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Abstract—Leaf area index (LAI) is an important parameter for forestry 

vegetation canopy structure investigation and ecological environment 
model study. Traditional ground direct measuring method is too time and 
labor consuming, while the remote sensing technique lacks of adequate 
validation and comparative analysis. Here, a novel wireless LAI sensor 
based on a lightweight deep learning model (LAINET) has been designed 
with a Raspberry Pi microcomputer and a LoRa transceiver. The mainly 
metering pattern of sensor system is the digital hemispherical photo-
graphy (DHP) methodology based on Beer-Lambert law: firstly, the 
crown canopy’s image is captured and segmented by LAINET, then the 
vegetation gap fraction can be extracted to calculate the LAI value. Our 
proposed LAINET consists of a lightweight convolutional neural network 
(CNN) and a generative adversarial network (GAN). The average accuracy 
of semantic segmentation (i.e. CNN part) could reach 0.978, and the combination of GAN for image super-resolution 
reconstruction can improve the accuracy of gap fraction measurement more by 5.5%. In addition, LAINET effectively 
solves the problem of low segmentation accuracy brought by environmental effects, the separation accuracy in direct 
sunlight or clear weather has been improved significantly. So the ultimate LAI value can be calculated precisely and 
stably. Experiment results show that the proposed sensor obtains a fine measuring error of less than 4% when 
comparing with the commercial plant canopy analyzer HM-G20. Combined with Uninterruptible Power Supply module 
of 5200 mAh, the sensor can work effectively for about 8 months, principally meeting the deployment and measurement 
criteria of forestry LAI. Therefore, the wireless sensor presented in this paper has a great application prospect. 
 

Index Terms—Leaf area index; Canopy fisheye image; Deep learning; Wireless sensor; Raspberry Pi. 
 

 
I.   INTRODUCTION 

limate change has garnered considerable attention in recent 
decades. As an essential component of the global 

ecosystem, forests serve multiple functions, including air 
purification, climate regulation, and water conservation, etc. 
[1]. The leaf area index (LAI) is an important index used in the 
parameterization of forest vegetation structure and a key 
characteristic variable of the ecosystem function model [2]-[3]. 
Hence, accurate measurement of LAI can play a vital role in 
assessing the field water content, oxygen content, carbon 
storage and exchange of nutrients in the forest environment, 
which is of great significance for the efficient management and 
accurate monitoring of forest resources [4]-[5]. 

The main methods of LAI determination can be divided into 
two categories: direct and indirect [6]. Direct measurement is 
somewhat destructive and requires the collection of vegetative 
leaves with manual calculation. Since the direct measurement 
usually has a large workload, it is often used as the standard 
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verification [7]. Among indirect methods, optical instruments 
are often used to measure certain intermediate parameters, from 
which, the LAI can be calculated by using the inversion 
formulas [8]. Current studies focus on using remote sensing 
technique or DHP to capture plant canopy images, thus the LAI 
can be deduced from plant canopy gap fraction, which is 
extracted by using image segmentation methods. The frequent-
ly used LAI-2200C plant canopy analyzer (LI-COR Inc., USA) 
adopts a fisheye lens to refract light within the hemispherical 
field of view to the photoelectric sensor, which is composed of 
five concentric circles [9]. But it is costly and inconvenient to 
carry. Jorge Mendes et al. designed a low-cost smartphone 
application to estimate the LAI that uses an ambient light sensor 
inside the smartphone [10]. Qu et al. designed and verified the 
effective-ness of LAISmart by measuring the LAI of four 
vegetation types: evergreen coniferous forest (ECF), deciduous 
broadleaf forest (DBF), deciduous coniferous forest (DNF), and 
broadleaf crops [11]. Brown et al. described the condition of 
ground vegetation using a low-cost UAV-based DHP system 
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[12]. However, all these methods require intense manual 
operation, which inhibits their application in the practical long-
term forest monitoring scenario. With the development of low 
power wide area network technology [13], the remote automatic 
monitoring of forest LAI has become a research hotspot 
recently. Li et al. developed a LAI sensor that can continuously 
monitoring crop growth at multiple sampling points [14]. 
Moreover, 4G/Wi-Fi has also been adopted to remotely collect 
crop images in real time, then, after automatic image 
processing, LAI is calculated based on the improved Lang and 
Xiang LAI algorithm. Bauer et al. modified the commercial off-
the-shelf photo synthetically active radiation (PAR) sensor that 
features feasibility, robustness, and low-cost, which has 
considerably improved the performance for non-destructive in 
situ LAI measurements [15]. Additionally, Kim et al. developed 
a smart surface sensing system which could automatically 
acquires, transmits and processes PAR and LAI data streams 
[16]. Fig. 1 just illustrates an application diagram using wireless 
sensors to monitor forest canopy parameters. 

As the rapid progresses of micro-computer system and 
artificial intelligence algorithm in these years, convolutional 
neural networks (CNNs) demonstrate its advantages in image 
processing procedure, especially for semantic segmentation. 
Hence, it is also very suitable for the high-precision vegetation 
canopy image recognition. Li et al. proposed a low-cost LAI 
estimation method for early-stage winter wheat based on RGB 
images and deep learning [17]. This method meets the 
requirement of early LAI estimation, thus serves as a reference 
for growth status monitoring and agronomic management of 
winter wheat. Shu et al. achieved the LAI measurement of 
cucumber through an improved fully convolutional network 
(FCN) [18]. Ma et al. improved the segmentation performance 
of mapping learning model (Pix2pix), which showed good 
accuracy in LAI measurements [19]. 

Nonetheless, current research still faces some difficulties. 
Primarily, traditional threshold segmentation method is unable 
to accurately obtain the optimal dividing value. The blue 
channels in the RGB images of sky and leaves are both the 
dominant parts, hence it is difficult to accurately distinguish the 
two items in a sunny environment. Even under cloudy days, it 
is also quite hard to separate the leaves from the background 
exactly. Fig. 2 shows the comparison results of HSV-based 

segmentation [20] and Otsu [21] method: Fig. 2(a) is the 
original image taken by the fisheye lens. The color of sky in the 
lower left is white due to the lighting conditions, while the color 
of sky in the upper right is blue. In Fig. 2(b), the brightness of 
these two sky regions are also different. Fig. 2(c) is the segmen-
tation result of HSV-based method and Fig. 2(d) shows the 
Otsu’s. Clearly, HSV gains good performance in the segmen-
tation of fine details, but not very convincing for the boundaries 
between sky and leaves: For instance, the sky at the lower left 
corner has been erroneously divided into leaves. On the other 
hand, Otsu could not process effectively in the trivial gaps, the 
middle and lower parts of the image have been miscalculated 
and displayed too densely.  

Besides, ordinary CNNs are not compatible for deployment 
on edge computing platforms, such as Raspberry Pi [22], due to 
the large number of model parameters and computing budget.  
While the existing lightweight neural network architectures 
always present low accuracy for binary semantic segmentation 
tasks [23] and do not meet the requirements for forest crown 
segmentation. Furthermore, CNNs have certain demands on the 
input size of treated images: those with a high resolution will 
increase the computation workload steeply and reduce the 
network prediction speed, whereas low-resolution images will 
lose a reasonable quantity of detailed information on forest 
canopy, as well as lowing the measurement accuracy.  

Ultimately, the traditional hand-held LAI analyzer is bulky 
and inconvenient to carry out in the field. Although some 
former studies have successfully measured the LAI with 
portable devices, such as mobile phones, the measurements 
were completed manual operation, which is time-consuming 
and labor-intensive. Therefore, we propose a novel LAINET 
architecture that combines the advantages of traditional and 
lightweight CNN, subsequently followed by a super resolution 
GAN (SRGAN) [24] to super recover the detail information of 
its output image. The proposed model could effectively reduce 
the environmental effects of hemispheric photography through 
data augmentation and training procedures. It can be deployed 
on a Raspberry Pi connecting with one fisheye camera, one 

 
Fig. 2.  (a) Original RGB image taken with 180° fisheye lens, (b) the 
fisheye image processed by grayscale, (c) the fisheye image 
processed by HSV threshold segmentation, (d) the fisheye image 
processed by Otsu threshold segmentation. 

 
 
Fig. 1.  Forest canopy parameter monitoring scenario using a 
wireless DHP sensor. 
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LoRa communication module, and a battery power module, just 
a formal wireless measuring node that can realize remote, real 
time, and automatic LAI monitoring. 

The manuscript is described as follows: Section II explains 
the LAI measurement principle, including the theoretical model 
based on the Beer-Lambert law, our investigation site and the 
hardware-software implementation of proposed node. Section 
III presents the lightweight LAINET algorithm for extracting 
forest gap fraction. Section IV details the performance of 
LAINET on plant canopy image segmentation, also a result 
comparison with the hand-held LAI analyzer has been included. 
At last, Section V summarizes our findings and draws the 
outlook. 

II. LAI MEASUREMENT METHOD 

A. Theoretical Background 
In the natural environment, plant leaves are randomly 

distributed, the surface area of a single leaf is much smaller than 
the total area of the vegetation canopy, and the angle of 
inclination of each leaf is hybrid. Thus, the vegetation canopy 
can be approximated as a light-transmitting solute. According 
to the Beer-Lambert law, the LAI can be derived from the 
perspective of solar radiation intensity attenuation. The 
parametric model is shown in Fig. 3. 

The semicircular sphere in the upper part of the figure is the 
fisheye lens model, and the lower part is the imaging model. 𝑜𝑜 
is the center of sphere of fisheye lens, and 𝜃𝜃 is the zenith angle. 
𝑜𝑜1 is the center of circle plane when zenith angle is 𝜃𝜃. Ray of 
light is refracted and taken into the lens at angle 𝜃𝜃, afterwards 
it is emitted at an angle of 𝜃𝜃′ and imaged into the photograph. 
𝑜𝑜′ is the center of photographic image. 

Assume that the resulting photo has only the vegetation and 
sky, 𝑇𝑇(𝜃𝜃)  is the gap fraction of vegetation when the zenith 
angle is 𝜃𝜃, 𝑁𝑁𝑣𝑣(𝜃𝜃) is the total number of pixels of vegetation in 
the area, and 𝑁𝑁𝑠𝑠(𝜃𝜃) is the total number of pixels of sky, then:  

 𝑇𝑇(𝜃𝜃) =
𝑁𝑁𝑠𝑠(𝜃𝜃)

𝑁𝑁𝑠𝑠(𝜃𝜃) + 𝑁𝑁𝑣𝑣(𝜃𝜃) (1) 

G (θ) is the value of vegetation projection function when the 
zenith angle is θ: 

 𝐿𝐿𝐿𝐿𝐿𝐿 = −
𝑙𝑙𝑙𝑙𝑇𝑇(𝜃𝜃) ∙ 𝑐𝑐𝑜𝑜𝑐𝑐𝜃𝜃

𝐺𝐺(𝜃𝜃)  (2) 

Due to the randomly distribution of most tree leaves, the leaf 
inclination angle is not a fixed value. However, when the zenith 
angle is around 57.5°, the projection function value at any leaf 
inclination angle is about 0.5. Therefore, it can be regarded that 

the projection function value is independent of the leaf 
inclination angle (i.e., 𝜃𝜃 = 57.5 and G (θ) = 0.5) [25]. To 
calculate the LAI using intelligent machine vision, the ring at 
~57.5° can just be used for analysis, then 𝑁𝑁𝑣𝑣(𝜃𝜃) and 𝑁𝑁𝑠𝑠(𝜃𝜃) are 
the number of pixels of vegetation and sky within the circle, 
respectively. So the size of the ring area would greatly affect 
the calculation results. If the ring angle is too large, the feature 
at 57.5° will be weakened and the projection function will be 
shifted. If the ring angle is too small, effective plant canopy 
information from the ring may not be able to be well extracted. 
Based on empirical experience, a ring of 55–60° is suitable for 
the extraction of plant canopy gap fraction. Hence, 

 𝐿𝐿𝐿𝐿𝐿𝐿 = −
𝑙𝑙𝑙𝑙𝑇𝑇(57.5°) ∙ 𝑐𝑐𝑜𝑜𝑐𝑐57.5°

0.5 ≈ −𝑙𝑙𝑙𝑙𝑇𝑇(57.5°) (3) 

where T (57.5°) is the ratio of the number of background pixels 
to the total number of pixels in the 55-60° ring. Since only the 
characteristics at 57.5° were used in the analysis, it is referred 
as the single angle method. This method is highly efficient and 
cost effective to obtain the LAI reliably. Thus, it has been 
appropriately used in various studies [26]. 

B. Investigation Area 
The forest canopy images in this study were collected in the 

Zhongshan Botanical Garden, Nanjing, China, from October 
2021 to May 2022 (31°14′-32°37′N, 118°22′-119°14′E). The 
area of the garden is about 186 hectare, and the climate is mild. 
It belongs to the north subtropical monsoon climate zone, with 
an average annual temperature of 14.7℃.The rich abundance of 
plant species ensures the diversity of living tree samples in this 
study. Images were collected using the proposed wireless DHP 
sensor and a HM-G20 commercial plant canopy analyzer [27] 
was adopted for the verification. Fig. 4 shows the geographical 
environment of our experiment site. 

C. Structure and Workflow of the Proposed Wireless 
Sensor  

The Raspberry Pi is a microcomputer based on ARM® 
architecture. It has sufficient number of extension I/O ports, and 
is suitable for certain tasks, such as sensor node design and edge 
computing. It is equipped with the Raspberry Pi OS based on 
the Linux system, which is convenient for debugging and 
developing software programs. In this study, a Raspberry Pi 4B 
is used as the central computing unit of the wireless sensor. The 
related parameters are shown in Table I. 

 
 

Fig. 3. Structural parameter model based on hemispherical 
photography. 

 
Fig. 4.  Location and geographical environment of our experiment 
area. 
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Three function modules have been connected with the 
Raspberry Pi through the extension I/O ports. The forest canopy 
image is captured using a fisheye lens with field view angle of 
200°. The image CMOS sensor is OV5647 with 1/4 inch size 
and 0.87 mm focal length [28]. Its maximum image resolution 
is 2592 × 1944. A LoRa® module is adopted for the information 
transmission by reason of its properties in low power consump-
tion and long communication distance. In terms of power 
supply, a 5200 mAh UPS battery module is employed. The 
whole physical prototype of the sensor is shown in Fig. 5. 

Fig. 6 shows the workflow of proposed wireless DHP sensor. 
Firstly, the RGB images of forest canopy are collected by the 
fisheye lens, which should be preprocessed to a predefined 
dimension and classified to a training dataset. Note that prior to 
LAINET training, data augmentation must also be carried out 
to increase the number of samples and enhance the data 
diversity which aims to strengthen the system's robustness to 
negative environmental factors such as direct sunlight. 
Subsequently, to perform LAI estimation, the pretreated images 
are imported into LAINET for semantic segmentation and the 

diagnose system would calculate the gap fraction based on the 
partition results. Then LAI can be calculated effectively by the 
single angle method and the optimal detecting model would be 
stored. Finally, DHP sensor uploads the real-time LAI testing 
result to the network server remotely. 

III. THE PROPOSED LAINET 

A. Data Pre-processing 

The process of data pre-processing is divided into two 
aspects: image pre-processing and data augmentation, as shown 
in Fig. 7. The purpose of pre-processing is to modify the images 
to fit the input size of LAINET; Data augmentation, on the other 
hand, is to solve the problem of small sample data set amount. 
1) Image Pre-processing 

The resolution of the picture taken by Raspberry Pi lens used 
in this study is 2592 × 1944, while the actual imaging part of 
the fisheye lens is theoretically a circular area, so it is necessary 
to pre-process the image first, remove the excess black edges 
on the left and right sides, and cut out the actual visible circular 
area. Another problem is that due to the effect of manufacturing 
process, the imaging center of fisheye lens is not necessarily the 
center of DHP image, so the pixel marked (1296, 972) cannot 
be directly selected as the center of the circle. According to 
practical experience, we select the image with a field angle of 
180° and compresses its resolution to 512 × 512, so as to input 
it into the neural network. As shown in green part of Fig. 7, the 
specific methods are: (1) traversing the pixel from left to right 
according to column; (2) finding the location of the first color 
pixel; (3) finding the location of the last color pixels; (4) the 
symmetry center of these two pixels is just the fisheye image 
center, while the radius could be calculated based on the 
position of this center and the two extreme pixels. In fact when 
in field testing, due to the light diffraction, there is a gray-black 
area around the fisheye image, which can have a certain effect 
on the traversal of pixels. But since the number of pixels on the 
long side of the original image (2592) is much larger than the 
compressed image (512), this error is basically negligible. (5) 
So after obtaining the center and radius, a hemispherical image 
with a field view of 180° can be captured. This image is a square 
and the side length is the diameter of the fisheye image. Lastly, 
the resolution of the image should be compressed to 512 × 512. 
2) Data Augmentation 

Manually labeling forest canopy images is a tedious task and 
it is nearly impossible to obtain substantial samples for the 
neural network training within a short period of time. Therefore, 
it is necessary to augment the data to quickly obtain a large 
number of training samples. Traditional data augmentation 
methods include rotation, flipping, translation, and cropping. In 
this study, based on the actual imaging environment conditions, 

TABLE I 
SOME PARAMETERS OF RASPBERRY PI 4B 

Content Raspberry Pi 4B 
SOC BCM2711B0 
CPU ARM Cortex-A72 4-Core 1.5GHz 
GPU Broadcom VideoCore IV@500MHz 
RAM 8G LPDDR4 
Power 5V 3A 
Size 85 x 56 x 17 mm 

 

 
 

Fig. 5.  Prototype of the proposed wireless DHP sensor. 

 
 

Fig. 6.  Workflow of the proposed wireless DHP sensor. 
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random noise and color dithering are also selected. 
As the camera lens is directly exposed to the air, it may be 

contaminated by dust particles in the wind and water stains left 
by rainfall. In addition, if the sensor circuit overheats, it will 
generate a certain amount of noise. These factors have a certain 
influence on the imaging performance of the fisheye lens. So 
noise must be introduced in the image pre-processing to achieve 
near perfect data augmentation, and the neural network can be 
trained to distinguish the noise from the original image. 
Considering all these drawback conditions, Salt-Pepper noise 
and Gaussian noise are adopted here. Salt-Pepper noise is used 
to simulate the pollutant at lens surface and Gaussian noise is 
used to imitate the noise generated during signal transmission 
procedure. 

Previous studies have mentioned that when the LAI value is 
measured under direct sunlight, it differs considerably from the 
actual number. Therefore, it is necessary to minimize the effects 
of illumination on the measurement as sunlight often leads to 
image color variations. Here the color dithering mechanism has 
been chosen to reduce the influence of lighting conditions on 
the segmentation results. It is mainly achieved by changing the 
image contrast, brightness, and saturation during this training 
section. 

B. The Proposed LAINET 
In the proposed study, a deep learning model LAINET based 

on CNN and GAN is presented. The CNN part adopts a 
lightweight semantic segmentation structure based on U-Net 
[29], ResNet50 [30] and MobileNetV1 [31] models, whose role 
is to segment the forest canopy fisheye images with a resolution 
of 512 × 512.The GAN part adopts a SRGAN model, which 
aims to super-resolution the CNN's output to 2048 × 2048, thus 
improving the accuracy of gap fraction calculation. The overall 
architecture of LAINET is shown in Fig. 8. 
1) CNN Architecture 

The LAINET employs the U-shaped symmetric structure of 
U-Net. The U-Net model (Fig. 9(a)) can effectively solves the 
problem of binary semantic segmentation while extract deep 

and shallow information. Moreover, U-Net is suitable for small 
sample data training, which perfectly meets the segmentation 
requirement of forest canopy image sets. Here the dimension 
standard of input and output images of U-Net have been 
adjusted, as the original parameters are effective for medical 
image segmentation, but not for the forest canopy images. 

The contracting feature extraction network of U-Net is 
composed of five layers. In each layer, two convolutions are 
used to increase the number of feature layers. The maximum 
pooling operation is performed between one layer and the next 
to reduce the image size. The network structure is similar to 
VGG16 [32] without the fully connected layer. The advantage 
of this structure is that the network is simple and only uses two 
operations, 3 × 3 convolution and 2 × 2 maximum pooling. Its 

 
 

Fig. 7.  Data pre-processing process. 

 
 

Fig. 8.  Frame structure of the proposed lightweight deep learning network LAINET. 
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disadvantage is that the depth of network is not deep enough to 
extract the insightful feature information. By simply increasing 
the number of convolutional layers to improve the depth of 
network, it is unable to achieve the desired result. Because as 
the network depth increases, the accuracy of the training set 
tends to decrease while the error rate increases, which is called 
the “degeneration” problem. To address this issue, ResNet50 
and so forth models have been designed. Hence, in order to 
further extract deep information of the forest canopy image, 
here the original VGG16 structure is replaced by a structure 
similar to ResNet50. Meanwhile, in order to meet the 
requirements of feature fusion, this paper also adjusts the input 
parameters of corresponding layers in the extended feature 
extraction network, so that feature images complete in each step 
of ResNet50 training can be fused with corresponding 
deconvolution layers through skip connection. The ResNet50 
corresponding structure used in LAINET is shown in Fig. 9(b). 

MobileNetV1 displayed the core of depthwise separable 
convolution (Fig. 9(c)). Through this architecture, the amount 
of computation can be significantly reduced. In our research, 
depthwise separable convolution is also introduced to replace 
the general 3 × 3 convolution in the expanding feature extrac-
tion part to reduce the number of network parameters of 
LAINET, thereby reducing the memory usage and requirements 
on computing power. 

Thus, we present the LAINET, which jointly combines the 
advantages of U-Net, ResNet50, MobileNetV1, and has an 
optimized structure for the LAI measurement. The input image 
resolution of LAINET is 512 × 512; the size is first compressed 
to 8 × 8 through the feature extraction network and the number 
of feature layers increased from 3 to 2048, which is much higher 
than the 1024 layers in U-Net. Then, the original resolution was 
restored through the feature extraction network and semantic 
segmentation of each pixel was achieved through a prediction 

network composed of a 1 × 1 convolution so that the output 
image has the same resolution as the original image. 
2) GAN Architecture 

Raspberry Pi has limited computing power for the semantic 
segmentation of high-resolution images, so we must compress 
the input image resolution to 512 × 512 for deep learning. 
However, on one hand, low resolution images cannot reflect the 
deep feature of forest canopy, and the segmentation result 
always has a strong jaggedness, which is significantly different 
from the actual perception; on the other hand, the weight of 
individual pixels in low resolution image is larger, and incorrect 
segmentation will have a greater impact on the calculation of 
gap fraction, so the image should be restored to high resolution 
to enhance the identification accuracy. In recent years, GAN 
has been widely used in the image super-resolution task [33], 
and the advanced SRGAN model is recommended in this study, 
as shown in Fig. 10. 

GAN consists of generator network and discriminator 
network. The structure of generator network is shown in Fig. 
10(a). Firstly, the input low resolution image goes through a 
convolution and a ReLu activation function. Then it enters a 
residual network structure which consists of several residual 
blocks, each residual block contains two convolutions, two 
batch normalization and one ReLu activation function inside. 
Finally, two up-sampling procedures are performed to increase 
the resolution of the original one. The discriminator network, 
on the other side, consists of constantly repeated convolution, 
Leaky ReLu activation function, and batch normalization 
operation, as shown in Fig. 10(b). In order to reduce the number 
of network model parameters, we replace some of the ordinary 
convolution by depthwise separable convolution. 

During the GAN training stage, low resolution images are 
inputted into the generator network, and corresponding high 
resolution images are inputted into discriminator network. 
Through a series of established operations, the generator would 
generate high-resolution images and ask the discriminator to 
determine whether they are true or not. After certain groups of 
training, the generator could generates images that are realistic 
enough for which the discriminator are unable to distinguish. 
Hence the generator training process can be completed. The so 
trained generator model will be saved and a super-resolution 
image can be obtained by inputting the image into the generator 
networks during actual deployment. 

C. Evaluation Metrics 
According to the confusion matrix, there are two types of true 

values: Positive and Negative; two types of predicted values: 

 
 
Fig. 9.  The structure of (a) U-Net, (b) ResNet50 and (c) Depthwise 
separable convolution of MobileNetV1 used by LAINET. 

 
Fig. 10.  Frame structure of the proposed lightweight SRGAN. 
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True and False. Therefore, there are four possible outcomes: (1) 
True-Positive (TP), (2) True-Negative (TN), (3) False-Positive 
(FP), and (4) False-Negative (FN). The following formulas are 
used to calculate the ACC (accuracy), Recall, Precision and 
F1_score: 

 𝐿𝐿𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑁𝑁

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑁𝑁 (4) 

 𝑅𝑅𝑅𝑅𝑐𝑐𝑅𝑅𝑙𝑙𝑙𝑙 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑁𝑁 (5) 

 𝑇𝑇𝑃𝑃𝑅𝑅𝑐𝑐𝑃𝑃𝑐𝑐𝑃𝑃𝑜𝑜𝑙𝑙 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 (6) 

 𝐹𝐹1_𝑐𝑐𝑐𝑐𝑜𝑜𝑃𝑃𝑅𝑅 =
2 × 𝑇𝑇𝑃𝑃𝑅𝑅𝑐𝑐𝑃𝑃𝑐𝑐𝑃𝑃𝑜𝑜𝑙𝑙 × 𝑅𝑅𝑅𝑅𝑐𝑐𝑅𝑅𝑙𝑙𝑙𝑙
𝑇𝑇𝑃𝑃𝑅𝑅𝑐𝑐𝑃𝑃𝑐𝑐𝑃𝑃𝑜𝑜𝑙𝑙 + 𝑅𝑅𝑅𝑅𝑐𝑐𝑅𝑅𝑙𝑙𝑙𝑙  (7) 

ACC is the most popular indicator. Generally, the higher the 
ACC, the better the network performance. In this study, ACC 
represented the accuracy of semantic segmentation of plant 
canopy gap fraction. However, since calculation of the LAI 
does not require gap location information, ACC does not 
directly indicate the LAI calculation accuracy. 

In common semantic segmentation models, cross entropy 
loss and dice loss are often used as evaluation indicators. The 
dice value is defined as: 

 𝐷𝐷𝑃𝑃𝑐𝑐𝑅𝑅 =
2 ∙ (𝑥𝑥 ∩ 𝑧𝑧)
𝑥𝑥 ∪ 𝑧𝑧

 (8) 

 𝐷𝐷𝑃𝑃𝑐𝑐𝑅𝑅 𝐿𝐿𝑜𝑜𝑐𝑐𝑐𝑐 = 1 − 𝐷𝐷𝑃𝑃𝑐𝑐𝑅𝑅 (9) 

where x represents manually labelled images and z represents 
the network segmentation result. When the segmentation result 
is the same as the manual labelling result, the dice value is 1, or 
else, the dice loss is 0. Dice values range from 0 to 1. 

The dataset used in this study had unbalanced positive and 
negative samples. Specifically, the black areas in the four 
corners and outside the cropped ring during data augmentation 
had a large number of negative samples. Therefore, dice loss 
cannot accurately reflect the real performance of the network. 
In order to address the problem of unbalanced samples, the 
focal loss is used here [34]. Focal loss has some advantages 
when compared with cross entropy loss: 

 𝐿𝐿𝐶𝐶𝐶𝐶 = �
−𝑙𝑙𝑜𝑜𝑙𝑙𝑦𝑦′             ,𝑦𝑦 = 1
−𝑙𝑙𝑜𝑜𝑙𝑙(1 − 𝑦𝑦′) , 𝑦𝑦 = 0 (10) 

 𝐿𝐿𝐹𝐹 = �
−𝛼𝛼(1 − 𝑦𝑦′)𝛾𝛾𝑙𝑙𝑜𝑜𝑙𝑙𝑦𝑦′            , 𝑦𝑦 = 1
−(1 − 𝛼𝛼)𝑦𝑦′𝛾𝛾 log(1 − 𝑦𝑦′) , 𝑦𝑦 = 0

 (11) 

where y is the real label, y' is the predicted probability value, 
𝛼𝛼 and γ are the focusing parameters. In this article, the value of 
𝛼𝛼 is 0.25 and the value of γ is 2. For binary classification, y = 1 
is a positive sample, y = 0 is a negative sample, y' >> 0.5 is a 
predicted positive sample, and y' << 0.5 is a predicted negative 
sample. When y' is close to 0.5, the sample is hard to predict. 
Positive samples can be regarded as the target of detection and 
negative samples as the back-ground. Difficult samples are 
those that humans can understand but machines cannot. 

IV. EXPERIMENTS AND RESULTS 
During the preliminary experiment, we have completed the 

collection of DHP images at the research area. From October 
2021 to May 2022, a total of 300 DHP images were collected 
and manually annotated with Labelme software [35]. After 
augmentation, the dataset contained a total of 6000 images for 
the next model training. In this dataset, the training, validation 
and testing set are divided by a ratio of 7:2:1. Python 3.8 and 
MATLAB 2021a are used for modeling and statistical analysis. 

A. Assessment of LAINET 
Training and evaluation of the LAINET were carried out on 

the server. The CPU is Intel(R) i5-12600KF 3.70 GHz, the GPU 
is NVIDIA RTX3060Ti (8 GB memory), the RAM is 16 GB, 
and the operation system is Ubuntu v20.04. The network model 
is built in PyTorch. This section detailed evaluates the semantic 
segmentation effect of CNN and the super-resolution results of 
GAN, respectively. 
1) Results of CNN Semantic Segmentation 

The hyper parameters used for training are as follows: 
learning rate is 0.001, batch size is 6, and number of epochs is 
100. Adam is used as the optimizer and the loss functions are 
Dice Loss and Focal Loss. For comparison, we also trained the 
U-Net, the DeepLab [36], the ENet [37], and the SegNet [38]. 
The performance of these models during training is shown 
below in Fig. 11. 

Comparing with other four neural network models, the 
convergence of LAINET is the best (convergence when the 
number of epochs reached 30), followed by ENet and U-Net. 

DeepLab had a sudden increase in the loss value, which is 
believed to have been caused by a gradient explosion due to 
overfitting. The condition was relieved after using early 
stopping, but severe fluctuations were still observed. In terms 
of accuracy, LAINET also has the highest accuracy (98%), 
followed by U-Net (92%), while the accuracies of ENet and 
SegNet were < 90%. The training time of each model was 
recorded and the F1 score was compared (Table II).  

 
Fig. 11.  The training loss of each CNN model. 
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To further verify the robustness of the neural models, each 
network model has been trained and validated for 10 times, the 
mean and variance of the accuracy are calculated in Fig. 12. In 
the 10 experiments, the average accuracy of LAINET is the 
highest (97.323%), which is considerably higher than the other 
models. The variance of LAINET is 0.4927, which is also lower 
than the other models. Hence, LAINET outperforms the other 
neural network models in terms of accuracy and robustness. 

Fig. 13 shows the segmentation results of different models 
for plant canopy images. Column (a) is the original image, 
column (b) is the DeepLab results, column (c) is the U-Net 
results, column (d) is the ENet results, column (e) is the SegNet 
results, and column (f) is the LAINET results. It can be seen 
that the LAINET model proposed in this study has the best 
performance among the CNN models. 

Nonetheless, GPU has also been occupied in the above 
experiments, so the performance of each model did not indicate 
the performance of embedded wireless sensor exactly. In our 
study, all the five trained models were deployed in Raspberry 
Pi to perform predictions. We recorded the time consumed and 
the accuracy of estimation results, all the relevant data are 
shown in Table III. In the dataset of forest canopy images, ENet 
has the fastest segmentation speed but also the lowest accuracy. 
LAINET just has the highest accuracy of 97.8%, and the second 
fastest speed. Thus LAINET is the optimal choice for the 
wireless sensor in both running speed and detection accuracy. 

2) Results of GAN Super Resolution 
In this section, we train and test the lightweight SRGAN, i.e. 

the original SRGAN while replacing part of the normal 
convolution with depthwise separable convolution. Some of the 
relevant training parameters are shown in Table IV. 

 
Fig. 12.  The mean and standard deviation of model accuracy by 
repeating tests for ten times. 

TABLE II 
PERFORMANCE COMPARISON OF LAINET AND OTHER CNN MODELS 

IN TERMS OF F1 SCORE AND TRAINING TIME 

CNN DeepLab U-Net ENet SegNet LAINET 

F1 score 80.62 85.37 82.56 77.48 93.81 
Training 

time 6h50min 10h30min 6h20min 7h30min 8h25min 

 

TABLE III 
PERFORMANCE COMPARISON OF LAINET AND OTHER CNN MODELS 
IN TERMS OF AVERAGE TESTING ACCURACY AND PREDICTING TIME 

FOR SINGLE IMAGE 
CNN 
Model DeepLab U-Net ENet SegNet LAINET 

ACC 0.857 0.932 0.791 0.822 0.978 
Predicting 

time 23s 63s 9s 71s 19s 

 

 
Fig. 13.  Practical effects of five segmentation methods. 
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From the training data results, the use of depthwise separable 
convolution has little effect on the performance of SRGAN, but 
there is a large difference in the time taken by the network to 
predict a single image. Table V shows the time consumed to run 
the network for predicting a single image using RTX3060, 
laptop CPU i7-1165G7 and Raspberry Pi, and it can be seen that 
the lightweight SRGAN is more suitable for deployment on low 
computing power platforms. 

Fig. 14 shows the effect of super-resolution on the image 
using proposed SRGAN. The image pre-processing process has 
been explained in the previous part, i.e., the size of the image 
output from CNN is also 512 × 512, and the difference between 
the original image with it can be clearly seen after enlarging the 
details, so if it is directly used for the gap fraction, there must 
bring quite a few errors. Yet after the SRGAN super-resolution 
proposed in this paper, the image size rises to 2048 × 2048, at 
which the segmentation effect of the images is much closer to 

TABLE IV 
PERFORMANCE COMPARISON OF SRGAN AND PROPOSED SRGAN IN 

TERMS OF PSNR, SSIM AND MOS 

GAN Kind PSNR SSIM MOS 

SRGAN 32.70 0.9268 3.83 
Proposed 
SRGAN 32.51 0.9017 3.87 

 

TABLE V 
TIME CONSUMED FOR SUPER-RESOLUTION OF A SINGLE IMAGE USING 

SRGAN AND PROPOSED SRGAN 

GAN RTX3060Ti i7-1165G7 Raspberry Pi 

SRGAN 3s 15s 27s 
Proposed 
SRGAN 2s 12s 22s 

 

 
Fig. 14.  The detailed effect of proposed SRGAN. 

 
Fig. 15.  The gap fraction calculation results of three scenarios. 

 
Fig. 16.  Comparison of the results of segmenting forest canopy images using LAINET and the traditional method. 
 

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2022.3188697

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



8  IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX 

 

the real situation. Fig. 15 just shows the gap fraction results of 
five datasets measured by HM-G20, LAINET output with CNN 
and LAINET output with CNN+GAN separately, it could be 
clearly inferred that the average exaction accuracy of gap 
fraction has improved by 5.5%.  
3) Comparison with Traditional Methods 

In order to verify the advantages of neural networks in forest 
canopy image processing over the traditional threshold segmen-
tation method, a comparative experiment has designed and the 
result is shown in Fig. 16.  

Fig. 16(a) and (b) are fisheye images of forest canopies taken 
under sunny day without direct sunlight and sunny day with 
direct sunlight, respectively. The color image is the original 
image taken, the black and white image is the artificially labeled 
image, the white area is the sky background, and the black area 
is the vegetation. Columns (I) (II) (III) show the segmentation 
statuses using the Otsu method, HSV threshold method and 
LAINET, respectively. Row (1) is the output results, Row (2) is 
the TN maps, i.e., the sky is misjudged as vegetation, and Row 
(3) is the FP maps, i.e., vegetation is misjudged as the sky. 

Group (a) mainly verifies the effect of blue sky on the 
threshold segmentation. From the TF figures, we can see that 
the two traditional segmentation methods cannot effectively 
separate the sky from the vegetation, and a large number of 
skies are mistakenly judged as forest; while the segmentation 
effect of LAINET is relatively satisfactory, and the two main 
sky backgrounds in the figure have been well handled. 

Group (b) mainly verifies the effect of direct sunlight on 
threshold segmentation, and it can be seen from the FP map that 
there are many leaves been mistake-segmented as the sky near 
the sunlight source, and even some tree trunks are affected by 
direct sunlight causing the skewing of color threshold. Hence 
the traditional algorithms partially segment the tree trunks as 
sky, resulting in a large number of FP pixels. LAINET performs 
significantly better in this situation. 

B. Results of LAI Measurement 
Gap fraction can be computed based on forest canopy image 

segmentation and the LAI could be subsequently obtained. 
Because it is extremely difficult to collect all leaves and calcul-
ate the LAI manually, the HM-G20 plant canopy analyzer was 

used as reference. It should be noted that the HM-G20 has a 
similar measuring function with LAI-2200C and has been 
widely used in the agricultural and forestry research in China. 

Fig. 17 shows the measurement results of wireless sensor and 
forest canopy analyzer. A total of 20 scenes were tested. The 
red dots in the figure represent the measurement results of HM-
G20, whereas the blue dots represent the results of DHP sensor 
in the corresponding inspection positions. After calculation, the 
maximum error between the proposed sensor and the measuring 
apparatus in these 20 datasets is 4%, while the average error is 
2.95%, which is absolutely within an acceptable range. 

To verify that the proposed DHP sensor can be affected by 
negative external factors such as direct sunlight or not, we 
carried out a further examination separately on a sunny and a 
cloudy weather time. Here the HM-G20, the proposed sensor 
with LAINET, and the proposed sensor using the Otsu method 
were deployed and measured, respectively. The wireless sensor 
has been placed in the field for one day of continuous 
measurement. Fig. 18 shows the results from 8:00 am to 4:00 
pm where the upper part is the measurement result on sunny day 
and the bottom part is the result on cloudy day. It can be seen 
that on both days, the data measured by the LAINET sensor 1 
were stable and consistent with the HM-G20 values, effectively 
indicating the robustness of proposed mechanism. In contrast, 
the sensor 2 using Otsu method showed large fluctuations in 
measured values during clear weather, which is closely related 
with the azimuth of direct solar radiation. Nevertheless, all its 
measured result was significantly smaller comparing with the 
previous two, which is also related to the inherent inaccuracy of 
the traditional threshold segmentation method. 

 
Fig. 17.  Comparison of leaf area index measured by proposed 
wireless sensor and handheld measuring instrument. 

 

 
Fig. 18.  Monitoring data of leaf area index from 7 am to 5 pm using 
the proposed sensor. 
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C. Power Consumption 
The power consumption of proposed sensor is a key factor 

for its long term deployment in the field. In this section, we 
compare and evaluate its energy consumption characteristic by 
a dedicated experiment: 5 LAI detection algorithms (including 
traditional and deep learning methods) are implemented on the 
designed sensors individually and they have been placed and 
tested in the field for 10 consecutive days, respectively. The 
sensors would measure and transmit data twice a day (10 am 
and 4 pm), and their energy variations have been stored. The 
corresponding results are shown in Fig. 19. 

As can be seen, the power consumption of LAINET mecha-
nism proposed in this paper is slightly higher than that of 
traditional Otsu method, but obviously lower than that of other 
deep learning algorithms. According to the practical detection 
requirement, normally one reports per day should be carried out. 
So it can be estimated that the working life of the proposed 
sensor node with LAINET could last for at least 8 months 
without human intervention, about 2 times of other artificial 
intelligence methods, which meets the measurement criteria of 
conventional forestry resource inventory. 

D. Discussion 
Section A discussed the performance of LAINET proposed 

in this work. Compared with other CNN models, LAINET has 
the characteristics of good convergence and high prediction 
accuracy. The segmentation result of LAINET was obviously 
better than other CNN models. Meanwhile, thanks to the 
introduction of SRGAN super-resolution mechanism, the 
image segmentation precision in this paper has been signifi-
cantly improved. As far as we know, this is the first time that 
the super-resolution algorithm has been introduced into this 
field. Compared with the traditional threshold segmentation 
algorithms HSV and Otsu, the proposed algorithm has better 
segmentation effect, especially in the case of direct sunlight or 
unsatisfactory illumination conditions. 

In the comparison experiment with the hand-held measuring 
instrument HM-G20, the analysis results in Section B reflected 
that the sensor designed here is highly correlated with the 
measurement results of the hand-held measuring instrument. 
Due to its easy installation feature, the sensor could fully meet 

the practical measurement needs. 
The power consumption has been studied in section C. It can 

be figured from the evaluation outcomes that the sensor 
designed has the characteristic of ultra-low power consumption. 
It is deduced that its working life can reach about more than half 
a year, which meets the installation requirements of forestry 
Internet of Things. 

To sum up, the wireless DHP sensor presented in this paper 
solves some problems faced by remote LAI measurement 
nowadays and can replace the manual detection scheme to 
achieve a large-scale deployment and automatic data collection. 

V. CONCLUSION 
In this present research, we built a wireless DHP sensor for 

LAI measurement which is composed of a Raspberry Pi and a 
novel lightweight neural network, LAINET, which allowed for 
the remote automatic measuring of forestry LAI. The semantic 
segmentation performance of proposed LAINET has been 
comprehensively verified by comparing with other neural 
models and traditional segmentation methods. The accuracy of 
wireless DHP sensor was examined by calibrating the 
measurement results with a commercial plant canopy analyzer. 
Finding proves that the designed sensor node can work 
efficiently and effectively. Compared with the image semantic 
segmentation method using CNN alone, our method combining 
CNN and GAN together could offset the pixel information loss 
caused by CNN training, restore image detail information 
better, therefore, more suitable for the LAI field monitoring. In 
general, the sensor nodes designed in this paper can actually 
replace the traditional artificial LAI measurement methods, 
which strongly promotes the development of forestry Internet 
of Things technology. 

In future work, we will aim to introduce a super lightweight 
neural network while ensuring the segmentation accuracy to 
further reduce the computing power requirements for the 
embedded device. Moreover, multiple wireless LAI sensor 
nodes and the server can be connected to form an artificial 
internet of things system to realize adaptive federated learning, 
thereby greatly improving the accuracy and robustness of the 
forestry monitoring network. 
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