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Abstract: Self-restraint stress produced in early age is a matter of interest associated with cracking of concrete. 
Mesoscopic modelling nowadays is one of the effective approaches to investigate internal stresses, deformation, 
damage of concrete at much smaller scale. However, grid discretization and mesoscopic properties calibration are 
still challenging issues that prevent fast pre-processing and require extremely dense meshes for accurate solutions. 
In this paper, a thermo-mechanical model required only regular-element discretization is proposed by developing a 
diffuse meshing technique to analyze the evolution of self-restraint stress. Cross-scale numerical validations are 
carried out to calibrate the mesoscopic parameters, along with verifying the feasibility of the proposed model. 
Furthermore, the effect of simplified aggregate mesostructure on the thermo-mechanical behavior of concrete is 
evaluated through comparisons with the results obtained by considering complex-shaped aggregate using the 
proposed diffuse element model. The results show the thermo-mechanical mismatch between different components 
is the main reason for producing the self-restraint stress, and aggregate meso-structure have nonnegligible influence 
on the global response or local behavior. 
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1. Introduction 

Concrete is the most widely used material in the world with extensive applications, and the durability of 
concrete is strongly related to its thermo-mechanical process. Cracking in most mass concrete structures in service 
life is attributed to the tensile stress that is generated not only from external load but also the restrained internal 
deformation. For instance, in the process of concrete hydration or under artificial cooling conditions, a significant 
temperature gradient will be produced between the edge and the center of a mass concrete, where self-restraint 
tensile stress will inevitably emerge even in the absence of external constraints or loads [1 -3]. The tensile stress may 
induce initial damage or micro-cracks inside the concrete, which adversely affects its mechanical properties and 
durability. In the normal service stage of a concrete structure, the initial micro-cracks are prone to develop into 
macro cracks under the combined action of self-restraint tensile stress and external load. It has been recognized that 
the development of early self-restraint stress has a strong correlation with crack sensitivity.  
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Physical experiment is one of the most traditional approaches to obtain macroscopic mechanical properties of 
concrete, while it has strong dependence on experimental equipment, environment and specimens [4]. Thus, 
experimental results often show significant discrepancies, especially, in the study of the internal mechanism of such 
a heterogeneous materials. A macroscopic numerical analysis often simulates concrete as a homogeneous material 
and fails to capture the evolution of internal stresses. With the progress of computer technology and the development 
of numerical methods, mesoscopic modeling based on Finite Element Method (FEM) provides an effective way to 
study mechanical behavior of concrete, known as the concept of ‘‘numerical concrete” [5-7]. As a multi-phase 
heterogeneous composite material, the complex macroscopic mechanical behavior of concrete is the reflection of 
its mesoscopic structure. In this case, the internal interactions between different components of concrete, i.e. mortar 
matrix and aggregates, are required to be considered properly and the influence of the multi- phases in concrete on 
the macroscopic properties also need to be investigated [8]. At meso-level, the mismatched thermal expansion and 
deformation between different components, primarily mortar matrix and aggregates [9,10], cause internal restraint and 
in turn induce self-restraint stress that involves a complex coupling process from heat transfer to stress-strain 
response. Over the past few decades, several useful models have been proposed to numerically analyze thermo-
mechanical behavior of concrete. Fu et al. [11] proposed a 2D mesoscopic thermo-elastic damage model to study the 
thermal cracking under elevated temperature. Xotta et al. [12] numerically studied the performance of concrete under 
elevated temperature with a 3D meso-scale model. Zunino et al. [13] used a two-phase mesoscopic model to assess 
the thermo-mechanical micro-cracking damage for early-age concrete. Sinaie et al. [14] investigated the damage 
caused by temperature by using the discrete element method. The model proposed by Xu et al. [15] accounted for 
time-dependent properties of mortar, and confirmed that it has a marked impact on the self-restraint stress evolution 
in young concrete. Nguyen et al. [16] adopted a lattice framework to study the effect of thermal conductivity on 
thermo-mechanical behavior of concrete. Caggiano et al.[17,18] presented a coupled thermo-mechanical interface 
model and investigated meso-scale response of concrete under high temperature. However, those analytical models 
ignored the complex morphology of actual aggregates by using a simplified geometry, which is unlikely to exhibit 
what really happened in the interior concrete. 

It is generally recognized that the morphology and orientation of coarse aggregate have a no-negligible 
influence on the mechanical properties of concrete at meso-level [19, 20]. The surface roughness, equidimensionality 
and angularity of aggregates greatly affect the mechanical occlusion and interaction between aggregates and cement 
matrix, thus affecting the bearing capacity and damage distribution of concrete. Using a mesoscopic model with 
spherical aggregates may deviates from the actual situation. The main question here is what is the impact of such 
simplified mesostructure on the accuracy of the simulated results. To answer this question, reconstruction of 
realistic-looking aggregates is an essential step in the construction of a more realistic mesoscopic model of concrete. 
To date, reconstructing a meso-scale aggregate based on geometric algorithms can be roughly divided into two 
categories: the image-dependent and image-independent methods [21]. Compared to an image-dependent method, an 
image-independent method, which uses a function to represent a geometry on the basis of a known point set and is 
termed also as a surface reconstruction method, is more computational cost-effectivewith higher productivity and 
less restriction on image resolution. Furthermore, the implicit T-spline surface reconstruction algorithm is superior 
in reducing noises and utilizing incomplete data to describe a complexed topology [22, 23]. Therefore, it provides an 
effective approach to reconstruct realistic-looking aggregates.  

Numerical calculations by using FEM require discretization of multi-phase components in a mesoscopic model 
to characterize the heterogeneity of concrete. The meshing, whose quality greatly restricts the accuracy of numerical 
results, is one of the main issues that have to be addressed in a mesoscopic simulation. It is still a difficult operation 
to mesh a complex meso-structure with a high aggregate volume content [24, 25]. At present, two kinds of meshing 
methods for a mesoscopic model are available, i.e., the direct division method and the indirect division method. The 
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direct division method is generally used in two-dimensional cases. For three-dimensional cases, Xu et al. [4] divided 
aggregates and concrete, respectively, into tetrahedral patches to obtain two group point sets that were subsequently 
merged to regenerate a new point set. An algorithm called ‘Incremental Topological Flipping’ [26] and the method 
of inserting line segments into tetrahedral patches [27] were used then to achieve the meshing of each components. 
This method can successfully mesh a mesoscopic model with aggregates of regular geometry. However, the pre-
process is practically applicable in generating complex-shaped aggregates. To address this problem, the indirect 
division method is preferred to discretize a mesoscopic model. The mapping mesh method [28], by which the material 
of element is determined by the component that possess more than half of the nodes of the element, is used for 
numerical calculation. This method apparently has no limitation on the morphology of aggregates. Clearly, this 
method ignores the geometry of the interface between aggregate and matrix and inevitably introduce additional 
errors. In order to improve the solution, the diffuse meshing method is developed [29], whereby cement matrix and 
aggregates properties are projected on the shape functions of the finite element mesh. It serves to represent different 
concrete component in one finite element without meshing explicitly for the complex-shaped aggregate. However, 
to the authors’ best knowledge, evolution of self-restraint stress when diffuse meshing method is used in a 
mesoscopic model has rarely been discussed in the published literatures.  

The accuracy and predictive ability of such meso-scale models is strongly tied to the thermo-mechanical 
behavior of both aggregate and cementitious materials [15]. Since it is difficult to directly measure these time-
dependent parameters accurately for the numerical model, calibration of these mesoscopic time-dependent 
parameters from the commonly-used homogeneous concrete material parameters determined by macro-experiment 
is an alternative approach to follow. Nguyen-Sy et al. [30-32] proposed a homogenization method to predict the elastic 
properties of cementitious material. However, calibration of the time-dependent parameters of cement, such as 
adiabatic temperature, creep and autogenous volume deformation, have been rarely made in the published literatures. 

To facilitate the pre-process, a novel thermo-mechanical modelling framework with regular-element 
discretization is presented to investigate the evolution of self-restraint stress in this paper. This model, which  
combines the diffuse meshing technology with the theory of linear viscoelasticity, takes into consideration of the 
effects of time-dependent behavior of cementitious materials, including adiabatic temperature rise, creep strain and 
autogenous volume deformation. In this study, it is assumed that the concrete is always elastic in the early age. The 
transition of material properties across an aggregate/matrix interface is approximately projected into a liner 
transition zone, the thickness of which depends on the closet distance between the Gaussian point across the 
interface. This is followed by single factor validation for cross-scale numerical simulation. The results of the 
proposed mesoscopic model are compared with the results from the homogeneous concrete model obtained by FEM 
to calibrate the mesoscopic parameters. A good agreement between the simulation results of above two models and 
theoretical solution of experimental result is evidenced, indicating that the proposed model is capable to interpret 
the thermo-mechanical mechanism during early-age hydration. To investigate the effect of simplified aggregate 
mesostructure, several equal volume aggregate models with complex morphology and different orientations are 
established by using the implicit T-spline algorithm. Compared to the results of the spherical aggregate model, the 
impact of aggregate mesostructure on the thermo-mechanical behavior of concrete is further studied and discussed. 

2. Mesoscopic thermo-mechanical model 

2.1. Generation of the meso-structure  

The aggregate model of complex shape is constructed by using the implicit T-spline surface reconstruction 
algorithm [33-35]. The implicit surface can be represented as the zero-level set of sign functions. Thus, the 
mathematical expression of the implicit T-spline surface based on the known point sets  {𝑝𝑝𝑖𝑖(𝑟𝑟𝑖𝑖 , 𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖)}𝑖𝑖=1𝑛𝑛  is defined 
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as: 

𝑓𝑓(𝑟𝑟, 𝑠𝑠, t) = ∑ 𝑐𝑐𝑖𝑖𝐵𝐵𝑖𝑖(𝑟𝑟,   𝑠𝑠,   𝑡𝑡)𝑀𝑀
𝑖𝑖=1
∑ 𝐵𝐵𝑖𝑖𝑀𝑀
𝑖𝑖=1 (𝑟𝑟,   𝑠𝑠,   𝑡𝑡) = 0, (𝑟𝑟, 𝑠𝑠, 𝑡𝑡) ∈Ω                           (1) 

where 𝑐𝑐𝑖𝑖  is the coefficient of the 𝑖𝑖 -th control point, 𝐵𝐵𝑖𝑖(𝑟𝑟, 𝑠𝑠, 𝑡𝑡) = 𝑁𝑁𝑖𝑖0𝑑𝑑(𝑟𝑟) ∗ 𝑁𝑁𝑖𝑖0𝑑𝑑(𝑠𝑠) ∗ 𝑁𝑁𝑖𝑖0𝑑𝑑(𝑡𝑡) . 𝑁𝑁𝑖𝑖0𝑑𝑑(𝑟𝑟) , 
𝑁𝑁𝑖𝑖0𝑑𝑑(𝑠𝑠)   and 𝑁𝑁𝑖𝑖0𝑑𝑑(𝑡𝑡)  are the B-spline basis functions with the homologous knot vectors 𝑟𝑟𝑖𝑖 = [𝑟𝑟𝑖𝑖0, 𝑟𝑟𝑖𝑖1, … , 𝑟𝑟𝑖𝑖𝑖𝑖+1] , 
𝑠𝑠𝑖𝑖 = [𝑠𝑠𝑖𝑖0, 𝑠𝑠𝑖𝑖1, … , 𝑠𝑠𝑖𝑖𝑖𝑖+1] and 𝑡𝑡𝑖𝑖 = [𝑡𝑡𝑖𝑖0, 𝑡𝑡𝑖𝑖1, … , 𝑡𝑡𝑖𝑖𝑖𝑖+1].  

The tangible function can be determined by adding off-surface point sets {𝑝𝑝𝑖𝑖(𝑟𝑟𝑖𝑖 , 𝑠𝑠𝑖𝑖, 𝑡𝑡𝑖𝑖)}𝑖𝑖=𝑛𝑛+1𝑁𝑁  whose implicit 
function values 𝑓𝑓 are not zero:   

𝑓𝑓(𝑟𝑟𝑖𝑖 , 𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖) = � 0, 𝑖𝑖 = 1,2, … ,𝑛𝑛
𝑑𝑑𝑖𝑖 , 𝑖𝑖 = 𝑛𝑛 + 1,𝑛𝑛 + 2, … .𝑁𝑁                        (2) 

where 𝑑𝑑𝑖𝑖 is the sign distance from the 𝑖𝑖-th off-surface point to the nearest patch of surface. 
A custom sinusoidal generatrix function, of which the amplitude parameter represents the aggregate size and 

the period parameter defines the aggregate flatness, is used to auto-generate point sets of gravel aggregate. The  
point sets of crushed aggregate are obtained by defining the damage-degree parameter, i.e., the number of cut-plane. 
Combined with the reconstruction algorithm, a realistic-looking aggregate (Fig.1) is be constructed subjected to the 
above-mentioned controlling geometric parameters. To better specify the shape and the random packing position of 
an aggregate, some geometric transformations of the constructed aggregate, such as translation, rotation and scaling 
(aspect ratio), are performed to generated a new aggregate by substitution method. 

  
(a) gravel aggregate                   (b) crushed aggregate 

Fig.1. Samples of different types of aggregate point sets and models 
Furthermore, the meso-structure, namely the Random Aggregate Model (RAM), is established by using the 

proposed packing method that improves the occupation and removal method [36] by combining with the layering 
disposition method [37]. The detailed procedure of generating meso-structure models with complex-shaped 
aggregates can be found in the previous study [38].  

In order to assess the impacts of using simplified mesostructure, including the morphology and orientation of 
aggregate, on the thermo-mechanical behavior, two groups of RAMs with different aggregate shapes but the same 
content are firstly established. One is to use implicit T-spline reconstruction algorithm to describe the complicate 
morphology of real aggregates. The second aggregate model is simply represented by an equivalent sphere of the 
same volume as the counterpart in the T-spline constructed model. Concrete anisotropy can be measured with 
respect to the casting direction, thus four directions of aggregates are discussed in this paper. The aggregates to be 
considered are crushed aggregates with a flatness of 8 and degree of damage (cut-plane number of crushed 
aggregates) from 6 to 10. The dimension of the sample is 150mm*150mm*150mm. The above model building 
approach is summarized as follows:  

(1) Assuming that the gradation of aggregate follows the Fuller gradation curve, generate the initial random 
spherical aggregate model by previous proposed packing method and record the coordinates of the spherical center 
and radius of each aggregate. 
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(2) Generate crushed aggregate model by taking the radius of each aggregate in the initial random spherical 
aggregate model as the maximum particle size of each crushed aggregate, and then regenerating new aggregates by 
using the implicit T-spline algorithm at the position of the spherical centers of each aggregates in the initial random 
spherical aggregate model. Thus,  the spherical aggregates generated in Step (1) is the circumscribed sphere of the 
aggregates with complex shape, as shown in Fig.2(b) (Model Ⅱ).  

(3) Generate the spherical aggregate model by calculating the volume 𝑉𝑉 of each aggregates in Model Ⅱ to 
obtain the equivalent radius (𝑅𝑅 = �3𝑉𝑉/43 ) of the spherical aggregates in this model, as shown in Fig.2(a) (Model 
Ⅰ). 

(4) Rotate each aggregates in Model Ⅱ 90°, 180° and 270° counterclockwisely around the z-axis, respectively, 
to regenerate new mesoscopic models, as shown in Fig.2(c) (Model Ⅲ), Fig.2(d) (Model Ⅳ) and Fig.2(c) (Model 
Ⅴ). The aggregate function after rotation can be written as 𝑓𝑓(𝑟𝑟 ∗ cos𝜃𝜃 − 𝑠𝑠 ∗ sin𝜃𝜃, 𝑟𝑟 ∗ cos𝜃𝜃 + 𝑠𝑠 ∗ sin𝜃𝜃, 𝑡𝑡) = 0 (𝜃𝜃 
is the rotated angle) through substitution.  

It can be found from Fig.3 that the grading curve of the initial random spherical aggregate model generated by 
Step(1) is very close to the target curve (Fuller grading curve). After following the above modelling process, the 
content of aggregates of Model Ⅰ ~ Model Ⅴ is reduced (28.67%), and the aggregate weight percentage in the middle 
of each gradation of these models are more than that of the initial random spherical aggregate model due to the 
radius reduction of each aggregate (Fig.3). However, this is not the main concern of the current work. Obviously, 
the approach can ensure that the aggregates of the five models are not overlapped and the five models have the same 
content and spatial distribution of aggregates. Thus, the main factor that causes difference in the numerical results 
is the influence of aggregate morphology or orientation. 

 

 
(a) Model Ⅰ      (b) Model Ⅱ      (c) Model Ⅲ      (d) Model Ⅳ      (e) Model Ⅴ 

Fig.2. The five microscopic models and the corresponding microstructures of intermediate sections  
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Fig. 3. Comparison of gradation curves 
 

2.2. Heat transfer 

For a homogeneous and isotropic object, the heat absorbed in the process of temperature rising should be equal 
to the sum of the heat from the outside and inside sources [39]. The heat conduction equation of thermal movement 
can be expressed as follows: 

                           ∂𝑇𝑇
  ∂𝜏𝜏

= 𝑎𝑎 �𝜕𝜕
2𝑇𝑇

𝜕𝜕𝑥𝑥2
+ 𝜕𝜕2𝑇𝑇

𝜕𝜕𝑦𝑦2
+ 𝜕𝜕2𝑇𝑇

𝜕𝜕𝑧𝑧2
�+ 1

𝑐𝑐𝑐𝑐
∂𝑄𝑄
∂𝜏𝜏

                              (3) 

where 𝑇𝑇 is temperature; 𝑎𝑎 = 𝜆𝜆
𝑐𝑐𝑐𝑐

 is thermal diffusivity, in which 𝜆𝜆 is thermal conductivity, 𝑐𝑐 is specific heat of 

material, 𝜌𝜌 is density, 𝜏𝜏 is time and 𝑄𝑄 is released heat in unit volume of material.  
As for a microscopic concrete model, it is widely considered that only cement matrix can produce hydration 

heat, resulting in producing temperature gradient between two components. The hydration heat of cement is 
regarded as a function of age. In this paper, the following exponential relationship is employed [40]: 

 
Q(τ)=Q0/(n+𝜏𝜏)                                 (4) 

 
where Q(τ) is the cumulative hydration heat per unit mass of cement at age 𝜏𝜏, Q0 denotes the final hydration 
heat when 𝜏𝜏 → ∞, and n is an experimentally determined material parameter.  

Introducing Eq. (4) into Eq. (3) and considering initial and boundary conditions result in a unique solution to 
Eq. (3). The boundary condition when the surfaces of concrete is exposed to the air can be derived from the 
Newton’s cooling law [39, 41] below. 

𝑞𝑞 = -λ ∂T
∂n

= 𝛽𝛽(T𝑐𝑐-T𝑎𝑎)                                       (5) 

where 𝑞𝑞 is the heat flux through concrete surface per unit area, β is convection coefficient, T𝑐𝑐 and T𝑎𝑎 are the 
temperature of concrete surface and air, respectively. 

2.3. The constitutive model 

Since stress evolution of the laboratory-sized concrete in the standard environmental curing process is studied 
in this paper, the temperature gradient between the center and outside of the sample is relatively small, and the 
concrete is considered to be elastic in the whole curing process. On the linear viscoelasticity [42], the strain 𝜀𝜀(𝑡𝑡) at 
time 𝑡𝑡  [1] can be written as the sum of the instantaneous elastic strain 𝜀𝜀𝑒𝑒(𝑡𝑡), the thermal strain induced by 
temperature variations 𝜀𝜀𝑇𝑇(𝑡𝑡), the creep strain 𝜀𝜀𝐶𝐶(𝑡𝑡) and the autogenous volume strain 𝜀𝜀𝑔𝑔(𝑡𝑡): 
                                 𝜀𝜀(𝑡𝑡) = 𝜀𝜀𝑒𝑒(𝑡𝑡) + 𝜀𝜀𝑇𝑇(𝑡𝑡) + 𝜀𝜀𝐶𝐶(𝑡𝑡) + 𝜀𝜀𝑔𝑔(𝑡𝑡)                         (6) 

It is assumed that the aggregates are entirely elastic, while the cement matrix possesses age-dependent 
properties in the proposed model. The mechanical parameters of the matrix materials, including elastic modulus, 
creep and autogenous volume deformation, increase continually with the degree of hydration and, hence, regarded 
as functions of age [1, 40]. 

(1) Elastic strain 
According to the linear constitutive law, when a concrete is subjected to stress 𝜎𝜎(𝜏𝜏)  at age 𝜏𝜏 , the 

instantaneous elastic strain is defined as： 

                             𝜀𝜀𝑒𝑒(𝑡𝑡) = ∫ 𝐸𝐸−1(𝜏𝜏)𝑡𝑡
𝑡𝑡0

d𝜎𝜎(𝜏𝜏)
d𝜏𝜏

d𝜏𝜏                               (7) 

where 𝐸𝐸(𝜏𝜏) is the instantaneous elastic modulus (sixth order tensor) of concrete at age 𝜏𝜏, and 𝑡𝑡0 is the age at the 
beginning of loading. 
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The evolution of elastic modulus of concrete can be expressed as: 
                                     𝐸𝐸(𝜏𝜏) = 𝐸𝐸0𝜏𝜏/(𝑎𝑎 + 𝜏𝜏)                                  (8) 

where 𝐸𝐸0 is the final elastic modulus of concrete as age 𝜏𝜏 → ∞, and 𝑎𝑎 is the semi-coagulation age. 
(2) Thermal strain 
The relation between the thermal strain 𝜀𝜀𝑇𝑇(𝑡𝑡) and the temperature increment Δ𝑇𝑇 [1, 39, 43] is   

                                        𝜀𝜀𝑇𝑇(𝑡𝑡) = α𝑇𝑇Δ𝑇𝑇                                     (9) 
where α𝑇𝑇 is coefficient of linear thermal expansion (CLTE). 

(3) Creep strain 
The constitutive relation of material creeping is: 

                                𝜀𝜀𝐶𝐶(𝑡𝑡) = ∫ 𝐶𝐶(𝑡𝑡, 𝜏𝜏)t
t0

d𝜎𝜎
d𝜏𝜏

d𝜏𝜏                                (10) 

where 𝐶𝐶(𝑡𝑡, 𝜏𝜏) is the creep compliance defined by a series of Kelvin chains [1]:  
                              𝐶𝐶(𝑡𝑡, 𝜏𝜏) = ∑ 𝜙𝜙𝑗𝑗𝑚𝑚

𝑗𝑗=1 (1− 𝑒𝑒−𝑟𝑟𝑗𝑗(𝑡𝑡−𝜏𝜏))                           (11) 
For recoverable creep (short-term creep) and irrecoverable creep (long-term creep), 𝜙𝜙𝑗𝑗  are defined, 

respectively, as 
                                     𝜙𝜙𝑗𝑗 = 𝑓𝑓𝑗𝑗 + 𝑔𝑔𝑗𝑗𝜏𝜏−𝑝𝑝𝑗𝑗                                 (12) 
                                     𝜙𝜙𝑗𝑗 = 𝑔𝑔𝑗𝑗𝜏𝜏−𝑟𝑟𝑗𝑗                                     (13) 

where 𝑓𝑓𝑗𝑗, 𝑔𝑔𝑗𝑗, 𝑝𝑝𝑗𝑗 and 𝑟𝑟𝑗𝑗 are experimental fitting parameters.  
(4) Autogenous volume strain 
It has been widely accepted that autogenous volume strain 𝜀𝜀𝑔𝑔(𝑡𝑡) , which is caused by the hydration reaction 

of mortar matrix, is mainly related to the age of concrete and can be estimated by regression analysis from 
experimental data [44]: 

                         𝜀𝜀𝑔𝑔(𝑡𝑡) = 𝑔𝑔0 + 𝑔𝑔1𝑡𝑡 + 𝑔𝑔2𝑡𝑡2 + 𝑔𝑔3𝑡𝑡3 + 𝑔𝑔4𝑡𝑡4 + 𝑔𝑔5𝑡𝑡5                    (14) 
where 𝑔𝑔0, 𝑔𝑔1, 𝑔𝑔2, 𝑔𝑔3, 𝑔𝑔4 and 𝑔𝑔5 are experimental fitting parameters. 

2.4. Numerical discretization 

FEM is used in this paper to solve the continuous structure problem, and the discretized equations are presented 
in this Section. In order to study the thermo-mechanical coupling behavior of concrete, time-dependent thermal 
evolution should be studied first. The equilibrium equation of FEM for an unsteady-state heat transfer process is  
as follow [39]: 

                                     [𝐽𝐽] �∂𝑇𝑇
∂𝑡𝑡
� + [𝐻𝐻]{𝑇𝑇} = {𝐹𝐹}                               (15) 

where [𝐽𝐽] is the heat capacity matrix, [𝐻𝐻] is the heat conductivity matrix and {𝐹𝐹} is the load heat vector under 
hydration and thermal convection. 

Assuming that the spatial domain and the time domain are uncoupled, in a small time interval ∆𝑡𝑡 = 𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1, 

�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� can be approximated by the backward finite difference: 

                                  �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� = 1

∆𝑡𝑡
[{𝑇𝑇(𝑡𝑡𝑖𝑖)}− {𝑇𝑇(𝑡𝑡𝑖𝑖−1)}]                           (16) 

Since the elastic modulus 𝐸𝐸  and creep compliance 𝐶𝐶  of the cement matrix are time-dependent, and the 
concrete specimen is elastic in the early age, the FE incremental method [1] (mid-point stiffness method) can be 
employed for the strain-stress analysis. The method decomposes the nonlinear problem into a series of piecewise 
linear problems. The constitutive equation within each time interval can be defined by the elastic modulus and creep 
compliance at the mid-point of the interval. The strain increment between time 𝜏𝜏𝑖𝑖 and 𝜏𝜏𝑖𝑖−1 is represented as: 
                           {Δ𝜀𝜀𝑖𝑖} = {Δ𝜀𝜀𝑖𝑖𝑒𝑒} + {Δ𝜀𝜀𝑖𝑖𝑇𝑇} + {Δ𝜀𝜀𝑖𝑖𝑐𝑐} + �Δ𝜀𝜀𝑖𝑖

𝑔𝑔�                        (17) 
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where {Δ𝜀𝜀𝑖𝑖𝑒𝑒}, {Δ𝜀𝜀𝑖𝑖𝑇𝑇}, {Δ𝜀𝜀𝑖𝑖𝑐𝑐} and �Δ𝜀𝜀𝑖𝑖
𝑔𝑔� are elastic strain increment, temperature strain increment, creep 

strain increment and autogenous volume strain increment, respectively. 

It is assumed that the stress rate, d𝜎𝜎
d𝜏𝜏

 , of the interval, ∆𝜏𝜏𝑖𝑖, is constant, thus the increment of elastic strain 

{Δ𝜀𝜀𝑖𝑖𝑒𝑒} based on Eq. (7) is obtained as:  

{Δ𝜀𝜀𝑖𝑖𝑒𝑒}= 1
𝐸𝐸(𝜏𝜏𝑖𝑖−0.5 )

[𝑄𝑄]{Δ𝜎𝜎𝑖𝑖}                               (18) 

where 𝐸𝐸(𝜏𝜏𝑖𝑖−0.5) is the elastic modulus of concrete at the midpoint of interval 𝜏𝜏𝑖𝑖−0.5 = 1
2

(𝜏𝜏𝑖𝑖 + 𝜏𝜏𝑖𝑖−1), and [𝑄𝑄] is 

a sixth-order symmetric matrix considering the influence of Poisson's ratio for spatial problems [1]. 
According to the constitutive equations of creep expressed in Eq. (10), the creep strain increment {Δ𝜀𝜀𝑖𝑖𝑐𝑐} can 

be obtained from Eq. (19): 
                                   {Δ𝜀𝜀𝑖𝑖𝑐𝑐} = {𝜂𝜂𝑖𝑖} + 𝑞𝑞𝑖𝑖{Δ𝜎𝜎𝑖𝑖}                                  (19) 

where 𝜂𝜂𝑖𝑖 and 𝑞𝑞𝑖𝑖 are explicitly given by: 

𝜂𝜂𝑖𝑖 = �(1− 𝑒𝑒−𝑟𝑟𝑗𝑗∆𝜏𝜏𝑖𝑖)𝑤𝑤𝑗𝑗𝑗𝑗

𝑚𝑚

𝑗𝑗=1

 

𝑞𝑞𝑖𝑖 =  𝐶𝐶(𝜏𝜏𝑖𝑖 , 𝜏𝜏𝑖𝑖−0.5) 
where 𝑤𝑤𝑗𝑗𝑗𝑗 are defined incrementally as 𝑤𝑤𝑗𝑗1 = Δ𝜎𝜎0𝜙𝜙𝑗𝑗(𝜏𝜏0) and for 𝑖𝑖 ≥ 0: 

 𝑤𝑤𝑗𝑗𝑗𝑗 =  𝑤𝑤𝑗𝑗,𝑖𝑖−1𝑒𝑒−𝑟𝑟𝑗𝑗∆𝜏𝜏𝑖𝑖−1 + Δ𝜎𝜎𝑖𝑖−1𝜙𝜙𝑗𝑗(𝜏𝜏𝑖𝑖−1−0.5)𝑒𝑒−0.5𝑟𝑟𝑗𝑗∆𝜏𝜏𝑖𝑖−1 
Considering Eqs. (17). (18) and (19), the relation between stress increment and strain increment is derived as: 

   {Δ𝜎𝜎𝑖𝑖} = [𝐷𝐷𝚤𝚤� ]({Δ𝜀𝜀𝑖𝑖} − {𝜂𝜂𝑖𝑖}− {Δ𝜀𝜀𝑖𝑖𝑇𝑇}− �Δ𝜀𝜀𝑖𝑖
𝑔𝑔�）                    (20) 

where  

[𝐷𝐷𝚤𝚤� ] =
𝐸𝐸(𝜏𝜏𝑖𝑖−0.5) 

1 + 𝑞𝑞𝑖𝑖𝐸𝐸(𝜏𝜏𝑖𝑖−0.5 )
[𝑄𝑄]−1 

The overall equilibrium equation in  interval ∆𝜏𝜏𝑖𝑖 is denoted as: 
                                      ∫[𝐵𝐵]T {Δ𝜎𝜎𝑖𝑖}dV = {Δ𝑃𝑃𝑖𝑖}                               (21) 
where {Δ𝑃𝑃𝑖𝑖} is the total load increment. 

By introducing Eq. (20) into Eq. (21), the stiffness equation of concrete accounting for creep and volume 
deformation under hydration heat is 
                             [𝐾𝐾𝑖𝑖]{Δ𝜎𝜎𝑖𝑖} = {Δ𝑃𝑃𝑖𝑖𝑇𝑇} + �Δ𝑃𝑃𝑖𝑖𝐶𝐶�+ �Δ𝑃𝑃𝑖𝑖

𝑔𝑔�                         (22) 

where [𝐾𝐾𝑖𝑖] is the globe stiffness matrix at time 𝜏𝜏𝑖𝑖,  �Δ𝑃𝑃𝑖𝑖𝑇𝑇�, �Δ𝑃𝑃𝑖𝑖𝐶𝐶� and �Δ𝑃𝑃𝑖𝑖
𝑔𝑔� are the load increment caused 

by temperature deformation, creep deformation and autogenous volume, respectively, and their expressions are 
shown as follows: 
                                   [𝐾𝐾𝑖𝑖] = ∫[𝐵𝐵]T [𝐷𝐷𝚤𝚤� ][𝐵𝐵]dV                                 (23) 

{Δ𝑃𝑃𝑖𝑖𝑇𝑇} = ∫[𝐵𝐵]T [𝐷𝐷𝚤𝚤� ]α𝑇𝑇Δ𝑇𝑇𝑖𝑖 dV                             (24) 
                                   �Δ𝑃𝑃𝑖𝑖𝐶𝐶� = ∫[𝐵𝐵]T [𝐷𝐷𝚤𝚤� ]{𝜂𝜂𝑖𝑖}dV                               (25) 
                                   �Δ𝑃𝑃𝑖𝑖

𝑔𝑔� = ∫[𝐵𝐵]T [𝐷𝐷𝚤𝚤� ]�Δ𝜀𝜀𝑖𝑖
𝑔𝑔�dV                             (26) 

3. The simulation approach 

3.1. The Diffuse meshing method 
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Different to the indirect meshing method for mesoscopic model, by which individual material components 
are not required to be explicitly modelled, the diffuse meshing method [45] is developed on the basis of the mapping 
meshing method, by which heterogeneous material properties are directly projected on the Gauss points of regular 
finite element grid. As a result, the diffuse meshing method can model multiple material components in one finite 
element, thus is capable of allocating different attributes to different nodes of a finite element as shown in the 2D 
mesh of Fig.4. The elements across the material interface are all regular four-node quadrilateral elements for an 
aggregate material in mapped meshing. By the different attributes at the Gaussian point at the two sides of the 
aggregate boundary, the diffuse meshing method can approximately present the topology of complex aggregate 
boundaries and subsequently simulate the material discontinuity across the aggregate and cement matrix interface. 

After establishing the mesoscopic model in Section 2.1, the next step is to identify whether a Gaussian point 
is of cement or aggregate across the entire meshed domain. This can be conveniently done as the complex shape of 
all aggregates in this paper are reconstructed by using the implicit T-spline algorithm, so whether a Gauss point is 
located within an aggregate or the cement matrix can be determined using their respective T-spline functions. For 
example, considering a set of implicit T-spline functions {𝑓𝑓𝑖𝑖(𝑟𝑟, 𝑠𝑠, 𝑡𝑡) = 0}𝑖𝑖=1𝑛𝑛  of the aggregates (n is the number of 
aggregates), the values of the functions at each Gauss point (𝑥𝑥𝑔𝑔 ,𝑦𝑦𝑔𝑔 , 𝑧𝑧𝑔𝑔) is computed as {𝑓𝑓𝑖𝑖(𝑥𝑥𝑔𝑔 ,𝑦𝑦𝑔𝑔 , 𝑧𝑧𝑔𝑔)}𝑖𝑖=1𝑛𝑛 . If their 
values are all greater than zero, it means that this Gauss point is not located within any of the aggregates, thus 
defined as cement point. Otherwise it must be within one of the aggregates as specified by its co-ordinates. Using 
this mesoscopic model, the associate mechanical properties can be assigned to the Gauss points within aggregates 
and cement mortar material, respectively, for modeling their individual behavior and representing the heterogeneity 
of concrete.   

Mortar matrix Aggregate Aggregate/matrix

Gauss point of
aggregate material

Gauss point of
cement material

Aggregate boundary

¦ Î

¦ Ç

 
Fig.4. Local material distribution by using the diffuse meshing method 

Compared to the conventional FEM, the main feature of the diffuse meshing method is the stiffness matrix 
[𝑘𝑘] of each finite element that is calculated as a function of the distribution of different material components:  
                          [𝑘𝑘] = ∑ 𝑤𝑤𝑖𝑖𝐵𝐵(𝜉𝜉𝑖𝑖 , 𝜂𝜂𝑖𝑖 , 𝜁𝜁𝑖𝑖)𝐷𝐷(𝜉𝜉𝑖𝑖 ,𝜂𝜂𝑖𝑖 , 𝜁𝜁𝑖𝑖)𝐵𝐵(𝜉𝜉𝑖𝑖 , 𝜂𝜂𝑖𝑖 , 𝜁𝜁𝑖𝑖)𝑁𝑁

𝑖𝑖=1                        (27) 
where 𝑁𝑁 is the number of Gauss points, 𝑤𝑤𝑖𝑖 is the weight associated with each Gauss point, 𝜉𝜉𝑖𝑖, 𝜂𝜂𝑖𝑖 and 𝜁𝜁𝑖𝑖 are 
the coordinates of Gauss Points 𝑖𝑖, 𝐵𝐵 is the shape function matrix and D is the stiffness matrix of the material at 
Gauss point 𝑖𝑖. 

In our case, the diffuse meshing method is combined with the solution of FEM for the linear viscoelasticity 
problem, as shown in Eq. (22), which requires further modification of the equivalent node load increment {𝛥𝛥𝑃𝑃𝑖𝑖}𝑒𝑒. 
Thus, the temperature load increment {Δ𝑃𝑃𝑖𝑖𝑇𝑇}𝑒𝑒 should incorporate the corresponding material coefficient of thermal 
expansion αT of each Gauss point. Since creep or shrinkage in the aggregates is negligibly small, it is assumed that 

the creep load increment {Δ𝑃𝑃𝑖𝑖𝐶𝐶}𝑒𝑒 and the autogenous volume load increment {Δ𝑃𝑃𝑖𝑖
𝑔𝑔}𝑒𝑒 at the Gauss points of the 
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aggregate material are equal to zero. Hence, they are calculated, respectively, as: 
{Δ𝑃𝑃𝑖𝑖𝑇𝑇}𝑒𝑒 = ∑ 𝑤𝑤𝑖𝑖α𝑇𝑇𝐵𝐵(𝜉𝜉𝑖𝑖 , 𝜂𝜂𝑖𝑖 , 𝜁𝜁𝑖𝑖)𝐷𝐷(𝜉𝜉𝑖𝑖 , 𝜂𝜂𝑖𝑖 , 𝜁𝜁𝑖𝑖)Δ𝑇𝑇𝑖𝑖𝑁𝑁

𝑖𝑖=1                            (28) 
{Δ𝑃𝑃𝑖𝑖𝐶𝐶}𝑒𝑒 = ∑ 𝑤𝑤𝑖𝑖α𝑇𝑇𝐵𝐵(𝜉𝜉𝑖𝑖 , 𝜂𝜂𝑖𝑖 , 𝜁𝜁𝑖𝑖)𝐷𝐷(𝜉𝜉𝑖𝑖 , 𝜂𝜂𝑖𝑖 , 𝜁𝜁𝑖𝑖){𝜂𝜂𝑖𝑖}Δ𝑇𝑇𝑖𝑖𝑁𝑁

𝑖𝑖=1                            (29) 
{Δ𝑃𝑃𝑖𝑖

𝑔𝑔}𝑒𝑒 = ∑ 𝑤𝑤𝑖𝑖α𝑇𝑇𝐵𝐵(𝜉𝜉𝑖𝑖 , 𝜂𝜂𝑖𝑖 , 𝜁𝜁𝑖𝑖)𝐷𝐷(𝜉𝜉𝑖𝑖 ,𝜂𝜂𝑖𝑖 , 𝜁𝜁𝑖𝑖)�Δ𝜀𝜀𝑖𝑖
𝑔𝑔�Δ𝑇𝑇𝑖𝑖𝑁𝑁

𝑖𝑖=1                            (30) 
 

The model developed using the diffuse meshing method can be used to discretize multi-phase materials using 
regular elements without the need to follow the material interfaces, such as the aggregate/matrix interface in this 
paper. Since different material properties are assigned to the Gaussian points on the different sides of the interface, 
the interfacial properties are ‘diffused’ linearly between the two closest sets of the integration points across the 
interface, representing a simplified form of the ITZ. Unlike the exact meshing method, by which the meshing has 
to follow the material interfaces, the diffuse meshing method allows an easy generation of regular grid and requires 
significantly less pre-processing and computational time, especially for models with complex aggregate geometry. 
It is worthy of noting that when the diffuse meshing method is used, the size of the elements across material 
interfaces is an important factor to not only the overall accuracy of the FE model, but also the simplification of the 
interface, as the width of the ‘diffused’ zone depends on the distance between the two closest sets of the cross-
interface Gaussian points. Therefore, a grid-scale convergence analysis of the diffuse meshing method is carried 
out. For simplicity, the single aggregate concrete model (Fig.5) is analyzed by the diffused meshing method and 
compared with the results of the full three-phase model (exact meshing). The model is divided into a regular grid 
composed of eight-node hexahedral elements. Five different element sizes, i.e., 2mm (Mesh 1), 2.5mm (Mesh 2), 
4mm (Mesh 3), 5mm (Mesh 4) and 10mm (Mesh 5), are respectively, considered. Fig.6 shows the cross-sections of 
the two meshing schemes. The reference model (Fig.6a) is a three-phase model using exact meshing method, where 
it is assumed that the interface thickness is 1/100 of the diameter of aggregate, and the elastic modulus is 75% of 
the mortar, as recommended by other researchers [46].  

10
0m

m

100mm

100mm

50
m

m

 
Fig.5. The single aggregate concrete model 
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(a) the three-phase model with the exact meshing     (b) the present model with the diffuse meshing 

Fig.6. The cut-off grid discretization  
 

Fig.7 shows the stress-displacement curves in different grid scales when the model is subjected to a vertical 
displacement from the top. It can be found that the simulation results have converged well as the size of the elements 
decreases and are very close, if not identical, to the results of the full 3-phase model when the size of the diffuse 
elements is 2mm, which is equal to one fifth of the diameter of the minimum aggregate(10mm). Similar observations 
were also found by N’Guyen [45] and Grondin [47]. The satisfactory comparison suggests that although the interface 
is not considered independently in the present model, the diffusion of material properties between the Gaussian 
points is capable of dealing with material discontinuity across the aggregate/matrix interfaces without having to 
separate them before meshing. Evidently, this will significantly reduce the complexity and workload of meshing 
and the subsequent simulation, which is less obvious for the model in Fig.7 as the aggregate is only a sphere while 
will be much more prominent when the aggregate is a more realistic one. In addition, the above success in 
introducing the diffuse meshing method to simulate materials discontinuity can be extended further to include 
detailed ITZ properties in the model, though additional research is required to find the best approach to make sure 
sufficient Gaussian points be located within a ITZ by, e.g., using second-order or higher-order Gaussian difference. 

 

.  
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Fig.7. The stress development in different grid scales 

3.2. Model parameters 

It is assumed that both the aggregate and cement matrix are isotropic with their own thermal-
mechanical parameters. The time-independent input parameters summarized in Table 1 are from experiments and 
can be found from the literature [1, 48, 49]. The Poisson’s ratios of the materials are assumed to remain constant during 
the whole hydration process.  

For a thermo-mechanical analysis, the time-dependent parameters at mesoscale level, including adiabatic 
temperature rise, creep and autogenous volume deformation, are also required, but very often are not available due 
to the absence of appropriate test data. There are some empirical formulas of these parameters obtained through 
concrete homogenization and calibration of global performance of a material specified by , e.g., Eq. (4), Eq. (8), Eq. 
(11) and Eq. (14). Table 2 shows the time-dependent parameters based on the experimental results by Fu [42], which 
will be used in simulating homogeneous concrete. The meso-parameters required for the meso-model are evaluated 
from homogeneous concrete macro-model by the following the calibration process in Section 4. 
 

Table 1 The time-independent parameters for the cement matrix and the aggregates 
Constituents Elastic modulus Poisson’s ratio CLTE Density Specific heat Thermal conductivity 

(GPa) (℃-1) (kg m-3) (kJ kg-1 ℃--1) (kJ m-1 h-1 ℃-1) 

Cement 20 0.2 1.6×10-5 2273 1.158 8.125 
Aggregates 40 0.2 0.55×10-5 2680 0.716 10.504 

 
Table 2 The functions for the time-dependent parameters 

Parameters Functions (𝑡𝑡, 𝜏𝜏:d) 
Adiabatic temperature rise 𝜃𝜃(𝜏𝜏) = 30/(3.57 + 𝜏𝜏)  

Elastic modulus 𝐸𝐸(𝜏𝜏) = 𝐸𝐸0𝜏𝜏/(4.5 + 𝜏𝜏)  
creep compliance of concrete 𝐶𝐶(𝑡𝑡, 𝜏𝜏) = (2 + 75𝜏𝜏−0.48)�1− 𝑒𝑒−0.4(𝑡𝑡−𝜏𝜏)�+ (3 + 20𝜏𝜏−2.5) 

�1 − 𝑒𝑒−0.04(𝑡𝑡−𝜏𝜏)�+ 28𝜏𝜏−0.02�1− 𝑒𝑒−0.02(𝑡𝑡−𝜏𝜏)� 
The autogenous volume strain of 

concrete 
ε(𝜏𝜏) = 2.3954− 0.678𝜏𝜏 + 0.00569𝜏𝜏2 − 1.93 × 10−5𝜏𝜏3 + 

2.87 × 10−8𝜏𝜏4 − 1.58 × 10−11𝜏𝜏5 

3.3. Simulation procedure 
Based on the diffuse meshing approach described in Section 3.2, a computer program called COCE3D-DM is 

developed from an existing FEM program CORE3D that is a rheological analysis software based on elasto-
viscoplastic constitutive relation [50, 51]. The simulation procedure to calculate early-age restrain stress for the present 
model is as follows: 

(1) Calculation of temperature field 
The thermal analysis was performed on ANSYS using the mapped meshing method due to the rapid thermal 

movement in the laboratory-sized concrete, which showed a small nodal temperature difference between material 
components in one finite element. APDL (ANSYS Parametric Design Language) in ANSYS was used  to define 
the boundary conditions and the hydration function of mortar. 

(2) Calculation of stress field under temperature, creep and autogenous volume deformation 
a. The nodal temperature increments of one day intervals are obtained from the dynamic temperature field 

analysis in (1). 
b. Taking the temperature, creep compliance and autogenous volume deformation increments as the input data, 

the stress-strain realtion of the present model is calculated by using COCE3D-DM at time step of 1d, for a total 
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period of 28d (whole curing time period of concrete). 
c. Creep is a strain that increases continuously within the time period, which is caused mainly by the combined 

action of temperature and autogenous volume deformation. In this paper, the creep is calculated as the superposition 
of the creep generated from each of the previous days and that of the current day, as the concrete is assumed to be 
linearly elastic in the early age. Assuming that the stress field of the current day (day m) generated from day i 
(i=1,2,3…m) is from Step i_m , the total stress field under temperature, creep and autogenous volume deformation 
on the m-th day is the sum of the creep calculated from Step 1_m, Step 2_m…, Step m-1_m and Step m_ m , where 
Step m_ m is the step to calculate the creep from the action of the temperature and autogenous volume deformation 
of current day, i.e., day m. 

4．Meso-parameter calibration  

The proposed thermo-mechanical meso-model is further studied in this section. The cross-scale (macro- and 
micro-) numerical simulations in this section serve two purposes, namely verifying the reliability of the proposed 
diffuse meshing method applying in the thermo-mechanical analysis, and calibrating the relevant time-dependent 
meso-parameters mentioned in Section 3.2 for cementitious material in the mesoscopic model. The FE results of 
the homogeneous concrete model and the results of the mesoscopic model using the diffuse meshing method are 
compared to calibrate the meso-parameters, so that both models can produce comparable macro scale performance. 
After the validation and calibration, the proposed model is employed to study the evolution mechanism of self-
restraint stress from the mesoscale level. Figure 8 shows the homogeneous and isotropic concrete model (Fig.8a)and 
the new model with heterogeneous meso-structure. The size of models is 150 mm × 150 mm × 150 mm, and the 
element size of the model is 7.5mm and 2mm respectively. 

           
(a) The homogeneous model         (b) The mesoscopic model 

Fig.8. Different models of concrete sample 

4.1 Validation of adiabatic temperature rise 
Typical thermal parameters of concrete are normally estimated using the following homogenization process. 

 c i ipρ ρ=∑       (31) 

 c i ipλ λ=∑  (32) 

 c i ic kp c=∑  (33) 

where cρ , cλ  and cc  are the density, heat conduction coefficient and specific heat of concrete respectively, as 
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shown, e.g. in Table 1. ip , iρ , iλ  and ic  are, respectively, mass ratio, density, heat conduction coefficient and 

specific heat of component i (aggregate or cement mortar). k  is the correction coefficient for estimating specific 
heat capacity, which is generally taken as 1.05. The aggregate volume content of the present model is 28.67%. The 
equivalent material parameters of the homogeneous concrete model are determined as shown in Table 3.  
 

Table 3 The equivalent thermal parameters for the homogeneous model 

Material Density (kg m-3) Specific heat (kJ kg-1 ℃--1) Thermal conductivity (kJ m-1 h-1 ℃-1) 

Concrete 2389.68 1.067 8.890 
 

In addition, the hydration heat of cement material, which is the main heat generation source of concrete under 
the adiabatic condition, also need to be characterized. However, the thermal analysis in practical engineering usually 
employs adiabatic temperature rise θ  of concrete material (Table 2). In the absence of measurement data, the 
hydration heat of cement cementQ can be estimated by the following formula: 

 c c
cement

cement

cQ
w
θ ρ

=  (34) 

where cementw  is the content of cement in concrete.  

The numerical simulations of adiabatic temperature rise are conducted subjected an initial temperature of 20℃
and no heat exchange with the surrounding environment (adiabatic condition). The homogeneous model uses the 
parameters given in Table 2 and Table 3, while the mesoscopic model uses the parameters provided in Table 1 and 
the calculated from Eq. (34). The time interval is set to 0.2d, small enough to capture the heat generated at the very 
early age. As shown in Fig.9, the average temperatures of both models are in good agreement with the theoretical 
solution shown in Table 2. The comparison also demonstrates that a model with homogenous concrete properties 
calculated from the individual properties of the material components can predict global responses of the concrete 
that agree well with the predictions from the mapped element model where material properties of the individual 
components are used independently in the calculation. This observation forms the basis on which the time-dependent 
parameters of material components, such as cement and aggregate, are evaluated reversely through comparisons 
between the homogenous concrete model and the meso mapped meshing model. 

 
Fig.9. Temperature development of concrete under the adiabatic condition 

4.2 Validation for creep 

The aim of this section is to determine the creep parameters of cementitious material in the mesoscopic model, 
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and to verify the creep simulation by applying the diffuse meshing method. The boundary conditions are defined as 
follows. The bottom surface of the model is fixed vertically in all directions. For the creep test, the top surface of 
the model is subjected to a sustained axial compressive stress of 10MPa. The elastic modulus of the homogeneous 
concrete model is 24.7GPa calculated from the equivalent elastic modulus of the mesoscopic model at the elastic 
stage, and the creep compliance of the concrete model is given in Table 2. 

The creep compliance of cement mortar can be approximately evaluated based on the compliance of the 
concrete. The creep of concrete in early age is mainly produced by cementitious material while the presence of 
aggregates may only limit the deformation, which is therefore considered to be dependent on the content of cement 
mortar [52]. Some studies [53, 54] found that there is an approximately linear relationship between the creep of concrete 

and the content of cement mortar. Neville [55] proposed that the creep compliance between concrete cc  and cement 

mortar mc  satisfy the following relation,  

 
( )

1lg lg
1

c

m
a

c a
c f u

=
− −

 (35) 

where a is an experimental constant; af  and u are, respectively, the content of aggregate and un-hydrated cement. 

Eq. (35) can be simplified [15] by incorporating the influence of un-hydrated cement content into the 
experimental constant a , thus 

 ( )/ 1 am c
ac c f= −  (36) 

FEM is used to calculate the homogeneous concrete model using the creep compliance in Table 2. The diffuse 
meshing method is used in the mesoscopic model with the creep compliance of cement defined by Eq.(36), where 
a is a factor to be determined. Taking the result of mesoscopic model as the reference result, by changing the value 
of a, comparisons are made between the creep compliance of the concrete and the diffuse meshing models to search 
for an a that gives an equal creep compliance from both models. Fig.10 shows the searching process, where an value 
of 1.8 for the diffuse meshing model results in a creep curve that is very close to the one from the concrete model. 
Thus the creep compliance of the cement can be calculated by Eq.(36) when a is 1.8, then the creep response of the 
mesoscopic model is then reanalyzed using 1.8 

  

Fig.10. Strain evolutions in creep analysis under different experimental constant 
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When the concrete is subjected to sustained stress ( )0σ τ  at age 0τ , the total strain at time t is the sum of 

instantaneous elastic strain and creep strain, the theoretical predictions for concrete creep is derived from Eq. (7) 
and Eq. (10):  

 ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )0

0 0 0 0
0

, ,e Ct t t C t J t
E
σ τ

ε ε ε σ τ τ σ τ τ
τ

= + = + =    (37) 

where ( ) ( ) ( )0 0 0, 1/J t E C tτ τ τ= + +  is creep function. 

The theoretical solution is obtained by incorporating the creep compliance in Table 2 into Eq. (37). Fig.11 
compares the strain evolutions calculated numerically and analytically. Under the constant stress, the numerical 
results of the diffuse meshing model using Eq.(36) and the above calibrated a, and the homogeneous concrete model 
using FEM are in good agreement with the theoretical solution, which validate the capability of the proposed 
mesoscopic model and corresponding calibration process of the meso parameters.   

  

 

 

 
Fig.11. Comparison between the theoretical solution and numerical results for creep analysis 

4.3 Validation for autogenous volume deformation 
This section evaluates the autogenous volume deformation parameters for cement materials and verify the use 

of the diffuse meshing method in simulating autogenous volume deformation. The average strain of the 
homogeneous model is calculated by the FEM using the autogenous volume strain function given in Table 2. The 
autogenous volume deformation of cement materials is assumed to be approximately related to the amount of cement 

in a forma similar to Eq.(36), i.e., ( )/ 1 gam c
g g afε ε= − . The diffuse meshing method is carried out to simulate the 

mesoscopic model and similar comparisons are made with the solutions from the concrete model to determine the 

constant ga   by following the procedure in the creep analysis. The results are shown in Fig.12, from which a 

satisfactory comparison is observed when ga  is 1.3.  
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Fig.12. Strain evolutions in autogenous volume deformation analysis under different experimental constant  
 
For the homogenously isotropic concrete model, the theoretical solution of average strain is equal to one third 

of the autogenous volume strain 𝜀𝜀𝑔𝑔(𝑡𝑡) that is given in Table 2. Fig.13 shows the average strain evolutions under 
the autogenous volume deformation. It can be found that by using the calibrated autogenous volume deformation 
of cement, the results of the diffuse meshing model are in good agreement with the theoretical solution and the 
solution from the concrete model.  

 

 
Fig.13. Comparison between the theoretical solution and numerical results for autogenous volume 

deformation analysis 

5. Numerical results and analysis 

Based on the parameters given in Table.1 and the calibrated ones in Section 4, the temperature and stress fields 
in the hydration process of the concrete are obtained by applying the proposed diffuse meshing meso-model. The 
evolution mechanism of self-restrain stresses is studied, and the impact of simplified aggregate mesostructure on 
the thermo-mechanical behavior is studied in this section.  

5.1. Comparisons of temperature field 
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During the thermal analysis of all the concrete meso-models, it is assumed that both the initial (cast) 
temperature and the ambient temperature are constantly at 20℃. Unlike the analysis of adiabatic temperature rise, 
the surface of the concrete block exchanges heat with the environment, and the corresponding convection coefficient 
𝛽𝛽 is set to 18.4kJ m−1 h−2 ℃−1, reproducing an almost stagnant air condition [1]. Fig.14 shows the schematic 
diagram of the model for thermal simulation, where Point O is the center of the concrete.  
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Fig.14. The schematic diagram of the calculated model 

The temperature histories at the center point of the five models shown in Fig.2 are plotted in Fig.15, which are 
all consistent with the evolutionary law. Initially, there is a rapid increase in the temperature because the rate of 
hydration heat is greater than the heat loss transferred to the external environment, and the maximum temperature 
rise from the initial value is about 1.2℃ at 0.6d. With the decrease of hydration heat, the heat loss becomes the 
dominant factor, which leads to a progressive reduction in the internal temperature to the environmental temperature 
of 20℃ (external temperature). The temperature evolution of all the models follows a similar trend, which is in 
consistent with the numerical result of Xu [15] and Lee [56].  

 
Fig.15. Comparison of temperature development at midpoint of each model 

 
Fig.16 shows the temperature distribution of the five models at the central section at 1.0 day. Due to the heat 
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exchange between the surface and the air, the temperature of the surface layer is relatively lower than the center 
temperature, thus forming a temperature gradient within the concrete that is approximately concentric due to 
symmetry. The spatial temperature distributions of the five models are similar, and there are only small differences 
in temperature and gradient, though the temperature gradient is generally very small since size of the specimens is 
small. 

There are slightly more elements of mortar material in the crushed aggregate model (Model Ⅱ~ Model Ⅴ) than 
in the simplified spherical aggregate model (Model I). Hence a small difference (0.12%) of peak temperature can 
be observed from Fig.15. In fact, the hydration process of the concrete samples involves heat generation and heat 
loss, which are, respectively, associated with the content of cement mortar and the convection coefficient.  

 

 
(a) Model Ⅰ        (b) Model Ⅱ        (c) Model Ⅲ        (d) Model Ⅳ        (e) Model Ⅴ 

Fig.16. Temperature distribution in horizontal central slice view of models at 1.0 d 

5.2. Results of the spherical aggregate model  

Generally, temperature gradients in the time and space domains will produce temperature deformation and 
temperature stress in early-age concrete. If the material properties of each component are independent with age, the 
temperature stress in the interior of concrete is self-balanced in the hydration process without external load and 
restraint [1], which means that the temperature-dependent compressive stress emerged in the temperature rising 
process will be progressively offset by the tensile stress produced by the cooling. However, the elastic modulus of 
cementitious material apparently increases due to the continuous hardening of young concrete. Therefore, for the 
entire temperature history, varying from the casting temperature to the peak value and then falling back to the 
ambient temperature (equal to casting temperature in this paper), the compressive stress induced during heating will 
be less than the tensile stress induced during cooling. Along with the creep and autogenous volume shrinkage 
deformation, nonnegligible residual tensile stress termed as self-restraint stress will be produced in the concrete at 
the end of the thermal cycle. 

For Model Ⅰ (simplified spherical aggregate model), the temperature load is obtained according to the results 
in Section 5.1, and the creep and autogenous volume deformation are estimated based on the calibration in Sections 
4.2 and 4.3. The stress-strain analysis is carried out by using COCE3D-DM. Fig.17 (a) and Fig.17 (b) show, 
respectively, the major principal stress contours of the center section of Model Ⅰ at 1d and 28d. Obvious stress 
inhomogeneity in the concrete sample is observed, indicating that the mesoscopic models can predict a more realistic 
stress filed than that produced by the homogenous concrete model. From the figures, the distribution characteristics 
of major principal stresses in the concrete are as follows:  

(1) As the volume expansion of cement mortar is constrained by the aggregates, the major principal stress in 
the cement mortar is mainly compressive whereas in the aggregates it exhibits tensile during heating (1d), as shown 
in Fig.17 (a); 

(2) When the thermal equilibrium of heat exchange with the environment is reached, the stresses in the cement 
mortar and the aggregates (Fig.17 (b)) are opposite to those at 1d. 

(3) Due to the thermo-mechanical mismatch, significant self-restraint effect is produced in the vicinity of the 
interfaces between the aggregate and cement mortar, resulting in mismatched strains and considerably higher 
stresses near the interfaces. 
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(a) t= 1d                            (b) t=28d 

Fig.17. Major principal stress contours on center slice in Model Ⅰ, MPa 
 
Similar observations can also be found in the numerical simulations by Xu [15]. Although interface is not fully 

represented in this mesoscopic model, the proposed matrix/aggregate elements have reasonably simulated the stress 
concentration at the aggregate/matrix “interface” where the stiffness mismatches between aggregate and cement are 
duly reflected by the proposed diffuse meshing element.  

The tensile strength of aggregate is much higher than that of cement mortar, and therefore it is generally 
considered that the failure of concrete is caused by the generation and expansion of micro cracks which mainly arise 
in the interior of cement mortar or the interface. Assuming that the damage of aggregate does not occur, only the 
evolution of major principal stress in cement mortar material is discussed in this work. The present model of concrete 
accounts for multiple factors, i.e., temperature, creep and autogenous volume deformation in the early age. In order 
to investigate the influence of these factors on the stress evolution of the concrete, the results under the factors of 
temperature, creep and autogenous volume deformation can be evaluated separately since the concrete is assumed 
linearly elastic throughout the simulation process. That is to say, the total stress response under the multiple factors 
is the linear superposition of those from the independent factors. 

The maximum major principal stress considering the combined factors and the individual independent factors 
are depicted in Fig.18. It can be observed that the maximum major principal stress is tensile in the curing process 
and the stress evolution displays different patterns under different factors, as discussed below: 

(1) Considering the temperature factor, the stress increases rapidly with the rapidly rising of temperature, 
reaching the peak value at the end of 1d. The maximum principal stress then decreases to the lowest at the end of 
4d and finally tends to be stable under cooling. The maximum principal stress changes in consistence with the 
temperature variation (Fig.15).  

(2) Under the autogenous volume deformation, the maximum principal stress increases continuously from 
concrete casting. The reason for this is that the volume of cement mortar shrinks due to the gradual hardening of 
concrete, and with the constrain of the embedded aggregates, the cement mortar is under tension all the time and 
this effect is gradually accumulating. 

(3) The trend of evolution of the maximum principal stress in the concrete over the time under creep is similar 
to that of the concrete considering all multiple factors, and the magnitude of stress is approximately one-tenth of the 
latter. 

In summary, the mechanical behavior of the concrete is governed primarily by temperature deformation during 
the first 4d. The effect of volume autogenous deformation is then more critical. After curing is completed, a residual 
tensile stress about 0.238MPa is generated inside the concrete under a temperature gradient of 1.2℃. Note that the 
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temperature gradient for large-volume concrete structures is much greater than the laboratory-sized concrete sample 
due to the larger content of cement, indicating the self-restrain stress of early-age concrete should not be ignored in 
practical design.  

  
Fig.18. Maximum major principal stress evolution under different factor 

5.3. The effect of aggregate morphology on mechanical behavior  

In order to assess the effect of aggregates morphology on the mechanical behavior of the concrete, Model Ⅱ is 
simulated by COCE3D-DM. Fig.19(a) and Fig.19(b) present the major principal stress contours at the center section 
of Model Ⅱ at 1d and 28d, respectively. Compared with the results of Model Ⅰ (Fig.17), the stress distributions of 
the two models are similar, both of which are in compression in the cement mortar during heating and in tension 
during cooling. Obvious stress concentration arises in the area where aggregates are very close. However, for Model 
Ⅱ, when the cement mortar volume expands in the initial heating process, the embedded aggregates have no volume 
deformation, causing the cement mortar to "squeeze" the aggregates. Since the shape of the aggregate in Model Ⅱ 
is angular, the distance between aggregates is shortened and the restraint effect of aggregate on cement mortar is 
more remarkable, thus stress concentration at the sharp edges of aggregate becomes more prominent. Meanwhile, 
the surface area of the crushed aggregate is larger than that of the simplified spherical aggregate, which increases 
the number of properties mismatch aggregate/matrix elements (“interface”), so that a larger area of stress 
concentration is predicted. The results have shown that, the morphology of the aggregates has a significant effect 
on the internal stress distribution of the concrete during temperature rising. When the volume of the cement shrinks 
in the process of temperature dropping, aggregate and cement mortar are in a relatively "separation" state, thus the 
restraining effect of aggregate is reduced, and the influence of the shape of aggregate on the mechanical behavior 
is relatively weakened. 

 
(a) t= 1d                              (b) t=28d 
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Fig.19. Major principal stress contours on center slice in Model Ⅱ, MPa 
 

Comparing the maximum major principal stress in the cement mortar of the two models with different 
aggregate shapes (Fig.20), the trends of stress with age are almost the same. However, there is a certain gap between 
the two models in terms of magnitude: the stress of Model Ⅱ is about 6.5% larger than that of Model Ⅰ in the initial 
stage of curing. After the later stabilization, the stress difference between the two models is less than 2.2%. It  
confirm that the morphology of aggregates has a more important impact in the processing of heating. Compared 
with the observations from Section 5.1, it can be concluded that the influence of aggregate morphology on the 
macro-mechanical properties of concrete (6.5%) is much greater than its influence on the thermal properties (0.12%), 
which should not be overlooked in the evaluation of self-restraint stress. 

 
Fig.20. The maximum principal stress envelopes in different mesoscopic models 

To understand further the influence of aggregate morphology on the local mechanical behavior of concrete, 
aggregate a is selected to analyze the. The midpoints between aggregate a and its seven surrounding aggregates, as 
shown in Fig.21, are selected as feature points ( P1~P7) for the stress evaluation.  

 
Fig.21. The feature points distribution on the central slice (the boundaries of spherical aggregates and 

crushed aggregates are marked in red and black, respectively) 
 
Under the combined action of temperature, creep and autogenous volume deformation, Fig.22 shows that the 

major principle stress distribution in Model Ⅰ is more uniform than in Model Ⅱ, and this becomes more obvious with 
the increase of age. Comparing the stresses at the feature points, it can be found that when a feature point is closer 
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to an aggregate of a relatively large particle size or located in an area with compact aggregate distribution, the stress 
is greater, especially for Model Ⅱ. In the case of considering temperature only, Fig.23 shows the thermal stress 
varies rapidly in the first four days due to the rapid thermal movement in the concrete. As the temperature gradient 
of the concrete slows down with the age, the accumulated stress gradually increases and stabilizes. In addition, the 
stress at feature point P1 in Model Ⅰ is the largest in the heating period, while feature point P3, which is located near 
the sharp edge of the crushed aggregate, has the largest stress. In the simulation of autogenous volume deformation 
(Fig.24), the major principal stresses of feature points P1 and P4 in Model Ⅱ at the end of curing at are 50.03% and 
29.88% higher, respectively, than that of in Model Ⅰ. This may be due to the fact that feature points P1 and P4 are 
both located with the properties mismatch element of Model Ⅱ. The influence of aggregate morphology on creep is 
not discussed in this work, as the resulting stresses are much smaller..    

It is worth noting that the only difference in the calculation of thermal and autogenous volume deformation 
stresses is the use of the equivalent nodal loads, as the meso scale global stiffness matrices are the same for both 
loading conditions. Since the linear expansion coefficients of aggregate (0.55 × 10-5) and cement mortar (1.6 × 10-

5) have the same order of magnitude, the discrepancy of the temperature nodal loads at each Gauss point in the 
cement-aggregate element is much smaller than the nodal loads of autogenous volume deformation, where the 
deformation of aggregates is assumed to be zero. Therefore, the stress evolution of these points in the properties 
mismatch element for the autogenous volume deformation simulation shows more obvious difference than the 
simulation of temperature by using the diffuse meshing method.    

 

(a) Model Ⅰ                         (b) Model Ⅱ 
Fig.22. Major principal stress histories at the feature points under the combined factors 
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(a) Model Ⅰ                         (b) Model Ⅱ 
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Fig.23. Major principal stress histories at the feature points under the temperature factor 
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(a) Model Ⅰ                         (b) Model Ⅱ 

Fig.24. Major principal stress histories at the feature points under the autogenous volume deformation factor 
 

5.4. The effect of aggregate orientation on the mechanical behavior  

The effect of aggregate orientation should be considered for the non-spherical aggregate. Thermo-mechanical 
analysis is performed on the rotated crushed aggregate models (Model Ⅱ~ Model Ⅴ) by using the diffuse meshing 
method. The resulting major principal stress contours in 1 d and 28 d are given in Fig.25 and Fig.26, respectively. 
It can be found qualitatively that the stress distribution in most mortar regions is virtually unchanged. However, for 
the region with sparsely distributed aggregate, the locations of stress concentration basically rotates with the 
orientation of the crushed aggregate and always locate at the sharp corners of the crushed aggregates. This is because 
orientation of aggregate in different models changes the distance between aggregates, and the results indicate that 
the orientation of the aggregate plays a decisive role in the areas with sparsely distributed aggregate, where the 
interaction between the aggregate and the mortar is stronger than that of between aggregate to aggregate. However, 
the influence of the orientation of aggregate is reduced in the regions with compact distributed aggregate. 

 

  
(a) Model Ⅱ                    (b) Model Ⅲ 
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(c) Model Ⅳ                   (d) Model Ⅴ 

Fig.25. Comparison of major principal stress contours (1d), MPa 
 

   
(a) Model Ⅱ                    (b) Model Ⅲ 

   
(c) Model Ⅳ                (d) Model Ⅴ 

Fig.26. Comparison of major principal stress contours (28d), MPa 
Fig.27 is the maximum principal stress envelope of the four models through entire simulated process. The four 

curves have almost the same trend and have little difference in value during curing. Compared the rotation models 
to the reference one (Model Ⅱ), the largest relative stress difference occurs at the initial stage of casting where the 
temperature gradient and elastic modulus of mortar vary up to 1.7%, which is far less than the relative stress 
difference caused by the aggregate morphology (6.5%).  
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Fig.27. Comparison of the maximum principal stress envelopes 
In summary, the orientation of aggregates has little effect on the macro-mechanical properties of concrete, but 

it has a certain influence on the spatial distribution of self-restrained stress. The results also reflect to some extent 
that the distribution of initial damage of concrete is not completely random, but closely related to the orientation of 
aggregates. Therefore, as far as internal crack (damage) initiation is concerned, the reliability of numerical 
simulation results highly depends on the accuracy of the mesoscopic model of concrete, which needs accurate 
description of aggregate orientation. However, for studying macroscopic properties of concrete, orientation of 
aggregate is not a significant concern. 

6. Conclusions 

In this paper, a thermo-mechanical model with regular-element discretization is presented by combing the 
diffuse meshing technology with the linear viscoelasticity. This model can effectively reduce the difficulties in grid 
discretization of concrete, especially when the aggregates are complex-shaped, and provide an reliable approach to 
calibrate mesoscopic properties of the multiphase material. The proposed model has the accuracy comparable to the 
results from the three-phase model with exact meshing method, while requires only diffuse elements of regular 
shape. The mechanism of the self-restraint stress in concrete during curing, as well as the effect of aggregate 
morphology and orientation on the thermal-mechanical behavior of concrete, are investigated. The cross-scale 
simulations for adiabatic temperature rise, creep and autogenous volume deformation were preformed, respectively, 
and compared, which confirmed that the proposed approach could be used for mesoscale thermo-mechanical 
simulations. The proposed approach can also be used as a tool for parameter calibration of mesoscopic models. The 
main conclusions from the work are summarized below. 

(1) The morphology and orientation of aggregate have little effect on the thermal development of concrete. 
The content of cement mortar is the main factor affecting the internal temperature field of concrete. 

(2) The stresses produced inside the cement mortar during temperature rising are compressive and transferred 
to tensile during cooling. Due to the thermo-mechanical mismatch between different phases, the heterogeneity  
causes stress concentrations near the interface.  

(3) The impact of aggregate morphology mainly affects the process of temperature rising. Orientation of 
aggregate has little effect on the overall response of concrete but affects local spatial distribution of self-restraint 
stress due to distance alternation and sparsity of aggregate. 

(4) Though reasonably good results were obtained by the diffuse meshing method without considering the 
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physics of the ITZ, Further investigations on the effects of ITZ on the local properties of concrete are required and 
can be done by extending the current diffuse meshing model to cover three phases in one element. This future work 
will also include other thermal conditions, such as elevated temperature, and fracture of concrete subject to residual 
self-restraint stress at the end of curing.   

Ete under other thermal conditions (i.e. elevated temperature) and investigating the effects of volume content, 
gradation and shape parameters of aggregate will be studied in a future work. Since concrete will produce residual 
self-restraint stress at the end of curing, future study will concentrate on the fracture behavior of concrete under this 
initial stress filed.  
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