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ABSTRACT: Assessment and quantitative description of river morphology 17 

using widely recognized river planview measures (e.g., length, width and 18 

sinuosity of channels, bifurcation angles and island shape) for multichannel 19 

rivers are regarded as fundamental parts of the toolkit of geomorphologists and 20 

river engineers. However, conventional assessment methods including field 21 

surveys or exiting algorithms for the extraction of multichannel planviews might 22 

be suboptimal. More recently, the potential for the application of complex 23 

network analysis to the study of river morphology has led to emphasis on the 24 

accurate characterization and definition of multichannel network topology. 25 

Therefore, we developed a novel algorithm called RivMACNet (River 26 

Morphological Analysis based on Complex Networks) that enables the 27 

extraction of multichannel network topology using satellite sensor images as 28 

the input. We applied RivMACNet to a meandering reach of the Yangtze River 29 

and a strongly anastomosing reach of the Indus River to construct their network 30 
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topologies, and then calculated a series of common topological measures 31 

including weighted degree (WD), clustering coefficient (CC) and weighted 32 

characteristic path length (WCPL). The network analysis indicated that both 33 

networks exhibit poor transitivity with small clustering coefficients. The 34 

topological properties of the Indus at the reach scale are independent of flow 35 

conditions, while they vary across space at the subnetwork scale. In addition, 36 

comparison between RivMACNet and an alternative common river network 37 

analysis engine (RivaMap) demonstrated that RivMACNet is superior in terms 38 

of representation accuracy and network connectivity and, thus, is more suitable 39 

for multichannel fluvial systems with complex planviews. RivMACNet is, thus, a 40 

useful tool to support further investigation of multichannel river networks using 41 

graph theory. 42 

Keywords: multichannel network, remote sensing, complex network analysis, 43 

river network topology, graph theory. 44 
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1. Introduction 46 

Fluvial systems are generally regarded as linear features that can be 47 

divided into two distinct groups based on current river channel classification 48 

patterns (Nanson and Knighton, 1996): (i) single channel networks such as 49 

straight rivers and meandering rivers (Parker et al., 2011), and (ii) multichannel 50 

networks (Carling et al., 2014) defined as river planviews composed of more 51 

than one interlinked channel forming inosculate patterns, such as braiding and 52 

anabranching rivers (Leopold and Wolman, 1957; Parker 1976; Rust, 1978; 53 

Bridge 2009; Jansen and Nanson, 2010; Meshkova and Carling, 2013; 54 

Kleinhans et al., 2019; Hiatt et al., 2020). The largest rivers on Earth often 55 

exhibit a network of multiple channels and, thus, can be regarded as naturally 56 

occurring forms of a generic class of network structures (Gupta, 2008). Different 57 

channel planforms are thought to reflect differences in river behaviour, and 58 

planform assessment remains central to all modern river channel classification 59 

schemes (Carling et al., 2014). However, quantitative assessment of river 60 

planviews is considered a challenging task in river channel analyses, inclusive 61 

of channel evolution, migration and bank erosion (Miller, 1988; Osman and 62 

Thorne, 1988; Richardson, 2002; Smith and Pain, 2009; Kleinhans et al., 2013; 63 

Grabowski et al., 2014; Yousefi et al., 2016; Li et al., 2017; Shahrood et al., 64 

2020). 65 

For over half a century, researchers have quantified different elements of 66 

channel planviews via metrics including the braiding index, bifurcation angle, 67 

channel width, length, sinuosity and migration distance, as well as island and 68 

sand bar shapes (Parker and Anderson, 1975; van den Berg, 1995; Chew and 69 

Ashmore, 2001; Tooth and Nanson, 2004; Xu, 2004; Harrison et al., 2011; 70 



Shwenk, 2016; Ashour et al., 2017; Yukawa et al., 2019; Liu et al., 2021). 71 

However, such conventional quantitative geometrical metrics of fluvial systems 72 

are unlikely to be sufficient to define, or discriminate between, channel types 73 

(Carling et al., 2014). Meanwhile, the definition of river network topologies 74 

(Dodds and Rothman, 2000; Rodriguez and Rinaldo, 2000) and their stream 75 

ordering laws (Tokunaga, 1966; Williams and Rust, 1969; Bai et al., 2015) 76 

demonstrates that river networks can be treated as real-world, non-random 77 

networks of varying complexity. In this view, channel bifurcations (whether 78 

divergent or convergent) are nodes, with the individual channels between 79 

nodes regarded as links. With the development of complex network analysis 80 

(Watts and Strogatz, 1998; Newman, 2003; Rubinov and Sporns, 2010), the 81 

topological properties of multichannel networks, which could highlight emergent 82 

and novel spatial and temporal relations at some local or reach scales for river 83 

channels, have attracted interest from researchers. Despite some success in 84 

the quantification of river network topology and some common topological 85 

measures such as Betweenness Centrality (BC) (Marra et al., 2014), physical 86 

or hydraulic explanations for such topological properties within multichannel 87 

networks have been limited. One reason is that no efficient tools were proposed 88 

for multichannel network construction and the subsequent extraction of a range 89 

of potentially useful metrics including both geometrical and topological 90 

measures. 91 

Conventional field surveys and manual inspections of remote sensing 92 

images are prohibitively expensive and laborious for defining and constructing 93 

multichannel topologies and are subject to operator errors (Gupta et al, 2013; 94 

Guo et al., 2017). Increasingly, developments in remote sensing and image 95 



processing provide the possibility of reliable automated algorithms or software 96 

packages to extract some of the aforementioned river networks. Examples 97 

include: RivWidth (Pavelsky and Smith, 2008) and RivaMap for river width 98 

(Isikdogan et al., 2017); PyRIS (Monegaglia et al., 2018) and RiMARS for river 99 

network morphology analysis (Shahrood et al., 2020); and RovMAP for river 100 

migration (Schwenk, 2016), as well as other methods for constructing the 101 

topology of river networks (Chen et al., 2019; Schwenk and Hariharan, 2021). 102 

However, gaps remain in terms of methods for the construction of river network 103 

representations, especially for multichannel networks as follows: (i) most 104 

methods adopt a channel mask that differentiates those areas that are within 105 

the river boundary (including islands or sand bars) and those areas outside the 106 

river boundary (Pavelsky and Smith, 2008), but ignore islands or sand bars 107 

located within rivers, which is unacceptable for multichannel networks as island 108 

presence and shape plays an important role in defining multichannel networks 109 

(Meshkova and Carling, 2013); (ii) it is difficult to guarantee the connectivity of 110 

the output river channels when the method for delineating the river network 111 

relies on centerlines (Shahrood et al., 2020) and, thus, such methods result in 112 

extra bifurcation nodes and links being identified, and; (iii) geometrical 113 

measures of individual channels including length, width, and sinuosity are 114 

poorly quantified during the process of multichannel network construction 115 

(Chen et al., 2019), such that whether the river network topology is related to 116 

river behaviour remains unknown. 117 

The objectives of the research reported herein were to develop a novel 118 

river morphological analysis method based on complex networks, called 119 

RivMACNet, for multichannel topology construction and assessment, as well as 120 



extraction of a range of geometrical and topological measures. The remainder 121 

of this paper is organized as follows. In section 2, the algorithms and methods 122 

used in RivMACNet and some common topological and geometrical measures 123 

of multichannel networks are introduced. Section 3 presents two selected study 124 

reaches, part of the Yangtze and Indus multichannel networks. Section 4 125 

presents the results of the case study in detail including its topological and 126 

geometrical measures at the reach and sub-network scales, in which 127 

RivMACNet is tested and validated. In section 5, we discuss the advantages of 128 

RivMACNet for quantifying multichannel networks by comparing RivMACNet 129 

with another conventional method: RivaMap. Section 6 ends the paper with a 130 

conclusion. 131 

2. Methods 132 

2.1 River network topology construction 133 

The general methodology for constructing a river network topology using 134 

remote sensing comprises the following steps: (i) water body extraction; (ii) river 135 

channel delineation; (iii) node detection; and, (iv) derivation of the river network 136 

connectivity matrix (Chen, 2019). Each of these steps in RivMACNet is 137 

introduced systematically in this section, with particular attention given to 138 

improvements over conventional methods and algorithms. Our proposed 139 

software tools were developed in MATLAB, and are freely available at: 140 

http://github.com/lyh444/ RivMACN.git. 141 

Water body extraction: Various reliable algorithms and methods can be 142 

used for extracting singular objects like rivers from remote sensing images 143 

(McFeeters, 1996; Xu, 2006; Petropoulos et al, 2012; Zhu et al., 2015). In 144 

RivMACNet, we employed a widely accepted index called the Modified 145 



Normalized Difference Water Index (MNDWI) (Xu, 2006) to extract the water 146 

bodies, which can be expressed as follows: 147 

MNDWI= Green-MIR
Green+MIR

,                         (1) 148 

where Green is a green band, such as band 2 for Landsat 5, while MIR is a 149 

middle infrared band, such as band 5 for Landsat 5. Water bodies have greater 150 

positive MNDWI values, so that a simple thresholding method (the threshold is 151 

0 in this paper unless otherwise stated) can be used for extraction. In this 152 

manner, the extracted water bodies (Fig. 1B) are represented by a binary 153 

image: 1 (river network pixels) and 0 (background pixels). However, although 154 

sporadic discrete water bodies like ponds, lakes, and isolated channels (these 155 

are correctly classified as water, but are not of interest) can be removed by 156 

saving only the largest portion of the extracted water bodies, some remaining 157 

noise is inevitable, particularly in a group of misclassified pixels which we refer 158 

to as small ‘background holes’ located in the river channel (e.g., false sand bars 159 

or island objects caused by bridges or rivercraft) (Fig. 1C). Such noise cannot 160 

actually affect the river morphology, but can lead to discontinuity in the river 161 

topology or the miscounting of bifurcations and channels. To fill these holes 162 

within the extracted water bodies, we apply a convolutional filter window to the 163 

entire binary image. This window, shown in Fig. 2A, employs a variable size σ 164 

(σ=3, 5, 7…) with edge pixels set to 1 and the rest 0. For background pixels, if 165 

the convolution results are equal to (4σ-4), they are recorded as ‘holes’ that 166 

need to be filled. The size of the convolution kernel is increased gradually and 167 

the above steps are repeated. In this manner, the final river network with noise 168 

removed can be derived (Fig. 1D).  169 

 170 



 171 

Fig. 1. (A) false colour composite of Landsat 5 TM image derived from Indus River in 172 
Pakistan. (B) water bodies extracted in (A) based on MNDWI. (C) zoomed image of (B). 173 
(D) water bodies without noise after the process of noise elimination in (C). (E) and (F) 174 
comparison of thinning results: (E) original Zhang-Suen algorithms and (F) the revised 175 
algorithms in RivMACNet. Red pixels represent channel skeletons. (G) illustration of the 176 
node detection in RivMACNet. Nodes 1, 2 and 3 are examples of end nodes (green pixels) 177 
and bifurcation nodes (blue pixels) with different patterns in (G), respectively. 178 
 179 

Delineating the river channels: The aforementioned water bodies are 180 

usually reduced to a set of single-resolution lines (herein termed ‘river 181 

representatives’) to define the links and nodes in the multichannel network 182 

(Schaefer and Pelletier, 2020). In contrast to conventional river representations 183 

such as geometrical channel centerlines (EGIS, 2002; Mount et al., 2003), river 184 

skeletons (Hasthorpe and Mount, 2007) are defined as the refined curves with 185 

the same geometrical characteristics as the river channels. This approach has 186 

the advantage of maintaining the connectivity of the refined curves and greater 187 

enforcement efficiency (Shen et al., 2017; Chen et al., 2019). We adopt the 188 

revised version of the classic Zhang-Suen fast parallel thinning algorithm 189 

presented by Chen et al. (2012) in RivMACNet to produce one-pixel wide river 190 

skeletons (e.g., I in Fig.1F). This procedure avoids unwanted spurs caused by 191 



local convex water pixels (e.g., II in Fig. 1E) in contrast to the original algorithm 192 

(Zhang and Suen, 1984). 193 

Node detection: The river skeleton image is convolved with a mask for 194 

node detection in RivMACNet. The conventional method (Olsen et al., 2011), 195 

using a simple 3×3 mask (Fig. 2B), can detect only eight end nodes and 18 196 

bifurcation node structures (e.g., node 1 and 2 in Fig. 1G) in river skeletons, but 197 

ignores the structure formed by two adjacent bifurcation nodes (and one node 198 

connecting four or more links) due to the limitation of the mask size (e.g., node 199 

3 in Fig. 1G). A higher order 4×4 mask with a 2×2 sub-window (Fig. 2B) is added 200 

in RivMACNet to detect the remainder of the nodes because of the extendibility 201 

of the method. Each skeleton pixel within the image is traversed using the 3×3 202 

mask and 4×4 mask, in turn. The former mask has 1 center pixel Pi (i = 1) and 203 

8 edge pixels Pj (j = 2, 3, ..., 9), while the latter has 4 center pixels Pi (i = 1, 2, 204 

3, 4) and 12 edge pixels Pj (j = 5, 6, ..., 16). Center pixels and edge pixels in 205 

both masks are all sorted clockwise (Fig. 2B). Pixels satisfying the following 206 

conditions are defined as end or bifurcation nodes:  207 

P ∈ �
end node,                                                                       if Np=1 and Ns=1;
bifurcation node connecting to 3 links,                           if Np=1 and Ns=3;
bifurcation node connecting to more than 3 links,          if Np >2 and Ns >3;

  (2) 208 

where Ns and Np are defined as the number of edge pixels Pj and middle pixels 209 

Pi within two masks that belong to skeletons (Fig. 2B). In addition, RivMACNet 210 

omits the node structures where an individual channel ends with a bend (e.g., 211 

Fig. 2C): Np = 1, Ns = 2. Such output would not be generated by the thinning 212 

algorithm, as it would be further refined into a single pixel-wide end node 213 

skeleton. 214 



In the above manner, all detected nodes can be recorded as the node 215 

matrix Node = {Xi, Yi} (Xi and Yi are the pixel coordinates of the i-th node in 216 

water body binary images), where nodes are sorted in order from upstream to 217 

downstream within the multichannel network according to the Euclidean 218 

distances between them and the start point of the multichannel centerline (see 219 

Fig. 4A). The order of nodes in connectivity matrices has no effect on the 220 

computation of network measures (Rubinov and Sporns, 2010). Specifically, for 221 

two nodes i and j with the same distance from the start of the channel network, 222 

i < j when (i) Xi < Xj, or (ii) Yi < Yj if Xi = Xj.(Fig. 4A) 223 

 224 

Fig. 2. (A) illustration of the convolution between the filter window structure (take σ = 3 as 225 
an example) and binary images. (B) two node detection masks with different sizes. (C) 226 
examples of end node structures: (left) Np = 1, Ns = 2; (right) Np = 1, Ns = 1. 227 
 228 

Derivation of the river network connectivity matrix: the connectivity matrix 229 

A={ai,j} shown in Fig. 3B plays an important role in the calculation of river 230 

network topological measures (Rubinov and Sporns, 2010). Its rows and 231 

columns denote nodes, while matrix entries denote links. ai,j = 1 if node i is 232 



connected to node j, while 0 if they are not connected. A tracking algorithm from 233 

one node to another was presented in RivMACNet to construct the river network 234 

topology automatically, summarized as follows: 235 

(i) Define the zero matrix A={ai,j}n×n (n is the node numbers) and traverse 236 

each detected node in the Node matrix. 237 

(ii) Take node i as the starting pixel and track each skeleton connecting to 238 

node i by pixels, in turn, until another node j at the other side of the skeleton is 239 

reached. Then, ai,j=ai,j+1. If all skeletons connecting to i have been tracked, 240 

then move to the next node pixel (Fig. 3B). 241 

 242 
Fig. 3 (A) Examples of the positive and negative cross-sections in a 4-node multichannel 243 
network. (B) Illustration of the tracking process from node 1 to others (nodes 2 - to - 4) as 244 
well as their connectivity matrix. Red numbers represent nodes, while magenta and green 245 
lines are positive and negative cross-sections located on the individual channels, 246 
respectively. The value of the pixel coordinate X increases in the downstream direction of 247 
the river network in RivMACNet. 248 
 249 
2.2 Channel planview measures 250 

Two groups of channel planview measures including geometrical and 251 

topological properties of multichannel networks are introduced in this section. 252 

RivMACNet establishes the bridge between such geometrical and topological 253 

measures to provide certain physical and hydraulic bases for complex network 254 



analysis of multichannel networks. The extraction process of channel 255 

geometrical measures in the multichannel network actually occurs during the 256 

tracing from one node i to another node j in the river network. 257 

Two kinds of channel length are considered in RivMACNet: the curve 258 

length li,j
c

 and the straight line distance li,j
s

 of the individual channel between 259 

two consecutive bifurcations i and j, which can be expressed as follows: 260 

li,j
c  = IR × ∑ �(Xi,j

k+1-Xi,j
k )

2
+(Yi,j

k+1-Yi,j
k )

2K
k=1 ,              (3) 261 

li,j
s  = IR × �(Xi-Xj)

2+(Yi-Yj)
2,                   (4) 262 

where Xi,j
k  and Yi,j

k  are the (X,Y) location coordinates of the k-th pixel in the 263 

skeleton connecting nodes i and j, while K is the total pixel number of the 264 

skeleton, and IR (in units of m) indicates the image resolution. 265 

Channel sinuosity si,j can be defined as the ratio of the aforementioned two 266 

kinds of lengths of the corresponding skeleton connecting nodes i and j: 267 

si,j= 
li,j
c

li,j
s .                           (5) 268 

The individual channel width could be considered equal to the mean 269 

lengths of a set of measurement cross-sections (Fig. 3A) (Howard et al., 1970) 270 

separated by approximately equal distance (spaced one pixel apart in this 271 

paper) along its skeleton. Each cross-section is set orthogonal to the local 272 

orientation of the channel skeleton in RivMACNet: 273 

slopi,j
k = 

Yi,j
k+1-Yi,j

k-1

Xi,j
k+1-Xi,j

k-1 ,                        (6) 274 

where slopi,j
k  is the local orientation of the channel skeleton connecting nodes 275 

i and j at the k-th pixel. A special case is Xi, j
k + 1 = Xi, j

k - 1, in other words, the 276 



denominator is zero. In this case, the orientation of the corresponding cross-277 

section line is set to vertical in RivMACNet (e.g., A-A’ in Fig. 3B). 278 

However, not all cross-sections contribute when calculating the individual 279 

channel width, especially those near nodes. For example, the green sections in 280 

Fig. 3A measure not only the width of the individual channel connecting nodes 281 

1 and 3, but also the length of the individual channel connecting nodes 2 and 282 

3. Such cross-sections affected by other individual channels are defined as 283 

‘negative sections’ and, thus, omitted in RivMACNet when calculating the 284 

channel width. Conversely, the ‘positive sections’ are roughly bisected by 285 

channel skeletons (e.g., B-B’ in Fig. 3B), playing an important role in measuring 286 

channel widths. In this context, another coefficient called width gate ∆b was 287 

introduced to distinguish between ‘positive and negative sections’. The cross-288 

section that intersects the k-th pixel of the channel skeleton connecting nodes 289 

i and j belongs to the ‘positive section’ when the following condition is true: 290 

∆b ≥ �bli,j
k -bri,j

k �,                        (7) 291 

where bli,j
k  and bri,j

k  represent lengths of the left and right sub-sections (e.g., C 292 

- C’ in Fig. 3B) divided by the channel skeleton, respectively. As a result, the 293 

width bi,j of the individual channel connecting to nodes i and j is calculated as 294 

follows: 295 

bi,j= 1

𝐾𝐾′
∑ bi,j

k𝐾𝐾′

k=1 ,                        (8) 296 

where K’ is the total number of the ‘positive sections' located on the channel 297 

skeleton, while bi,j
k  represent the length of the cross-section that intersects k-298 

th skeleton pixel of the skeleton. 299 



RivMACNet also highlights the calculation of common river network 300 

topological properties (Table 1), including degree, clustering coefficient, and the 301 

characteristic path length, based on the connectivity matrix A (Rubinov and 302 

Sporns, 2010). 303 

Table1 Expressions of multichannel network topological measures 304 
Measure Unweighted expressiona Weighted expressionb 

Degree ki= �ai,j

n

j=1

 ki
w= �wi,j

k
n

j=1

 

Average neighbour degreec knn,i= 
∑ αkj

n
j=1

ki
 knn,i

w = 
∑ αkj

wn
j=1

ki
w  

Cluster coefficient Ci= 
∑ aijaihajhj,h∈n

ki(ki-1)
 

/ 

The characteristic path lengthd l= 
1

1
2 n(n+1)

�di,j
i≥j  

lw= 
1

1
2 n(n+1)

�wi,j
l

i≥j

 

a. aij represents values in the connectivity matrix A, while n is the total number of nodes. 305 
b. wi,j

k  and wi,j
l  are weights for degree and the characteristic path length, respectively.  306 

c. α is 1 if node i and j are neighbours, or 0 if they are not connected. 307 
d. The characteristic path length of the network in RivMANCnet is calculated using the 308 
Floyd-Warshall (1962) algorithm. 309 

 310 

In a river network, the degree ki quantifies how many individual channels 311 

are connected to the bifurcation node i (divergent or convergent), while mean 312 

neighbour degree ki,nn measures the mean number of individual channels 313 

connecting to its neighbour nodes. In this manner, nodes within river networks 314 

can be divided roughly into three types (Fig. 4): (i) ‘end nodes’ (ki = 1) indicate 315 

the upstream inlet and the downstream outlet of the river network as well the 316 

terminations of other channels; (ii) ‘simple bifurcation nodes’ (ki > 1 and ki,nn < 317 

3) indicate divergent or convergent points because of the inflow and outflow of 318 

other streams; (iii) ‘island or sand bar nodes’ (ki > 1 and ki,nn ≥ 3) indicate 319 

divergent or convergent points caused by enclosing sand bars or islands 320 

located in the river network. 321 



Given the topological structure of the network there could be a probability 322 

that node i is connected to node j if both of them are neighbours of node k, a 323 

condition termed transitivity, or clustering of the network (Newman, 2003). The 324 

clustering coefficient Ci of node i (Table 1) is defined to quantify this 325 

neighbourhood property based on the ratio of the number of triangles (formed 326 

by islands and sand bars) and triples around node i (Fig. 4C). Specifically, Ci 327 

lies in the range [0, 1], with the maximum value of 1 if nodes in the river network 328 

connect to each other. 329 

 330 

Fig. 4. (A) basic elements for multichannel networks, and red circle indicates circle raster 331 
for assessment of the network topology at a sub-network scale. (B) illustration of a river 332 
network topology in (A). Arrows indicate the flow orientation, while green, blue and red 333 
nodes indicate end, simple bifurcation and island/sand bar nodes, respectively. Two 334 
different paths from node 1 to 3 are showed by red, and blue arrows, respectively. (C) 335 
illustration of the ‘triangle’ around node 2 and the ‘triple’ structure centered on node 2 in 336 
(B). Node 2 has one triangle and three triples and, thus, its clustering coefficient is 1/3. 337 
 338 

For multichannel networks, water and sediment could be transported from 339 

one node i to another j though different paths (e.g., the two paths from node 1 340 

to node 3 in Fig. 4B). Therefore, the characteristic path length l is defined as 341 

the mean value of the shortest path length di,j between all pairs of nodes though 342 

the multichannel network. l is a connectivity measure of the multichannel 343 

network, and its minimum value is 1 if all divergent or convergent points connect 344 

to each other. 345 



Multichannel networks are hydraulically complex and, thus, the 346 

aforementioned unweighted (channel links are equivalent in network analysis) 347 

topological properties cannot be related adequately to the controlling processes 348 

and variables of river channels. For example, the longitudinal slope, bankfull 349 

discharge, channel depth, and median diameter of bed material usually are 350 

unknown when interrogating remote-sensing images and these are widely 351 

considered to be important parameters in determining channel form and 352 

behaviour. However, link width and length often are considered to be related to 353 

bankfull discharge and channel slope, respectively, and bifurcation angles 354 

reflect well-studied hydrodynamic controls as well as the constraints imposed 355 

by the width of the macrochannel. In this context, the multichannel network 356 

topological properties were weighted in this paper to reflect unmeasured 357 

controls such as a slope and depth (Table 1). The weight for degree wi,j
k  is the 358 

ratio of individual channel width and length, indicating that nodes with a larger 359 

weighted degree play a more important role in multichannel networks because 360 

they participate in more water and sediment transport and redistribution, while 361 

the weight for characteristic path length wi,j
l  is the ratio of the length of the 362 

individual channel and the mean length of all channel links and is, thus, 363 

proportional to spatial distances for water and sediment transport. Additionally, 364 

no weight was set for the clustering coefficient, which is a density measure for 365 

the occurrence of sand bars and islands in multichannel networks. Expressions 366 

for these topological measures of unweighted and weighted multichannel 367 

networks are listed in Table 1. 368 

2.3 Spatial evolution of topological measures at the sub-network 369 

scale 370 



The planviews of multichannel networks vary due to the influence of 371 

upstream flow and boundary conditions. In addition to assessment of the global 372 

network properties, RivMACNet also provides methods to explore the spatial 373 

distributions of topological properties along the multichannel centerline by using 374 

a circular moving window (Fig. 4A) with an adjustable radius R instead of the 375 

macrochannel (van Niekerk et al., 1995) cross lines. In this manner, the local 376 

topological measures f(x0) at x0 km from the most upstream extent of the 377 

multichannel network can be expressed as follows: 378 

f(x0)= 1
nx
∑ f(x)i,                         (9) 379 

where nx is the total number of nodes in the circlular window, while f(x)i is the 380 

measure value of the i-th node. 381 

3. Study area 382 

To test the practical utility and reliability of RivMACNet, we selected two 383 

regions as study areas. Region I: the Yangtze River (Chen et al., 2019) near 384 

Wuhan, China (Fig. 5A); Region II: the Indus River (Inam et al., 2007; Ali, 2013; 385 

Syvitski and Brackenridge, 2013; Kale, 2014; Carling et al., 2018) between the 386 

Chashma and Taunsa barrages located in the middle of the Indus Basin in 387 

Pakistan (Fig. 5B). The former case is a meandering river reach, while the latter 388 

exhibits an anastomosed river pattern composed of sand bars, islands, wet 389 

channels, and dry channels.  390 

Landsat 5/8 TM images of the two study reaches with a spatial resolution 391 

of 30/15 m were downloaded from Earth Explorer 392 

(http://earthexplorer.usgs.gov). The MNDWI was calculated for each of the 393 

pixels within the images, for use as the input to the RivMACNet algorithm. We 394 

selected three images to test our model. The first is the Landsat 8 TM image of 395 

http://earthexplorer.usgs.gov/


Region I in April 2019 with a size of 2705×1792 pixels. The other two are 396 

Landsat 5 TM images of Region II representing the low flow (LF) period in 397 

March 2011 and the high flow (HF) period in October 2011, to illustrate the 398 

reliability of the proposed method for identifying the river network topology 399 

between different flow conditions. Both images are 3000×3000 pixels. The 400 

ground data on water bodies were derived from the corresponding false colour 401 

composite of Landsat TM images by supervised classification using the support 402 

vector machine (SVM), which was executed in ENVI (Oliver, 2008). The training 403 

samples for each class were selected manually based on their colours. 404 

Although some error might be associated with the ground data, these data can 405 

be considered as a control group of constructed river channels when comparing 406 

RivMACNet with other methods because the error in the ground data is small 407 

relatively (Chen et al, 2019). 408 

 409 

Fig. 5. Maps of the study river reaches on (A) the Yangtze River near Wuhan, and (B) the 410 
Indus River located between the Chashma and Taunsa barrages, Pakistan. 411 
 412 



4. Results  413 

4.1 Parameter settings 414 

Before presenting results for the river network topologies and geometrical 415 

properties, essential parameter settings including the size of the noise removal 416 

window σ and the threshold of the width gate Δb need to be considered 417 

because different parameter values will lead to variable outputs. We set these 418 

parameters using data of the Indus. A larger σ makes RivMACNet insensitive 419 

to islands and sand bars. Fig. 6 illustrates the numbers of individual channels 420 

detected in the Indus network with different σ values during low and high flow 421 

periods, respectively. We tested different σ values and found that the output 422 

of individual channel numbers per macrochannel cross-section (mpc) when σ 423 

= 7 is consistent with observation (by visual interpretation) that the Indus 424 

network has a minimum of two (mpc,min = 2) and a maximum of nine (mpc,max = 425 

9) channels (Carling et al., 2018). Furthermore, the choice of threshold of Δb 426 

is a trade-off between the width-extraction accuracy and the number of 427 

individual channels. Thus, we employed a sensitivity analysis to determine its 428 

optimal value (Fig. 7). In Fig. 7, although a smaller threshold can strictly 429 

guarantee the accuracy of the detected river width it leads to the loss of 430 

channels. The latter phenomenon gradually improved as the threshold 431 

increased, and became stable at the threshold of Δb larger than 2. In this 432 

context, we set the threshold of Δb to 3 indicating that this optimal value can 433 

not only achieve a high measurement accuracy of the channel width, but also 434 

maximize the number of channels with positive width. We set the parameters 435 

to the aforementioned recommended values in all experiments reported in this 436 

paper. 437 



438 

 439 

Fig. 6. Numbers of individual channels detected in the Indus network using different σ 440 
values during high flow (HF) and low flow (LF) periods. 441 
 442 

 443 

Fig. 7. Sensitivity analysis of the threshold of Δb, showing the number of links plotted 444 
against the threshold of Δb during low flow and high flow periods. 445 

 446 

4.2 River network topology 447 

The river network topologies of the Yangtze and Indus were constructed 448 

after parameter (σ and the threshold of Δb) settings in RivMACNet. Fig. 8 449 

illustrates the connectivity matrix A of the study reach, as well as a series of 450 



geometrical measures vectorized for visualization including the channel width 451 

matrix B = {bi,j}, length matrix L = {li,j
c } and sinuosity matrix S = {si,j}. In matrix A, 452 

nodes within both two networks exhibit strong linear distributions and tend to 453 

connect to their neighbours in geographical space because multichannel 454 

networks can be described as ‘slender’ networks (Marra et al., 2014) with 455 

limited lateral extension in space, and their lengths are much larger than the 456 

multichannel widths. RivMACNet produced fewer nodes n and links m in the 457 

Yangtze network (n1 = 281, m1 = 339) than in the Indus network during the high 458 

flow (n2,HF = 1205, m2,HF = 1339) and low flow (n2,LF = 826, m2,LF = 892) periods, 459 

which is related to the reach length and the river pattern (Van den Berg, 1995; 460 

Xu, 2004). Additionally, to further compare the differences in links of the Indus 461 

between the low and high flow periods, statistics describing the geometrical 462 

properties of individual channels in the Indus network are shown in Fig. 9. On 463 

average, individual channel lengths during high flow periods are smaller than 464 

during low flow periods (l2,HF������ < l2,LF�����). This result can be explained by space-465 

filling considerations: the development of a new channel emanating from a node 466 

in a space-filling network inevitably intersect neighboring channels and 467 

consequently decrease individual channel lengths (Meshkova and Carling, 468 

2014). Although river channels would expand during high flow periods (for 469 

example, the number of individual channels with width larger than 1000 m 470 

increases in Fig. 9C), an opposite result is observed for the mean widths of the 471 

individual channels ( b2,HF������� < b2,LF������ ) because more narrow (b2,HF < 250 m) 472 

channels were generated during high flow periods. For the sinuosity, the 473 

number of channels where s2,HF > 1.2 decreased significantly during high flow 474 

periods, and more straight channels (s2,HF < 1.05) appeared. Nonetheless, the 475 



mean values of sinuosity during the high and low flow periods are still close to 476 

each other (Fig. 9B). In this context, the increase in the scale (the numbers of 477 

nodes and links) of network topology (n2,HF > n2,LF, m2,HF > m2,LF) implies that 478 

the Indus network exhibits more complex planviews during high flow periods, 479 

and most of these new individual channels during high flow periods tend to be 480 

short, narrow, and straight. 481 

 482 



483 

 484 

Fig. 8. (Right) An illustrative set of topological and geometrical matrices extracted from (A) 485 
the Yangtze network, and the Indus network during (B) LF periods and (C) HF periods. 486 
(Left) the water bodies are planviews of the sub-reaches shown by these matrices. For 487 
interpretation of the colours in the right matrices see the individual legends. A 50 – node 488 
matrix is used to provide the best visual impression of the different colors in each matrix. 489 
 490 



491 

492 

 493 

Fig. 9. Distributions of the geometrical properties (A) length, (B) sinuosity and (C) width of 494 
the individual channels in the Indus network during high and low flow periods. 495 
 496 

4.3 Multichannel network topological measures 497 

Three global topological measures including the weighted degree (WD), 498 

clustering coefficient (CC) and the weighted characteristic path length (WCPL) 499 

of the two study areas are reported in Table 2. Values of these three weighted 500 

topological measures are different between two different river networks, but 501 

close when comparing different flow conditions in the same study area. For 502 

example, the WD value of the Yangtze network considering the length/width 503 



ratio of individual channels as connection strengths is 1.601, smaller than that 504 

of the Indus network during LF and HF periods ( k2,HF
w������ ≈ k2,LF

w  ������� ≈ 2.7 ).  505 

Furthermore, the cumulative distribution of weighted degree Pk, representing 506 

the probability that one node has WD value greater than or equal to k, was 507 

calculated and plotted in Fig. 10A. The distributions in both Yangtze and Indus 508 

networks follow the power-law ( Pk∝ k-λ ) distribution and nodes with low 509 

weighted degree values (ki
w < kw���) account for the largest proportion (70.2% for 510 

Yangtze network, and 68.8% and 68.7% for Indus network during HF and LF 511 

periods, respectively), followed by a positively skewed long tail (Fig. 10A). 512 

Table 2. Topological measures of the Yangtze and Indus networks at the 513 
whole reach scale. 514 

Network Date WD CC WCPL 

Yangtze April 2019 1.601 0.043 31.516 

Indus 
March 2011 (LF) 2.667 0.039 71.313 

October 2011 (HF) 2.689 0.026 75.722 



515 

 516 

Fig. 10. (A) The cumulative distributions of weighted degree (WD) of the Yangtze and 517 
Indus networks during high and low flow periods. (B) The relationship between the 518 
weighted characteristic path length (WCPL) and node number for the Yangtze and Indus 519 
networks. The step size of the node numbers Δn are 40, and 100 for Yangtze and Indus, 520 
respectively. 521 
 522 

In contrast to the maximum clustering coefficient (CC) value of 1, global 523 

CC values for both Yangtze and Indus networks are small, implying that these 524 



two river networks have a poor transitivity (Newman, 2003). This outcome may 525 

be due to the existence of a considerable number of end nodes caused by ‘blind 526 

spurs’ with a CC value of 0 (Fig. 11). Moreover, the clustering coefficient 527 

assesses only the density of ‘triangle patterns’ defining sand bars and islands, 528 

but ignores higher order structures like ‘quadrilaterals’ in multichannel networks 529 

(Fig. 11). Due to limited computational resources, we considered only CC 530 

values of quadrilaterals (cycles of length 4), 𝐶𝐶𝑖𝑖4= 
∑ aijajhahkakij,h,k∈n

ki,nnki(ki-1)
, based on the 531 

extendibility of the expression in Table 1 (Caldarelli et al., 2004). As a result, 532 

similar to the third-order CC, fourth order CC values of both Yangtze and Indus 533 

networks were also small; 0.006 for the former, while 0.015 and 0,012 for the 534 

latter during LF and HF periods. 535 

 536 

Fig. 11. Illustration of blind spurs, triangles, and quadrilaterals located in the multichannel 537 
network. 538 
 539 

The weighted characteristic path length (WCPL) serves as a measurement 540 

of the mean shortest water and sediment transport distance between pairs of 541 

bifurcation nodes within a river network. In order to explore the relationship 542 



between the WCPL value and the node numbers within river networks, an 543 

ordered subset of the nodes was used to create the sub-networks. The ordered 544 

subset starts from the most upstream node of the multichannel network, and 545 

the number of nodes in the subset increases gradually by a given step size Δn. 546 

The corresponding WCPL value of each sub-network of the Yangtze and Indus 547 

networks was calculated (Fig. 10B). The results indicate that WCPL remarkably 548 

scales linearly with the network scale in any study area (lw ∝ m), although 549 

values of WCPL varies greatly between two river networks (Table 2). 550 

Additionally, as shown in Fig. 10B, the WCPL of the Indus network during high 551 

flow periods is smaller than that during low flow periods with the same number 552 

of nodes due to the larger proportion of short channels during high flow periods 553 

(Fig. 9A). 554 

4.4 Spatial evolution of topological measures at a sub-network scale 555 

RivMACNet also examined the spatial evolution of the multichannel 556 

network (i.e., Indus network in this study) topology. The radius of the circular 557 

moving window R for assessment of local topological properties was set to 3 558 

km, slightly larger than the multichannel width of the Indus network to prevent 559 

nodes from being ignored. Fig. 12 illustrates the spatial evolution of topological 560 

measures at the subnetwork scale (R = 3 km) along the multichannel centerline 561 

of the Indus during both high and low periods. In contrast to the global measures, 562 

three local measures vary along the Indus network, indicating that the Indus 563 

network topology is irregular. Furthermore, the trends in Fig. 12 are likely to be 564 

the sum of a series of sine functions of varying periods and amplitudes, rather 565 

than monotonic. Thus, a continuous wavelet transform (CWT) was used to 566 

analyze the dominant periods Ta in the spatial evolution of the Indus network 567 



topology. For brevity this method is not explained here, but is reported in detail 568 

by Kharitonenko et al. (2002) and Liang et al. (2010). The wavelet coefficients 569 

Wf (a, b) and their variance values Var (a) of the three topological measures 570 

are illustrated in Fig. 13, which shows that the aforementioned topological 571 

measures exhibit similar spatial evolution periods under the same flow 572 

conditions. Although no clear long-distance trends were observed, 8 - to - 12 573 

km periods during high flow, and 15 - to - 37 km periods during low flow are 574 

identified shown by the white horizontal lines, implying that the Indus network 575 

exhibits beaded planforms such that, multiple channel reaches are interspersed 576 

with reaches with fewer channels. 577 

578 

 579 

Fig. 12. Spatial distributions of three topological measures, including weighted degree, 580 
cluster coefficient and the weighted characteristic path length, at the subnetwork scale (R 581 



= 3 km) along the multichannel centerline of the Indus network during (A) low and (B) high 582 
flow periods. 583 
 584 

585 

586 

587 

588 



589 

 590 

Fig. 13. (Left) Contours of the wavelet coefficient Wf (a, b) and (Right) its variance values 591 
Var (a) against the period of the local topological measures: weighted degree (WD), 592 
clustering coefficient (CC) and weighted characteristic path length (WCPL) in the Indus 593 
network during (A) low and (B) high flow periods. The dominant periods Ta in the spatial 594 
evolution can be reflected by the maximum values of Var (a), and marked by white 595 
horizontal lines in the contours of Wf (a, b). 596 
 597 

5. Discussion 598 

5.1 Reliability of RivMACNet 599 

To assess the reliability and performance of RivMACNet, another popular 600 

river analysis engine RivaMap (Isikdogan et al., 2017) was applied to the 601 

Yangtze network and the Indus network during high flow periods (see 602 

http://live.ece.utexas.edu/research/rivamap/). The three following issues were 603 

considered when comparing these two methods: 604 

1) Computation complexity. We executed the RivMACNet and RivaMap on 605 

MATLAB R2016a using a PC (CPU: Intel Core i5-4590T at 2 GHz, RAM: 8 GB, 606 

Windows10). It took 595s and 1527s for RivaMap to construct the topologies of 607 

the Yangtze and Indus networks. This time period is longer than for RivMACNet 608 



which took 254s and 629s, respectively. The difference between the two 609 

methods suggests that RivMACNet has a significantly higher computational 610 

efficiency and because the total time consumed will increase with the scale of 611 

river network, this difference is likely to be larger in practice. 612 

2) Comparison of network topological measures. 281 nodes and 339 links 613 

were detected in the Yangtze network in RivMACNet, larger than numbers (less 614 

than 220 nodes and 240 links in the same study area) reported by Chen et al. 615 

(2019). These differences are caused by the MNDWI threshold and node 616 

detection method. Additionally, the constructed maps of the study reaches were 617 

derived using the line with length bi,j
k  (expression (8)) orthogonal to the channel 618 

local orientation slopi,j
k  (expression (6)) at each skeleton pixel (or centerline 619 

point in RivaMap) in RivMACNet. These constructed maps are shown in Fig. 620 

14 with ground reference data on water bodies presented as background. Given 621 

the ground-reference images, we calculated and compared the precision and 622 

recall of the channel images constructed by the two methods (Table 3): 623 

Precision = TP
TP+FP

;                      (10) 624 

Recall = TP
TP+FN

;                        (11) 625 

where TP indicates the number of pixels considered as water bodies in both 626 

ground - reference images and RivMACNet (or RivaMap), while FP(FN) 627 

indicate the number of pixels considered as water bodies (non-water bodies) in 628 

ground - reference images, but non-water bodies (water bodies) in RivMACNet 629 

or RivaMap. For the Yangtze network, the precision values for RivMACNet and 630 

RivaMap are close, and the main false positives refer to isolated channels 631 

caused by the small MNDWI (red pixels in I shown in Fig. 14). However, 632 



RivaMap produced a low precision in the constructed map of the Indus, missing 633 

large slices of channels (pink pixels in II shown in Fig. 14). This lack of precision 634 

is because RivaMap is unable to guarantee the connectivity of the constructed 635 

channels, especially for multichannel networks with a large number of 636 

bifurcations (Isikdogan et al, 2017). An individual channel may be cut into 637 

several short and discontinuous channels, of which some small connected 638 

areas were mistakenly regarded as noise and then omitted when regenerating 639 

river channels. Additionally, values of recall of RivMACNet are slightly larger 640 

than that of RivaMap, indicating that RivMACNet is more sensitive to the 641 

presence of small islands and sand bars (green pixels in III shown in Fig. 14), 642 

which play important roles in the multichannel network study. 643 

Table 3. Precision and recall of RivMACNet and RivaMap. 644 

 
Precision (%) Recall (%) 

Yangtze Indus Yangtze Indus 

RivMACNet 98 95 91 91 

RivaMap 92 71 88 87 

 645 

 646 



Fig. 14. Comparison between the constructed (A) Yangtze and (B) Indus maps produced 647 
using RivMACNet and RivaMap using ground reference data on water bodies as 648 
background. (I), (II), and (III) are zoomed images of (A) and (B), respectively. Sporadic 649 
water bodies in size Area (Area < 0.05×M×N in this paper) are considered as noise, and 650 
have been omitted in RivaMap constructed maps and the ground data. 651 
 652 

3) Comparison of network planview measures. Clearly, the ability of 653 

RivaMap to derive reliable individual channel lengths and sinuosity, as well as 654 

node and link counts is limited by its poor performance in maintaining river 655 

connectivity. In this context, we considered the individual channel widths and 656 

compared these between RivaMap and RivMACNet because the extraction 657 

process is almost unaffected by network connectivity. In contrast to the 658 

centerlines of individual channels in RivaMap, the channel skeleton is applied 659 

for channel width extraction in RivMACNet. Thus, we computed the average of 660 

the width estimates for the centerline points in RivaMap that were within a given 661 

distance (herein referred to as one resolution unit) from the skeletons to ensure 662 

the same individual channels in RivMACNet were compared. In this manner, 663 

we examined 254 and 1141 individual channels of the Yangtze and Indus 664 

network, respectively, and then calculated the Spearman correlation coefficient 665 

(Spearman, 1987) of individual channel widths produced by RivMACNet and 666 

RivaMap. A significant correlation (Spearman correlation coefficients of 0.988 667 

and 0.915 for the Yangtze and Indus networks, respectively) between the two 668 

channel width datasets produced by RivMACNet and RivaMap was observed 669 

(Fig. 15), implying that river network measures (e.g., individual channel width) 670 

extracted by RivMACNet are similar to those produced by RivaMap. 671 



 672 

Fig. 15. Comparison of the estimates of river width produced by RivMACNet and RivaMap. 673 

5.2 Limitations 674 

Although RivMACNet has been demonstrated to be superior in 675 

guaranteeing the connectivity of multichannel networks, the RivMACNet results 676 

remain limited by the quality of the input data and methods used. First, user 677 

decisions are a central component of RivMACNet and include selecting 678 

parameters such as a set of thresholds for MNDWI, the noise removal window 679 

size σ, width gate Δb, and sub-network radius R. Although these decisions 680 

could be made based on prior knowledge, any uncertainty associated with 681 

these parameter values could be transferred to the outputs. Second, 682 

RivMACNet poorly detects individual channels with width close to or less than 683 

the spatial resolution of the input images. The same limitation also apply to 684 

other routines such as RivaMap. Third, in contrast to field surveys, errors and 685 

uncertainty associated with geospatial data also are important issues that need 686 

to be considered in the river network analysis (Downward et al., 1994). The 687 

likely sources of errors and uncertainty in RivMACNet can be summarised as 688 

follows: (i) errors caused by transforming the longitude and latitude of the river 689 

network in the real-world to the corresponding X and Y pixel coordinates in the 690 

digital maps; (ii) uncertainty caused by delineating the boundaries of river 691 

channel extent in digitized maps (Leonard et al., 2020); (iii) errors due to the 692 



definition of the river network as a directed and weighted network, with the 693 

directions of its links determined simply by the distances from nodes connected 694 

to them to the upstream of the multichannel network. A 3D representation 695 

achieved using a digital elevation model (DEM) could increase accuracy, 696 

especially for lateral individual channels in river networks. 697 

6. Conclusions 698 

We presented a new automatic multichannel network analysis method 699 

called RivMACNet for: (i) constructing multichannel network topology; (ii) 700 

calculating geometrical measures including individual channel lengths, widths 701 

and sinuosities and (iii) calculating topological measures including the weighted 702 

degree (WD), clustering coefficient (CC) and weighted characteristic path 703 

length (WCPL) at the reach and subnetwork scales. The method used, as input, 704 

satellite sensor images of MNDWI, although other variable inputs are possible. 705 

We tested RivMACNet on the meandering reach of the Yangtze River near 706 

Wuhan, and the braided reach of the Indus River, Pakistan, and analyzed their 707 

topological properties at different scales.  708 

Comparison between RivMACNet and other alternative conventional 709 

methods demonstrated that RivMACNet is a reliable tool for assessing and 710 

analyzing multichannel topology because: (i) RivMACNet is more sensitive to 711 

islands and sand bars located in multichannel rivers; (ii) RivMACNet has a 712 

higher computational efficiency and precision and (iii) RivMACNet can maintain 713 

network connectivity.  714 

Network analysis of reaches of the Yangtze and Indus Rivers indicated that 715 

multichannel networks exhibited a strong linear, but beaded (Meshkova and 716 

Carling, 2013) planview such that reaches with multiple parallel channels are 717 



interspersed with reaches with fewer, or only one channel. The topological 718 

measures (e.g., WD, CC and WCPL in this study) at the reach scale were found 719 

to be independent of discharge. The small CC values imply poor transitivity in 720 

both Yangtze and Indus networks. Additionally, the dominant topological scale 721 

of the Indus network varied periodically along the river reach (8 - to-12 km for 722 

HF periods, and 15 – to - 37 km for LF periods).  723 

The proposed RivMACNet method has considerable application prospect 724 

for the analysis of complex river networks, providing a new lens through which 725 

to analyze river network behaviour. In the future, research should focus on other 726 

multichannel networks using time-series datasets and compare the similarities 727 

and differences between topological measures characterizing these 728 

multichannel networks in nature, with the general aim to discover the physical 729 

bases of river networks. 730 

Authorship statement 731 

LYH developed the conception and design of study, wrote the necessary 732 

scripts, performed analysis, and wrote the manuscript. PMA helped in the 733 

conception and design of study, guided the methodological analysis, helped 734 

write the manuscript, and revised the manuscript critically for important 735 

intellectual content. PAC originated the conception and design of study, guided 736 

the analysis, helped write the manuscript, and revised the manuscript critically 737 

for important intellectual content. WYJ acquired the data, and participated in 738 

the analysis. JEH acquired the data, and participated in the analysis. 739 

Declaration of competing interest 740 



The authors declare that they have no known competing financial interests 741 

or personal relationships that could have appeared to influence the work 742 

reported in this paper.  743 

Computer code availability 744 

RivMACNet are available at http://github.com/lyh444/RivMACN.git. The 745 

code developer was Yanhui Liu (Address: Hohai University, Nanjing, China. 746 

Contact number: + 86 - 15850553774. E-mail address: liuyanhui@hhu.edu.cn.) 747 

RivMACNet is implemented and tested in MATLAB R2016a. Everyone is 748 

granted permission to copy, modify and redistribute this code, but under the 749 

condition that the original algorithm copyright is preserved.  750 

Acknowledgements 751 

This research was funded and supported partially by the National Key 752 

Research and Development Program of China (No. 2021YFC3200400), the 753 

National Natural Science Foundation of China (NSFC, No. 42041004), the 754 

Provincial Science Fund for Excellent Young Scholars of Henan (No. 755 

202300410540), the China Scholarship Council (No. CSC201906710092) and 756 

Hohai University, Nanjing. The research was undertaken while Liu Yanhui 757 

visited Lancaster University in 2020.  758 

References 759 
Ali A., 2013. Indus basin floods: Mechanisms, impacts, and management. Asian 760 

Development Bank, Mandaluyong City, Philippines. 761 
Ashour, M. A., Saad, M. S., Kotb M. M., 2017. Evaluation of alluvial channels meandering 762 

phenomenon (case study Bahr Youssef). Annals of Valahia University of Targoviste, 763 
Geographical Series, 17(2): 206 – 219. 764 

Bai R., Tiejian L., Huang Y., et al., 2015. A hierarchical pyramid method for managing 765 
large-scale high-resolution drainage networks extracted from DEM. Computers & 766 
Geosciences 85: 234-247. https://doi.org/10.1016/j.cageo.2015.06.019 767 

Bridge J. S., 2009. Rivers and floodplains: forms, processes, and sedimentary record. John 768 
Wiley & Sons. 769 

Caldarelli G., Pastor-Satorras R., Vespignani A., 2004. Structure of cycles and local 770 
ordering in complex networks. The European Physical Journal B, 38(2): 183-186. 771 
https://doi.org/10.1140/epjb/e2004-00020-6 772 

Carling P. A., Jansen J., Meshkova L., 2014. Multichannel rivers: their definition and 773 

https://doi.org/10.1140/epjb/e2004-00020-6


classification. Earth Surface Processes and Landforms, 39(1): 26-37.  774 
https://doi.org/10.1002/esp.3419 775 

Carling P. A., Trieu H., Hornby D. D., et al., 2018. Are equilibrium multichannel networks 776 
predictable? The case of the regulated Indus River, Pakistan. Geomorphology 302: 777 
20-34. https://doi.org/10.1016/j.geomorph.2017.09.021 778 

Chen W., Sui L., Xu Z., et al., 2012. Improved Zhang-Suen thinning algorithm in binary line 779 
drawing applications//International Conference on Systems and Informatics 780 
(ICSAI2012). IEEE: 1947-1950. https://doi.org/10.1109/ICSAI.2012.6223430 781 

Chen X., Shen X., Li H., et al., 2019. Construct Channel Network Topology From Remote 782 
Sensing Images by Morphology and Graph Analysis. IEEE Geoscience and Remote 783 
Sensing Letters. http://10.1109/LGRS.2019.2942107 784 

Chew L. C., Ashmore P. E., 2001. Channel adjustment and a test of rational regime theory 785 
in a proglacial braided stream. Geomorphology, 37(1-2): 43-63.  786 
https://doi.org/10.1515/avutgs- 2017-0019 787 

Dodds P. S., Rothman D. H., 2000. Geometry of river networks. I. Scaling, fluctuations, 788 
and deviations. Physical Review E, 63(1): 016115. 789 
https://doi.org/10.1103/PhysRevE.63.016115 790 

Downward S. R., Gurnell A. M., Brookes A., 1994. A methodology for quantifying river 791 
channel planform change using GIS. IAHS Publications-Series of Proceedings and 792 
Reports-Intern Assoc Hydrological Sciences, 224: 449-456. 793 

Environment and GIS Support Project for Water Sector Planning (EGIS), 2002. Developing 794 
and updating Empirical Methods for Predicting Morphological Changes of Jamuna 795 
River Information System. EGIS Technical Note Series 29, Dhaka, Bangladesh. 796 

Floyd R. W., 1962. Algorithm 97: shortest path. Communications of the ACM, 5(6): 345. 797 
https://doi.org/10.1145/367766.368168 798 

Grabowski R. C., Surian N., Gurnell A. M., 2014. Characterizing geomorphological change 799 
to support sustainable river restoration and management. Wiley Interdisciplinary 800 
Reviews: Water 1(5): 483-512. https://doi.org/10.1002/wat2.1037 801 

Guo Q., Pu R., Li J., et al., 2017. A weighted normalized difference water index for water 802 
extraction using Landsat imagery. International Journal of Remote Sensing 38(19): 803 
5430-5445. https://doi.org/10.1080/01431161.2017.1341667 804 

Gupta A., 2008. Large Rivers: Geomorphology and Management. John Wiley and Sons: 805 
Chichester. 806 

Gupta N., Atkinson P. M., Carling P. A., 2013. Decadal length changes in the fluvial 807 
planform of the River Ganga: bringing a mega-river to life with Landsat archives. 808 
Remote Sensing Letters, 4(1): 1-9. https://doi.org/10.1080/2150704X.2012.682658 809 

Hiatt M., Sonke W., Addink E. A., et al., 2020. Geometry and topology of estuary and 810 
braided river channel networks automatically extracted from topographic data. Journal 811 
of Geophysical Research: Earth Surface, 2020, 125(1): e2019JF005206. 812 
https://doi.org/10.1029/2019JF005206 813 

Harrison L. R., Legleiter C. J., Wydzga M. A., et al., 2011. Channel dynamics and habitat 814 
development in a meandering, gravel bed river. Water Resources Research, 47(4). 815 
https:// doi. org /10.1029/2009WR008926 816 

Hasthorpe J., Mount N., 2007. The generation of river channel skeletons from binary 817 
images using raster thinning algorithms. Proceedings of The Geographical Information 818 
Science Research UK Conference. Maynooth, Ireland: 477-483. 819 

Howard A. D., Keetch M. E., Vincent C. L., 1970. Topological and geometrical properties 820 
of braided streams. Water Resources Research, 6(6): 1674-1688. 821 
https://doi.org/10.1029/WR006i006p01674 822 

Inam A., Clift P. D., Giosan L., et al., 207. The geographic, geological and oceanographic 823 
setting of the Indus River. Large rivers: geomorphology and management, 2007: 333-824 
345. 825 

Isikdogan F., Bovik A., Passalacqua P., 2017. RivaMap: An automated river analysis and 826 
mapping engine. Remote Sensing of Environment 202: 88-97.  827 
https://doi.org/10.1016/j.rse.2017.0 3.044 828 

Jansen J. D., Nanson G. C., 2010. Functional relationships between vegetation, channel 829 
morphology, and flow efficiency in an alluvial (anabranching) river. Journal of 830 

https://doi.org/10.1002/esp.3419
https://doi.org/10.1109/ICSAI.2012.6223430
https://doi.org/10.1109/LGRS.2019.2942107
https://doi.org/10.1515
https://doi.org/10.1103/PhysRevE.63.016115
https://doi.org/10.1145/367766.368168
https://doi.org/10.1002/wat2.1037
https://doi.org/10.1080/2150704X.2012.682658
https://doi.org/10.1029/2019JF005206
https://doi.org/10.1029/WR006i006p01674
https://doi.org/


Geophysical Research: Earth Surface, 2010, 115(F4). 831 
http://dx.doi.org/10.1029/2010JF001657 832 

Kale V. S., 2014. Is flooding in South Asia getting worse and more frequent?. Singapore 833 
Journal of Tropical Geography, 35(2): 161-178. https://doi.org/10.1111/sjtg.12060 834 
Kharitonenko I., Zhang X., Twelves S., 2002. A wavelet transform with point – 835 
symmetric extension at tile boundaries. IEEE Transaction on Image Processing, 836 
11(12): 1357 – 1364. http://dx.doi.org/10.1109/TIP.2002.806237 837 

Kleinhans M. G., Ferguson R. I., Lane S. N., et al., 2013. Splitting rivers at their seams: 838 
bifurcations and avulsion. Earth Surface Processes and Landforms, 38(1): 47-61. 839 
https://doi.org/10.1002/esp.3268 840 

Kleinhans M., van Kreveld M., Ophelders T., et al., 2019. Computing representative 841 
networks for braided rivers. Journal of Computational Geometry, 10(1): 423–443-842 
423–443. https://doi.org/10.20382/jocg.v10i1a14 843 

Leonard C. M., Legleiter C. J., Lea D. M., et al., 2020. Measuring channel planform 844 
change from image time series: A generalizable, spatially distributed, probabilistic 845 
method for quantifying uncertainty. Earth Surface Processes and Landforms, 45(11): 846 
2727-2744. https://doi.org/10.1002/esp.4926 847 

Leopold L. B., Wolman M. G., 1957. River channel patterns: braided, meandering, and 848 
straight. US Government Printing Office. 849 

Li J., Xia J., Zhou M., et al., 2017. Variation in reach-scale thalweg-migration intensity in a 850 
braided reach of the lower Yellow River in 1986–2015. Earth Surface Processes and 851 
Landforms, 42(13): 1952-1962. https://doi.org/10.1002/esp.4154 852 

Liang S., Ge S., Wan L., et al., 2010. Can climate change cause the Yellow River to dry 853 
up? Water Resources Research, 46(2). https://doi.org/10.1029/2009WR007971 854 

Liu Y., Wang Y., Jiang E., 2021. Stability index for the plainview morphology of alluvial 855 
rivers and a case study of the Lower Yellow River. Geomorphology, 389: 107853. 856 

    https://doi.org/10.1016/j.geomorph.2021.107853 857 
Marra W. A., Kleinhans M. G., Addink E. A., 2014. Network concepts to describe channel 858 

importance and change in multichannel systems: test results for the Jamuna River, 859 
Bangladesh. Earth Surface Processes and Landforms, 39(6): 766-778. 860 
https://doi.org/10.1002/esp.3482 861 

McFeeters S. K., 1996. The use of the Normalized Difference Water Index (NDWI) in the 862 
delineation of open water features. International Journal of Remote Sensing, 17(7): 863 
1425-1432. https://doi.org/10.1080/01431169608948714. 864 

Meshkova L. V., Carling P. A., 2013. Discrimination of alluvial and mixed bedrock–alluvial 865 
multichannel river networks. Earth Surface Processes and Landforms, 38(11): 1299-866 
1316. https://doi.org/10.1002/esp.3417 867 

Miller T. K., 1988. Stream channel pattern: A threshold model. Physical Geography, 9(4): 868 
373-384. https://doi.org/10.1080/02723646.1988.10642361 869 

Monegaglia F., Zolezzi G., Güneralp I., et al., 2018. Automated extraction of meandering 870 
river morphodynamics from multitemporal remotely sensed data. Environmental 871 
Modelling & Software 105: 171-186. https://doi.org/10.1016/j.envsoft.2018.03.028. 872 

Mount N. J., Louis J., Teeuw R. M., et al., 2003. Estimation of error in bankfull width 873 
comparisons from temporally sequenced raw and corrected aerial photographs. 874 
Geomorphology, 56 (1-2): 65-77. https://doi.org/10.1016/S0169-555X(03)00046-1 875 

Nanson G. C., Knighton A. D., 1996. Anabranching rivers: their cause, character and 876 
classification. Earth Surface Processes and Landforms, 21(3): 217-239. 877 
https://doi.org/10.1002/(SICI)1096-9837(199603)21:3<217::AID-ESP611>3.0.CO;2-878 
U 879 

Newman M. E. J., 2003. The structure and function of complex networks. SIAM Review 880 
45(2): 167-256. https://doi.org/10.1137/S003614450342480 881 

Oliver S., 2008. Image Analysis, Classification and Change Detection in Remote Sensing 882 
(With Algorithms for ENVI/IDL). Computers & Geosciences, 34(1).  883 
https://doi.org/10.1137/S003614450342480 884 

Olsen M. A., Hartung D., Busch C., et al., 2011. Convolution approach for feature detection 885 
in topological skeletons obtained from vascular patterns//2011 IEEE Workshop on 886 
Computational Intelligence in Biometrics and Identity Management (CIBIM). IEEE: 887 

http://dx.doi.org/10.1029/2010JF001657
https://doi.org/10.1111/sjtg.12060
https://doi.org/10.1002/esp.3268
https://doi.org/10.20382/jocg.v10i1a14
https://doi.org/10.1002/esp.4926
https://doi.org/10.1002/esp.4154
https://doi.org/10.1029/2009WR007971
https://doi.org/10.1002/esp.3482
https://doi.org/10.1080/01431169608948714.
https://doi.org/10.1016/j.envsoft.2018.03.028.
https://doi.org/10.1016/S0169-555X(03)00046-1
https://doi.org/10.1002/(SICI)1096-9837(199603)21:3%3c217::AID-ESP611%3e3.0.CO;2-U
https://doi.org/10.1002/(SICI)1096-9837(199603)21:3%3c217::AID-ESP611%3e3.0.CO;2-U
https://doi.org/10.1137/S003614450342480
https://doi.org/10.1137/S003614450342480


163-167. https://doi.org/10.1109/CIBIM.2011.5949223. 888 
Osman A. M., Thorne C. R., 1998. Riverbank stability analysis. I: Theory. Journal of 889 

Hydraulic Engineering, 114(2): 134-150.  890 
https://doi.org/10.1061/(ASCE)0733-9429(1988)114:2(134) 891 

Parker G., Anderson A. G., 1975. MODELING OF MEANDERING AND BRANDING IN 892 
RIVERS[C]//PROC. 2ND ANNUAL SYMP. OF WATERWAYS, HARBOURS AND 893 
COASTAL ENGNG. DIV. ASCE ON MODELING TECHNIQUES, (MODELING'75: 894 
SAN FRANCI., 1(SEPTEMBER 3-5, 1975)): 575-591. 895 

Parker G., 1976. On the cause and characteristic scales of meandering and braiding in 896 
rivers. Journal of Fluid Mechanics, 76(3): 457-480. 897 
https://doi.org/10.1017/S0022112076000748 898 

Parker G., Shimizu Y., Wilkerson G. V., et al., 2011. A new framework for modeling the 899 
migration of meandering rivers. Earth Surface Processes and Landforms, 36(1): 70-900 
86. https://doi.org/10.1002/esp.2113 901 

Pavelsky T. M., Smith L. C., 2008. RivWidth: A software tool for the calculation of river 902 
widths from remotely sensed imagery. IEEE Geoscience and Remote Sensing Letters 903 
5(1): 70-73. https://doi.org/10.1109/LGRS.2007.908305 904 

Petropoulos G. P., Kalaitzidis C., Vadrevu K. P., 2012. Support vector machines and 905 
object-based classification for obtaining land-use/cover cartography from Hyperion 906 
hyperspectral imagery. Computers & Geosciences , 41: 99-107. 907 
https://doi.org/10.1016/j.cageo.2011.08.019 908 

Richardson W. R., 2002. Simplified model for assessing meander bend migration rates. 909 
Journal of Hydraulic Engineering 128(12): 1094-1097.  910 
https://doi.org/10.1061/(ASCE)0733-9429 (2002)128:12(1094) 911 

Rodríguez-Iturbe I., Rinaldo A., 2001. Fractal river basins: chance and self-organization. 912 
Cambridge University Press. 913 

Rubinov M., Sporns O., 2010. Complex network measures of brain connectivity: uses and 914 
interpretations. Neuroimage 52(3): 1059-1069.  915 
https://doi.org/10.1016/j.neuroimage.20 09.10.003. 916 

Rust B. R., 1978. A classification of alluvial channel systems. In fluvial Sedimentology, Mial 917 
AD (ed). Canadian Society of Petroleum Geologist: Calgary, Canada; 187-198. 918 

Schaefer E. I., Pelletier J. D., 2020. An algorithm to reduce a river network or other graph-919 
like polygon to a set of lines. Computers & Geosciences, 145: 104554. 920 
https://doi.org/10.1016/j.cageo.2020.104554 921 

Schwenk J., 2016. Meandering rivers: interpreting dynamics from planform geometry and 922 
the secret lives of migrating meanders. University of Minnesota. 923 
https://doi.org/10.1108/K-02-2018-0092 924 

Schwenk J., Hariharan J., 2021. RivGraph: Automatic extraction and analysis of river and 925 
delta channel network topology. Journal of Open Source Software, 2021, 6 (LA-UR-926 
21-20218). https://doi.org/10.21105/joss.02952 927 

Shahrood A. J., Menberu M. W., Darabi H., et al., 2020. RiMARS: An automated river 928 
morphodynamics analysis method based on remote sensing multispectral datasets. 929 
Science of the Total Environment, 719: 137336. 930 
https://doi.org/10.1016/j.scitotenv.2020.137336 931 

Shen X., Hong Y., Zhang K., et al., 2017. Refining a distributed linear reservoir routing 932 
method to improve performance of the CREST model. Journal of Hydrologic 933 
Engineering, 22(3): 04016061. 934 
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001442 935 

Smith M. J., Pain C. F., 2009. Applications of remote sensing in geomorphology. Progress 936 
in Physical Geography, 33(4): 568-582. https://doi.org/10.1177/0309133309346648 937 

Spearman C., 1987. The proof and measurement of association between two things. The 938 
American Journal of Psychology, 100(3/4): 441-471. 939 
https://doi.org/10.2307/1422689 940 

Syvitski J. P. M., Brakenridge G. R., 2013. Causation and avoidance of catastrophic 941 
flooding along the Indus River, Pakistan. GsA today, 23(1): 4-10. 942 

Tokunaga E., 1966. The composition of drainage network in Toyohira River Basin and 943 
valuation of Horton's first law. Geophys. Bull. Hokkaido Univ., 15: 1-19. 944 

https://doi.org/10.1109/CIBIM.2011.5949223.
https://doi.org/10.1017/S0022112076000748
https://doi.org/10.1002/esp.2113
https://doi.org/10.1016/j.cageo.2011.08.019
https://doi.org/
https://doi.org/10.1016/j.cageo.2020.104554
https://doi.org/10.1108/K-02-2018-0092
https://doi.org/10.21105/joss.02952
https://doi.org/10.1016/j.scitotenv.2020.137336
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001442
https://doi.org/10.1177/0309133309346648
https://doi.org/10.2307/1422689


Tooth S., Nanson G. C., 2004. Forms and processes of two highly contrasting rivers in arid 945 
central Australia, and the implications for channel-pattern discrimination and 946 
prediction. Geological Society of America Bulletin, 116(7-8): 802-816. 947 
https://doi.org/10.1130/B25308.1 948 

Van den Berg J. H., 1995. Prediction of alluvial channel pattern of perennial rivers. 949 
Geomorphology, 12(4): 259-279.  950 
https://doi.org/10.1016/0169-555X(95)00014-V 951 

Van Niekerk A. W., Heritage G. L., Moon B. P., 1995. River classification for management: 952 
the geomorphology of the Sabie River in the eastern Transvaal. South African 953 
Geographical Journal, 77(2): 68-76.https://doi.org/10.1080/03736245.1995.9713594 954 

Watts D. J., Strogatz S. H., 1998. Collective dynamics of ‘small-world’ networks. Nature, 955 
393(6684): 440-442. https://doi.org/10.1038/30918 956 

Williams P. F., Rust B. R., 1969. The sedimentology of a braided river. Journal of 957 
Sedimentary Research, 39(2): 649-679.  958 
https://doi.org/10.1306/74D71CF3-2B21-11D7-8648000102C1865D 959 

Xu H., 2006. Modification of normalised difference water index (NDWI) to enhance open 960 
water features in remotely sensed imagery. International Journal of Remote Sensing, 961 
27(14): 3025-3033. https://doi.org/10.1080/01431160600589179 962 

Xu J., 2004. Comparison of hydraulic geometry between sand‐and gravel‐bed rivers in 963 
relation to channel pattern discrimination. Earth Surface Processes and Landforms: 964 
The Journal of the British Geomorphological Research Group, 29(5): 645-657. 965 
https://doi.org/10.1002/esp.1059 966 

Yousefi S., Pourghasemi H. R., Hooke J., et al., 2016. Changes in morphometric meander 967 
parameters identified on the Karoon River, Iran, using remote sensing data. 968 
Geomorphology, 271: 55-64. https://doi.org/10.1016/j.geomorph.2016.07.034 969 

Yukawa S, Watanabe T, Hara K., 2019. Bifurcation Angle Distribution in the Japanese 970 
River Network. Journal of the Physical Society of Japan 88(2): 024901.  971 
https://doi.org/10.7566/ JPSJ.88.024901 972 

Zhang T. Y., Suen C. Y., 1984. A fast parallel algorithm for thinning digital patterns. 973 
Communications of the ACM, 27(3): 236-239. 974 

Zhu H., Li C., Zhang L., et al., 2015. River channel extraction from SAR images by 975 
combining gray and morphological features. Circuits, Systems, and Signal Processing, 976 
34(7): 2271-2286. https://doi.org/10.1007/s00034-014-9922-2 977 

https://doi.org/10.1130/B25308.1
https://doi.org/10.1016/0169-555X(95)00014-V
https://doi.org/10.1080/03736245.1995.9713594
https://doi.org/10.1306/74D71CF3-2B21-11D7-8648000102C1865D
https://doi.org/10.1080/01431160600589179
https://doi.org/10.1002/esp.1059
https://doi.org/10.1016/j.geomorph.2016.07.034
https://doi.org/

	An automatic graph-based method for characterizing multichannel networks

