.2. We did not need to apply an observed galaxy count con-

straint to the redMaPPer clusters since the redMaPPer catalogue by default only

contained clusters with at least 20 member galaxies12. In Figure 2.16, we locate

a 105 square degree region that contains 31 clusters identified by the redMaPPer

algorithm. We note that this region did not contain any clusters from our train-

ing or test sets in the photometric redshift range of 0.1 < z < 0.2. We used these

redMaPPer clusters to create a redMaPPer test set for examining the localisation

and classification performance of our model on unseen clusters.

We adopted the same procedure from §§2.2.2 to generate wide-field colour

images of redMaPPer clusters. We subsequently applied our model on these

images as well as reutilising the precision, recall and F1 score evaluation metrics.

In Figure 2.17, we observed a precision and recall trade-off that is similar to

Figure 2.12, where precision increased with larger confidence score thresholds

whilst recall decreased. From Table 2.3, we found that a 70 per cent confidence

score threshold had the greatest F1 score. This suggested that our model had not

overfit since it performed better on an unseen dataset, where this confidence score

threshold was smaller than the 80 per cent confidence score threshold in §§2.3.1.

We note that using a smaller optimal confidence score threshold would increase

the number of detected objects whilst still retaining high precision and recall.

12We note that Rykoff et al. (2014) did not define galaxy members within r200 but instead
from an optical radius cutoff that scaled with the number of galaxies found via percolation.
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Figure 2.15: This figure displays the distributions of properties from the original
(blue fill) and detected ground truth clusters (red fill) in the test set when using an
80 per cent confidence score threshold. In particular, the histograms present the
photometric redshift, r-band magnitude of the BCG and richness of clusters (from
top to bottom row respectively).
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Figure 2.16: This figure displays a map of astronomical coordinates using the
J2000 epoch system for clusters in the training set (red pentagons), test set (black
squares) and redshift filtered redMaPPer catalogue (cyan circles). We highlight
the region (purple dashed lines) of clusters in the redMaPPer test set, which were
not already part of the training set or test set.
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Confidence
score

threshold
(%)

# TP # FP # FN Precision Recall F1
Score

0 30 9270 1 0.003226 0.9677 0.006430
10 29 50 2 0.3671 0.9355 0.5273
20 29 29 2 0.50 0.9355 0.6517
30 29 23 2 0.5577 0.9355 0.6988
40 28 18 3 0.6087 0.9032 0.7273
50 28 14 3 0.6667 0.9032 0.7671
60 28 11 3 0.7179 0.9032 0.80
70 27 8 4 0.7714 0.8710 0.8182
80 23 4 8 0.8519 0.7419 0.7931
90 17 0 14 1.00 0.5484 0.7083
100 0 0 31 0.00 0.00 0.00

Table 2.3: This table displays the total number of TPs, FPs and FNs returned
by our model on images from the redMaPPer test set, where the precision, recall
and F1 score ratios were calculated for each confidence score threshold.

When using a 70 per cent confidence score threshold, we obtained a σestimate

value of 12.33 kpc for TP detections in the redMaPPer test set.

We attempted to follow-up the FP detections from the redMaPPer test set

images by cross-matching the FP detections with the redMaPPer and WHL12 cat-

alogues. For this task, we used the 70 per cent confidence score threshold, which

had eight FP detections as seen in Table 2.3. To perform the cross-matching,

we applied a wider photometric redshift constraint range of 0.05 < z < 0.4 to

clusters in the redMaPPer and WHL12 catalogues. We also utilised a ∼1.61 ar-

cminute radius for the predicted RA and Dec coordinates, which corresponded

with the optical core radius of 250 kpc for a cluster at redshift z = 0.15, when

searching through the catalogues. From which, we found that none of the FP de-

tections matched with existing clusters in the redMaPPer catalogue. Although,

we identified three FP detections as existing clusters in the WHL12 catalogue.

This indicated that our model was capable of detecting clusters that had not

been drawn from the same sample as the training set. The remaining five FP

detections did not match with any known clusters in the redMaPPer and WHL12
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Figure 2.17: This figure displays the precision versus recall ratios from the
redMaPPer test set, where each point represents the ratios at different confidence
score thresholds. The values of each point can be found in Table 2.3. Similar to
Figure 2.12, we did not include the precision and recall ratios for the 100 per cent
confidence score threshold, as it again provided no conclusive evaluation of the
model performance.
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catalogues but these may exist as known clusters in other cluster catalogues.

2.4 Discussion

2.4.1 Limitations of our model

Feature engineering is a key process for increasing computational efficiency as

well as aid in improving the predictive performance of a deep learning model. In

this work, we applied constraints to the training set to reduce the complexity of

visual features. For example, we used Abell clusters which intrinsically contained

a minimum of 50 galaxies within a 1.5 h−1 Mpc radius of the cluster centre (Abell,

1958). This meant that these clusters would have strong signal-to-noise and were

likely to be real gravitationally bound clusters. However, not all Abell clusters

had been verified as actual clusters, so one limitation of our approach is that our

model is reliant on Abell clusters that were cross-matched with clusters in the

WHL12 catalogue for training data. We note that Wen et al. (2012) used Monte

Carlo simulations to determine a false detection rate of less than 6 per cent for the

entire WHL12 catalogue. This is important for our model, where a higher false

detection rate would lower the overall predictive power of our model because the

training data would contain a higher proportion of contaminants that should not

be classified as clusters. Similarly, this effect would influence the results yielded

from the test set, as it would not give a true indication of how well our model

detects clusters. Although, since we had a relatively large training set, it was

impractical to directly check for contaminants in every image as well as perform

spectroscopic follow-up of all ground truth cluster members. We must therefore

assume that the Abell clusters in the WHL12 catalogue are actual clusters. In

future work, it would also be important to account for astrometry errors in RA

and Dec coordinates of clusters in the WHL12 catalogue, since we used these

coordinates for our ground truth centre coordinates.

As with all deep learning algorithms, there are hyper-parameters that re-

quire either minor or extensive fine tuning depending on the task at hand. The

main hyper-parameters of the Faster R-CNN algorithm include the learning rate,
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momentum, gradient clipping threshold, mini-batch size, number of layers, num-

ber of neurons in each layer and architecture. However, to fully optimise every

hyper-parameter would be computationally expensive without an efficient tuning

strategy. For this work, we relied on the usage of transfer learning for partial

optimisation of the hyper-parameters in our deep learning model. We had mostly

adopted the defaulted values set for these hyper-parameters from the pre-trained

model. From which, we show that the model is still capable of being adapted

to perform generalised object detection of clusters. Although, in future work

it would be valuable to explore hyper-parameter tuning of the Faster R-CNN

algorithm for conducting cluster detection.

We adopted a specific methodology when generating all of our wide-field colour

images. This involved using the same contrasting, image aspect and image scal-

ing ratios for computational efficiency. From which, all future input images to

our model will be somewhat restricted to using the same image pre-processing

techniques in order to obtain maximum performance. However, this may cre-

ate a trade-off between computational efficiency and bias from our image pre-

processing. In future work, it would be beneficial to examine the effects from

applying different image pre-processing constraints. We could also investigate

whether applying additional image augmentation techniques (e.g. image rota-

tion, vertical flipping) can increase the predictive performance of our model,

where Perez & Wang (2017) showed that using simple image transformations

(e.g. shifting, zooming, rotating, flipping, distorting, shading) can result in a

more robust model.

We performed hold-out validation on the sample set to form a training set

and a test set. However, this approach is limited to a simple approximation since

we observed an imbalance of the cluster properties in Figure 2.3. For instance,

we noticed that there were fewer lower redshift clusters compared to the number

of higher redshift clusters. This meant our model could overfit to cluster prop-

erties that appeared more frequently. In future work, we could perform k-fold

cross-validation or Monte Carlo cross-validation when splitting the sample set to

examine the effects from using different compositions of training and test sets.
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2.4.2 Future applications of this technique

LSST and Euclid are ideal surveys to apply our deep learning model to, as they

will be wider and deeper than any survey conducted before them. This will likely

result in the detection of many thousands of candidate high redshift or low mass

clusters that are currently undiscovered. We expect that this will be an iterative

process in practice when applying our model on these large datasets.

The Deep-CEE method will be of great use for confirming candidate clusters

detected by X-ray, SZ or weak gravitational lensing surveys, as they often have

many interlopers. In future work, we could also employ training sets that are

composed of clusters found via different cluster finding techniques. For example,

it would be interesting to compare clusters that are detected by a deep learning

algorithm with a training set of X-ray selected clusters versus a training set of

red-sequence fitting selected clusters. This may be a good way to test the various

biases of different cluster detection methods, which can filter through to any

cosmological predictions made with them.

In addition, our deep learning model could be adapted and applied to both

optical imaging and other cluster detection methods at the same time. For exam-

ple, we could train a multi-tasking algorithm to detect clusters from examining

red-sequence fits and/or X-ray images alongside optical images. This would cre-

ate a robust sample of clusters that are identified over a combination of different

cluster finding techniques.

Finally, in order to prepare for LSST and Euclid, it would be practical to

develop a data pipeline that is capable of processing the results from running our

model on the entirety of SDSS as well as perform cross-matching of FP detections

with existing cluster catalogues. This would be beneficial for constraining the

purity and completeness of our model, as we expect many FP detections are

likely to be actual clusters. In future work, we also aim to develop additional

models that can predict the properties of clusters, such as redshift and richness.

This will be vital for cataloguing the thousands of clusters discovered in upcoming

galaxy surveys as well as improving our criteria for distinguishing between TP,

FP and FN detections.
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2.5 Conclusion

We present Deep-CEE, a novel deep learning model for detecting clusters in wide-

field colour images and returning their respective RA and Dec. We used Abell

clusters that were found by the WHL12 catalogue as the ground truth labels in

images for our training and test sets. We trained our model to yield confidence

scores of whether objects were likely to be clusters. We considered detections

that had a predicted confidence score greater than a confidence score threshold

as cluster candidates. We determined an optimal confidence score threshold that

was based on the threshold value with the greatest F1 score. We initially found

that an 80 per cent confidence score threshold was optimal for finding clusters in

our test set, where we achieved a precision ratio of 70 per cent and a recall ratio

of 81 per cent13. We then found that a 70 per cent confidence score threshold was

the optimal threshold for detecting unseen clusters from the redMaPPer catalogue

as part of another test set, where we achieved a precision ratio of 77 per cent and

a recall ratio of 87 per cent. It should be noted that our precision ratios are

specific to the test sets, since we were aware that some FP detections were likely

to be actual clusters but we did not consider these as TP detections during our

analysis. We showed that our model did not overfit to clusters in the training set,

since we obtained a lower optimal confidence score threshold when we applied

the model to unseen clusters. This suggested that our model was suitable for

performing generalised object detection of clusters.

By applying Deep-CEE to upcoming wide-deep imaging surveys, such as LSST

and Euclid, we expect to discover many new higher redshift and lower mass clus-

ters. Our approach will also be a powerful tool when combined with catalogues

or imaging data from other wavelengths (e.g. X-ray and SZ surveys). It is hoped

that future cluster samples produced by Deep-CEE alone or in combination with

other cluster finding techniques will be well-understood and therefore applicable

for constraining cosmology as well as environmental galaxy evolution research. In

future work, we will build upon this model by developing methods to estimate the

13An ideal confidence score threshold would have a precision and recall ratio of 100 per cent.
(Tharwat, 2021)

67



2.5 Conclusion

properties of clusters (e.g. redshift and richness) in a similar manner to George

Abell many years ago.
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Chapter 3

Z-Sequence: Photometric

redshift predictions for galaxy

clusters with sequential random

k-nearest neighbours
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Abstract

We introduce Z-Sequence, a novel empirical model that utilises pho-

tometric measurements of observed galaxies within a specified search

radius to estimate the photometric redshift of galaxy clusters. Z-

Sequence itself is composed of a machine learning ensemble based on

the k-nearest neighbours algorithm. We implement an automated fea-

ture selection strategy that iteratively determines appropriate combi-

nations of filters and colours to minimise photometric redshift predic-

tion error. We intend for Z-Sequence to be a standalone technique but

it can be combined with cluster finders that do not intrinsically predict

redshift, such as our own Deep-CEE model. In this proof-of-concept

study we train, fine-tune and test Z-Sequence on publicly available

cluster catalogues derived from SDSS. We determine the photomet-

ric redshift prediction error of Z-Sequence via the median value of

|∆z|/(1 + z) (across a photometric redshift range of 0.05 ≤ z ≤ 0.6)

to be ∼ 0.01 when applying a small search radius. The photomet-

ric redshift prediction error for test samples increases by 30− 50 per

cent when the search radius is enlarged, likely due to line-of-sight

interloping galaxies. Eventually, we aim to apply Z-Sequence to up-

coming imaging surveys such as the Legacy Survey of Space and Time

to provide photometric redshift estimates for large samples of as yet

undiscovered and distant clusters.

Supplementary material for this chapter can be found in

2022chanphdchapter3supplementary.pdf
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3.1 Introduction

There are presently two approaches that are commonly used to determine galaxy

redshifts, these are through spectroscopy and photometry (e.g. Walcher et al.

2011; Piattella 2018). However whilst the former is precise it is also time-

consuming, expensive and difficult to perform for faint distant sources, which

limits the number of observations with spectroscopic redshifts. Alternatively,

photometric redshifts are fast to acquire and have been shown to be successful

for faint distant sources (e.g. Ilbert et al. 2009). Conventional methods to esti-

mate photometric redshift involve either empirical or template fitting algorithms.

Empirical algorithms learn the underlying relationships between observed bright-

ness, colour and spectroscopic redshift from a large training sample of galaxies

(e.g. Weinstein et al. 2004; Lopes 2007; Carrasco Kind & Brunner 2013; Bilicki

et al. 2018; Pasquet et al. 2019). Whilst, template fitting algorithms match ob-

served fluxes to theoretical spectral energy distributions of different galaxy types

at reference redshifts (e.g. Bolzonella et al. 2000; Babbedge et al. 2004; Gorecki

et al. 2014; Fotopoulou & Paltani 2018). Nevertheless, photometric redshifts tend

to have larger measurement errors than spectroscopic redshifts since photomet-

ric filters operate with low wavelength resolution, which means that individual

spectral features cannot be utilised to determine redshift.

Photometric redshifts are often employed by imaging surveys to provide initial

redshift estimates for many galaxies (e.g. Sánchez et al. 2014; Laigle et al. 2016;

Beck et al. 2016; Tanaka et al. 2018), of which sub-samples can be followed

up with spectroscopic redshifts. Similarly, it is important to develop models

that will provide researchers with accurate initial redshift estimates for large and

deep samples of the cluster population. In terms of predictive power for the

low to intermediate redshift regime, empirical algorithms with sufficient training

samples will generally outperform template fitting algorithms because template

fitting algorithms require more physical assumptions when constructing spectral

energy distributions to reflect possible observations. Whereas for the high redshift

regime, template fitting algorithms will typically outperform empirical algorithms

since high redshift training samples are more difficult to obtain due to observing

limitations (Salvato et al., 2019).
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In order to estimate redshifts for clusters, it is typically required to identify

cluster members within a given search area. This can be conducted by utilising

the red-sequence, which takes advantage of the fact that the red-sequence is

seen as a well-defined linear relationship in colour-magnitude space (CMS) that

evolves with redshift (Stott et al., 2009). From which, an empirical algorithm can

estimate photometric redshift based on the observed red-sequence. This involves

training an empirical algorithm to learn the redshifts from examples of known red-

sequences, such that the red-sequence of an unknown cluster can be interpolated

by the algorithm.

Additionally in order to break any colour-redshift degeneracies, where galax-

ies at different redshifts could have resembling colours, multi-dimensional CMS

should be employed to reduce the reliance on specific colours. For example, a

single colour that only utilises short wavelength optical filters would struggle to

detect the red-sequence of a high redshift cluster since the filters would be unable

to observe the redshifted 4000Å break14, which is a distinctive broad spectral

feature predominantly seen in the continuum spectrum of elliptical and lenticular

galaxies (Dressler & Shectman, 1987). By utilising more colours, it is possible

to straddle the 4000Å break to account for its transition at different redshifts

(Rykoff et al., 2014).

For this work, we aim to employ an automated feature selection strategy

that selects appropriate combinations of filters and colours in multi-dimensional

CMS. We intend for this feature selection process to be fully data-driven based

on observed galaxy photometry data, such that the selected features are effective

at minimising photometric redshift prediction error. This method also comes

with multiple practical benefits. Firstly, it is able to work with incomplete filter

sets, as it does not rely on any specific filter. Secondly, it does not depend on

galaxy photometric redshift catalogues. Thirdly, this approach can be combined

with cluster finders that do not naturally predict redshift, such as Deep-CEE,

since Z-Sequence only requires input astronomical coordinates and a photometry

catalogue to predict photometric redshift of clusters.

14The 4000Å break is caused by the blanket absorption of photons at specific wavelengths
from metals in the ionised atmospheres of old stellar populations (Kauffmann et al., 2003).
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We structure this chapter with the following layout. In §3.2 we outline our

methodology where §§3.2.1 describes our data pre-processing approach, §§3.2.2

describes our feature selection strategy plus machine learning algorithm and

§§3.2.3 describes how we train our model. In §3.3 we present our results where

§§3.3.1 describes the feature selection and filter magnitude-cut analysis, §§3.3.2

describes the hyper-parameter tuning and §§3.3.3 plus §§3.3.4 describes the tuned

model performance on test sets. In §3.4 we review our findings where §§3.4.1 dis-

cusses the effectiveness of the tuned model at making predictions and §§3.4.2

discusses the practicality of the machine learning techniques used in this work.

Finally, in §3.5 we summarise this work.

3.2 Methodology

3.2.1 Preparation of photometric datasets

We utilised candidate clusters that were detected in the SDSS-III DR8 by the

WHL12 and redMaPPer cluster catalogues as part of our training, validation

and test sets under a supervised learning approach. WHL12 used photometric

redshifts of galaxies estimated by SDSS to identify overdense regions of galaxy

clustering via the friends-of-friends grouping algorithm, in which a cluster red-

shift was calculated from the median value of determined cluster members. Whilst

redMaPPer searched for the red-sequence within CMS across the SDSS sky cov-

erage. The observed red-sequence profile of highly probable cluster members was

then fit with a self-trained model of template red-sequences to estimate cluster

redshift. It should be noted that the full WHL12 cluster catalogue has a pho-

tometric redshift range of 0.05 ≤ z ≤ 0.7846 and the full redMaPPer cluster

catalogue has a photometric redshift range of 0.0811 ≤ z ≤ 0.5983.

Initially, we applied two selection criterion to the WHL12 cluster catalogue

to identify clusters that had photometric redshifts between 0.0 < z < 0.6 and

also contained more than twenty observed member galaxies within an r200 radius.

This provided us with an approximation of the distribution of clusters found

at different redshifts. From which, we calculated a mean photometric redshift
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of z = 0.3127 based on the selected clusters. We used this mean photometric

redshift to determine an angular distance of 54.96 arcseconds, which corresponds

with the optical core radius of clusters of approximately 250 kpc. This angular

distance also corresponds to a radius of approximately 100 kpc at z = 0.1 and

334 kpc at z = 0.5. We then cross-matched the clusters from the full WHL12 and

redMaPPer cluster catalogues that were within 54.96 arcseconds and also within

a photometric redshift range of ±0.04(1 + z) as used by Wen et al. (2009)15.

This ensured that we cleanly separated clusters to improve signal-to-noise in

the dataset. The matching and non-matching clusters was then split into the

following three datasets:

• MWAR - Cross-matched WHL12 and redMapper clusters.

• WNMR - WHL12 clusters with no cross-matched redMapper clusters.

• RNMW - redMapper clusters with no cross-matched WHL12 clusters.

Next, we reapplied our initial two selection criterion to all the clusters in the

MWAR, RNMW and WNMR datasets. This split the clusters in each dataset into

distinctive redshift and richness groupings, which can be used to examine how the

Z-Sequence model performs on clusters that have these different properties. We

set clusters that had properties within the selection criterion limits as the main

training and test sets, whilst clusters that had properties outside the selection

criterion limits were used as additional test sets. From which, the number of

clusters within the selection criterion limits for the MWAR dataset was 8841

with a photometric redshift range of 0.0698 ≤ z ≤ 0.5986, the WNMR dataset

was 9723 with a photometric redshift range of 0.05 ≤ z ≤ 0.599 and the RNMW

dataset was 8646 with a photometric redshift range of 0.0811 ≤ z ≤ 0.5983. The

observed redshift distributions and positions of clusters from each dataset can be

seen in Figures 3.1 and SA1 (available online).

We proceeded to cross-match the astronomical coordinates of clusters in each

dataset to galaxies found in the SDSS-III DR9 photometric catalogue that were

15Wen et al. (2009) suggested that a photometric redshift gap of ±0.04(1 + z) is a suitable
indicator of true cluster richness, which corresponds to a rest frame velocity range of 24000 km
s−1 to account for the uncertainty of the photometric redshifts.
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Figure 3.1: This figure displays a frequency histogram of the ‘actual’ redshift
distributions of clusters, where photometric redshifts of clusters in the MWAR (blue
dashed line) and WNMR (green dotted line) datasets were originally estimated by
WHL12. Whilst the photometric redshifts of clusters in the RNMW (red dotted
line) dataset were originally estimated by redMaPPer.
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within the previously defined angular distance of 54.96 arcseconds. We selected

‘primary’ observations16 of galaxies that had ‘clean’ photometry as determined

by SDSS. This catalogue provided photometric measurements17 for the following

filters and colours:

• Filters: u, g, r, i, z,

• Colours: u-g, g-r, r-i, i-z , u-r, g-i, r-z, u-i, g-z, u-z,

where we used these filters and colours as our input features in §§3.2.2.

We assumed that any of the SDSS identified galaxies which lay along the line-

of-sight and within 54.96 arcseconds of the input astronomical coordinates were

part of the same cluster, from which we assigned each individual galaxy a cluster

ID number for cross-referencing. To reduce the number of interloped galaxies,

we empirically set multiple search radii of approximately 50, 100 and 150 kpc

at the mean photometric redshift of z = 0.3127, which corresponds to angular

distances of 10, 21 and 32 arcseconds respectively. The number of interlopers

also depended on the position accuracy of the input cluster coordinates relative

to the true cluster centroid. The reason we employed multiple search radii was

to ensure that if the smallest search radius did not find a galaxy in the SDSS-III

DR9 photometric catalogue, then the search radius would increase until a galaxy

was found. This also provided a test for the effectiveness of the algorithm when

given different views of the cluster core. It should be noted that this resulted in

multiple forms of the training/validation/test sets containing additional galaxies

in clusters found within each search radius.

We assigned the MWAR dataset as the training/validation sets and WNMR/RNMW

datasets as test sets. The redshift distributions of the clusters in these datasets

can be seen in Figure SA2 (available online) for each search radius. We chose

16The term ‘primary’ refers to the best imaging observation recorded for a survey object if
it was seen multiple times during an observing run in an SDSS plate, whilst other observations
of the object are called ‘secondary’. A more in-depth explanation can be found on http:

//www.sdss3.org/dr9/help/glossary.php
17SDSS ‘modelMag’ measurements were used for filter magnitudes and colours of galaxies.

This approach ensured the same aperture was used for all filters and the resultant magnitudes
were calculated based off the best-fit model parameters observed in the r-band. For further
details see http://www.sdss3.org/dr9/algorithms/magnitudes.php
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Filter LM LM-0.5 LM-1.0 LM-1.5 LM-2.0 LM-2.5
[mag] [mag] [mag] [mag] [mag] [mag]

u 21.6 21.1 20.6 20.1 19.6 19.1
g 22.2 21.7 21.2 20.7 20.2 19.7
r 22.2 21.7 21.2 20.7 20.2 19.7
i 21.3 20.8 20.3 19.8 19.3 18.8
z 20.7 20.2 19.7 19.2 18.7 18.2

Table 3.1: This table contains the SDSS limiting magnitude (LM) values of each
filter with specified magnitude-cuts. The LM values were determined from 95 per
cent completeness studies of point sources18. The filter magnitude values shown
were converted from the SDSS ugriz magnitude system (Lupton et al., 1999) to AB
magnitude system (Oke & Gunn, 1983). It should be noted that the SDSS ugriz
magnitude system is very similar to the AB magnitude system but not exact, such
that uAB = uSDSS − 0.04 and zAB = zSDSS + 0.02 (Abazajian et al., 2004).

the MWAR dataset as the training set since we expected that these clusters

were more likely to host a populated core, where the red-sequence would be

well-defined (Kodama et al. 1998; Gladders et al. 1998; Lidman et al. 2008; Mei

et al. 2009; Newman et al. 2014; Strazzullo et al. 2016) in comparison to clusters

in the WNMR/RNMW datasets, given the nature of the methods of WHL12

and redMaPPer. We aimed for our model to learn and utilise ‘red-sequence’-like

features found within high dimensional CMS to effectively predict photometric

redshifts across a broad redshift range.

Finally, we investigated how varying the brightness for filter magnitude-cuts

(see Table 3.1) could improve the accuracy of photometric redshift estimates, as

this would remove galaxies from the less well-defined faint end of the red-sequence

that had relatively large filter magnitude errors and filter magnitude values fainter

than a specified limiting magnitude18 value. In addition, we also compared the

performance of using filter magnitude-cuts to a control group dataset that had

no filter magnitude-cuts applied.

18Limiting magnitudes for the SDSS telescope were found by repeated observations of a patch
of sky to obtain a magnitude value that provided approximately 95 per cent completeness of
point sources (Strauss et al., 2002). See SDSS imaging camera scope at http://www.sdss3.or
g/dr9/scope.php for magnitude limits of each filter.
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3.2.2 Model techniques

3.2.2.1 Feature selection process

It should be noted that we had a total of 32767 possible combinations for the input

features (see the filters and colours described in §§3.2.1) that could be tested.

Due to the computational costs involved to examine all these combinations, we

decided to employ an automated feature selection technique known as Sequential

Forward Selection (SFS, Aha & Bankert 1995) to determine appropriate filters

and colours. This technique is a ‘greedy’ iterative strategy that builds a subset

of features via a bottom-up selection approach starting from an empty feature

subset. Each iteration evaluates the performance of feature combinations, where

SFS selects and stores the feature that best satisfies an objective function into

the empty feature subset. From which, we employed a multi-objective function

that checked if the following conditions were satisfied in each iteration of SFS:

• The following equation calculates the photometric redshift prediction error:

Ez =
|Pi − Ai|
(1 + Ai)

, (3.1)

where Ez is the photometric redshift prediction error for each tested clus-

ter, Pi is the estimated photometric redshift for each cluster and Ai is

the ‘actual’19 photometric redshift for each cluster. In Figure SA3 (avail-

able online), we show a direct comparison of the photometric redshifts for

cross-matched clusters from the WHL12 and redMaPPer cluster catalogues,

where both catalogues appear to be in good agreement.

• The median of photometric redshift prediction errors produced during an

iteration must be lower than the median of photometric redshift prediction

errors from the previous iteration to continue SFS iterations.

19This depended on which dataset was used as the photometric redshifts of clusters in the
MWAR and WNMR datasets were from the WHL12 cluster catalogue whilst photometric red-
shifts of clusters in the RNMW dataset were from the redMaPPer cluster catalogue.
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• Filter magnitude-cuts were used to remove galaxies fainter than a specified

magnitude threshold for each photometry filter to improve the signal-to-

noise of the datasets. This can result in clusters with no galaxies remaining.

We determined a percentage of clusters retained by counting the number

of clusters that had galaxies remaining, after filter magnitude-cuts were

applied, from the initial total in a dataset. From which, we set a threshold

for the percentage of clusters retained in the MWAR dataset must be equal

or greater than 95 per cent20 to continue SFS iterations.

In Figure 3.2, we show that the SFS strategy is a computationally efficient ap-

proach as it searches through a reduced number of possible combinations, where

all selected features are not included for reconsideration in subsequent SFS iter-

ations. The process continues until the objective function is no longer satisfied

with the remainder of the input features. We also compared the performance

of these features to a control group of features that were not selected with SFS,

where the control group features were g, r, i, g-r, r-i, g-i. We assumed that the

control group features would perform well since these filters and colours would

likely display ‘red-sequence’-like features over a wide range of redshifts in CMS

accounting for the shifting of the 4000Å break.

3.2.2.2 Machine learning algorithm

We adopted the sequential random k-nearest neighbours (SRKNN, Park & Kim

2015) algorithm as the foundation of our model. The SRKNN algorithm is an en-

semble (Dietterich, 2000) that aggregates multiple k-nearest neighbours (KNN,

Fix 1951; Cover & Hart 1967) models into one global model (see Figure 3.3).

The KNN algorithm is classed as a non-parametric learning method in the field

of machine learning that can be used for non-linear regression tasks. This means

that the algorithm has no pre-defined parameters to train, which is opposite to

parametric learning methods (e.g. weights in a neural network algorithm). Pre-

dictions for the KNN algorithm are produced by averaging the labelled values of

20A tolerable percentage of data purposely excluded from the dataset should be low, oth-
erwise systematic biases and sample misrepresentation induced by the missing data could be
introduced (Kang, 2013).
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Figure 3.2: This figure displays a simplified perspective of the SFS strategy. The
solid line with black arrows indicate the path taken by SFS to select features and
the dashed lines represent the boundaries of feature space. It can be seen that
as SFS progresses the feature space would shrink due to the reduced number of
possible outcomes, where SFS would continue until it converges on a set of features.
This diagram was inspired by Gutierrez-Osuna (2000).
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the nearest neighbour training data points to the input data points, where we

use the Euclidean distance metric21 to compute distances. The main characteris-

tics of the SRKNN algorithm involves bootstrap with replacement (Efron 1979;

Efron & Tibshirani 1986) of the training set and random initialisation of input

features to train each internal KNN model. These traits can improve the overall

accuracy of predictions as a greater variety of features would be considered for

each internal KNN model.

The SRKNN algorithm has three main hyper-parameter settings that should

be optimised before deployment. These hyper-parameter settings are listed as

follows:

• The number of internal KNN models (also equivalent to number of boot-

strap resamples used).

• The number of randomly initialised input features.

• The number of nearest neighbours.

Park & Kim (2015) suggested that the performance of the SRKNN algorithm

depends on the values assigned for each hyper-parameter setting, where the opti-

mal values would vary for different datasets. In §§3.3.2, we examined and tuned

each hyper-parameter setting with the MWAR validation set.

3.2.3 Outline of model training

Here, we describe the steps that were used to train and test our model for each

search radius. The key points are summarised as follows:

1. Candidate clusters from the WHL12 and redMaPPer cluster catalogues were

split into training, validation and test sets. The MWAR dataset was des-

ignated as the training/validation set (80:20 per cent split ratio), whilst

21It is known that distance comparisons in Euclidean space can become less effective with
increasing dimensionality as the distance ratios become more uniform (Aggarwal et al., 2001).
We note that other distance metrics such as cosine, Chi-squared, Manhattan and Minkowski
could also be utilised for computing distances in the KNN algorithm (Hu et al., 2016).
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Figure 3.3: This figure displays a schematic diagram of the SRKNN algorithm.
The solid lines with black arrows indicate the flow of input data to an ‘N’ number
of internal KNN models. In this example diagram, we used a red circle in each
internal KNN model to represent an input test data point, black squares represent
training data points and the green outline show the nearest neighbour training
data points from the input test data point. From which, the median of training
label values for the corresponding nearest neighbour training data points was used
as a prediction for an internal KNN model, where the global model prediction
was approximated with the median of predictions across all internal KNN models.
It should be noted that we utilised the Scikit-Learn machine learning library
(Pedregosa et al., 2011) to construct the SRKNN algorithm.
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the RNMW/WNMR datasets were used as test sets. Photometric measure-

ments of observed galaxies in the clusters were obtained from the SDSS-

III DR9 photometric catalogue and full-sky dust reddening maps (Schlegel

et al. 1998; Schlafly & Finkbeiner 2011) were also used to account for galac-

tic extinction.

2. All the filters and colours described in §§3.2.1 were assigned as input fea-

tures to a single KNN algorithm for feature selection and filter magnitude-

cut analysis. If a filter was used as part of an input feature, then the

corresponding filter magnitude-cut was applied to exclude galaxies that

had poor photometric measurements in that filter. The mean and standard

deviation were also calculated for each feature in the MWAR training set

to perform feature scaling22. From which, all input datasets to our model

would require feature scaling with the same mean and standard deviation

values determined for the MWAR training set.

3. Thirty repetitions of ten-fold cross-validation were computed with SFS for

an individual KNN algorithm, where a single nearest neighbour was used23.

This process was important for multiple reasons. Firstly, to analyse the

stability of the KNN algorithm from minor changes to the training set.

Secondly, to examine the relative frequency of features selected by SFS.

Thirdly, to evaluate how filter magnitude-cuts affect the accuracy of pho-

tometric redshift predictions. Lastly, to provide a basis for comparing an

individual algorithm with an ensemble algorithm.

4. The optimal filter magnitude-cuts determined for a single KNN algorithm

were utilised for the SRKNN algorithm via transfer learning. From which,

22All photometric measurements of features were standardised with zero-mean centering
and unit variance, which is necessary for the comparison of Euclidean distance measurements
(Raschka, 2014).

23A single nearest neighbour minimises algorithmic biases but in turn maximises the variance
of predictions (Friedman et al., 2001).
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the training data for the internal KNN models of the SRKNN algorithm

were built with bootstrap resamples, where bootstrap with replacement of

the MWAR training set was used. Any clusters that were not used for

bootstrapping of an internal KNN model were instead used for feature se-

lection training of that internal KNN model with SFS. This ensured that

all available training data was utilised.

5. The hyper-parameter settings of the SRKNN algorithm were tuned via a

grid search strategy using hold-out validation of the MWAR validation set.

This also examined how each of the hyper-parameter settings affected the

model performance and generalisation.

6. Evaluation of the tuned model performance was obtained with the WNMR/RNMW

test sets, which were all unseen clusters. Uncertainties for the photometric

redshift estimate of each cluster were approximated with empirical boot-

strap confidence intervals. Additionally, the tuned model was applied on

clusters with low richness24 and clusters at high redshift25 to assess the

response of the tuned model on clusters with unseen properties.

3.3 Results

3.3.1 Feature selection and filter magnitude-cut analysis

Following the procedures described in §3.2.3, we first examined the stability of

photometric redshift predictions for a single KNN algorithm. As seen in Figure

3.4, we observed that for brighter filter magnitude-cuts the number of selected

features by SFS were more contrasting, such that the resultant feature subsets

24We defined a cluster with low richness as a cluster that had twenty or fewer observed
member galaxies.

25We defined a cluster at high redshift as a cluster that had a photometric redshift equal to
or greater than 0.6, which was the upper limit of our training set.
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for fainter filter magnitude-cuts were more strongly influenced by the observa-

tions in the MWAR training set itself. However, as seen from the corresponding

photometric redshift prediction errors, we found that this did not significantly

alter the stability of predictions. We also compared the performance of SFS se-

lected features with the control group features (see §§§3.2.2.1), which had not

been SFS selected. We repeated the same procedure used to analyse the SFS

selected features for the control group features as well. From which, in Figure S1

(available online) we found that the control group features tended to have larger

photometric redshift prediction errors in comparison to the SFS selected features

for each search radius.

By repeatedly applying ten-fold cross-validation to the MWAR training set

we could also examine the relative frequency of features selected by SFS. This

was done by calculating the relative frequency of features observed in the best

performing feature subsets across all thirty repeats. As seen from Table 3.2, we

found that some of the features were frequently selected whilst other features

were rarely chosen, such that certain features were more likely to be picked by

SFS if they were present in the input features.

Next, we determined the optimal filter magnitude-cut for each search radius

by identifying filter magnitude-cut values that returned the lowest photometric

redshift prediction error and retained at least 95 per cent of clusters. In Figures

3.4 and S1 (available online), we found that the LM filter magnitude-cut was

the optimal filter magnitude-cut for the 10 and 21 arcseconds search radii whilst

the LM-0.5 filter magnitude-cut was the optimal filter magnitude-cut for the 32

arcseconds search radius. We also compared whether applying filter magnitude-

cuts improved the predictive performance of the model. In Figures 3.4 and S1

(available online) we found that a dataset, NC, with no filter magnitude-cuts

applied to it, was not the optimal filter magnitude-cut for any search radius

whilst datasets with filter magnitude-cuts applied often had lower photometric

redshift prediction errors.

We also assessed how magnitude-cuts of the filters themselves affected the

percentage of clusters retained in the MWAR training set, where the optimal

filter magnitude-cut for each search radius was applied. In Figure 3.5, we found

that all filters, except for the u filter, satisfied the 95 per cent cluster retainment
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Figure 3.4: This figure displays the results from applying filter magnitude-cuts to
the MWAR training set using a single KNN algorithm with SFS selected features
for each search radius (10 arcseconds on the top row, 21 arcseconds on the middle
row and 32 arcseconds on the bottom row). ‘NC’ represents a dataset with no filter
magnitude-cuts applied and ‘LM’ represents the MWAR dataset with SFS selected
features where filter magnitude-cuts were applied to the limiting magnitude of
SDSS. In addition, ‘LM’ is the faintest filter magnitude-cut whilst ‘LM-2.5’ is the
brightest filter magnitude-cut. Left column: Number of features selected for the
best performing feature subset in ten-fold cross-validation across thirty repeats.
Middle column: Median of photometric redshift prediction errors (|∆z|/(1 + z))
across all tested clusters for the best performing feature subset in ten-fold cross-
validation across thirty repeats, where the shaded regions represent 95 per cent
confidence intervals. Right column: Percentage of test clusters retained after filter
magnitude-cuts were applied with the best performing feature subset in ten-fold
cross-validation across thirty repeats. It should also be noted that if the percentage
of clusters retained, after filter magnitude-cuts were applied, did not satisfy the
95 per cent cluster retainment threshold we would not display the corresponding
results in the other columns.
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Search
Radius

Optimal Filter
Magnitude-Cut

SFS Selected
Features

Relative Frequency
Of SFS Selected

Features
[arcseconds] [mag] (per cent)

10 LM r-i, g-z, r-z, g, g-i,
z, r, i-z, g-r, i

100, 100, 90, 83, 67,
53, 47, 40, 30, 13

21 LM z, r-i, g-i, g-z, r, g,
g-r, i, r-z

87, 80, 80, 70, 63, 60,
60, 47, 47

32 LM-0.5 g-z, r-i, g-i, g-r, g,
i-z, z, r, i, r-z

93, 83, 83, 77, 70, 60,
50, 47, 43, 27

Table 3.2: This table displays the relative frequency of features selected by SFS
across thirty repeats of ten-fold cross-validation on the MWAR training set with a
single KNN algorithm at the optimal filter magnitude-cut for each search radius.
The selected features were listed in the same order as the corresponding relative
frequencies. It can be seen that the z filter, rather than a colour, had the highest
relative frequency amongst the features at the 21 arcseconds search radius for a
single KNN algorithm but the relative frequency diminishes when the z filter was
instead used in an ensemble (see §§3.3.2).

threshold at each search radius. In addition, we observed in Table 3.2 that the

u filter did not appear in any final feature subset. From which, we decided

that all input features which did not involve the u filter would be used as the

new input features for the SRKNN algorithm to reduce the computational cost

of evaluating redundant features during feature selection training. One would

expect the u filter to be a poor predictor of redshift beyond very low redshift as

it would probe further into the UV with increased redshift.

3.3.2 Hyper-parameter tuning analysis of the SRKNN al-

gorithm

We combined the optimal filter magnitude-cuts learned in §§3.3.1 with a grid

search strategy to fine-tune the SRKNN algorithm. We assumed that the knowl-

edge learned for the KNN algorithm was appropriate for the SRKNN algorithm,

since the SRKNN algorithm was an extension of the KNN algorithm. From which,

we ran the grid search on all combinations of hyper-parameter settings with a
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Figure 3.5: This figure displays the percentage of clusters retained in the MWAR
training set after applying the optimal filter magnitude-cuts for each search radius
to the u, g, r, i, z, ugriz and griz filters. The orange dashed line highlights the 95
per cent cluster retainment threshold.
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specified range of values to evaluate how each hyper-parameter setting affected

model generalisation and predictive performance. The following hyper-parameter

setting values were used in the grid search:

• The number of internal KNN models - 1, 10, 20, 30, 40, 50, 60, 70, 80, 90,

100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800,

850, 900, 950, 1000.

• The number of initialised random features - 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

• The number of nearest neighbours - 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25.

We utilised validation curves (VanderPlas, 2016) to analyse the response from

different hyper-parameter setting combinations of the SRKNN algorithm. This

involved fixing each hyper-parameter setting as a constant with respect to the

other hyper-parameter settings to compute the median of photometric redshift

prediction errors across all tested clusters with that fixed hyper-parameter set-

ting. We focused on minimising the photometric redshift prediction error on the

MWAR validation set rather than the MWAR training set. Since the MWAR

training set had already been seen by the model, the results from the MWAR

training set would be biased whilst the MWAR validation set remained unseen

by the model. However, running the model on both the MWAR training and val-

idation sets was still beneficial to check the generalisation of the hyper-parameter

settings, as the model could overfit and underfit when applied on its own training

data.

Firstly, we evaluated the model performance based on the number of nearest

neighbours for each search radius. In Figure 3.6, we found that for a small number

of nearest neighbours the model had high predictive variance as we observed a

large difference between the training and validation errors. Although, we noticed

that the overall photometric redshift prediction error decreased as the number of

nearest neighbours increased for the MWAR validation set, whereas the overall

photometric redshift prediction error increased as the number of nearest neigh-

bours increased for the MWAR training set. It can be seen that the number of
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nearest neighbours was a very important hyper-parameter setting to tune since

the model performance varied a lot depending on the value used. From which,

we determined the optimal values for the number of nearest neighbours of each

search radius to be 19 for 10 arcseconds, 19 for 21 arcseconds and 16 for 32 arc-

seconds. It should be noted that the number of nearest neighbours value with

the lowest photometric redshift prediction error was actually 25 for each search

radius. We purposely avoided selecting this value since the number of nearest

neighbours value had a large impact on the model performance, such that select-

ing the hyper-parameter value with the lowest photometric prediction error could

likely overfit the model on the MWAR validation set itself. Instead, we preferred

to choose more conservative values for the optimal number of nearest neighbours

to balance model generalisation and performance.

Secondly, we examined the model performance based on the number of ini-

tialised random features for each search radius. In Figure 3.7, we found that

for both the MWAR training and validation sets, the change in the photomet-

ric redshift prediction errors quickly decreased for a small number of initialised

random features but then slowly decreased when a medium to large number of

initialised random features was used. From which, we observed that the overall

redshift prediction error decreased as the number of initialised random features

increased. This implied that the number of initialised random features was also

an important hyper-parameter setting to tune, since the model performance on

the MWAR training and validation sets was somewhat reliant on the value se-

lected. We determined the optimal values for the number of initialised random

features of each search radius to be 9 for 10 arcseconds, 8 for 21 arcseconds and

7 for 32 arcseconds. Although, it can be seen that having no initialised random

features (using all features for the input features) at times had lower photometric

redshift prediction errors. However, this could also worsen model generalisation

since strongly correlated features would not be restricted during SFS. Therefore,

we again decided to select more conservative values for the optimal number of

initialised random features.

Thirdly, we assessed the model performance and behaviour based on the num-

ber of bootstrap resamples used for each search radius. In Figure 3.8, we show

that for the MWAR training and validation sets the change in the photometric
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Figure 3.6: This figure displays validation curves from tuning the number of nearest neighbours hyper-
parameter setting, where the photometric redshift prediction errors of the MWAR training (blue) and
validation (red) sets are shown for each search radius (10 arcseconds on the top row, 21 arcseconds in
the middle row and 32 arcseconds on the bottom row). The individual points display the median of
photometric redshift prediction errors across all tested clusters and the shaded regions represent the 25th
and 75th percentiles of the photometric redshift prediction errors for a fixed number of nearest neighbours
with respect to the other hyper-parameter settings of the SRKNN algorithm. We also labelled the difference
between the individual points of the training and validation errors.
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Figure 3.7: This figure is equivalent to Figure 3.6 except we tuned the number
of initialised random features hyper-parameter setting.
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redshift prediction error steeply decreased when a very small number of bootstrap

resamples used but then remains flat as the number of bootstrap resamples in-

creased. This tells us that the number of bootstrap resamples used was not a par-

ticularly important hyper-parameter setting to tune as the impact on the model

performance for the MWAR training and validation sets was minimal. Efron &

Tibshirani (1994) suggested that using fifty to two hundred bootstrap resamples

was sufficient to calculate standard errors whereas bootstrap confidence interval

estimates required at least one order of magnitude higher computational cost.

From which, we decided that using one thousand bootstrap resamples for each

search radius was enough to benefit from bootstrap confidence intervals. We also

considered that since SFS would have selected different features for each boot-

strap sample, we would not expect all internal KNN models to return predictions

after filter magnitude-cuts were applied. In Figure 3.9, we show the percentage

of clusters returned with full, partial and no bootstrap resamples returned for

estimating photometric redshift at each search radius. We found that employ-

ing a large number of bootstrap resamples reduced the percentage of clusters

returned with no bootstrap resamples. Whilst for clusters with a full set of boot-

strap resamples returned, the percentage of clusters returned initially dropped

but then remained flat as the number of bootstrap resamples increased. Whereas

for clusters with partial bootstrap resamples returned, the percentage of clusters

returned gradually increased as the number of bootstrap resamples increased. For

this work, we preferred to minimise the percentage of clusters returned with no

bootstrap resamples, since we wanted as many clusters as possible to have photo-

metric redshift estimates. In Figure 3.10, we calculated the relative frequency of

features selected by SFS with respect to the number of bootstrap resamples used

at each search radius. It can be seen that as the number of bootstrap resamples

increased, the spread of the relative frequency amongst the features decreased.

From which, we also observed that the features with the highest relative fre-

quency appeared to be colours whilst features with the lowest relative frequency

were filters. The model had learned that colours were more significant than filters

for estimating photometric redshifts of clusters.
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Figure 3.8: This figure is equivalent to Figure 3.6 except we tuned the number
of bootstrap resamples hyper-parameter setting.
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Figure 3.9: This figure displays validation curves from tuning the number of
bootstrap resamples hyper-parameter setting, where the percentage of clusters re-
turned with full, partial and no bootstrap resamples are from the MWAR training
(blue) and validation (red) sets at each search radius (10 arcseconds on the top
row, 21 arcseconds in the middle row and 32 arcseconds on the bottom row). The
individual points display the percentage of clusters returned across a fixed number
of bootstrap resamples with respect to the other hyper-parameter settings of the
SRKNN algorithm.
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Figure 3.10: This figure displays validation curves from tuning the number of
bootstrap resamples hyper-parameter setting, where the relative frequency of fea-
tures selected by SFS with the MWAR training set is shown for each search radius
(10 arcseconds on the top row, 21 arcseconds in the middle row and 32 arcseconds
on the bottom row). The individual points display the relative frequency of fea-
tures selected by SFS across a fixed number of bootstrap resamples with respect
to the other hyper-parameter settings of the SRKNN algorithm.
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Test Set Search
Radius

Optimal
Filter

Magnitude-
Cut

#
Clusters

#
Clusters

#
Clusters

Ẽz

[arcseconds] [mag] (total) (radius) (tested)
WNMR 10 LM 9723 8844 8442 0.0106
WNMR 21 LM 9723 9564 9057 0.013
WNMR 32 LM-0.5 9723 9691 9057 0.014
RNMW 10 LM 8646 8131 7319 0.0123
RNMW 21 LM 8646 8577 7870 0.0156
RNMW 32 LM-0.5 8646 8635 7416 0.0181

Table 3.3: This table displays the median of photometric redshift prediction errors
(Ẽz, where Ez = |∆z|/(1 + z)) across all tested clusters for each test set, search
radius and optimal filter magnitude-cut. We also show the total number of clusters
in the original full dataset (total), the number of clusters that had galaxies within
the specified search radius (radius) and the number of clusters that had galaxies
within the specified search radius after filter magnitude-cuts (tested). The values
in this table summarise the test results in Figures 3.11, 3.12, 3.13, 3.14, 3.15 and
3.16.

3.3.3 Model performance analysis with test sets

We used the WNMR/RNMW test sets to assess the performance of the SRKNN

algorithm with the optimal hyper-parameters learned in §§3.3.2 for each search

radius. As described earlier in §§3.2.1, the test sets contained clusters from the

WHL12 and redMaPPer cluster catalogues with no corresponding cross-match.

A summarised version of the test results can be found in Table 3.3.

In Figures 3.11, 3.12, 3.13, 3.14, 3.15 and 3.16 we compared the known pho-

tometric redshifts with the predicted photometric redshifts for clusters in the

WNMW/RNMW test sets that had full bootstrap resamples returned by the

tuned model. We found that as the search radius increased the median of pho-

tometric redshift prediction errors across all tested clusters in both test sets in-

creased as well possibly due to line-of-sight interloping galaxies. From which, in

Figures SA4, SA5, SA6, SA7, SA8 and SA9 (available online) we also examined

the spatial distribution of several clusters with relatively large photometric red-

shift prediction errors. We repeatedly observed that if line-of-sight interloping
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galaxies were present within the search radius of clusters, the resultant model

predictions had relatively large photometric redshift prediction errors. Moreover

in Figures 3.11, 3.12, 3.13, 3.14, 3.15 and 3.16 it can be seen that the width of

the 95 per cent confidence intervals around predictions decreased as the search

radius increased, as shown by wider intervals. This meant there was lower preci-

sion of the predicted photometric redshift value. Despite this, we found that the

tuned model seemed to perform well at all redshifts since the majority of cases

had relatively low photometric redshift prediction errors for each search radius.

Although, we noticed that an increasing number of cases had relatively large

photometric redshift prediction errors near to the redshift training boundaries of

the MWAR training set as the search radius increased. Furthermore, we also ex-

amined the performance of the tuned model on clusters in the WNMW/RNMW

test sets with only partial bootstrap resamples returned for each search radius.

From Figures S2, S3, S4, S5, S6 and S7 (available online) we found that in almost

all cases the photometric redshift prediction error was poorly constrained when

partial bootstrap resamples were used.

In Figures 3.17 and 3.18 we determined the number of galaxies used in pho-

tometric redshift predictions of clusters from the WNMR/RNMW test sets that

had full bootstrap resamples returned by the tuned model for each search ra-

dius. This examined how the tuned model performed with respect to different

numbers of galaxies. It can be seen that as the search radius increased the num-

ber of galaxies used in photometric redshift predictions increased too. From

which, we found that the median of photometric redshift prediction errors across

all tested clusters was similar regardless of the number of galaxies used by the

tuned model. Although, we noticed that clusters with larger numbers of galaxies

used for photometric redshift predictions were frequently seen between low and

intermediate redshifts with relatively low photometric redshift prediction errors.

Whereas clusters at considerably lower and higher redshifts rarely had large num-

bers of galaxies used for photometric redshift predictions and also had relatively

large photometric redshift prediction errors.

In Figures 3.19 and 3.20 we examined the redshift distribution of clusters

from the WNMR/RNMW test sets with no bootstrap resamples returned by the

tuned model for each search radius. We observed that the redshift distributions

98



3.3 Results

Figure 3.11: This figure displays the performance of photometric redshift predictions of clusters for the
WNMR test set that had full bootstrap resamples returned within a 10 arcseconds search radius. Top
row: Predicted versus ‘actual’ photometric redshift of tested clusters with frequency histograms of the
distributions. Bottom row: Non-absolute photometric redshift prediction error versus ‘actual’ redshift of
tested clusters with frequency histograms of the distributions. Other: ‘# clusters (total)’ represents the
total number of clusters in the WNMR dataset, ‘# clusters (radius)’ represents the number of clusters in
the WNMR test set that had observed galaxies within a 10 arcseconds search radius, ‘# clusters (shown)’
represents the number of clusters in the WNMR test set that had observed galaxies within a 10 arcseconds

search radius with full bootstrap resamples returned, Ẽz represents the median of photometric redshift
prediction errors across all tested clusters within a 10 arcseconds search radius with partial bootstrap
resamples returned.
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Figure 3.12: This figure is equivalent to Figure 3.11 except we examined the
performance of photometric redshift predictions of clusters within a 21 arcseconds
search radius.
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Figure 3.13: This figure is equivalent to Figure 3.11 except we examined the
performance of photometric redshift predictions of clusters within a 32 arcseconds
search radius.
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Figure 3.14: This figure is equivalent to Figure 3.11 except we examined the
performance of photometric redshift predictions of clusters within a 10 arcseconds
search radius for the RNMW test set.
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Figure 3.15: This figure is equivalent to Figure 3.11 except we examined the
performance of photometric redshift predictions of clusters within a 21 arcseconds
search radius for the RNMW test set.
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Figure 3.16: This figure is equivalent to Figure 3.11 except we examined the
performance of photometric redshift predictions of clusters within a 32 arcseconds
search radius for the RNMW test set.
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Figure 3.17: This figure displays the number of galaxies used in photometric redshift predictions versus
‘actual’ redshift of tested clusters for the WNMR test set, where predictions had full bootstrap resamples
returned within a 10 (top row), 21 (middle row) and 32 (bottom row) arcseconds search radius. It should
be noted that the size of individual points change in relation to the value of the non-absolute photometric

redshift prediction error. Frequency histograms of the distributions are also shown. Ẽz represents the
median of photometric redshift prediction errors across all tested clusters for each number of galaxies bin.
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Figure 3.18: This figure is equivalent to Figure 3.17 except we examined the
number of galaxies used in photometric redshift predictions for the RNMW test
set.
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were predominantly skewed towards higher redshifts. This could be due to the

galaxies in clusters at higher redshifts having poorer photometric measurements

in comparison to the galaxies in clusters at lower redshifts. Although, it should

be noted that the redshift distribution for the RNMW dataset itself was also

heavily skewed towards higher redshifts.

3.3.4 Further model testing

We also tested the tuned model on additional clusters that resided in unseen

parameter space, such as clusters with low richness and clusters at redshift equal

or greater than 0.6. This was to analyse the generalisation of the tuned model, by

running it on clusters with properties that it had not been trained for, which were

also likely to be encountered in surveys. We applied the same analysis procedure

performed in §§3.3.3 and provide the full results in the online supplementary

material. For this subsection, we will only describe the response of the tuned

model with respect to different cluster properties.

In Figures S8, S9 and S10 (available online) we ran the tuned model on clus-

ters with low richness, which had a richness of twenty or fewer observed mem-

ber galaxies such that they did not qualify for the MWAR dataset, to obtain

photometric redshift predictions that had full bootstrap resamples returned at

each search radius. We found that the number of cases with relatively large

photometric redshift prediction errors increased as the search radius increased,

particularly at higher redshifts. However, we also noticed that the median of pho-

tometric redshift prediction errors for each search radius remained relatively low

when compared to the median of photometric redshift prediction errors for the

WNMR/RNMW test sets. Moreover, we observed that the precision of the 95 per

cent confidence intervals became worse towards the redshift training boundaries

when the search radius increased.

In Figures S16, S17 and S18 (available online) we ran the tuned model on clus-

ters at high redshift, which had a redshift beyond the redshift training boundaries

such that they did not qualify for the WNMR dataset, to obtain photometric red-

shift predictions that had full bootstrap resamples returned at each search radius.
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Figure 3.19: This figure displays frequency histograms of the ‘actual’ redshift
distributions of clusters from the WNMR test set that had no bootstrap resamples
returned within a 10 (top row), 21 (middle row) and 32 (bottom row) arcseconds
search radius.
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Figure 3.20: This figure is equivalent to Figure 3.19 except we examined the
‘actual’ redshift distributions of clusters that had no bootstrap resamples returned
for the RNMW test set.
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We immediately noticed that the overall accuracy of photometric redshift predic-

tions was low when compared to the other test sets, as the tuned model constantly

underestimated the photometric redshifts regardless of the search radius used. We

also observed that the precision of the 95 per cent confidence intervals around

predictions was poorly constrained, such that it would be difficult to distinguish

clusters at high redshift from poorly constrained clusters at intermediate redshift.

In Figures S24, S25 and S26 (available online) we ran the tuned model on

clusters at high redshift with low richness, which had a richness of twenty or fewer

observed member galaxies and a redshift beyond the redshift training boundaries

such that they did not qualify for the WNMR dataset, to obtain photometric

redshift predictions that had full bootstrap resamples returned at each search

radius. Similar to the results in Figures S16, S17 and S18 for clusters at high

redshift, we found that the overall accuracy of photometric redshift predictions

was also low, as the tuned model constantly underestimated the photometric

redshifts. In addition, the 95 per cent confidence intervals around predictions

was also poorly constrained regardless of the search radius used.

In Figures S32, S33 and S34 (available online) we ran the tuned model on

clusters with low richness, which had a richness of twenty or fewer observed

member galaxies such that they did not qualify for the WNMR dataset, to ob-

tain photometric redshift predictions that had full bootstrap resamples returned

at each search radius. Similar to the results in Figures S8, S9 and S10 for clusters

with low richness, we found that the overall accuracy of the photometric redshift

predictions was high, as only a minority of cases had relatively large photomet-

ric redshift prediction errors. Although, we also observed that the precision of

the 95 per cent confidence intervals became worse towards the redshift training

boundaries when the search radius increased.

Lastly, we also evaluated the effectiveness from increasing the search radius on

the performance of photometric redshift predictions and the number of clusters

with full bootstrap resamples returned. For example, if a cluster did not have

a photometric redshift estimate with full bootstrap resamples returned within

a 10 arcseconds search radius, we would try using a 21 arcseconds search radius

instead. From which, if a 21 arcseconds search radius was not sufficient, we would

then try using a 32 arcseconds search instead. In Figures S40, S43, S46, S49, S52
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and S55 we found that as the search radius increased the overall accuracy of

photometric redshift estimates decreased. Although, this was still be beneficial

rather than having clusters with no photometric redshift estimates at all. We also

observed that as the search radius increased the number of photometric redshift

estimates with full bootstrap resamples returned decreased as well. These trends

can be seen repeating for all of the test sets.

3.4 Discussion

3.4.1 Effectiveness of Z-Sequence for photometric redshift

estimation

In §§3.3.3 we employed samples from the WHL12 and redMaPPer cluster cata-

logues to examine the performance of the tuned model. From Figures 3.11, 3.12

and 3.13 it can be seen that majority of clusters in the WNMR test set were

observed at low to intermediate redshifts, whereas from Figures 3.14, 3.15 and

3.16 it can be seen that majority of clusters in the RNMW test set were ob-

served at intermediate redshift. This tells us that the methods used to estimate

photometric redshifts in WHL12 and redMaPPer can significantly influence the

resultant redshift distributions. Although, we found that the tuned model did not

have much difficulty in working with either of these redshift distributions, as the

overall performance of photometric redshift prediction errors for both test sets

were similar. From which, we can infer that Z-Sequence can be effectively utilised

across a wide range of redshifts if the appropriate training data is available.

For this work, we assigned the photometric redshifts of the WHL12 and

redMaPPer cluster catalogues as ‘actual’ redshifts to examine the model perfor-

mance on a large sample of clusters. Since we aimed to minimise data wastage,

it was important to try to utilise all available clusters even though not all clus-

ters had spectroscopic redshifts. We were aware that the ‘actual’ photometric

redshifts for clusters in WHL12 and redMaPPer had a scatter of ∼ 0.01 from

spectroscopic redshifts. This was similar to the scatter in our photometric red-

shift prediction errors of ∼ 0.01 from the ‘actual’ photometric redshifts, which
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suggested that our model was as accurate as it could be based on the data used

for training and testing. We expect that our photometric redshift prediction error

would decrease if we trained on a large, entirely spectroscopic sample instead as

the scatter associated with the photometric redshifts in the WHL12 and redMaP-

Per catalogues would be removed. In addition, it should be noted that the flaring

seen in Figures 3.14, 3.15 and 3.16 lowered the predicted redshift values between

‘actual’ redshifts of 0.35 ≥ z ≥ 0.45 for the RNMW test set. This was due to the

flaring originating from redMaPPer itself and not from our algorithm, as it also

occurs in Figures 7 and 9 of Rykoff et al. (2014).

In §§3.3.4 we tested the tuned model on clusters with unseen properties. We

found that the tuned model performed well on clusters which had a similar pa-

rameter space to the MWAR training set and it also performed well on clusters of

all richnesses within the redshift training boundaries. However, the tuned model

performed poorly on clusters beyond the redshift training boundaries. This tells

us that the performance of the tuned model was more dependent on the redshift

of the cluster than the richness of the cluster. The tuned model was only effective

on clusters at the redshift range it was trained for since we were limited to the

redshift range of the majority of clusters available in SDSS. In addition, we ob-

served an apparent feature seen at the lower and upper boundaries for predicted

photometric redshifts in Figures 3.11, 3.12 and 3.13. We believe the cause of

the apparent feature was due the nature of the machine learning algorithm itself.

This was because the k-nearest neighbours algorithm calculates its prediction

from the labels of the nearest neighbour examples in the training set when given

an input data point, where the photometric redshift limits of the MWAR dataset

was 0.0698 ≤ z ≤ 0.5986 whilst the WNMR dataset was 0.05 ≤ z ≤ 0.599. This

meant that all photometric redshift predictions were bounded within the photo-

metric redshift training range, such that clusters with ‘actual’ redshifts outside

the boundaries could end up as part of the apparent feature. This explained

why we did not observe the apparent feature in Figures 3.14, 3.15 and 3.16 as

the photometric redshift limits of the RNMW dataset was 0.0811 ≤ z ≤ 0.5983.

As a further demonstration of the success of our algorithm, we note that the

WNMR and RNMW test sets consisted of clusters found in one catalogue and

not the other. This could mean that these clusters were more difficult to detect
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and therefore potentially harder to assign a redshift value via other photometric

redshift prediction methods, whereas our algorithm could estimate redshifts for

the majority of these clusters. It should also be noted that the observed mag-

nitude errors for all SDSS filters increased with redshift, as seen in Figure SA10

(available online). This meant it would be difficult for any empirical algorithm

to make accurate photometric estimates in the high redshift regime. However,

we expect our model would be successful at estimating photometric redshifts for

high redshift clusters if trained on photometry data from imaging surveys such

as LSST or Euclid, which will have greater photometric depths to increase the

redshift limits of cluster detection when compared with SDSS.

We noticed in Table 3.3 that the median value of |∆z|/(1+z) increased for the

WNMR and RNMW test sets by 32 and 47 per cent when the search radius was

enlarged from 10 arcseconds to 21 and 32 arcseconds respectively. This can also

be seen in §§3.3.4 where the number of cases with accurate photometric redshift

estimates decreased as the search radius increased, as a larger search radius was

more likely to include interlopers. From Figures SA6, SA7 and SA9 (available

online), we found that interlopers were evident in contaminating estimates with

relatively large photometric redshift prediction errors if they appeared in the test

set. Whilst Figures SA4, SA5 and SA8 (available online) indicated that interlop-

ers were also somewhat present within the training set itself, as we found that

some model predictions for clusters with no obvious interlopers in the test set

still had relatively large photometric redshift prediction errors. Subsequently, we

aimed to further improve the accuracy of the Z-Sequence model in future work

by developing new strategies to constrain interlopers, such as with unsupervised

machine learning techniques that can identify the presence of line-of-sight inter-

loping galaxies and multiple projected line-of-sight clusters. This new method

would be employed as an additional pre-processing tool to accompany the Z-

Sequence model. From which, we could increase the size of the search radius

once the obvious interlopers are removed and thus examine whether the photo-

metric redshift prediction accuracy significantly improves if more cluster members

are included. In addition, Figures SA6 and SA9 (available online) show that filter

magnitude-cuts were also partially responsible for estimates with relatively large

photometric redshift prediction errors, as we found that all of the galaxy members
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in some cluster cores were removed from model predictions due to poor photome-

try measurements. Furthermore, we noticed in Figure SA7 (available online) that

the 95 per cent confidence interval for the photometric redshift estimate involv-

ing the interloper became considerably wider in comparison to the photometric

redshift estimates without the interloper. This suggests that the bootstrap con-

fidence intervals could indicate whether interlopers were involved in the model

prediction. Although, it should be noted that Figures 3.17 and 3.18 show that

the majority of the model predictions seemed to employ relatively few galaxies for

each search radius, such that it would be difficult to constrain interlopers in most

instances. Moreover, by comparing the number of clusters that had photometric

redshift estimates with full bootstrap resamples returned exclusively within each

of the 10, 21 and 32 arcseconds search radii (see Figures S40, S43, S46, S49, S52

and S55 [available online]), we discovered that the majority of cases were actually

within the 10 arcseconds search radius whereas only a minority of cases required

an increase of the search radii to 21 and 32 arcseconds. This suggests that if

we were to retrain the model on different surveys, we could consider not needing

to employ multiple large search radii as the computational cost for training the

model could outweigh the benefits gained.

It is worth noting that our approach resulted in photometric redshift predic-

tions with full, partial and no bootstrap resamples returned. This was primarily

due to the use of filter magnitude-cuts in each internal KNN model, which ex-

cluded galaxies with poorer photometric measurements from the cluster before

any redshift predictions were made. Although, we observed in §§3.3.1 that ap-

plying filter magnitude-cuts could improve the overall accuracy of photometric

redshift estimates. From which, we found that photometric redshift predictions

with full bootstrap resamples returned were fairly accurate, as seen in §§3.3.3.

However, it can also be seen that photometric redshift predictions with partial

bootstrap resamples returned had low accuracy. This could be caused by the

remaining bootstrap resamples not utilising strong predictive features. Subse-

quently, we advise that future photometric redshift estimates with partial boot-

strap resamples returned should be flagged and used cautiously.
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3.4.2 Practicality of the machine learning techniques used

in this work

For this work, we were aware that the KNN algorithm can suffer from a dimension-

ality effect known as the ‘curse of dimensionality’ (Bellman, 1961). This can cause

training samples to be disproportionately represented and sparsely distributed in

high dimensional feature space, especially when the number of input features is

greater than the number of training samples. As a consequence, this restricts the

performance of machine learning algorithms due to the high complexity learning

required. There are several approaches that can be used to limit the impact of this

dimensionality effect, which include feature selection techniques (e.g. Sequential

Feature Selection, Aha & Bankert 1995; Chi-Squared Test, Pearson 1900; Fisher’s

Score, Duda et al. 2001) and feature extraction techniques (e.g. Principal Com-

ponent Analysis, Pearson 1901; Independent Component Analysis, Comon 1994;

Partial Least Squares Regression, Wold 1983). These techniques promote useful

features and ignore redundant features to subsequently constrain the dimension-

ality of a feature space. For a simple classification scenario, Raudys & Jain (1991)

suggested that if the number of input features is not too large, such as between

five to ten, then at least between fifty to one hundred corresponding training sam-

ples would be required per class to minimise the ‘curse of dimensionality’. In our

case, we ensured that the MWAR training set had a sufficient number of observa-

tions in the majority of redshift bins, as seen in Figure SA2 (available online). In

addition, we preferred to use a feature selection method that employed features

which maximised prediction accuracy rather than a feature extraction method

that projected statistically significant features into a reduced feature space.

The most commonly used sequential feature selection strategies are SFS and

Sequential Backward Selection (SBS, Aha & Bankert 1995). These methods are

designed to be computationally efficient by searching through fewer combinations

of feature space to provide a quasi-optimal solution rather than a global optimal

solution. As described earlier in §§3.2.2.1, SFS iteratively adds features to an

empty feature subset in a forward manner whilst SBS iteratively eliminates fea-

tures from a full feature subset in a backward manner. This means that SBS will

examine more high dimensional combinations of features when compared with
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SFS, which could increase prediction accuracy but at a much higher computa-

tional cost. Nonetheless, we decided that SBS was not compatible for this work

since the 95 per cent cluster retainment threshold would be immediately bypassed

if all features were used at the same time, as seen in Figure 3.5. Although, we

could consider SBS as an alternative feature selection strategy in imaging surveys

that have greater filter sensitivity than SDSS. We also compared the performance

between SFS and manual feature selection. From comparing Figures 3.4 and S1

(available online), we found that SFS selected features consistently performed

better than the manually selected features for the KNN algorithm. This meant

that SFS was more precise than manual feature selection at taking into account

minor details in the datasets. From which, we decided that SFS had better syn-

ergy for working with bootstrap resamples in the SRKNN algorithm. It should

be noted that we also randomly initialised the input features to the SRKNN al-

gorithm as an additional starting step to SFS to reduce the impact from strong

collinear features (see Figures SA11 and SA12 [available online]) during the fea-

ture selection process. Furthermore, in Figure 3.10 it can be seen that using

a large number of bootstrap resamples for the SRKNN algorithm improved the

stability for the relative frequency of SFS selected features. This was in contrast

to using an individual algorithm such as the KNN algorithm (see Table 3.2) or

using just one bootstrap resample in the SRKNN algorithm. This tells us that

the SRKNN algorithm with a large number of bootstrap resamples was able to

cope with minor changes to the training set, which would otherwise result in

completely different features being used by the model.

The bias-variance tradeoff describes the generalisation performance of a su-

pervised machine learning algorithm from fitting training data as a function of

algorithmic complexity (Briscoe & Feldman, 2011). For instance, if an algorithm

has tightly fit to the training data during learning, it will perform poorly on test-

ing data. This results in many predictions with high variance and low bias. On

the other hand, if an algorithm makes a lot of assumptions of the training data

during learning, it will reduce the predictive power of the algorithm. This results

in many predictions with high bias and low variance. The bias-variance tradeoff

for the KNN algorithm varies depending on the number of nearest neighbours

used, where using low values for the number of nearest neighbours can induce
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overfitting whilst using high values for the number of nearest neighbours can

induce underfitting (Geman et al., 1992). For the SRKNN algorithm, we exam-

ined a wide range of number of nearest neighbours from 1 to 25 but this range

could be extended with increased computation in future work to explore using a

larger number of nearest neighbours. In §§3.3.2 we had chosen a value for the

number of nearest neighbours that showed no obvious indications of overfitting

or underfitting. It is also known that ensemble algorithms can reduce the overall

variance of predictions for a model by averaging estimates from multiple models

that individually have high variance predictions (Bühlmann, 2012). This effect

can be observed in the random forest (RF, Breiman 2001) algorithm, which is an

ensemble that averages the estimates from multiple decision trees (DT, Breiman

et al. 1984).

The main difference between the SRKNN and RF algorithms is the choice

of internal model, such that each ensemble is better suited for different appli-

cations. The KNN algorithm utilises instance-based learning (Aha et al., 1991),

which means it has no learnable internal parameters. Whilst the DT algorithm

utilises partition-based learning (Strobl et al., 2009), which means it learns opti-

mal splitting parameters for segmenting data. It should be noted that the KNN

algorithm can support a similar partition strategy to the DT algorithm by utilis-

ing K-Dimensional Tree (Bentley, 1975) or Ball Tree search (Omohundro, 1989).

Generally, the KNN algorithm provides higher flexibility for evaluating complex

patterns whereas the DT algorithm has greater interpretability for understand-

ing underlying decisions (Mohanapriya & Jayabalan, 2018). In Figures SA13,

SA14, SA15, SA16, SA17 and SA18 (available online) we used the t-Distributed

Stochastic Neighbour Embedding (t-SNE, van der Maaten & Hinton 2008) algo-

rithm to visualise how the feature space of the MWAR training set appeared in

two-dimensional space with and without feature scaling applied for each search

radius. We observed that galaxies with similar photometric redshifts were some-

what clustered to form smooth transitions from low to intermediate redshifts

when feature scaling was applied. Moreover, we also observed that galaxies with

similar photometric redshifts were considerably dispersed across feature space

when feature scaling was not applied. Nevertheless, the structure of these feature

spaces would be difficult for the DT algorithm to apply partitions, whilst the
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KNN algorithm is better suited to work with these smooth transitions, regardless

of whether feature scaling is applied. This indicated that the SRKNN algorithm

was more applicable at handling photometry data for estimating photometric

redshifts than the RF algorithm.

We were also aware that the accuracy of photometric redshift estimates had

a dependency on the accuracy of the cluster finder used to locate the cluster. For

this work, we treated all input data points in CMS with uniform distance weight-

ing. This meant that all input data points were not influenced by the distance

to the training set data points. However, this may have reduced the accuracy of

photometric redshift estimates in regions of the sky that had many line-of-sight

interloping galaxies since the cluster finder would be unable to cleanly define

the cluster core, where the red-sequence is most well-defined. To limit the de-

pendency on the cluster finder, we could consider employing simple non-uniform

weighting strategies for the SRKNN algorithm such as inverse distance weighting

(Dudani, 1976). This computes weights based on the distance of the input data

points to the training set data points, where the significance of the training set

data points decreases as the distance increases. The reason we did not utilise

this approach was due to the fact that it is also highly susceptible to noise in the

training set. Although, in future work we could consider inverse distance weight-

ing as an alternative, if we can further constrain line-of-sight interloping galaxies

within the training set. In addition, the reason we did not utilise photometric

redshift estimates of individual galaxies determined by SDSS itself is due to the

fact that our method allows us to operate in situations where no photometric

redshifts of individual galaxies are available.

In this work, we decided that ten-fold cross-validation was appropriate for

feature selection and filter magnitude-cut analysis of the KNN algorithm, as the

KNN algorithm had moderate computational training cost requirements. On

the other hand, the SRKNN algorithm had higher computational training cost

requirements especially when a large number of bootstrap resamples was used.

From which, we decided that hold-out validation was more preferable for hyper-

parameter tuning of the SRKNN algorithm. However, with increased computa-

tion we could consider using k-fold or Monte Carlo cross-validation for hyper-

parameter tuning of the SRKNN algorithm in future work. In addition, we de-
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cided that it was appropriate to utilise a grid search strategy to determine the

optimal hyper-parameter settings for the SRKNN algorithm, since the number

of hyper-parameter settings to examine for the SRKNN algorithm was relatively

small.

3.5 Conclusion

We present Z-Sequence, an empirical model that is composed of an ensemble of the

k-nearest neighbours algorithm, known as the sequential random k-nearest neigh-

bours algorithm. The model makes use of photometry data from observed galaxies

within a specified search radius to estimate photometric redshifts of clusters. In

this proof-of-concept study, we assembled training sets with cross-matched clus-

ters detected in SDSS by the WHL12 and redMaPPer cluster catalogues, where

using cross-matched clusters reduced the likelihood of having false detections in

the training set. Whilst clusters that were not cross-matched were used to test

the performance of the model. We demonstrated that employing an automated

feature selection strategy, known as sequential forward selection, was effective

at identifying predictive features from an initial set of photometric features (i.e.

filters and colours). We have shown that applying filter magnitude-cuts to the

photometry data improved the overall accuracy of photometric redshift estimates,

as this excluded galaxies with poor photometric measurements from model pre-

dictions. We examined the behaviour of each hyper-parameter setting for the

SRKNN algorithm to understand how varying them affected model performance

and generalisation. From which, we found that the choice of the number of nearest

neighbours had the biggest impact, the choice of the number of initialised random

features had moderate impact and the choice of the number of bootstrap resam-

ples used had the least impact. The optimal values for each hyper-parameter

setting were subsequently chosen for model testing. Our results showed that the

tuned model performed well on clusters that were within the same redshift range

(i.e. low and intermediate redshift) as the clusters in the training set and we also

demonstrated that the tuned model was effective on clusters of all richnesses that

were within the redshift training boundaries. We have shown the photometric
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redshift prediction error of Z-Sequence via the median value of |∆z|/(1 + z) on

the WHL12 test samples (across a photometric redshift range of 0.05 ≤ z ≤ 0.599)

to be 0.0106 and on the redMaPPer test samples (across a photometric redshift

range of 0.081 ≤ z ≤ 0.598) to be 0.0123 within a 10 arcseconds search radius,

where the photometric redshift prediction error for both test samples increased

by 32 and 47 per cent when the search radii was enlarged to 21 and 32 arcseconds

respectively. In future work, we aim to apply our technique to imaging surveys

as a tool to approximate redshifts for many clusters. It should be noted that our

approach has no prerequisites which means that it is fully data driven. This is

beneficial for photometric redshift estimation since Z-Sequence can be adapted to

any imaging survey and trained on galaxy photometry data from known cluster

positions in existing cluster catalogues. To prepare for upcoming surveys, we

intend to run Z-Sequence as a complementary tool to our own Deep-CEE cluster

finder to examine the entirety of the SDSS sky coverage in a preliminary data

pipeline, where clusters detected directly from wide-field colour images would be

accompanied with estimated photometric redshifts.
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Chapter 4

AutoEnRichness: A hybrid

empirical and analytical approach

for estimating the richness of

galaxy clusters
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Abstract

We introduce AutoEnRichness, a hybrid approach that combines em-

pirical and analytical strategies to determine the richness of galaxy

clusters (in the redshift range of 0.1 ≤ z ≤ 0.35) using photometry

data from the Sloan Digital Sky Survey Data Release 16, where cluster

richness can be used as a proxy for cluster mass. In order to reliably

estimate cluster richness, it is vital that the background subtraction is

as accurate as possible when distinguishing cluster and field galaxies

to mitigate severe contamination. AutoEnRichness is comprised of

a multi-stage machine learning algorithm that performs background

subtraction of interloping field galaxies along the cluster line-of-sight

and a conventional luminosity distribution fitting approach that es-

timates cluster richness based only on the number of galaxies within

a magnitude range and search area. In this proof-of-concept study,

we obtain a balanced accuracy of 83.20 per cent when distinguish-

ing between cluster and field galaxies as well as a median absolute

percentage error of 33.50 per cent between our estimated cluster rich-

nesses and known cluster richnesses within r200. In the future, we aim

for AutoEnRichness to be applied on upcoming large-scale optical sur-

veys, such as the Legacy Survey of Space and Time and Euclid, to

estimate the richness of a large sample of galaxy groups and clusters

from across the halo mass function. This would advance our overall

understanding of galaxy evolution within overdense environments as

well as enable cosmological parameters to be further constrained.

Supplementary material for this chapter can be found in

2022chanphdchapter4supplementary.pdf



4.1 Introduction

4.1 Introduction

Historically, in order to estimate the mass of clusters, researchers have regularly

turned to optical surveys for determining cluster richness, where cluster richness

can provide a proxy of cluster mass such that the number of galaxies within a

cluster is expected to scale with cluster mass. For example, the Abell catalogue

was the first comprehensive large scale catalogue to establish a measurement

system for cluster richness, where cluster richness was defined as the number of

galaxies counted within a specific radius and between two magnitude limits (i.e.

the bright limit is the magnitude of the third brightest cluster galaxy whilst the

faint limit is two magnitudes dimmer than the magnitude of the third brightest

cluster galaxy). Similarly, the Zwicky catalogue established its own measurement

system for cluster richness, where cluster richness was defined as the number

of galaxies counted within an isopleth (i.e. the apparent boundary where the

cluster density is twice that of the field density) and also between two magnitude

limits (i.e. the bright end limit is the magnitude of the brightest cluster galaxy

whilst the faint end limit is three magnitudes dimmer than the magnitude of the

brightest cluster galaxy). We note that our definition of richness in this chapter

is the number of cluster galaxies up to an absolute magnitude faint-end r filter

limit of −20.5 and within an r200 radius.

In more recent times, a variety of automated methods have been developed

that enable cluster mass or richness to be estimated without the need for extensive

manual processing, such as utilising linking algorithms within redshift space (e.g.

Huchra & Geller 1982; Yang et al. 2005; Calvi et al. 2011; Farrens et al. 2011;

Wen et al. 2012; Tempel et al. 2016; Rodriguez & Merchán 2020), employing tem-

plate fitting algorithms within colour-magnitude space (e.g. Postman et al. 1996;

Kepner et al. 1999; Koester et al. 2007; Dong et al. 2008; Szabo et al. 2011; Rykoff

et al. 2014) or training machine learning algorithms on observational/simulated

measurements to indirectly estimate cluster mass (e.g. Ntampaka et al. 2019;

Cohn & Battaglia 2019; Ho et al. 2019; Gupta & Reichardt 2020; Yan et al. 2020;

de Andres et al. 2022; Lin et al. 2022).

Alternative approaches to determine cluster mass commonly include X-ray,

caustic and weak gravitational lensing methods. From which, X-ray methods
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assume that the intracluster gas within a cluster is under hydrostatic equilib-

rium in order to calculate the cluster mass required to produce the observed

X-ray emissions, based on X-ray temperature and surface brightness measure-

ments (e.g. Balland & Blanchard 1995; Ettori et al. 2013; Amodeo et al. 2016);

caustic methods assume a cluster has spherical symmetry in order to calculate the

cluster mass required to generate an estimated average escape velocity for clus-

ter galaxies, based on galaxy position and velocity measurements (e.g. Diaferio

& Geller 1997; Diaferio et al. 2005; Alpaslan et al. 2012); whilst weak gravita-

tional lensing methods make no physical assumptions about a cluster to estimate

the cluster mass required to produce the observed gravitational lensing of light

from background objects, based on light distortion and magnification measure-

ments (e.g. Hoekstra et al. 2013; van Uitert et al. 2016; McClintock et al. 2019).

Although, these methods have somewhat time-consuming and expensive prerequi-

sites (e.g. conducting deep X-ray observations, requiring complete spectroscopic

analysis, obtaining high quality image data for performing weak gravitational

lensing analysis), whereas methods involving optical photometry are typically

quicker and cheaper to obtain and analyse the resultant data.

We note that determining cluster richness from the direct counting galaxies

within a cluster is limited by the projection effect (Frenk et al. 1990; van Haar-

lem et al. 1997; Reblinsky & Bartelmann 1999; Costanzi et al. 2018; Sunayama

et al. 2020), where van Haarlem (1996) estimated that approximately one third

of the clusters in the Abell catalogue may have had their richnesses severely

misestimated due to contamination from the projection effect. This effect arises

when foreground or background galaxies are in the same line-of-sight as the clus-

ter itself, which means it is difficult to accurately associate galaxies to a cluster

unless spectroscopic redshifts for each galaxy are known. However, this is time-

consuming especially when working with large sample sizes, as it is dependent on

the preciseness of the distance measurement required.

In the literature, various statistical and non-statistical background subtraction

methods have been utilised to address the projection effect when obtaining counts

of cluster galaxies without the need for distance measurements. One typical way

is to count the number of field galaxies within a known control field sample,

which can be used as a direct reference to subtract a proportional number of
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galaxies from a cluster’s overall population to account for field galaxies (e.g.

Kodama et al. 2001; Stott et al. 2007; Wylezalek et al. 2014). Another way

is to define an annuli around the apparent outer perimeter of a cluster, which

assumes that the annuli is far enough away to likely not contain cluster galaxies,

such that a proportional number of galaxies can be subtracted from a cluster’s

overall population to account for field galaxies (e.g. Paolillo et al. 2001; Goto

et al. 2003; Popesso et al. 2004). A further approach is to establish colour cuts

for differentiating between cluster and field galaxies, where most of the galaxies

within a cluster will appear to have similar colours especially if they are at the

same redshift (i.e. red-sequence galaxies), whilst galaxies in the field will appear

more randomised in terms of colour, especially if they are at different redshifts

(e.g. Boué et al. 2008; Owers et al. 2017; Strazzullo et al. 2019). However, the

approaches described here may not provide a robust or precise enough background

subtraction, which is essential for accurately estimating cluster richnesses, due to

these methods either being statistical or not assessing the true membership status

of each cluster galaxy.

For this work, we describe in detail a novel hybrid method, nominally known

as AutoEnRichness, to perform background subtraction and estimate cluster rich-

nesses by employing a multi-stage machine learning algorithm and a conventional

luminosity distribution fitting approach respectively. The first key stage of our

hybrid method involves training the multi-stage machine learning algorithm to

differentiate between cluster and field galaxies. This approach is completely data-

driven to automatically capture underlying relationships for maximising the accu-

racy of cluster galaxy identification. The second key stage of our hybrid method

involves learning the best fit parameters for a luminosity distribution fitting func-

tion to enable the estimation of cluster richness from the luminosity distribution

of individual clusters. This approach has a strong theoretical basis that depends

only on the brightness of the cluster galaxy population within a given search ra-

dius of a cluster. Our proposed strategy will be beneficial to provide researchers

in the field with well-founded estimates of cluster richness as well as consistency

and robustness against line-of-sight effects to mitigate severe contamination.

We present this chapter with the following structure. Firstly, in §4.2 we divide

our methodology into five subsections, where §§4.2.1 describes the preparation of
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a photometric dataset to train a background subtraction model; §§4.2.2 describes

the mechanisms of a multi-stage machine learning algorithm that is used as our

background subtraction model; §§4.2.3 describes our strategy for establishing a

scaling relation to estimate r200 of clusters; §§4.2.4 describes the preparation

of a photometric dataset to train a luminosity distribution fitting function and

§§4.2.5 describes the mechanisms of a luminosity distribution fitting function to

estimate cluster richness. In §4.3 we outline our results across three subsections,

where §§4.3.1 describes the model tuning analyses of our learned background

subtraction model, scaling relation and luminosity distribution fitting function;

§§4.3.2 describes the overall performance of our methodology on unseen clusters

in various test sets and §§4.3.3 describes the importance of input features to

our background subtraction model. Lastly, §4.4 discusses our findings and §4.5

summarises this work.

4.2 Methodology

A brief outline of our multi-stage method to estimate the richness of a cluster

can be seen in Figure 4.1. From which, the following subsections will describe

our workflow in more detail.
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Figure 4.1: This figure shows a flowchart of the various steps in our multi-stage method to estimate the richness a
cluster, where the start of the flowchart is the first step whilst the end of the flowchart is the last step.
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4.2.1 Preparation of a photometric dataset to train a back-

ground subtraction model

To train our background subtraction model, we employed cluster galaxies that

were identified by the AMF11 catalogue with an estimated photometric redshift

between 0.1 ≤ z ≤ 0.35. We note that the AMF11 catalogue applied matched

filters26 to galaxies observed in the Sloan Digital Sky Survey Data Release 6

(SDSS-II DR6, Adelman-McCarthy et al. 2008), where clusters were detected

from maximising the likelihood of the matched filters whilst cluster galaxy mem-

bership identification was based on the proximity of the galaxy from the cluster

center within r200 as well as whether the likelihood difference (i.e. the difference

in likelihood of detecting a cluster with and without the presence of the galaxy)

was above a specified threshold. The reason we decided to use the cluster galaxies

from the AMF11 catalogue was because they assessed the cluster membership sta-

tus of each galaxy based on their contribution to a combination of various cluster

profiles (i.e. radial surface density, luminosity and redshift). In addition, their

selection method does not discriminate between ‘blue’ and ‘red’ cluster galaxies,

which means it is representative of different galaxy types in clusters.

We cross-matched these cluster galaxies with galaxies observed in the Sloan

Digital Sky Survey Data Release 16 (SDSS-IV DR16, Ahumada et al. 2020) to

obtain the following fifteen features that are based on SDSS-IV DR16 photome-

try27: u, g, r, i, z, u− g, g − r, r − i, i− z, u− r, g − i, r − z, u− i, g − z and

u− z. For a cluster galaxy to be successfully cross-matched, the input astronom-

ical coordinates must be within 1 arcsecond from the astronomical coordinates of

a galaxy within SDSS-IV DR16 as well as satisfying additional observing flags.

These flags are as follows: the observed object should be a ‘primary’ observa-

tion and must be classified as a galaxy object type by the SDSS photometric

pipeline. We also ensured that our cluster galaxy sample only contained galaxies

with a unique SDSS object identifier to prevent accidentally including galaxies

that may have been selected multiple times within our search radius due to very

26The matched filters were constructed from modeling positional, brightness and redshift
information of cluster and field galaxy distributions.

27We employed SDSS ‘modelMag’ measurements as well as full-sky dust reddening maps
(Schlegel et al. 1998; Schlafly & Finkbeiner 2011) to account for galactic extinction.
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small angular separation between overlapping line-of-sight galaxies and errors in

the astrometry. In addition, we did not include cluster galaxies that were within

1646 arcseconds (i.e. 3 Mpc at z = 0.1) of a subsample (see §§4.2.3 for further

details) of cross-matched28 clusters from the WH15 catalogue and redMaPPer

catalogue. This ensured that these clusters remained unseen for later usage in

§§4.2.3. Furthermore, we applied a cut within colour-magnitude space (i.e. if

greater than the 99.75th percentile in r and g − r) to remove any cluster galax-

ies that still appeared to have spurious photometry. It should be noted that

throughout this work, we used r and g − r to visualise cluster and field galaxies

in colour-magnitude diagrams due to g− r straddling the 4000Å break of cluster

galaxies in our working redshift range.

Correspondingly, we also required a field galaxy29 sample to train our back-

ground subtraction model to differentiate between cluster and field galaxies. How-

ever, we were unable to find a sizable catalogue containing identified field galaxies.

This meant that we had to manually search for ‘field’ regions that did not visually

appear to contain clusters from the full WH15 and redMaPPer catalogues. This

resulted in the identification of forty different ‘field’ regions, where the resultant

astronomical sky map displaying the position of clusters and our proposed ‘field’

regions can be seen in Figure S1 (available online). We sampled galaxies from

SDSS-IV DR16 that were within these ‘field’ regions. This involved applying a

1372 arcseconds (i.e. 2.5 Mpc at z = 0.1) search radius on each of the ‘field’

regions as well as reusing the same observing flags mentioned earlier within this

section to obtain our field galaxy sample. The astronomical coordinates and

number of observed field galaxies for each ‘field’ region are provided in Table 4.1.

We did not include field galaxies that were within 10 arcseconds from the clus-

ter galaxies in the AMF11 catalogue to remove cluster galaxies that may have

accidentally been included as part of the field regions. We also did not include

field galaxies that were within 1646 arcseconds (i.e. 3 Mpc at z = 0.1) of the

28This involved identifying clusters that were within 70 arcseconds (i.e. 250 kpc at z = 0.225)
of each other in astronomical coordinate space and within ±0.04(1 + z) (see Wen et al. (2009)
for further explanation) of each other in redshift space. In addition, the clusters had to be
observed within SDSS-IV DR16 between a redshift range of 0.1 ≤ z ≤ 0.35.

29We refer to interloping galaxies along a clusters line-of-sight as field galaxies.
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same subsample of cross-matched WH15 and redMaPPer clusters mentioned ear-

lier within this section to ensure that the clusters remained unseen for later usage

in §§4.2.3. Furthermore, we removed any field galaxies that were not within the

same region of colour-magnitude space as our cluster galaxy sample, based on the

observed minimum and maximum values for the cluster galaxies in r and g − r.
This was intended to encourage our background subtraction model to learn to be

more proficient at classifying galaxies with similar photometric properties. Sub-

sequently, this yielded a total of 83315 field galaxies that had the same fifteen

photometry features as our cluster galaxy sample. For this work, we assumed

that these field galaxies can be considered as ‘actual’ field galaxies.

We decided to set the redshift values of galaxies in our cluster and field galaxy

samples to be based only on the photometric redshifts estimated by SDSS-IV

DR16. This would enable a more straightforward comparison between the redshift

distributions of both samples if they were measured via the same approach. We

note that SDSS-IV DR16 applied the kd-tree nearest neighbor fit algorithm (see

Csabai et al. (2007) for further details) to estimate the photometric redshifts of

individual galaxies. We also used their estimated photometric redshifts to further

constrain galaxies within our cluster galaxy sample to only be between a redshift

range of 0.1 ≤ z ≤ 0.35, whereas galaxies within our field galaxy sample were

not redshift restricted to mimic field galaxies appearing along the line-of-sight of

clusters. Although, we note that galaxies were not required to have photometric

redshifts available to be included in our field galaxy sample. In addition, we

computed the r filter absolute magnitudes for the cluster and field galaxies based

on their photometric redshifts and corresponding K corrections30.

We note that our background subtraction model will learn to identify all clus-

ter galaxies between a redshift range of 0.1 ≤ z ≤ 0.35, which may result in

overcounting of cluster galaxies within a cluster if there are other clusters along

the line-of-sight. To limit this effect, we decided to establish colour-magnitude

boundaries within colour-magnitude space when applying our background sub-

traction model. These boundaries are designed to capture the majority of the

30In order to estimate the amount of K correction required, we performed linear interpolation
between redshift and r filter K corrected values determined from a simple stellar population
model (see Bruzual & Charlot (2003) for further details).

130



4.2 Methodology

Right ascension Declination Number of observed galaxies
(degrees) (degrees)

5.10408 21.0611 4488
5.77875 2.30955 7049
9.14699 33.7121 4030
10.4395 -3.84934 5377
21.3533 -3.02485 5595
23.0452 30.3202 5664
26.0012 23.8818 5024
28.3683 20.8955 2748
29.8579 11.0895 5108
38.6421 -8.10943 5168
113.919 28.0332 5223
115.323 15.458 6310
121.916 0.109439 5518
129.971 51.2851 4753
143.518 63.0839 4564
144.097 47.3992 4929
158.633 56.6154 5982
166.196 20.0867 5861
177.951 65.8863 5733
196.86 15.2355 5885
207.127 65.0462 5711
214.632 3.77235 6109
219.239 62.0499 6009
226.958 54.9023 5346
231.26 -0.0179 6696
235.973 18.662 7669
236.823 39.221 6421
238.422 58.5216 6760
255.233 18.8401 6079
263.834 28.0521 3565
316.524 -6.36219 6273
316.54 -1.56952 5201
326.258 -6.56724 6597
332.263 28.8328 4580
332.498 19.5978 4043
333.873 24.14 4214
340.098 4.71022 4252
353.561 33.6502 4239
357.0789 -4.69765 5103
359.369 17.4744 5809

Table 4.1: This table contains the astronomical coordinates (J2000) and number
of observed galaxies that were sampled from our forty different proposed ‘field’
regions using a 1372 arcseconds (i.e. 2.5 Mpc at z = 0.1) search radius. We note
that the number of observed galaxies does not include field galaxies that were within
10 arcseconds of the galaxies in our cluster galaxy sample nor did we include field
galaxies that were within 1646 arcseconds (i.e. 3 Mpc at z = 0.1) of a subsample
of cross-matched WHL and redMaPPer clusters.
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Figure 4.2: This figure shows a colour-magnitude diagram (using apparent mag-
nitudes) of the median r and g− r for cluster galaxies at different redshift intervals
from our cluster galaxy sample.

population of cluster galaxies at specific redshifts. We first computed the me-

dian values of r and g− r for cluster galaxies in our cluster galaxy sample across

redshift intervals of ±0.005 that are centered in redshift bins from 0.105 to 0.345

with step sizes of 0.01, as shown in Figure 4.2. We then manually determined

appropriate lower and upper boundaries of rmedian − 0.01 ≤ rmedian ≤ r + 0.4

and g − rmedian − 0.05 ≤ g − r ≤ g − rmedian + 0.4 for each redshift bin.

This would result in ‘L-shaped’ boundaries around the cluster galaxies at a given

redshift, where an example of the ‘L-shaped’ boundaries for cluster galaxies at

z = 0.225 is shown in Figure 4.3. We then applied these colour-magnitude bound-

aries to our cluster galaxy sample across redshift bin sizes of 0.01 to remove any

cluster galaxies that were not within the colour-magnitude boundaries at their

respective redshift. Subsequently, this yielded a total of 60663 cluster galaxies

that were available to train our background subtraction model. For this work, we

assumed that these cluster galaxies can be considered as ‘actual’ cluster galaxies.
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Figure 4.3: This figure shows an example of the colour-magnitude boundaries
(green dotted lines) for cluster galaxies (red cross) between 0.22 < z < 0.23
from our cluster galaxy sample, where only galaxies that are between the colour-
magnitude boundaries will be considered as part of a cluster at that redshift.
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In Figure S2 (available online), it can be seen that our cluster and field galax-

ies were taken from different areas across SDSS-IV DR16. This meant that our

cluster and field galaxy samples were likely to be representative of the whole pop-

ulation of cluster (between a redshift range of 0.1 ≤ z ≤ 0.35) and field galaxies.

Moreover, in Figures 4.4, S3 and S4 (available online), it can be seen that our field

galaxy sample had an overall noticeable disparity to our cluster galaxy sample

within colour-magnitude space. This somewhat validated our approach for ob-

taining the field galaxies given the underlying differences in photometry between

the majority of the cluster and field galaxies. Although, we also observed some

overlap of the ‘blue’ and faint cluster galaxies with bright field galaxies. We expect

that it may be more difficult for our background subtraction model to differenti-

ate between the galaxy classes within these overlap regions of colour-magnitude

space. Furthermore, in Figure 4.5 we display the photometric redshift, r filter

apparent magnitude and r filter absolute magnitude distributions of galaxies in

our cluster and field galaxy samples. It can be seen that we had fewer cluster and

field galaxies at lower redshifts when compared to those at higher redshifts. This

indicated that we would need to sample equally across different redshifts to pre-

vent our background subtraction model from being biased towards any particular

redshift. We note that the number of field galaxies decreased significantly after

z = 0.4 due to the observing limitations of SDSS-IV DR16 at higher redshifts,

where SDSS-IV DR16 had a r filter limiting magnitude of 22.2. We also noticed

that there was a gradual drop in the number of cluster and field galaxies towards

fainter magnitudes due to the incompleteness of cluster galaxies in the AMF11

catalogue and observing limitations of SDSS-IV DR16 respectively.
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Figure 4.4: This figure shows colour-magnitude diagrams (using apparent mag-
nitudes) of the cluster (red cross) and field (blue circle) galaxies in our cluster and
field galaxy samples that were observed within SDSS-IV DR16. The non-dashed
contour lines represent the density of data points for cluster galaxies whilst the
dashed contour lines represent the density of data points for field galaxies.
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Figure 4.5: This figure shows histograms of the photometric redshift (left image), r filter apparent magnitude (middle
image) and r filter absolute magnitude (right image) of galaxies in our cluster (red) and field (blue) galaxy samples
after being cross-matched with galaxies observed within SDSS-IV DR16, where the cluster galaxies had to be between a
redshift range of 0.1 ≤ z ≤ 0.35. It should be noted that we only display field galaxies that had an available photometric
redshift in the top and bottom images.
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Finally, we partitioned our cluster and field galaxy samples into three differ-

ent subsets, known as the training, validation and test sets. In particular, the

training set would be used to train our background subtraction model, the vali-

dation set would be used to tune its hyper-parameters and the test set would be

used to obtain an unbiased estimate of the predictive performance of our back-

ground subtraction model. This involved randomly selecting 450, 150 and 150

cluster galaxies within fixed redshift bin sizes of 0.01 across a redshift range of

0.1 ≤ z ≤ 0.35 to be within our training, validation and test sets, which resulted

in a total of 11250, 3750 and 3750 cluster galaxies respectively. We also ran-

domly selected 33750, 11250 and 11250 field galaxies to be within our training,

validation and test sets respectively. It should be noted that we applied sampling

weights31 when selecting field galaxies to be within our training and validation

sets to ensure that the r filter apparent magnitudes of the field galaxies over-

lapped with the r filter apparent magnitudes of the cluster galaxies. This would

expose our background subtraction model to a larger proportion of the more dif-

ficult instances (i.e. cluster and field galaxies that had very similar photometry)

during its training. Furthermore, we wanted our training, validation and test

sets to remain as realistic as possible. As such, we permitted the number of field

galaxies to outnumber (i.e. we assumed that having three field galaxies for every

cluster galaxy was appropriate) the number of cluster galaxies with these sets.

Although, we only permitted random sampling (i.e. equal sampling weightage)

of field galaxies in our test set. These properties can be seen in Figure 4.6.

31The amount of sampling weightage applied to each field galaxy in our training and val-
idation sets was based on the resultant likelihood of the r filter apparent magnitude for the
field galaxy under a normal distribution that was constructed from the mean and standard
deviation of the r filter apparent magnitudes of cluster galaxies in our training and validation
sets. We also shifted the computed means by −1 in our training and validation sets to ensure
that the cluster and field galaxy distributions overlapped at all r filter apparent magnitudes.
In addition, we note that sampling with replacement was used when selecting field galaxies to
be within our training and validation sets.
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Figure 4.6: This figure shows colour-magnitude diagrams (using apparent magnitudes) of the cluster (red cross) and
field (blue circle) galaxies in our training (left image), validation (middle image) and test (right image) sets that were
observed within SDSS-IV DR16.
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4.2.2 Using a multi-stage machine learning algorithm to

perform background subtraction

We employed an unsupervised deep learning algorithm, known as an autoencoder

(AE, Rumelhart et al. 1985), as the first stage of our background subtraction

model. Our overall objective for using an AE is to train it to learn to accurately

reconstruct input data. The mechanism behind the AE can be separated into

three main stages, that are known as the encoder network, bottleneck and decoder

network. The overall architecture for a typical AE is shown in Figure 4.7.

The encoder network is composed of fully-connected layers that are respon-

sible for processing an input dataset by performing nonlinear transformations of

the input data into a compressed representation. This is achieved by decreas-

ing the number of nodes in the fully-connected layers as the size of the encoder

network increases. The compression is maximised within the bottleneck, where

the number of nodes in the bottleneck determines the amount of compression.

The underlying objective of the bottleneck is to obtain the lowest dimensional

representation of the data that captures the most generalisable aspects about

the data. From which, the compressed data is then passed to the decoder net-

work for reconstruction. This involves decompressing the compressed data back

into its original input dimensionality by increasing the number of nodes in the

fully-connected layers as the size of the decoder network increases. If the AE

is properly trained, the reconstructed feature values should closely resemble the

feature values of the input data. Overall, an AE can be considered as a type

of dimensionality reduction-based algorithm since it focuses on reducing the di-

mensionality of the input data. However, we reconfigure its functionality from a

dimensionality reduction-based algorithm into an outlier detection algorithm by

also examining the differences between the reconstructed outputs and the input

data. We note that the decoder network has the same but reversed architecture

to the encoder network, where the number of nodes in the fully-connected layers

increases rather than decreases as the size increases.

In order to train the AE to generate accurate reconstructions, we used the

mean squared error as our loss function. This measured the similarity between
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Figure 4.7: This figure shows an example of the architecture layout for a typical
AE. The AE is composed of three main stages that are known as the encoder
network, bottleneck and decoder network, where the nodes in each hidden layer
are fully-connected to the nodes of the adjacent hidden layers. We also employed a
ReLU activation function with ‘He uniform’ (He et al., 2015) weight initialisation
for each hidden layer in the encoder network, bottleneck and decoder network,
whilst a linear activation function with ‘Glorot uniform’ (Glorot & Bengio, 2010)
weight initialisation was used for the output layer of the decoder network. In
addition, we initialised all biases to zeros. It should be noted that we utilised the
Keras deep learning framework (Chollet et al., 2015) to construct the AE.
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all of the input and reconstructed feature values of galaxies via the following

equation:

Mean Squared Error =
1

n

n∑
i=1

(yi − ŷi)2 , (4.1)

where n is the number of input features, y is the input feature values and ŷ

is the reconstructed feature values.

We set the batch size, learning rate, optimiser algorithm32 and architecture

layout33 to be tunable hyper-parameters, where the full hyper-parameter search

space is shown in Table 4.2.

We employed a separate machine learning algorithm, known as logistic regres-

sion (see Morgan & Teachman (1988) for further details), as the second stage of

our background subtraction model. This served to convert the outputs of the AE

into class predictions. In particular, we used the known class labels as the target

variable and the mean squared error between the input and reconstructed feature

values as the input variable, where if an input was poorly reconstructed by the

AE then the corresponding mean squared error will be large too. From which,

the logistic regression algorithm determines whether a galaxy should be classi-

fied as a cluster or field galaxy (i.e. the galaxy class with the higher predicted

probability) when given the mean squared error of each galaxy. In this work, we

decided to use the defaulted hyper-parameter values for the logistic regression

algorithm (N.B. without regularisation) in the Scikit-Learn machine learning

library since we primarily wanted to examine the influence of the AE in our back-

ground subtraction model. We expect that tuning the hyper-parameters for the

logistic regression algorithm may slightly improve the overall predictive perfor-

mance of our background subtraction model but this can be explored further in

future work. It should be noted that the logistic regression algorithm minimised

the following loss function during its training:

32We recommend the reader to refer to Ruder (2016) for an overview of different optimiser
algorithms.

33We considered the number of nodes in the bottleneck to be the most significant component
of an AE’s architecture since it is influential in the amount of generalization learned. We decided
that the number of nodes in the bottleneck should be a tunable hyper-parameter whilst the
number of nodes for the hidden layers in the encoder and decoder networks would remain fixed.
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Tunable
hyper-

parameter
name

Hyper-parameter search space

Batch size 256 or 512 or 1024 or 2048

Learning rate 0.0001 or 0.001 or 0.01 or 0.1

Optimiser
algorithm

Adaptive Moment Estimation (Adam) or Adaptive
Delta (Adadelta) or Adaptive Gradient Optimiser
(Adagrad) or Adam Based On The Infinity Norm
(Adamax) or Adam With Nesterov Momentum

(Nadam) or Stochastic Gradient Descent (SGD) or
Root Mean Squared Propagation (RMSprop)

Architecture
layout (number

of nodes and
hidden layers in

the encoder
network and
bottleneck)

1 (13 nodes in first hidden layer, 11 nodes in second
hidden layer, 9 nodes in third hidden layer, 7 nodes in
the fourth hidden layer and 1 node in the bottleneck)

or 2 (13 nodes in first hidden layer, 11 nodes in second
hidden layer, 9 nodes in third hidden layer, 7 nodes in
the fourth hidden layer and 3 nodes in the bottleneck)
or 3 (13 nodes in first hidden layer, 11 nodes in second
hidden layer, 9 nodes in third hidden layer, 7 nodes in
the fourth hidden layer and 5 nodes in the bottleneck)

Table 4.2: This table contains a list of tunable hyper-parameters for the AE
as well as the range of values that were explorable in the hyper-parameter space
via random search. We also set a maximum of ten thousand trainable epochs as
well as enabling early stopping of the model training if the validation loss had
not decreased by 0.001 over fifty epochs from the best observed validation loss.
Furthermore, we again remind the reader that the encoder and decoder networks
had reversed symmetrical designs, so we did not specify the number of nodes or
hidden layers for the decoder network within this table.
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Log Loss = − 1

n

n∑
i=1

p∗i log(pi) + (1− p∗i )log(1− pi) , (4.2)

where n is the number of inputs, p∗ is the true class value (i.e. either 0 or

1) and p is the predicted probability (i.e. between 0 and 1) of being a galaxy

class. This loss function measured the difference between predicted probability

and true class value of galaxies.

We utilised a random search strategy to examine the predictive performance

of our background subtraction model with different hyper-parameter combina-

tions, where random search is a computationally efficient approach that does

not need to examine every hyper-parameter combination. Instead, it considers

that hyper-parameter optimization can be characterised by a Gaussian process,

such that only a minority of hyper-parameter combinations are actually impor-

tant. For example, we can assume that a randomly selected hyper-parameter

combination has a ninety-five per cent probability of being situated within the

top five per cent of all possible hyper-parameter combinations from the optimum

after conducting only sixty iterations of random search. At the same time, we

employed a Monte Carlo cross-validation strategy to examine the variability of

the predictive performance of our background subtraction model with different

weight initialisations and dataset compositions. This involved repeated random

sampling of new training, validation and test sets over ten iterations to measure

the average predictive performance across the ten iterations. Ideally, we aimed

to select a hyper-parameter combination that offered consistency and good pre-

dictive performance.

To determine the optimal hyper-parameter combination of our background

subtraction model, we computed the area under a precision-recall curve (AUCPR,

Boyd et al. 2013) for each hyper-parameter combination by applying the trapez-

ium rule to the following equation:

AUCPR =

∫
Precision d (Recall) , (4.3)

where the formulae for Precision and Recall can be found in Equations 2.5

and 2.6 respectively. Although, we note that in this case TP is the number
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of correctly classified ‘actual’ cluster galaxies, FP is the number of incorrectly

classified ‘actual’ cluster galaxies and FN is the number of incorrectly classified

‘actual’ field galaxies. Briefly, this metric measured the proportion of predictions

that were predicted as cluster galaxies as well as the proportion of ‘actual’ cluster

galaxies that were recovered across all class probability thresholds. It is ideal

for assessing the predictive performance of a model that focuses on correctly

identifying ‘rare’ instances (i.e. when there is a class imbalance). The optimal

hyper-parameter combination would maximise the AUCPR for galaxies in our

validation set.

Next, we determined the corresponding optimal class probability threshold

when using the optimal hyper-parameter combination. This involved comparing

the F1 score yielded for each class probability threshold (i.e. from 0 to 1 with

class probability threshold step sizes of 0.01) via Equation 2.7.

This metric was similar to AUCPR in functionality except it only considered

the predictive performance at a specific class probability threshold. The opti-

mal class probability threshold would maximise the F1 score for galaxies in our

validation set.

Lastly, we determined the overall classification accuracy of our background

subtraction model at distinguishing between cluster and field galaxies in our test

set. This involved computing the balanced accuracy (Brodersen et al., 2010)

when using the optimal class probability threshold and optimal hyper-parameter

combination via the following equation:

Balanced Accuracy =
1

2

(
TP

TP + FN
+

TN

TN + FP

)
, (4.4)

where TP is the number of correctly classified ‘actual’ cluster galaxies, TN

is the number of correctly classified ‘actual’ field galaxies, FP is the number of

incorrectly classified ‘actual’ cluster galaxies and FN is the number of incorrectly

classified ‘actual’ field galaxies. The primary advantage of using balanced accu-

racy rather than conventional classification accuracy is that balanced accuracy

takes into account class imbalance whereas conventional classification accuracy

assumes equal class sizes when measuring the predictive performance of a binary

classification model.
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4.2.3 Establishing a scaling relation to estimate r200

It is beneficial to measure the richness of clusters within a characteristic radius

(e.g. r200, r500, r2500) because it enables a more straightforward comparison of

cluster richness across different catalogues. We decided to establish a scaling

relation that predicted values for the characteristic radius of cross-matched WH15

and redMaPPer clusters from §§4.2.1. We note that WH15 used a friends-of-

friends grouping algorithm on galaxies with known spectroscopic or photometric

redshifts to identify clusters in the Sloan Digital Sky Survey Data Release 12

(SDSS-III DR12, Alam et al. 2015) whilst redMaPPer used a red-sequence fitting

algorithm on galaxies within colour-magnitude space to identify clusters in SDSS-

III DR8. Subsequently, we obtained a total of 6064 cross-matched WH15 and

redMaPPer clusters between a redshift range of 0.1 ≤ z ≤ 0.35. We decided to

use these clusters because they were found via two conventional approaches for

cluster detection. This enabled us to directly compare the consistency of richness

estimates from using our novel cluster galaxy identification technique versus other

cluster galaxy identification techniques. In this proof-of-concept study, we choose

to employ only a subsample of 1000 cross-matched WH15 and redMaPPer clusters

when creating our scaling relation for time efficiency.

We also decided to use r200 as our characteristic radius since the cluster galax-

ies in our training and test sets from the AMF11 catalogue were originally sampled

within r200. In particular, we utilised r200 values that were estimated by WH15

as the dependent variable in our scaling relation, where their r200 estimates were

computed via a scaling relation between r200 measurements from X-ray/weak

gravitational lensing observations and total luminosity in the r band of all the

identified cluster galaxies. For this work, we assumed that these r200 values can

be considered as ‘actual’ r200 values. In Figure S5 (available online), we noticed

that there was a strong linear relationship between WH1534 and redMapper rich-

ness35. This means that we can directly compare our predicted richnesses with

34We refer to the RL∗ variable from the WH15 catalogue as WH15 richness, where they
computed cluster richness by measuring the total luminosity of identified galaxy members as a
function of the typical luminosity of galaxies in the r filter.

35We refer to the λ/S variable from the redMaPPer catalogue as redMaPPer richness, where
they computed cluster richness by determining an expected richness which would yield the
observed projected density, i filter magnitudes and multiple colour indices of the identified
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the richness estimates of redMaPPer. Furthermore, we noticed that there was a

non-linear relationship between r200 and both WH15 and redMaPPer richnesses

which was in accordance with the empirical richness-size relation observed in

Hansen et al. (2005), where our ‘actual’ r200 values appeared to have greater vari-

ability at lower richnesses. As such, we expected that our scaling relation would

have greater variability in r200 at lower richnesses too.

We then partitioned the cross-matched WH15 and redMaPPer clusters into

a training set and test set. We nominally referred to these sets as the CMWR

(i.e. cross-matched WH15 and redMaPPer) training and test sets to avoid con-

fusion with the training and test sets created in §§4.2.1. The purpose of having

the CMWR training set was to determine the best fit coefficients of our scaling

relation whilst the purpose of having the CMWR test set was to measure the

predictive performance of our learned scaling relation. Since we knew the spec-

troscopic redshift of the CMWR clusters, we segmented them into fixed redshift

bin sizes of 0.01. This ensured that our training and test sets contained clusters

from across the redshift scale via stratified sampling36. This involved randomly

allocating approximately half of the clusters within each redshift bin into both

sets, which resulted in our CMWR training and test sets containing 500 clus-

ters each. The spectroscopic redshift and richness distributions of clusters in our

CMWR training and test sets can be seen in Figure 4.8.

Next, we applied a search radius of 2.5 Mpc at each cluster’s spectroscopic

redshift as well as reapplying the same observing flags mentioned in §§4.2.1 to

acquire galaxies from SDSS-IV DR16. This gave us a total of 2020690 galaxies,

where our CMWR training set consisted of 1005167 galaxies and our CMWR test

set consisted of 1015523 galaxies. We then applied our background subtraction

model and colour-magnitude boundaries to count the number of cluster galaxies

within each cluster. We established a linear scaling relation that was based on the

number of identified cluster galaxies as an independent variable and r200 as the

dependent variable. This involved learning the best fit coefficients by minimising

the residual sum of squares between the dependent and independent variables in

red-sequence galaxies.
36Stratified sampling is a strategy that minimises selection bias by splitting a dataset into

new distributions that approximately resemble the original distribution.
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Figure 4.8: This figure shows histograms of the cluster spectroscopic redshift
(top image) and WH15 richness (bottom image) distributions of clusters in our
CMWR training (green) and test (purple) sets that were between a redshift range
of 0.1 ≤ z ≤ 0.35.
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a linear regression algorithm from the Scikit-Learn machine learning library,

where we again used the defaulted hyper-parameter values for the linear regression

algorithm. We note that our cross-matched WH15 and redMaPPer cluster sample

contained many clusters with low richness but only a few clusters with high

richness. As such, we decided to assign the WH15 richness of each cluster as

individual weights in the linear regression algorithm to minimise the effect of

overfitting to potential outliers from clusters with low richness.

4.2.4 Preparation of a photometric dataset to estimate

individual cluster richnesses

In order to measure richness within r200 of individual clusters, we first approx-

imated r200 for clusters in our CMWR training and test sets using the learned

scaling relation from §§4.2.3 to reacquire galaxies within r200 from SDSS-IV DR16.

We nominally referred to these new sets as the CMWR-r200 training and test sets

to avoid confusion with the CMWR training and test sets created in §§4.2.3.

Similar to before, the purpose of having the CMWR-r200 training set was to de-

termine the best fit coefficients of a luminosity distribution fitting function whilst

the purpose of having the CMWR-r200 test set was to measure the predictive

performance of the learned luminosity distribution fitting function. We obtained

a total of 299807 galaxies in our CMWR-r200 training set and 306953 galaxies in

our CMWR-r200 test set. The resultant color-magnitude diagrams of galaxies in

our CMWR-r200 training and test sets is shown in Figure 4.9.
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Figure 4.9: This figure shows colour-magnitude diagrams (using apparent magnitudes) of galaxies in our CMWR-r200

training (left image) and test (right image) sets that were within an r200 search radius and observed within SDSS-IV
DR16.
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4.2.5 Using a luminosity distribution fitting function to

estimate individual cluster richnesses within r200

We adopted a similar approach to the methodology described in Schechter (1976)

to estimate the richness of individual clusters. Schechter (1976) showed that it

was possible to use a luminosity distribution fitting function (i.e. the Schechter

function) to do this. Briefly, this involved fitting the function to a composite

luminosity distribution of cluster galaxies in order to determine best fit parameter

values of the function. Then Schechter (1976) assumed that the best fit parameter

values for M∗ and α can be applied universally to the luminosity distribution of

individual clusters to locally fit for n∗ and thus estimate cluster richness. The

Schechter function is expressed via the following equation:

n(M)dM = [0.4ln(10)]n∗[100.4(M∗−M)]α+1e−100.4(M
∗−M)

dM , (4.5)

where M is absolute magnitude, n∗ is the number of galaxies per unit mag-

nitude, M∗ is the ‘characteristic’ magnitude at which the distributions of faint

and bright galaxies rapidly changes and α is the faint end slope parameter that

describes the distribution of galaxies fainter than M∗. We note that M∗ and α

directly influence the steepness of the bright and faint ends in the Schechter func-

tion whilst n∗ varies based on the observed number of galaxies within magnitude

bins.

Firstly, we applied our background subtraction model and colour-magnitude

boundaries to identify cluster galaxies from the CMWR-r200 training set. We then

performed Chi-squared fitting37 with initialisation bounds for M∗ (i.e. between

−30 and −15), n∗ (i.e. between 0 and positive infinity) and α (i.e. between −2

and −1) when fitting the Schechter function to a composite luminosity distribu-

tion that consisted of a subsample of identified cluster galaxies which appeared

to have high completeness (i.e. greater than 90 per cent when using a base-10

logarithmic scale for the counts) between a restricted r filter absolute magnitude

37We used the curve fit function from the SciPy Python library (Virtanen et al., 2020) to
perform Chi-squared fitting of the Schechter function, which returned the best fit parameter
values that minimised the Chi-squared fitting error and also returned an estimated covariance
matrix of the best fit parameter values.
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(i.e. between −25 and −21.5) and redshift (i.e. between 0.1 and 0.15) range.

At the same time, we also explored various r filter absolute magnitude bin sizes

(i.e. from 0.01 to 3 with step sizes of 0.01) to obtain an optimal r filter abso-

lute magnitude bin size that minimised the Chi-squared fitting error and yielded

galaxies across five or more r filter absolute magnitude bins. Furthermore, we

approximated the uncertainty in the number of identified cluster galaxies within

each magnitude bin by assuming that the uncertainty followed a Poisson sampling

hypothesis38 when fitting the Schechter function. From which, we determined an

optimal absolute magnitude bin size and best fit parameter values for M∗, n∗ and

α, where we also assumed that the best fit parameter values for M∗ and α can

be applied universally to the luminosity distribution of individual clusters.

We remind the reader that our background subtraction model had not yet

been corrected for the incompleteness of faint galaxies from observing limita-

tions. This meant that we had to derive completeness corrections for the lumi-

nosity distribution (i.e. using r filter absolute magnitudes) of individual clusters

at different redshifts. Initially, we grouped the identified cluster galaxies from

the CMWR-r200 training set into redshift intervals of ±0.04(1 + z) that were cen-

tered in redshift bins from 0.105 to 0.345 with step sizes of 0.01, where identified

cluster galaxies from different redshifts can go into multiple bins. Next, we fit-

ted a 100 per cent completeness line across adjacent r filter apparent magnitude

bins39 that were on the bright side of the peak and within the completeness limit

of the AMF11 catalogue for each redshift interval. We then approximated the

completeness fraction of the faintest r filter apparent magnitude bin (N.B. we

considered the two faintest magnitude bins on the bright side of the peak beyond

z > 0.14 and three faintest magnitude bins on the bright side of the peak be-

yond z > 0.33 as the incompleteness of galaxies became more visibly noticeable

for more magnitude bins at higher redshifts) by calculating the fraction in the

38A Poisson sampling hypothesis assumed that the distribution of galaxies is dictated by a
Poisson process, such that the standard deviation of the counts within each magnitude bin was
based on the square root of the count (Schechter, 1976).

39We used an r filter apparent magnitude bin size that corresponded to the optimal r filter
absolute magnitude bin size. In addition, when working with the luminosity distribution of
individual clusters we only considered cluster galaxies within an r filter absolute magnitude
range of −25 to −20.5, where −20.5 was the r filter absolute magnitude limit that was used to
determine WH15 richness in Wen & Han (2015).

151



4.2 Methodology

expected number of cluster galaxies (i.e. based on the 100 per cent completeness

line) to the observed number of cluster galaxies (i.e. identified by our background

subtraction model).

We applied these completeness fractions to the luminosity distribution of in-

dividual clusters by multiplying the observed count of the faintest (N.B. we again

considered the two faintest magnitude bins on the bright side of the peak beyond

z > 0.14 and three faintest magnitude bins on the bright side of the peak beyond

z > 0.33) r filter absolute magnitude bin40 on the bright side of the peak by the

completeness fraction of the corresponding r filter apparent magnitude bin within

the nearest redshift interval. We then replaced the uncertainty range of the ob-

served count in the magnitude bin with this computed completeness correction

value as the new lower and upper uncertainty limits when performing Chi-square

fitting. This ensured that the Schechter function did not fit to incomplete r filter

absolute magnitude bins.

Finally, we estimated cluster richnesses within r200 by integrating41 the lo-

cally fit Schechter function. This gave us the expected number of cluster galaxies

within r200 that had an r filter absolute magnitude brighter than −20.5. We also

compared our estimated cluster richnesses with WH15 richnesses, spectroscopic

redshift, ‘actual’ r200 and redMaPPer richnesses in order to examine the predic-

tive performance of the optimal r filter absolute magnitude bin size and best fit

parameters for M∗ and α in the Schechter function. We note that WH15 richness

was specific to r200 whereas redMaPPer richness was specific to redMaPPer’s own

scaling radius rather than r200. This meant that we could directly quantify the

error between our estimated cluster richnesses and WH15 richnessses by using

root mean squared error as a metric.

40Since our completeness fractions were measured in r filter apparent magnitudes, we had
to convert between r filter apparent magnitudes and r filter absolute magnitudes to determine
the relevant completeness fraction.

41We utilised the incomplete Gamma function (see Equation 27 in Schechter (1976)) to
compute the integral.
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4.3 Results

4.3.1 Model tuning analyses

4.3.1.1 Analysis of our trained background subtraction model

We conducted ten iterations of Monte Carlo cross-validation to measure the vari-

ability of the predictive performance of our background subtraction model, as well

as conducting sixty iterations of random search on the tunable hyper-parameters

of our background subtraction model, to determine an optimal hyper-parameter

combination that maximised the AUCPR of galaxies in our validation set. It

can be seen in Table S1 (available online) that the optimum hyper-parameter

combination was as follows: optimal batch size = 2048; optimal learning rate =

0.0001; optimal optimiser algorithm = RMSprop and optimal architecture layout

= 3. This optimum hyper-parameter combination yielded a mean AUCPR value

of 40.24 per cent with a standard deviation of 1.85 per cent for galaxies in our

validation set. Furthermore, it can be seen in Table S2 (available online) that the

optimum class probability threshold was 0.29, when using the optimum hyper-

parameter combination. This optimum class probability threshold yielded a F1

score of 48.92 per cent for galaxies in our validation set.

4.3.1.2 Analysis of our established scaling relation to estimate r200

We constructed a scaling relation using clusters in our CMWR training set to

estimate the r200 of each cluster when given the number of cluster galaxies iden-

tified by our background subtraction model as an input. The best fit coefficients

of our scaling relation were determined by minimising the weighted residual sum

of squares between the independent and dependent variables, where our scaling

relation is defined via the following equation:

predr200 = (3.39± 0.23)ngal + (950.65± 25.25) , (4.6)

where predr200 is the predicted r200, ngal is the number of cluster galaxies

identified within a 2.5 Mpc search radius at each cluster’s spectroscopic redshift
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and the uncertainty represents the standard error of the parameter estimates.

In Figure 4.10, it can be seen that there was a larger drop in the number of

cluster galaxies identified by our background subtraction model at higher redshifts

(i.e. z > 0.3) when compared to the number of identified cluster galaxies at

lower redshifts with the same ‘actual’ r200 values. This was likely due to cluster

galaxies at higher redshifts having larger observed photometric errors, which made

it more difficult for our background subtraction model to identify these cluster

galaxies. We note that we obtained a Pearson correlation coefficient value of 0.39

between the number of identified cluster galaxies and ‘actual’ r200 variables. We

also observed that both WH15 and redMaPPer richnesses appeared to somewhat

linearly increase with ‘actual’ r200 and the number of identified cluster galaxies.

Furthermore, in Figure 4.11, we compared the predictive performance of our

predicted r200 with the ‘actual’ r200, where we found that our predicted r200 was

quite comparable to the ‘actual’ r200 across all cluster sizes. Although, we noticed

there was greater variability in the predicted r200 at lower cluster richnesses, where

we obtained a root mean squared error of 218.14 and a median absolute percentage

error of 11.89 per cent between our predicted and ‘actual’ r200 values.
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Figure 4.10: This figure shows our scaling relation (black dotted line) to estimate the r200 of clusters. It used the ‘actual’
r200 of clusters from our CMWR training set as a dependent variable and the number of cluster galaxies identified by our
background subtraction model within a 2.5 Mpc search radius at each cluster’s spectroscopic redshift as an independent
variable. We also display the corresponding spectroscopic redshift (left image), WH15 richness (middle image) and
redMaPPer richness (right image) of each cluster.
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4.3.1.3 Analysis of the best fit parameters for a luminosity distribu-

tion fitting function to estimate individual cluster richnesses

Within r200

We used a Chi-squared fitting approach to determine the best fit parameters of

the Schechter function when fitting to a composite luminosity distribution that

consisted of a subsample of identified cluster galaxies from our CMWR training

set with high completeness. We also simultaneously determined an optimal r

filter absolute magnitude bin size that minimised the Chi-squared fitting error

and yielded galaxies across five or more r filter absolute magnitude bins. In

Table S3 (available online), we identified an optimal r filter absolute magnitude

bin size of 0.52 that had corresponding best fit parameter values of M∗ = −22.81

with a standard deviation of ±0.5; n∗ = 159.82 with a standard deviation of

±154.62 and α = −1.99 with a standard deviation of ±0.37. In Figure 4.12, we

display the composite luminosity distribution and fitted Schechter function using

the optimal r filter absolute magnitude bin size and best fit parameter values.

We then used the optimal r filter absolute magnitude bin size and best fit

parameter values for M∗ and α to fit the Schechter function to the luminos-

ity distribution of individual clusters from our CMWR-r200 training set. This

enabled us to estimate individual cluster richnesses by integrating the locally fit

Schechter function. Subsequently, we obtained a root mean squared error of 18.06

and a median absolute percentage error of 34.33 per cent between our estimated

cluster richnesses and WH15 richnesses within r200. In Figure 4.13, we noticed

that WH15 richnesses had a strong linear correlation with our estimated clus-

ter richnesses. We also observed that spectroscopic redshifts seemed to have no

distinguishable correlation with our estimated cluster richnesses. In addition, we

noticed that there was a strong linear correlation between ‘actual’ r200, redMaP-

Per richnesses and our estimated cluster richnesses. These results confirmed that

our approach to estimate individual cluster richnesses was appropriate since we

did not train any of our models to minimise cluster richness prediction error but

we still obtained strong correlations with WH15 and redMaPPer richnesses. Fur-

thermore, we were aware that our CMWR-r200 training set contained clusters that
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Figure 4.11: This figure shows a direct comparison of r200 predicted by our scaling
relation with the ‘actual’ r200 of clusters from our CMWR training set.

157



4.3 Results

Figure 4.12: This figure shows the best fit Schechter function (black dotted line)
overlaid on a composite luminosity distribution (using r filter absolute magnitudes)
that consisted of a subsample of identified cluster galaxies from our CMWR-r200

training set with an optimal r filter absolute magnitude bin size of 0.52. The best
fit parameter values and their respective standard deviations are displayed in the
top right corner of the figure. The x-axis error bars display the width of each r filter
absolute magnitude bin and the y-axis error bars display the standard deviation of
the observed count within each r filter absolute magnitude bin when assuming a
Poisson sampling hypothesis.
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were not truly unseen, as we had utilised these clusters before to create our scal-

ing relation. Although, it was still interesting to test our methodology on clusters

that were seen and unseen to compare differences in predictive performance.
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Figure 4.13: This figure shows a direct comparison between our estimated cluster richnesses and WH15 richnesses
of clusters from our CMWR-r200 training set when using the optimal r filter absolute magnitude bin size and best fit
parameter values for M∗ and α. We also display the corresponding spectroscopic redshifts (left image), ‘actual’ r200

(middle image) and redMaPPer richness (right image) for each cluster. The x-axis error bars display the standard
deviation of the locally fit n∗ when computing the integral of the Schechter function to determine our estimated cluster
richnesses.
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4.3.2 Overall performance analyses with test sets

We further assessed our entire methodology on clusters belonging to our vari-

ous test sets to obtain an unbiased evaluation of the true predictive performance

of our models. Firstly, we applied our background subtraction model to cluster

and field galaxies in our test set. This yielded a F1 score of 72.81 per cent and

a balanced accuracy of 83.20 per cent when using the optimal hyper-parameter

combination and optimal class probability threshold for our background subtrac-

tion model. In Figure 4.14, we display a direct comparison of the ‘actual’ and

predicted cluster and field galaxies. It can be seen that our background subtrac-

tion model learned to correctly classify almost all of the field galaxies surrounding

the cluster galaxies but it made more incorrect classifications in regions where

the ‘actual’ cluster and field galaxies had greater overlap within colour-magnitude

space. Meanwhile, in Figure 4.15, we compared the number of cluster and field

galaxies identified by our subtraction model across redshift bin sizes of 0.01. At

lower redshifts (i.e. z ≤ 0.45), we noticed that our background subtraction model

slightly underestimated (i.e. misclassified ‘actual’ field galaxies as cluster galax-

ies or misclassified ‘actual’ cluster galaxies as field galaxies) the overall number

of ‘actual’ cluster and field galaxies. In particular, we noticed a larger drop in

the number of identified ‘actual’ cluster galaxies between 0.3 ≤ z ≤ 0.35, which

was similar to our observation in Figure 4.10. Correspondingly, at higher red-

shifts (i.e. z > 0.45), we found that our background subtraction model correctly

classified almost all of the galaxies. In Figures 4.16 and 4.17, we compared the

number of cluster and field galaxies identified by our subtraction model across r

filter apparent and absolute magnitude bin sizes of 0.1 respectively. In both mag-

nitude distributions, we noticed that our background subtraction model slightly

underestimated the overall number of ‘actual’ cluster galaxies at all magnitudes.

We also noticed that our background subtraction model slightly underestimated

the overall number of ‘actual’ field galaxies at intermediate brightnesses (i.e. be-

tween 16.5 and 20.5 in r filter apparent magnitude and between −24 and −20 in

r filter absolute magnitude) but correctly classified almost all of the other fainter

and brighter ‘actual’ field galaxies. Furthermore, in Figure 4.18 we examined

the proportion of ‘red’ and ‘blue’ ‘actual’ cluster galaxies that were identified
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by our background subtraction model at different redshifts. We found that our

background subtraction model identified 84.32 per cent of ‘red’ ‘actual’ cluster

galaxies and recovered 73.11 per cent of ‘blue’ ‘actual’ cluster galaxies between a

redshift range of 0.1 ≤ z ≤ 0.35. This indicated that our background subtraction

model was more confident at identifying ‘red’ ‘actual’ cluster galaxies than ‘blue’

‘actual’ cluster galaxies, which was likely due to the ‘blue’ ‘actual’ cluster galaxies

having greater overlap with field galaxies within colour-magnitude space.
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Figure 4.14: This figure shows a direct comparison of the colour-magnitude diagrams (using apparent magnitudes) for
the ‘actual’ (left image) and predicted (right image) cluster (red cross) and field (blue circle) galaxies in our test set.
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Figure 4.15: This figure shows histograms of the number of identified cluster (left image) and field (right image) galaxies
in our test set when using fixed redshift bin sizes of 0.01. The blue fill with black dotted lines represents the original
number of ‘actual’ cluster or field (N.B. we only display field galaxies that had an available photometric redshift) galaxies
within each redshift bin. The red points represent the number of cluster or field galaxies identified by our background
subtraction model within each redshift bin, the green crosses represent the number of ‘actual’ cluster or field galaxies
identified by our background subtraction model within each redshift bin and the x-axis error bars display the width of
each redshift bin.
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Figure 4.16: This figure shows histograms of the number of identified cluster (left image) and field (right image)
galaxies in our test set when using fixed r filter apparent magnitude bin sizes of 0.1. The blue fill with black dotted lines
represents the original number of ‘actual’ cluster or field galaxies within each r filter apparent magnitude bin. The red
points represent the number of cluster or field galaxies identified by our background subtraction model within each r
filter apparent magnitude bin, the green crosses represent the number of ‘actual’ cluster or field galaxies identified by our
background subtraction model within each r filter apparent magnitude bin and the x-axis error bars display the width
of each r filter apparent magnitude bin.
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Figure 4.17: This figure shows histograms of the number of identified cluster (left image) and field (right image) galaxies
in our test set when using fixed r filter absolute magnitude bin sizes of 0.1. The blue fill with black dotted lines represents
the original number of ‘actual’ cluster or field (N.B. we only display field galaxies that had an available photometric
redshift) galaxies within each r filter absolute magnitude bin. The red points represent the number of cluster or field
galaxies identified by our background subtraction model within each r filter absolute magnitude bin, the green crosses
represent the number of ‘actual’ cluster or field galaxies identified by our background subtraction model within each r
filter absolute magnitude bin and the x-axis error bars display the width of each r filter absolute magnitude bin.
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We then applied our learned scaling relation and colour-magnitude boundaries

to clusters in our CMWR test set to approximate r200 for each cluster. In Figure

4.19, we noticed that the number of identified cluster galaxies and ‘actual’ r200

was relatively consistent with our learned scaling relation from Figure 4.10. From

which, we obtained a Pearson correlation coefficient value of 0.50 between the

number of identified cluster galaxies and ‘actual’ r200 variables in Figure 4.19.

We also noticed that our predicted and ‘actual’ r200 values in Figure 4.20 was

similar to the overall trend observed in Figure 4.11, where we obtained a root

mean squared error of 200.86 and a median absolute percentage error of 11.66

per cent between our predicted and ‘actual’ r200 values in Figure 4.20.
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Figure 4.18: This figure shows a comparison of the ‘red’ and ‘blue’ ‘actual’
cluster galaxies (black cross) in our test set that were identified (red cross) by
our background subtraction model at different redshifts, where we assumed that
galaxies above the blue dashed line were ‘red’ and galaxies below the blue dashed
line were ‘blue’.
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Figure 4.19: This figure is equivalent to Figure 4.10 except we overlaid our learned scaling relation (black dotted line)
on clusters in our CMWR test set.
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Finally, we examined the predictive performance of the optimal r filter ab-

solute magnitude bin size and best fit parameter values for M∗ and α in the

Schechter function on individual clusters in our CMWR-r200 test set. In Figure

4.21, we noticed that the overall trends between our estimated cluster richnesses

and WH15 richnesses with spectroscopic redshifts, ‘actual’ r200 and redMaPPer

richnesses were again consistent with Figure 4.13, where our estimated cluster

richnesses had no distinct correlation with spectroscopic redshifts and our es-

timated cluster richnesses linearly increased with ‘actual’ r200 and redMaPPer

richnesses. Subsequently, we obtained a root mean squared error of 18.04 and a

median absolute percentage error of 33.50 per cent between our estimated cluster

richnesses and WH15 richnesses within r200.
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Figure 4.20: This figure is equivalent to Figure 4.11 except it compared the
predicted and ‘actual’ r200 of clusters in our CMWR test set.
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Figure 4.21: This figure is equivalent to Figure 4.13 except it was applied to unseen clusters from the CMWR-r200 test
set.
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4.3.3 Examining the importance of input features to our

background subtraction model

In Figure 4.22, we examined the importance of each input feature to our back-

ground subtraction model. This involved randomly shuffling the data of each in-

put feature and then applying our background subtraction model on the dataset

to observe how the shuffled feature impacted the predictive performance. This

strategy is known as permutation feature importance testing (Breiman, 2001),

where the permutation scores were based on the number of ‘actual’ cluster galax-

ies identified by our background subtraction model. In particular, a lower per-

mutation score for an input feature implied greater reliance of our background

subtraction model on that specific input feature to provide good predictive per-

formance, because randomly shuffling the data for an important input feature

would result in fewer ‘actual’ cluster galaxies being identified. We applied this

permutation feature importance test to galaxies in our test set, which originally

contained 3750 cluster galaxies. Subsequently, we observed that g, r, i, z, u− g,

u − r, g − i and g − z appeared to have greater significance to our background

subtraction model whereas u, g− r, r− i, i− z, r− z, u− i and u− z appeared to

have lesser significance to our background subtraction model. Although, it is im-

portant to note that our background subtraction model had effectively utilised all

the input features since the number of identified ‘actual’ cluster galaxies for each

input feature was still only a fraction of the original number of ‘actual’ cluster

galaxies.

4.4 Discussion

In Figure 4.5, we observed that the photometric redshift distribution of galaxies in

our cluster galaxy sample was skewed towards higher redshifts, such that higher

redshift cluster galaxies were overrepresented. To achieve a fair representation

of cluster galaxies at different redshifts in our background subtraction model, we

randomly sampled a fixed number of cluster galaxies within fixed redshift bin

sizes of 0.01 when creating our training, validation and test sets. This ensured
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Figure 4.22: This figure shows the importance (N.B. a lower permutation score
signifies greater importance) of each input feature to our background subtraction
model, where the permutation score was based on the number of ‘actual’ cluster
galaxies identified by our background subtraction model after randomly shuffling
the data for each input feature.
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that our background subtraction model was exposed to equal numbers of cluster

galaxies at various redshifts within colour-magnitude space. We also exposed

our background subtraction model to equal numbers of cluster and field galaxies

during its training. This was to ensure a fair representation of the different galaxy

classes in our background subtraction model.

We initially constrained our training sample to only spectroscopically con-

firmed cluster galaxies from the AMF11 catalogue but we quickly noticed that the

training sample itself had a significant drop in the number of faint cluster galaxies

across all redshifts when compared to the non-spectroscopically confirmed clus-

ter galaxies. As such, we decided not to adopt this constraint when training our

background subtraction model. Furthermore, we did not utilise spectroscopically

confirmed field galaxies since it was difficult to acquire a sample that was repre-

sentative of all potential foreground and background galaxies encountered within

a random field. Although, in future work this may be possible since the number

of spectroscopically confirmed cluster and field galaxies would naturally increase

over time.

When constructing our scaling relation, we employed ‘actual’ r200 values that

were estimated from a scaling relation (see Equation 1 in Wen et al. (2012)) that

was based on the total r filter luminosity of identified cluster galaxies within

a 2.5 Mpc radius from the cluster center at each clusters redshift. This meant

that the errors from their estimated r200 values would have carried over into our

estimated r200 values too. In future work, we could instead consider employing

r200 values from X-ray catalogues as X-ray emission measurements of clusters are

not as significantly influenced by projection effects (Ebeling et al., 2010). This

would improve the overall precision of our ‘actual’ r200 values and thus improve

the precision of our cluster richness estimates within r200. Furthermore, we can

establish a scaling relation for any radii, not only r200, as long as we have sufficient

data to enable the construction of a scaling relation for the radii.

In Figures 4.13 and 4.21 we did not observe any redshift biases in our esti-

mated cluster richnesses after we applied completeness corrections to account for

fewer observed galaxies at the faint end of the luminosity distribution of individ-

ual clusters. This indicated that incompleteness of our cluster galaxy sample from

the AMF11 catalogue had a bigger impact on estimating cluster richnesses than
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incompleteness from misclassifications by our background subtraction model. Al-

though, in Figures 4.10, 4.15 and 4.19 we observed a larger drop in the number

of identified cluster galaxies at higher redshifts (i.e. z > 0.3) when compared to

the number of identified cluster galaxies at lower redshifts. We believed that this

could be due to the cluster galaxies at higher redshifts having larger photometric

errors than cluster galaxies at lower redshifts, which can be seen in Figure 4.18 by

the increased scatter between data points as redshift increased. Naturally, this

would make it more difficult for our background subtraction model to identify

them. As such, we would expect there to be fewer cluster galaxies identified at

higher redshifts, since we did not truly account for cluster galaxies having larger

photometric errors at higher redshifts in our background subtraction model. In

the future, it would be beneficial to obtain and utilise a larger cluster galaxy

sample when training our background subtraction model, which would hopefully

reduce this effect by exposing the model to more examples. It may also be

beneficial to employ an algorithm that can learn to interpolate regions within

colour-magnitude space in order to account for the larger photometric errors at

higher redshifts, such as a variational autoencoder (Kingma & Welling, 2013).

In this work, we used the Schechter function to fit to the luminosity distribu-

tion of identified cluster galaxies, where it was important to review the cluster

membership status of each individual galaxy in order to minimise severe contam-

ination from bright interloping field galaxies when fitting the Schechter function.

Although, we were aware of alternative luminosity functions that could be used

to fit to the luminosity distribution of cluster galaxies. Two other commonly

used luminosity functions42 include the Zwicky function (Zwicky, 1957) and Abell

function (Abell, 1975). Briefly, the Zwicky function is fitted by considering the

difference in magnitude of each cluster galaxy from the brightest cluster galaxy

whereas the Abell function is fitted by combining two separately fitted analytical

functions. This means that the Zwicky function requires identifying the bright-

est cluster galaxy beforehand whereas the Abell function is not continuous at all

luminosities. We decided to use the Schechter function over these other lumi-

nosity functions because the Schechter function did not have strict prerequisite

42We recommend the reader to refer to Sarazin (1986) for an overview of different luminosity
functions.
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conditions and offers continuity (i.e. it was composed of a power law and an

exponential function) at all luminosities (Sarazin, 1986).

We fitted the Schechter function to a composite luminosity distribution that

consisted of a subsample of identified cluster galaxies with high completeness to

obtain best fit parameter values of M∗ = −22.81 with a standard deviation of

±0.5; n∗ = 159.82 with a standard deviation of ±154.62 and α = −1.99 with a

standard deviation of ±0.37. We did not allow α to be greater than −1 or lesser

than −2 when performing Chi-squared fitting, as we assumed that it would be un-

physical for the number of cluster galaxies to be decreasing or increasing rapidly

at fainter magnitudes respectively. We also did not set any specific bounds for

M∗ and n∗, since these parameters were more dependent on the given data. We

attempted to compare our best fit parameter values for M∗ and α to the best

fit parameter values of M∗ and α found in the literature from cluster studies

to determine whether our best fit parameter values for M∗ and α were appro-

priate as ‘universal’ values. However, we found that the literature contained a

wide range of values for M∗ and α that depended on a variety of different factors

(e.g. photometric system used, magnitude range examined, redshift range exam-

ined, cluster mass range examined, composition of galaxy types in cluster sample,

background subtraction method used). Although, we noticed that some typical

values obtained for M∗ and α span approximately from −23 to −20 and −2.1 to

−0.8 respectively (e.g. Oegerle et al. 1987; Oegerle & Hoessel 1989; Valotto et al.

1997; Wilson et al. 1997; Rauzy et al. 1998; Paolillo et al. 2001; Yagi et al. 2002;

de Propris et al. 2003; Popesso et al. 2005; González et al. 2006; Alshino et al.

2010; de Filippis et al. 2011; Moretti et al. 2015; Lan et al. 2016). This suggested

that our assumptions for M∗ and α were not unreasonable.

We remind the reader that our approach for estimating cluster richness was

based only on the number of cluster galaxies identified by our background sub-

traction model within a defined magnitude range and given search area. This

would be particularly beneficial for cosmological studies (Sarazin, 1986), such as

comparing simulated and observed halo mass functions (e.g. Castro et al. 2016;

Yennapureddy & Melia 2019), since it would reduce the complexity of modeling an

appropriate selection function to correct for biases from post-processing (e.g. in-

correct star/galaxy classification, deblending/interpolation issues, misestimated
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photometric redshifts) or survey conditions (e.g. flux limitations, oversatura-

tion by bright stars, different aperture sizes) (Melin et al., 2005). In addition,

our background subtraction method provides robustness when estimating cluster

richness along any line-of-sight environment since it assesses the cluster member-

ship status of galaxies based only on their photometric measurements. This is

not easily achievable when using simple statistical-based or colour-based back-

ground subtraction methods. Furthermore, our background subtraction method

does not require us to make any assumptions about the properties of the cluster

and field galaxies since these properties are self-learned by the AE algorithm.

This means that our background subtraction method is not intrinsically biased

towards selecting different galaxy types.

In future work, it would be interesting to examine the applicability of our back-

ground subtraction method on different usage cases. These include studying the

properties and evolution of identified cluster galaxies or deciding spectroscopic

follow-ups of potential galaxy members in clusters or measuring the observed

radial density, luminosity and redshift profiles of clusters. We also aim to ex-

tend this current work by also establishing an empirical scaling relation between

our richness estimates and cluster dark matter halo masses, that have been in-

ferred via weak gravitational lensing, in order to construct an observed halo mass

function for constraining cosmological parameters. In addition, we intend to in-

tegrate our background subtraction method with our own cluster finder model

(i.e. Deep-CEE) and photometric redshift estimator model (i.e. Z-Sequence) to

mask or remove interloping line-of-sight galaxies in image data or photometric

catalogue data respectively to further minimise their model predictions errors.

We note that there are various other types of conventional machine learning

algorithms43 available, aside from AE’s, which could be used for the task of per-

forming background subtraction. These could include the K-nearest neighbours

algorithm, K-means algorithm, isolation forest algorithm (Liu et al., 2008), sup-

port vector machine algorithm and XGBoost algorithm (Chen & Guestrin, 2016).

The reason we chose to utilise an AE over other conventional machine learning

algorithms was due to the fact that an AE is a deep neural network, which is

43We recommend the reader to refer to https://pyod.readthedocs.io/en/latest/pyod

.models.html for an extensive list of outlier detection algorithms (Zhao et al., 2019).
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capable of self-learning the importance of input features. On the other hand,

most conventional machine learning algorithms require important features to be

manually extracted in order to attain good predictive performance, which can be

time-consuming and difficult to do when there are many complex features (Liang

et al. 2017; Notley & Magdon-Ismail 2018; O’ Mahony et al. 2019; Liu et al.

2022a).

When training our background subtraction model, we used a Monte Carlo

cross-validation strategy to determine an optimal hyper-parameter combination

that offered the best predictive performance possible across different weight ini-

tialisations by performing random subsampling of our training and validation

sets. Although, this may have resulted in some galaxies not being utilised at all

(i.e. if the galaxy was not randomly chosen to be in any of our training, validation

or test sets), which is not maximising data efficiency. In future work, we could

employ a k-fold cross-validation strategy for hyper-parameter tuning and model

evaluation. This would improve data efficiency and model generalisation as our

background subtraction model would be evenly examined across all available data

during its training and testing phases.

We performed permutation feature importance testing to determine which

input features were deemed as important by our background subtraction model

when identifying ‘actual’ cluster galaxies. From which, we found that the fol-

lowing input features displayed high significance: g, r, i, z, u − g, u − r, g − i
and g − z. This tells us that our background subtraction model had learned to

utilise most of the available photometric information in high dimensional colour-

magnitude space. This was more efficient than only utilising a two dimensional

colour-magnitude diagram, which is typically used when attempting to detect

cluster galaxies within colour-magnitude space (e.g. Yee et al. 1999; Gladders

& Yee 2005; Stott et al. 2009; Valentinuzzi et al. 2011). We believe that these

specific input features were important to our background subtraction model due

to two main reasons. Firstly, in Figure 4.14 it can be seen that the majority of

the cluster and field galaxy population can be distinguished via filter magnitudes

within colour-magnitude space. This explained why our background subtraction

model prioritised several filter magnitudes when performing background subtrac-

tion. Secondly, in Figure 4.14 it can also be seen that a minority of cluster galaxies
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overlapped with field galaxies within colour magnitude space. This explained why

our background subtraction model also prioritised several colours in combination

with the filter magnitudes to distinguish between these overlapping cluster and

field galaxies. Based on these reasons, it is not unreasonable to assume that

our background subtraction model can recognise the broad spectral features (e.g.

4000Å break) and overall shape of the observed spectral energy distribution44 of

cluster galaxies45 at different redshifts.

In future work, it would be interesting to examine the impact from including

additional features such as galaxy sizes, morphology and surface brightness as

inputs for our background subtraction model. However, we note that we cannot

easily reapply our method to galaxy surveys that do not readily provide informa-

tion for all our required input features. Furthermore, our background subtraction

model is not provided with redshift information as an input feature when distin-

guishing between cluster and field galaxies. Instead, we wanted our background

subtraction model to self-learn about the photometric properties of cluster galax-

ies belonging to different redshift intervals, which is similar to how photometric

redshifts of individual galaxies are estimated by empirical algorithms.

4.5 Conclusion

We present a proof-of-concept study of AutoEnRichness, a hybrid empirical and

analytical approach that uses a multi-stage machine learning algorithm and a

conventional luminosity distribution fitting approach to perform background sub-

traction and estimate cluster richnesses respectively. We utilised photometric

data from the SDSS-IV DR16 to train our background subtraction model, which

learned to reconstruct the photometry of cluster galaxies in order to distinguish

between cluster and field galaxies. We then examined the predictive performance

of our background subtraction model at distinguishing between cluster and field

galaxies in a test set, which resulted in a balanced accuracy of 83.20 per cent.

44We recommend the reader to refer to Kennicutt (1992) for further details on the observed
spectral energy distribution of different galaxies.

45Clusters typically have a majority population of elliptical and lenticular galaxies with a
minority population of spiral galaxies (Dressler, 1980b).
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Subsequently, we constructed a scaling relation that estimated r200 when given

the number of cluster galaxies identified by our background subtraction model

within a search radius of 2.5 Mpc at each cluster’s spectroscopic redshift. We

utilised this learned scaling relation to resample galaxies within an r200 radius

for each cluster. Next, we fitted the Schechter function to a composite luminos-

ity distribution that consisted of a subsample of cluster galaxies identified by our

background subtraction model within r200 that had high completeness. We used a

Chi-squared fitting approach to determine an optimal r filter absolute magnitude

bin size of 0.52 and best fit parameter values of M∗ = −22.81 with a standard

deviation of ±0.5; n∗ = 159.82 with a standard deviation of ±154.62 and α =

−1.99 with a standard deviation of ±0.37. We then used the optimal r filter

absolute magnitude bin size and best fit parameter values for M∗ and α to fit

the Schechter function to the luminosity distribution of individual clusters. We

estimated cluster richnesses within r200 by computing the integral of the locally

fit Schechter function. Lastly, we applied the optimal r filter absolute magni-

tude bin size and best fit parameter values for M∗ and α to another test set of

clusters to obtain a median absolute percentage error of 33.50 per cent between

our estimated cluster richnesses and WH15 richnesses within r200. We note that

the only cluster prerequisites for AutoEnRichness were the astronomical coor-

dinates of the approximate cluster location as well as an initial cluster redshift

estimate for computing appropriate cluster radii. We intend for AutoEnRichness

to be combined with the Deep-CEE and Z-Sequence models to obtain the key

measurements (i.e. position from cluster detection and distance from redshift

estimation respectively) needed for conducting astrophysics and cosmology re-

search. In future work, it would be beneficial to develop a data pipeline that

integrates AutoEnRichness with these other methods into an end-to-end process

in preparation for usage on upcoming large-scale galaxy surveys.
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Chapter 5

Conclusion

5.1 Summary of our findings

In this thesis, we explored how galaxy cluster cataloguing strategies can be infused

with modern data science techniques. The underlying objective of conducting our

proof-of-concept studies was to provide researchers with new data-driven tools

that can improve the overall efficiency of data-processing in large-scale galaxy

surveys. We also demonstrated that the tools yielded prediction errors that were

comparable to existing cluster cataloguing methods. To achieve these tasks, we

decided to employ specific machine learning algorithms that we believed were

highly applicable for performing cluster detection, redshift estimation and rich-

ness estimation. We will now summarise the key findings of our research from

chapters 2, 3 and 4.

5.1.1 Galaxy cluster detection

In chapter 2 we introduced a cluster detection model known as Deep-CEE. We

described how an object detection algorithm can be utilised to identify clusters in

wide-field colour images as well as predict the astronomical coordinates of cluster

cores in each detection. The motivation behind this work was to investigate

the possibility of replicating the behaviour of traditional human identification of
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clusters (e.g. Abell clusters) with an automated machine. We decided to employ

the Faster R-CNN multi-stage algorithm for this task. We note that we did not

focus on optimising the hyper-parameters of this algorithm since we were instead

concentrated on examining its applicability.

We initially exposed the algorithm to examples of the core regions of known

clusters (N.B. between a photometric redshift range of 0.1 < z < 0.2 and above

a minimum number of observed galaxies) and random background regions in

wide-field colour images that were created from combining photometric imaging

of g, r, i filters. The algorithm learned to process images by first simplifying

the images into its low-level features (e.g. straight lines, curves, edges, blobs)

and then proposed regions within the simplified images that ‘look’ like the visual

features of cluster cores rather than random background regions. A confidence

score was subsequently generated for each proposed region, which allowed us to

manually set a confidence score threshold to maximise the precision and recall of

finding known clusters.

We obtained an F1 score of approximately 80 per cent for cluster identifi-

cation when we applied the algorithm on images of unseen redMaPPer clusters.

This indicated that the algorithm could identify many of the known clusters with

relatively few misclassifications, which is somewhat comparable to the estimated

70−85 per cent completeness of the Abell catalogue (Lucey, 1983). We obtained

a standard error of regression value of approximately 12 kpc when comparing our

predicted astronomical coordinates of true positive detections with the known

astronomical coordinates of the redMaPPer clusters, that had their image posi-

tions randomly translated. This suggested that the algorithm could adequately

locate the core region of clusters, where the optical core radius of clusters is

approximately 250 kpc.

The primary benefit of adopting this approach for cluster detection is that

there is no need for making prior assumptions on the physical appearance of

observed objects since the importance of different visual features is automatically

learned by the algorithm, which makes it more straightforward when modeling

a selection function. In addition, this approach also minimises the necessity for

performing extensive pre-processing since it works directly on images rather than

requiring to wait for the creation of photometric galaxy catalogues, which are
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typically used by researchers for cluster detection. Furthermore, this approach

can be quickly deployed to discover many new clusters in upcoming large-scale

galaxy surveys since the only training prerequisite for the algorithm is that it

needs to be tuned on a set of survey images containing known clusters.

5.1.2 Galaxy cluster redshift estimation

In chapter 3 we introduced a cluster redshift estimation model known as Z-

Sequence. We described how an ensemble regression algorithm can be utilised

to estimate the photometric redshifts of clusters from photometric data. The

motivation behind this work was to develop an approach that had no reliance

on individual galaxy redshifts or specific photometric features whilst also being

able to accurately predict the photometric redshift of clusters. We decided to

employ the sequential random k-nearest neighbours algorithm for this task. We

preferred to use an ensemble of k-nearest neighbour algorithms rather than an

individual k-nearest neighbour algorithm due to the individual k-nearest neigh-

bour algorithm having greater sensitivity to minor changes in the training set.

We note that the k-nearest neighbour algorithm did not learn internal parame-

ters to make predictions but it instead computed the average of the ‘k’ nearest

neighbour target labels in a training set to make predictions.

We initially created a photometric training set (i.e. filter magnitudes and

colours) of line-of-sight galaxies within a fixed search radius of the core region of

known clusters (N.B. between a photometric redshift range of 0.05 ≤ z ≤ 0.6 and

above a minimum number of observed galaxies). We assigned target labels for

each galaxy based on the photometric redshift of its host cluster. This assumed

that line-of-sight galaxies were at the same redshift as the host cluster. We

performed bootstrap sampling with replacement of the training set to generate

a randomly sampled training set for each of the internal k-nearest neighbour

algorithms. The output of the ensemble was computed from the combined median

of all the ‘k’ nearest neighbour target labels of each internal k-nearest neighbour

algorithm. In addition, we implemented a feature selection strategy, known as

sequential forward selection, to allow the internal k-nearest neighbour algorithms

to automatically learn appropriate combinations of photometric features that
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minimised the photometric redshift prediction error. Furthermore, we tuned the

hyper-parameters of the sequential random k-nearest neighbours algorithm to

also minimise the photometric redshift prediction error.

We obtained a photometric redshift prediction error (i.e. median value of

|∆z|/(1 + z)) of approximately 0.011 when we applied the algorithm onto the

photometric data of unseen WHL12 and redMaPPer clusters using a 10 arc-

seconds search radius. We note that the photometric redshift prediction error

increased by approximately 30 to 50 per cent when the search radius was en-

larged from 10 arcseconds to 21 and 32 arcseconds respectively, which was likely

due to the inclusion of additional interloping field galaxies. It should be noted

that we compared our estimated photometric redshifts with the photometric red-

shift estimates obtained by the WHL12 and redMaPPer methods to measure our

photometric redshift prediction error. Meanwhile, the WHL12 and redMaPPer

clusters compared their estimated photometric redshifts with spectroscopic red-

shifts to measure their photometric redshift prediction errors. The reason we

decided to use the photometric redshift of clusters instead of the spectroscopic

redshift of clusters was due to there being at least three times as many more

clusters with photometric redshifts available. From which, these results indicated

that the algorithm could precisely estimate the photometric redshift of clusters

based only on the similarity of observed galaxies within colour-magnitude space,

where our photometric redshift prediction error was still on par with the photo-

metric redshift prediction errors obtained by the WHL12 and redMaPPer clusters

of approximately 0.008 and 0.007 respectively.

This approach comes with multiple practical benefits when attempting to

estimate the photometric redshift of clusters. Firstly, it does not utilise individual

galaxy redshifts since it assumes that line-of-sight galaxies have the same redshift

as the host cluster, which means the algorithm is practical in survey regions that

have no known individual galaxy redshifts. This also minimises the need to wait

for the creation of galaxy redshift catalogues. Secondly, it is compatible with

any input combination of photometric features since the algorithm automatically

determines the most appropriate photometric features for accurately estimating

the photometric redshift of clusters, which means that no prior assumptions are

needed for the photometry of observed galaxies. As such, we can efficiently work
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with incomplete filter sets. Thirdly, it can be easily combined with cluster finders

(e.g. Deep-CEE) that do not intrinsically estimate the redshift of clusters since

the algorithm only needs to know the astronomical coordinate of the core region

of clusters to effectively start making predictions. Furthermore, this approach

can be quickly deployed to estimate the photometric redshift of many clusters in

upcoming large-scale galaxy surveys since the only training prerequisite for the

algorithm is that it needs to be tuned on the survey photometry of line-of-sight

galaxies around the core region of known clusters.

5.1.3 Galaxy cluster richness estimation

In chapter 4 we introduced a cluster richness estimation model that is nominally

known as AutoEnRichness. We described how a reconstruction algorithm can be

utilised to distinguish between cluster and field galaxies from photometric data

and we also described how an analytical function can be utilised to estimate

the richness of clusters based on the luminosity of identified cluster galaxies.

The motivation behind this work was to develop an approach that determined

whether line-of-sight galaxies were associated to clusters in order to minimise

severe contamination when estimating the richness of clusters. We decided to

employ the autoencoder algorithm and Schechter function for this task. We note

that the reason we used the Schechter function was to ensure that we accounted for

incompleteness in the luminosity distribution of cluster galaxies when estimating

the richness of clusters, where the Schechter function in this case described the

number of cluster galaxies per unit magnitude.

We initially obtained a photometric training set of identified cluster galaxies

(N.B. between a photometric redshift range of 0.1 ≤ z ≤ 0.35) from an existing

cluster galaxy catalogue. We also obtained a photometric training set of random

field galaxies from manually identified field regions. The algorithm was specifi-

cally trained to recreate the photometry of cluster galaxies by first compressing

the photometric data of cluster galaxies into a reduced feature space of low-level

photometric features and then the algorithm decompressed the photometric data

into its original format. This encouraged the algorithm to learn internal parame-

ters that minimised the difference between the input and output values of cluster
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galaxies, such that smaller differences indicated a cluster galaxy whilst larger dif-

ferences indicated a field galaxy. The difference between the input and output

values was subsequently passed to a logistic regression algorithm that was trained

to perform classification. This yielded a probability of whether the input data

was more likely to be a cluster or field galaxy, which allowed us to manually set a

probability threshold to maximise the precision and recall of finding known clus-

ter galaxies. We also tuned the hyper-parameters of the autoencoder algorithm to

maximise the area under the precision-recall curve. Next, we counted the number

of cluster galaxies found by the algorithm within a 2.5 Mpc search radius from

the core region of known clusters. We then established a scaling relation that

predicted a characteristic radius of r200 for clusters, where the scaling relation

was constructed between the number of identified cluster galaxies and r200 val-

ues of known clusters. Lastly, we resampled galaxies within r200 of the known

clusters to produce a composite luminosity distribution from r filter magnitudes

of identified cluster galaxies within r200. We fitted the Schechter function to the

composite luminosity distribution to determine universal parameter values of the

Schechter function. We reutilised these universal parameter values to refit the

Schechter function to the luminosity distribution of individual clusters. It should

be noted that we applied a completeness correction of the faint magnitude bins

when refitting the Schechter function to individual clusters. We then integrated

the fitted Schechter function to compute the richness of clusters within r200, where

we only considered cluster galaxies that were brighter than an absolute r filter

magnitude limit of −20.5.

We obtained an F1 score of approximately 73 per cent for only cluster galaxy

identification and a balanced accuracy of 83 per cent for cluster and field galaxy

classification when we applied the algorithm onto the photometric data of unseen

cluster and field galaxies from the AMF11 clusters and our proposed field regions.

This implied that the algorithm could identify many of the known cluster galaxies

with relatively few misclassifications as well as the algorithm consistently being

able to accurately distinguish between cluster and field galaxies. We obtained

a root mean squared error of approximately 18 and a median absolute percent-

age error of approximately 33 per cent when comparing our estimated cluster
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richnesses within r200 with known cluster richnesses within r200 from WH15 clus-

ters. Furthermore, we obtained a strong linear correlation between our estimated

cluster richnesses within r200 and redMaPPer cluster richnesses, which were not

scaled within a characteristic radius. These results indicated that the algorithm

could precisely estimate the richness of clusters, given that the richness range

of clusters in our test set approximately spanned from a few to several hundred

cluster galaxies within r200. However, it was difficult to directly compare the

precision of our richness estimates with the precision obtained by other conven-

tional cluster richness estimation methods since they did not state the average

difference between their estimated and known richnesses.

This approach comes with multiple practical benefits when attempting to es-

timate the richness of clusters. Firstly, it does not make prior assumptions on

the photometric properties of cluster and field galaxies since the importance of

different photometric features is automatically learned by the algorithm, where

the photometric properties of cluster and field galaxies becomes more difficult

to visibly separate at fainter magnitudes such that manual feature selection be-

comes extremely inefficient. Secondly, it compares the photometric properties of

cluster and field galaxies when performing background subtraction, which is ad-

vantageous over statistical background subtraction methods that do not examine

the true membership status of galaxies. Thirdly, it can be easily combined with

cluster finders (e.g. Deep-CEE) or cluster redshift estimators (e.g. Z-Sequence)

that do not intrinsically perform background subtraction since the algorithm

only needs to know the astronomical coordinate of the core region of clusters to

effectively start making predictions. Furthermore, this approach can be quickly

deployed to estimate the richness of many clusters in upcoming large-scale galaxy

surveys since the only training prerequisite for the algorithm is that it needs to be

tuned on the survey photometry of galaxies that are likely to be from clusters and

field regions. This approach also requires an approximated redshift for clusters

in order to establish a scaling relation for predicting the r200 of clusters.
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5.2 Future work

The research presented in this thesis is composed of several of our initial proof-

of-concept studies for conducting cluster cataloguing with modern data science

techniques. As such, we are aware that there are still further considerations

and enhancements that can be made to our existing models. It would also be

beneficial to consider the possibilities of applying machine learning to catalogue

additional properties of clusters.

The following points briefly describes some of the potential considerations,

enhancements and possibilities for future work based on our current findings:

• Explore using different combinations of photometric filters when creating

wide-field colour images for the Deep-CEE model.

• Compare the effectiveness from using different object detection algorithms

for cluster detection in the Deep-CEE model.

• Examine the significance of tuning the hyper-parameters for the Faster R-

CNN algorithm in the Deep-CEE model.

• Assess the importance of visual features that are learned by the Faster

R-CNN algorithm in the Deep-CEE model.

• Modify the Deep-CEE model to yield uncertainty estimates for the pre-

dicted astronomical coordinates of clusters.

• Compare the stability of the Deep-CEE model from using k-fold and Monte

Carlo cross-validation strategies to create different training and testing sets.

• Analyse the implications from using training and testing samples of clus-

ters for the Deep-CEE model that are found by X-ray, SZ effect and weak

gravitational lensing detection methods.

• Determine the detection rate of clusters identified by the Deep-CEE model

that are also found by X-ray, SZ effect and weak gravitational lensing de-

tection methods.
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• Use Monte Carlo simulations to approximately measure the completeness

of cluster detections by the Deep-CEE model.

• Examine the significance from using a larger ‘k’ value of the number of

nearest neighbours for the SRKNN algorithm in the Z-Sequence model.

• Compare the effectiveness from using different nearest neighbour weighting

schemes for the SRKNN algorithm in the Z-Sequence model.

• Evaluate the overall photometric redshift prediction error from using pho-

tometric redshifts versus spectroscopic redshifts of clusters in the training

sample of the Z-Sequence model.

• Assess the stability of the SRKNN algorithm in the Z-Sequence model from

using k-fold and Monte Carlo cross-validation strategies to create different

training and testing sets.

• Integrate the background subtraction algorithm from the AutoEnRichness

model into the Deep-CEE and Z-Sequence models to mask/remove interlop-

ing field galaxies when detecting clusters and estimating cluster redshifts.

• Compare prediction errors for the Deep-CEE and Z-Sequence models be-

fore and after removing interloping field galaxies along the line-of-sight of

clusters.

• Examine the significance from tuning the hyper-parameters of the logistic

regression algorithm in the AutoEnRichness model.

• Compare the effectiveness from using different outlier detection algorithms

in the AutoEnRichness model.

• Evaluate the overall richness prediction error from establishing a scaling

relation to predict r200 that employs X-ray determined r200 values in the

AutoEnRichness model.

• Assess the stability of the background subtraction algorithm in the Au-

toEnRichness model from using a k-fold cross-validation strategy to create

different training and testing sets.
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• Examine the significance from using different training and testing sets of

clusters when determining universal parameter values of the Schechter func-

tion in the AutoEnRichness model.

• Incorporate uncertainties from observed photometry errors into all of our

models.

• Assess how prediction errors are impacted from using Bayesian optimisation

to tune the hyper-parameters in our models.

• Train all of our models on simulated data in order to understand the output

of the algorithms in more detail.

• Create a data pipeline that combines the outputs of all our models to mea-

sure the time taken to process large quantities of observational data in

preparation for upcoming large-scale galaxy surveys.

• Probe the limitations of applying our models on a larger positional, distance

and mass coverage.

• Investigate the prospect of utilising machine learning to predict the mor-

phology and dynamical state of clusters.
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Step Total loss RPN
objectness

loss

RPN box
regression

loss

DN
classification

loss

DN box
regression

loss

147 0.5954 0.3825 0.0535 0.1162 0.0432
204 0.3448 0.2023 0.0538 0.0605 0.0282
313 0.3185 0.1242 0.0515 0.0794 0.0634
450 0.2841 0.0834 0.0487 0.0994 0.0526
581 0.2559 0.0694 0.0436 0.0838 0.0591
934 0.1641 0.0441 0.0380 0.0552 0.0268
1065 0.1347 0.0401 0.0302 0.0367 0.0277
1361 0.1399 0.0344 0.0283 0.0543 0.0229
1455 0.2004 0.0327 0.0268 0.1129 0.0280
1582 0.1242 0.0302 0.0279 0.0443 0.0217
1709 0.1049 0.0307 0.0256 0.0274 0.0212
1836 0.1465 0.0280 0.0261 0.0646 0.0277
1960 0.1344 0.0281 0.0301 0.0531 0.0232
2083 0.1090 0.0290 0.0246 0.0377 0.0177
2209 0.1322 0.0274 0.0237 0.0521 0.0290
2335 0.1540 0.0284 0.0256 0.0712 0.0288
2461 0.1096 0.0267 0.0247 0.0365 0.0218
2588 0.0942 0.0273 0.0245 0.0244 0.0181
2716 0.1184 0.0269 0.0354 0.0339 0.0223
2842 0.0986 0.0253 0.0235 0.0324 0.0173
2968 0.0969 0.0247 0.0222 0.0310 0.0190
3187 0.1048 0.0251 0.0275 0.0326 0.0196
3312 0.1293 0.0234 0.0233 0.0611 0.0214
3438 0.1125 0.0240 0.0224 0.0458 0.0204
3566 0.0900 0.0250 0.0232 0.0243 0.0175
3697 0.0901 0.0247 0.0213 0.0256 0.0185
3823 0.1237 0.0233 0.0238 0.0548 0.0219
3948 0.1189 0.0233 0.0229 0.0520 0.0208
4073 0.1059 0.0231 0.0208 0.0420 0.0201
4198 0.1015 0.0239 0.0217 0.0337 0.0223
4321 0.1177 0.0224 0.0204 0.0509 0.0240
4543 0.1118 0.0231 0.0221 0.0461 0.0205
4675 0.0943 0.0232 0.0215 0.0294 0.0202
4805 0.1042 0.0232 0.0264 0.0297 0.0249
4944 0.1024 0.0222 0.0194 0.0398 0.0209
5072 0.1038 0.0223 0.0201 0.0423 0.0191
5198 0.0881 0.0241 0.0205 0.0253 0.0182
5330 0.1047 0.0220 0.0202 0.0425 0.0199
5462 0.1275 0.0219 0.0241 0.0541 0.0274
5587 0.0969 0.0233 0.0220 0.0294 0.0222
5917 0.0972 0.0224 0.0265 0.0265 0.0219
6048 0.0943 0.0221 0.0184 0.0344 0.0194
6179 0.1038 0.0228 0.0228 0.0313 0.0268
6495 0.1066 0.0235 0.0231 0.0352 0.0248
6698 0.1035 0.0216 0.0184 0.0446 0.0189
6824 0.1022 0.0223 0.0190 0.0427 0.0182
6951 0.1045 0.0217 0.0187 0.0460 0.0180
7077 0.1029 0.0217 0.0188 0.0378 0.0247
7204 0.0910 0.0208 0.0180 0.0341 0.0181
7332 0.0974 0.0215 0.0176 0.0403 0.0181
7458 0.0926 0.0249 0.0211 0.0268 0.0198

Table A1: This table displays the Total, RPN and DN loss values at different
steps during the training of our model when evaluated on the test set.
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Popesso P., Böhringer H., Romaniello M., Voges W., 2005, Astronomy & Astro-

physics, 433, 415

Postman M., Lubin L. M., Gunn J. E., Oke J. B., Hoessel J. G., Schneider D. P.,

Christensen J. A., 1996, The Astronomical Journal, 111, 615

Pratt G. W., Arnaud M., Biviano A., Eckert D., Ettori S., Nagai D., Okabe N.,

Reiprich T. H., 2019, Space Science Reviews, 215, 25

211

http://dx.doi.org/10.1051/0004-6361:20000442
https://ui.adsabs.harvard.edu/abs/2001A&A...367...59P
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2014.10.044
http://dx.doi.org/10.1051/0004-6361/201833617
http://dx.doi.org/10.1051/0004-6361/201833617
https://ui.adsabs.harvard.edu/abs/2019A&A...621A..26P
http://dx.doi.org/10.1080/14786440009463897
http://dx.doi.org/10.1080/14786440009463897
http://dx.doi.org/10.1080/14786440109462720
http://dx.doi.org/10.1080/14786440109462720
https://ui.adsabs.harvard.edu/abs/2017arXiv171204621P
https://ui.adsabs.harvard.edu/abs/2018arXiv180300070P
http://dx.doi.org/10.1051/0004-6361/201321523
https://ui.adsabs.harvard.edu/abs/2014A&A...571A..29P
http://dx.doi.org/10.1051/0004-6361/201525833
https://ui.adsabs.harvard.edu/abs/2016A&A...594A..24P
http://dx.doi.org/10.1051/0004-6361/201525823
https://ui.adsabs.harvard.edu/abs/2016A&A...594A..27P
http://dx.doi.org/10.1051/0004-6361:20035818
http://dx.doi.org/10.1051/0004-6361:20035818
https://ui.adsabs.harvard.edu/abs/2004A&A...423..449P
http://dx.doi.org/10.1051/0004-6361:20041870
http://dx.doi.org/10.1051/0004-6361:20041870
https://ui.adsabs.harvard.edu/abs/2005A&A...433..415P
http://dx.doi.org/10.1086/117811
https://ui.adsabs.harvard.edu/abs/1996AJ....111..615P
http://dx.doi.org/10.1007/s11214-019-0591-0
https://ui.adsabs.harvard.edu/abs/2019SSRv..215...25P


REFERENCES

Press W. H., Schechter P., 1974, The Astrophysical Journal, 187, 425

Raschka S., 2014, About feature scaling and normalization - and the effect of

standardization for machine learning algorithms, https://sebastianraschka

.com/Articles/2014 about feature scaling.html

Raschka S., Mirjalili V., 2017, Python Machine Learning: Machine Learning and

Deep Learning with Python, Scikit-Learn, and TensorFlow, 2nd Edition, 2nd

edn. Packt Publishing

Rashevsky N., 1935, Nature, 135, 528

Raudys S., Jain A., 1991, IEEE Transactions on Pattern Analysis and Machine

Intelligence, 13, 252

Rauzy S., Adami C., Mazure A., 1998, Astronomy & Astrophysics, 337, 31

Reblinsky K., Bartelmann M., 1999, Astronomy & Astrophysics, 345, 1

Reichardt C. L., et al., 2013, The Astrophysical Journal, 763, 127

Ren S., He K., Girshick R., Sun J., 2015, arXiv e-prints, p. arXiv:1506.01497

Ren Y., Zhu C., Xiao S., 2018, Mathematical Problems in Engineering, 2018

Ricci, M. et al., 2020, Astronomy & Astrophysics, 642, A126

Rish I., 2001, IJCAI 2001 Workshop on Empirical Methods in Artificial Intelli-

gence, 3

Rodriguez F., Merchán M., 2020, Astronomy & Astrophysics, 636, A61

Rood H. J., Sastry G. N., 1971, Publications of the Astronomical Society of the

Pacific, 83, 313

Rosenblatt F., 1958, Psychological review, 65, 386

Rozo E., et al., 2009, The Astrophysical Journal, 708, 645

Ruder S., 2016, arXiv e-prints, p. arXiv:1609.04747

212

http://dx.doi.org/10.1086/152650
https://ui.adsabs.harvard.edu/abs/1974ApJ...187..425P
https://sebastianraschka.com/Articles/2014_about_feature_scaling.html
https://sebastianraschka.com/Articles/2014_about_feature_scaling.html
http://dx.doi.org/10.1038/135528a0
http://dx.doi.org/10.1109/34.75512
http://dx.doi.org/10.1109/34.75512
https://ui.adsabs.harvard.edu/abs/1998A&A...337...31R
https://ui.adsabs.harvard.edu/abs/1999A&A...345....1R
http://dx.doi.org/10.1088/0004-637X/763/2/127
https://ui.adsabs.harvard.edu/abs/2013ApJ...763..127R
https://ui.adsabs.harvard.edu/abs/2015arXiv150601497R
http://dx.doi.org/10.1155/2018/3598316
http://dx.doi.org/10.1051/0004-6361/201937249
http://dx.doi.org/10.1051/0004-6361/201937423
https://ui.adsabs.harvard.edu/abs/2020A&A...636A..61R
http://dx.doi.org/10.1086/129128
http://dx.doi.org/10.1086/129128
https://ui.adsabs.harvard.edu/abs/1971PASP...83..313R
http://dx.doi.org/10.1088/0004-637x/708/1/645
https://ui.adsabs.harvard.edu/abs/2016arXiv160904747R


REFERENCES

Rumelhart D., Hinton G., Williams R., 1985, Learning Internal Representations

by Error Propagation. Institute for Cognitive Science, University of California,

San Diego

Rumelhart D. E., Hinton G. E., Williams R. J., 1986, Nature, 323, 533

Rykoff E. S., et al., 2014, The Astrophysical Journal, 785, 104

Salvato M., Ilbert O., Hoyle B., 2019, Nature Astronomy, 3, 212

Samuel A. L., 1959, IBM Journal of Research and Development, 3, 210

Sánchez C., et al., 2014, Monthly Notices of the Royal Astronomical Society, 445,

1482

Sarazin C. L., 1986, Reviews of Modern Physics, 58, 1

Saunders W., et al., 2000, Monthly Notices of the Royal Astronomical Society,

317, 55

Scaramella R., et al., 2021, arXiv e-prints, p. arXiv:2108.01201

Schechter P., 1976, The Astrophysical Journal, 203, 297

Schlafly E. F., Finkbeiner D. P., 2011, The Astrophysical Journal, 737, 103

Schlegel D. J., Finkbeiner D. P., Davis M., 1998, The Astrophysical Journal, 500,

525

Schölkopf B., Smola A. J., Müller K.-R., 1997, in Proceedings of the 7th Interna-

tional Conference on Artificial Neural Networks. ICANN ’97. Springer-Verlag,

Berlin, Heidelberg, pp 583–588

Schultz H., 1875, Monthly Notices of the Royal Astronomical Society, 35, 135

Searle G. M., 1880, Project PHAEDRA: Preserving Harvard’s Early Data and Re-

search in Astronomy (https://library.cfa.harvard.edu/project-phaedra). Har-

vard College Observatory observations, p. 324

Sebok W. L., 1979, The Astronomical Journal, 84, 1526

213

http://dx.doi.org/10.1038/323533a0
https://ui.adsabs.harvard.edu/abs/1986Natur.323..533R
http://dx.doi.org/10.1088/0004-637X/785/2/104
https://ui.adsabs.harvard.edu/abs/2014ApJ...785..104R
http://dx.doi.org/10.1038/s41550-018-0478-0
https://ui.adsabs.harvard.edu/abs/2019NatAs...3..212S
http://dx.doi.org/10.1147/rd.33.0210
http://dx.doi.org/10.1093/mnras/stu1836
http://dx.doi.org/10.1103/RevModPhys.58.1
https://ui.adsabs.harvard.edu/abs/1986RvMP...58....1S
http://dx.doi.org/10.1046/j.1365-8711.2000.03528.x
https://ui.adsabs.harvard.edu/abs/2000MNRAS.317...55S
https://ui.adsabs.harvard.edu/abs/2021arXiv210801201S
http://dx.doi.org/10.1086/154079
https://ui.adsabs.harvard.edu/abs/1976ApJ...203..297S
http://dx.doi.org/10.1088/0004-637X/737/2/103
https://ui.adsabs.harvard.edu/abs/2011ApJ...737..103S
http://dx.doi.org/10.1086/305772
https://ui.adsabs.harvard.edu/abs/1998ApJ...500..525S
https://ui.adsabs.harvard.edu/abs/1998ApJ...500..525S
http://dx.doi.org/10.1093/mnras/35.3.135
https://ui.adsabs.harvard.edu/abs/1875MNRAS..35..135S
https://ui.adsabs.harvard.edu/abs/1880phae.proj..324S
http://dx.doi.org/10.1086/112570
https://ui.adsabs.harvard.edu/abs/1979AJ.....84.1526S


REFERENCES

Sensui T., Funato Y., Makino J., 1999, Publications of the Astronomical Society

of Japan, 51, 943

Serra-Ricart M., 1994, Faint Object Classification Using Artificial Neural Net-

works. Vol. 161, Springer Netherlands

Shane C. D., Wirtanen C. A., 1954, The Astronomical Journal, 59, 285

Shectman S. A., Landy S. D., Oemler A., Tucker D. L., Lin H., Kirshner R. P.,

Schechter P. L., 1996, The Astrophysical Journal, 470, 172

Shen H., George D., Huerta E. A., Zhao Z., 2017, arXiv e-prints, p.

arXiv:1711.09919

Sheth R. K., Tormen G., 1999, Monthly Notices of the Royal Astronomical Soci-

ety, 308, 119

Simonyan K., Zisserman A., 2014, arXiv e-prints, p. arXiv:1409.1556

Smirnov N. V., 1939, Bull. Math. Univ. Moscou, 2, 3

Smith A. G., Hopkins A. M., Hunstead R. W., Pimbblet K. A., 2012, Monthly

Notices of the Royal Astronomical Society, 422, 25

Snoek J., Larochelle H., Adams R. P., 2012, in Proceedings of the 25th Inter-

national Conference on Neural Information Processing Systems - Volume 2.

NIPS’12. Curran Associates Inc., Red Hook, NY, USA, pp 2951–2959

Stewart G. W., 1993, SIAM Review, 35, 551

Storrie-Lombardi M. C., Lahav O., Sodr L. J., Storrie-Lombardi L. J., 1992,

Monthly Notices of the Royal Astronomical Society, 259, 8P

Stott J. P., Smail I., Edge A. C., Ebeling H., Smith G. P., Kneib J.-P., Pimbblet

K. A., 2007, The Astrophysical Journal, 661, 95

Stott J. P., Edge A. C., Smith G. P., Swinbank A. M., Ebeling H., 2008, Monthly

Notices of the Royal Astronomical Society, 384, 1502

214

http://dx.doi.org/10.1093/pasj/51.6.943
http://dx.doi.org/10.1093/pasj/51.6.943
https://ui.adsabs.harvard.edu/abs/1999PASJ...51..943S
http://dx.doi.org/10.1086/107014
https://ui.adsabs.harvard.edu/abs/1954AJ.....59..285S
http://dx.doi.org/10.1086/177858
https://ui.adsabs.harvard.edu/abs/1996ApJ...470..172S
https://ui.adsabs.harvard.edu/abs/2017arXiv171109919S
https://ui.adsabs.harvard.edu/abs/2017arXiv171109919S
http://dx.doi.org/10.1046/j.1365-8711.1999.02692.x
http://dx.doi.org/10.1046/j.1365-8711.1999.02692.x
https://ui.adsabs.harvard.edu/abs/1999MNRAS.308..119S
https://ui.adsabs.harvard.edu/abs/2014arXiv1409.1556S
http://dx.doi.org/10.1111/j.1365-2966.2012.20400.x
http://dx.doi.org/10.1111/j.1365-2966.2012.20400.x
http://dx.doi.org/10.1137/1035134
http://dx.doi.org/10.1093/mnras/259.1.8P
http://dx.doi.org/10.1086/514329
http://dx.doi.org/10.1111/j.1365-2966.2007.12807.x
http://dx.doi.org/10.1111/j.1365-2966.2007.12807.x
https://ui.adsabs.harvard.edu/abs/2008MNRAS.384.1502S


REFERENCES

Stott J. P., Pimbblet K. A., Edge A. C., Smith G. P., Wardlow J. L., 2009,

Monthly Notices of the Royal Astronomical Society, 394, 2098

Strauss M. A., et al., 2002, The Astronomical Journal, 124, 1810

Strazzullo V., et al., 2016, The Astrophysical Journal Letters, 833, L20

Strazzullo V., et al., 2019, Astronomy & Astrophysics, 622, A117

Strobl C., Malley J., Tutz G., 2009, Psychological Methods, 14, 323

Sunayama T., et al., 2020, Monthly Notices of the Royal Astronomical Society,

496, 4468

Sunyaev R. A., Zeldovich Y. B., 1972, Comments on Astrophysics and Space

Physics, 4, 173

Sutton R. S., 1988, Machine Learning, 3, 9

Sutton R. S., McAllester D., Singh S., Mansour Y., 1999, Policy Gradient

Methods for Reinforcement Learning with Function Approximation. Vol. 12,

MIT Press, https://proceedings.neurips.cc/paper/1999/file/464d828

b85b0bed98e80ade0a5c43b0f-Paper.pdf

Szabo T., Pierpaoli E., Dong F., Pipino A., Gunn J., 2011, The Astrophysical

Journal, 736, 21

Szegedy C., Toshev A., Erhan D., 2013, in Burges C., Bottou L., Welling M.,

Ghahramani Z., Weinberger K., eds, Vol. 26, Advances in Neural Information

Processing Systems. Curran Associates, Inc., https://proceedings.neurip

s.cc/paper/2013/file/f7cade80b7cc92b991cf4d2806d6bd78-Paper.pdf

Szegedy C., Vanhoucke V., Ioffe S., Shlens J., Wojna Z., 2015, arXiv e-prints, p.

arXiv:1512.00567

Takahashi K., Sensui T., Funato Y., Makino J., 2002, Publications of the Astro-

nomical Society of Japan, 54, 5

Takizawa M., Mineshige S., 1998, The Astrophysical Journal, 499, 82

215

http://dx.doi.org/10.1111/j.1365-2966.2009.14477.x
https://ui.adsabs.harvard.edu/abs/2009MNRAS.394.2098S
http://dx.doi.org/10.1086/342343
https://ui.adsabs.harvard.edu/abs/2002AJ....124.1810S
http://dx.doi.org/10.3847/2041-8213/833/2/L20
https://ui.adsabs.harvard.edu/abs/2016ApJ...833L..20S
http://dx.doi.org/10.1051/0004-6361/201833944
https://ui.adsabs.harvard.edu/abs/2019A&A...622A.117S
http://dx.doi.org/10.1037/a0016973
http://dx.doi.org/10.1093/mnras/staa1646
https://ui.adsabs.harvard.edu/abs/2020MNRAS.496.4468S
https://ui.adsabs.harvard.edu/abs/1972CoASP...4..173S
http://dx.doi.org/10.1007/BF00115009
https://proceedings.neurips.cc/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
http://dx.doi.org/10.1088/0004-637X/736/1/21
http://dx.doi.org/10.1088/0004-637X/736/1/21
https://ui.adsabs.harvard.edu/abs/2011ApJ...736...21S
https://proceedings.neurips.cc/paper/2013/file/f7cade80b7cc92b991cf4d2806d6bd78-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/f7cade80b7cc92b991cf4d2806d6bd78-Paper.pdf
https://ui.adsabs.harvard.edu/abs/2015arXiv151200567S
https://ui.adsabs.harvard.edu/abs/2015arXiv151200567S
http://dx.doi.org/10.1093/pasj/54.1.5
http://dx.doi.org/10.1093/pasj/54.1.5
http://dx.doi.org/10.1086/305598
https://ui.adsabs.harvard.edu/abs/1998ApJ...499...82T


REFERENCES

Tanaka M., et al., 2018, Publications of the Astronomical Society of Japan, 70,

S9

Tempel E., Kipper R., Tamm A., Gramann M., Einasto M., Sepp T., Tuvikene

T., 2016, Astronomy & Astrophysics, 588, A14

Tharwat A., 2021, Applied Computing and Informatics, 17, 168

Thompson N. C., Greenewald K., Lee K., Manso G. F., 2020, arXiv e-prints, p.

arXiv:2007.05558

Tibshirani R., 1996, Journal of the Royal Statistical Society: Series B (Method-

ological), 58, 267

Tinker J., Kravtsov A. V., Klypin A., Abazajian K., Warren M., Yepes G.,
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