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Abstract— This paper proposes a novel lightweight security-enabled distributed software-defined drone network 

(SDDN) for traffic monitoring. Security of drone/Unmanned Aerial Vehicles (UAV) communication and data 

exchange is ensured through lightweight key generation and encryption/decryption algorithm. A hybrid (static 

and dynamic) OpenMP/MPI-based distributed processing is used to compute the security primitives for drone-to-

drone communication. The proposed approach is more reliable, scalable and interoperable compared to other 

centralized logical control and incorporating network programming methods. Additionally, the use of 

cryptographic primitives and protocols make it more secure against attacks. A comparative analysis of proposed 

lightweight key generation and encryption/decryption algorithms with state-of-the-art algorithms shows that both 

proposed algorithms require fewer Gate Equivalents (GEs), and it varies from 18.4k to 29.6k. In terms of 

performance, both algorithms’ computational delay varies from 1.5 to 2 seconds. Jitter lies between 0.7 msec and 

2 msec. The proposed algorithms are found to have communicational costs varying with 0.4 and 0.7 times of input 

in bytes with a base value of 1.4 and 1.25. Further, energy consumption is varying with 0.4 and 0.7 times of input 

in bytes with a base value of 0.3 and 0.25. Security interruption probability variation analysis show that the 

proposed security algorithms are better compared to state-of-the-art approaches. Further, security analysis of both 

algorithms (using a statistical and formal model) shows that the proposed system is protected against various 

attacks. 

Keywords— Security analysis, lightweight security mechanism, distributed computing, message passing 

interface (MPI), unmanned autonomous vehicles (UAV). 

1. Introduction 

Drones are widely accepted in day-to-day applications such as product delivery, surveillance, monitoring, search 

and rescue, and military operations. Applications like traffic engineering, road safety, and on-road incident 

monitoring require multi-drone cooperative movement and collision-free strategy for drones. This provides 

efficiency, flexibility, reliability, and lesser costs for real-time traffic monitoring [1] [2] [3]. In any drone-based 

application, the major issues that need to be addressed so far include placement of drones, drones movement and 

path planning, increasing drone’s payload capacity, efficient and effective drone’s resource management and 

optimizing the drone’s flying, secure communications among flying drones with lightweight cryptographic 

primitives and protocols.  

The major challenges in the traditional traffic engineering system include [1]-[3]: (i) The fixed sensor, camera 

and display system based traffic system do not cover all regions. Thus, the domain of area coverage and 

availability of information is limited to certain road area only, (ii) Vehicle data captured in the traditional system 

is hard to apply a data fusion approach. This is because tracing the target vehicle over the road is almost 

impossible. In a drone-based system, it would be much easier to trace any target vehicle even if it moves off the 

road, (iii) The processing of data using drones and sharing with controller or cloud resources would be much 



 

efficient, faster, and secure compare to the traditional system, (iv) The drone-based moveable monitoring system 

can easily replace drones if it malfunctions without affecting the on-road traffic. Whereas, the traditional system 

causes much unease, (v) A single or small number of drones movement and LiDAR/Optical/Radar-based collision 

avoidance strategy for traffic engineering can cover certain areas only. A pre-planned drone movement strategy 

allows a significant number of drones to constantly cover a wide area in stipulated time. As a result, pre-planned 

multiple drone-based on-road traffic monitoring will be very useful especially over highways/motorways, and (vi) 

Traffic engineering equipment attached with a drone-based moveable system reduces the vulnerabilities as drones 

will be randomly deployed and the exchange of information should be through secure and lightweight 

cryptographic primitives and protocols. Additionally, Software Defined Networking (SDN)-integrated approach 

will be useful through various means. The importance of SDN-integrated approach is summarised as follows [40]:  

 In a SDN-integrated connected vehicular network, the possibility for increased speed and agility in the 

availability of network devices (both virtual and real) to users as a result of decreasing the requirement for 

human involvement. Growing use of virtual private networks (VLANs) as a component of physical local area 

networks (LANs) has created a tangled web of dependencies and links between them. Using virtual and physical 

networks, SDN abstracts the control and data planes, making it easier to centralise corporate management and 

provisioning in vehicular networks. 

 Administrators may experiment with network configuration without having to worry about creating an 

interruption in service to the network when utilising SDN-integrated vehicular monitoring system. 

Administrators may manage both physical and virtual switches and network devices from a single centralised 

control point, which is very handy. This central point can effectively manage the monitoring activities of 

vehicular network. SDN provides a single set of APIs. These APIs can be used to construct a single management 

console that can be used to manage both physical and virtual devices. Thus, a holistic approach is available to 

effectively manage the network required to monitor, control and operate the vehicular network and associated 

infrastructure.  
 It is possible that security and policy information will be delivered and configured consistently across the 

vehicular infrastructure as a result of the adoption of the SDN Controller. Since the introduction of virtualization, 

network management has grown more challenging in vehicular networks as well. While it's conceivable that 

centralising security management under a single authority may aid vehicular network in managing security more 

effectively, doing so in a safe and acceptable way must be taken into consideration. 

 SDN may be used to combine and automate numerous network administration tasks in order to save costs. 

Additionally, more efficient servers, and improved virtualization management contribute to lower overall 

expenses. 

 Commodity hardware optimization might be made simpler with SDN. With appropriate and maximum SDN 

controller instructions, the hardware used in vehicular network and infrastructure management may be reused 

and more cost-effective equipment can be added. SDN may be used more effectively if it is integrated with 

existing network infrastructure. Thus, no pre-planning or new model implementation is required to improve the 

services in the vehicular network.  

 SDN can be integrated with cloud, fog or edge networks supporting services to vehicular networks and give an 

abstract view of data centres constituted and maintained by hardware devices in these networks. Thus, SDN 

provides effective network and security management of vehicular infrastructure through cloud-based support.  

 SDN can provide flawless services to vehicular network users and service providers. It ensures Quality of 

Service (QoS) in text or multimedia data transmission in vehicular communications. It adds cooperative sensing 

to vehicular networks which in turn reduces the cost of information sharing in vehicular networks. It improves 

the QoS by providing an abstraction of the heterogeneity of vehicular networks. Heterogeneity in wireless 

networks and communication provides cost-effective solutions in information exchange.   

 

Table 1 shows the comparative analysis of SDN-based approach with other approaches.  

 

Table 1: Comparative analysis of SDN-based approach with other approaches in vehicular network or its 

infrastructure 

Parameter SDN or 

SDDN-based 

Vehicular 

Infrastructure 

Traditional 

Network-based 

Vehicular 

Infrastructure 

Cloud/Edge/Fog 

Computing-

based Vehicular 

Infrastructure 

(without 

virtualization) 

Cloud/Edge/Fog 

Computing-

based Vehicular 

Infrastructure 

(with 

virtualization) 

Network 

Functions 

Virtualization 

(NFV) 

Flexibility and 

Efficiency in 

Resource 

Allocation 

High Low Medium High High 



 

Costs Low High High Low Low 

Functions Separate 

Network 

control and 

Forwarding 

functions. Data 

and control 

plane mounted 

over different 

decoupled by 

software 

Network control 

and forwarding is 

same but 

differentiate 

control from data 

plane. However, 

data and control 

plane mounted 

over same plane 

Network control, 

data and 

forwarding 

functions can be 

customized as 

per requirements 

Network control, 

data and 

forwarding 

functions can be 

customized as 

per requirements 

Create 

Network 

abstract from 

hardware  

Programmable Network is 

programmable 

Network is not 

programmmable 

Network is 

programmable 

Network is 

programmable 

NFV support 

SDN in 

programmable 

infrastructure 

Control Centralized Distributed Distributed Distributed Centralized or 

Distributed 

Interface Open interface Close interface Open Cloud 

Computing 

Interface (OCCI) 

is available 

Open Cloud 

Computing 

Interface (OCCI) 

is available 

Can adopt 

open interface 

from SDN 

Prioritization 

and Blocking 

Packets 

Both 

prioritization 

and blocking 

can be 

performed 

No prioritization 

or blockchin 

packets. All 

packets are same.  

Network can be 

customized for 

packet 

prioritization or 

blocking. 

Network can be 

customized for 

packet 

prioritization or 

blocking. 

Network can 

be customized 

for packet 

prioritization 

or blocking. 

Structural 

Complexity 

Low High High Low Low 

Extensibility High Low Low High High 

Troubleshoort 

and Reporting 

Easy Difficult Difficult Easy Easy 

 

 

In this work, the usefulness of the SDN network is explored by simulating drone and SDN integrated environments 

for vehicle communication. To analyze the performance of SDN with vehicular networks, QoS parameters (delay 

and jitter) are evaluated. This paper addresses the problem of surveillance and traffic monitoring system. Here, a 

UAV-based traffic monitoring automated system with monitoring and surveillance capabilities is proposed. With 

the integration of the SDN-based approach, flexibility, efficient resource utilization (in terms of gate equivalents), 

connectivity, efficient network management, security and interoperability if drone network and vehicle 

communication is possible and ensured in this work. The proposed system integrates SDN-based system to 

monitor and control the drone-devices. The proposed system provides drone-to-drone collision detection and 

avoidance strategy. This strategy integrates a predetermined multi-layered drone-movement approach for 

developing collision-free environment. Further, drone-to-drone communication is secured using lightweight key-

generation and encryption/decryption algorithms.  Security analysis of proposed lightweight security algorithms 

is performed statistically and formally using ProVerif toolkit. Finally, the performance of a drone-based traffic 

monitoring system is measured using simulators.  

The major contributions of our paper are as follows: 

 We presented multi-layered drone movement with collision avoidance having distributed software-defined 

drone network (SDDN) support to monitor and direct the individual drone’s functionalities.  

 We proposed and evaluate the lightweight drone secure communications and data transfer algorithms. These 

algorithms ensure the secure key exchange and security of data in its transmission, processing, and storage 

stages. 

 The proposed security mechanisms are verified using a formal mathematical model and ProVerif toolkit. 

 We measured the performance of security algorithms and drone-networks. Simulations are designed to 

evaluate and analyze the performances. 



 

 We implemented Message Passing Interface (MPI) and OpenMP-based parallel and distributed computing 

system for hash function computation in security algorithms used in traffic engineering equipment and on-

road traffic monitoring. 

The rest of the paper is organised as follows. Section 2 summarises related work on drone-based traffic monitoring 

systems. This section also presents symbols and notations used in this paper. Section 3 presents the proposed 

cloud and SDDN-based architecture for traffic engineering and monitoring systems. Section 4 shows the drone-

movement, traffic data collection and collision avoidance algorithms. Section 5 presents the proposed lightweight 

drone-to-drone secure data transfer algorithms. Section 6 performs the statistical security analysis of proposed 

algorithms. The simulation, and performance analysis of the proposed system is depicted in Section 7. Section 8 

summarises and concludes the paper. 

2. Related Work 

The necessity of monitoring on-road vehicular traffic has been investigated in many studies [3]-[11]. Altshuler et 

al. [9] proposed swarms of reconnaissance drones-based vehicles monitoring systems capable of on-demand and 

cost-effective optimal area coverage strategies considering a given roads networks. In [3]-[5], similar approaches 

are explored where single or multiple drones are programmed to monitor and surveillance road traffic, incidents, 

traffic volume count, gather traffic information, and time-varying vehicular flows. Garcia-Aunon et al. [8] 

presented an aerial swarm-based traffic monitoring approach simulated in Unity game engine. This approach 

controls the aerial swarm using six behaviors parameters and optimizes the parameters using genetic algorithm.  

The proposed approach shows a good performance (25% improvement in efficiency for Swarm City with 0.5% 

standard deviation) with use of 23 parameters. The proposed scheme uses image-based surveillance system where 

swarms are forced to visit new places without returning to old ones. Further, a two-layer surveillance system is 

proposed. In this system, pheromones are produces to monitor the traffic zones. The quantity of pheromones is 

dependent over on-road traffic conditions. It increases or decreases either with pre-defined equations or using 

number of cars measurements.  This paper has majorly concentrated over improving the system efficiency for a 

given Swarm City. However, the chances of collisions with drone movement from one location to another cannot 

be neglected in proposed approach. To detect and avoid collisions, drone-to-drone communication is important to 

consider especially in traffic monitoring system. Further, security aspects in drone-to-drone communication are 

required to be addresses. 

Christodoulou et al. [12] proposed a drone-based traffic monitoring across a particular region with pre-defined 

monitoring points. The real road network topologies are demonstrated for the proposed approach that minimize 

the travel time while keeping the resource constraints into consideration. In this paper, two drone-based 

monitoring schemes (cheapest insertion algorithm (CIA) and multiple tour algorithms (MTA)) are analyzed. CIA 

is a weighted graph-based greedy heuristic algorithm that allows the drone to traverse through those pre-identified 

points that minimizes the overall cost.  In MTA, cluster-based mapping is done to identify the route that minimizes 

the drone’s travel cost. After testing the proposed system over three different networks, it has been realized that 

MTA outperforms the CIA with random initial node placement. This experimentation confirms that the pre-

identified routes and pre-planned drone-based monitoring over those routes can give collision free environment 

with minimum traveling cost. Khan et al. [13] experimented the on-road vehicle’s speed measurement using UAV-

based system in Saudi Arabia. The proposed UAV-based system overcomes the limitations of the SAHER system 

and it helps in decreasing the number of deaths and injuries. The UAV-based smart surveillance system with 5G 

technology helps in faster traffic violation cases detection. In [13], three-layer architecture is proposed to 

distinguish the functionalities of on-road traffic, communications using telemetry devices and 5G, and drone-

monitoring system. All these functionalities are proposed to be controlled through a base station. The 

experimentation results of proposed approach implementation show that it reduces the number of accidental 

incidents, and helps the people in following the rules and regulations. 

Balasubramanian et al. [29]  introduced the Local Traffic-Aware Green Algorithm based on Sleep-Scheduling 

(LTGAS), which considers traffic patterns while scheduling sleep in autonomous networks. This approach is built 

on the Sleep-Scheduling algorithm. During periods of heavy congestion, the LTGAS system considers online and 

local traffic statistics to turn off some underutilised network nodes and connections and turn on certain sleep 

devices, as appropriate. Due to the small magnitude of the impact of this proposal on network performance 

measures such as end-to-end latency, packet delivery ratio, and average link utilisation, it is not negatively affected 

by this proposal. Additionally to the variables just stated, there may be additional factors that have an impact on 

the energy conservation efficiency of other network components.  The only methods that have been shown to 



 

reduce the energy consumption of a network component are those that do not rely on the functioning of other 

network components to achieve this reduction. A new dynamic method can be developed based on the findings 

of this study, in which specific network nodes and connections are dynamically turned off during low traffic 

periods to conserve energy, while selected sleep devices are dynamically turned on during high traffic periods as 

needed. The proposed approach can be extended for computational and communicational cost analysis in addition 

to network performance and energy conservation evaluations. Further, security analysis of proposed approach can 

be taken up for analysis in future. Nguyen et al. [31] proposed a traffic monitoring framework named as 

DeepMonitor. DeepMonitor is a new IoT traffic monitoring system that is built on SDN technology. In addition, 

it has the capability of doing fine-grained analysis of IoT traffic at the network edge. When used in combination 

with an intrusion detection system, DeepMonitor has been shown to improve the detection of distributed denial-

of-service (DDoS) attacks. As a consequence, it is possible that the proposed approach will be able to optimise 

the average long-term granularity degree for all traffic kinds. Its goal is to get the optimum policy for a Markov 

Decision Process (MDP) system as quickly as possible without the requirement for prior knowledge of the traffic 

behaviour of IoT devices. While maintaining the best policy, a federated reinforcement learning-based IoT traffic 

monitoring system reduces the amount of DDQN training time required while also decreasing total training time. 

In particular, they show that using the optimal flow rule match-field control policy increases traffic granularity 

while decreasing flow-table overflow, resulting in improved DDoS attack detection performance as a result of the 

policy. This work can be extended to include analysis of proposed system against various other cyber-attacks.  

Kyrkou et al. [14] proposed deep-learning enabled system for analyzing emergency situations like flood, fire, on-

road accidents, fire or building collapsed. In this approach, the emergency aerial image classification method is 

used. Using this method, a UAV device can generate an emergency response with high performance than existing 

models with minimum on-device memory requirements. In this paper, a dataset is formulated that collect the 

images and grouped them together according to incidents. A drone-based data collection and the trained system 

are proposed with improved performance-accuracy tradeoffs. Likewise, many UAV-based solutions are proposed 

for traffic monitoring [6]-[9]. In [6], importance is drawn over to use the drones for traffic flow estimation and 

tracking. Traffic flow data is useful for future planning and preparing the performance metrics that can reduce the 

overall cost of traffic monitoring system deployment. In [7]-[9], video and data processing processes are integrated 

in one system to analyze the vehicles, its type, speed and traffic flows. Further, a web-application is designed and 

developed to display the statistics remotely. As a large amount of data is generated in drone-based traffic 

monitoring system, there is a lack of proposal to integrate the security aspects which include security proposal for 

(i) data storage at drone-device and remote server, (ii) data processing at drone-device, and an intermediate or 

remote server, and (iii) data communication/exchange between drones. 

Table 2 shows a comparison of the proposed system with the state-of-the-art drone-based traffic monitoring 

systems. Table 3 illustrates a comparison analysis of data handling approaches in traffic monitoring systems. 

Table 2: Comparison analysis of drone-based traffic monitoring systems 

Author Year Application A B C D E F G H I J K L M N 

Lee et al. [3] 2015 Drone-based traffic and 

incident monitoring 
✓ ✓ ✓ × ✓ × × × ✓ × × × × × 

Shi et al. [4] 2018 Drone-based multi-purpose 

monitoring and surveillance 

system 

✓ × ✓ × ✓ ✓ ✓ ✓ ✓ × × × × ✓ 

Khan et al. [5] 2017 Drone-based flight planning, 

traffic monitoring, analysis 

and vehicle trajectory analysis 

✓ ✓ ✓ × ✓ × × × ✓ × × × × × 

De-Bruin et al. 

[6] 

2015 Drone-based traffic profiling 

and flow estimation 
✓ ✓ ✓ × × × ✓ × ✓ × × × × × 

Niu et al. [7] 2018 Drone-based traffic profiling 

and data analysis 
✓ ✓ ✓ × ✓ × × × ✓ × × × × × 

Garcia-Aunon 

et al. [8] 

2019 Swarms of drones for traffic 

monitoring and surveillance  
✓ ✓ ✓ × ✓ × × × × ✓ ✓ × ✓ ✓ 

Altshuler et 

al. [9] 

2018 Drone-based pre-defined 

region monitoring for target 
✓ ✓ × × ✓ × × ✓ ✓ × × × × ✓ 



 

manoeuvring in a road-

network scenario 

Barmpounakis 

[16] 

2020 A drone-based traffic 

monitoring system (named 

pNEUMA ) for urban area 

✓ ✓ ✓ × × × × × ✓ × × × ✓ ✓ 

Congress et al. 

[17] 

2020 Drone-based vehicle 

redirection for hazardous 

obstruction induction using 

image processing 

✓ ✓ ✓ × × × × × ✓ × × × ✓ ✓ 

Hamurcu and 

Tamer [60] 

2021 Selection and raking of drones 

for traffic management 
× ✓ × × ✓ × × × × × × × ✓ × 

Guirado et al. 

[61] 
2021 Drone-based simulation is 

performed for monitoring on-

road traffic conditions 

✓ ✓ × × ✓ × × × × × × ✓ ✓ ✓ 

Kumar and Jain 

[62]  
2021 Drones for monitoring ground 

objects.  
× ✓ ✓ × ✓ × × × × × × × ✓ × 

Basu et al. [42] 2022 Drone and Softwarized 5G-

based dynamic resource 

sharing and network 

management 

× × ✓ ✓ ✓ × × × ✓ × × × × ✓ 

Butilă and 

Boboc [59] 

2022 Survey of Drone-based traffic 

monitoring and analysis 
✓ ✓ ✓ × ✓ × × × × × × × × × 

Proposed 

System 

2022 Drone-based traffic profiling 

and monitoring system with 

secure key and data exchange 

and hash computation using 

parallel and distributed 

computing process.  

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ 

A: Traffic monitoring, B: Traffic data collection, C: Image processing, D: Parallel & distributed computing, E: Drone-usage, F: 

Drone-to-drone collision detection, G: Drone-to-drone collision avoidance, H: LiDAR/Optical/Radar-based collision detection & 

avoidance, I: Layer-free drone movement, J: Single-layer drone movement, K: Multi-layer drone movement, L: Inductive loop 

data, M: Drone direction observation, N: Drone speed observation.  

Table 3: Comparison analysis of data handling in traffic monitoring systems 

Author Year Application A B C D E F G H I J K L M N O 

Cucchiara et al. 

[1] 

2000 Image processing and 

rule-based intelligent 

traffic monitoring 

system 

✓ ✓ ✓ ✓ × × × × × × × ✓ × ✓ × 

Liu et al. [2] 2017 Bus rider’s mobile data-

based traffic monitoring 

system 

✓ ✓ ✓ ✓ × × × × ✓ ✓ × ✓ × ✓ × 

Niu et al. [7] 2018 Drone-based traffic 

profiling and data 

analysis 

✓ ✓ ✓ × × × × × ✓ × × × × × × 

Garcia-Aunon et 

al. [8] 

2019 Swarms of drones for 

traffic monitoring and 

surveillance 

✓ ✓ ✓ ✓ × × × × ✓ × × × × × × 

Altshuler et al. 

[9] 

2018 Drone-based pre-

defined region 

monitoring for target 

manoeuvring in a road-

network scenario 

✓ ✓ ✓ × × × × × ✓ × × × × × × 

Barmpounakis 

[16] 

2020 A drone-based traffic 

monitoring system 
✓ ✓ ✓ × × × × × ✓ × × × × × × 



 

(named pNEUMA ) for 

urban area 

Congress et al. 

[17] 

2020 Drone-based case 

studies for T-section 

and rail-crossing on-

road vehicle data 

collection system 

✓ ✓ ✓ × × × × × ✓ ✓ ✓ × × ✓ × 

Gia et al. [18]  2020 LoRa, Edge and Fog 

computing-based 

vehicle tracking and 

traffic monitoring 

✓ ✓ ✓ ✓ × ✓ ✓ × ✓ ✓ × × ✓ × × 

Beg et al. [19] 2019 UAV-based vehicle 

identification, traffic 

monitoring, data 

collection and profiling 

system 

✓ ✓ × ✓ × × × ✓ ✓ ✓ ✓ × × ✓ × 

Balasubramanian 

et al. [29] 

2020 An energy-efficient 

traffic-aware green 

algorithm based on 

Sleep-scheduling is 

proposed for 

autonomous networks 

✓ ✓ ✓ ✓ × × × × ✓ ✓ × ✓ × ✓ × 

Balasubramanian 

et al. [43] 
2022 Edge Intelligence in the 

Internet of Vehicles for 

traffic monitoring 

✓ ✓ ✓ ✓ × × × ✓ ✓ ✓ × ✓ ✓ ✓ ✓ 

Bathla et al. [50] 2022 Autonomous vehicles 

and need of intelligence 

automation for traffic 

management and 

vehicular networks 

✓ ✓ ✓ × × × × ✓ ✓ × × × × × ✓ 

Verma et al. [52] 2022 Smart traffic 

management system 

and veicular network 

profiling 

✓ ✓ ✓ ✓ × × × ✓ ✓ ✓ × × ✓ ✓ × 

Srikanth and 

Kumar [54] 
2022 Vehicle number plate 

reading and traffic 

profiling 

✓ ✓ ✓ ✓ × × × × ✓ ✓ × ✓ × × × 

Proposed System 2022 Drone-based traffic 

profiling, data 

collection and 

monitoring system with 

secure key and data 

exchange, and hash 

computation using 

parallel and distributed 

computing process 

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ 

A: Data collection, B: Data Processing, C: Data analytics, D: Data visualization, E: Private MPI-based Task distribution, F: Private 

MPI-based task execution, G: OpenMP/Cloud-based task storage, H: Distributed resource allocation for traffic data handling, I: 

Traffic profiling, J: Vehicle profiling, K: Weather information measurement (wind, moisture etc.) for drone trajectory, L: Data 

error measurements, M: Vehicle-length & model-based detection, N: Vehicle speed measurement, O: Data security.  

In the literature, various SDN-based approaches are discussed to improve IoT network performances 

[44][45]. For example, Rabet et al. [41] discussed the use of SDN for IoT networks and proposed SDMob 

i.e. SDN-based mobility management. The SDMob design is reliant not only on an external controller 

but also on an Internet of Things network that has certain limitations. This is essential for it to be able 

to deliver the lightweight mobility management capabilities that it provides since this is required for it 

to do so. In terms of performance, SDMob is better than both RPL and ARMOR, despite the fact that 



 

both of them contain a large amount of overhead. SDMob's ability to more efficiently spread messages 

is the basis of its advantage over its rivals in the marketplace. It is very clear that this is the issue that 

we are dealing with when we examine the ratio of the total length of time to the number of packets that 

were sent. Because SDMob is being used in the network, it is now possible to design a network 

architecture that is in a position to provide location precision down to the decimeter level.  This feat is 

made feasible due to the fact that the network makes use of the SDMob platform. In the past, there was 

not even a distant possibility to act in such a manner. Because of this, even when there are only a few 

mobile nodes involved, the network is still able to come very close to reaching a delivery rate of one 

hundred percent for the packets that it delivers. This is because mobile nodes are able to communicate 

with each other even when there is a significant distance between them. Balasubramanian et al. [43] 

discussed that the Internet of Vehicles are finding it more difficult to send considerable amounts of data 

wirelessly due to the fact that wireless networks are becoming less dependable and more crowded. 

These data can include the location of the vehicle as well as the information gathered by various sensors. 

Because wireless networks will surely get more crowded and less trustworthy as time goes on, this shift 

will need to take place at some point in the near future. Before this transfer can take place, there is a 

chance that a considerable amount of travel will be necessary on the part of the parties involved. In 

order to effectively manage both forms of traffic, it is essential to have a complete understanding of 

both the traffic on data networks and the traffic on roads. If we are going to be successful in conquering 

the problems that we have been discussing up to this point, this is something that we really need to pay 

attention to. Within the confines of this investigation, we put up a different instructional strategy as a 

potential fit for the hybrid VeNet learning system. This approach was created in order to take use of 

the geographical and temporal correlations that are present in mobile vehicle datasets. These 

correlations may be found in mobile vehicle datasets. During the process of formulating the technique, 

these connections were included into the discussion at various points. Evidence for the presence of 

these correlations between the variables was supplied by the data gathered by the mobile cars as they 

drove about. Following a thorough examination of the data, it was discovered that these correlations 

between the different variables do, in fact, exist. The hybrid system that this algorithm was designed 

for had amassed a significant quantity of data, and the individuals who were responsible for its 

development started out with the intention of gleaning insight from that store of information. SDN-

based frameworks are also proposed in recent times to ensure the security of network. For example, 

Lahlou et al. [46] proposed an SDN-based framework that is based on SDN, and it is used for 

successfully recognising and mitigating a broad range of cyber-security threats. Likewise, Polat et al. 

[47] proposed a scenario to detect and avoid DoS attacks using SDN framework [48][49]. Further, 

various advanced technologies (including quantum computing [51][58], cloud computing [52], artificial 

intelligence and machine learning [50][52], object detection and collision avoidance, traffic monitoring 

[53], blockchain [55][57], autonomous systems [56], and many more) can be used in vehicular networks 

and traffic engineering with or without drones. 

Figure 1 shows the SDDN-based traffic monitoring ecosystem. The major sub-systems in the SDDN-

based traffic monitoring ecosystem include drone-vehicle networks, software-defined networking, 

SDDN applications and SDDN controllers. The drone-vehicle network is connected with a vehicular 

network for on-road data collection, transmission to nearby processing units, and generating data 

analytics. Further, drone-vehicle networks take the help of drone connected IoV networks to operate 

the drones, avoid collisions, and monitor the traffic. The Internet of Drones (IoD), constituted with 

multiple drone flying, verified drone authenticity through a lightweight cryptography mechanism to 

ensure security. SDDN-based traffic monitoring has various applications in vehicular networks. For 

example, SDDN support collects the abstract view of the vehicular network and ensures control 

instructions, provides the interface to drive and control the drones for traffic management, and helps 

in application logic and road traffic statistics and report generation. The major sub-system of SDDB-

based traffic monitoring is the SDDN controller. Using SDDN controller, drone data elements can help 

in monitoring and controlling the drones, network can be monitored, policies can be configured, drone 



 

controller and signal interfaces can be driven to direct the drone for specific talk,SVNI interfaces helps 

in overall management of drone and vehicular networks as per operating instructions.    

 

Figure 1: SDDN-based Traffic Monitoring Ecosystem 

Critical Analysis: In literature [3]-[9][12]-[17], drone/UAV-based system for traffic surveillance faces various 

challenges including (i) heavy computational requirements to analyze the on-road vehicle and traffic conditions, 

(ii) secure drone-to-drone communication for data exchange and drone network security, (iii) lack of drone-to-

drone collision detection mechanisms except LiDAR/Radar/Optical system, (iv) lack of drone-to-drone collision 

avoidance strategies for small to large scale drone movements and surveillance systems, (v) fixed camera-based 

or hybrid (both fixed camera and UAV) traffic monitoring are expensive to install, maintain, demand more person 

hours to finish the job, (vi) a large number of on-road incidents are not reported because of fixed traffic monitoring 

infrastructure or lack of flexible solution, and (vii) majority of drone-based solutions focus on UAV-based real-

time data collection or decision-making rather providing UAV network performance and security-based metrics 

for data security and overall system performance analysis. 

2.1. Symbols and Notations 

Table 4 shows the symbols and notations used in this paper. 

TABLE 4 SYMBOLS AND NOTATIONS 

Symbol Explanation 

𝐷𝑖
𝑗
 ith drone moving at jth layer 

𝐿
𝐷𝑖

𝑗
𝑎  Latitude position of 𝐷𝑖

𝑗
 

𝐿
𝐷𝑖

𝑗
𝑜  Longitude position of 𝐷𝑖

𝑗
 

𝑇𝑖 ith traffic engineering equipment  

𝑇
𝑖

𝐷𝑖
𝑗

 ith traffic engineering equipment close to 𝐷𝑖
𝑗
 

H Lightweight hash function 

P(.) Chebyshev polynomial function 



 

𝑆𝑖,𝑘 Session id between two entitites i and k 

𝐾
(𝐷𝑖

𝑗
,𝐷𝑘

𝑗
,𝑆𝑖,𝑘)

𝑜𝑙𝑑  Old session key between 𝐷𝑖
𝑗
 and 𝐷𝑘

𝑗
 for session 𝑆𝑖,𝑘 

𝐾
(𝐷𝑖

𝑗
,𝐷𝑘

𝑗
,𝑆𝑖,𝑘)

𝑐𝑢𝑟𝑟𝑒𝑛𝑡  Current session key between 𝐷𝑖
𝑗
 and 𝐷𝑘

𝑗
 for session 𝑆𝑖,𝑘 

C OpenMP/Cloud center for parallel and distributed computing 

𝐼
𝐷𝑖

𝑗 Identification of ith drone moving at jth layer 

ei Random number generated by drone with period [1,𝛼] 

ri Random number generated by drone with period [1,𝛽], 𝛽 ≥ 𝛼 

𝜎𝑖 Random number generated by cloud center with period ≥ 𝛼 

a||b Bitwise OR operation is applied between a and b 

𝜑
𝐷𝑖−1

𝑗  Secret of 𝐷𝑖−1
𝑗

 

(𝐴)′ Transpose of an entity A 

𝐾
(𝐶, 𝐷𝑖−1

𝑗
,𝐷𝑖

𝑗
,𝑆𝑖−1,𝑖)

𝑃𝑢𝑏𝑙𝑖𝑐  Public key of C generation for 𝑆𝑖−1,𝑖 session between  𝐷𝑖−1
𝑗

 𝐷𝑖
𝑗
 

𝐾
(𝐶, 𝐷𝑖−1

𝑗
,𝐷𝑖

𝑗
,𝑆𝑖−1,𝑖)

𝑃𝑟𝑖𝑣𝑎𝑡𝑒  Private key of C generation for 𝑆𝑖−1,𝑖 session between  𝐷𝑖−1
𝑗

 𝐷𝑖
𝑗
 

 

3. Proposed Drone based Monitoring System 

This section illustrates the proposed drone/UAV based distributed traffic monitoring system as shown in Fig. 1. 

Fig. 2 explains the workflow of the proposed approach in detail.  



 

 

Figure 2: Proposed system workflow 



 

In the proposed system, the need of a drone-based network and the Internet of Drones are realized to monitor the 

traffic conditions and infrastructure. If drones are required to collect the data and are available to constitute a 

multi-layered drone network then vehicles are identified using image processing. Further, vehicle speed, number 

plate reading and multi-angle identification work to identify the vehicles, and monitor and manage the traffic. The 

multi-layered drone network is efficiently managed by SDDN-based architecture. Thereafter, security and 

performance analysis is performed to ensure a better quality of service. 

A. Drone System 

This system consists of a set of drones moving in a particular area. This paper considers drones' movement mapped 

to roads area. Various sub-systems considered in this system are listed and explained as follows. 

1) Drone network and Internet of Drones: This sub-system takes care of drones' movement in single or multi-

layered strategies. To avoid any collision, single or multi-layered drone movement strategies take care of the 

drone information system. In the drone information system, each drone maintains distance from its 

neighboring drones, drone’s flying altitude, the number of layers used for traffic monitoring, and data sharing 

with cloud services, and collision avoidance strategy. In collision avoidance strategy, drones or any object 

coming in drone’s path are initially avoided using LiDAR/Optical/Radar systems. Whereas, layer-based 

preemptive drone’s movement strategies avoid excessive dependency over LiDAR/Optical/Radar system and 

provide easy integration of other drone-based applications  

2) Federated Data Processing: In this sub-system, drones are programmed to collect data using sensors or image 

processing. In a sensor-based data collection system, drones use axle, acoustic, loop detector, doppler, 

piezoelectric, tube, etc. sensors for on-road traffic data collection. This data is collected from system computers 

and wireless data transmitters placed alongside the roads. Another way of drone’s data collection is through 

video recording and image processing. On-road vehicle’s videos are recorded to identify different traffic flow 

characteristics such as vehicle speed, length, type, direction, occupancy, estimated weight etc. All of this 

information is shared with a distributed and parallel computing system for information processing, analytics, 

visualization, and storage.  

3) Drone-to-drone data sharing:  Single or multiple layered drone movement approaches allow the drones to 

move either in direction of traffic or the opposite of it. Thus, drone-to-drone data exchange for ad-hoc network 

construction and increasing the range of information availability would be much easier. This exchange of 

information should use lightweight mechanisms (security and data sharing) keeping drone’s scarcity of 

resources into consideration. 

4) Image Processing: In this sub-system, images are extracted from videos for information filtration such as 

vehicle type, the relative speed with a drone, object, etc. This information is useful for generating the necessary 

proofs for other associated systems. Fig. 3 shows the image processing system programmed (using Tenflow, 

OpenCV, CloudXLab and Python) and used in the proposed traffic monitoring system. Fig. 3(a) shows an 

example of vehicle detection and relative speed of vehicles with drone. Fig. 3(c) shows the single-vehicle 

detection and inference score (on a scale of 0 to 1). Fig. 3(d) shows image-based multi-object detection when 

vehicles are parked or stationary. Fig. 3(b) shows that the proposed system is capable of detecting multiple 

objects (including vehicles) when traffic is moving. Additionally, the inference rate is computed as well. Fig. 

3(c) shows the number plate reading system. This is an image-based text reading system that reads all text 

from the back image of a vehicle. The read text can include advertisements attached to the vehicle, model no. 

etc. To filter the vehicle registration number, “AA NN AA NNNN” template is followed where ‘A’ denotes 

an alphabet and ‘N’ denotes number from 0 to 9. 

 
(a) On-road 
vehicle and 
relative 
speed 
detection 
(example 1) 

(b) Stationary 
multi-object 
detector and 
Interference 
percentage  

(c) Number-
plate reading 
system 

Figure 3: Image processing system in the proposed traffic monitoring system (with a maximum vehicle to drone distance of 
15 meters). 
 

5) SDDN architecture: The SDDN based distributed architecture using drones is shown in fig. 4. This architecture 

is divided into four planes (road-mapped drone network, drone data, controller, and application) and three 

types of interfaces (DnI, SCDEI, and SCAI). The road-mapped drone’s network plane considers drones 

collision-free movements, and drones mapped to roads for vehicle monitoring. The DnI interface collects 



 

signal from logical drone data element and instructs the physical drones. This interface helps in collecting and 

forwarding the required data as well. The drone data plane consists of a drone data element and SDDN logical 

device (as per OpenFlow 1.3 Specifications). The SDDN logical device operates and program the drones for 

data, collect the data using DnI interface, and display statistical report. The drone data element is a logical 

entity The SCDEI interface provides the required information to the SDDN controller for individual drone 

instruction. The SDDN controller in the controller plane has SCAI agent, control logic, and DnI agent and 

driver. The SCAI agent compares the collected data with normal operational data and prepares the drone’s 

network and data abstract views. The control logic handles the individual drone’s observation and processing 

capabilities. This entity decides to switch the drone from one layer to another, and accordingly change the 

functionality. The DnI agent and driver trigger the events observed in the data and pass the information to the 

SDDN controller for decision making. The SCAI handles the data exchange between the SDDN controller and 

the user-controllable SDDN application. There are multiple SCAI interfaces for different abstract views of the 

drone’s network. The application plane consists of SDDN applications for users and administrators to have 

network abstract views and passes the instructions accordingly. Thus, the application plane adds manual 

control in the SDDN-based drone control system for traffic monitoring. 

6) Data visualization: This sub-system displays the types and number of unique objects identified. This 

identification helps in measuring the traffic in a particular area and within a specified time. Further, the 

trajectory-based vehicle movement helps in predicting future traffic flows and resource planning. 

 

Figure 4: Proposed SDDN-based architecture for traffic monitoring using drones. 

B. Drone-based traffic data collection system 

This system consists of the road network, vehicle network, traffic engineering, and drone movement sub-systems. 

The details of each of these sub-systems are briefly explained as follows. 

1) Road network system: This system assumes that road-network information is available before deployment and 

movement of drones for the proposed system. 

2) Vehicle network system: This system assumes that all on-road vehicles are registered. Additionally, the vehicle 

type, length, model etc. features are available to identify its category. 

3) Traffic engineering system: This system is considered to provide road-traffic data through sensor-devices 

placed inside or over the road. This sensor-based electric wiring system generates electromagnetic waves and 

forms a loop detector system. This loop detector system analyzes the vehicle, its speed, weight etc. This loop 



 

detector system share information with the computer system through an electric meter which is further 

forwarded to drones through wireless data transmitter. 

4) Drone movement system: In this sub-system, the drone’s movement, collision-free strategy, multi-layering, 

and image and sensor-based data collection are handled. 

C. MPI-Distributed and Parallel Computing   

In this paper, MPI is used for distributed and parallel programming. MPI provides standardization, portability, 

performance opportunities, functionality and availability. MPI interfaces (MPI_Scatter and MPI_Gather) are used 

to compute hash values for drones. In our proposed system, drones are considered as resource-constraint devices. 

Thus, MPI-based support systems computes hash values and sends over to drones for implementing security 

services in algorithm 4 and algorithm 5. Here, MPI interfaces are used in hash computation. In this process, input 

to process 0 (initial process) is assigned statically and this process uses MPI_Scatter to distribute the input 

messages among different processes sequentially to compute hash values (using algorithm 1). Thereafter, 

MPI_Gather interface is used to collect all hashes (using algorithm 2). Over multicore or many-core processor 

architectures, integration of MPI with shared memory, and distributed and parallel programming is possible in 

OpenMP programming model. This model effectively utilizes the resources and improves computational and 

internode communication performances. 

Algorithm 1 HashComputationWithScatter(Message[ ], InitialVector, recv_buffer) 

1. Begin 

2. s ← Size() and r ← Rank()  

3. repeat(1)  

4. recv_buffer=MPI.linspace(s,r) 

5. hash ← MPI_Scatter(Message, recv_buffer,root=0)  

6. hash_array ← hash_array.Append() 

7. return hash_array 

8. End 

Algorithm 2 HashCollectionWithGather(Message[ ], InitialVector, send_buffer, recv_buffer) 

1. Begin 

2. s ← Size() and r ← Rank()  

3. repeat(1)  

4. send_buffer=MPI.linspace(s,r)  

5. hash ← MPI_Gather(send_buffer, recv_buffer, root=0)  

6. return hash 

7. End 

 
Figure 5:  Hash computation MPI Workflow 



 

Fig. 5 shows Hash-computation MPI workflow diagram used in this paper. Initially, n-Hash-computation and m-

Hash collection MPI applications are used. Thereafter, the performance of the system is measured using the 

computing power required to execute applications, the relative computing power of the individual processor, 

applications execution time (including computation and communication times), application spawning and removal 

costs, and data redistribution or rearranging costs. The measured system performance is constantly monitored and 

evaluated to be considered for the proposed system. If the performance is satisfactory (greater than a certain 

threshold) then more applications are spawned (maximum of n-Hash computation and m-Hash collection) and 

input to an application are rearranged to generate randomized Hash outputs. Now, if the performance is not 

satisfactory then applications can be gradually reduced to improve the performance. MPI dynamic (automated) or 

static (manual) computation processes can be used for application expansion or shrinking. 

 
Figure 6: 3-drone vehicle monitoring system 

 
 

 
Figure 7: 3-Drone Vehicle Monitoring System (side-view and front view) 

 
 
4. Drone Movement Algorithms 

This section proposes a 3-drone vehicle monitoring system and multi-layer drone’s movement and collision 

avoidance strategies. A 3-drone vehicle monitoring system is designed to identify vehicles from the top, front, 



 

and rear-view images. The multi-layered drone’s movement and collision avoidance strategy are proposed to have 

road-mapped drone-movement for data collection and distribution to parallel processing units.  The details of both 

sub-systems are explained as follows. 

A. 3-Drone Vehicle Monitoring System 

This section proposes a 3-drone vehicle monitoring system. Here, three drones (at a distance of 𝑑1 and 𝑑2) 

observing a single vehicle at a time in the pre-defined area move their camera at an angle 𝜃1, 𝜃2 and 𝜃3 to capture 

front, top, and read view images as shown in fig. 6. Further, angles ∅1 and ∅2 are considered to read the number-

plates and collect the registration number data. The collected information is analyzed for measuring the inference 

rate and results show that the image-based vehicle identification system has an inference rate greater than 88% if 

the image is collected at a maximum distance of 10 meters. Fig. 7 shows different views of 3-Drone Vehicle 

Monitoring System. The side-view of the proposed UAV based vehicle monitoring system is illustrated in Fig. 

7(a). In the multi-level system, multiple-drones handle the data and shred the data processing load. Layer-1 drones 

collect on-road vehicle information and pass it to layer-2 drones. Layer-2 drones collect the information from 

layer-1 drones only and compile the data for layer-3 drones. Layer-3 drones are connected with SDDN and private 

cloud systems for parallel and distributed processing, and data handling. The front view of the proposed system 

is depicted in Fig. 7(b). It shows that three drones are handling each vehicle one-by-one in each road-lane at layer 

1. Thereafter, data handling is distributed among drones at layer-2 and layer-3 before openMP-based data 

handling. 

 

B. Multi-layer Drone System for Traffic Monitoring 
This sub-section explains the multi-layer drone system used for traffic monitoring. Here, collision avoidance 

strategy for drones in multi-layered environment is proposed. Multi-layered drone-movement and collision 

avoidance approaches are explained using algorithm 3 in detail. In this algorithm, LiDAR/Optical detector and 

distance based collision avoidance strategy is proposed.  

Algorithm 3: Proposed multi-layered drone-based collision-avoidance and 3-drone vehicle monitoring strategy.   

Goal: To create 3-drone internet and collision-free drones’ movement strategy for traffic monitoring.  

1. Begin 

2. Construct a group of 3-drones {(𝐷1
1, 𝐷2

1, 𝐷3
1), (𝐷4

1, 𝐷5
1, 𝐷6

1),  …, (𝐷𝑛−2
1 , 𝐷𝑛−1

1 , 𝐷𝑛
1)} and deploy parallel to the road at 

minimum distance of D between any two groups of drones 

3. While (Any group out of {(𝐷1
1, 𝐷2

1, 𝐷3
1), (𝐷4

1, 𝐷5
1, 𝐷6

1),  …, (𝐷𝑛−2
1 , 𝐷𝑛−1

1 , 𝐷𝑛
1)}is flying) do: 

4. For each 𝐷𝑛
1 ∈ (𝐷𝑛−2

1 , 𝐷𝑛−1
1 , 𝐷𝑛

1) : 

5. 𝐷𝑛
1 uses LiDAR/Optical detector to maintain a minimum distance of D with every other object 

6. 𝐷𝑛−2
1  maintain a minimum distance of 𝑑1 with 𝐷𝑛−1

1 , and 𝐷𝑛−1
1  maintain a minimum distance of 𝑑2 with 𝐷𝑛

1 

7. If  any distance is less than 𝐷 then 

8. Move colliding drone apart and maintain a minimum distance of D 

9. If drone movement is not possible then 

10. Land (𝐷𝑛−2
1 , 𝐷𝑛−1

1 , 𝐷𝑛
1) 

11. Else 

12. Collect Sensor or image-based data 

13. End If 

14. End For 

15. End While 

16. End 
 

5. Drone-to-Drone Data Transfer and Security Algorithms 

This section proposes two drone-to-drone session key generation algorithms (algorithm 4 and algorithm 5) that 

can be used for securely transmitting the data while maintaining its confidentiality. Algorithm 4 proposes multi-

round challenge-response verification approach for drone-to-drone session key generation and renewal for data 

encryption and decryption. In this algorithm, temporary challenges are generated in step 1 to step 9. From step 10 

to step 14, challenge sending, verification, and renewal is processed until drone is considered authentic. Algorithm 

5 uses elliptic curve cryptography for same purpose. In algorithm 5, temporary challenges are generated using 

elliptic curve cryptography in step 1 to step 8. From step 9 to step 16, challenge sending, verification, and renewal 

is processed (using elliptic curve cryptography) until drone is considered authentic. 

Algorithm 4: Proposed arithmetic operations-based drone-to-drone session key generation and renewal for authentication.   

Goal: To generate session key for secure data transfer in finite field with airthmetic operations.  



 

1. Begin 

2. 𝐷𝑖−1
𝑗
 𝐷𝑖

𝑗
: r1 

3. 𝐷𝑖
𝑗
 computes: 

a. temp1=H(𝐼
𝐷𝑖−1

𝑗 )⊕e1⊕r1, temp2=𝑃𝑟1,𝑒1
(𝐾

(𝐷𝑖−1
𝑗

,𝐷𝑖
𝑗
,𝑆𝑖−1,𝑖)

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ), temp3 =𝐾
(𝐷𝑖−1

𝑗
,𝐷𝑖

𝑗
,𝑆𝑖−1,𝑖)

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ⊕e1 

4. 𝐷𝑖
𝑗
 𝐷𝑖−1

𝑗
: temp1, temp2, temp3 

5. 𝐷𝑖
𝑗
 𝐷𝑖+1

𝑗
: r2 

6. 𝐷𝑖+1
𝑗

 computes: 

a. 𝑡𝑒𝑚𝑝1
′ =H(𝐼

𝐷𝑖
𝑗)⊕e2⊕r2, 𝑡𝑒𝑚𝑝2

′ =𝑃𝑟2,𝑒2
(𝐾

(𝐷𝑖
𝑗
,𝐷𝑖+1

𝑗
,𝑆𝑖,𝑖+1)

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ), 𝑡𝑒𝑚𝑝3
′ =𝐾

(𝐷𝑖
𝑗
,𝐷𝑖+1

𝑗
,𝑆𝑖,𝑖+1)

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ⊕ e2 

7. 𝐷𝑖+1
𝑗
 𝐷𝑖

𝑗
: 𝑡𝑒𝑚𝑝1

′ , 𝑡𝑒𝑚𝑝2
′ , 𝑡𝑒𝑚𝑝3

′  

8. 𝐷𝑖−1
𝑗
C: r1, temp1, temp2, temp3 

9. 𝐷𝑖
𝑗
𝐶: r2 , 𝑡𝑒𝑚𝑝1

′ , 𝑡𝑒𝑚𝑝2
′ , 𝑡𝑒𝑚𝑝3

′  

10. 𝐶 computes: 

a. 𝐾
(𝐷𝑖−1

𝑗
,𝐷𝑖

𝑗
,𝑆𝑖−1,𝑖)

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = temp1⊕temp3⊕r1, temp4=H(𝐼
𝐷𝑖−1

𝑗 ) ⊕ 𝐾
(𝐷𝑖−1

𝑗
,𝐷𝑖

𝑗
,𝑆𝑖−1,𝑖)

𝑐𝑢𝑟𝑟𝑒𝑛𝑡  

b. if temp4 record exist then  

c.  fetch H(𝐼
𝐷𝑖−1

𝑗 ), 𝐾
(𝐷𝑖−1

𝑗
,𝐷𝑖

𝑗
,𝑆𝑖−1,𝑖)

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , 𝐾
(𝐷𝑖−1

𝑗
,𝐷𝑖

𝑗
,𝑆𝑖−1,𝑖)

𝑜𝑙𝑑  

d. temp5=temp1⊕H(𝐼
𝐷𝑖−1

𝑗 ) ⊕r1, temp6=H(𝐼
𝐷𝑖−1

𝑗 ) ⊕r1⊕ 𝜎1  

e. if temp2 equals to 𝑃𝑟1
(𝑃𝑒1

(𝐾
(𝐷𝑖−1

𝑗
,𝐷𝑖

𝑗
,𝑆𝑖−1,𝑖)

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 )) then 

f.  temp7 = 𝑃𝑑𝑐1,𝑒1
(𝐾

(𝐷𝑖−1
𝑗

,𝐷𝑖
𝑗
,𝑆𝑖−1,𝑖)

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ),  𝐾
(𝐷𝑖−1

𝑗
,𝐷𝑖

𝑗
,𝑆𝑖−1,𝑖)

𝑜𝑙𝑑 =𝐾
(𝐷𝑖−1

𝑗
,𝐷𝑖

𝑗
,𝑆𝑖−1,𝑖)

𝑐𝑢𝑟𝑟𝑒𝑛𝑡  

g.  𝐾𝑆𝑒𝑠𝑠𝑖𝑜𝑛
𝐶𝑢𝑟𝑟𝑒𝑛𝑡=𝐾

(𝐷𝑖−1
𝑗

,𝐷𝑖
𝑗
,𝑆𝑖−1,𝑖)

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ⊕ (e1||𝜎1) 

h. else if temp2 equals to 𝑃𝑟1
(𝑃𝑒1

(𝐾
(𝐷𝑖−1

𝑗
,𝐷𝑖

𝑗
,𝑆𝑖−1,𝑖)

𝑜𝑙𝑑 )) then 

i.  temp7 = 𝑃𝑑𝑐1,𝑒1
(𝐾

(𝐷𝑖−1
𝑗

,𝐷𝑖
𝑗
,𝑆𝑖−1,𝑖)

𝑜𝑙𝑑 ) ,  𝐾
(𝐷𝑖−1

𝑗
,𝐷𝑖

𝑗
,𝑆𝑖−1,𝑖)

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 =𝐾
(𝐷𝑖−1

𝑗
,𝐷𝑖

𝑗
,𝑆𝑖−1,𝑖)

𝑜𝑙𝑑 ⊕ (𝜎1||e1) 

j. else 

k.  communication is unauthentic 

l. End if 

11. C  𝐷𝑖
𝑗
: temp6, temp7 

12. 𝐷𝑖
𝑗
 𝐷𝑖−1

𝑗
: temp6, temp7 

13. 𝐷𝑖+1
𝑗

 computes: 

a. dc1=temp6⊕H(ID)⊕r1 

b. if temp7 equals to 𝑃𝑑𝑐1,𝑒1
(𝐾

(𝐷𝑖−1
𝑗

,𝐷𝑖
𝑗
,𝑆𝑖−1,𝑖)

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ) then 

c. 𝐾
(𝐷𝑖−1

𝑗
,𝐷𝑖

𝑗
,𝑆𝑖−1,𝑖)

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝐾
(𝐷𝑖−1

𝑗
,𝐷𝑖

𝑗
,𝑆𝑖−1,𝑖)

𝑐𝑢𝑟𝑟𝑒𝑛𝑡  ⊕ (e1||𝜎1) 

d. End if 

14. 𝐶 computes: 

a. 𝐾
(𝐷𝑖

𝑗
,𝐷𝑖+1

𝑗
,𝑆𝑖,𝑖+1)

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 =𝑡𝑒𝑚𝑝1
′ ⊕ 𝑡𝑒𝑚𝑝1=3

′ ⊕r2 

b. 𝑡𝑒𝑚𝑝4
′ =H(𝐼

𝐷𝑖
𝑗) ⊕ 𝐾

(𝐷𝑖
𝑗
,𝐷𝑖+1

𝑗
,𝑆𝑖,𝑖+1)

𝑐𝑢𝑟𝑟𝑒𝑛𝑡  

c. if 𝑡𝑒𝑚𝑝4
′  record exist then  

d.  fetch H(𝐼
𝐷𝑖

𝑗), 𝐾
(𝐷𝑖

𝑗
,𝐷𝑖+1

𝑗
,𝑆𝑖,𝑖+1)

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , 𝐾
(𝐷𝑖

𝑗
,𝐷𝑖+1

𝑗
,𝑆𝑖,𝑖+1)

𝑜𝑙𝑑  

e. 𝑡𝑒𝑚𝑝5
′  =𝑡𝑒𝑚𝑝1

′ ⊕H(𝐼
𝐷𝑖

𝑗)⊕r2 , 𝑡𝑒𝑚𝑝6
′  =H(𝐼

𝐷𝑖
𝑗)⊕r2⊕ 𝜎2  

f. if 𝑡𝑒𝑚𝑝2
′  equals to 𝑃𝑟2

(𝑃𝑒2
(𝐾

(𝐷𝑖
𝑗
,𝐷𝑖+1

𝑗
,𝑆𝑖,𝑖+1)

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 )) then 

g.  𝑡𝑒𝑚𝑝7
′

 = 𝑃𝑑𝑐1,𝑒1
(𝐾

(𝐷𝑖
𝑗
,𝐷𝑖+1

𝑗
,𝑆𝑖,𝑖+1)

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ) 

h.  𝐾
(𝐷𝑖

𝑗
,𝐷𝑖+1

𝑗
,𝑆𝑖,𝑖+1)

𝑜𝑙𝑑 =𝐾
(𝐷𝑖

𝑗
,𝐷𝑖+1

𝑗
,𝑆𝑖,𝑖+1)

𝑐𝑢𝑟𝑟𝑒𝑛𝑡  

i.  𝐾𝑆𝑒𝑠𝑠𝑖𝑜𝑛
𝐶𝑢𝑟𝑟𝑒𝑛𝑡=𝐾

(𝐷𝑖
𝑗
,𝐷𝑖+1

𝑗
,𝑆𝑖,𝑖+1)

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ⊕ (e2||𝜎2) 

j. else if 𝑡𝑒𝑚𝑝2
′  equals to 𝑃𝑟2

(𝑃𝑒2
(𝐾

(𝐷𝑖
𝑗
,𝐷𝑖+1

𝑗
,𝑆𝑖,𝑖+1)

𝑜𝑙𝑑 )) then 

k.  temp7 = 𝑃𝜎2,𝑒2
(𝐾

(𝐷𝑖
𝑗
,𝐷𝑖+1

𝑗
,𝑆𝑖,𝑖+1)

𝑜𝑙𝑑 )  

l.  𝐾
(𝐷𝑖

𝑗
,𝐷𝑖+1

𝑗
,𝑆𝑖,𝑖+1)

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 =𝐾
(𝐷𝑖

𝑗
,𝐷𝑖+1

𝑗
,𝑆𝑖,𝑖+1)

𝑜𝑙𝑑 ⊕ (𝜎2||e2) 

m. else 

n.  communication is unauthentic 

o. End if 

15. End 

Algorithm 5: Proposed ellipctic curve cryptosystem-based drone-to-drone session key generation and renewal for 

authentication. 



 

Goal: To generate session key for secure data transfer in finite field with elliptic curve cryptosystem.  

1. Begin 

2. 𝐷𝑖−1
𝑗
 𝐷𝑖

𝑗
: 𝑒1𝑃, 𝑒2𝑃 

3. 𝐷𝑖
𝑗
 𝐷𝑖+1

𝑗
: 𝑒3𝑃, 𝑒4𝑃 

4. 𝐷𝑖
𝑗
 𝐷𝑖−1

𝑗
: 𝑟1 

5. 𝐷𝑖+1
𝑗
 𝐷𝑖

𝑗
: 𝑟2 

6. 𝐷𝑖−1
𝑗
C: 𝑒1𝑃, 𝑒2𝑃, 𝑟1 

7. 𝐷𝑖
𝑗
C: 𝑒3𝑃, 𝑒4𝑃, 𝑟2 

8. 𝐶 computes: 

a. temp1= (𝑒1 + 𝑟1𝐼
𝐷𝑖−1

𝑗
′) 𝐾

(𝐶, 𝐷𝑖−1
𝑗

,𝐷𝑖
𝑗
,𝑆𝑖−1,𝑖)

𝑃𝑟𝑖𝑣𝑎𝑡𝑒 , temp2= (𝑒2𝐼
𝐷𝑖−1

𝑗
′ + 𝑟1𝜑

𝐷𝑖−1
𝑗

′) 𝐾
(𝐶, 𝐷𝑖−1

𝑗
,𝐷𝑖

𝑗
,𝑆𝑖−1,𝑖)

𝑃𝑟𝑖𝑣𝑎𝑡𝑒 , temp3= (𝑒3 +

𝑟2𝐼
𝐷𝑖

𝑗
′) 𝐾

(𝐶, 𝐷𝑖
𝑗
,𝐷𝑖+1

𝑗
,𝑆𝑖,𝑖+1)

𝑃𝑟𝑖𝑣𝑎𝑡𝑒 , temp4= (𝑒3𝐼
𝐷𝑖

𝑗
′ + 𝑟2𝜑

𝐷𝑖
𝑗

′) 𝐾
(𝐶, 𝐷𝑖

𝑗
,𝐷𝑖+1

𝑗
,𝑆𝑖,𝑖+1)

𝑃𝑟𝑖𝑣𝑎𝑡𝑒  

9. C𝐷𝑖−1
𝑗

: temp1, temp2 

10. C𝐷𝑖
𝑗
: temp3, temp4 

11. 𝐷𝑖−1
𝑗

 computes:  

12. If 𝐼
𝐷𝑖−1

𝑗 == ((𝐾
(𝐶, 𝐷𝑖−1

𝑗
,𝐷𝑖

𝑗
,𝑆𝑖−1,𝑖)

𝑃𝑢𝑏𝑙𝑖𝑐 )-1 temp1-𝑒1𝑃)𝑟1
−1 then 

a. 𝐾
(𝐶, 𝐷𝑖−1

𝑗
,𝐷𝑖

𝑗
,𝑆𝑖−1,𝑖)

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 =((𝐾
(𝐶, 𝐷𝑖−1

𝑗
,𝐷𝑖

𝑗
,𝑆𝑖−1,𝑖)

𝑃𝑢𝑏𝑙𝑖𝑐 )-1 temp2 -𝐼𝐷𝑖−1
𝑗

′𝑒2𝑃) 𝑟1
−1 

b. End If 

13. 𝐷𝑖−1
𝑗

 𝐷𝑖
𝑗
: 𝐾

(𝐶, 𝐷𝑖−1
𝑗

,𝐷𝑖
𝑗
,𝑆𝑖−1,𝑖)

𝐶𝑢𝑟𝑟𝑒𝑛𝑡  

14. 𝐷𝑖
𝑗
 computes:  

15. If 𝐼
𝐷𝑖

𝑗 == ((𝐾
(𝐶, 𝐷𝑖

𝑗
,𝐷𝑖+1

𝑗
,𝑆𝑖,𝑖+1)

𝑃𝑢𝑏𝑙𝑖𝑐 )-1 temp3-𝑒3𝑃)𝑟2
−1 then 

a. 𝐾
(𝐶, 𝐷𝑖

𝑗
,𝐷𝑖+1

𝑗
,𝑆𝑖,𝑖+1)

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 =((𝐾
(𝐶, 𝐷𝑖

𝑗
,𝐷𝑖+1

𝑗
,𝑆𝑖,𝑖+1)

𝑃𝑢𝑏𝑙𝑖𝑐 )-1 temp4 -𝐼𝐷𝑖
𝑗

′𝑒4𝑃) 𝑟2
−1 

b. End If 

16. 𝐷𝑖
𝑗
 𝐷𝑖+1

𝑗
: 𝐾

(𝐶, 𝐷𝑖
𝑗
,𝐷𝑖+1

𝑗
,𝑆𝑖,𝑖+1)

𝐶𝑢𝑟𝑟𝑒𝑛𝑡  

17. End 

The comparative cost analysis of proposed algorithms in key generation and renewal is shown in Table 4. Since 

algorithms use more than one type of logic gates for different operations, the hardware cost (also measure circuit 

size) is measured in NAND gate equivalent (GE) to reflect the requirements of the actual area. Assuming, two-

input NAND, NOR, AND, OR and XOR gates require 1, 1, 1.25, 1.25, and 2.25 GEs, respectively and three-input 

NAND, NOR, AND, OR, XOR, MAJ and MUX gates require 1.25, 1.5, 1.5, 1.75, 4.0, 2.25 and 2.50 GEs 

respectively, table 5 shows the total computational and communication cost in terms of GEs. Here, single 

multiplication requires 6 AND and 2 XOR gates. Additionally, a typical elliptic curve implementation requires 

4548 (arithmetic unit), 11205 (memory) and 2368 (control logic) GEs for 163-bit scalar key size. The comparative 

analysis of the key generation and renewal process (as shown in Table 4) shows that our proposed algorithms 

require fewer GEs than state-of-the-art protocols. Thus, our proposed algorithms are lightweight in nature. 

Algorithm 5 requires lesser GEs (total cost) compared to algorithm 4. Although the computational cost of 

algorithm 5 is slightly higher than algorithm 4, the communicational cost is much lower. Overall, algorithm 5 

shows better performance in terms of GEs compared to algorithm 4 or state-of-the-art approaches. In case 

computational cost is the only criteria for performance evaluation, then algorithm 4 is preferred over algorithm 5. 

For example, if the size of the data packet is large or heavy cryptographic primitive is used for security purposes, 

the computational cost will be high. In such scenarios, algorithm 4 performs slightly better compared to algorithm 

5.  

Table 5: Comparative cost analysis of key generation and renewal process 

Algorithm Computational Cost Communicational Cost Total Cost 

(GEs) 

Algorithm 4 8M=136 GEs 27X+11h+15p=108+11000+255= 11,363 

GEs 

29,620 GEs 

Algorithm 5 10M=170 GEs 34M+4D=57+88 = 145GEs 18,436 GEs 

Singh et al. 

[20] 

6M + 7X +1 h = 102+28+1000 = 

1130 GEs 

31X+9h+7E=124+9000+3500 = 12,624 GEs 31,875 GEs 

Zhang et al. 

[21] 

1h+1X=1000+4 = 1004GEs 69O+14X+22h=120.75+56+22000 ≈ 

22,177GEs 

42,302 GEs 

*M=Multiplication, D=Doubling, X=XOR, h=hash computation cost, p= Chebyshev polynomial function computation cost, 

O=OR, E=exponentiation (with modulus) 



 

6. Security Analysis 

In this section, our proposed drone-to-drone session key generation and renewal algorithms are analyzed against 

various attacks. More details of security analysis are as follows. 

Strong Secrecy: It means that the protocol is secure against attack in case of change in secret values. In algorithm 

4 and algorithm 5, private and public keys, and temporary values change frequently. Thus, the proposed protocols 

will be considered secure if old and new secret values should not affect the working behavior of the protocols. In 

this analysis, ProVerif toolkit is used to vary the attacker’s ability to learn secret information partially. The 

conditions when the security proofs are considered in the sense of strong secrecy are: 

 Attacker has learned some components of a pair value, for instance, but he is not able to fetch the whole pair 

values because he does not have other components of the pair. For example, (temp1, temp2, temp3) is a pair of 

values that are exchanged between drones in algorithm 4. Now, if the attacker’s ability to learn any information 

about the pair is high, provided one component of the pair (e.g. temp1 ) is known to him, then it is not considered 

in the sense to have strong secrecy. Now, the concept of strong secrecy is important when components in the 

pair consist of known values rather than unknown values. Let the real number system (𝑅; +; −; . ;⊕
; ||; 𝐸𝑀𝐼; 𝐸𝑃𝐷; 𝐸𝑃𝐴) is defined with addition (+), substraction (-), multiplication (.), XOR (⊕), OR (||), 

multiplicative inverse (𝐸𝑀𝐼), elliptic point doubling (𝐸𝑃𝐷) and elliptic point addition (𝐸𝑃𝐴) operations in finite 

field (𝑍𝑛) with size n. Consider, for instance, a process that uses (temp1, temp2, temp3) pair in 𝑍3. Now, each 

component in this pair can have a value 0, 1 or 2. Thus, it can be assumed that tempi 𝜖 {𝑡𝑒𝑚𝑝1, 𝑡𝑒𝑚𝑝2, 𝑡𝑒𝑚𝑝3} 

is strongly secret with the probabilities: 

 

𝑃{
0

𝑡𝑒𝑚𝑝𝑖
} ≈ 𝑃{

1

𝑡𝑒𝑚𝑝𝑖
}  ≈ 𝑃{

2

𝑡𝑒𝑚𝑝𝑖
}     (1) 

 

i.e. attacker is not able to determine whether tempi is 0, 1 or 2. Here, 
𝑛

𝑡𝑒𝑚𝑝𝑖
 represent that 𝑡𝑒𝑚𝑝𝑖  is assigned a 

value n. This assumption may be wrong because n is very small. A large value of n can increase the tempi pair 

values which in-turn increases the confidence in strong secrecy. Now, consider an instance when an attacker is 

continuously trying with multiple attempts. In this case, strong secret probabilities can be written as: 

 

𝑃 {
0

𝑡𝑒𝑚𝑝𝑖
} + 𝑃 {

1

𝑡𝑒𝑚𝑝𝑖
} + 𝑃 {

2

𝑡𝑒𝑚𝑝𝑖
} + 𝑃 {

3

𝑡𝑒𝑚𝑝𝑖
} + 𝑃 {

4

𝑡𝑒𝑚𝑝𝑖
} + ⋯ {

𝑐𝑖

𝑡𝑒𝑚𝑝𝑖
} + ⋯  ∞   (2) 

 

∑ 𝑃 {
𝑐𝑖

𝑡𝑒𝑚𝑝𝑖
}∞

𝑖=1 = 1      (3) 

Here, 𝑐𝑖 is the ith component in the pair and defines unique probability distribution by association (𝐴) as: 

 

𝑃(𝐴) = ∑ 𝑃 {
𝑐𝑖

𝑡𝑒𝑚𝑝𝑖
}𝑐𝑖

𝑡𝑒𝑚𝑝𝑖
∈𝐴

      (4) 

For an attacker, 𝑃(𝐴) is greater than 0 but very small as there is randomness in component guessing. Thus, it 

would be difficult to perform an attack. With a large number of guesses, establishing an association among 

continuous attempts would be difficult. Thus, the chances of an attack are negligible.  

 An attacker has learnt some component of a pair value, but he cannot distinguish changes in the values of tempi. 

Under this condition, a process is considered to have strong secrecy if 

 

𝑃{
𝑡𝑒𝑚𝑝1

′

𝑡𝑒𝑚𝑝1
,

𝑡𝑒𝑚𝑝2
′

𝑡𝑒𝑚𝑝2
, … ,

𝑡𝑒𝑚𝑝𝑛
′

𝑡𝑒𝑚𝑝𝑛
} ≈ 𝑃{

𝑡𝑒𝑚𝑝1
′′

𝑡𝑒𝑚𝑝1
,

𝑡𝑒𝑚𝑝′2
′

𝑡𝑒𝑚𝑝2
, … ,

𝑡𝑒𝑚𝑝𝑛
′′

𝑡𝑒𝑚𝑝𝑛
}     (5) 

 

for all component values 𝑡𝑒𝑚𝑝1
′ , 𝑡𝑒𝑚𝑝2

′ , … , 𝑡𝑒𝑚𝑝𝑛
′ , 𝑡𝑒𝑚𝑝1, 𝑡𝑒𝑚𝑝2, … , 𝑡𝑒𝑚𝑝𝑛, 𝑡𝑒𝑚𝑝1

′′, 𝑡𝑒𝑚𝑝2
′′, … , 𝑡𝑒𝑚𝑝𝑛

′′. 

This means, the attacker can change 𝑡𝑒𝑚𝑝1 , 𝑡𝑒𝑚𝑝2, … , 𝑡𝑒𝑚𝑝𝑛 to any old or new values 𝑡𝑒𝑚𝑝1
′ , 𝑡𝑒𝑚𝑝2

′ , , …, 

 𝑡𝑒𝑚𝑝𝑛
′ , 𝑡𝑒𝑚𝑝1

′′, 𝑡𝑒𝑚𝑝2
′′, … , 𝑡𝑒𝑚𝑝𝑛

′′ } but he is unable to get pair. In case, attacker make multiple attempts 

and try to build association among attempts then probability distribution by association becomes: 

 

𝑃(𝐴) = 𝑃 {
𝑡𝑒𝑚𝑝1

′

𝑡𝑒𝑚𝑝1
,

𝑡𝑒𝑚𝑝2
′

𝑡𝑒𝑚𝑝2
, … ,

𝑡𝑒𝑚𝑝𝑛
′

𝑡𝑒𝑚𝑝𝑛
} + 𝑃 {

𝑡𝑒𝑚𝑝1
′′

𝑡𝑒𝑚𝑝1
,

𝑡𝑒𝑚𝑝′
2
′

𝑡𝑒𝑚𝑝2
, … ,

𝑡𝑒𝑚𝑝𝑛
′′

𝑡𝑒𝑚𝑝𝑛
} + 𝑃 {

𝑡𝑒𝑚𝑝1
′′′

𝑡𝑒𝑚𝑝1
,

𝑡𝑒𝑚𝑝′′
2
′

𝑡𝑒𝑚𝑝2
, … ,

𝑡𝑒𝑚𝑝𝑛
′′′

𝑡𝑒𝑚𝑝𝑛
} + ⋯ +

⋯  ∞       (6) 

 

For an attacker, 𝑃(𝐴) is greater than 0 but very small as there is randomness in component guessing. Thus, it 

would be difficult to perform an attack. With a large number of guesses, establishing an association among 

continuous attempts would be difficult. Thus, the chances of an attack are negligible.  



 

 

 Attacker has learnt some component of a pair value and he has the ability to send multiple queries for one 

component in its single execution but he cannot distinguish changes in the values of tempi. Under this condition, 

a process is considered to have strong secrecy with m-attacker queries per component if 

 

𝑃{
𝑡𝑒𝑚𝑝1,1

′

𝑡𝑒𝑚𝑝1,1
,

𝑡𝑒𝑚𝑝2,1
′

𝑡𝑒𝑚𝑝2,1
, … ,

𝑡𝑒𝑚𝑝2,𝑚
′

𝑡𝑒𝑚𝑝2,𝑚
, … ,

𝑡𝑒𝑚𝑝𝑛,𝑚
′

𝑡𝑒𝑚𝑝𝑛,𝑚
} ≈ 𝑃{

𝑡𝑒𝑚𝑝1,1
′′

𝑡𝑒𝑚𝑝1,1
,

𝑡𝑒𝑚𝑝′2,1
′

𝑡𝑒𝑚𝑝2,1
, … ,

𝑡𝑒𝑚𝑝2,𝑚
′′

𝑡𝑒𝑚𝑝2,𝑚
, … ,

𝑡𝑒𝑚𝑝𝑛,𝑚
′′

𝑡𝑒𝑚𝑝𝑛,𝑚
}         (7) 

 

This means, attacker can change any component with multiple queries 

𝑡𝑒𝑚𝑝1,1, 𝑡𝑒𝑚𝑝1,2, … , 𝑡𝑒𝑚𝑝1,𝑚, … , 𝑡𝑒𝑚𝑝𝑛,𝑚 to 𝑡𝑒𝑚𝑝1,1
′ , 𝑡𝑒𝑚𝑝1,2

′ , … , 𝑡𝑒𝑚𝑝1,𝑚
′ , … 𝑡𝑒𝑚𝑝𝑛.𝑚

′  or 

𝑡𝑒𝑚𝑝1,1
′ , 𝑡𝑒𝑚𝑝1,2

′ , … , 𝑡𝑒𝑚𝑝1,𝑚
′ , … 𝑡𝑒𝑚𝑝𝑛.𝑚

′  but he is unable to get pair. 

Random Number Matching/Guess: In both algorithms, random numbers are selected within finite field. Assume 

that anytime an adversary picks up some random number that may or may not be different from currently used 

number in algorithm execution. Now, the probability that an adversary gets the r-random number of possible 

matches with honest drone’s random number in y-attempts is 𝑝. 

𝑝 = 1 − (
𝑟

𝑟
×

𝑟−1

𝑟
×

𝑟−2

𝑟
× … ×

𝑟−(𝑦−1)

𝑟
)     (8) 

Thus, this probability follows: 

0 ≤ 𝑝 ≤ 1 − (1 −
𝑦−1

𝑟
)𝑦     (9) 

 

For large value of y, eqn. (5) can be re-written as: 

0 ≤ 𝑝 ≤
𝑦(𝑦−1)

𝑟
      (10) 

Since the adversary’s attempt, ‘y’ is a polynomial, and if the random number ‘r’ is exponential, then 𝑝 is negligible 

in the finite field. In conclusion, an adversary will not have the advantage of randomly selecting a number and 

matching it with a random number in use. In algorithm 2, two consecutive steps select random numbers (step 3 

and step 4). Assuming that there are n-random numbers and an adversary selects 2r random numbers at random 

(2r<n), Then the probability that an adversary did not find a match after trying (
2𝑛
2𝑟

) ways to choose 2r random 

numbers from 2n. Let the ways to choose matching random numbers be represented as: 

(𝑟1
1 𝑟2

1) (𝑟1
2 𝑟2

2)… (𝑟1
𝑛 𝑟2

𝑛) 

No matching occurs if the adversary selects only one random number from each ‘row’ of consecutive random 

numbers. Here, there are (
𝑛

2𝑟
) ways to choose one random number from each row. In this selection, two possible 

options are available with adversaries (𝑟1
∗ or 𝑟2

∗). In a result, 22r ways are available to select step 3 and step 4 

random numbers. Thus, the probability that an adversary does not find the selected random number matched with 

the random number in use (in step 3 and step 4) becomes: 

𝑃(𝑛𝑜𝑡 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔) =
( 𝑛

2𝑟)22𝑟 

(2𝑛
2𝑟)

      (11) 

 

Eqn. (7) shows that it would be difficult for an adversary to select two random numbers in two consecutive steps 

and find a match with the algorithm in execution. For example, if an adversary challenge is for (5, 2) then the 

probability of not matching is 0.38 (or matching is 0.62), i.e. chances of attack is higher. Now, if the adversary 

challenge is (1000, 2), then the chances of an attack are almost zero. In conclusion, if a large number of bits are 

used for challenge or primitive generation or verification, then the chances of an attack are negligible.  

Dictionary, brute force and guessing attacks: Algorithms may use weak secrets, that is, values lie within a short 

finite field (e.g. 𝑍3 is a small field). Algorithms with weak secrets can easily be subject to a dictionary, brute force 

or guessing attacks, whereby an attacker passively observes the transactions or actively participate in algorithm 

execution and then has the ability to elongate the execution time at either side (source or destination) or any 

intermediate temporary computing side. This elongation provides time to the attacker in enumerating a dictionary 

of component values, verify each component, identify the correct one and use it in further computations. In 

ProVerif toolkit, the algorithm’s protection from dictionary, brute force and guessing attacks can be tested (using 

weak secret 𝑡𝑒𝑚𝑝𝑖). With this syntax, ProVerif can test whether attacker can distinguish between a successful or 



 

unsuccessful attempt or not. It has been observed that for the proposed algorithms, the attacker is unable to 

distinguish this. 

False attacks with processes observational equivalences: In both algorithms (algorithm 1 and algorithm 2), 

there are multiple ‘if’ conditions that have the almost same structure but differ in the choice of variables. In process 

observational equivalences, an attacker may choose one structure while a normal process can choose another. This 

can lead to “false attacks” in which an attacker may have applied a wrong execution but he can get the 

observational equivalences. For example, the process observational equivalences for two steps in different ‘if’ 

conditions can be represented as: 

P(𝐾
(𝐷𝑖−1

𝑗
,𝐷𝑖

𝑗
,𝑆𝑖−1,𝑖)

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , , e1||𝜎1, ⊕) or P(𝐾
(𝐷𝑖−1

𝑗
,𝐷𝑖

𝑗
,𝑆𝑖−1,𝑖)

𝑜𝑙𝑑 , 𝜎1||e1 , ⊕)  

≈ P(𝐾
(𝐷𝑖−1

𝑗
,𝐷𝑖

𝑗
,𝑆𝑖−1,𝑖)

𝑜𝑙𝑑 , , e1||𝜎1, ⊕) or P(𝐾
(𝐷𝑖−1

𝑗
,𝐷𝑖

𝑗
,𝑆𝑖−1,𝑖)

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , 𝜎1||e1 , ⊕) 

≈ P(𝐾
(𝐷𝑖−1

𝑗
,𝐷𝑖

𝑗
,𝑆𝑖−1,𝑖)

𝑜𝑙𝑑 , , e1||𝜎1, ⊕) or P(𝐾
(𝐷𝑖−1

𝑗
,𝐷𝑖

𝑗
,𝑆𝑖−1,𝑖)

𝑛𝑒𝑤 , 𝜎1||e1 , ⊕) 

≈ P(𝐾
(𝐷𝑖−1

𝑗
,𝐷𝑖

𝑗
,𝑆𝑖−1,𝑖)

𝑛𝑒𝑤 , , e1||𝜎1, ⊕) or P(𝐾
(𝐷𝑖−1

𝑗
,𝐷𝑖

𝑗
,𝑆𝑖−1,𝑖)

𝑜𝑙𝑑 , 𝜎1||e1 , ⊕)  (12) 

With observational equivalences, the chances of false attack increases. ProVerif execution shows that the proposed 

algorithms are protected from “false attacks” because of selecting large field size and lesser chances of weak 

secrets. 

Real and random authenticated key matching attack: This attack occurs when the exchanged key in the 

algorithm is indistinguishable from the attacker’s random key selection. ProVerif formal verification process 

applies several test queries with different conditions that either return the real key with honest participants or it 

return the real or random key in presence of dishonest participants. 

Other security aspects: Each phase of algorithm 4 and algorithm 5 connections has their own correctness and 

security objectives. For example, during initial phases of communication, both algorithms choose a random 

number that is consistent with the selected finite field, the key exchange produces a secret session key; keys are 

updated regularly and so on. These intermediate security goals are important for both algorithms. However, the 

traffic monitoring application and data exchange mechanism is not much associated with the internal security 

structure. Consequently, the security goals are for messages to exchange between honest and authenticated drones, 

that is, for those drone devices whose secret session keys are unknown to the attacker. Assuming that drones are 

authenticated devices, but they do not know whether they are talking to other honest device or an attacker, the 

security goals stated in the algorithm’s security model are: 

 Data Secrecy: If drone-based traffic monitoring application’s data sent over a session between honest drone 

devices and/or with MPI-based computing centre, then the confidentiality of this message is maintained from 

an attacker using elliptic curve cryptography operations. This confidentiality ensures that the attacker cannot 

break the cryptography structure used in the key exchange mechanism. 

 Forward and Backward Secrecy: In proposed algorithms, strong secrecy is maintained even the private, public 

or session keys are given to the adversary after the current session expire and the session keys (𝐾
(𝐶, 𝐷𝑖−1

𝑗
,𝐷𝑖

𝑗
,𝑆𝑖−1,𝑖)

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 ) 

are deleted from every type of device available in the network.  

 Message Authentication: It states that if drone has exchanged the traffic monitoring data or data associated to 

generate session keys then it must have sent this data in consecutive sessions (with similar parameters like 

H,𝐾
(𝐶, 𝐷𝑖−1

𝑗
,𝐷𝑖

𝑗
,𝑆𝑖−1,𝑖)

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 , 𝐾
(𝐷𝑖−1

𝑗
,𝐷𝑖

𝑗
,𝑆𝑖−1,𝑖)

𝑜𝑙𝑑 , 𝐾
(𝐶, 𝐷𝑖

𝑗
,𝐷𝑖+1

𝑗
,𝑆𝑖,𝑖+1)

𝑃𝑢𝑏𝑙𝑖𝑐 ). 

 Replay Attack: To avoid replay attack, it should be ensured that any application data sent in one session (or 

current session) can be accepted at most once by drone devices. Data sent over TCP can maintain the record to 

handle data loss or drop packets. 

 Weak Hash Function: Both algorithms use hash functions for key derivations. The use of lightweight hash 

functions that requires GEs under 1000 GE with strong collision resistant properties can avoid birthday paradox 

or other exploitable attacks. 

 Correctness: If drones in the IoDn complete an exchange (using any algorithm) then same secret session keys 

are derived at both sides in one session. Whereas, distinct keys are generated in distinct sessions. 



 

 Mutual Distinctiveness: It is ensured in a proposed algorithm that if one drone shares one session key with 

another drone, then no other drone should be able to learn anything about key from both sides. 

 Identity Hiding: In both proposed algorithms, active or passive adversary will not be able to learn about the 

drone identity (𝐼
𝐷𝑖

𝑗) in any exchange or session. This is made possible by not exchanging the identities openly 

rather in encrypted form only. The process (𝑃𝑖) that executes the algorithm preserves the secrecy of drones if 

and only if the role of authentic drone (𝑅
𝑎𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐

𝐷𝑖
𝑗

) is disjoint from the role of attacker (𝑅
𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟

𝐷𝑖
𝑗

) such that 

𝑓𝑛(𝐷𝑖
𝑗
)⋃𝑓𝑛(𝑃𝑖) ⊆ 𝑅

𝑎𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐

𝐷𝑖
𝑗

∪ 𝑅𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟

𝐷𝑖
𝑗

. Here, 𝑓𝑛(𝐷𝑖
𝑗
) and 𝑓𝑛(𝑃𝑖) represents the functions (any) performed by 

𝐷𝑖
𝑗
 and 𝑃𝑖  respectively. In any trace 𝑇𝑟 = (𝑅

𝑎𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐

𝐷𝑖
𝑗

, 𝑅𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟

𝐷𝑖
𝑗

), 𝑇𝑟 will not disclose 𝐷𝑖
𝑗
. This has been formally 

verified in the next section using ProVerif toolkit. 

 

7. Security Analysis 

This section presents the security and performance results measured using ProVerif [22], AnyLogic [23] and 

JaamSim simulators [24]. More details of these results and analysis are presented as follows. 

A. Formal Security Verification 

Fig. 8 shows the algorithm 4’s formal model verification using ProVerif. Similar results are observed for algorithm 

5. In ProVerif, description of the algorithm is provided to verify the communications and various security 

properties using pi calculus. ProVerif translates the algorithms to Horn clauses and analysis, whether the desired 

security properties hold or not. The major observations in this verification process are discussed as follows:  

 Algorithm 4 and algorithm 5 hides the drone identities during any form of their trace. Thus, both algorithms 

preserve the secrecy of drones. 

 Algorithms are protected from chosen cipher text attack, i.e. if an attacker is having cipher text and the key and 

it tries to obtain the plaintext, then it is discarded during the algorithm execution because the attacker 

additionally needs to know some or all of the temporary variable values.  

 Algorithms are protected from message replay attack because drones in communication authenticate each other 

and message cannot be changed during communication because of the use of one way hash function. 

 As it is difficult to trace the role of any authentic drone, it is not possible to find any false authentication 

correspondence or secrecy disclosure. Thus, both algorithms are safe and chances of attacks are probabilistically 

negligible. 

 Results show that the key exchange is protected from man-in-the-middle attack (passive) because of permutation 

and other computational operations in both algorithms. 

 

460 rules inserted. The rule base cobtains 391 rules. 17 rules in the queue. 

Starting query not attacker(svlueDi[]) 

RESULT not attacker(Divalue[]) is true. 

Starting query not attacker(svlueDj[]) 

RESULT not attacker(Djvalue[]) is true. 

-------------------------------------------------------------- 

Verification summary: 

Query ini-event(Dend(Di))==>ini-event(Dbegin(Dj)) is true. 

Query ini-event(Dend(Dj))==>ini-event(Dbegin(Di)) is true. 

Query not attacker(svalueDi[]) is true. 

Query not attacker(svalueDj[]) is true. 

Query not attacker(svalueK[]) is true. 
 

Figure 8: Outcomes of ProVerif formal model for algorithm-4 
 

B. Performance Analysis and System in Execution 

This sub-section shows the system in the execution (using AnyLogic simulator) and analyze the system 

performance in terms of time required for Hash computation, operational delay and jitter analysis. Table 6 depicts 

the chosen parameters for the simulation. More details are presented as follows. 

 



 

Table 6: The Parameters for Simulation 

 

Fig. 9 illustrates the simulation graph of the proposed multi-layered drone-based monitoring system using 

AnyLogic simulator. In the proposed system, a road network of 1000 km is programmed in a city, and a variation 

of 60 to 100 vehicles movement per minute with an average speed of 60 km/h is considered. To monitor the traffic, 

drone movements are random and it is observed that an average of 246 drones per second at layer-1 and 94 drones 

per second at the layer-2 monitor the traffic in this experimentation. Fig. 10 shows the image processing analysis 

for measuring the area coverage. The pixelate algorithm can give more precise results for measuring area coverage 

(shown in blue color). In experimentation, a variation of 5 to 10 block sizes are considered to identify the best 

possible solution for measuring the area coverage. This analysis helps in identification of areas that need to cover 

for monitoring and traffic record purposes.  

 

Figure 9: Multi-layered drone-based simulation (in execution using AnyLogic) for traffic monitoring. 

MPI-based Hash computational Analysis: Fig. 11 shows the variations of time with an increase in the number 

of hash computation tasks and processors. Results show that the hash computation time varies from 11 seconds 

to 39 second s approximately for 4 processors, 18 seconds to 76 seconds approximately for 3 processors, and 27 

seconds to 115 seconds approximately for 2 processors. The hash computation time decreases with an increase in 

processors. This analysis helps in selecting the Hash-computational overhead for drones based on availability of 

resources. Similar communicational and computational overheads can be counted for drones movements with 

better QoS. Here, feasibility to integrate multiprocessors with drones is a major challenge and need to be studies 

in future.  

Parameter Value 

Simulator 

Number of parallel drones flying areas 

Drones frequency 

Exit probability 

Road segment 

Simulation time 

First layer drone altitude 

Second layer drone altitude 

Average speed of drones at top layer 

Average speed of drones at second layer 

Top layer’s drone communication range 

Top layer’s drone communication range 

Drone to vehicle detection success rate 

Battery cycle 

AnyLogic 

6 

60 to 100 per minute 

0.3 

1000 km 

24 hours 

200 m 

300 m 

60 km/h (approx.) 

40 km/h (approx.) 

100 to 200 m 

400 to 500 m 

>95% 

200 cycle/each 



 

Delay Analysis: Fig. 12 illustrates the delay comparison analysis caused by proposed algorithm vs. no security 

[25] with 150 flying drones. This delay considers processing plus propagation and transmission delays. Results 

show that algorithm 4 causes more delay compared to algorithm 5 in different scenarios (zoneless drone movement 

strategy with and without security and multilayer approach [25]) because of multiple use of hashing and other 

cryptographic primitives. Thus, algorithm 5 is recommended in case of high QoS requirements and algorithm 4 is 

recommended when comparatively high security is required and implementation of lightweight cryptographic 

primitives and protocols is possible. The delay analysis in various scenarios based on zone or zoneless strategies 

is helpful in predicting the future drone movement plans and better QoS scenarios.   

Jitter Analysis: Jitter is a variation in packet transmission delay. A higher jitter value results in packet loss, drop 

and/or network congestion. Fig. 13 depicts the jitter comparison analysis in executing the proposed algorithm for 

24 hours with 150 flying drones. Results demonstrate that jitter varies from 1.5 to 2 msec. for algorithm 4 and 0.7 

to 1.3 msec. for algorithm 5. Thus, jitter variation in algorithm 4 is higher than algorithm 5 in different scenarios 

(zoneless drone movement strategy with and without security and multilayer approach [25]) because of the use of 

hashing and other cryptographic primitives. Table 7 depicts the average jitter comparison analysis of the proposed 

algorithm vs. state-of-the-art schemes. The results depict that our proposed approaches are more efficient than 

Nägeli et al. [26] and Sanchez-Aguero et al. [27] because of fast and efficient security mechanisms. Algorithm 5 

shows minimum jitter because of lesser computational overhead. In comparison to algorithm 5, algorithm 4 shows 

higher jitter variations but it provides better security because of the use of security primitives. 

 

Figure 10: Image pixelate for precise area coverage monitoring (block size=8) 

 

Figure 11: MPI-based hash computational tasks 



 

 

Figure 12: Comparative average delay analysis in executing proposed algorithms with 150 drones. 

 

Table 7: Comparative average jitter analysis 

Algorithm Average Jitter (msec.) 

Zoneless drone movement Strategy with Algorithm-4** 

Zoneless drone movement Strategy with Algorithm-5** 

Zoneless drone movement Strategy [Multilayer + Algorithm-4**] 

Zoneless drone movement Strategy [Multilayer +  Algorithm-5**] 

Nägeli et al. [26] ** 

Sanchez-Aguero et al. [27] * 

1.9 

1.8 

1.3 
1.1 
2.3 

3 

*Average analysis of 1-7 drones, **average analysis of upto 150 flying drones 

Table 8 depicts the temporal communicational cost comparison analysis of the proposed security algorithm 

(algorithm 4 and algorithm 5) with state-of-the-art approaches. This comparative analysis is drawn for simulation 

over two system configurations: system-1 (HP Pavillion Gaming 790-0026in i7-8700, 16GB DDR4 RAM, 

3.2Ghz, Window OS) and system-2 (HP Z2 Mini Professional Workstation, i7-6700, 8GB DDR4 RAM, 3.4 GHz, 

Window OS). In results, a linear regression function is observed with input size ‘x’ in bytes. Results show that 

algorithm-5 is the most efficient approach because of lightweight mechanisms. Results are comparable with the 

Model algorithm [28] and Sanchez-Aguero et al. [27] approaches. However, communicational cost analysis of 

state-of-the-art approaches are higher because of interruptions and heavy primitives and protocols. The 

computational delay over system-2 is more compared to system-1 because of system configurations. 

 

Figure 13: Comparative jitter analysis in executing proposed algorithms with 150 drones. 

Table 8: Comparative temporal communicational cost analysis of security algorithms 

Algorithm Time (msec.) 

System-1 System-2 

Proposed Algorithm-4** 1.40+0.4x 1.52+0.3x 



 

Proposed Algorithm-5** 

Model Algorithm [28] ** 

Sanchez-Aguero et al. [27] * 

1.25+0.7x 

1.54+0.8x 

1.81+0.8x 

1.30+0.3x 

1.68+0.5x 

1.93+0.7x 
*Average analysis of 1-7 drones, **average analysis of upto 150 flying drones 

Table 9 shows the comparative analysis of energy cost analysis of proposed security algorithms with state-of-the-

art approaches [27][28]. Results show that energy cost is a linear regression function and proposed algorithm 5 

shows minimum energy cost compared with other approaches because of lesser overheads. However, proposed 

algorithm-1 shows more energy requirements but it provides strong security compared to other approaches as 

well. 

Table 9: Comparative energy cost analysis of security algorithms 

Algorithm Energy (mJ) 

System-1 System-2 

Proposed Algorithm-4** 

Proposed Algorithm-5** 

Model Algorithm [28] ** 

Sanchez-Aguero et al. [27] * 

0.30+0.4x 

0.25+0.7x 

0.46+0.8x 

0.81+0.8x 

0.12+0.3x 

0.30+0.3x 

0.48+0.7x 

1.13+0.7x 

*Average analysis of 1-7 drones, **average analysis of upto 150 flying drones 

Fig. 14 shows the probability of security interruption variation with change in energy efficiency coefficient for 

algorithm 5. Energy efficiency coefficient is the ratio of the amount of useful energy offered for security purposes 

to the amount of energy available in the system. Results show that the probability, with security interruption, 

reduces with the increase of energy efficiency coefficient. Therefore, the security performance of drone networks 

with proposed security algorithms can be increased by increasing the energy efficiency of drones in the network. 

The analysis of energy efficiency with increased security is helpful in planning the drone movements in the zone 

and zoneless strategies as well. Thus, energy management for drones includes efficient energy generation, energy 

storage, energy usage, resource optimization, and energy regeneration, which are major phases to consider in 

futuristic evaluations.  

 

Figure 14: Security interruption probability variations with change in energy efficiency coefficient for algorithm 5. 



 

Fig. 15 shows probability of the system’s security interruption variations with energy acquisition for algorithm 5. 

Here, a comparative system security interruption probability variation of proposed SDDN-based approach, which 

select drones either using (i) maximum drone energy (from top to down layers), (ii) maximum drone energy (from 

down to top layers), (iii) residual drone energy (from top to down layers), or (iv) residual drone energy (from 

down to top layer), is made with random selection and model algorithm [28]. Results show that maximum energy 

and residual energy-based algorithms have lesser security interruption probability compared to random selection 

or model algorithm. Maximum energy and residual energy-based algorithms show lesser security interruption 

with variation in energy acquisition coefficient compared to the model algorithm because of lightweight 

primitives. 

 

Figure 15: Comparative security interruption probability variations with change in energy acquisition coefficient for Algorithm 5. 

Variations in simulation parameters: With the variations in simulation parameters, the following observations 

are made. 

 With the change in drone frequency from 60 to 100 per minute to 100 to 150 per minute and 150 to 200 per 

minute delay in network increases and keeping all other parameters same as shown in table 5, an increase of 

1.9% (minimum) to 3.1% (maximum) increase in delay is observed (for algorithm 4 and algorithm 5) with an 

increase in drone frequency from 60 to 100 per minute to 100 to 150 per minute. Further, an increase of 2.3% 

(minimum) to 4.7% (maximum) is observed (for algorithm 4 and algorithm 5) with an increase in drone 

frequency from 60 to 100 per minute to 150 to 200 per minute. This delay is increased because of additional 

overhead of increasing the drone in same area which further increases the number of packets in the network. 

Increase in overhead of number of packets increases the delay.  

 With the change in drone frequency from 60 to 100 per minute to 100 to 150 per minute and 150 to 200 per 

minute delay in network increases and keeping all other parameters same as shown in table 5, an increase of 

0.3% (minimum) to 0.5% (maximum) increase in jitter is observed (for algorithm 4 and algorithm 5) with an 

increase in drone frequency from 60 to 100 per minute to 100 to 150 per minute. Further, an increase of 0.3% 

(minimum) to 0.7% (maximum) is observed (for algorithm 4 and algorithm 5)  with an increase in drone 

frequency from 60 to 100 per minute to 150 to 200 per minute. Jitter variation is increases because of increase 



 

in number of packets exchanged by additional drones in the network. Large number of drones increases the 

network overhead which impact on performance especially jitter variations.  

 With the change in exit probability from 0.3 to 0.5 and keeping all other parameters the same as shown in table 

5, a decrease in the delay of 0.2% (average of 5 executions) is observed (for algorithm 4 and algorithm 5)  for 

drone frequency of 60 to 100 per minute and 100 to 150 per minute. Likewise, a decrease in the delay of 0.3% 

(approx..) is observed (for algorithm 4 and algorithm 5) for drone frequency of 100 to 150 per minute. With 

increase in exit probability, delay is decreased because of either lesser number of drones availability for 

communication or congestion is reduced in the network.   

 With the change in an average speed of drone movement at the top and bottom layers from 60 km/h and 40 km/h 

to 50 km/h for both layers and keeping all other parameters the same as shown in table 5, the delay is increased 

by 0.2% (approx.) (for algorithm 4) and 0.3% (for algorithm 5). Likewise, change in the average speed of drone 

movement to 40 km/h at both layers (top and bottom) and keeping all other parameters the same as shown in 

table 5, the delay is increased to 0.4% approximately (minimum). With decrease in speed to 50 km/h and keeping 

the inflow of drones same is increasing the number of drones and related communications in the network. Thus, 

delay is increased.  

 With the change in a drone to vehicle detection ratio from >95% to >80%, the average delay is decreased by 

0.3% for algorithm 4 and 0.4% for algorithm 5. The average delay is increased because of a large number of 

packet communication between drones and vehicles to handle failure vehicle detection situations. An increase 

in delay caused by a decrease in the drone to vehicle detection ratio is because of an increase in the number of 

failure packets in the network. The increase in failure packets overhead the network which in-turn causes an 

increase in delays.  

 

8. Summary, Conclusions and Future Directions 

In this paper, drone-based traffic profiling and monitoring architecture is proposed. In this architecture, SDDN 

framework controls, single and multiple layers-based drone movement and collision avoidance and drones’ 

performance monitoring. Here, image-based real-time data is analyzed for traffic monitoring. The experimentation 

of image processing is extended to build front, rear and top images of vehicles that are analyzed to identify the 

vehicles and traffic profiling. Additionally, simulation experimentations are performed to collect sensor-based 

data and analyze it for traffic engineering. Further, the processing of data is performed in MPI and OpenMP-based 

parallel and distributed computing (mainly hash computation). Results show that the proposed session key 

generation and encryption/decryption algorithms have comparatively lesser computational and communicational 

costs compared to existing approaches. In comparison to alternative systems that include network programming 

and centralised logical control, the methodology that has been suggested is superior in terms of reliability, 

scalability, and interoperability. Additionally, a comparative analysis of the SDN-based proposed approach with 

others (traditional network, cloud/edge/fog-based network and virtualization) shows that the proposed approach 

is highly flexible, cost-effective, easily separate network control and forwarding functions, open for packet 

prioritization and blocking, low structural complexity and highly extensible. Strong secrecy, random number 

processing to avoid disclosure, and protection from the dictionary, brute force, guessing, and false attacks are the 

strong security primitives of this work. The statistical and formal model (using ProVerif) processes shows that the 

proposed security algorithms are secure against various attacks because of their properties and use of primitives. 

The performance analysis shows that OpenMP/MPI-based hash computations are fast and increase with an 

increase in the number of hash tasks. Security interruption probability variations are lesser for our proposed 

security algorithms than the existing approaches. Further, the arithmetic operations-based security algorithms 

consume lesser delay and jitter compared to elliptic curve cryptosystem-based algorithms.  

This work can be extended in various directions. A few of these directions are briefly explained as follows. 

 The present work considers a homogenous set of programming and software-defined drones for multi-drone 

movement and collision avoidance. In the future, a heterogeneous set of drones can be considered for collision 

avoidance, interoperability and traffic analysis.  

 The formal model for security verification can be extended to include layer-1 (lightweight cryptographic 

primitives and protocols) and layer-2 (security mechanisms integrated over layer-1 security solutions) 

mechanisms to further measure and enhance the system’s security levels. 

 Performance analysis of proposed work is limited to energy efficiency, jitter, delay and hash-computational 

performance analysis. However, other QoS parameters including vehicle-to-drone, drone-to-drone, vehicle-to-

infrastructure and many more parameters can be considered for evaluation.  



 

 Real-time analysis of multiple homogenous and heterogenous drone network movements, integration with 

roadside infrastructure and network performance analysis can be performed in future to take the system 

advantage in traffic engineering.  
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