
Entropy-based Reinforcement Learning for Computation Offloading Service in
Software-Defined Multi-access offloading execution

Kexin Lia , Xingwei Wanga∗, Qiang Nib , Min Huangc

a College of Computer Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China

bSchool of Computing and Communications, Lancaster University, Lancaster, U.K

c College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China

Abstract

The rapid growth of Internet of Things (IoT) devices and the emergence of multiple edge applications have resulted in an explosive
growth of data traffic at the edge of the networks. Computation offloading services in Multi-access offloading execution (MEC)
enabled networks to offer potentials of a better Quality of Service (QoS) than traditional networks. They are expected to reduce
the propagation delay and enhance the computational capability for delay-sensitive tasks especially. Nevertheless, the distributed
computing resources of edge devices urgently need reasonable resource controllers to ensure such distributed computing resources
to be effectively scheduled. The benefits of Software-Defined Networking (SDN) may be explored to demonstrate their full potential
through MEC services to reduce the response time of programs. In this paper, a new SDN-based MEC computation offloading
service architecture is proposed to increase the coordination and offloading capabilities at the control plane. Besides, to deal
with dynamic network changes and increase the exploration degree, we propose a novel Entropy-based Reinforcement Learning
algorithm for delay-sensitive tasks computation offloading at the edge of the networks. Finally, the evaluation findings indicate that
our proposed model has the potential to improve the network resource allocation and balanced performance significantly.

Keywords: Multi-access offloading execution, Computation offloading, Reinforcement learning, Entropy, Software-defined
networking, Markov decision process

1. Introduction

In recent years, the volume and complexity of data in physi-
cal space have grown significantly with the rapid development
of the Internet of Things (IoT) devices [1], and other intelli-
gent systems [2]. Meanwhile, various intensive and innovative
computer applications, such as smart healthcare, Virtual Real-
ity (VR), and Augmented Reality (AR), are installed on devices
and require various real-time services [3]. The physical space
is filled with complex data, large-scale information, and intelli-
gent applications, which are hardly used in traditional networks
[4].

Multi-access offloading execution (MEC) architectures are
regarded as the most promising architecture to address the inef-
ficiencies of processing latency, dynamic connectivity, and net-
work management in highly task-intensive systems and have
received extensive attention in recent years [5]. MEC ensures
efficient coordination among distributed resources by deploy-
ing cloud-like resources and related internet services at the net-
work edge. Network management inevitably brings new chal-
lenges. Therefore, to effectively integrate the distributed re-
sources of the edge network and realize flexible networking, it
is necessary to introduce a control mechanism to arrange the

∗ Corresponding author. Tel.: +86 13022429092
E-mail address: wangxw@mail.neu.edu.cn (Xingwei Wang).

distributed environment into the network. The advantages of
Software-Defined Networking (SDN) meet these requirements,
and many investigations on SDN apply to complementary tech-
niques for MEC operations [6, 7]. The SDN-based MEC archi-
tecture can significantly improve the computing power of IoT
devices. When IoT devices request computing resources from
edge servers, the SDN controller collects the complete network
information, such as network states, task states, and IoT de-
vice states, then makes a computation offloading decision by
coordinating the collected distributed resources from a global
perspective, thereby reducing the execution delay and energy
consumption of the tasks of these IoT devices [8].

However, SDN-based MEC computation offloading still
faces challenges related to the limited computing resources and
capabilities of IoT deceives. For example, many intelligent ap-
plications deployed on IoT devices, such as AR and VR, are
response-sensitive and require complex computing and real-
time analysis [9, 10]. While some research has been carried out
on SDN-based MEC computation offloading, most of them op-
timized by minimizing latency or energy consumption, and few
investigations have been conducted on both latency-constrained
and energy-constrained tasks. On the one hand, some delay-
sensitive tasks, such as smart health and Auto drive, are re-
quired to be completed within a limited time to guarantee the
Quality of Service (QoS) [11]. On the other hand, for battery-

Preprint submitted to Journal Name June 4, 2022

powered IoT devices such as wearable and mobile phones.
Once these devices are in low power mode, they may auto-
matically shut down or shut down the communication module
[12]. In this case, the remaining applications will not be com-
pleted, thus requiring tasks to be completed within the energy
budget. Moreover, to reduce the execution delay of tasks and
prolong the battery life of edge devices, applications can be ap-
propriately transferred to edge servers with sufficient comput-
ing resources and battery power resources for execution. Thus,
we aim to minimize the sum of processing delay and focus on
delay-sensitive computational tasks with processing delay tol-
eration and energy consumption budget combining SDN and
MEC system.

In order to solve those complex computational offloading
problems, the task is constructed as Markov Decision Pro-
cess (MDP) model. As the large offloading action dimensions
make computing offloading more complicated, we propose an
Entropy-based Deep Reinforcement Learning (E-DRL) method
to improve the exploration ability of the algorithm and provide
more execution schemes. The main contributions of this paper
are as follows:

• We present an SDN-based MEC offloading architecture
that facilitates the cooperation between the user equipment
and edge node and further reduces the task processing la-
tency in a centralized manner.

• We formulate the task computation offloading problem as
a delay minimization problem by considering task delay
toleration and energy consumption budget. We transform
it into an optimization problem based on the Markov De-
cision Process (MDP) model to make it solvable.

• To solve the defined optimization problem, we develop an
entropy-based reinforcement learning algorithm to learn
the optimal offloading policy for all user equipment. It can
explore more action possibilities and enhance its explo-
ration ability by introducing a concept of entropy-based
strategy in the reward.

• Case studies demonstrate that the proposed method ex-
hibits a more favorable computational performance than
benchmark RL methods in reducing both processing delay
and energy consumption.

The remainder of this work is structured as follows. Sec-
tion 2 focuses on related work. Next, Section 3 describes the
SDN-based system model and expands on the problem state-
ment. Sections 4 and 5 address the optimization problem and
the proposed algorithm based on the MDP model. Section 6
assesses the proposed scheme’s performance. Finally, Section
7 summarizes this paper.

2. Related Work

With the increase of IoT devices and applications, the amount
of data and types of applications have also increased. There-
fore, a control mechanism is necessary to arrange the dis-
tributed environment into the network. Inspired by SDN, the

SDN-based MEC computation offloading architecture, which
integrates SDN and offloading execution, has emerged to man-
age the data resource centrally through introducing SDN cen-
tralized control and orchestration features [13]. Mensah et al.
[14] formulated the task offloading and associated resource al-
location problem as a game with mixed strategies based on SDN
controller. It optimized the number of devices in the vehicular
network, supporting communication and computational limita-
tion. Hu et al. [15] proposed an SDN-based method and princi-
ple from the perspective of physical-information mapping. Its
ultimate goal was to achieve a highly automated and intelligent
MEC system. Misra et al. [16] consider the problem of task
offloading in a dynamic network, where IoT devices are con-
nected to fog computing nodes by multi-hop IoT access points
by SDN controller from a global view. However, the above
work is only applicable to limited scenarios and cannot be trans-
ferred to other systems. Therefore, based on the above research,
a two-layer distributed SDN-controlled MEC network architec-
ture is proposed to manage MEC computation offloading.

In the study of MEC computation offloading, execution de-
lay and energy consumption are considered as important in-
dicators of the feasibility of a method [9, 17]. Satake et al.
[18] proposed a dynamic task offloading method adapting to
changes in the network resources framework and solved the op-
timization problem by minimizing task execution time. Con-
sequently, some works consider energy consumption a signifi-
cant constraint of the research. Yan et al. [19] expected Wire-
less Power Transfer (WPT) to apply to MEC to prolong the
operation time of the battery in the wireless network system.
Huang et al. [20] proposed a distributed computation offload-
ing algorithm considering both the energy consumption and de-
lays. Moreover, Zhao et al. [21] added the energy consump-
tion constraints to the optimization objectives for relay-assisted
Non-Orthogonal Multiple Access (NOMA)-MEC network with
WPT. However, the preceding work frequently ignores the top
limit of the energy consumption of the equipment in the actual
scenario. Based on the above research, we aim to minimize the
sum of processing delay and focus on delay-sensitive compu-
tational tasks with processing delay toleration and energy con-
sumption budget in this research.

With the rapid development of deep reinforcement learning
(DRL) methods in computational offloading and the introduc-
tion of the concept of resource allocation, we are inspired by
the management work that handles large state and action spaces
[22]. For instance, Huang et al. [19] proposed a Deep Re-
inforcement Online Learning-based (DROL) offloading frame-
work that learns the binary offloading decisions from experi-
ence. It eliminates the need to solve combinatorial optimization
problems and reduces computational complexity considerably,
but it is weak in large-scale networks. Chen et al. [23] modeled
the optimal computational offloading policy as an MDP and
developed a Double Deep Reinforcement Learning (DDRL)
method to derive the optimal offloading strategy by maximiz-
ing the long-term performance of the utility. Yan et al. [24]
proposed a new DRL-based offloading framework to address
the challenges of task dependency and adaptation to dynamic
scenarios. Although the suggested DRL method allows for the

2

automated discovery of models shared by several applications
and the derivation of the appropriate offloading strategy in var-
ious circumstances, the challenge of offloading optimization in
SDN-based MEC remains an open problem.

In this paper, a delay toleration and energy consumption bud-
get MEC offloading model based on SDN is proposed com-
bined with future network requirements. This model uses vir-
tualization technology to abstract resources and migrate com-
puting to the edge network. In addition, we proposed a novel
entropy-based reinforcement learning algorithm for delay toler-
ation computation offloading on this SDN-based MEC compu-
tation offloading architecture.

3. System Description and Problem Formulation

This section will introduce the system in detail, dealing with
the resiliency and scalability problems. It consists of the archi-
tecture of MEC based on SDN, network model, communication
model, and problem formulation.

3.1. The architecture of MEC based on SDN

The SDN-based framework of this computational task of-
floading for MEC is shown in Fig. 1. It includes two planes, i.e.,
the data plane and the control plane. The data plane consists of
a set of User Equipments (UEs), which consists of devices with
computational tasks (i.e., smartphones, wearable devices, and
other IoT devices) and a set of Edge Nodes (ENs). The EN cor-
responds to small cell Base Stations (BS), and each BS deploys
an edge server for computation tasks delivering from the UE.
The control plane is realized by an SDN controller deployed at
control BS, we form the learning model on SDN controller to
better train and execute the designed algorithm and apply it to
the centralized control model. Therefore, we may consider a
control BS as an agent that seeks to take the optimal decision
with regard to its requests. The UEs are connected to the control
BS or small cell BS through a wireless link, while the small cell
BSs are connected to the control BS via a high-speed front-haul
network.

The main idea of SDN is to decouple the control plane from
the data plane through visualization. Through the air inter-
face separation technology [25], the controller can be separated
from the data provided by the edge server. Specifically, the
SDN controller can perform global control over the whole net-
work. Combing the overall perspective of the network states
(i.e., offloading task characteristics, remaining resource states
of EN, and network states), the controller allocates computa-
tion and communication resources for the tasks. Based on these
resources, the controller makes offloading decisions: offload to
EN or not, and sends the offloading strategies to each UE for
execution.

We proposed that the SDN central controller involves two
functions: Task Monitoring Function and Edge Cloudlet Func-
tion. Task Monitoring Function means that the SDN central
controller is responsible for collecting the global information
(i.e., task sizes, energy consumption, computing speed). It is
advised to formulate the optimal offloading decisions for further

Table 1: Table of Notations

Parameter Description

M Number of UE
N Number of EN
δm Delay toleration of task xm

cm Computation amount of task xm

sm Amount of data contents of the task xm

χm Indicator of the offloading scheme of task xm

em Energy consumption budget of task
fm Computing capacity of the UE m
fn Computing capacity of the EN n
ω Channel bandwidth
%m,n Transmitting power between UE m and EN n
hm,n Channel gain between UE m and EN n
L Path loss at a unit distance
dm,n Distance between UE m and EN n
$2 Gaussian noise ratio
εm The coefficient of energy consumption
rm,n Transmission rate between UE m and EN n

processing. Edge Cloudlet Function is responsible for collect-
ing the information of edge servers (i.e., the compute and stor-
age capacity of edge servers, how much the server is loaded).

Within the framework we propose, the task offloading pro-
cessing is as follows. The tasks that arrive at UE follow a
Poisson distribution with arrival rate ς [26]. The SDN con-
troller collects all computational information, i.e., offloading
task characteristics, EN remaining resource status, and network
status. Moreover, based on the received computational informa-
tion, the SDN controller gives the task computation offloading
strategy (i.e., execution location of the task) for UE executing
the task according to the task’s processing delay and energy
consumption. The UE executes the corresponding action ac-
cording to the computation offloading strategy. In the case that
the task is offloaded to the EN, the computation result of the
task is returned to the UE after the execution is completed.

3.2. Network Model
We consider a multi-user scenario MEC system with a set of

UEs M = {1, 2, ...m} who has computational tasks to be exe-
cuted locally or offload to EN, denoted as a set N = {1, 2, ...n}.
Each UE is assumed to have a finite computation capability and
connects to EN for task offloading.

We assume that each EN deploys an edge server and has a
higher computation capacity than UEs. In this MEC system,
time is assumed as slotted, and we denote the time slot index
set by T ∈ {1, 2, ...t}. Aiming to enhance the QoS of users in
this system, we take the delay toleration δm and energy con-
sumption budget em of the task into consideration. We adopt a
widely used task model to describe task xm for the task of UE m,
i.e., xm = {sm, cm, fm, δm, em}, where sm stands for the amount
of data sizes of task xm (i.e., data input and associated code), cm

stands for the computation amount of the task xm (i.e., the CPU
cycles needed of the task xm), fm stands the CPU computing ca-
pability of the UE m, and δm is the toleration delay of the task

3

SDN Central
Control

Task
Monitoring

Function

BS with
edge server

Edge
Cloudlet
Function

Data Plane Coltrol Plane

Historical offloading
strategies

DRL training
results

User Equipment

Small cell base station

Edge server

Control base station

Offloading stream

Control stream

Computation capacity

Computation capacity

mtask x

UE m

EN n

UE 1

EN 1

Computing result stream

Figure 1: The System Framework of SDN-based MEC computation offloading.

xm. The computational tasks xm arrive dynamically to UEs with
task arrival rate ςm, and these tasks can be computed locally
or be offloaded to EN to reduce the process delay and energy
consumption. The SDN controller collects the information of
the computational tasks deploying on the UEs (i.e., data sizes,
delay toleration) and gives the offloading strategy based on this
information. Then, these tasks can be offloaded to EN through a
wireless channel or processed locally based on offloading deci-
sions. This system focuses on Local computing and offloading
the computational task to EN without further offloading to the
central cloud or other UEs. The notations used in the definition
and formulation are shown in Table 1.

3.3. Communication Model
Next, we introduce the communication model of this system.

We consider the transmission delay and energy consumption
when UE m offloads their tasks xm on to EN n. In terms of the
Shannon Theorem [27], the transmission rate rm,n from UE m
to EN n is equal to the data offloading capacity:

rm,n = ω log2(1 +
%m,nGr

Ldm,n +$2) (1)

where ω is channel bandwidth and %m,n is the transmitting
power of UE m, Gr is the antenna gain at EN, L is the path
loss at a unit distance and dm,n is the distance between UE m
and EN n. $2 is the power of additive white Gaussian noise.
Consequently, the transmission delay Dtr

m,n of the computation
task xm from UE m to EN n can be expressed as:

Dtr
m,n =

sm

rm,n
(2)

Further, we can obtain the transmission energy consumption for
UE m offloads its task xm to EN n is as follows:

Etr
m,n = %m,n · Dtr

m,n = %m,n
sm

rm,n
(3)

3.4. Task Execution Model
Considering the local execution process, we set fm as the

CPU computing capability of the UE m. Thus, the computa-
tion delay for local execution Dl

m of task xm can be expressed
as:

Dl
m =

cm

fm
(4)

From another perspective, the energy consumption for local
execution El

m is given by:

El
m = εmcm (5)

where εm is the coefficient of energy consumption per CPU cy-
cle of UE m.

Moreover, we consider the offloading execution process of
this system. If the computational task xm is offloaded to EN n,
the execution delay Dex

m,n for offloading execution of task xm on
EN n can be given as:

Dex
m,n =

cm

fn
(6)

4

where fn represents the CPU clock speed of the server at EN
n, thus the offloading execution delay De

m equals the execution
delay adding the transmission delay which can be expressed as:

De
m = Dtr

m,n + Dex
m,n (7)

In this system, the data size of the task results is generally
smaller than before (i.e., the data size of the task to upload
is 1000kb, while the data size of the task offloading strategy
to download is 10kb at most). Therefore, we neglect the time
spent on sending the task results back to the UE, similar to many
studies such as [16, 28].

3.5. Problem Formulation

To improve system performance and better support for the
advanced services of smart UEs, we coordinate the UE, EN and
SDN controller to find the proper centralize offloading policy,
which allows SDN controller to make offloading strategies by
minimizing the average delay of each task.

We defined a integer decision variable χm ∈ {0, 1} for each
UE’s task, which indicated the task xm is processed at local (i.e.,
χm = 1) or offloaded to EN n for executing (i.e., χm = 0). For-
mally, the computational task offloading problem can be formu-
lated as follows:

P1 : minimize
M∑

m=1

χmDl
m + (1 − χm)De

m (8a)

s.t. C1 : χm ∈ {0, 1},∀m ∈ M (8b)

C2 : (1 − χm)Etr
m,n + χmEl

m ≤ em,∀m ∈ M,∀n ∈ N (8c)

C3 : Dl
m,D

e
m ≤ δm,∀m ∈ M (8d)

The objective function (8a) minimizes the total system de-
lay in this computation offloading process. The first constraint
(8b) guarantees the task is completed successfully, (8c) guaran-
tees that the sum of energy consumption requirements of tasks
xm cannot exceed it’s energy consumption budget em. The last
condition (8d) indicated the total delay of task xm should not
exceed its tolerance delay δm. It is rather challenging to achieve
the above objective since the optimization problem in (8) is
NP-Hard. Next, proof of NP-Hardness for this problem is pre-
sented.

Theorem 1. The optimization problem is NP-Hard.
Proof. Consider there are M tasks x1, x2, ..., xm with the of-

floading energy budget Ebudget, which means that with different
offloading schemes for each time slot t, the energy consumed by
the UE cannot exceed the energy budget for each task. We use
Dm to denote total system latency of task xm, and Em to denote
energy consumed for task xm by UE m. Then, our optimization
problem can be formulated as

minimize
∑m=M

m=1 Dm

M
(9a)

s.t.
∑
m∈M

Em ≤ Ebudget. (9b)

Then, this instance of our problem corresponds to the Knap-
sack problem [29, 30] when we define

Dm

M
= −pm (10)

and the optimization problem can be formulated as:

maximize
∑
m∈M

pm (11a)

s.t.
∑
m∈M

Em ≤ Ebudget. (11b)

Thus, this special case of workflow scheduling with energy
budget constraint is NP-hard, and the optimization problem of
this computation offloading scheme is also NP-Hard. This com-
pletes the proof.

As Theorem 1. proved, the problem in (8) is NP-Hard, and
the computation offloading decision is memoryless with a se-
quential decision-making process. Therefore, we formulate the
task computation offloading as an MDP minimization problem.

4. MDP Optimization Problem Formulation

In this section, we model the defined system delay minimiza-
tion problem as an MDP problem, which can be represented by
a tuple (S,A,P,R), where S is the global state space, repre-
senting the object of next state. A is the action space, repre-
senting the object of the next action. P is the set of the state-to-
state transition probabilities, and R is the reward function with
determined state-action pair.

At the beginning of each time slot t, the SDN controller ob-
serves the global states S (e.g., task information, energy con-
sumption budget of all task). If a new task arrives and needs to
be processed, the SDN controller gives an offloading action A
based on the global states S. Then, the state and action will re-
sult in a reward R. To balance the offloading strategies among
UEs, we consider that the SDN controller broadcasts the pro-
cessing strategies for all UE in each time slot. Based on all
received strategies, UE can always make proper offloading ac-
tion and choose optimal EN, depending on their own energy
consumption and delay which are related to the reward R. The
control messages are exchanged periodically. In the following,
we provide a detailed introduction to the formation of elements
in the considered MDP.

State: The state of an MDP can be represented by S = {st =

{(xm(t), F(t), Ebudget(t))}}, where st = {s1, · · ·sm} represents the
local state for all UE at time slot t, xm(t) represents the feature
of the computation task of UE m at time slot t, F(t) = { f1, ... fn}
represents the CPU computing capability of the set of EN at
time t, and Ebudget(t) = {em} denotes the energy consumption
budget of this computation offloading process at time t.

Action: The action of the agent can be defined asA = {at =

{χm(t), ξm(t)}}, where the χm(t) ∈ {0, 1} indicates the task xm

5

be executed locally or not at time t, χm(t) = 0 represents that
the task xm will be allocated to EN; otherwise, the task will be
computed locally and xm(t) = 1. ξm(t) ∈ {1, 2...n} indicates the
EN ξm(t) is the place that for task xm executing at time t, i.e.,
while task xm will be offloaded to EN n, then n = ξm(t) at this
time.

State-to-state transition: The state-to-state transition prob-
ability distribution is denoted as P = {Pat (s, st+1)|s, st+1 ∈

S, at ∈ A, P ∈ P}. State st can be transferred into st+1 by
taking action at based on probability Pat (st, st+1).

Reward function: In Reinforcement learning algorithm, the
environment gives the agent feedback in a particular state-
action pair at discrete time t, which can be expressed as S ×
A → R. In order to derive the reward function of this model,
we find an immediate utility at time t to quantify the task com-
putation reward for the UEs. Therefore, in this system, the im-
mediate reward of service is defined as R = {rt(st, at)} which
can be expressed as follows:

r(st, at) = minimize
M∑

m=1

χmDl
m + (1 − χm)De

m (12)

We need to find a policy π that can minimize the system de-
lay from a long-term perspective. Every state-action pair has a
value function Q(st, at) by introducing the action in MDP, i.e.,
the expected discounted reward when starting in state st and
selecting an action at. The state-action value is defined as:

Q(st, at) = Eπ[rt |S = st,A = at] (13)

We now consider off-policy learning of action-values
Q(st, at). The objective is to search for a policy strategy
π(at+1|st+1) to maximize the reward of the agent. The update
function of Qπ(st, at) is formulated as:

Qπ(st, at)∗ =r(st, at) +
∑

st+1∈S

Pat (st, st+1)∑
π(at+1|st+1)(Qπ(st+1, at+1))

(14)

where Pat (st, st+1) is defined as state-to-state transition proba-
bility. Based on the above, we can get the task offloading strat-
egy π∗m for each UEs such that its long-term discount reward is
maximize, i.e.,

π∗m = arg max
πm

E[
∑
t∈T

γt−1R(st, at)|πm] (15)

where γ is the discount parameter associated with the impor-
tance level of the reward, in this system, we pay more attention
to the current reward. The expectation E[·] is with respect to
the system parameters of computational tasks of all UEs, i.e.,
task data sizes, computational requirements.

5. Problem solution with Maximum Entropy Reinforce-
ment Learning

In this section, we present an SDN-based MEC computa-
tion offloading algorithm named Entropy-based Deep Rein-

Algorithm 1: An Maximum Entropy Reinforcement
Learning to solve the offloading decision problem

1 Initialize θ, θ̄, ϕ and φ, the state st, experience replay
memory D, batch size I of sample batch

2 for each iteration do
3 for each environment step do
4 Choose action at ∼ πφ(at |st)
5 Choose next state st+1 and reward r(st, at)
6 Store (st, at, rt, st+1) in the experience replay

memory D
7 Update the sample batch D′

8 end
9 for i=1 to I do

10 Calculate Qθ(st, at) based on (24)
11 Calculate LQ(θ) = E[1

2 (Qθ(st, at) − Qθ̄(st, at))2]
based on (25)

12 Update πφ(st, at)∗ based on (29) and (30)
13 for each gradient step do
14 θ ← θ − λθ∇̂θL(θ)
15 φ← φ − λπ∇̂φL(φ)
16 ϕ← λϕ∇̂ϕL(ϕ)
17 θ̄ ← ιθ + (1 − ι)θ̄, ι ∈ [0, 1]
18 end
19 end
20 end

forcement Learning (E-DRL) to solve the above optimization
problem. Specifically, the proposed algorithm has a higher ex-
ploration ability by introducing the concept of entropy so that
the agent can explore as many actions as possible and prevent
falling into the situation of the local optimum. Particularly, the
E-DRL algorithm is introduced in Section 5.1, and the details
of the training process are introduced in Section 5.2.

5.1. E-DRL Algorithm
In this paper, we adopt a maximum entropy-based DRL al-

gorithm to make offloading strategies in this SDN-based MEC
computation offloading system. The details of the algorithm are
shown in Algorithm 1.

Entropy measures the randomness or uncertainty of a random
phenomenon, and the magnitude of entropy reflects the degree
of exploration which applies to various areas such as informa-
tion theory, finance, statistics, cryptography, physics, and arti-
ficial intelligence [31]. To encourage the exploration of com-
putation offloading policy, we set Re as the relevant quantity of
the task corresponding to the entropy reward, that is, to increase
the entropy determined by the action distribution based on the
original reward:

Re
t+1 = Rt+1 + eH(π(·|st)), t = 0, 1, ... (16)

where e > 0 is the temperature parameter that controls the
stochastic level of the optimal policy, H(π(·|S t) = −logπ(·|st)
represents the entropy of the strategy π in the state st. Introduc-
ing −logπ(·|st) as entropy in reward can encourage exploration

6

since maximizing entropy will make the output of the policy
more uniform in action and learn more near-optimal behavior.
Specifically, some states can map to more than one optimal ac-
tion, assigning equal probabilities to actions with similar Q val-
ues. Moreover, any action will not be given a very high proba-
bility for these optimal actions, avoiding the repeated selection
of the same action and falling into sub-optimal can improve
learning speed.

Then, the entropy long-term reward Ge
t , value function Ve

π(st)
and Q function Qe

π(st, at) are recorded as:

Ge
t =

+∞∑
t=0

γtRe
t+1, t = 0, 1, 2, ... (17)

Ve
π(st) = Eπ[Ge

t |st], st ∈ S (18)

Qe
π(st, at) = Eπ[Ge

t |st, at], st ∈ S, at ∈ A (19)

Moreover, in order to solve the high-dimensional decision
problem, we approximately calculate the state value function
Vϕ(st), Q function Qθ(st, at), and strategy function πφ(st |at)
same as other DRL algorithm [32]. When we give a certain
state-action pair (st, at), the state st to the action at is completely
determined, based on (17)-(19), the state value function Vϕ(st),
can be rewritten as follows:

Vϕ(st) = EA∼π[Qe
π(st,A)] + eH(π(·|S)),

= EA∼π[Qe
π(st,A)] − elogπ(A|st), st ∈ S

(20)

Furthermore, according to the Bellman backup equation, the
entropy-based Bellman backup equation can be calculated via
adding the entropy into the reward, which can be expressed as:

Qθ(st, at) = Qe
π(st, at) + eH(π(·|S))

= r(st, at) + γeEA∼πH(π(·|st+1)) + γEA∼π[Qθ(st+1, at+1)]
= r(st, at) + Est+1,at+1 [Qθ(st+1, at+1) − elog(π(at+1|st+1))]

(21)
Above all, the policy πφ(st |at) based on the equation (15) can

be rewritten as:

πφ(st |at) = arg max
π

E
(st ,at)∼ρ(π)

[
∞∑

t=0

γt(r(st, at)−elogπ(·|st))] (22)

where (st, at) ∼ ρ(π) represents the trajectory distribution prob-
ability under the policy π. Therefore, under the optimal pol-
icy πφ(st |at), the Bellman optimally equation for the Q function
Qθ(st, at) related to the value function Vϕ(st) can be written as:

Qθ(st, at)) = E
at+1∼π

[r(st, at) + γ(Qπ(st+1, at+1) + eH(π(·|st+1)))]

= E
at+1∼π

[r(st, at) + γ(Vϕ(st+1))]

(23)
By utilizing a more general maximum entropy objective to

make stochastic offloading policies, the agent will stochasti-
cally choose a set of offloading actions which guarantees every
useful set of offloading actions will not be ignored.

5.2. Training Process

Fig. 2 shows the structure of the Entropy-based deep rein-
forcement learning Algorithm. On the one hand, the Entropy-
based DRL Algorithm introduces a parameter-containing func-
tion to approximate the value function and then uses the ap-
proximate value of this value function to estimate the return
value. This process is called Learning Q Function. On the
other hand, it uses the estimated return value to estimate the
policy gradient and then updates the policy parameters. This
process is called Learning the Policy.

1) Learning Q Function Similar to the DQN algorithm [32],
the update method of the Q function Qθ(st, at) is fitted by Cross
Entropy loss between Q function Qθ(st, at) and Q target func-
tion Qθ̄(st, at) and it updates Bellman residuals. Therefore, the
objective function of can be written as follows:

LQ(θ) = E[
1
2

(Qθ(st, at) − Qθ̄(st, at))2] (24)

where Qθ̄(st, at) satisfies Qθ̄(st, at) = r(st, at)+γ(Qθ̄(st+1, at+1)−
elog(πφ(at+1|st+1))), and θ̄ represents the parameter of the target
Q function. The parameter θ be updated by calculating the loss
function by the different between Q function Qθ(st, at) and the
target Q function Qθ̄(st, at), which improves the convergence
of training and the stability of the algorithm. Furthermore, in
order to get the closest optimization of Qθ(st, at), the most com-
mon method is to update θ through gradient descent to minimize
L(θ):

∇̂θL(θ) = − ∇θQθ(st, at)(r(st, at)+
γ(Qθ̄(st+1, at+1) − e log(πφ(at+1|st+1)))

(25)

Finally, the Q function and the target network parameters can
be updated as

θ ← θ − λθ∇̂θL(θ)
θ̄ ← ιθ + (1 − ι)θ̄, ι ∈ [0, 1]

(26)

Similar to the strategy of Q function Qθ(st, at), value func-
tion Vϕ(st) is also approximated by a neural network, and the
parameter ϕ is updated alternately by stochastic gradient de-
scent, where the strategy function follows a Gaussian distribu-
tion. The objective function of value function Vϕ(st) is as fol-
low:

L(ϕ) = Est∼D[(
1
2

(Vϕ(st) − Eat∼π[Qθ(st, at) − logπφ(at |st)])2]
(27)

where D is the experience replay memory of the past experi-
ence, which records the states, actions and rewards at the cur-
rent moment and states at the next moment of the environment
and improves the utilization of the state–action transitions [33].
Therefore, the gradient descent to minimize ϕ is written as:

∇̂ϕL(ϕ) =∇ϕVϕ(st)(Vϕ(st) − Qθ(st, at) + log πφ(at |st)) (28)

Finally, the value function network parameters can be up-
dated as

ϕ← λϕ∇̂ϕL(ϕ) (29)

7

Policy Function

Q Function

DNN

DNN

DNN

Environment

t tstate s , action a ()t tQ s ,a


tstate s

treward r

sample batch

Update 

U
p

d
a

te



U
p

d
a

te



()t ta π s=

t+1
next state s

Loss Function

L
o
ss F

u
n

ctio
n

L
o
ss F

u
n

ctio
n

tstate s

{(),...}
11 1 1
'

batch size
s , a , r , s

t t t t+1

Experience replay

memory D

(S , A , R , S)

Figure 2: The structure of E-DRL algorithm

2) Learning the Policy The policy strategy can be update
though Q function Qθ(st, at) based on (22), (23). In order to
avoid getting caught in local optimization and keep the action
probability distribution of the strategy can confirm to the distri-
bution of Q function Qθ(st, at) in the state st at time t, we set the
action at = fφ(τt; st) and update the policy strategy parameters
with Kullback-Leibler (KL) divergence:

πφ(st, at)∗ = arg min DKL(πφ(st |at))‖
exp(1

e
Qθ(st, ·))

Zπφ(st |at)(st)
) (30)

where Zπφ(st |at)(st) is the sum of Q function Qθ(st, at) which is
used for normalization in state st. The action at = fφ(τt; st) =

f µφ (st) + τt � f σφ (st) in this step, the function f (·) is used to
calculate the average and variance of the Gaussian distribution,
τt is the noise of Gaussian sampling.

Therefore, combining with equation (29), the policy strategy
with KL divergence as the expectation terms can be written as:

L(φ) = E
st ,τt∼π

[log πφ(fφ(τt; st |st) − Qθ(st, fφ(τt; st))] (31)

Consequence, the approximate gradient formula based on ac-
tion sampling can be written as:

∇̂φL(φ) =∇φ log(πφ(at |st)) + (∇at log(πφ(at |st))
− ∇at Q(st, at)∇φ fφ(τt; st)

(32)

Finally, the policy network parameters can be updated as

φ← φ − λπ∇̂φL(φ) (33)

6. SIMULATION RESULTS AND DISCUSSION

In order to ensure that the strategies generated by DRL are
efficient and usable, we set the parameters same as [34] as the
initial starting point of each, and compare the performance of
the system in this SDN-based MEC computation offloading en-
vironment. The main default simulation settings are listed in
Table 2. Furthermore, we evaluate the presented intelligent of-
floading strategy by comparing it with Local computing, and
offloading execution to demonstrate the necessity of compu-
tational offloading. Moreover, we compare the work with a
similar problem statement, such as [34], based on Deep De-
terministic Policy Gradient (DDPG) algorithm. The DDPG al-
gorithm is a state-of-the-art off-policy algorithm that is widely
used in MDP problems, i.e., Unmanned Aerial Vehicle [35],
Robot grasping [36]. Finally, we evaluate the comparison of
classic DRL and E-DRL in terms of the normalized reward with
episodes to demonstrate the effectiveness of our method.

In the offloading execution experiment, we offload all tasks
to EN randomly, and for Local computing, all tasks are exe-
cuted locally. Both offloading execution and Local computing
are widely used in academia, representing the general method

8

1.5 2.0 2.5 3.0 3.5 4.0
0

5

10

15

Av
er

ag
e

En
er

gy
 C

on
su

m
pt

io
n/

 (K
W

)

Task Arrival Rate / Mbps

 Edge computing
 Local computing
 DDPG
 E-DRL

(a)

1.5 2.0 2.5 3.0 3.5 4.0
0

5

10

15

20

25

30

Av
er

ag
e

En
er

gy
 C

on
su

m
pt

io
n/

 (K
W

)

Task Arrival Rate / Mbps

 Edge computing
 Local computing
 DDPG
 E-DRL

(b)

1.5 2.0 2.5 3.0 3.5 4.0
0

5

10

15

20

25

30

35

40

45 Edge computing
 Local computing
 DDPG
 E-DRL

Av
er

ag
e

En
er

gy
 C

on
su

m
pt

io
n/

 (K
W

)

Task Arrival Rate / Mbps
(c)

Figure 3: Performance under different task arrival rate vs average energy consumption/ (KW): (a)number of UE is 5; (b) number of UE is 50; (c)number of UE is
100.

1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.5

1.0

1.5

2.0

2.5
 DDPG
 E-DRL
 Edge computing
 Local computing

Av
er

ag
e

D
el

ay
 /

(s
)

Task Arrival Rate / Mbps
(a)

1.0 1.5 2.0 2.5 3.0 3.5
0

2

4

6

8

10

12

14 DDPG
 E-DRL
 Edge computing
 Local computing

Av
er

ag
e

D
el

ay
 /

(s
)

Task Arrival Rate / Mbps
(b)

1.0 1.5 2.0 2.5 3.0 3.5
0

5

10

15

20

25

30

35

 DDPG
 E-DRL
 Edge computing
 Local computing

Av
er

ag
e

D
el

ay
 /

(s
)

Task Arrival Rate / Mbps
(c)

Figure 4: Performance under different task arrival rate vs average delay: (a)number of UE is 5; (b) number of UE is 50; (c)number of UE is 100.

Table 2: Default simulation parameters

Parameter Description value

m Number of user equipment (UE) [5,100]
n Number of Edge node (EN) 10
ω Bandwidth 6MHz
%m,n Transmitting power 25dBm
Gr antenna gain -5dB
L path loss 4

dmn Distance between UE m and EN n 35m
fm Computing capacity of UE m 10GHz
fn Computing capacity of EN n 50GHz
γ discount parameter 0.5

of offloading. First, we evaluated the impact of task arrival rate
on the average energy consumption under three different num-
bers of UE. Then the effect of the task arrival rate on the av-
erage delay under four different numbers of UE was observed.
Finally, the task’s average delay and energy consumption under
three different algorithms was considered comprehensively, and
the conclusion was finally reached.

In Fig. 3, we evaluate the performance under different tasks
and algorithm settings in this system. Fig 3(a) shows that with
the increment of task arrival rate from 1.5 Mbps to 4 Mbps
when the number of UE is 5, the average energy consumption

increases obviously with four methods. A high task arrival rate
means a more significant computation requirement. In the ex-
periment, when the task arrival rate is maintained at 1.5 Mbps,
the average energy consumption of the four methods is mainly
maintained at the same level. However, as the task arrival rate
increases, the average energy consumption of DDPG and E-
DRL display a definite growing trend because DDPG and E-
DRL make offloading decisions are generated by learning the
training data. Furthermore, DDPG uses a deterministic strat-
egy, while E-DRL uses a random training strategy and more
exploratory by introducing entropy at training process. There-
fore, the E-DRL approach is better than DDPG in a dynamic
MEC environment. For the same reason, when the number of
tasks is increasing, the proposed algorithm also has excellent
performance shown in Fig. 3(b) (the number of UE is 50) and
Fig.3 (c) (the number of UE is 100). In addition, we observe
that the average energy consumptions of offloading execution
and Local computing are much more than the average energy
consumptions of E-DRL and DDPG. This is mainly because
DDPG and E-DRL introduce an experience replay process for
obtaining an intelligent computation offloading decision.

In Fig. 4, we evaluate the performance under different meth-
ods and task arrival rate settings in this system. As shown in
Fig. 4(a), the average delay of all the methods increases with
the growing task arrival rate from 1.5 Mbps to 4.0 Mbps. When
the task arrival rate is 1.5 Mbps, there is little computation re-
quirement in the system, so the average delay is mostly main-

9

Table 3: The processing delay (s) with different data size

Method 2MB 3MB 4MB 5MB 6MB 7MB 8MB 9MB 10MB

E-DRL 4.272 5.305 6.207 7.171 8.038 8.648 9.235 9.833 10.264
DDPG 5.123 6.583 7.479 8.195 9.074 10.027 11.001 11.711 12.221

tained at the same level. As the task arrival rate increases from
1.5 Mbps to 4.0 Mbps, the average delay of our approach in-
creases by 38.12%, while those of other benchmark methods
increase by at least 52.20%. It implies that as the load of the
system increase, the average delay of the proposed method in-
creases less dramatically than those of the benchmark methods.
Furthermore, as the number of UEs increases, the average de-
lay of each benchmark increases due to the potentially increas-
ing load at the edge server. Moreover, it shows in Fig. 4(b)
and Fig. 4(c), as the number of UE, the average delay of four
methods increases. It is because when the number of the UE
increase, more computation tasks increase, and more computa-
tion requirements. Our method consistently maintains the low-
est latency compared to other methods, with a slight increase
in computational latency as the task arrival rate increases. It
shows that our algorithm is more robust and can maintain ex-
cellent performance at peak traffic times.

200 400 600 800 1000
0

2

4

6

8

10

12

 E-DRL
 DDPG
 Edge computing
 Local computing

Av
er

ag
e

D
el

ay
 /

(s
)

Data size of Tasks / (kbits)
(a)

 Local computing

(b)

Figure 5: Performance under different data size of tasks: (a)average delay; (b)
average energy consumption.

We can observe that the average delay of all the methods in-
creases with the growing data size of tasks from 200 kbits to
1000 kbits in Fig. 5 (a). Our approach always achieves a lower
average delay than benchmark methods, especially when the
data size is large. offloading execution consumes time on trans-

mission data to edge servers. Therefore, it is probably the most
inefficient way to offload to the EN. In Fig.5 (b), as the data
size of tasks increases, the average energy consumption of each
method increases. Moreover, the rise of E-DRL is significantly
lower than DDPG, Local computing, and offloading execution.
The main reason is that E-DRL can effectively address the un-
known load dynamics at the edge servers. When the data size of
tasks increases to 1000 kbits, it achieves an average energy con-
sumption of 4.2%-62.5% lower than those of DDPG, offloading
execution, and Local computing.

Further, we study the impact of large-scale data size on the
processing delay for the proposed algorithm in Table 3. The
large-scale data size simulation assessment can ensure the ro-
bustness and strength of the proposed algorithm under heavy
traffic load. We vary the data size from 2 MB to 10 MB. It
is evident that the large-scale task data size prolongs the task
processing delay in task offloading. In particular, our proposed
method outperforms DDPG in terms of the processing delay
of the generated task. Intuitively, the processing delay of our
proposed method at 10MB is about 19.6%, which is a decrease
compared to the DDPG-based method.

0.5 1.0 1.5 2.0 2.5 3.0

0.5

0.6

0.7

0.8

0.9

1.0

1.1

 E-DRL
 DDPG
 Edge computing
 Local computing

Av
er

ag
e

de
la

y
/ (

s)

Delay Toleration / (s)
(a)

0.5 1.0 1.5 2.0 2.5 3.0
0

5

10

15

20

25

30

35

 E-DRL
 DDPG
 Edge computing
 Local computing

Av
er

ag
e

En
er

gy
 C

on
su

m
pt

io
n

/ (
KW

)

Delay Toleration / (s)
(b)

Figure 6: Performance under different delay toleration: (a)average delay; (b)
average energy consumption.

At last, to explore the effect of delay toleration on task execu-

10

tion delay and energy consumption, we changed the task delay
toleration from 0.5s to 3.0s. We conducted experiments on the
performance of the four algorithms in terms of execution and
energy consumption. As shown in Fig. 6(a), the proposed algo-
rithm always achieves a low average delay than the benchmark
methods, especially when the delay toleration is large. This is
because when the delay toleration is large, the task has enough
time to be executed and completed. As shown in Fig. 6(a),
our approach has only a slight effect on the change of delay
toleration. By contrast, Local computing and offloading exe-
cution have very obvious variations to the shift of tolerance.
It is mainly because our approach could complete the task in
a short time. In comparison, the average delay of the other
methods is large than 0.9 seconds. In Fig. 6(b), as the delay
toleration increases, the average energy consumption of each
method increases. As the delay toleration increase from 0.5 sec-
onds to 3.0 second, our average energy consumption increase
by 14.28%, while those of the benchmark methods increase by
at least 28.57%-62.82%. It implies that as the delay toleration
of this method increases, the average energy consumption of
the proposed approach increases less dramatically than those of
the benchmark methods.

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
e

re
w

ar
d

Episodes

 Classic DRL
 E-DRL

Figure 7: Comparison of classic DRL and E-DRL in terms of the normalize
reward with episodes

As we mentioned, traditional methods cannot handle systems
with large-scale action spaces. Furthermore, we evaluate the
agent on each episode with 2000 training batches. From Figure
7, we can find that the classic DRL (i.e. DQN) learns a little af-
ter 100 episodes. It shows that an excessively large output layer
may impair the performance of classical DRL. By contrast, our
method achieves better performance, thus demonstrating the ef-
fectiveness of our method in handling large-scale action spaces.

7. CONCLUSION

This paper proposes a novel SDN-based MEC computation
offloading architecture, comprehensively analyzes the basic re-
quirements of the architecture, and uses the advantages of SDN
centralized control to achieve the full potential of MEC. More-
over, we have studied the delay toleration and energy con-
sumption budget computational tasks offloading process based

on DRL in multi-user MEC. Furthermore, we proposed an
entropy-based reinforcement learning approach to solve the
processing delay minimization problem with delay and energy
constraints. Numerical results verify that the presented E-
DRL approach is effective and achieves better performance than
baseline algorithms in SDN-based MEC computation offload-
ing optimization problems. In the future, we will consider the
effects of user devices mobility and investigate a joint dynamic
MEC computation offloading and resource allocation problem.

References

[1] A. Ghasempour, “Internet of things in smart grid: Architecture, applica-
tions, services, key technologies, and challenges,” Inventions, vol. 4, pp.
1–12, 2019.

[2] W. Shi and X. Zhang, “Edge computing: State-of-the-art and future di-
rections,” Journal of Computer Research and Development, vol. 56, pp.
69–89, 01 2019.

[3] J. Ren, Y. He, G. Huang, G. Yu, Y. Cai, and Z. Zhang, “An edge-
computing based architecture for mobile augmented reality,” IEEE Net-
work, vol. 33, no. 4, pp. 162–169, 2019.

[4] J. Yan, S. Bi, and Y. J. A. Zhang, “Offloading and resource allocation
with general task graph in mobile edge computing: A deep reinforce-
ment learning approach,” IEEE Transactions on Wireless Communica-
tions, vol. 19, no. 8, pp. 5404–5419, 2020.

[5] S. Bi and Y.-J. A. Zhang, “An admm based method for computation rate
maximization in wireless powered mobile-edge computing networks,” in
2018 IEEE International Conference on Communications (ICC), 2018,
pp. 1–7.

[6] T. Z. He, A. N. Toosi, and R. Buyya, “Performance evaluation of live
virtual machine migration in sdn-enabled cloud data centers,” Journal of
Parallel and Distributed Computing, vol. 131, no. SEP., pp. 55–68, 2019.

[7] Y. He, F. R. Yu, N. Zhao, V. C. M. Leung, and H. Yin, “Software-defined
networks with mobile edge computing and caching for smart cities: A
big data deep reinforcement learning approach,” IEEE Communications
Magazine, vol. 55, no. 12, pp. 31–37, 2017.

[8] L. Tello-Oquendo, I. F. Akyildiz, S.-C. Lin, and V. Pla, “Sdn-based ar-
chitecture for providing reliable internet of things connectivity in 5g sys-
tems,” in 2018 17th Annual Mediterranean Ad Hoc Networking Workshop
(Med-Hoc-Net), 2018, pp. 1–8.

[9] S. Misra and N. Saha, “Detour: Dynamic task offloading in software-
defined fog for iot applications,” IEEE Journal on Selected Areas in Com-
munications, vol. 37, no. 5, pp. 1159–1166, 2019.

[10] J. Luo, F. R. Yu, Q. Chen, and L. Tang, “Adaptive video streaming with
edge caching and video transcoding over software-defined mobile net-
works: A deep reinforcement learning approach,” IEEE Transactions on
Wireless Communications, vol. 19, no. 3, pp. 1577–1592, 2020.

[11] X. Wang, Y. Han, V. Leung, D. Niyato, and X. Chen, “Convergence of
edge computing and deep learning: A comprehensive survey,” IEEE Com-
munications Surveys Tutorials, vol. 22, no. 99, pp. 869–904, 2020.

[12] J. Wang, J. Pan, F. Esposito, P. Calyam, Z. Yang, and P. Mohapatra, “Edge
cloud offloading algorithms: Issues, methods, and perspectives,” ACM
Comput. Surv., vol. 52, no. 1, feb 2019.

[13] T. Subramanya, L. Goratti, S. N. Khan, E. Kafetzakis, I. Giannoulakis,
and R. Riggio, “Sdec: A platform for software defined mobile edge
computing research and experimentation,” in 2017 IEEE Conference on
Network Function Virtualization and Software Defined Networks (NFV-
SDN), 2017, pp. 1–2.

[14] R. N. Mensah, L. Zhiyuan, A. A. Okine, and J. M. Adeke, “A game-
theoretic approach to computation offloading in software-defined d2d-
enabled vehicular networks,” in 2021 2nd Information Communication
Technologies Conference (ICTC), 2021, pp. 34–38.

[15] P. Hu and W. Chen, “Software-defined edge computing (sdec): Prin-
ciples, open system architecture and challenges,” in 2019 IEEE
SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted
Computing, Scalable Computing Communications, Cloud Big Data
Computing, Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), 2019, pp. 8–16.

11

[16] S. Misra and S. Bera, “Soft-van: Mobility-aware task offloading in
software-defined vehicular network,” IEEE Transactions on Vehicular
Technology, vol. 69, no. 2, pp. 2071–2078, 2020.

[17] L. Ji and S. Guo, “Energy-efficient cooperative resource allocation in
wireless powered mobile edge computing,” IEEE Internet of Things Jour-
nal, vol. 6, no. 3, pp. 4744–4754, 2019.

[18] H. Satake, Y. Kobayashi, R. Tani, and H. Shigeno, “Dynamic task offload
system adapting to the state of network resources in mobile edge com-
puting,” in 2020 IEEE International Conference on Pervasive Computing
and Communications Workshops (PerCom Workshops), 2020.

[19] L. Huang, S. Bi, and Y.-J. A. Zhang, “Deep reinforcement learning for
online computation offloading in wireless powered mobile-edge comput-
ing networks,” IEEE Transactions on Mobile Computing, vol. 19, no. 11,
pp. 2581–2593, 2020.

[20] X. Ma, C. Lin, Z. Han, and J. Liu, “Energy-aware computation offloading
of iot sensors in cloudlet-based mobile edge computing,” Sensors, vol. 18,
no. 6, p. 1945, 2018.

[21] P. Zhao, W. Zhao, H. Bao, and B. Li, “Security energy efficiency maxi-
mization for untrusted relay assisted noma-mec network with wpt,” IEEE
Access, vol. 8, pp. 147 387–147 398, 2020.

[22] J. Wang, J. Hu, G. Min, W. Zhan, Q. Ni, and N. Georgalas, “Computa-
tion offloading in multi-access edge computing using a deep sequential
model based on reinforcement learning,” IEEE Communications Maga-
zine, vol. 57, no. 5, pp. 64–69, 2019.

[23] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Optimized
computation offloading performance in virtual edge computing systems
via deep reinforcement learning,” IEEE Internet of Things Journal, vol. 6,
no. 3, pp. 4005–4018, 2019.

[24] Q. Tang, R. Xie, F. R. Yu, T. Huang, and Y. Liu, “Decentralized compu-
tation offloading in iot fog computing system with energy harvesting: A
dec-pomdp approach,” IEEE Internet of Things Journal, vol. 7, no. 6, pp.
4898–4911, 2020.

[25] S. Retal, M. Bagaa, T. Taleb, and H. Flinck, “Content delivery network
slicing: Qoe and cost awareness,” in 2017 IEEE International Conference
on Communications (ICC), 2017, pp. 1–6.

[26] C. Liang, Y. He, F. R. Yu, and N. Zhao, “Enhancing video rate adaptation
with mobile edge computing and caching in software-defined mobile net-
works,” IEEE Transactions on Wireless Communications, vol. 17, no. 10,
pp. 7013–7026, 2018.

[27] Y. Hou, “Wireless communication using electromagnetic wave with or-
bital angular momentum,” in 2020 International Conference on Comput-
ing and Data Science (CDS), 2020, pp. 99–103.

[28] G. Faraci and A. Lombardo, “An nfv approach to share home multimedia
devices,” in 2017 IEEE Conference on Network Softwarization (NetSoft),
2017.

[29] X. Tang, W. Cao, H. Tang, T. Deng, J. Mei, Y. Liu, C. Shi, M. Xia, and
Z. Zeng, “Cost-efficient workflow scheduling algorithm for applications
with deadline constraint on heterogeneous clouds,” IEEE Transactions on
Parallel and Distributed Systems, vol. 33, no. 9, pp. 2079–2092, 2022.

[30] T. Liu, Y. Xu, Z. Zhang, and J. Wu, “Long-term auction for inner-
dependent task offloading in blockchain-enabled edge computing,” in
2021 40th Chinese Control Conference (CCC), 2021, pp. 1881–1886.

[31] G. Ciuperca, V. Girardin, and L. Lhote, “Computation and estimation of
generalized entropy rates for denumerable markov chains,” IEEE Trans-
actions on Information Theory, vol. 57, no. 7, pp. 4026–4034, 2011.

[32] H. Ge, Y. Song, C. Wu, J. Ren, and G. Tan, “Cooperative deep q-learning
with q-value transfer for multi-intersection signal control,” IEEE Access,
vol. 7, pp. 40 797–40 809, 2019.

[33] Q. Wei, H. Ma, C. Chen, and D. Dong, “Deep reinforcement learning with
quantum-inspired experience replay,” IEEE Transactions on Cybernetics,
pp. 1–13, 2021.

[34] Y. Ren, X. Yu, X. Chen, S. Guo, and Q. Xue-Song, “Vehicular network
edge intelligent management : A deep deterministic policy gradient ap-
proach for service offloading decision,” in 2020 International Wireless
Communications and Mobile Computing (IWCMC), 2020, pp. 905–910.

[35] Y. Wang, W. Fang, Y. Ding, and N. Xiong, “Computation offloading op-
timization for uav-assisted mobile edge computing: a deep deterministic
policy gradient approach,” Wireless Networks, pp. 1–16, 2021.

[36] H. Zhang, F. Wang, J. Wang, and B. Cui, “Robot grasping method opti-
mization using improved deep deterministic policy gradient algorithm of
deep reinforcement learning,” Review of Scientific Instruments, vol. 92,

no. 2, p. 025114, 2021.

12

	Introduction
	Related Work
	System Description and Problem Formulation
	The architecture of MEC based on SDN
	Network Model
	Communication Model
	Task Execution Model
	Problem Formulation

	MDP Optimization Problem Formulation
	Problem solution with Maximum Entropy Reinforcement Learning
	E-DRL Algorithm
	Training Process

	SIMULATION RESULTS AND DISCUSSION
	CONCLUSION

