Amaechi, Chiemela Victor and Adefuye, Emmanuel Folarin and Kgosiemang, Irish Mpho and Huang, Bo and Amaechi, Ebube Charles (2022) Scientometric Review for Research Patterns on Additive Manufacturing of Lattice Structures. Materials, 15 (15): e5323. ISSN 1996-1944
materials_15_05323_v2_1_.pdf - Published Version
Available under License Creative Commons Attribution.
Download (8MB)
Abstract
Over the past 15 years, interest in additive manufacturing (AM) on lattice structures has significantly increased in producing 3D/4D objects. The purpose of this study is to gain a thorough grasp of the research pattern and the condition of the field’s research today as well as identify obstacles towards future research. To accomplish the purpose, this work undertakes a scientometric analysis of the international research conducted on additive manufacturing for lattice structure materials published from 2002 to 2022. A total of 1290 journal articles from the Web of Science (WoS) database and 1766 journal articles from the Scopus database were found using a search system. This paper applied scientometric science, which is based on bibliometric analysis. The data were subjected to a scientometric study, which looked at the number of publications, authorship, regions by countries, keyword co-occurrence, literature coupling, and scientometric mapping. VOSviewer was used to establish research patterns, visualize maps, and identify transcendental issues. Thus, the quantitative determination of the primary research framework, papers, and themes of this research field was possible. In order to shed light on current developments in additive manufacturing for lattice structures, an extensive systematic study is provided. The scientometric analysis revealed a strong bias towards researching AM on lattice structures but little concentration on technologies that emerge from it. It also outlined its unmet research needs, which can benefit both the industry and academia. This review makes a prediction for the future, with contributions by educating researchers, manufacturers, and other experts on the current state of AM for lattice structures.