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How do developers really feel about bug fixing?
Directions for automatic program repair

Emily Winter, David Bowes, Steve Counsell, Tracy Hall, Sæmundur Haraldsson, Vesna Nowack, John Woodward

Abstract—Automatic program repair (APR) is a rapidly ad-
vancing field of software engineering that aims to supplement
or replace manual bug fixing with an automated tool. For APR
to be successfully adopted in industry, it is vital that APR tools
respond to developer needs and preferences. However, very little
research has considered developers’ general attitudes to APR or
developers’ current bug fixing practices (the activity APR aims to
replace). This paper responds to this gap by reporting on a survey
of 386 software developers about their bug finding and fixing
practices and experiences, and their instinctive attitudes towards
APR. We find that bug finding and fixing is not necessarily
as onerous for developers as has often been suggested, being
rated as more satisfying than developers’ general work. The
fact that developers derive satisfaction and benefit from bug
fixing indicates that APR adoption is not as simple as APR
replacing an unwanted activity. When it comes to potential APR
approaches, we find a strong preference for developers being
kept in the loop (for example, choosing between different fixes
or validating fixes) as opposed to a fully automated process. This
suggests that advances in APR should be careful to consider the
agency of the developer, as well as what information is presented
to developers alongside fixes. It also indicates that there are
key barriers related to trust that would need to be overcome
for full scale APR adoption, supported by the fact that even
those developers who stated that they were positive about APR
listed several caveats and concerns. We find very few statistically
significant relationships between particular demographic vari-
ables (for example, developer experience, age, education) and
key attitudinal variables, suggesting that developers’ instinctive
attitudes towards APR are little influenced by experience level
but are held widely across the developer community.

I. INTRODUCTION

AUTOMATIC program repair (APR) is a growing area of
software engineering (SE) research that aims to supple-

ment or replace manual bug fixing. In order for APR to be
successfully and widely adopted, it is vital that we understand
developer needs and preferences. However, we currently know
little about both software developers’ bug finding and fixing
practices and their general attitudes towards APR. As recently
as 2018, Beller et al. argued ‘we have little knowledge on how
software engineers debug software problems in the real world,
whether they use dedicated debugging tools, and how knowl-
edgeable they are about debugging’ [1]. Similarly, Böhme
highlights that ‘how humans actually debug is still not really
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well explored’ [2], stating ‘given how much time practitioners
spend on debugging, it [. . . ] is a scandal how little we know
about debugging’. Whilst the difficulty and frustration of bug
fixing for developers is often asserted, we know even less
about developers’ feelings about the activity of bug fixing.
Understanding developers’ current bug fixing practices, and
how they feel about fixing bugs, is important because the
presentation of APR to developers should be based upon this
understanding. As well as a lack of understanding within SE of
developers’ bug fixing practices (the key activity APR hopes
to aid or replace), Westley Weimer’s recent keynote address
highlighted the lack of consideration of human factors within
APR, and the need to take human factors more seriously in
the discipline [3].

In our prior work [4], we conducted a literature review to
assess the extent to which human factors are considered within
the APR literature, as well as evaluating the quality of existing
human studies. We found that there were very few human stud-
ies currently in APR – just 7% of the 260 papers we reviewed.
The human studies we evaluated were of mixed quality, often
involving small samples and few professional developers. In
addition, we found that most APR human studies were tool
specific. Fourteen of the seventeen papers with human studies
that we evaluated introduced a new tool or technique that the
authors had developed and then conducted a human study to
test it. For example, there were several (quasi-) experimental
studies evaluating how participants performed a task with or
without access to the patches generated by the tool. These
studies may not reflect participants’ more general attitudes to
APR; rather, they provide insights into the advantages and dis-
advantages of a proposed technique. Existing work therefore
yields little insight that can be applied across APR tools and
techniques or can act as guiding principles for future APR
development, particularly how APR and automatically gener-
ated fixes should be presented to developers. This motivated
us to perform a large-scale human study with professional
developers that would investigate developers’ more general,
instinctive attitudes and identify the implications of this for
APR development.

We argue that it is important to understand developers’
current bug fixing practices, their feelings about bug fixing
and their general, instinctive feelings towards APR in order to
identify potential barriers to APR adoption. To this end, we
designed a survey to answer the following research questions:

• RQ1: What are software developers’ current bug finding
and fixing practices?

• RQ2: How do software developers feel about bug finding
and fixing?



• RQ3: What are software developers’ instinctive feelings
towards APR?

To our knowledge this is the first paper that surveys,
on a large scale, developers’ general feelings towards APR.
We find developers prefer APR approaches in which they
maintain a role, either validating fixes or, more popularly,
choosing between multiple fixes offered by a tool. This has
important implications for future APR development. We also
find that developers’ instinctive feelings towards APR can be
summarised as ‘cautiously optimistic’; they are interested in
and positive about the idea of APR, but they have a range of
concerns, conditions and caveats.

This paper is structured as follows: Section II reports on
related work; Section III describes the survey design, our
sampling and recruitment strategies, and analysis process;
Section IV describes the demographics of our participants. We
then report our findings (Section V), and provide discussion
and threats to validity in Sections VI and VII. We conclude
in Section VIII.

II. RELATED WORK

There is a small body of survey-based literature that con-
siders how software developers debug. Perscheid et al. [5],
for example, conducted an online survey of 303 software
developers to explore their mental models of debugging and
the extent to which debugging tools developed by researchers
have been adopted by professional software developers. They
found that very few debugging tools were used by developers.
Beller et al. [1] combined an online survey of 176 developers
with observations of how developers interacted with and used
a debugger in their IDE. They found that both knowledge
and use of advanced debugging features was low. Beller et al.
report that developers did not want more debugging features,
but for existing ones to be made easier to use. These papers
share a focus on how developers debug, rather than our own
more attitudinal focus on how developers feel about bug
finding and fixing. This is important because much of the
APR literature shares an assumption that APR is replacing
an inherently unsatisfying task (manual bug fixing) (see, for
example, [6], [7]). We consider it important to empirically
test this assumption, both to understand developers’ actual
attitudes towards bug fixing (as they could influence how we
should present APR to developers) and to explore whether de-
velopers’ feelings towards bug fixing influences their attitudes
towards APR.

There have also been several studies that consider the
automation of parts of the bug finding and fixing process.
For example, Zou et al. [8] surveyed 337 software devel-
opers on the topic of automated bug report management
techniques. Survey respondents were asked how important
they considered different types of bug report management
technique (e.g. bug categorisation, bug assignment). The study
found that experienced developers were more negative than
less experienced developers about the importance of these
bug report management techniques. Similarly, Wan et al.’s
survey [9] of 395 developers about defect prediction found
that the most experienced respondents were the least willing

to adopt defect prediction tools. The main reason for this was
a lack of belief that defect prediction could work. Another
similar study [10], involving a survey of 386 practitioners on
the topic of fault localisation, found that ‘more experienced
developers perceive fault localisation to be less “essential” than
less experienced ones’. This study also found a strong desire
among survey participants for fault localisation techniques to
provide reasoning for why parts of the program are marked as
suspicious. Whilst participants were ‘enthusiastic’ about fault
localisation research, ‘they have high thresholds for adoption’.
Our research similarly finds a degree of scepticism towards
APR; however, we found only very limited evidence of any
relationship between developer experience levels and their
attitudes towards APR.

There have also been a small number of studies of how
software developers use and interact with APR tools. Most
existing human studies in APR are either controlled exper-
iments [11] [12] [13] [14] [15] [16] or surveys [17] [18]
[19]. One key feature that these APR human studies share in
common is that they are tool-specific, asking participants to
test, validate or give feedback on a specific APR tool or tech-
nique. As a result, they provide little insight into developers’
attitudes towards APR more broadly. However, there are some
exceptions. For example, Böhme et al.’s experimental study
with 12 software professionals [2] found that ‘practitioners
are wary of debugging automation’, particularly for functional
bugs. Böhme et al.’s study does not paint a positive picture of
software practitioners’ openness to APR:

The majority of participants did not believe in
automation due to the lack of a complete specifica-
tion and due to the difficulty in code comprehension
[. . . ] for automatic program repair, participants
think that it is impossible for a tool to change or
add any functionality to a buggy program. Moreover,
even in the presence of a complete specification,
participants do not believe in automated repair due
to the challenges involved in code comprehension.

Such findings were mirrored in Parnin and Orso’s exper-
imental study with 34 developers [20], which found that
‘developers were quick to disregard the tool if they felt they
could not trust the results or understand how such results
were computed’. Furthermore, ‘the use of an automated tool
helped more experienced developers find faults faster in the
case of an easy debugging task, but the same developers
received no benefit from the use of the tool on a harder task’.
These findings are somewhat troubling for the academic SE
community, as they suggest some degree of scepticism towards
APR tools and techniques. However, the samples in both these
studies ( [2] and [20]) are small; our survey, in presenting a
large sample, considers whether such perceptions towards APR
are indeed commonplace.

Other related work includes a small body of literature
that has considered the introduction of APR tools — at
varying levels of maturity — in industry. Our own work
has described the introduction of a prototype APR tool at
Bloomberg [21], while there have also been studies related
to Facebook’s Getafix tool, for example [22]. Lessons learned

Page 2 of 20



deploying Getafix include that auto-fixes should be integrated
into existing development tools and predicted fast enough
so as not to slow down engineers’ work. Our own work at
Bloomberg also demonstrated the importance of alignment
with existing processes, as well as positioning the APR tool
as an ‘assistant’ to the developer, who remains ‘in the driving
seat’. In this paper, we receive confirmation that developer
control and involvement remains paramount, though there
is less support for the idea that speed of fix generation is
important for developers.

The most closely related work to our own is a survey con-
ducted by Noller et al. of 100 software practitioners about trust
in APR [23]. Noller et al.’s survey asked participants about
their willingness to review automatically generated patches,
how quickly they would expect results from an APR tool,
participants’ willingness to provide additional inputs, and the
impact of providing additional information and explanations.
Whilst our survey has similarities to this, we also include
questions about developers’ current bug finding and fixing
practices. We also provide more in-depth thematic analysis
than Noller et al. of the qualitative answers to open-text
response questions.

As far as we aware, our survey is the first to investigate
developers’ current bug finding and fixing practices, their feel-
ings about bug finding and fixing, and their general attitudes
towards APR within the same survey. Our rationale for doing
this is to consider any potential relationship between attitudes
towards APR and feelings about bug finding and fixing, and to
more fully understand the relationship between APR and the
activities (manual bug finding and fixing) that it is designed to
aid and, at least partially, replace. This will enable APR tools
and techniques to be developed with a greater understanding
of how they should be introduced and presented to developers.

To the best of our knowledge, we are also the only study
to consider developers’ instinctive, intuitive attitudes towards
APR based on minimal information about how APR works.
This allows us to consider developers’ levels of ‘dispositional
trust’, something that is likely to play a role in APR adoption.
(We discuss the idea of ‘dispositional trust’ in more detail
below).

III. METHOD

A. Introduction of APR to participants

We introduced APR to survey participants as follows: ‘In
recent years, there have been advances in automatic software
repair techniques. Automatic software repair techniques auto-
matically generate patches to fix bugs, often using Machine
Learning or other AI techniques’. Whilst experiments tend to
ask participants to respond to a specific APR tool and may
provide quite a lot of information about how the tool works,
we wanted to find out about developers’ attitudes towards
APR as a general concept. As a result, we did not want
to wed ourselves to a particular APR technique paradigm.
Instead, we designed the survey to introduce the notion of
APR to participants as generically as possible in order to
elicit developers’ ‘gut feelings’ or ‘hunches’ towards APR.
This corresponds to the idea of ‘dispositional trust’, posited

by Marsh and Dibben [24] and applied, in the context of
trust in automation, by Hoff and Bashir [25]. Whilst we did
not explicitly ask our survey respondents about their levels
of trust in APR, a lot of our survey questions probed into
respondents’ attitudes towards APR, where we expected trust
to play a role. Considering trust in automation, Hoff and Bashir
define dispositional trust as ‘an individual’s overall tendency to
trust automation, independent of context or a specific system’
and explain that ‘individuals exhibit a wide variability in
their tendency to trust automation’ [25]. In presenting APR
in generic terms, it was these kind of attitudes that we were
hoping to elicit, rather than our participants’ response to a
specific APR technique or approach.

This is particularly important in the context of new and
emerging technologies, such as APR. Krafft et al. note that
‘for new technologies to be accepted, awareness of such
technologies must grow and the benefits they offer must be
clear, but this process can take a significant amount of time’
[26]. For this process to be eased and quickened, it is important
to understand developers’ instinctive responses to APR, as it
can help developers of APR tools consider how they present
their tools to developers and increase acceptance of these
tools. Given that APR is currently in an early phase of its
development, with low developer awareness and low industry
uptake (companies like Facebook [22] and Bloomberg [21]
excepting), it is important to understand the current attitudinal
baseline, levels of ‘dispositional trust’ [25], and what Krafft
et al. term ‘first impressions’ [26]. Our approach also has
similarities with the well-established Technology Acceptance
Model (TAM), which uses constructs related to two key
measures (‘perceived usefulness’ and ‘perceived ease of use’)
to predict acceptance and usage of a tool [27]. Whilst we don’t
go so far as to suggest that attitudes can predict behaviours,
like TAM we study general attitudes towards a technology
with the view that such attitudes do have implications for tool
adoption and usage.

The notions of ‘dispositional trust’ [25] or ‘first impres-
sions’ [26] suggest more instinctive, intuitive and emotive
responses. This is again appropriate for the study of attitudes
towards an emerging technology, since much research sug-
gests that people’s attitudes towards emerging technologies
are more emotional than cognitive. Loewenstein et al., for
example, highlight the role of emotions in people’s responses
to perceived risks [28] – and emerging technologies can be
included within the framework of risk. Huijts et al., in their
article on public attitudes towards carbon dioxide storage
techniques, suggest that emerging technologies – given their
uncertainties – tend to elicit ‘intuitive feelings’ and activate
emotions, as people struggle to weigh up risks and benefits
[29]. Whilst developers do represent a more ‘expert public’,
likely to have greater technical knowledge and understanding,
Hoff and Bashir suggest that ‘dispositional trust’ always plays
a role even when people have more knowledge (developing
‘situational trust’ and ‘learned trust’, the other two dimensions
of trust identified by Marsh and Dibben) [25]. As a result, and
in response to a lack of more generic human studies of APR,
it was this dimension that we aimed to study.
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B. Survey design
Designing the survey was a highly iterative process. We

piloted the survey at various stages with three industry-based
software engineers at different companies, each of whom
provided detailed feedback. The pilot process was used to
identify any confusing or leading questions. Participants in
the pilot also helped us populate survey items where we asked
survey participants to choose between multiple options (such
as what made bugs particularly annoying to fix).

The final version of the survey, following this piloting
process, was structured into the following sections: Part 1-
Time spent bug finding and fixing; Part 2- Feelings about
work in general; Part 3- Bug finding and fixing practices; Part
4- Feelings about bug finding and fixing; Part 5- Attitudes
towards APR; and Part 6- Demographics.

Part 1- Time spent bug finding and fixing: This section
of the survey was designed to try and capture how much time
respondents spent finding and fixing bugs. We asked partici-
pants to estimate the time they had spent finding and fixing
bugs the previous day (or their most recent day at work). One
possible weakness of this question is that developers might, for
example, have a particular day of the week dedicated to bug
fixing. To mitigate this, we asked whether this was less than,
similar to, or more than normal. We also asked participants
to estimate how much time they had spent finding and fixing
bugs over the previous month. All questions in this section
were single-answer multiple choice.

Using specific time periods has been found in some time-use
research to result in more accurate responses compared with
asking about typical behaviour (for example, over ‘an average
week’) and to also reduce cognitive loads for respondents [30]
[31]. Whilst there is also some evidence in favour of asking
about ‘an average day’ rather than ‘yesterday’ [30], we opted
for specific recent time periods. Given the varied nature of
SE activities at different times in the software development
lifecycle, it might be difficult for developers to consider an
‘average’ period of time.

We used the phrase ‘finding and fixing bugs’ throughout the
survey rather than ‘debugging’, as ‘finding and fixing bugs’ is
a more open description of the process, whereas ‘debugging’
might be understood as just referring to employing a debug-
ging tool or applying a particular debugging technique.

Part 2- Feelings about work generally: Due to the fact
that we wanted to ask how participants felt about fixing and
finding bugs, we also included a section that asked partici-
pants’ about their feelings about work generally. This was done
in order to control for the fact that people’s feelings about bug
finding and fixing might simply reflect their feelings towards
their work more generally. Asking about feelings about work
also enables us to consider whether there are any correlations
between feelings about work and feelings about bug finding
and fixing. In this section, respondents were asked about
the extent to which their work was challenging, meaningful,
satisfying and frustrating, as well as how successful they felt
they were at work. Each question had a 5-point Likert scale
response, ranging from ‘never’ to ‘always’.

Part 3- Bug finding and fixing practices: This section of
the survey combined different types of questions to try and

gain understanding into developers’ bug finding and fixing
practices. We used open-text responses to ask developers how
they found bugs, how they fixed bugs, and how they verified
their fixes. We did this partly in order for developers to
express their bug finding and fixing practices and strategies
in their own words and partly because little research on how
developers find and fix bugs exists, meaning there is little
to draw from in order to establish an appropriate set of
options from which developers can choose. We also included a
multiple-option, multiple choice question for how respondents
were alerted to the existence of a bug; a multiple choice
question about whether participants mainly fixed bugs in their
own code, other people’s code, or both; and a grid question
about how often participants fixed bugs on their own, in a pair,
or in a group.

Part 4- Feelings about bug finding and fixing: In this part
of the survey, we asked participants how challenging, mean-
ingful, satisfying and frustrating they found finding and fixing
bugs, as well as how successful they considered their bug
fixing to be. These attitudinal descriptors were repeated from
Part 2, to enable a comparison between feelings about bug
finding and fixing and general feelings about work. Alongside
these Likert-scale questions, we also asked a question about
what made a bug specifically difficult to fix (respondents being
asked to pick their top three from a series of options).

Part 5- Automatic program repair: This section intro-
duced the notion of APR to respondents and asked a series
of 5 point Likert scale questions about their general feelings
about the idea of APR; their responses to a series of statements
about APR; and how important they would find different
aspects of a potential APR solution (for example, readability
of fixes). The statements were derived from attitudinal themes
uncovered in existing APR human studies. Table I shows the
derivation of these statements, and the statement shorthand
used in following tables in this paper.

We wanted to ask a question about what types of bugs
would be most helpful for participants for an APR tool
to fix. There is considerable research on fault taxonomies,
classifications and categorisations within SE, but no agreed-
upon model. There are also various different dimensions upon
which a fault classification may be based, such as time of fault
introduction (e.g. specification); effects of fault activation (e.g.
data corruption); location; and type of corrective action [35].
Proposed fault classifications range from the simple (Munson
and Nikora’s categorisation of faults into code faults, design
faults, and specification faults [36]) to far more complex. We
used a semantic typology (designed for Java) from Pan et al.
[37]:

• If related
• Method call related
• Sequence related
• Loop related
• Assignment related
• Switch related
• Try/catch related
• Method declaration related
• Class field related
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TABLE I
APR ATTITUDINAL STATEMENTS

Derivation Shorthand

‘Automatically generated patches would help save me time’ [18] Time-saving
‘Automatic software repair would not be able to fix complex bugs’ [32] Not complex bugs
‘I would be worried about the accuracy of automatically generated patches’ [18] Accuracy
‘I would find an automatic software repair tool useful’ [11] [33] [19] [12] [34] Useful
‘Human-written patches are more reliable than automatically generated patches’ [17] Humans more reliable
‘Automatic software repair tools might make software developers complacent’ [11] Complacency

There were several taxonomies at this more semantic level
and we chose this one for its relevance and understandability
to software developers, as well as the fact that many APR
approaches operate at this level. Although Pan et al. did not
use their taxonomy to fix software bugs, the taxonomy has had
a significant impact on APR research. Several researchers have
improved and extended Pan et al.’s taxonomy and used it in
APR tools [38] [39] [40]. Due to its simplicity, Pan’s taxonomy
has also been extended to other programming languages, e.g.
JavaScript [41].

Moreover, the basis of the taxonomy is a set of constructs
that might reasonably be considered the focus of developer
testing for finding and fixing bugs; for example, checking
boundary conditions on loops and if statements, range and type
checks on assignments and appropriate exception handling.
The taxonomy is also directed towards the object-oriented
paradigm, covering method and field declaration; while we aim
to be as inclusive as possible in terms of which programming
language paradigm APR should be applied to, languages such
as Java are attracting significant and growing industrial interest
[22] [42].

Part 6- Demographics: Following advice that participants
may find demographic questions off-putting if asked first [43],
we included the ‘about you’ section of our survey at the end.

Several of our demographic questions were taken from the
2019 and 2020 Stack Overflow surveys.1 These included the
following:

• ‘Including any education, how many years have you been
coding?’ (2020)

• ‘How many years have you coded professionally (as part
of your work)?’ (2020)

• ‘Which of the following best describes your current
employment status?’ (2020, with some of the options
provided in the Stack Overflow survey removed, such as
retired and student, as we wanted to capture responses
only from developers currently working)

• ‘Which of the following best describes the industry you
work in? If you or your employer are involved in several
industries, please choose the one most relevant to the
products or services you work on’ (2019)

These questions were taken from Stack Overflow to enable
comparison between our own sample and theirs.

We also gathered the following demographic data: job title;
size of organisation of employment; programming languages
used; gender; age; and country of residence.

1Question guides available from https://insights.stackoverflow.com/survey

C. Validation of responses

The number of written responses we received in the open-
text boxes was one indication of the validity of results (be-
tween 90.4% and 95.6%, depending on the question and gen-
erally decreasing as the survey progressed). We also checked
for validity of responses by checking if, for example, there
were any instances of someone ticking ‘always’ for all three
options for the question ‘how often do you find and fix
bugs: alone; in a pair; in a group?’. We found two instances
(0.5% of responses) where this was the case, and checked
these responses thoroughly. We checked particularly for any
signs that the questionnaire had been rushed through, such as
repetitive answers - e.g., always ticking the same Likert scale
options. We did not find any evidence of this, so did not delete
these responses.

D. Sampling strategy

Sampling within SE is complex. Random samples are very
difficult to achieve given a lack of census-style directories of
software developers, from which a random sample could be
drawn [44] [45]. Even estimates of the global population of
software developers vary [46]. To establish a sample size, we
used the Global Developer Population 2019 report produced by
Slashdata.2 This report estimates that there were 18.9 million
developers in 2019, with 12.9 million (68.3%) of them being
professional developers. The report estimates that this would
have risen to 23 million by the end of 2019 (or 21.7%). We
worked out the 2020 figure, at the same rate of increase, to be
nearly 28 million, with 19.1 of these professional developers
(based on the same breakdown of professional and hobbyist
developers). Inputting this into a sample size calculator,3 the
sample required at a 95% confidence interval is 384, so we
selected this as our target sample size. Wagner et al. [46] argue
that a sample size close to 400 should offer ’strong general-
isability’, as long as checks are made for representativeness.
We follow Wagner’s recommendation to use large, commercial
surveys to compare one’s own sample. In Section IV, we
discuss our survey sample demographics compared to recent
Stack Overflow developer survey results. Baltes and Diehl also
highlight the Stack Overflow survey as the main resource for
insight into software developer demographics [45].

2https://www.slashdata.co/free-resources/
3https://www.surveysystem.com/sscalc.htm
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E. Recruitment and dissemination
We used two main forms of recruitment and dissemina-

tion. Firstly, we conducted purposeful convenience sampling,
targeting our partner organisations and industry contacts, as
well as using relevant social media channels. We achieved 76
responses in this way. The response rate was quite slow —
possibly due to Covid-related disruption to people’s normal
working patterns — and we realised, upon looking at the
participant demographics, that our sample was skewed towards
highly educated developers.

We then turned to another recruitment channel, using the
online platform Prolific4 to recruit participants. Like Amazon
Mechanical Turk (AMT), Prolific participants are paid small
sums for their time. However, Prolific has certain advantages
over AMT. Prolific is designed specifically for academic
research and allows participants to be carefully selected and
filtered. Peer et al. highlight that Prolific participants are both
more diverse and more honest than AMT workers [47]. Prolific
is increasingly being used by researchers as a highly effective
recruitment platform [47] [48], including in SE research [49].

We applied the following two filters: ‘knowledge of software
development techniques: debugging’ and ‘industry: software’.
Whilst software developers work in all sorts of different
industries, we felt targeting people in the software industry
was the best approach to ensure that our participants were
professional developers.

We found the Prolific data to be of a high standard, specif-
ically evidenced by the fact that more Prolific participants
answered the open-text questions. For example, when asked
to explain their answer to ‘How would you feel about using
an automatic software repair tool that found and fixed bugs?’
(an open-text question towards the end of the survey), 98.1%
of respondents wrote an answer, compared to 71.1% of the
sample we had recruited through contacts and snowballing.

F. Survey analysis
1) Statistical tests: We used two key forms of statistical test

to analyse our data. Firstly, to correlate ordinal variables, the
most appropriate statistical measure was Kendall’s tau-b cor-
relation coefficient. Kendall’s tau-b is suitable for data that is
at least ordinal. Unlike Pearson’s product-moment correlation,
it is non-parametric and does not assume normal distribution
of data. Owing to comparing Likert-scale (ordinal) variables,
our data involved many tied ranks and, as a result, it was
more suitable to use Kendall’s tau-b than Spearman’s rank-
order correlation coefficient. Another advantage of Kendall’s
tau is that it tests for a monotonic relationship – that is, a linear
relationship, rather than assuming one.5 We plotted jittered
scatterplots to check for the existence of forms of relationship
that might not be linear.

Our second key statistical test was the Chi-Square test
for association, as it enables analysis of variables that are
categorical (both ordinal and nominal).6

4https://www.prolific.co
5https://statistics.laerd.com/spss-tutorials/kendalls-tau-b-using-spss-

statistics.php
6https://statistics.laerd.com/spss-tutorials/chi-square-test-for-association-

using-spss-statistics.php

2) Analysis of qualitative open-text responses: For the
analysis of the open-text responses, the qualitative responses
were extracted and then thematically coded. The approach we
took involved open coding and also negotiated agreement,
as recommended by [50], using the approach detailed in
[51]. Firstly, a sample was taken of the qualitative responses
for each open-text question, twenty responses being chosen
from each question at random. Two authors assigned codes
to these responses and then discussed them, in order to
negotiate agreement. This is a process of ‘open coding’, where
codes are developed from looking at the data (an inductive
approach), rather than a codebook being developed first and
then applied to the data (a deductive approach). An open,
inductive approach to coding was more appropriate given the
exploratory nature of our research, and the fact that we were
not working, for example, within an existing theoretical or
conceptual framework that suggested clear categories. The
codes developed through this process of negotiated agreement
and open coding established a draft codebook.

We then divided the rest of the qualitative responses between
the two authors to be coded independently. We applied the
codes that had already been defined, but also continued an
open coding approach, adding new codes as they emerged from
the data. Each author flagged any new code they established
for later discussion, as well as any coding they were uncertain
about. The two authors then reviewed each other’s codes,
noting agreement, as well as coding that required discussion.
Finally, we met to discuss those that required discussion, again
negotiating agreement and reaching consensus on the final
codes. Of the independently coded responses, there was 72.9%
agreement between authors, leaving 27.1% for discussion. It
should be noted that lots of instances for discussion were
repeats – for example, repeat slightly differing understandings
of the application of a particular code. In addition, those in
need of discussion included ‘partial agreement’ — where, for
example, there was agreement on one code but not another, or
the suggestion of an additional code.

G. Replicability

We provide a replicability package at:
https://github.com/winterem/APRsurvey.

IV. OUR PARTICIPANTS

A. Key participant demographics

Our participants were predominantly male (85.4%). This is
less than the proportion of Stack Overflow Developer Survey
professional developer respondents that identified as male in
2020 (91.7%).7 However, Stack Overflow found that their
survey was biased towards male respondents, and our own
figure is likely to be nearer to the actual gender breakdown
in many countries. The US Bureau of Labor Statistics, for
example, estimates that women make up 20% of professional
software developers. In the UK, research by Women in Tech
suggests that 19% of the tech workforce are women.8

7All 2020 Stack Overflow statistics can be found here:
https://insights.stackoverflow.com/survey/2020

8https://www.womenintech.co.uk/8-facts-women-tech-industry
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In terms of age, just over 90% of our respondents were 44
or younger. This is very similar to the 2020 Stack Overflow
respondents, of whom 90.7% of professional developers were
44 or under. The breakdown of ages is largely very similar,
though we had fewer respondents in the 25-34 category (45.7%
compared with 51.4%) and more respondents in the 18-24
category (25.4% compared with 17.8%). Our sample is skewed
slightly younger than the Stack Overflow sample.

The three countries of residence that we had the greatest
proportion of respondents from were the UK (24.6%), US
(13.4%) and Portugal (11.5%). We suggest that, being based at
UK institutions, potential respondents from the UK may have
been more likely to recognise the names of our institutions
and be inclined to fill out the survey. Like Stack Overflow,
our respondents were concentrated in Europe (74.6%) and
North America (20.9%), though we lack the representation
from India gained by Stack Overflow.

B. Education and experience

A high proportion of our sample had at least a Bachelor’s
degree in Computer Science or a related discipline (79.3%).
This is similar to the Stack Overflow 2020 sample, with
78.1% of professional developer respondents having at least a
Bachelor’s degree (though the Stack Overflow study did not
specify Computer Science or related, merely asking for highest
formal qualification regardless of subject).

Table II shows the years spent coding professionally by our
participants compared with Stack Overflow’s sample.

C. Employment

Just over four fifths of our participants were employed full-
time, with a further 11.9% self-employed or freelance. Table
1 indicates the size of the companies participants worked for.
Participants were asked to identify their sector of employment.
The top three sectors were ‘software development- other’
(24.3%); ‘information technology’ (15.7%); and ‘software as a
service (saas) development’ (11.8%). ‘Software development-
other’ and ‘information technology’ were the top two sec-
tors in the Stack Overflow 2019 survey,9 though with lower
percentages (12.0% and 10.8% respectively). Finance and
banking was next, and then ‘software as a service (saas)
development’ (7.7%).

We asked participants to rank programming languages
according to which they used most at work. To calculate
the most used language, we awarded three points when a
language was ranked first, two points when ranked second
and one point when ranked third. The language that received
the highest score was Javascript, followed by Java and Python
respectively, though the languages that were ranked first the
most were Java, C# and Python. The 2020 Stack Overflow
survey also found Javascript to be the most commonly used
language among developers.

9The 2019 survey results can be found here:
https://insights.stackoverflow.com/survey/2019

Fig. 1. Size of company worked for

Fig. 2. Estimated percentage of time spent finding and fixing bugs over the
last month

V. FINDINGS

A. RQ1: What are software developers’ current bug finding
and fixing practices?

Survey respondents were asked how long they had spent
finding and fixing bugs the previous day (or their most recent
day at work). The results are shown in Figure 3, showing
that over half of participants spent less than one hour finding
and fixing bugs, with a further quarter spending between one
and two hours. Table 2 shows the time over the last month
that participants estimated they had spent finding and fixing
bugs, the modal category being 30%, a significant proportion
of developer time, though less than has often been suggested
(see [52]).

We also asked developers whether their time spent bug
finding and fixing the previous day was less than normal, the
same, or more than normal. Table III shows the results. For
participants who spent less than 30 minutes fixing bugs, the
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TABLE II
YEARS SPENT CODING PROFESSIONALLY

Years Percentage (and cumulative %) for our sample Percentage (and cumulative %) for 2020 Stack Overflow sample

4 or less 51.9% 36.6%
5 to 9 19.2% (71.1%) 26.8% (63.4%)
10 to 14 12.7% (83.8%) 14.7% (78.1%)
15 to 19 6.5% (90.3%) 7.6% (85.7%)
20 to 24 4.2% (94.5%) 6.0% (91.7%)
25 to 29 2.3% (96.8%) 2.4% (94.1%)
30 to 34 1.8% (98.8%) 1.6% (95.7%)
35 to 39 0.5% 0.8%
40 to 44 0.5% 0.4%
45 to 49 0.0% 0.1%
50 or over 0.3% 0.1%

Fig. 3. Time survey respondents spent finding and fixing bugs the previous
day

modal category was ‘less than normal’. For the rest of the
time options, the modal category was ‘the same’, until the
highest option for time spent (over 6 hours), for which the
modal category was ‘more than normal’. Other than at the
extremes, the developers’ previous working days seem to have
been mostly typical in terms of time spent finding and fixing
bugs.

Figure 4 shows in whose code developers are fixing bugs,
indicating that only a small proportion of developers primarily
fix bugs in other people’s code. Respondents were also asked
the extent to which they found and fixed bugs alone, or
with others. Respondents fixed bugs alone ‘always’ in 22.5%
of cases, and 67.8% fixed bugs alone ‘most of the time’.
Bug finding and fixing seems to be predominantly a solitary
activity.

Over three quarters of our participants (77.6%) stated that
test cases for the code they worked on were designed manually,
rather than automatically. This demonstrates that automated
testing is not being used extensively in industry. While we
do not know why this is, it may indicate a reluctance to use
automated tools in industry or that the tools do not work
according to developers’ needs.

The responses to the open-text question ‘how do you fix

Fig. 4. Do developers mainly fix bugs in their own code or other people’s?

bugs?’ indicated that the majority of participants do not use
specific tools (e.g. debuggers) to approach bug fixing. We
received 355 written responses to this question; of these,
286 (80.6%) indicated no use of any specific tool, compared
with 69 responses that mentioned use of a specific tool to
aid fixing bugs. This confirms other research findings [1] [5]
that the use of debugging tools is not widespread among
professional developers, indicating that the take-up of tools is
slow and uneven in industry, as well as research on barriers to
adoption of static analysis tools [53]. The qualitative responses
also indicate a fairly manual and haphazard approach to bug
fixing, for example, ‘mostly trial and error’, ‘thinking about
how things work in certain scenarios and trying [a] few
modifications on the code until everything works fine’, and
‘keep changing the code until it works usually’.

In answer to RQ1 (What are software developers’ current
bug finding and fixing practices?), we find that bug finding
and fixing is a predominantly solitary task for developers,
with most developers spending up to 2 hours fixing bugs in
a ‘normal day’. For most developers, this task also seems to
be mainly manual, with test cases designed manually in the
majority of cases and very few developers using debugging
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TABLE III
HOW NORMAL WAS THE PREVIOUS DAY FOR TIME SPENT FINDING AND FIXING BUGS?

Less than normal The same More than normal Total

Less than 30 minutes 53 (53.5%) 43 (43.4%) 3 (3.0%) 99
30 minutes to 1 hour 32 (34%) 49 (52.1%) 13 (13.8%) 94
1-2 hours 13 (13.8%) 51 (54.3%) 30 (31.9%) 94
2-4 hours 3 (4.5%) 32 (48.5%) 31 (47.0%) 66
4-6 hours 2 (11.1%) 6 (33.3%) 10 (55.6%) 18
Over 6 hours 0 2 (40.0%) 3 (60.0%) 5

Fig. 5. Satisfaction levels- work and finding and fixing bugs

tools. We therefore find empirical confirmation for what is
often claimed in the APR literature - that bug fixing is time-
consuming and often manual.

B. RQ2: How do software developers feel about bug finding
and fixing?

Table IV shows the results for how developers feel about
bug finding and fixing. This demonstrates that more developers
consider finding and fixing bugs ‘always satisfying’ (33.2% of
respondents) than ‘always frustrating (10.1%).

The variables ‘satisfying’ and ‘frustrating’ were particularly
interesting regarding the relationship between work generally
and finding and fixing bugs. This is demonstrated in Figures
5 and 6. Bug finding and fixing emerge as both more satis-
fying and more frustrating than work generally. It seems that
bug fixing elicits more extreme reactions (both positive and
negative) than work generally.

We performed Chi-Square tests of association to see if there
was an association between feelings about finding and fixing
bugs and the following variables: whose code the bugs were in;
the degree to which respondents found and fixed bugs alone;
and participants’ highest qualification in Computer Science.
The Chi-square test was appropriate for these variables as
they are nominal. We found no evidence of any statistically
significant association, meaning that feelings about bug finding
and fixing do not seem to be influenced by fixing bugs alone,
CS qualifications, or whose code the bugs were in.

We also computed Kendall’s tau-b coefficients to check for
coefficients between feelings about finding and fixing bugs and

Fig. 6. Frustration levels- work and finding and fixing bugs

age, years coding professionally, and years coding including
education, to see whether experience had any impact. We only
found four Kendall’s tau-b coefficients that were greater than
0.1 and statistically significant; these are shown in Table V.
The coefficients are not high — none of them are greater than
0.2 — so they are indicative only of a weak relationship. The
main association shown in Table V is that older developers,
and developers with more years coding experience, are slightly
more likely to see themselves as successful at bug finding and
fixing.

We then considered the relationship between feelings about
work and feelings about bug finding and fixing, in order to see
whether feelings about bug fixing are correlated with general
work feelings. We again used Kendall’s tau-b as both these
variables are ordinal. Here we found evidence of slightly
stronger relationships. There were four relationships with a
coefficient greater than 0.3. These were: work-meaningful and
finding and fixing bugs-meaningful; work-satisfying and find-
ing and fixing bugs-meaningful; work-frustrating and finding
and fixing bugs-frustrating; and work-successful and finding
and fixing bugs-successful. This suggests a relationship be-
tween feelings about work and feelings about finding and
fixing bugs, implying that to some moderate degree developers
are likely to have similar feelings about both work and finding
and fixing bugs. This implies that it is not as simple as
developers having certain feelings about finding and fixing
bugs, but that these feelings may be influenced by broader
work environment factors — attitudes towards bug finding and
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TABLE IV
HOW DEVELOPERS FEEL ABOUT FINDING AND FIXING BUGS

1- Never 2 3 4 5 -Always

Finding and fixing bugs is challenging 0.5% 5.7% 34.7% 41.2% 17.9%
Finding and fixing bugs is meaningful 0.8% 10.1% 25.1% 36.3% 27.7%
Finding and fixing bugs is satisfying 1.8% 12.2% 19.4% 33.4% 33.2%
Finding and fixing bugs is frustrating 2.3% 10.4% 35.5% 41.7% 10.1%
My bug finding and fixing is successful 0.0% 1.8% 24.7% 56.9% 16.6%

TABLE V
KENDALL’S TAU-B COEFFICIENTS GREATER THAN 0.1. NB: * = SIGNIFICANT AT THE 0.05 LEVEL; ** = SIGNIFICANT AT THE 0.01 LEVEL

Finding and fixing bugs is frustrating My bug finding and fixing is successful

Years coding professionally N/A 0.164**
Years coding including education N/A 0.174**
Age -0.109* 0.101*

fixing do not exist in isolation.

We asked developers, using open-text response questions,
what they liked most and least about finding and fixing bugs.
We coded 355 responses about what participants liked most
about finding and fixing bugs, having removed from the data
set all blanks and any responses that were too vague or
unclear for us to confidently assign a theme to them. Only
9 respondents (0.01%) said that they liked nothing about
finding and fixing bugs, though a further 25 responses (7.0%)
were coded as ‘finishing it’, meaning that the thing these
respondents liked most about finding and fixing bugs was the
completion of the task, suggesting little inherent value in the
task itself.

152 responses (42.8%) were thematically coded as ‘satis-
faction’, indicating that these participants found some element
of finding and fixing bugs satisfying. The sense of challenge
was highlighted in 53 responses (14.9%), for example, ‘I like
the challenge of discovering and fixing bugs’ and ‘I like the
constant challenge that it provides’. In addition, 45 responses
(12.7%) were coded as ‘learning’, meaning that participants
felt that they improved their knowledge, understanding or
skills through finding and fixing bugs. Examples include: ‘I
can learn from my own mistakes and gain valuable experi-
ence’; ‘learning why something doesn’t work the way it is
expected to’; ‘it improves my skills as a coder’; and ‘digging
through the code and becoming super familiar with how it
works so that it’s less of a black box’.

Several responses were related to the impact of finding
and fixing bugs. 34 responses (9.6%) were coded as ‘having
impact’ – this refers to finding and fixing bugs having a
beneficial impact on, for example, clients or customers. 104
responses (29.3%) were coded as ‘contributing to a working
or improved codebase/system/product’. For the theme ‘hav-
ing impact’, the following are indicative quotations: ‘I make a
better product that more users will enjoy’; ‘providing value to
end users’; ‘making customers happy’; and ‘solving an issue
that bothered stakeholders’. For the theme ‘contributing to
a working or improved codebase/system/product’, examples
include:

• ‘Knowing that the product is verifiably better now than
it was before’

• ‘It improves the code quality and it is extremely satisfying
to fix bugs and know that the code is better than it was
previously’

• ‘I like the feeling of improving our product and making
it more robust’

• ‘Satisfaction of fixing products back to the desired state’
For what respondents liked least about finding and fixing

bugs, we thematically coded 357 responses. The most fre-
quently occurring theme was ‘time’, 113 responses (31.7%)
being assigned this theme. ‘Time’ refers to bug finding and
fixing taking a lot of time, for example ‘it often takes a lot
of time’ and ‘the time involved’. There were several other
thematic codes related to time, such as ‘takes time away from
other activities’ (14 responses; 3.9%) and ‘time pressures’
(12 responses; 3.4%).

The next most frequently occurring theme was ‘finding’,
with 110 responses (30.8%) being assigned this theme. This
demonstrates that many developers have a particular problem
with finding where a bug is in the code and/or what is
causing the bug. As one participant expressed it, ‘the process
of finding; fixing is alright’. Other responses included:

• ‘The finding process itself is kind of boring’
• ‘I don’t like the frustration of identifying bugs that are

hard to find’
• ‘The long search for bugs, especially when the edge

case is extremely obscure and only happens on specific
hardware/software configurations on the client’

50 distinct responses (14.0%) were coded with themes
related to the nature of the code base, including other
people’s code (30 responses; 8.4%), poorly written code (16
responses; 4.5%) and poorly documented code (11 responses;
3.1%). Examples of this category include:

• ‘Working on archaic code that I have little knowledge of
that has been written according to old practices’

• ‘Some people’s code is sloppy and difficult to parse’
• ‘If the code is badly organised or badly documented, it

gets hard and frustrating to find a solution’
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TABLE VI
KENDALL’S TAU-B COEFFICIENTS GREATER THAN 0.1. NB: * = SIGNIFICANT AT THE 0.05 LEVEL; ** = SIGNIFICANT AT THE 0.01 LEVEL

Bugs- challenging Bugs- meaningful Bugs- satisfying Bugs- frustrating Bugs- successful

Work- challenging 0.284** 0.138** N/A N/A N/A
Work- meaningful N/A 0.357** 0.126** -0.140** 0.195**
Work- satisfying N/A 0.305** 0.206** N/A 0.236**
Work- frustrating 0.165** -0.126** N/A 0.313** -0.151**
Work - successful N/A 0.130** N/A -0.132** 0.365**

TABLE VII
MOST FREQUENTLY OCCURRING THEMATIC CODES FOR THE SURVEY QUESTION ‘WHAT DO YOU LIKE MOST ABOUT FINDING AND FIXING BUGS?’ NB:

RESPONSES COULD BE TAGGED WITH MULTIPLE THEMATIC CODES

Thematic code Percentage of responses Indicative quotation

‘Satisfaction’ 42.8% ‘It is extremely satisfying to fix bugs’
‘Contributing to a working or im-
proved codebase/system/product’

29.3% ‘Knowing that the product is verifiably better now than it was before’

‘Challenge’ 14.9% ‘I like the challenge of discovering and fixing bugs’
‘Learning’ 12.7% ‘It improves my skills as a coder’
‘Having impact’ 9.6% ‘Providing value to end users’

TABLE VIII
MOST FREQUENTLY OCCURRING THEMATIC CODES FOR THE SURVEY QUESTION ‘WHAT DO YOU LIKE LEAST ABOUT FINDING AND FIXING BUGS?’ NB:

RESPONSES COULD BE TAGGED WITH MULTIPLE THEMATIC CODES

Thematic code Percentage of responses Indicative quotation

‘Time’ 31.7% ‘It often takes a lot of time’
‘Finding’ 30.8% ‘The process of finding; fixing is alright’
‘Frustration’ 22.7% ‘It can be quite frustrating to debug’
‘Difficulty’ 18.5% ‘It can be frustrating and difficult to debug’
‘Boring, tedious or unrewarding
work’

14.0% ‘They [the bugs] are usually so small that it’s not even rewarding to
fix them’

There was also a cluster of thematic codes connected to
respondents’ experiences of, and feelings about, bug finding
and fixing. 81 responses (22.7%) were coded as ‘frustration’
– respondents found some element of bug finding and fixing
frustrating. 66 responses (18.5%) were coded as ‘difficulty’,
meaning that participants found at least some part of bug
finding and fixing hard. Difficulty was related most often to
finding bugs (38 responses). Finally, 50 responses (14.0%)
stated that the thing that they liked least about finding and
fixing bugs was that it was boring, tedious or unrewarding
work, for example ‘looking at lines of code can get very
boring’; ‘they [the bugs] are usually so small that it’s not
even rewarding to fix them; ‘find and fix very irrelevant bugs
that don’t impact the code/project’; and ‘it’s not delivering
direct value and rarely something to be super proud of’.

For the question about what makes a bug particularly annoy-
ing to fix, participants were asked to rank a series of options
in first, second and third place. Most often ranked first (91
participants) was ‘when it’s in very complex code’, followed
by ‘when it’s in poorly documented code’ (76 participants)
and ‘when it’s in very old code’ (71 participants). If all three
rankings are taken into account and scored (so being ranked
in first place gains 3 points, etc.), ‘when it’s in very complex
code’ remains the number one factor, followed by ‘when it’s
in very old code’ and ‘when it’s in poorly documented code’.

To summarise, in answer to RQ2 (How do software devel-

opers feel about bug finding and fixing?), we find that devel-
opers’ attitudes towards finding and fixing bugs are complex.
Developers find bug-finding and -fixing both more satisfying
and more frustrating than they do their work generally. We
found very few statistically significant relationships with de-
mographic variables, showing that experience has very little
impact on how developers experience bug fixing. However, we
do find some evidence for a connection between feelings about
finding and fixing bugs and feelings about work generally,
suggesting that developers’ feelings about bug fixing do not
exist in isolation from general work conditions. The qualitative
data demonstrates that some key sources of satisfaction found
in bug fixing are a sense of improving the codebase, system
or product being developed, a sense of challenge, and and
gaining understanding, skills and knowledge.

C. RQ3: What are software developers’ instinctive feelings
towards APR?

Figure 7 shows respondents’ general feelings towards APR,
while Table IX shows the preferences of developers for dif-
ferent kinds of APR options. Figure 7 demonstrates that the
modal category of participants considered themselves ‘some-
what positive’ about using an APR tool. Table IX indicates
a strong preference among developers to remain part of the
process, with 88.0% favouring an APR tool that provides
developers with different fixes to choose from over a tool
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Fig. 7. General attitudes towards APR

that provides developers with fixes to approve and a tool that
automatically applies fixes.

We also asked developers to rank when an APR tool would
be most useful to them, shown in Table X. Unsurprisingly,
developers have a strong preference for tools finding bugs
as soon as possible (i.e. during development). We asked a
similar question about the usefulness of APR at different
points in the software development process, shown in Table
XI. Testing was seen as the most useful point for APR to be
used, followed by implementation. This is perhaps surprising,
as we might expect APR to be considered more useful to
developers in implementation rather than testing, as it could
enable developers to take advantage of APR earlier in the
process.

We also asked how far respondents agreed with a series
of statements about APR, the results being shown in Table
XIV. This table shows that the most agreed with statement
was Accuracy- ‘I would be worried about the accuracy of
automatically generated patches’, with 51.9% of respondents
strongly agreeing with this statement. The least agreement was
with the Complacency statement- ‘Automatic software repair
tools might make software developers complacent’, with only
12.9% of respondents strongly agreeing with this statement.
Table XV shows how important respondents rated a series of
possible features for an APR tool. Correctness of patches was
seen as the most important feature of an APR tool (66.1% of
respondents considered this ‘extremely’ important), followed
by understandability/readability of patches (54.2%) and human
verification of patches (51.6%). Participants considered speed
of patch generation the least important (11.6% of respondents
considered this ‘extremely’ important), suggesting that devel-
opers may see a trade-off between speed and accuracy. This is
in contrast to Noller et al.’s survey [23], in which developers
stated that they want an APR tool to generate patches within
30-60 minutes.

We also asked participants how useful they would find an
APR tool to fix bugs in different types of coding structure.
The results are shown in XVI, and indicate that developers
would find most use in an APR tool that fixed bugs in loop-

related coding structures and in if-related coding structures.
Both of these types of coding structure are fault-prone and
complex. This demonstrates that developers would find fixes
to complex bugs useful (as they are likely the most time-
consuming for developers to fix manually), but, as seen above,
developers are also sceptical as to APR’s ability to provide
fixes for more complex bugs. It is also worth noting that we
had a high non-response rate (18%) for this question. This
may reflect non-response from software developers that do
not use Java or related languages, but it may also indicate
that developers found it difficult to contemplate APR in less
abstract and more specific terms due to a lack of understanding
of APR’s capabilities.

Again, we carried out statistical tests, testing for an associa-
tion between highest computer science qualification and all of
the attitudinal variables shown in Tables I, IX, and XV using
the Chi-Square test (as appropriate for nominal variables).
We did this in order to consider whether there was any
relationship between CS qualifications and attitudes towards
APR. We found no evidence of any statistically significant
relationships, except for an association between qualifications
and the statement ‘automatic software repair might make
developers complacent’. This was significant where p is less
than 0.05, allowing us to reject the null hypothesis of no asso-
ciation between these variables. The cross tabulation, however,
demonstrates no straightforward association between highest
Computer Science (CS) qualification and agreement with
the Complacency statement. The greatest difference between
expected and observed values is found for respondents with
no CS qualification and respondents with a Bachelor’s degree.
Respondents with no CS qualification at degree level were less
likely to agree with the statement ‘automatic software repair
might make developers complacent’, while respondents with
a BSc (or equivalent) in CS were more likely to agree. So,
those with no CS qualification are more likely to think APR
will cause developer complacency.

We also used Kendall’s tau to test whether there was
any relationship between respondents’ age and experience
levels (both years coding professionally and years coding
including education) and their general attitude towards APR;
their response to a series of statements about APR; and
what respondents consider important in an APR tool. For
general attitude towards APR, we found no evidence of any
relationship with age and experience levels. The Kendall’s tau-
b for each of these pairs of variables was less than 0.1, with
0 equalling no relationship. For responses to attitudinal state-
ments about APR, we found only two instances of Kendall’s
tau-b coefficients that were greater than 0.1 and indicative of
a very weak relationship. These were both for the statement
‘human-written patches are more reliable than automatically
generated patches’. For years coding professionally and age,
the Kendall’s tau-b coefficients were -0.110 and -0.147 re-
spectively, indicating a weak negative relationship between
agreeing with this statement and years of experience coding
and age. This implies that older and more experienced devel-
opers are slightly less likely to see automatically generated
patches as more reliable than human-written ones. Both of
these coefficients are statistically significant at the 0.01 level.
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TABLE IX
PERCENTAGE OF RESPONDENTS WHO RANKED DIFFERENT APR OPTIONS AS THEIR FIRST, SECOND AND THIRD CHOICES

Ranked first Ranked second Ranked third

‘An APR tool that automatically applies fixes’ 4.7% 32.1% 63.2%
‘An APR tool that provides developers with fixes to approve’ 7.3% 62.4% 30.3%
‘An APR tool that provides developers with different fixes to choose from’ 88.0% 5.5% 6.5%

TABLE X
WHEN WOULD AN APR TOOL BE USEFUL?

Ranked first Ranked second Ranked third

‘Bugs found during development’ 162 67 53
‘Bugs found during testing’ 58 186 39
‘Bugs found post-release’ 2 30 191

TABLE XI
HOW USEFUL WOULD YOU FIND AN APR TOOL DURING THE FOLLOWING PARTS OF THE SOFTWARE DEVELOPMENT PROCESS?

Extremely useful Very useful Moderately useful Slightly useful Not at all useful Don’t know

Specification 4.5% 7.9% 12.6% 18.2% 50.0% 6.8%
Requirements 4.7% 9.2% 14.2% 19.0% 46.2% 6.6%
Design 6.1% 12.7% 17.5% 24.1% 34.7% 5.0%
Implementation 25.5% 35.5% 24.7% 10.5% 2.4% 1.3%
Testing 38.9% 36.3% 15.3% 6.1% 1.6% 1.6%

TABLE XII
MOST FREQUENTLY OCCURRING THEMATIC CODES FOR RESPONDENTS WHO WERE ‘VERY POSITIVE’ OR ‘SOMEWHAT POSITIVE’ ABOUT APR. NB:

THEMATIC CODES ARE ORDERED ACCORDING TO ‘VERY POSITIVE’ RESPONDENTS, BUT NOTE THE DIFFERENCES FOR THOSE THAT WERE ‘SOMEWHAT
POSITIVE’. RESPONSES COULD BE TAGGED WITH MULTIPLE THEMATIC CODES

Thematic code Percentage of responses Indicative quotation

General positivity Very positive – 73.1%; Somewhat
positive – 25.9%

‘Heaven sent’

APR would make job easier/reduce
workload

Very positive – 49.5%; Somewhat
positive – 22.3%

‘This would make my life a lot easier’

APR would free up time for other
activities

Very positive – 22.9%; Somewhat
positive – 11.5%

‘More time for development of new things’

Concern, uncertainty, conditional-
ity

Very positive – 26.9%; Somewhat
positive – 74.1%

‘I would be sceptical of its efficacy until proven’

Exploring the relationship between age and experience
and what developers saw as important in an APR tool, we
found seven Kendall’s tau-b coefficients that were greater than
0.1 and indicative of a very weak relationship. Table XVII
highlights these seven values. Years experience and age were
slightly correlated with seeing correctness of patches as more
important and speed of patch generation as less important.

In summary, we found very weak relationships between
the demographic variables relating to age and experience and
attitudes towards APR.

The open-text responses for attitudes towards APR were
particularly illuminating. Whilst almost 70% of respondents
were ‘very positive’ or ‘somewhat positive’ about using an
APR tool, the open-text responses (participants having been
asked to explain their answer) demonstrate a high degree of
concern and scepticism. Of a total of 260 respondents that said
they were ‘very positive’ or ‘somewhat positive’ about APR,
238 provided a response in the open-text box.

We coded 232 written responses from participants who had

stated that they were either ‘very positive’ (93 responses) or
‘somewhat positive’ (139 responses) about APR. There was
a considerable difference in the qualitative response between
those who stated they were ‘very positive’ and those who
were ‘somewhat positive’. Of those who said they were ‘very
positive’ about APR, 46 responses (49.5%) felt that APR
would make their job easier or reduce their workload,
while 21 (22.9%) said APR would free up their time for
other activities. For those who were ‘somewhat positive’
about APR, 31 responses (22.3%) felt that APR would make
their job easier or reduce their workload and 16 responses
(11.5%) that APR would free up time for other activities.
Examples of ‘making job easier/reduced workload’ include
‘I think it would make bug fixing faster and more relaxed’;
‘this would make my life a lot easier’; and ‘it would save
me a lot of time and effort’. Examples of ‘more time for
other activities’ are ‘more time for development of new things’;
‘programmers can spend more time on the design of software
to create more robust software’; and ‘anything which promotes
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TABLE XIII
MOST FREQUENTLY OCCURRING THEMATIC CODES FOR RESPONDENTS WHO PICKED ‘AN APR TOOL THAT PROVIDES DEVELOPERS WITH DIFFERENT

FIXES TO CHOOSE FROM’ AS THEIR TOP CHOICE. NB: RESPONSES COULD BE TAGGED WITH MULTIPLE THEMATIC CODES

Thematic code Percentage of responses Indicative quotation

Need for human judgement/review 47.0% ‘Letting the programmer decide is always the best option’
Importance of having choice 24.9% ‘Can imagine many situations where a bug may have many different

solutions depending on the desired behaviours. The developer needs
to choose an appropriate fix, and if the tool only presents one, it limits
its usefulness’

Distrust 23.0% ‘I don’t trust an AI to choose the right fix’
Control 18.0% ‘I would like to retain full control of my code’

TABLE XIV
LEVELS OF AGREEMENT WITH DIFFERENT STATEMENTS ABOUT APR. NB: PLEASE SEE TABLE I FOR FULL STATEMENTS AND THEIR DERIVATION.

Strongly agree Somewhat agree Neither agree nor disagree Somewhat disagree Strongly disagree

Time-saving 37.0% 39.9% 11.7% 8.8% 2.7%
Not complex bugs 38.9% 31.5% 17.3% 9.6% 2.7%
Accuracy 51.9% 36.9% 6.4% 4.2% 0.6%
Useful 35.5% 42.8% 14.6% 6.0% 1.1%
Humans more reliable 23.4% 24.2% 40.0% 11.3% 1.1%
Complacency 12.9% 37.3% 23.2% 16.5% 10.1%

TABLE XV
THE IMPORTANCE OF DIFFERENT FEATURES IN AN APR TOOL

Extremely Very Moderately Slightly Not at all

Understandability/readability of patches 54.2% 31.2% 7.9% 5.6% 1.1%
Human verification of patches 51.6% 32.3% 11.6% 4.0% 0.5%
Full automation (i.e. humans out of the loop) 3.5% 4.6% 15.7% 28.5% 47.7%
Fit of tool within current workflow 25.9% 42.6% 19.2% 10.8% 1.5%
Correctness of patches 66.1% 22.7% 7.6% 2.3% 1.3%
Speed of patch generation 11.6% 19.5% 41.7% 20.8% 6.3%
Test results for the patches 34.5% 41.1% 17.6% 5.0% 1.8%
Similarity of generated patches to human written patches 18.2% 32.4% 28.4% 12.1% 8.8%

TABLE XVI
HOW USEFUL WOULD APR BE FOR FIXING BUGS IN DIFFERENT TYPES OF CODING STRUCTURE

Extremely Very Moderately Slightly Not at all

If related 32.4% 29.8% 20.5% 14.1% 3.1%
Method-call related 28.9% 30.2% 24.7% 12.0% 4.2%
Loop related 38.1% 28.8% 22.8% 8.1% 2.2%
Assignment related 23.4% 27.6% 24.0% 19.8% 5.2%
Switch related 19.5% 28.7% 27.4% 19.5% 4.9%
Try-catch related 27.2% 29.1% 23.8% 15.0% 5.0%
Method declaration related 20.7% 20.7% 23.4% 25.1% 10.0%
Sequence related 22.0% 21.6% 28.2% 22.3% 5.8%
Class field related 16.0% 24.6% 25.3% 26.3% 7.8%

TABLE XVII
KENDALL’S TAU-B COEFFICIENTS GREATER THAN 0.1. NB: FOR THESE VARIABLES, EXTREMELY IMPORTANT WAS SCORED AS 1 AND NOT AT ALL

IMPORTANT AS 5. * = SIGNIFICANT AT THE 0.05 LEVEL; ** = SIGNIFICANT AT THE 0.01 LEVEL

Understandability/readability of patches Correctness of patches Speed of patch generation

Years coding professionally N/A -0.110** 0.136**
Years coding including education N/A -0.120** 0.123**
Age -0.101* -0.150** 0.119**
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efficiency, reliability and quality is great. If it allows humans
to focus on creativity and user experience so much the better’.

We coded as ‘general positivity’ all responses that were
completely positive: this was 73.1% of ‘very positive’ re-
sponses and 25.9% of ‘somewhat positive’ responses. The rest
of the responses (26.9% for ‘very positive’ and 74.1% for
‘somewhat positive’) had a degree of concern, uncertainty, or
conditionality. For those responses that were ‘somewhat pos-
itive’, 51 (36.7%) were thematically coded as ‘uncertainty’,
17 (12.2%) as ‘distrust’, 29 (20.9%) as ‘conditionality’ and
61 responses (43.9%) specified some form of concern. The
most common concern was feasibility – 37 responses (26.6%).
Examples of this include ‘I would be sceptical of its efficacy
until proven’; ‘I don’t think that we are at the state where
AI is smart enough to find and fix bugs in complex system’;
‘I would be happy if it worked, but I doubt it’; and ‘I
can’t understand how the software will be able to fix the
error without knowing the final goal of the code’. The next
most common concern was ‘unintended consequences’ (16
responses; 11.5%). Examples are ‘I’ve seen the experiments
that were done with auto generated pull requests on git
hub and the results looked really exciting, but I remember
it misunderstanding the code occasionally and reintroducing
old bugs back into the codebases’; and ‘I’m not sure how
successful it would be and [it] could introduce other bugs’.
These qualitative responses indicate a more complex picture
than the statistics taken alone, suggesting that, although our
respondents stated that they were positive about APR, their
attitude can be summarised more, as one participant expressed
it, as ‘cautiously optimistic’.

The open-text responses about their APR preference (auto-
matic application of fixes, verification of fix, or choice between
fixes) are also helpful for understanding what is at stake for
developers with the potential introduction of APR. We coded
217 responses that had listed their number one preference
as choosing between fixes. The most prevalent theme was
‘need for human judgement/review’, which applied to 102
responses (47.0%). Examples of this include:

• ‘Letting the programmer decide is always the best option’
• ‘I still think human intervention would be vital to ensure

nothing is missed or done incorrectly’
• ‘I prefer to have the final say as the developer’
• ‘Manual approval of fixes is a MUST because I wouldn’t

want to risk any of the code getting messed up’

54 responses (24.9%) mentioned the importance and de-
sirability of having choice. Answers coded as this include:

• ‘If an automatic tool is only capable of providing one fix,
it is useless. If an automatic tool can provide multiple
fixes to choose from, it at least allows engineers to
debate the merits and drawbacks of each approach before
committing to something’

• ‘I can imagine many stations where a bug may have many
different solutions depending on the desired behaviours.
The developer needs to choose an appropriate fix, and if
the tool only presents one, it limits its usefulness’

• ‘People may get lazy and just rubber stamp the fixes so it
would be good to provide a variety of fixes so someone

can think about which is best and avoid the tendency to
rubber stamp things’

The need for control was tagged for 39 responses (18.0%),
Examples include ‘I would like to retain full control of my
code’; ‘choosing from various fixes helps me to maintain the
control of the code’; ‘developers should always have control’;
and ‘I prefer having control over the code that I’m expected to
be accountable for in terms of quality’. 20 responses (9.2%)
were thematically coded as ‘need to be informed’, such as
‘developers should always know when code is being modified’.

Distrust was a theme for 50 responses (23.0%), such as
‘I don’t trust an AI to choose the right fix’; ‘I don’t believe
an automatic system could be trusted without oversight’;
and ‘I’ve seen enough automated tools to know they’re not
trustable’. There were also several concerns, the most common
being ‘tool lacks contextual understanding’ (29 responses;
13.4%) and ‘unintended consequences’ (20 responses; 9.2%).
Examples of responses coded as ‘tool lacks contextual un-
derstanding’ include ‘the tool cannot fully understand the
business logic or why certain things have been coded in
a specific format’; ‘I don’t think the automated tool could
understand the goals priorities and context to fix complex
bugs without developer input’; and ‘the tool does not know
what the intended functionality of the program is’. Examples
of responses coded as ‘unintended consequences’ include:‘it’s
important to be able to review bug fixes in order to predict any
other effects they [the fixes] may have on the wider codebase’
and ‘if [the fix was] complex, I wouldn’t be confident that the
change doesn’t have unintended side effects’.

In answer to RQ3 (What are software developers’ instinctive
feelings towards APR?), we find that developers are mostly
positive about APR, but have a strong preference for a tool that
allows them to remain ‘in the loop’. Accuracy of automatically
generated patches is a key concern for developers, and they
are much less interested in how quickly patches are generated.
Again, we find evidence of very few statistically significant
relationships between attitudes towards APR and key demo-
graphic variables. The qualitative data demonstrates that, even
amongst developers that are positive about APR, there are
many concerns, and that having control is a significant factor
that informs developers’ preference for a tool that enables them
to stay in the loop.

VI. DISCUSSION AND RECOMMENDATIONS

A. There is a clear need for APR

Our survey confirms other studies in demonstrating that
developers spend a significant amount of time finding and
fixing bugs. We also find that bug finding and fixing is mainly
a manual activity, with few developers utilising tooling to
assist them. Though we present several caveats in this paper
regarding how APR should be presented to developers, the
time spent fixing bugs and the lack of tooling currently being
used confirm that there is an important space for APR to
fill in terms of removing workload and providing tooling
to developers. We also find a good degree of positivity and
interest from developers, though there are several concerns
that need to be addressed.
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B. Bug fixing is not all bad

We find no evidence of an overwhelmingly negative at-
titude to bug fixing among developers. More developers in
fact found bug finding and fixing ‘always satisfying’ than
‘always frustrating’. Far from the ‘universal bad’ of bug fixing
presented in the APR literature (as something boring, tedious
and annoying), we in fact find that developers find significant
satisfaction in finding and fixing bugs, as well as bug fixing
being a source of learning and development.

This has important implications for the APR research
community. How, for example, might developers who expe-
rience finding and fixing bugs as satisfying and rewarding
be persuaded to adopt APR tools? What tasks might we
emphasise as APR freeing up developer time to work on
instead? Automatically generated fixes could also be a source
of knowledge for software developers, but this depends upon
what additional information is presented about a bug and its
automatically generated fix.

C. Developers are cautiously optimistic about APR

Whilst 69.5% of developers were ‘very positive’ or ‘some-
what positive’ about ‘using an APR tool that found and
fixed bugs’, the qualitative responses indicate that it is not
necessarily as simple as this. Instead the qualitative responses
demonstrate that, despite a generally positive outlook towards
APR, developers still had many concerns and caveats. Given
the uncertainty of developers’ ‘dispositional trust’, much work
will be needed to develop ‘situational’ and ‘learned’ trust.
However, we do not find opposition towards APR amongst
developers, suggesting there is clear enthusiasm among the
developer community for the introduction of APR tools and
techniques.

D. What impacts upon developer attitudes?

Our survey finds very scant evidence of a relationship
between attitudes towards APR and key demographic vari-
ables, such as age, education and experience. This raises
significant questions regarding what factors may in fact impact
upon developer attitudes towards APR. We suggest that these
factors may be things that are difficult to measure, such as
organisational or team culture. However, future research is
needed to explore what factors may play a role.

The qualitative responses also suggest that developer values
play a significant role in attitudes towards APR, with ‘control’
(linked to human agency and self-direction) a frequently
occurring reason for why developers preferred an APR tool
that allowed them to check or choose from fixes over an APR
tool that applied fixes automatically.

E. Recommendations for APR tool design

APR design should continue to emphasise developer-in-
the-loop systems: Our results demonstrate that developers are
currently reluctant to embrace a fully automated APR system,
instead preferring a system where they would either be offered
a fix to check and apply, or a series of fix options to choose
between. This is in line with much APR research that assumes

that developers will be involved in reviewing and approving
patches (for example, [54]). However, some recent research,
for example on automating correctness assessment for patches
generated by program repair tools [55] demonstrates innova-
tion that could contribute to fully automated APR systems.
Our survey results suggests that — at present at least — such
systems are likely to face considerable barriers to adoption by
professional developers.

The emphasis that developers in our survey placed upon
having control also means that careful consideration needs to
be given to how we design APR user experiences so that they
feel fully part of the process.

Patches should be readable and/or accompanied by
information to aid understanding: Our results show that
understandability/readability of fixes is a key concern for de-
velopers and something that should be taken into consideration
in APR research. Whilst readability of fixes has been stressed
in some APR research (for example, research that generates
fixes learnt from human-written fixes [17]), other APR re-
search has stressed the importance of ‘alien’ fixes that may be
very different to human-written ones and less understandable
to developers (for example, [56]). In the case of such ‘alien’
fixes, our research suggests that thought needs to be given to
what kind of information accompanies automatically generated
fixes so that developers can gain understanding of the fix.
This should also help with some of the issues related to trust
highlighted above.

APR research should consider the benefits of providing
multiple fixes to a single bug: Our survey respondents had a
strong preference for choosing between multiple fixes. There is
some APR research that takes this approach (for example, [57],
[58], [59]) – our results suggest that this may be a promising
future direction, although more work is needed to identify what
the ideal number of fixes for developers to choose from is.

VII. THREATS TO VALIDITY

A. External validity
Our sample size of 386 is large enough to be considered

broadly representative of the software developer population.
We have also compared the demographics of our sample
with Stack Overflow’s survey demographics, demonstrating
reasonable similarity. There were, however, some differences
between our sample and Stack Overflow’s, particularly the
more European geographic basis of our sample and the lack
of input from developers in India. We do not consider it
likely that geographic location has a significant impact on
attitudes towards bug fixing and APR. However, it may be
that cultural workplace factors do play some role, so future
research would be welcome to explore whether the findings
from our predominantly European and North American sample
hold up in other cultural settings. We hope our replication
package will enable this survey to be repeated in diverse
contexts. Like all research samples that rely upon participant
consent, ours is a volunteer sample. Volunteer samples raise
questions as to the potential characteristics of people who are
likely to volunteer to participate in a research study. However,
little research has explored the potential impact of volunteer
samples on the validity of results.
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One other threat pertaining to generalisability is the fact
that the most straightforward way to recruit practising software
developers from Prolific was to specify ‘software industry’ as
place of work. This may have excluded from our participation
pool software developers working in industries whose main
focus is something different, and may explain, for example,
the low amount of participants in our survey from ‘finance and
banking’ compared to Stack Overflow’s sample. Whilst our
sample is large, it may be that it doesn’t generalise to specific
domains in which software developers work. One possible
direction for future work is to consider specific domains,
especially those that are safety- or security-critical.

Survey research, like any method, has inherent limitations.
Whilst our survey was predominantly attitudinal, we did ask
some questions more related to behaviours, such as time spent
finding and fixing bugs. It is likely that these self-reported
measures may be different to the actual time that could,
for example, be identified through observations or screen-
recording techniques. To avoid too much bias from self-
reporting, we used the proxies of education and years spent
coding professionally to stand in for experience, rather than
using self-reported experience levels. It is also important to
note that developers’ stated attitudes do not necessarily map
onto behaviours, as there is a complex relationship between
values and actions.

B. Internal validity

Whilst we find evidence in our results of some (weak)
associations between variables, we do not test for relationships
of causation, as this is an exploratory study of an under-studied
area.

In terms of the analysis of results, we chose appropriate
statistical tests for our data, based on the nature of our data
(unlikely to be normally distributed, and involving many tied
ranks due to Likert-scale variables). Statistical tests were
performed using dedicated statistics software (SPSS), to limit
the possibility of error. There are some possible threats to
statistical validity, such as the difficulty of establishing non-
linear relationships. Though we plotted jittered scatterplots to
check for this, the amount of tied ranks made this challenging.
Using 7-point, rather than 5-point, Likert scales might have
allowed more granularity of results, but could also have been
more challenging for participants to answer.

The qualitative analysis was conducted by two authors in
order to mitigate the effects of interpretive subjectivity. We
also used a combination of independent coding and discussion
to reach negotiated agreement. The independent coding of each
qualitative response was reviewed by the other author, meaning
that each response was dual-coded.

C. Construct validity

We piloted our survey with software developers before
disseminating it more broadly to check that our questions
could be understood by developers and used vocabulary that
was clear and relatable. Despite this piloting process, we
found some evidence that certain questions were perhaps
not clearly understood by developers, demonstrated by blank

responses. Specifically, 8.5% and 8.0% of respondents re-
spectively did not state their agreement with the statements
‘human-written patches are more reliable than automatically
generated patches’ and ‘automatic software repair tools might
make software developers complacent’. We had a particularly
high non-response rate for the question about different kinds
of bug (e.g. if-related). Approximately 18% of respondents did
not respond to this question, probably because the constructs
were Java-biased and not so understandable for developers
coding in other languages.

One threat to construct validity is the combination of bug
finding and fixing in some of our questions, such as the
Likert scale attitudinal questions. Whilst this was not raised
as an issue in our pilot study with developers, the qualitative
responses to ‘what do you like most/least about finding and
fixing bugs?’ demonstrate that at least some developers draw
a distinction between the two activities. This may mean that
it was challenging for some developers to answer the Likert
scale questions, if their feelings towards bug finding and bug
fixing are different. However, there were high response rates
for the Likert scale items, which we might not have expected
if these questions had been too confusing for developers to
answer.

VIII. CONCLUSIONS AND FURTHER WORK

To our knowledge, this is the first survey that asks de-
velopers about their feelings about both finding and fixing
bugs and automatic program repair, considering attitudes to
both APR and the activity (manual bug finding and fixing)
APR is designed to minimise or replace. We find that bug
finding and fixing is both a satisfying and frustrating activity
for developers, rather than something solely frustrating. This
is significant because it means that APR desires to replace
an activity (manual bug finding and fixing) that developers in
fact do derive some value from, including skill and knowledge
development. Understanding the human (developer) aspects
of coding practices and using that understanding to inform
practice has often been overlooked in the past; the study
presented provides insights into how developers perceive the
bug fixing and repair process.

When it comes to developers’ attitudes towards APR, our
findings present both challenges and opportunities for the
further development of APR tools and techniques. Developers
are largely positive about the idea of APR, demonstrating an
enthusiasm and appetite for APR tools, but also ‘cautiously
optimistic’, with the existence of several concerns and caveats.
Our data suggests that attention should be given to developing
APR user interfaces in which developers remain in the loop
and in which presented fixes are understandable to developers.
Developers have often criticised the lack of (and quality of)
tools that they use in their day to day coding work. In
fact, providing usable tools for developers is a problem that
both industry and academia (and collaboration efforts) have
struggled to tackle in the past [60]. Results from our survey
support the call for proper developer involvement and support,
especially in an APR context.

Our data also demonstrates very few statistically signifi-
cant relationships between developer attitudes towards APR
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and key demographic variables, such as age, experience and
education. This raises significant questions as to what factors
may in fact influence attitudes towards APR, and future work
exploring the potential impact of, for example, workplace
culture would be valuable. The socio-technical aspects of
coding and development in general has been a popular re-
search topic since the 1970s. Yet, a body of knowledge about
developer demographics and the impact they can have in the
field does not seem to have materialised. Perhaps empirical
studies of developers have too often focused on students or
small numbers of industry participants and key factors such
as developer experience have been largely overlooked in those
studies.

Given that APR is an emergent and quickly growing field,
the results from our survey are important in informing the
future of APR tool design and development that meets devel-
oper needs. Our survey findings suggest that APR tools that
keep the developer in the loop and prioritise understandability
of patches are likely to have stronger industry uptake. The
advent of technologies such as APR has made addressing the
issue of what developers really feel and want more important,
not less.
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