
Exact and Heuristic Approaches to

Arc Routing Problems

Dang Thu Huong, B.Sc.(Hons.), M.Res

Submitted for the degree of Doctor of

Philosophy at Lancaster University.

March 2022

Abstract

The construction of efficient vehicle routes is of crucial importance in modern society,

for both economic and environmental reasons. This leads to a family of combinatorial

optimisation problems, known collectively as Vehicle Routing Problems (VRPs). Due

to their importance, VRPs have received a great deal of attention from the Operational

Research and Combinatorial Optimisation communities.

This thesis, which essentially consists of four papers, makes additional contribu-

tions to this body of work. All of the papers apart from the first concentrate on Arc

Routing Problems (ARPs). An ARP is a special type of VRP, in which the demands

are located along edges or arcs, rather than at nodes.

The first paper is concerned with Euclidean approximation. Most VRP algorithms,

whether exact or heuristic, assume that the instance is defined on a complete graph.

In practice, of course, most VRPs are defined on road networks. We explore the

potential of a heuristic approach for VRPs on road networks, based on the use of

planar Euclidean distances to approximate real-life road distances.

The second paper addresses the use of matchings and T -joins to compute lower

bounds for ARPs. For large-scale instances, the existing lower-bounding procedures

consume a huge amount of both time and memory. We show how to exploit the struc-

ture of real-life road networks, to dramatically reduce the amount of computational

effort without deteriorating the quality of the output.

i

ii

The third paper deals with with the so-called General Routing Problem (GRP),

defined by Orloff in 1974. We examine in detail a popular constructive heuristic for

the GRP, due to Christofides. The heuristic can be very slow for large-scale instances.

We show how to modify the heuristic so that it runs orders of magnitude more quickly,

yet yields solutions that are at least as good as before.

In the last paper, which is also the longest, we tackle the real-life ARP given

by our industrial partner. This ARP is remarkably complex, with multiple vehicles,

capacity constraints, a time deadline, intermediate facilities, multiple objectives, and

a combination of one- and two-way streets. For this problem, we develop specialised

solution algorithms, which are specially tailored to give good upper and lower bounds

as quickly as possible for large-scale instances.

Acknowledgements

First and foremost, I would like to thank my supervisors, Adam Letchford and Burak

Boyaci, who played a hugely instrumental role in my PhD. Thank you so much for

giving me the confidence to pursue my career goal. Professor Adam, it was my great

pleasure to work with you. Thank you for your expert guidance, substantial patience

and reliable support over the last three years. Dr Burak, I count myself lucky to

have had you as a supportive and caring supervisor. Thank you for your thorough

guidance and insightful suggestions.

I would also like to thank the EPSRC and Routeware, Inc. for the financial support.

It was a wonderful and unique experience to collaborate with Routeware, Inc. Many

thanks to Dr. Steve Williams for introducing me to your truly interesting projects

and for providing me with real data and helpful feedback throughout my PhD.

The STOR-i Centre for Doctoral Training has been an amazing place to learn and

grow. I would like to thank Professor Jonathan Tawn, Professor Idris Eckley, and

Professor Kevin Glazebrook for their advice and support throughout the MRes and

PhD. Thank you for always keeping me on track with my studies, and advising me

on career planning. I also would like to thank to Jen, Kim, Wendy, Nicola, Oli, and

Dan for their continuing support. I am very grateful for the friends I have made in

my year group. Thanks for the good time we have spent together, and making me

feel that I have found another family here.

iii

iv

Last but not least, I would like to thank my family and friends in Vietnam for

continuing to be there for me when I moved to the UK. My mother, father, brother,

and husband, I am immensely grateful for having you in my life! Thanks for your

encouragement, your care, and your patience. A special thank to my daughter for

always being my sunshine; the source of my smile, love, and happiness.

Declaration

I declare that the work in this thesis is my own work. The material has not been

submitted in whole for the award of any other degree, in Lancaster or elsewhere.

The thesis is based on four papers:

Chapter 3 has been published as B. Boyacı, T.H. Dang, A.N. Letchford (2021) Vehi-

cle routing on road networks: How good is Euclidean approximation?, Computers &

Operations Research, vol. 129, article 105197.

Chapter 4 has been published as B. Boyacı, T.H. Dang, A.N. Letchford (2022) On

matchings, T-joins, and arc routing in road networks, Networks, 79(1): 20-31.

Chapter 5 has been submitted as B. Boyacı, T.H. Dang, and A.N. Letchford (2021)

Improving a constructive heuristic for the general routing problem. Technical report,

Department of Management Science, Lancaster University, UK.

Chapter 6 has been submitted as B. Boyacı, T.H. Dang, and A.N. Letchford (2021)

Fast upper and lower bounds for a large-scale real-world arc routing problem. Tech-

nical report, Department of Management Science, Lancaster University, UK.

Chapters 3, 4, 5 and 6 can be read as separate entities.

THU HUONG DANG

v

Contents

Abstract i

Acknowledgements iii

Declaration v

Contents x

List of Figures xii

List of Tables xiv

List of Abbreviations xv

List of Symbols xvii

1 Introduction 1

1.1 Vehicle Routing Problems . 3

1.2 Arc Routing Problems . 5

1.3 Waste Routing Problems . 7

1.4 Structure of the Thesis . 11

2 Overview of the Arc Routing Literature 13

2.1 The Chinese Postman Problem . 14

vi

CONTENTS vii

2.1.1 The Undirected Chinese Postman Problem 14

2.1.2 The Directed Chinese Postman Problem 16

2.1.3 The Mixed Chinese Postman Problem 17

2.2 The Rural Postman Problem . 19

2.2.1 The Undirected Rural Postman Problem 20

2.2.2 The Directed Rural Postman Problem 22

2.2.3 The Mixed Rural Postman Problem 23

2.3 The Capacitated Arc Routing Problem 25

2.3.1 Heuristics for the CARP . 25

2.3.2 Combinatorial lower bounds for the CARP 28

2.3.3 Integer programming approaches to the CARP 30

2.4 Some Extensions of the CARP . 33

3 Vehicle Routing on Road Networks: How Good is Euclidean Ap-

proximation? 36

3.1 Literature Review . 38

3.1.1 The Steiner TSP . 38

3.1.2 Other Steiner VRPs . 39

3.1.3 The planar Euclidean TSP . 40

3.1.4 Road distances versus Euclidean distances 40

3.2 Data Collection and Instance Creation 41

3.2.1 Data collection . 41

3.2.2 Road distances versus Euclidean distances 44

3.2.3 Creation of Steiner TSP instances 46

3.2.4 Creation of Steiner Capacitated VRPs 47

3.3 Experiments with the Steiner TSP 47

CONTENTS viii

3.3.1 Solution of Steiner TSP instances 47

3.3.2 The heuristic . 48

3.3.3 Results . 49

3.4 Experiments with the Steiner CVRP 53

3.4.1 Heuristics . 53

3.4.2 Results . 54

4 On Matchings, T-Joins, and Arc Routing Problems 58

4.1 Introduction . 58

4.2 Literature Review . 60

4.2.1 Matchings and T-joins . 61

4.2.2 Applications to arc routing . 63

4.2.3 Planar graphs . 65

4.3 On Road Networks . 66

4.4 The Chinese Postman Problem in Road Networks 68

4.5 The Capacitated Arc Routing Problem in Road Networks 73

5 Improving a Constructive Heuristic for the General Routing Prob-

lem 82

5.1 Introduction . 82

5.2 Literature Review . 84

5.2.1 The CPP . 84

5.2.2 Exact algorithms for the RPP 85

5.2.3 Heuristics for the RPP . 86

5.2.4 The GRP . 87

5.3 Improving the Heuristic . 88

5.3.1 Drawbacks of the C-heuristic 88

CONTENTS ix

5.3.2 The improved C-heuristic . 92

5.3.3 Advantages of the modified C-heuristic 96

5.4 Computational Experiments . 98

5.4.1 Results for existing benchmark instances 99

5.4.2 New test instances . 104

5.4.3 Results for new GRP instances 107

5.4.4 Results for new RPP instances 108

6 Fast Upper and Lower Bounds for a Large-Scale Real-World Arc

Routing Problem 112

6.1 Introduction . 112

6.1.1 Notation and terminology . 114

6.2 Literature Review . 115

6.2.1 The Capacitated Arc Routing Problem 115

6.2.2 Other relevant ARPs . 117

6.3 Upper Bounds . 118

6.3.1 Tour construction phase . 118

6.3.2 Local search phase . 119

6.3.3 Shortest-path phase . 119

6.3.4 Sparsification phase . 122

6.3.5 Trip construction phase . 124

6.3.6 Trip selection phase . 127

6.3.7 Time reduction phase . 129

6.4 Lower Bounds . 129

6.4.1 Initial lower bounds . 130

6.4.2 Auxiliary digraph . 132

CONTENTS x

6.4.3 Initial LP relaxation . 132

6.4.4 Cutting-plane algorithm . 134

6.4.5 Additonal flow variables . 136

6.5 Computational Results . 137

6.5.1 Test Instances . 138

6.5.2 Results for the default scenario 139

6.5.3 Sensitivity analysis . 141

7 Conclusion 149

7.1 Summary . 149

7.2 Further Work . 151

7.2.1 Euclidean approximation . 151

7.2.2 Matching-based approaches 152

7.2.3 Constructive heuristics for the general routing problem 153

7.2.4 Fast bounds for large-scale arc routing problems 154

A Appendix 155

A.1 Steiner TSP Results . 155

A.2 Steiner CVRP Results . 155

Bibliography 160

List of Figures

1.1 Decision levels for Waste Routing Problems 9

3.1 Maps of smaller square regions . 43

3.2 Scatterplots of road distance versus Euclidean distance 45

3.3 Location of 125 required nodes for two cities 46

3.4 Scatterplot between |V ′|/|VR| and U−/OPT. 50

3.5 Paris with |V ′| = 1000 and |VR| = 125 51

3.6 Mexico with |V ′| = 1000 and |VR| = 125 51

3.7 A scatterplot between |V ′|/|VR| and U ′
E/U 55

3.8 Paris with |V ′| = 1000 . 55

3.9 Paris with |V ′| = 2000 . 56

3.10 Mexico with |V ′| = 1000 . 57

3.11 Mexico with |V ′| = 2000 . 57

4.1 An example of the original graph . 59

4.2 Ed-Jo transformation . 62

4.3 Ko-Vy transformation . 63

4.4 LB1 approach . 65

4.5 Graph G+ for the CARP instance in Figure 4.4. 74

4.6 Graph G++ for the same CARP instance 75

xi

LIST OF FIGURES xii

4.7 A matching M (left) and a matching M ′ (right) 77

4.8 Graph G++ and an optimal matching 78

5.1 Bad STSP instance for the C-heuristic 90

5.2 Bad GRP instance for the C-heuristic. 91

5.3 Sparsification applied to the GRP instance in Figure 5.2 95

5.4 Illustration of T-join phase for the graph in Figure 5.2 96

6.1 An illustration for the sparsification phase 126

6.2 Estimates of K when h varies. 142

6.3 Estimates of K when |I| varies. 143

6.4 Estimates of K when deadheading speed varies. 143

6.5 Estimates of K with one or two visits to required edges. 144

List of Tables

3.1 Extraction of twelve road networks with |V | = 2500 43

3.2 Euclidean distances versus true road distances for nodes in V ′. 45

3.3 Average ratios for Steiner TSP instances. 49

3.4 Average running time (in seconds) for Steiner TSP instances. 52

3.5 Average results for Steiner CVRP instances. 54

4.1 Number of nodes having a given degree for twelve cities. 67

4.2 Effect of transformations on graph size. 71

4.3 Computing times for two approaches to the CPP. 72

4.4 Effect of transformation on graph size. 80

4.5 Computing times and bounds for two approaches to the CARP. . . . 81

5.1 Results for several sets of benchmark instances. 100

5.2 Results for 2 RPP instances from [61]. 101

5.3 Results for 20 STSP instances from [123, 137]. 102

5.4 Additional details for the 20 STSP instances from [123, 137]. 103

5.5 Results for 10 larger STSP instances from [123]. 104

5.6 Computation of initial squares. 105

5.7 Statistics for the new GRP instances. 106

5.8 Optimal values for some of the new GRP and RPP instances. 107

xiii

LIST OF TABLES xiv

5.9 Results for new GRP instances. 109

5.10 Results for new RPP instances. 110

6.1 Computation of initial squares. 138

6.2 Summary statistics for 20 graphs . 146

6.3 Upper bounding results under default scenario 147

6.4 Lower bounding results under default scenario 148

A1 Results for Steiner TSP instances with |V ′| = 1000. 156

A2 Results for Steiner TSP instances with |V ′| = 2000. 157

B1 Results for Steiner CVRP with |V ′| = 1000. 158

B2 Results for Steiner CVRP with |V ′| = 2000. 159

List of Abbreviations

AM Augment-Merge

ARP Arc Routing Problem

CARP Capacitated Arc Routing Problem

CARPIF Capacitated Arc Routing Problem with Intermediate Facilities

CVRP Capacitated Vehicle Routing Problem

C-Heuristic Christofides’s Heuristic

COP Combinatorial Optimisation Problem

CPP Chinese Postman Problem

DCARP Directed Capacitated Arc Routing Problem

DCPP Directed Chinese Postman Problem

DRPP Directed Rural Postman Problem

GRP General Routing Problem

IM Improved Merge

IF Intermediate Facilities

ILP Integer Linear Programming

LB Lower Bound

LP Linear Programming

M Merge

MCARP Mixed Capacitated Arc Routing Problem

xv

LIST OF ABBREVIATIONS xvi

MCARPIFD Mixed Capacitated Arc Routing Problem with Intermediate Facilities and a

Deadline

MCPP Mixed Chinese Postman Problem

MLB Matching Lower Bound

MRPP Mixed Rural Postman Problem

MST Minimum-Weight Spanning Tree

MWCARP Mixed and Windy Capacitated Arc Routing Problem

NDLB Node Duplication Lower Bound

NSLB Node Scanning Lower Bound

PLB Pearn Lower Bound

PSA Path Scanning Algorithm

RPP Rural Postman Problem

RFCS Route-Fist Cluster-Second

SP Set-Partitioning

STSP Steiner Travelling Saleman Problem

TS Tabu Search

TSP Travelling Saleman Problem

UB Upper Bound

VRP Vehicle Routing Problem

WPM Minimum Weight Perfect Matching Problem

WRP Waste Routing Problem

WTJ Minimum Weight T-join

List of Symbols

G Graph.

V Set of vertices

E Set of (undirected) edges.

A Set of (directed) arcs.

L Set of links.

δ(S) Set of edges with exactly one end-node in S

E(S) Set of edges with both end-nodes in S

δ+(S) Set of arcs leaving S

δ−(S) Set of arcs entering S

∆(S) Set of links with one end-node in S

ER Set of edges requiring service.

AR Set of arcs requiring service.

LR Set of links requiring service.

δR(S) Set of required edges with exactly one end-node in S

δ+R(S) Set of required arcs leaving S

δ−R(S) Set of required arcs entering S

∆R(S) Set of required links with one end-node in S

VR Set of nodes that are incident on at least one required edge

VO Set of nodes that are incident on an odd number of required edges

xvii

LIST OF SYMBOLS xviii

I Set of intermediate facilities

Q Capacity limit

T Time deadline

Chapter 1

Introduction

The UK road transportation system plays an essential role in serving society and

supporting economic growth. The two most obvious kinds of road transportation

are passenger transportation and cargo transportation. The former enables the con-

veyance of people to work, shops and so on, and the latter provides the means for the

delivery of products to retailers, the supply of raw materials to manufacturers, the

distribution of fuel to filling stations, and so on. There is however another important

kind of road transportation: that which involves ‘services’ such as postal delivery, me-

ter reading, road sweeping, winter gritting, snow removal, the collection of household

waste, and so on.

In 2019, more than 733 billion passenger kilometres were travelled by road in

the UK, while more than 154 billion tonne-kilometres of goods were domestically

transported [69]. Among over 1.23 billion tonnes of material transported by heavy

goods vehicles and the like, solid waste accounted for 12% [70]. To be specific, the

UK generated 222.2 million tonnes of solid waste, while the total UK household waste

generation was 26.4 million tonnes [68]. These figures show the huge demand for road

transport, and the figures are predicted to increase in the future.

1

CHAPTER 1. INTRODUCTION 2

Of course, increasing road transport leads to congestion problems. In fact, the

UK is among the most traffic-congested countries in Europe, and the situation has

only been getting worse. Congestion imposes economic costs such as delivery delays,

increased expenditure on fuel and driver pay, and lost time. Based on estimates in

2019, congestion was responsible for over 16% of the cost of road transportation,

amounting to 6 billion pounds per year [142].

Moreover, road congestion accounts for a significant proportion of air pollution

[164]. Indeed, road traffic was the single largest source of UK greenhouse gas emissions

in 2018 [70]. Domestic road transport produced over a quarter of UK domestic carbon

dioxide emissions (112 million tonnes) in 2019 [70], over 50% of total nitrogen dioxide

emissions (430 out of 920 kilotonnes in 2016), and a large proportion of other emissions

such as carbon monoxide, sulphur dioxide, and so on [142].

In the UK, poor air quality poses the greatest environmental risk to public health

[67]. It is estimated that specific health problems related to air pollution, such as

respiratory infections, heart disease and lung cancer, cost the UK over 20 billion

pounds per year [165]. Moreover, air pollution increases the number and severity of

extreme weather events, which in turn disrupt the operation of the transportation

system. In the UK, weather-related incidents accounted for 11% of delays on the road

traffic system between 2006 and 2014 [142].

The significant economic, societal and enviromental impacts of congestion make

the design of efficient vehicle trips critical. This had led to the development of an

academic field of study, called Vehicle Routing. Vehicle Routing attempts to provide

optimal or near-optimal solutions to a range of practical problems, with a variety of

objectives, costs and constraints [103, 105, 199]. Since its creation, Vehicle Routing

has received ever-increasing attention from academic researchers, industry, the public

sector, and software companies.

CHAPTER 1. INTRODUCTION 3

1.1 Vehicle Routing Problems

From a mathematical perspective, Vehicle Routing Problems (VRPs) form an im-

portant family of Combinatorial Optimisation Problems (COPs). They can be en-

countered in various real-life applications such as grocery delivery, industrial refuse

collection, school bus routing, and so on. The aim of VRPs is to design a set of trips

for a fleet of vehicles, based at a depot or depots, to visit a number of sites subject to

various constraints and objectives. The constraints could come from the restriction

of individual trips, operational rules, the nature of customer demand, and so on. The

objectives can be related to economic savings, environmental concerns, employment

rights, and so on.

In mathematical models, road networks are modelled by graphs. Depots, cus-

tomers, road junctions and/or key landmarks are represented by nodes. Two-way

road segments are represented by (undirected) edges, whereas one-way road segments

are represented by (directed) arcs. Each edge or arc may have one or more attributes,

such as a cost, a length or a traversal time. Nodes that represent customers, and

therefore must be visited, may also have attributes, such as a demand or a servicing

time. We refer the reader to [111] for an introduction to graph theory.

The simplest VRP is the well-known Travelling Salesman Problem (TSP), in which

there is just one vehicle, all nodes must be visited, and there are no side-constraints.

The TSP was first mentioned in the 19th century, but the first explicit formulation

and exact algorithm was proposed by Dantzig, Fulkerson, and Johnson in 1954 [63].

Later on, in 1972, Karp showed that the TSP is NP-hard [127]. Since then, the TSP

has been studied in great depth by many researchers. For textbooks, see, e.g., [9, 114].

The first paper published on a VRP with multiple vehicles, was ‘The Truck Dis-

patching Problem’, written by Dantzig and Ramser in 1959 [64]. The authors con-

CHAPTER 1. INTRODUCTION 4

sidered a problem in which a fleet of vehicles delivered petrol to gas stations from

a central hub. They gave a mathematical programming formulation and a solution

algorithm. In 1964, Clarke and Wright [50] proposed an effective and fast greedy

heuristic for VRPs with capacity and/or route-length restrictions. The study was

followed by a great volume of papers concerning various VRPs. Some of them were

concerned with mathematical models and exact solution algorithms, whereas others

dealt with heuristic algorithms for finding near-optimum solutions. For textbooks,

see, e.g., [103, 105, 199].

In practice, there is a wide diversity of trip constraints, objectives, and network

charateristics, resulting in many variants of the problem. For brevity, we mention

only some basic and well-known variants.

In terms of trip constraints, the three most common restrictions for an individual

trip are capacity constraints, trip-length constraints, and time windows. This leads to

the Capacitated VRP (CVRP), the Distance-constrained VRP (DVRP), and the VRP

with Time Windows VRPTW, respectively. Capacity constraints ensure that the total

vehicle load (i.e., weight or volume) never exceeds the vehicle capacity. Trip-length

constraints bound the total length of each trip performed by a vehicle. Finally, time

window contraints ensure that individual nodes are visited within certain specified

time intervals.

The most common objective in VRPs is the minimisation of the total cost. Other

objectives have however been used, such as minimising the total distance travelled,

the number of vehicles, the total CO2 emissions, or the length of the longest trip; or

maximising of the total profit or customer satisfaction. There are also ‘multi-objective’

VRPs, in which there are two or more conflicting objectives.

In terms of the nature of the network, if the travel costs are symmetric and ev-

ery road may be traversed in either direction, the network can be modelled by an

CHAPTER 1. INTRODUCTION 5

undirected graph, resulting in symmetric VRPs. If however the cost or time of travel

between some pairs of points depends on the direction of travel, one may need to use

a directed graph, leading to asymmetric VRPs.

Up to now, we have assumed that all necessary information is known with certainty

before the routes are planned, i.e., that the VRP is deterministic and static. If the

costs, demands, etc. are uncertain, but can be described with known probability

distributions, the problem becomes a stochastic VRP [106, 197]. If new information

can come in while the routes are being planned, or even after some vehicles have

departed from the depot, the VRP is called dynamic [185]. For brevity, we focus on

deterministic and static problems in this thesis.

There is by now a sizeable literature on VRP variants, consisting of several thou-

sand journal articles and several textbooks. Moreover, this field of research continues

to develop quickly, driven by the constant need to tackle real-life routing problems.

The keys to success in this area are (a) good formulations, which faithfully model the

relevant aspects of real-life applications, and (b) fast algorithms, which are capable

of solving large-scale instances to an acceptable degree of accuracy.

1.2 Arc Routing Problems

Arc Routing Problems (ARPs) are a special kind of VRP, in which the demands are

located on edges or arcs, instead of nodes (e.g., [52, 53, 72]). Applications of ARPs

include postal delivery, meter reading, snow removal, salt spreading, road sweeping,

and waste collection. We remark that these all involve ‘services’ rather than passengers

or cargo (see the first paragraph in this chapter).

Arc Routing has its historical origins in the famous work of Leonhard Euler on

the problem of the seven bridges of Königsberg [11] in 1736. The problem was to find

CHAPTER 1. INTRODUCTION 6

a closed walk that crossed each bridge exactly once. Euler solved the problem by

modelling the islands and bridges as nodes and edges, respectively, and then showed

that such a closed walk exists in a graph if and only if each node has even degree.

Graphs with this property are now called Eulerian, and the closed walks are sometimes

called Euler tours.

Euler’s work also marked the beginning of graph theory as a branch of mathemat-

ics. Although graph theory continued to develop steadily after Euler’s work, ARPs

received no further attention for many years. In fact, no-one even considered the

problem of finding an Euler tour efficiently until the work of Hierholzer in 1973 [121].

Later, Fleury [85] found a faster and simpler algorithm for finding an Euler tour.

The first ‘genuine’ ARP was introduced by Meigu Guan in 1962 [113]. He con-

sidered the following problem: a postman starts at a post office and delivers mail

to houses along each street of his village, before returning to the post office. The

problem calls for a shortest closed walk covering each road at least once.

Edmonds and Johnson [76] called Guan’s problem the Chinese Postman Problem

(CPP). They showed that the CPP can be solved in polynomial time if either all roads

are one-way or all are two-way, corresponding to the Directed CPP (DCPP) and the

Undirected CPP (UCPP), respectively. Papadimitriou [173] proved that the variant

with a mixture of one-way and two-way streets, called the Mixed CPP (MCPP), is

NP-hard. Authors have also studied other variants of the CPP, such as the Windy

Postman Problem [156] and the Hierarchical Postman Problem [73]).

Another important extension of the CPP, the Rural Postman Problem (RPP), was

introduced by Orloff in 1974 [168]. In the RPP, only some of the roads require service,

and those roads must be traversed at least once. (The other roads may be traversed

if desired.) The RPP was proved to be NP-hard by Lenstra and Rinnooy Kan [133].

Frederikson [89] devised a 3/2-approximation algorithm for the RPP. Later, several

CHAPTER 1. INTRODUCTION 7

heuristics [117] as well as exact algorithms [48, 61, 101] were suggested for the RPP.

The Capacitated ARP (CARP), first suggested by Golden and Wong [107], is a

multi-vehicle extension of the RPP. A fleet of identical capacitated vehicles is located

at a depot node, and each road has a non-negative demand. The task is to find the

least-cost set of trips, such that (a) each road with positive demand is serviced by

a vehicle, and (b) the total demand serviced by each vehicle does not exceed the

capacity. Several exact methods, heuristics and lower-bounding procedures have been

suggested for the CARP (see [5, 24, 183]).

We give a more comprehensive review of the Arc Routing literature in Chapter 2

of this thesis.

1.3 Waste Routing Problems

This PhD project was partially funded by Routeware, Inc., a leading US technology

company providing solutions for the waste and recycling industries. One service of-

fered by the company is the production of efficient vehicle trips for the collection of

various forms of household waste (such as paper, cardboard, metal, glass, plastic and

food waste). This leads to a broad family of VRPs that we will call Waste Routing

Problems (WRPs).

Each WRP arising in practice will typically have its own special features. Never-

theless, there are certain features that arise frequently in practice:

• There is a fixed fleet of identical vehicles, each located at a depot.

• Each vehicle has a capacity, measured in either volume or weight.

• Vehicles perform one trip per day, but they may follow different routes on dif-

ferent days.

CHAPTER 1. INTRODUCTION 8

• The duration of any trip must not exceed a maximum shift length (typically

between 7 and 12 hours).

• There are one or more intermediate facilities (such as waste reprocessing plants

or landfill sites).

• At any point during the trip, a vehicle may visit an intermediate facility to

unload, and then recommence collections.

• After the last collection has been made, the vehicle must travel to an interme-

diate facility to unload one last time, before returning to the depot at the end

of the shift.

• Hence, the total amount of waste collected before visiting an intermediate facility

must not exceed the vehicle capacity.

• There may be a mixture of one-way and two-way streets. Some two-way streets

may need to be served twice, once in each direction.

• Routing plans repeat every week or every two weeks (e.g., a given vehicle might

follow the same route every other Tuesday).

• Each task must be performed with a fixed frequency depending on its type.

E.g., food waste might be collected once per week, and garden waste once every

two weeks.

In practice, waste bins are often placed almost continuously along roads. This

happens, for example, in urban areas. As a result, it is usually more effective to

model WRPs as ARPs. Thus, most WRPs are a kind of CARP with Intermediate

Facilities (CARPIF). The network could be modelled as an undirected, directed, or

CHAPTER 1. INTRODUCTION 9

mixed graph, resulting in the following problem variants: CARPIF, Directed CARPIF

(DCARPIF), and Mixed CARPIF (MCARPIF), respectively.

Actually, waste collection consists of a number of strategic, tactical and opera-

tional decisions, as shown in Figure 1.1. For strategic purposes, several long-term

management decisions must be made, such as the choice of locations for potential

new facilities and/or vehicles, or the possibility of upgrading existing facilities and/or

vehicles. More tactical decisions may include, for example, partitioning the service

region into smaller zones or districts, selecting collection days for each zone and each

type of waste, setting targets, and determining the fleet and crew sizes according to

the existing types of equipment and the current workforce. The WRPs themselves

can come at either of the tactical or operational levels. (Trips are usually planned a

few times a year, but deviations from the plan may be necessary from day to day.)

Strategic

decisions

Tactical

decisions

Operational

decisions

Hours Days Weeks Months Years Decades

Routing, scheduling ...

District partition, collection days, fleet size ...

Facilities investment and resources distribution

Figure 1.1: Decision levels for Waste Routing Problems

In theory, a fully integrated approach, considering all levels simultaneously, could

bring remarkable cost savings. In practice, however, it is very hard to tackle all levels

CHAPTER 1. INTRODUCTION 10

at the same time. Hence, decision phases are typically addressed separately.

The typical objective in an WRP can be

• Minimise the overall cost, including vehicle costs, labor costs, disposal costs,

etc.

• Minimise the total duration of the trips.

• Minimise the total number of vehicles needed.

In practice, the cost of purchasing, operating and maintaining the vehicle fleet often

dominates the other costs, making the first objective more or less equivalent to the

third one.

The issue of “fairness” has also caught the attention of both companies and aca-

demic researchers. A set of trips may be viewed as “unfair” if some trips have a

much larger duration than others (e.g., [21, 153]). One may therefore have to make a

compromise between the fairness and the total duration, as they may be conflicting

objectives. That is, a well-balanced set of trips may have a large total length, but the

minimum-cost set of trips may lead to an imbalance in the workload.

In this thesis, we focus on only two objectives at the tactical level, as given to us

by our industrial partner. The objectives were given in order of priority as follows:

(1) Minimise the number of trips (or, equivalently, the number of vehicles needed);

(2) Minimise the maximum trip duration. Although decisions at the tactical level

have a medium-term effect (usually over several months or even years), our industrial

partner wanted to obtain reasonably good solutions within a couple of minutes. This

will be explained later (Section 6.1).

CHAPTER 1. INTRODUCTION 11

1.4 Structure of the Thesis

The thesis is structured as follows.

Chapter 2 reviews the relevant literature on ARPs. Some basic ARP variants are

introduced, and the most well-known formulations, exact methods and heuristics for

them are presented.

Chapter 3, which has been published as [40], is concerned with VRPs on road

networks. Suppose that one faces a VRP that involves a road network, but does not

have access to detailed information about that network. One could obtain a heuristic

solution by solving a modified version of the problem, in which true road distances

are replaced with planar Euclidean distances. This approach is described in detail

and tested computationally. Some guidelines are then given on the kind of VRP for

which this heuristic can be expected to give good results.

Chapter 4, which has been published as [41], is concerned with ARPs, matchings

and T -joins. Matchings and T -joins are fundamental and much-studied concepts in

graph theory and combinatorial optimisation. One important application of match-

ings and T -joins is in the computation of strong lower bounds for ARPs. We point

out that the literature on this topic does not fully exploit the structure of real-life

road networks. We propose some ways to exploit this structure, and present very

encouraging computational results.

Chapter 5 is concerned with the General Routing Problem (GRP), introduced by

Orloff [168]. The GRP is a generalisation of the RPP, in which both nodes and edges

may require service. We examine in detail a well-known constructive heuristic for the

GRP, due to Christofides [47]. We show how to speed up the heuristic, in both theory

and practice, while obtaining solutions that are at least as good. The computational

results show that dramatic speed-ups are obtained for large instances.

CHAPTER 1. INTRODUCTION 12

In Chapter 6, we turn our attention to a real-life WRP faced by our industrial

partner (Routeware, Inc.). The problem is very challenging, being a bi-objective mixed

CARP with intermediate facilities and a time deadline. Moreover, the instances en-

countered in practice are very large, with some instances having over ten thousand

road segments. Since solving these instances to proven optimality is out of the ques-

tion, we develop our own fast upper- and lower-bounding procedures. Extensive

computational results are then presented, along with a sensitivity analysis.

Finally, chapter 7 is a conclusions chapter. It provides a summary of the research

contributions, and then discusses possible topics for future research.

Chapter 2

Overview of the Arc Routing

Literature

As mentioned in the previous chapter, numerous articles have been written on ARPs,

along with two books [53, 72]. This chapter recalls the main problem variants, and

gives brief summaries of the existing exact and heuristic approaches.

We will need some notation and terminology from graph theory. Undirected graphs

are written as G = (V,E), where V is the vertex set and E is the edge set. A directed

graph is written as G = (V,A), where A is the set of arcs. A mixed graph is written

as G = (V,E ∪ A). We will also sometimes refer to multi-graphs, in which multiple

copies of edges, arcs or links are permitted.

An undirected graph is called connected if there exists a path between any pair of

nodes. A directed or mixed graph is called strongly connected if there exists a path

from each node to each other node. A (multi-)graph is called Eulerian if there exists

a closed walk such that each link is traversed exactly once.

Given an undirected or mixed graph and a vertex set S, we let δ(S) denote the

set of edges with exactly one end-node in S and E(S) the set of edges having both

13

CHAPTER 2. OVERVIEW OF THE ARC ROUTING LITERATURE 14

end-nodes in S. In a directed or mixed graph, we let δ+(S) and δ−(S) denote the set

of arcs leaving and entering S, respectively. In a mixed graph, we let ∆(S) denote

δ(S)∪ δ+(S)∪ δ−(S). For simplicity, we write δ+(v) instead of δ+({v}), and similarly

for δ−(v), δ(v), and ∆(v). We call L = E ∪ A the set of links.

2.1 The Chinese Postman Problem

This section is concerned with the Chinese Postman Problem or CPP. The three

subsections in this section cover the undirected, directed and mixed CPP.

2.1.1 The Undirected Chinese Postman Problem

The undirected CPP (sometimes called the UCPP) is defined as follows:

Input: A connected undirected graph G = (V,E) and a positive rational cost ce for

each edge e ∈ E.

Objective: Find a minimum-cost closed walk in G traversing every edge at least

once.

As we saw in section 1.2, an undirected graph is Eulerian if and only if every node

has even degree. Moreover, it is easy to see that, in an optimal CPP solution, no edge

is ever traversed more than once. Thus, as noted by Guan [113], the main task in the

CPP is to find a minimum-cost edge set F ⊂ E such that the multi-graph (V,E ∪F)

has all nodes even.

Edmonds and Johnson [76] proved that the CPP can be solved in polynomial time

by matching techniques. Specifically, it suffices to solve a Minimum Weight Perfect

Matching Problem (WPM) over the set of odd-degree nodes in G, where the matching

cost between any two such nodes is set to the cost of the cheapest path between them

in G.

CHAPTER 2. OVERVIEW OF THE ARC ROUTING LITERATURE 15

Edmonds and Johnson [76] also analysed an Integer Linear Programming (ILP)

formulation of the CPP. For each e ∈ E, let xe denote the number of copies of edge e

added to G. Given any set F ⊂ E, let x(F) denote
∑

e∈F xe. The ILP is then:

min
∑
e∈E

cexe (2.1)

s.t. x(δ(S)) ≥ 1
(
∀S ⊂ V : |δ(S)| odd

)
(2.2)

xe ∈ Z+ (∀e ∈ E). (2.3)

The constraints (2.2) state that, if some set δ(S) contains an odd number of edges,

then the postman must traverse at least one of the edges in δ(S) more than once.

Edmonds and Johnson showed that the integrality condition can be omitted. That

is, if we solve the continuous relaxation of the ILP (2.1)-(2.3), the resulting solution

will automatically be integer-valued.

Once an optimal Eulerian multi-graph has been obtained, an Eulerian tour can be

found by applying an O(|V |)-time algorithm, called End-Pairing Algorithm, proposed

by Edmonds and Johnson [76]:

1. Trace gradually a simple cycle consisting of some unvisited edges. This cycle

may not contain all vertices.

2. If all edges have been traversed, stop.

3. Consider any vertex v on the tour incident to an untraversed edge e ∈ E. Form

a second cycle from e and then, merge the two cycles into a single one.

We now analyse the amount of computing time needed to solve the UCPP. Let

VO denote the set of odd-degree nodes. Computing shortest paths in G between

the odd-degree vertices takes O
(
|VO|(|E| + |V | log |V |)

)
time. Computing a WPM

on a complete graph with |VO| vertices takes O(|VO|3) time. Finally, computing the

Eulerian tour takes O(|V |) time. The total time is O
(
|VO|3 + |VO|(|E|+ |V | log |V |)

)
.

CHAPTER 2. OVERVIEW OF THE ARC ROUTING LITERATURE 16

2.1.2 The Directed Chinese Postman Problem

In the UCPP, the postman is allowed to traverse streets in either direction. In the

DCPP, however, every street is one-way. Note that, for a feasible solution to exist

in the DCPP, the graph G must be strongly connected. So, the DCPP is defined as

follows:

Input: A strongly connected directed graph G = (V,A) and a positive rational cost

ca for each arc a ∈ A.

Objective: Find a minimum-cost closed walk in G traversing every arc at least

once.

Ford and Fulkerson [86] showed that a directed graph is Eulerian if and only if it

is symmetric, i.e., for each vertex, the number of outgoing and incoming arcs is equal.

Thus, the DCPP can be viewed as the task of duplicating arcs in such a way that the

resulting multi-graph is symmetric. It is important to note, however, that there may

exist optimal DCPP solutions in which some arcs are traversed more than twice.

Edmond and Johnson [76] formulated the DCPP as an ILP, as follows. For each

arc a ∈ A, let xa denote the number of additional copies of a added to G in order

to make it Eulerian. Also, for each node v ∈ V , let bv denote |δ−(v)| − |δ+(v)|, the

so-called imbalance of v. The ILP is then:

min
∑
a∈A

caxa (2.4)

s.t. x(δ+(v))− x(δ−(v)) = bv (∀v ∈ V) (2.5)

xa ∈ Z+ (∀a ∈ A). (2.6)

The constraints (2.5) ensure that the resuting multi-graph is symmetric.

Edmonds and Johnson showed that the integrality condition can be omitted, just

as in the case of the UCPP. That is, if we solve the continuous relaxation of the ILP

CHAPTER 2. OVERVIEW OF THE ARC ROUTING LITERATURE 17

(2.4)-(2.6), the resulting solution will automatically be integer-valued.

Edmond and Johnson also noted that the above ILP is effectively a minimum-

cost flow problem in G, in which the node v ∈ V is a supply node if bv > 0, and

a demand node if bv < 0. Thus, the DCPP can also be solved in polynomial time

using a minimum-cost flow algorithm. (An alternative efficient solution algorithm was

suggested by Orloff [168].)

Once an optimal Eulerian multi-graph has been determined, an Eulerian cycle

can be obtained in linear time using Fleury’s algorithm [85] or the algorithm of van

Aardenne-Ehrenfest and de Bruijn [202].

2.1.3 The Mixed Chinese Postman Problem

Real road networks often consist of both two-way streets and one-way streets. This

situation leads us to consider the following MCPP:

Input: A strongly connected mixed graph G = (V, L) and a positive rational cost cℓ

for each ℓ ∈ L.

Objective: Find a minimum-cost closed walk in G traversing every link at least

once.

Ford and Fulkerson [86] showed that a strongly connected mixed graph is Eulerian

if and only if it is (a) even (i.e., each node is incident on an even number of links),

and (b) balanced (i.e., for every set S ⊂ V , the difference between the number of arcs

leaving S and the number of arcs entering S does not exceed the number of edges

joining S and V \ S). Thus, the MCPP can be viewed as the problem of introducing

copies of some links at minimum cost in such a way that the resulting multi-graph is

even and balanced.

Unlike the UCPP and DCPP, which can be solved easily, the MCPP is NP-hard.

CHAPTER 2. OVERVIEW OF THE ARC ROUTING LITERATURE 18

In fact, this is so even if (a) G is a planar graph, (b) the degree of each vertex is at

most three, and (c) the cost of each link is one (Papadimitriou [173]). On the positive

side, Edmond and Johnson [76] showed that if G is even, the MCPP is solvable in

polynomial time by solving an equivalent network flow problem. The approach is

presented in detail by Minieka [156]. The idea of the algorithm is to add some arcs

at minimum cost to make the even graph symmetric, and then determine the actual

traversal of the transformed graph.

Some effective heuristics have been proposed for the harder case, in which G is

not even. Edmonds and Johnson [76] introduced a heuristic MIXED1, which was

then improved by Frederickson [89]. The basic idea of MIXED1 is to make the graph

G even first and then apply the above algorithm to make G even and symmetric.

Heuristic MIXED2 can be seen as the reverse version of heuristic MIXED1, in which

the graph is made symmetric first and made even second. Both algorithms run in

O(max{|V |3, |A|(max{|A|, |E|})2}) time, and have a worst-case performance ratio of

2. Fortunately, if the two algorithms are applied and the best of the two solutions is

taken, the performance ratio improves to 5/3. Later on, Raghavachari and Veerasamy

[186] showed how to improve the heuristics, obtaining a ratio of 3/2 with the same

computational complexity.

As for ILP approaches to the MCPP, there are two widely-used formulations for

the MCPP, depending on whether each edge of G is associated with one variable

(Nobert and Picard [162]) or two (Kappauf and Koehler [126]). The formulations

were compared from the computational and theoretical point of view in [57]. For

interest, we present the formulation of Nobert and Picard [162]. For each link ℓ ∈ L,

CHAPTER 2. OVERVIEW OF THE ARC ROUTING LITERATURE 19

the variable xℓ represents the number of times ℓ traversed. The ILP is:

min
∑
ℓ∈L

cℓxℓ (2.7)

s.t. x(∆(S)) ≥ |∆(S)|+ 1 ∀S ⊂ V : |∆(S)| odd (2.8)

x(δ+(S))− x(δ−(S)) ≤ x(δ(S)) ∀S ⊂ V, S ̸= ∅ (2.9)

xl ≥ 1 and integer ∀l ∈ L (2.10)

The constraints (2.8) are analogous to the constraints (2.2) for the URPP. The con-

straints (2.9) ensure that the resulting multi-graph is balanced, and the constraints

(2.10) ensure that all links are traversed at least once.

To close this section, we mention the Windy CPP (WCPP), first suggested by

Minieka [156] in 1979. The WCPP is a generalisation of the UCPP, in which the cost

of traversing an edge depends on the direction of travel. It is easy to show that the

WCPP also includes the DCPP and MCPP as special cases. For more on the WCPP,

see the book [59] or the survey [196].

2.2 The Rural Postman Problem

The RPP, introduced by Orloff [168], is a generalisation of the CPP in which there

may be links that do not require service. The motivation is that, in a rural setting,

there may exists roads that connect villages, but do not have any houses on them.

Such roads do not need service, but they can be traversed if desired.

Like the CPP, the RPP comes in three main variants: undirected, directed and

mixed. Before describing them, let us introduce some additional notation. We let

ER ⊆ E and AR ⊆ A denote the set of required edges and required arcs, respectively.

We have A = AR = ∅ in the URPP, E = ER = ∅ in the DRPP, and A,E ̸= ∅

in the MRPP. We let LR denote ER ∪ AR. Given a subset S ⊂ V , we let LR(S)

CHAPTER 2. OVERVIEW OF THE ARC ROUTING LITERATURE 20

denote L(S) ∩ LR, and similarly for δR(S), δ
+
R(S), δ

−
R(S) and ∆R(S). Note that the

subgraph G′ = (V, LR) can be disconnected, and therefore, we assume that there are

κ connected components in G′, namely C1, · · · , Cκ. For i = 1, . . . , κ, Vi represents the

set of nodes in Ci.

2.2.1 The Undirected Rural Postman Problem

The URPP can be defined as follows:

Input: A connected undirected graph G = (V, L), a positive rational cost ce for

each e ∈ E, and a set ER ⊂ E of required edges.

Objective: Find a minimum-cost closed walk in G traversing each required edge at

least once.

It was shown in [133] that the URPP is NP-hard, but solvable in polynomial time if

κ = 1 (i.e., if the subgraph G′ is connected)..

One of the most well-known constructive heuristics for the URPP was proposed by

Frederickson [89] in 1979. The heuristic runs inO(|V |3) time, and it has a performance

guarantee of 3/2. Details can be found in Section 5.2.3 of Chapter 5.

Córdoba et al. [61] designed an effective heuristic with a probability scheme. A

feasible tour is constructed by starting at a randomly selected vertex and iteratively

adding edges in a probabilistic manner until all required edges have been covered. The

effectiveness of the heuristic depends on the defined probabilities, the improvement

operators and the number of runs. Computational results show that the heuristic

works very well on small-sized instances.

Hertz et al. [117] published a set of post-optimization algorithms to improve any

URPP feasible solution. Their post-optimizers yield a significant improvement in

Frederickson’s solution with only a little extra computational time. Groves and Van

CHAPTER 2. OVERVIEW OF THE ARC ROUTING LITERATURE 21

Vuuren [112] designed a more efficient local search heuristics for the URPP, namely

2-opt and 3-opt. Computational results in several medium and large-size instances

showed that these heuristics can reduce an average optimality gap to half compared

with Frederickson’s heuristic with a slightly larger running time.

Christofides et al. [48] gave an ILP formulation of the URPP. First, they pre-

process the instance so that every node is incident on at least one required edge.

Then, for each e ∈ E, the variable xe represents the number of extra copies of e to be

added to G. The ILP is then:

min
∑
e∈E

cexe (2.11)

s.t. x(δ(v)) ≡ |δR(v)| (mod 2) ∀v ∈ V (2.12)

x(δ(S)) ≥ 2 ∀S = ∪i∈PVi, ∅ ≠ P ⊂ {1, · · · , κ} (2.13)

xe ≥ 0 and integer ∀e ∈ E. (2.14)

Constraints (2.12) state that each vertex must have even degree, while constraints

(2.13) ensure that the components C1, . . . , Cκ are linked together in the solution. We

remark that the constraints (2.12) are non-linear, but can be enforced by branching.

More formulations can be found in [61, 101, 95, 81].

Corberán and Sanchis [61] introduced several families of facet-inducing inequal-

ities, and used them in a cutting-plane algorithm for the URPP. Letchford [134]

presented some more inequalities, called Path-Bridge (PB) inequalities, along with a

polynomial-time separation routines for a special case. Four years later, Corberán et

al. [54] described a cutting-plane algorithm for the GRP, an extension of the URPP,

and showed that it provides very strong lower bounds. Some other cutting-plane and

branch-and-cut algorithms can be found in [101, 81, 58, 60].

CHAPTER 2. OVERVIEW OF THE ARC ROUTING LITERATURE 22

2.2.2 The Directed Rural Postman Problem

The DRPP can be described as follows:

Input: A strongly connected directed graph G = (V,A), a positive rational cost ca

for each a ∈ A, and a set AR ⊂ A of required arcs.

Objective: Find a minimum-cost closed walk in G traversing each required arc at

least once.

Note that the DRPP includes the DCPP as a special case. Moreover, the DRPP is

easily seen to be NP-hard, e.g., by reduction from the travelling salesman problem.

Christofides et al. [49] extended the heuristic proposed by Frederickson [89] for the

URPP to the DRPP. The heuristic combines several ingredients including a minimum

spanning tree, and a WPM algorithm. These authors also proposed an ILP formu-

lation for the DRPP. Let xa be the extra number of times arc a is traversed in the

optimal DRPP solution. For any v ∈ V , let bv denote |δ−R(v)| − |δ+R(v)|. The ILP is

then:

min
∑
a∈AR

caxa (2.15)

st. x(δ+(v))− x(δ−(v)) = bv ∀v ∈ V (2.16)

x(δ−(S)) ≥ 1 ∀S = ∪i∈PVi, ∅ ≠ P ⊂ {1, · · · , κ} (2.17)

xa ≥ 0 and integer ∀a ∈ A. (2.18)

The constraints (2.16) and (2.17) ensure that the resulting multi-graph is symmetric

and connected, respectively.

Few articles have been published specifically about the DRPP. Most of the known

results for the DRPP can be obtained by considering it as a particular case of the

MRPP or its extensions.

CHAPTER 2. OVERVIEW OF THE ARC ROUTING LITERATURE 23

2.2.3 The Mixed Rural Postman Problem

We can define the MRPP as follows:

Input: A strongly connected mixed graph G = (V, L), a positive rational cost cℓ for

each link ℓ ∈ L, and a set LR ⊆ L of required links.

Objective: Find a minimum-cost closed walk in G traversing each required link at

least once.

The MRPP is also NP-hard, since it contains the URPP and DRPP as special

cases. We can assume that all edges in G are required since we can always replace a

non-required edge with a pair of two anti-parallel non-required arcs having the same

cost [49].

There are two well known formulations for the MRPP. These formulations have

been widely used in the literature, but they have not been studied directly for the

MRPP. The first formulation, which uses one variable for each edge, was proposed for

the Mixed GRP by Corberán et al. [56], while the second one, which uses two variables

per each edge, was studied for the Windy GRP by Corberán et al. [58]. A comparison

between the two formulations can be found in Corberán et al. [57]. Although the

formulations are equivalent, the lower bounds derived from their LP relaxations can

be different. Specifically, the initial LP relaxation of the second formulation is shown

to be stronger than that of the first model. However, after adding all known families

of inequalities having polynomial-time separation routines, both relaxations give the

same bound.

For interest, we present the first formulation since it uses fewer variables. Let xℓ

CHAPTER 2. OVERVIEW OF THE ARC ROUTING LITERATURE 24

denote the number of times the link ℓ ∈ L is traversed in the tour. The ILP is then:

min
∑
ℓ∈L

cℓxl (2.19)

s.t. x(∆(v)) ≡ 0 mod 2, ∀v ∈ V (2.20)

x(δ+(S)) ≥ 1 ∀S = ∪i∈PVi, ∅ ≠ P ⊂ {1, · · · , κ}(2.21)

x(δ+(S))− x(δ−(S)) ≤ x(δ(S)) ∀S ⊂ V (2.22)

xℓ ∈ Z+ ∀ℓ ∈ L (2.23)

xℓ ≥ 1 ∀ℓ ∈ LR. (2.24)

The constraints (2.20), (2.21), (2.22) ensure that the resulting multi-graph will be

even, connected and balanced, respectively. For additional inequalities that can be

used as cutting planes, see, e.g., [56].

Corberán et al. [55] proposed a constructive heuristic and a Tabu Search (TS)

procedure for the MRPP. This constructive heuristic combines several ingredients,

including a minimum spanning tree problem, two minimum-cost flow problems and a

WPM. The TS procedure starts with the MRPP solution obtained by the heuristic

and tries to move from one solution to another solution to find the best-known one

by alternating between intensification and diversification phases. The procedure is

repeated until meeting a predefined stopping criterion. Both two heuristics were

tested on randomly generated small instances.

To close this section, we mention the Windy RPP (WRPP). The WRPP is like

the URPP, except that the cost of traversing an edge depends on the direction of

traversal. The WRPP includes all other problems mentioned so far as special cases.

For associated formulations and algorithms, see [30, 29, 58, 163].

CHAPTER 2. OVERVIEW OF THE ARC ROUTING LITERATURE 25

2.3 The Capacitated Arc Routing Problem

The Capacitated Arc Routing Problem (CARP) was introduced in 1981 by Golden &

Wong [107]. We are given an undirected graph G = (V,E), where node 0 is called

the depot. We are also given a set ER ⊆ E of required edges. Each edge e ∈ E has a

positive rational cost ce. Each required edge e ∈ ER has a positive rational demand

qe. A fleet of K identical vehicles is located at the depot, each with positive rational

capacity Q. The CARP aims to find a minimum-cost set of trips, each starting and

ending at the depot, such that each required edge is serviced on exactly one trip, and

the total demand on each trip does not exceed Q.

The CARP is a generalization of the RPP, and is therefore NP-hard. In fact,

Golden and Wong showed that even when the triangle inequality holds, finding a

3/2-approximate solution to the CARP is NP-hard.

There are several variants of the CARP. Some authors studied the CARP with an

unlimited number of vehicles [35], and others studied the variant in which not all of

the K vehicles must be used [22]. We mention some other variants in the next section.

We let VR denote the set of nodes in G that are incident on at least one required

edge. If a node in VR is incident on an odd number of required edges, it is called “R-

odd”. We let VO denote the set of R-odd nodes. Traversing an edge without servicing

is called “deadheading”.

2.3.1 Heuristics for the CARP

Many CARP instances that arise in practice are too large to be tackled with ex-

act methods. As a result, many authors have turned to heuristics. It is helpful

to distinguish between constructive heuristics, which generate a single solution, and

metaheuristics, which work on a sequence of solutions. The latter tend to find better

CHAPTER 2. OVERVIEW OF THE ARC ROUTING LITERATURE 26

solutions, but this comes at the cost of significantly increased running time. Due

to the size of the problems aimed at in this thesis, we only provide details of three

popular constructive heuristics for the CARP. For details on metaheuristics, we refer

the reader to the articles [77, 118, 120, 130, 131, 208, 42, 181, 198, 192, 152] and the

book chapters [119, 183].

Golden et al. [104] proposed the Path-Scanning Algorithm (PSA), for the special

case of the CARP in which all edges are required. The principle of the PSA is to build

trips one at a time, by iteratively adding to the end of the current path a required

edge that (a) has not yet been serviced and (b) fits the residual capacity. If no such

edge can be found, the current trip is completed by adding a shortest path from the

last visited node to the depot. The process is repeated until all required edges have

been serviced. Since the last visited node in a given path may be incident to more

than one required edge, five different rules are proposed to break ties. The PSA is

executed with each of the five rules, and the best of the five solutions is chosen. The

time complexity of the PSA is O(|V |2).

Pearn [176] presented a modified version of the PSA. Instead of generating one

solution for each criterion, one of the five rules is chosen randomly in each iteration,

with predefined probabilities. This algorithm can be performed several times and the

best solution retained. Evans and Minieka [80] proposed a third version of the PSA.

Instead of completing each trip by deadheading back to the depot, one travels to the

nearest edge that is not yet serviced and fits the residual capacity. Only if no such

edge exists does the vehicle return to the depot.

Belenguer et al. [25] suggested two more versions of the PSA, called PSA with

Random Criterion (PSARC) and PSA with Random Link (PSARL). The former is

identical to Pearn’s modified PSA while the latter ignores the five rules and randomly

draws one unserviced required edge from the set of the nearest candidates. They

CHAPTER 2. OVERVIEW OF THE ARC ROUTING LITERATURE 27

found that PSARL needs to be executed several times to obtain solutions as good as

those found by PSARC. Santos et al. [191] improved the PSARL by introducing a

new ellipse rule, which forces the vehicle to stay close to the depot when it approaches

its capacity. As with PSARL, the resulting heuristic is performed a number of times

to return improved solutions. Yet another version of the PSA was presented recently

by Wøhlk [210].

Golden and Wong [104] presented the Augment-Merge (AM) heuristic, which runs

in O(|V ||E|2) time. The basic outline is given below:

• INITIALIZE: Build a closed walk for each required edge, consisting of this edge

itself and the shortest path between each end-point and the depot.

• AUGMENT: Starting with the longest trip, check whether a required edge on a

shorter trip can be inserted into a longer trip.

• MERGE: Check whether any pairs of trips can be merged without violating the

capacity constraint and, if so, merge the pair that yields the highest savings.

Repeat this step until finished.

Belenguer et al. [25] found that AM gives good results only when the proportion

of edges requiring service is large. They considered a variant that omits the Augment

phase entirely, which they called the Merge (M) heuristic. They also point out that,

if there are ties in the Merge phase, then merging the pair with the most significant

difference in load can yield a considerable improvement. This variant is called Im-

proved Merge (IM). M and IM can be performed with or without an Augment phase,

resulting in four variants AM, M, AIM, and IM.

Ulusoy [200] designed the Route First- Cluster Second (RFCS) heuristic for the

CARP. The heuristic begins by computing a “giant tour” through all of the required

edges, without worrying about the vehicle capacity. The giant tour is then “split”

CHAPTER 2. OVERVIEW OF THE ARC ROUTING LITERATURE 28

into segments that are small enough to be traversed by a single vehicle. When E =

ER, the optimal giant tour can be computed easily by solving a CPP. Otherwise,

computing the giant tour is an NP-hard URPP. In this latter case, the giant tour can

be computed using any URPP heuristic. The splitting is done optimally by solving a

series of O
(
|ER|

)
shortest-path problems in an auxiliary directed acyclic graph with

|ER| vertices. The splitting phase runs in O(|E|2) time.

Prins et al. [184] suggested some procedures to improve Ulusoy’s heuristic. For the

giant tour phase, they proposed three randomized PSA methods to get a series of giant

tours. For the splitting phase, the authors proposed some local search procedures,

called Split, Flip, Shift, and its variants, to improve the feasible trips.

2.3.2 Combinatorial lower bounds for the CARP

In this subsection, we describe some well-known combinatorial lower bound (LB)

algorithms, which can be used to assess the quality of heuristic solutions. Before we

go on, let us introduce one more bit of notation. We let K denote
⌈∑

e∈ER
qe/Q

⌉
.

Note that K is an LB on the number of vehicles needed to service all of the required

edges.

Christofides et al. [46] proposed to compute an LB using shortest paths and match-

ings. Unfortunately, their method contained an error. Golden & Wong [107] devel-

oped a corrected LB, which they called the Matching Lower Bound (MLB). Their

method begins by constructing an auxiliary graph that include the nodes in VO plus

2K − |δR(0)| copies of the depot. Then, a WPM is computed in the auxiliary graph.

Finally, the LB is the weight of the WPM solution plus the cost of the required edges.

The procedure has a complexity of O
(
|V |3

)
.

Assad et al. [12] proposed a simpler and faster procedure, which takes into account

only deadheading paths from the depot to the nearest nodes in VR. The resulting LB,

CHAPTER 2. OVERVIEW OF THE ARC ROUTING LITERATURE 29

called the Node Scanning LB (NSLB), can be computed in only O(|E| + |V | log |V |)

time. Since the parity of nodes is not considered, however, the NSLB is suitable only

for CARP instances in which K is rather large.

Pearn [175] found a way to combine the ideas of the MLB and NSLB methods.

The method contains two main stages. Roughly speaking, the first stage computes

the minimum amount of deadheading needed to make the resulting multi-graph even,

and the second stage applies the NSLB method to determine whether there is a need

for extra deadheading paths from the depot. The resulting LB, often called the Pearn

LB (PLB), dominates the MLB and the NSLB. Computing it, however, takes O
(
|V |4

)
time.

Saruwatari et al. [193] described another matching-based LB for the CARP, called

the Node Duplication Lower Bound (NDLB). NDLB works as follows. Let A consist

of 2K − |δR(0)| copies of the depot node, and let B contain |δR(v)| copies of vertex

v for v ∈ VR \ {0}. A complete graph, say Ḡ, is constructed with node set A ∪ B.

The weight of each edge in Ḡ is set to the cost of the shortest path between the

corresponding nodes in G, with two exceptions: edges between copies of the depot

and edges corresponding to required edges in G are given infinite weight. A WPM is

then solved in Ḡ. The LB is then the weight of the WPM solution plus the cost of

the required edges. The NDLB dominates the NSLB, and the procedure has O
(
|E|3

)
running time.

Win [207] proposed an even more powerful LB method, which is widely used

in later approaches. Instead of considering solely R-odd nodes or the depot, Win

considered several subsets of nodes containing the depot. Win applies the MLB

method to each subset S, by treating S as the depot node and V \S as the remaining

graph. He also uses the fact the number of vehicles going from V \S to S must be at

CHAPTER 2. OVERVIEW OF THE ARC ROUTING LITERATURE 30

least ⌈∑
e∈ER(S)∪δR(S) qe

Q

⌉
.

The Win LB (WLB) is then the maximum of the MLBs over all of the chosen subsets

S.

Benavent et al. [28] defined four additional LB methods for the CARP. The first

method, called LB1, is described in detail in Subsection 4.2.2 of this thesis. It produces

LBs of similar quality to NDLB, and has the same running time of O
(
|E|3

)
. In

practice, however, it is much faster, because it uses a smaller auxiliary graph. The

second method, called LB2, is a refinement of WLB and runs in O
(
|V ||E|3

)
time.

For brevity, we do not give details of the other two procedures. Benavent et al. found

that, of their four bounding procedures, LB2 performed best in practice.

Later on, Wøhlk [209] proposed the Multiple Cuts NDLB method for the CARP,

along with an improved version. The method is essentially a combination of NDLB

and LB2. It beats all of the previous algorithms mentioned in terms of solution

quality, but it runs in O(|V ||E|3) time. Some other variants of NDLB and LB2 can

be found in [3, 8].

2.3.3 Integer programming approaches to the CARP

In this subsection, we survey the main ILP formulations of the CARP. Such formu-

lations can be used to solve CARP instances to proven optimality, or just to produce

lower bounds. For a fuller treatment, see, e.g., [78, 159].

To our knowledge, the first ILP formulation was proposed by Golden & Wong

[107]. However, the formulation has an exponentially large number of both variables

and constraints, and it is of little practical use. A much more useful formulation,

called the Two-Index formulation, was proposed by Belenguer & Benavent [22]. For

CHAPTER 2. OVERVIEW OF THE ARC ROUTING LITERATURE 31

e ∈ ER and k = 1, . . . , K, let xk
e ∈ {0, 1} be a variable taking the value 1 if and only if

the kth vehicle services edge e. For e ∈ E and k = 1, . . . , K, let yke ∈ Z+ be a variable

representing the number of times that vehicle k deadheads the edge e. It then suffices

to minimise the objective function

K∑
k=1

(∑
e∈ER

cex
k
e +

∑
e∈E

cey
k
e

)
(2.25)

subject to the following constraints:

K∑
k=1

xk
e = 1 (e ∈ ER) (2.26)

xk(δR(S)) + yk(δ(S)) ≥ 2xk
e

(
S ⊆ V \ {0}, e ∈ ER(S), k = 1, . . . , K

)
(2.27)

xk(δR(v)) + yk(δ(v)) = 2pkv (v ∈ V, k = 1, . . . , K) (2.28)∑
e∈E

qex
k
e ≤ Q (k = 1, . . . , K) (2.29)

xk
e ∈ {0, 1} (e ∈ ER, k = 1, . . . , K) (2.30)

yke ∈ Z+ (e ∈ E, k = 1, . . . , K) (2.31)

pkv ∈ Z+ (v ∈ V, k = 1, . . . , K). (2.32)

Constraints (2.26) assure that each required edge will be served. The connectivity

constraints (2.27) state that, if a vehicle serves edge e, then it must traverse at least

two edges in the cutset δ(S), which separates e from the depot. Constraints (2.28)

ensure that each vehicle traverses an even number of edges incident with each vertex.

Here, the p variables are just dummy variables used to ensure evenness. Constraints

(2.29) state that any tour must respect the vehicle capacity. The remaining constraints

are trivial.

Belenguer and Benavent [22] use this formulation to compute lower bounds. The

initial LP relaxation contains only constraints (2.26) and (2.29). Constraints (2.27)

and (2.28) are then generated as cutting planes. Several other families of inequalities

are also derived and used as cutting planes.

CHAPTER 2. OVERVIEW OF THE ARC ROUTING LITERATURE 32

An alternative approach, called the One-Index approach, was proposed indepen-

dently by Letchford [135] and Belenguer & Benavent [22]. In this approach, the ILP

has only one variable per edge, representing the total number of times the edge is

deadheaded. There are also only two families of linear constraints in the ILP: “R-

odd-cut” and “capacity” constraints. (For details, see Subsection 6.2.1 in this thesis.)

The separation problem for the R-odd cut inequalities can be solved in polynomial

time using an algorithm of Padberg and Rao [171]. For the capacity inequalities,

Belenguer and Benavent [22] proposed an effective separation heuristic.

A major drawback of the One-Index approach is that the ILP is a relaxation of

the CARP, rather that a true formulation. Moreover, it is NP-hard to check whether

a solution to the ILP represents a feasible CARP solution, since one does not know

which vehicles are deadheading any given edge (see [78]). Nevertheless, the approach

is extremely useful for computing lower bounds, as first shown in [22]. Additional

works that exploit the One-Index approach include [2, 23, 35, 150, 151].

Another formulation of interest is the Set-Partitioning (SP) formulation proposed

by Desaulniers et al. [71]. Let Ω be the set of all feasible trips that a single vehicle

could take. For each r ∈ Ω, let cr denote the cost of trip r. Also let λr be a binary

variable, taking the value 1 if and only if trip r appears in the solution. Finally, for

all r ∈ Ω and e ∈ E, let αer ∈ {0, 1} be a constant, taking the value 1 if and only if

edge e is serviced by trip r. The SP formulation is then:

min
∑

r∈Ω crλr (2.33)

s.t.
∑
r∈Ω

αerλr = 1 ∀e ∈ ER (2.34)

λr ∈ {0, 1} ∀r ∈ Ω. (2.35)

The objective function (2.33) minimizes the total cost of the selected trips. The par-

titioning constraints (2.34) ensure that each required edge is serviced by one vehicle.

CHAPTER 2. OVERVIEW OF THE ARC ROUTING LITERATURE 33

Note that the SP formulation can have an exponentially large number of variables.

To solve it, one must use a specialised method known as “branch-and-price”. One

can also add cutting planes if desired, leading to “branch-cut-and-price” algorithms.

For applications of these methods to the CARP, see [18, 35, 108, 110, 138, 150, 182].

Yet another approach was proposed by Pearn et al. [177]. They showed how to

transform any CARP instance into an equivalent instance of a node-routing problem

known as the Capacitated VRP (CVRP). One can then apply any of the existing

methods for the CVRP.

The transformation of Pearn et al. leads to a CVRP instance with 3|ER|+1 nodes.

Alternative transformations, which lead to instances with only 2|ER|+1 nodes can be

found in [18, 13, 145]. Foulds et al. [88] found an even more compact transformation,

in which the transformed graph has only |ER|+ 1 nodes.

2.4 Some Extensions of the CARP

Although the CARP is NP-hard, it is actually one of the “simpler” ARPs, since the

graph is assumed to be completely undirected, and the only side-constraint is the one

concerned with vehicle capacity. In real-life applications, additional complications

often have to be taken into consideration. This gives rise to several variants and

extensions of the CARP.

Li [139] considered a variant of the CARP in which all required edges must be

serviced by a given time deadline. (We call this the CARPD.) He devised a simple

constructive heuristic, along with a lower-bounding procedure based on the solution of

a series of matching problems. Letchford [135] obtained improved lower bounds for the

same problem, using cutting planes. Eglese & Li [79] also considered the CARPD, but

they treated the time deadline as a “soft” constraint, by penalising violations in the

CHAPTER 2. OVERVIEW OF THE ARC ROUTING LITERATURE 34

cost function. For this version of the problem, they proposed an effective tabu search

heuristic. Much more recently, Wøhlk & Laporte [210] gave an improved heuristic for

the original CARPD, based on local search.

The mixed CARP, or MCARP, is the generalisation of the CARP in which both

edges and arcs may be present. The edges represent two-way streets that can be served

in a single pass, and the arcs represent one-way streets. (A two-way street that can

not be served in a single pass can usually be represented by a pair of anti-parallel arcs.)

Heuristic approaches for the MCARP can be found in, e.g., [19, 25, 131]. Results in

[25] indicate that a variant of the “merge” heuristic for the MCARP tends to perform

best in practice.

Authors have also proposed to compute lower bounds for the MCARP using LP

and cutting planes [25, 109]. The model proposed by Belenguer et al. [109] uses one

variable for each link, together with some (exponentially large) families of valid in-

equalities, such as capacity, R-odd cut and balancing constraints. Gouveia et al. [109],

on the other hand, used a “compact” model, with a polynomial number of both vari-

ables and constraints.

There are also a few works dealing with the directed CARP (e.g., [157, 149]) and

windy CARP [203]. We omit details, for the sake of brevity.

The last problem class that we wish to mention is ARPs with intermediate facilities

or ARPIFs. To our knowledge, the first paper to deal with an ARPIF was Li & Eglese

[140]. A fleet of vehicles is used to spread salt on roads in winter. Each vehicle has a

limited capacity, and roads must be treated within a time deadline. When a vehicle

runs out of salt, it can travel to a nearby salt pile, be re-filled with salt, and then

re-commence gritting. This can be repeated if time allows. Li and Eglese devised a

constructive heuristic for this problem, which we will call the MCARPIFD.

It is of course possible to allow vehicles to unload at intermediate facilities, instead

CHAPTER 2. OVERVIEW OF THE ARC ROUTING LITERATURE 35

of re-filling. Mourão & Amado [157] considered an MCARPIFD of this type, arising

in waste collection. They presented another constructive heuristic, along with a lower-

bounding procedure based on the solution of a transportation problem. The heuristic

was improved using local search in [158].

Additional heuristics for the MCARPIFD were later presented by Willemse et

al. [204, 205, 206]. The heuristics in [204] are extensions of known constructive heuris-

tics for the CARP. The ones in [205] are of “route-first cluster second” type, and the

ones in [206] are based on local search.

Some authors have considered the undirected version of the MCARPIFD, which

one might call the CARPIFD. Ghiani et al. [98] developed two constructive heuristics,

a local-search heuristic, and an LP-based lower-bounding scheme. Some additional

heuristics were given in [97, 181].

Finally, we mention that Ghiani et al. [98] studied the CARPIF with a single

vehicle. They proposed two lower-bounding methods, one based on cutting planes

and one based on solving an RPP instance exactly by branch-and-cut. They also

devised two heuristics. Some improved heuristics were later proposed by Ghiani et

al. [97] and Ghiani et al. [99].

Chapter 3

Vehicle Routing on Road

Networks: How Good is Euclidean

Approximation?

Vehicle Routing Problems (VRPs) are an important family of combinatorial optimi-

sation problems, and there is a huge literature on them (see, e.g. the books [14, 103,

105, 199]). In most existing VRP models, the customers and depot(s) are represented

by nodes in a complete graph, and it is assumed that the distance between each pair

of nodes is known. In practice, however, VRPs are often defined on road networks

(e.g. [84, 136, 168]). We follow [62, 137] in calling these Steiner VRPs.

If one has access to detailed road network data, it is usually possible to transform

a Steiner VRP into a standard VRP, by solving a series of shortest-path problems

(see, e.g., [62, 84]). When the road network is huge, however, the shortest path

computations themselves may consume a significant amount of time and memory.

Moreover, for a given pair of nodes, it may happen that the cheapest, shortest and

quickest paths are not the same. Thus, when a Steiner VRP involves more than

36

CHAPTER 3. VEHICLE ROUTING AND EUCLIDEAN APPROXIMATION 37

one feature (cost, distance and time, respectively), such a transformation may not be

possible. In that case, specialised approaches are needed (e.g. [26, 93, 136]).

A related issue is that some VRP heuristics are explicitly designed to work on

“planar Euclidean” instances, in which the depot and customer nodes have known

coordinates. Examples include the classical “sweep“ and “petal” heuristics [87, 102],

and variations of them (e.g., [188]).

Another related stream of literature is concerned with the difference between dis-

tances in road networks and Euclidean distances (e.g. [15, 32, 33, 43, 51, 147, 148,

180]). It is known that the distance between two random points in a road network is

typically around 30% larger than the Euclidean distance [51, 147], though this varies

from country to country [15, 32]. On the other hand, the correlation between true and

Euclidean distances is typically very high, at over 0.98, for most cities and countries

[147, 180]. This suggests that, for Steiner VRPs, Euclidean distances multiplied by

1.3 could be a reasonable surrogate for true distances.

The above considerations suggest the following three-phase heuristic approach to

Steiner VRPs: (1) Create an approximation of the given instance, by replacing true

distances with Euclidean distances multiplied by 1.3 (or some other suitable constant);

(2) Solve the approximated instance, either exactly or heuristically, and (3) attempt

to convert the solution into a feasible solution to the original instance. A natural

question is whether this heuristic scheme can lead to solutions of reasonable quality

in practice. To address this, we conduct extensive computational experiments, using

real road network data. Specifically, we construct 96 instances of the Steiner versions

of the Travelling Salesman Problem (TSP) and Capacitated VRP (CVRP), using

road network data for twelve cities across the world. For the Steiner TSP, we are able

to compare optimal solutions of the original problem with optimal solutions of the

Euclidean version. For the Steiner CVRP, we compare heuristic solutions obtained

CHAPTER 3. VEHICLE ROUTING AND EUCLIDEAN APPROXIMATION 38

using road and Euclidean distances, using the same heuristic in both cases.

The experimental results show that Euclidean approximation can work surprisingly

well in some cities. The results also enable us to give guidelines concerning the kind

of Steiner VRP for which Euclidean approximation can be expected to perform well

(or badly).

The chapter has the following structure. Section 3.1 contains a brief literature

review. Section 3.2 explains how we extracted our road network data and created our

test instances. Sections 3.3 and 3.4 present the computational experiments for the

Steiner TSP and Steiner CVRP, respectively.

3.1 Literature Review

We now briefly review the relevant literature. We cover the Steiner TSP in Subsection

3.1.1, other Steiner VRPs in Subsection 3.1.2, the planar Euclidean TSP in Subsection

3.1.3, and studies of road distances in Subsection 3.1.4.

3.1.1 The Steiner TSP

In the Steiner TSP, we are given a connected undirected graph G = (V,E), a positive

cost ce for each e ∈ E, and a set VR ⊆ V of required vertices. The task is to find a

minimum-cost closed walk that visits each required vertex at least once. Edges may

be traversed more than once if desired.

Cornuéjols et al. [62] defined the Steiner TSP and presented some polyhedral

results for it. In the same year, Fleischmann [84] proposed a cutting-plane algorithm

for the Steiner TSP and obtained encouraging results. Some additional computational

results are given in [54].

Interest in the Steiner TSP was revived by Letchford et al. [137], who explored sev-

CHAPTER 3. VEHICLE ROUTING AND EUCLIDEAN APPROXIMATION 39

eral integer programming formulations. Xia et al. [211] proposed to solve the problem

with branch decomposition and dynamic programming instead. A specialised branch-

and-cut algorithm was given in Rodŕıguez-Pereira et al. [189]. Álvarez-Miranda and

Sinnl [7] proposed instead to convert Steiner TSP instances to standard TSP instances,

and then use a state-of-the-art TSP solver like CONCORDE [9].

3.1.2 Other Steiner VRPs

Apart from the Steiner TSP, the Steiner VRPs that have received most attention are

Arc Routing Problems (ARPs). An ARP is a VRP in which demands are located

along the edges or arcs of a network, rather than at nodes. In the literature on ARPs,

it is common to model problems directly on road networks, rather than on a complete

graph (see, e.g. the books [53, 72]).

Outside the ARP literature, a key paper is Garaix et al. [93]. They pointed out

that, in a road network, the shortest and quickest paths between two vertices may

differ. This led them to propose a specialised exact algorithm for the Steiner VRP

with time windows, based on a data structure called a multi-graph. Letchford et al.

[136] proposed an alternative algorithm that works on the original road network rather

than the multi-graph. However, Ben Ticha et al. [26] showed that, in practice, the

multi-graph approach usually works better.

Another work worth mentioning, which however was never published, is Fleis-

chmann [83]. Fleischmann defined a “Steiner” version of the CVRP, in which a node

in V is designated the depot, and there is a fleet of identical vehicles, each of capacity

Q, located at the depot. He also discussed various integer programming formulations

of the problem.

Finally, we mention that Letchford et al. [137] presented integer programming

formulations of some other Steiner VRPs, in addition to the Steiner TSP.

CHAPTER 3. VEHICLE ROUTING AND EUCLIDEAN APPROXIMATION 40

3.1.3 The planar Euclidean TSP

In the planar Euclidean TSP, we are given the coordinates of some points in the plane,

and the cost of travel between any two points is equal to the Euclidean distance

between them. The goal is to find a minimum-cost tour that passes through each

point exactly once. The planar Euclidean TSP is a special case of the so-called metric

TSP, in which the costs obey the triangle inequality.

Unfortunately, the planar Euclidean TSP is strongly NP-hard [94]. On the other

hand, there is some evidence that it is a ‘relatively easy’ special case of the TSP:

• The metric TSP is APX-hard [174], but there is a polynomial-time approxima-

tion scheme for the planar Euclidean TSP [10].

• The fastest known exact algorithm for the TSP takes O
(
n22n

)
time [115], but

the planar Euclidean TSP can be solved in O
(
2
√
n
)
time [65].

• Large-scale planar Euclidean instances can often be solved to proven optimality

in a reasonable amount of time by branch-and-cut [9, 172].

3.1.4 Road distances versus Euclidean distances

Cole & King [51] defined the “deviation factor” of a road network as the average, over

all pairs of nodes, of the ratio between the road distance and the Euclidean distance.

They stated that, for most cities and countries, the deviation factor ranges from 1.2

to 1.4.

Love & Morris [147, 148] proposed some more complex functions, based on ℓp

norms, to estimate road distances from planar coordinates. Unfortunately, as pointed

out by Berens & Körling [32, 33], the Love–Morris functions involve parameters that

CHAPTER 3. VEHICLE ROUTING AND EUCLIDEAN APPROXIMATION 41

must be estimated, and the optimal parameter values can vary significantly from city

to city.

Brimberg & Love [43] presented an alternative function, based on a linear combi-

nation of ℓ1 and ℓ2 distances. Again, however, the best parameters vary from city to

city.

Phibbs & Luft [180] computed the correlation between road distances and Eu-

clidean distances for several cities, using real data. The average correlation coefficient

was remarkably high at 0.987. Interestingly, however, this reduced to 0.826 when the

data was restricted to pairs of points that are no more than 15 miles apart in terms

of Euclidean distance.

More recently, Ballou et al. [15] computed the deviation factor for several cities

and countries across the world. They found that it ranged from 1.2 to 1.6, with

mountains and rivers being the main cause of large values.

3.2 Data Collection and Instance Creation

In this section, we explain how we gathered our road network data, report some

simple statistics for our selected road networks, and explain how we created our test

instances.

3.2.1 Data collection

The first step was to select twelve cities from across the world. We selected London,

Paris, Madrid, Barcelona, Moscow, Istanbul, New York, Mexico City, Hanoi, Seoul,

Karachi and Johannesburg. Comprehensive data on the road networks of each of these

cities are available from OpenStreetMap [166]. Road junctions and key landmarks are

represented by nodes, and roads (or road segments) are represented by edges. The

CHAPTER 3. VEHICLE ROUTING AND EUCLIDEAN APPROXIMATION 42

position of each node is given by its latitude and longitude, and the length of each

road (or road segment) is given in kilometres.

We used the Python package OSMnx [37] to extract and process data from

OpenStreetMap. For each city, we selected a key landmark as a “town centre”, and

then computed the size of the smallest square, with the given centre, that contained

2500 nodes. We then stored those nodes, together with all edges that connected pairs

of the selected nodes. For a given city, we let V denote the set of 2500 nodes, E the

set of edges and G the graph.

For reasons which will become clear, for each city, we also computed a smaller

square, centred on the same point, that contained only 2000 nodes.

Table 3.1 gives the following for each of the twelve cities mentioned above: the

length (and therefore also width) of the two squares, in metres; the name of the chosen

town centre in OpenStreetMap; and the number of edges in E.

Figure 3.1 shows the maps for Paris, London and Mexico City, for the smaller

squares (with 2000 nodes). These maps are based on the so-called Universal Trans-

verse Mercator projection, which is the default projection in OSMNX. The two “holes”

in the London map are caused by Buckingham Palace and two nearby parks, which

more or less divide the given part of London into two districts. (A similar phe-

nomenon occured with Madrid.) The “holes” in the Mexico City map are caused by

sports facilities.

Now, let V ′ denote the set of 2000 nodes for each city, and note that V ′ ⊂ V . For

each pair {u, v} ⊂ V ′, we computed the Euclidean distance (in metres) between u and

v, and the length (in metres) of the shortest path in G between u and v. We denote

these quantities by δ(u, v) and ∆(u, v), respectively. To determine the ∆ values, we

used Dijkstra’s single-source shortest-path algorithm.

The reason for computing δ and ∆ values for nodes in V ′, rather than V , is as

CHAPTER 3. VEHICLE ROUTING AND EUCLIDEAN APPROXIMATION 43

City Len 1 Len 2 Centre |E|

London 1644.5 1896.3 Mayfair 5339

Paris 2135.0 2396.0 Eiffel 4932

Madrid 1845.4 2226.1 Puente de Vallecas 5093

Barcelona 1912.5 2205.0 Sant Gervasi - Galvany 4652

Moscow 3060.5 3608.5 Red Square 4929

Istanbul 1527.0 1743.7 Metrogarden Centre 7102

New York 3025.6 3301.6 Korean Town 5122

Mexico City 1637.3 1831.0 Granjas México 6146

Hanoi 1730.4 1959.5 National Cinema Center 5828

Seoul 1787.3 2095.5 The Plaza 6836

Karachi 1553.0 1814.5 Jinnahabad 7189

Jo’burg 2282.3 2670.0 Hillbrow 6037

Table 3.1: Extraction of twelve road networks with |V | = 2500

(a) Paris (b) London (c) Mexico City

Figure 3.1: Maps of smaller square regions

CHAPTER 3. VEHICLE ROUTING AND EUCLIDEAN APPROXIMATION 44

follows. In the real road network, there exist many roads that connect nodes in V \V ′

with nodes outside of V . These roads are not included in E. Thus, if we computed

shortest paths in G between nodes in V \V ′, there is a risk that the resulting ∆ values

would be over-estimates of the true road distances.

When computing the δ values, we regarded the latitude and longitude of each point

as its horizontal and vertical coordinate, respectively. This induces some distortion

in the computation of the δ values, given that the Earth is spherical. Fortunately, it

can be shown that the distortion is less than 0.1% for each of our chosen cities.

3.2.2 Road distances versus Euclidean distances

The next step was to compare road distances with Euclidean distances, for each city.

Following Cole & King [51], we computed the deviation factor (DF) for each city,

which we define as: (
|V ′|
2

)−1 ∑
{u,v}⊂V ′

∆(u, v)

δ(u, v)
.

We also performed a linear regression, comparing the ∆ values with the δ values,

again only for pairs of nodes in V ′. Table 3.2 shows, for each city, the DF, the

Pearson correlation coefficient, and the slope and constant in the regression. The

cities are sorted in increasing order of DF.

Note that, in every case, the slope in the regression is less than the DF, and the

constant term is positive. This suggests that the ratio between ∆(u, v) and δ(u, v)

tends to decrease as δ(u, v) increases. This is confirmed by the scatterplots in Figure

3.2.

Note that the scatterplot for Paris is very “smooth”, as one might expect from

the very high correlation coefficient. The scatterplots for London and Mexico City,

on the other hand, are remarkably “spread out”. This is probably due to the presence

CHAPTER 3. VEHICLE ROUTING AND EUCLIDEAN APPROXIMATION 45

City DF r Slope Constant

Paris 1.174 0.989 1.094 129.126

Barcelona 1.201 0.986 1.119 112.312

Karachi 1.201 0.986 1.125 92.129

Moscow 1.255 0.983 1.124 292.372

London 1.268 0.976 1.200 79.442

Jo’ burg 1.283 0.975 1.215 106.805

Istanbul 1.302 0.975 1.171 149.319

Madrid 1.306 0.944 1.265 37.712

New York 1.340 0.864 1.258 218.977

Hanoi 1.346 0.972 1.161 228.002

Seoul 1.358 0.954 1.189 191.468

Mexico City 1.403 0.966 1.188 272.295

Table 3.2: Euclidean distances versus true road distances for nodes in V ′.

1000 2000 3000 4000 5000

1000

2000

3000

4000

5000

6000

Euclidean distance

Tr
ue

 D
is

ta
nc

e

(a) Paris

1000 2000 3000 4000

0

1000

2000

3000

4000

5000

Euclidean distance

Tr
ue

 D
is

ta
nc

e

(b) London

1000 2000 3000 4000

1000

2000

3000

4000

5000

Euclidean distance

Tr
ue

 D
is

ta
nc

e

(c) Mexico City

Figure 3.2: Scatterplots of road distance versus Euclidean distance

CHAPTER 3. VEHICLE ROUTING AND EUCLIDEAN APPROXIMATION 46

446000 447000 448000 449000 450000

54
10

00
0

54
11

00
0

54
12

00
0

54
13

00
0

54
14

00
0

(a) Paris

487500 488000 488500 489000 489500 490000 490500

21
44

00
0

21
45

00
0

21
46

00
0

21
47

00
0

(b) Mexico

Figure 3.3: Location of 125 required nodes for two cities

of “holes”, that we mentioned above.

3.2.3 Creation of Steiner TSP instances

Next, we explain how we created our Steiner TSP instances. For each of the twelve

cities, we constructed four instances, as follows. We took the corresponding graph

G = (V,E), and set |VR| to a value in {125, 250, 500, 1000}. To do this, we simply set

VR to a random subset of V ′ with the desired cardinality. (The reason for selecting

required nodes from V ′ rather than V was to avoid over-estimation of the ∆ values

between pairs of required nodes; see Subsection 3.2.1.) The cost of each edge e ∈ E

was set to the length of the corresponding road, rounded to the nearest metre.

Figure 3.3 shows the instances for Paris and Mexico City, for the case |VR| = 125.

To aid visibility, only nodes in V ′ are displayed. The nodes in VR and V ′ \ VR are

represented by solid and hollow circles, respectively. (In the online version of the

thesis, the required nodes are in red and the others in green.)

For each city, we created an additional four instances, by setting V ′ to the 1000

closest nodes to the centre, instead of the 2000 closest nodes. The effect of this is

CHAPTER 3. VEHICLE ROUTING AND EUCLIDEAN APPROXIMATION 47

that, for those instances, the required nodes become much closer together. This led

to eight instances per city, i.e., 96 in total.

3.2.4 Creation of Steiner Capacitated VRPs

We also created 96 instances of the Steiner CVRP. To do this, we simply took each of

the Steiner TSP instances, set the demand of each required node to one, and set the

vehicle capacity Q to |VR|/5. The node closest to the centre of the square was selected

to be the depot. The objective function is to minimise the total distance travelled,

and there is no limit on the number of vehicles used. (Of course, at least five vehicles

are needed in any feasible solution.)

3.3 Experiments with the Steiner TSP

In this section, we describe our experiments with the Steiner TSP. For all experiments,

we used a computer with an i5-8250U processor, running under Windows 10 at 1.6

GHz with 16GB of RAM.

3.3.1 Solution of Steiner TSP instances

The first step was to solve the Steiner TSP instances to optimality. Recall that an

instance is given by a graph G = (V,E) with |V | = 2500, a set of required nodes VR,

and a cost vector c ∈ RE
+. To solve it, we considered two options:

1. Use the “single-commodity flow” approach [137] to formulate the instance as

an MILP with O
(
|E|
)
variables and constraints, and then feed that MILP into

CPLEX.

2. Convert the Steiner instance into a standard TSP instance with |VR| nodes, in

CHAPTER 3. VEHICLE ROUTING AND EUCLIDEAN APPROXIMATION 48

which the cost of travel between nodes u and v is ∆(u, v). Then feed that TSP

instance into CONCORDE [9].

We found that, for the instances considered, the second approach was faster.

From now on, for a given Steiner TSP instance, we let “OPT” denote the cost of

the optimal solution (which is measured in metres).

3.3.2 The heuristic

The next step was to run the heuristic for each of the instances. In more detail, we

did the following for each instance:

1. Construct a planar Euclidean TSP instance with |VR| nodes, in which the cost

of travel between nodes u and v is δ(u, v). Then feed that TSP instance into

CONCORDE.

2. Store the optimal TSP tour and let L be its cost.

3. Select an arbitrary starting node, and traverse the tour. Let vk be the kth node

visited in the tour, where k ranges from 1 to |VR|.

4. For k = 1, . . . , |VR| − 1, run Dijkstra’s algorithm to compute a shortest path in

G from vk to vk+1. Also compute a shortest path from v|VR| to v1.

5. Replace each edge of the TSP tour with the corresponding shortest path, to

obtain a heuristic solution to the original Steiner TSP instance.

6. Let U be the length of the heuristic solution, i.e., the sum of the lengths of the

|VR| shortest paths.

We now make three remarks about this procedure:

CHAPTER 3. VEHICLE ROUTING AND EUCLIDEAN APPROXIMATION 49

|V ′| |VR| OPT/L U/OPT U−/OPT U/L U−/L

1000 125 1.403 1.092 1.078 1.538 1.518

1000 250 1.403 1.156 1.114 1.630 1.568

1000 500 1.391 1.207 1.136 1.815 1.676

1000 1000 1.315 1.353 1.183 1.799 1.562

2000 125 1.394 1.064 1.058 1.484 1.476

2000 250 1.417 1.106 1.082 1.571 1.535

2000 500 1.416 1.179 1.131 1.675 1.605

2000 1000 1.388 1.275 1.165 1.780 1.621

Table 3.3: Average ratios for Steiner TSP instances.

• The shortest-path phase in step 3 takes very little time in practice, since vk

tends to be very close to vk+1 in G, and we abort the Dijkstra call as soon as

the distance label for vk+1 becomes permanent.

• Let t(e) denote the number of times that edge e is traversed in the heuristic

solution. If t(e) > 2, the solution can be improved as follows: if t(e) is even,

set t(e) to 2, otherwise, set it to 1. We let U− denote the cost of the improved

solution.

• For any given Steiner TSP instance, we have L ≤ OPT ≤ U− ≤ U .

3.3.3 Results

Table 3.3 shows, for each of combination of |V ′| and |VR|, the average value of several

ratios of interest. More details can be found in A.1.

An inspection of the ratios U/OPT and U−/OPT reveals that, on the whole,

Euclidean approximation performs reasonably well. In particular, in most cases, those

CHAPTER 3. VEHICLE ROUTING AND EUCLIDEAN APPROXIMATION 50

1.
05

1.
10

1.
15

1.
20

1.
25

1.
30

|V′|/ |VR|

U
− /O

P
T

1 2 4 8 16

Barcelona
Hanoi
Istanbul
Jo' Burg
Karachi
London
Madrid
Mexico
Moscow
New York
Paris
Seoul

Figure 3.4: Scatterplot between |V ′|/|VR| and U−/OPT.

ratios are much smaller than the corresponding DFs that we presented in Table 3.2.

On the other hand, both OPT/L and U/L tend to be larger than the corresponding

DF. A possible explanation for this is the following two facts: (a) consecutive required

nodes in an optimal Euclidean TSP solution tend to be close together and (b) as

mentioned in Subsection 3.2.2, the ratio between ∆(u, v) and δ(u, v) tends to be

higher when δ(u, v) is small.

It is also apparent that U/OPT, U−/OPT, U/L and U−/L tend to increase as

|VR| increases, but decrease as |V ′| increases. Closer examination revealed that the

quantity |V ′|/|VR| plays a key role. For example, Figure 3.4 shows a scatterplot

between U−/OPT and |V ′|/|VR| with different colors for different cities. It is apparent

that the heuristic gets better as |V ′|/|VR| increases. An explanation for this is that,

as |V ′|/|VR| increases, the average distance between consecutive required nodes in

the optimal Euclidean TSP solution increases. This in turn causes the average ratio

between ∆(u, v) and δ(u, v) to decrease.

In Figure 3.5, we show the following for the Paris instance with |VR| = 125 and

CHAPTER 3. VEHICLE ROUTING AND EUCLIDEAN APPROXIMATION 51

447000 447500 448000 448500 449000 449500

54
10

50
0

54
11

50
0

54
12

50
0

54
13

50
0

447000 447500 448000 448500 449000 449500

54
10

50
0

54
11

50
0

54
12

50
0

54
13

50
0

447000 447500 448000 448500 449000 449500

54
10

50
0

54
11

50
0

54
12

50
0

54
13

50
0

(a) Steiner TSP solution (b) Euclidean TSP solution (c) Solution from heuristic

Figure 3.5: Paris with |V ′| = 1000 and |VR| = 125

488000 488500 489000 489500 490000

21
44

50
0

21
45

00
0

21
45

50
0

21
46

00
0

21
46

50
0

488000 488500 489000 489500 490000

21
44

50
0

21
45

00
0

21
45

50
0

21
46

00
0

21
46

50
0

488000 488500 489000 489500 490000

21
44

00
0

21
45

00
0

21
46

00
0

21
47

00
0

(a) Steiner TSP solution (b) Euclidean TSP solution (c) Solution from heuristic

Figure 3.6: Mexico with |V ′| = 1000 and |VR| = 125

|V ′| = 1000: the optimal Steiner TSP solution, the optimal solution to the corre-

sponding planar Euclidean TSP instance, and the Steiner TSP solution from the

heuristic. As before, nodes in VR and V ′ \ VR are represented by solid and hollow

circles, respectively. It is clear that the heuristic solution is of excellent quality.

Figure 3.6 shows the same for the corresponding Mexico City instance. In this

case, the tour found by the heuristic is of poor quality and passes through many

nodes in V \V ′. (For this reason, in Figure 3.6(c), some nodes in V \V ′ are included.

In the online version, they are cadet blue). In Figure 3.4, the solutions found by

Euclidean approximation for Mexico City are the worst.

For completeness, we also present some results concerned with running times.

(We emphasise, however, that our goal in this chapter is to determine the loss of

CHAPTER 3. VEHICLE ROUTING AND EUCLIDEAN APPROXIMATION 52

|V ′| |VR| TS TC T ′
C T ′

S

1000 125 0.219 0.294 0.510 0.325

1000 250 0.513 1.138 1.738 0.667

1000 500 1.502 17.553 13.034 1.371

1000 1000 4.408 8005.008 910.473 2.372

2000 125 0.441 0.343 0.147 0.276

2000 250 1.014 2.456 3.010 0.509

2000 500 2.632 27.858 11.641 1.016

2000 1000 5.215 276.058 103.762 1.563

Table 3.4: Average running time (in seconds) for Steiner TSP instances.

solution quality incurred by using Euclidean approximation, rather than to argue for

the use of specific heuristics.) Table 3.4 shows the average running time, for each

combination of |V ′| and |VR|, taken for (a) computing shortest paths between all

required nodes (TS), (b) solving the TSP in CONCORDE (TC), (c) solving the Euclidean

TSP in CONCORDE (T ′
C) and (d) computing shortest (s, t)-paths between consecutive

nodes in the Euclidean TSP solution (T ′
S). More details can be found in A.1.

Note that CONCORDE tends to solve the Euclidean instances more quickly than

the non-Euclidean ones. Moreover, T ′
S tends to be less than TS. This is because

consecutive nodes in the Euclidean TSP solution tend to be close together, and we

abort each Dijkstra call as soon as the target node has been labelled permanently.

CHAPTER 3. VEHICLE ROUTING AND EUCLIDEAN APPROXIMATION 53

3.4 Experiments with the Steiner CVRP

In this section, we describe our experiments with the Steiner CVRP. We continued to

use the same computer as described in Section 3.3.

3.4.1 Heuristics

Since current exact CVRP algorithms tend to struggle when instances have more

than 200 customers [179], we used heuristics both for the Steiner CVRP and for the

Euclidean approximation. To make the comparison fair, we used exactly the same

heuristic for both variants. In particular, we used a route-first cluster-second heuristic

(see Beasley [20], Bodin [36]). In our experience, this kind of heuristic gives a good

balance between solution quality and running time, while being easy to implement.

First we explain how the heuristic works when Euclidean approximation is not

used. The first step is to solve (optimally) the Steiner TSP on the set VR, using the

same method that we used in Subsection 3.3.1. This yields a “giant tour” that passes

through all nodes in VR. The next step is to run Dijkstra’s algorithm one more time,

to compute shortest paths from the depot to each node in VR.

Now, let vk be the kth required node visited in the giant tour, where k ranges

from 1 to |VR|. For each pair 1 ≤ i < j ≤ m, we create a trip that travels from

the depot to vi via a shortest path, then travels to vi+1, . . . , vi+j, and then returns to

the depot. If the trip is feasible, we store it in memory. We then use the standard

method (see again [20]) to find the best CVRP solution that uses only trips that are

in memory. Apart from the solution of the TSP in CONCORDE, the whole approach

takes O
(
|V ||VR| log |V |

)
time. We let T be the total running time, and U denote the

resulting upper bound.

For the Euclidean approximation, we proceed as follows. We solve the planar

CHAPTER 3. VEHICLE ROUTING AND EUCLIDEAN APPROXIMATION 54

Euclidean TSP on the set VR using CONCORDE. This gives a “giant tour” on VR. We

then use the standard method to convert the giant tour into a feasible solution to

the planar Euclidean CVRP. Finally, we solve a series of (s, t)-path problems in G to

convert the CVRP solution into a Steiner CVRP solution. Apart from the solution of

the TSP in CONCORDE, the whole approach takes O
(
|V ||VR| log |V |

)
time. We let TE

denote the total running time, and UE denote the resulting upper bound.

As in the case of the Steiner TSP, we can often improve UE by checking if any of

the vehicles traverse any edges more than twice. We denote the improve bound by

U ′
E. Note that U ≤ U ′

E ≤ UE.

3.4.2 Results

Table 3.5 shows, for each of combination of |V ′| and |VR|, the average value of several

ratios of interest. More details can be found in A.2.

|V | |VR| UE/U TE/T U ′
E/U T ′

E/T

1000 125 1.088 0.554 1.080 0.566

1000 250 1.131 1.338 1.106 1.340

1000 500 1.208 2.321 1.157 2.321

1000 1000 1.314 0.588 1.206 0.588

2000 125 1.055 1.446 1.050 1.457

2000 250 1.087 1.879 1.076 1.882

2000 500 1.163 0.952 1.141 0.953

2000 1000 1.243 0.859 1.174 0.859

Table 3.5: Average results for Steiner CVRP instances.

An inspection of the ratios UE/U and U ′
E/U reveals that, on the whole, Euclidean

CHAPTER 3. VEHICLE ROUTING AND EUCLIDEAN APPROXIMATION 55

1.
0

1.
1

1.
2

1.
3

U
′ E

/U

Barcelona
Hanoi
Istanbul
Jo' Burg
Karachi
London
Madrid
Mexico
Moscow
New York
Paris
Seoul

1 2 4 8 16

Figure 3.7: A scatterplot between |V ′|/|VR| and U ′
E/U

approximation performs reasonably well. As in the case of the Steiner TSP, it seems

that the quality of approximation improves as |V ′|/|VR| increases; see also the scat-

terplot in Figure 3.7. As for running times, there is no obvious pattern.

In Figures 3.8 and 3.9, we show, for the Paris instances with |VR| = 125, the

solutions that correspond to U and UE. It is clear that, for these instances, Euclidean

approximation yields solutions that are very close to the ones obtained without it.

447000 447500 448000 448500 449000 449500

54
10

50
0

54
11

50
0

54
12

50
0

54
13

50
0

447000 447500 448000 448500 449000 449500

54
10

50
0

54
11

50
0

54
12

50
0

54
13

50
0

(a) U (b) UE

Figure 3.8: Paris with |V ′| = 1000

CHAPTER 3. VEHICLE ROUTING AND EUCLIDEAN APPROXIMATION 56

446000 447000 448000 449000 450000

54
10

00
0

54
11

00
0

54
12

00
0

54
13

00
0

54
14

00
0

446000 447000 448000 449000 450000

54
10

00
0

54
11

00
0

54
12

00
0

54
13

00
0

54
14

00
0

(a) U (b) UE

Figure 3.9: Paris with |V ′| = 2000

Figures 3.10 and 3.11 show the same for the corresponding Mexico City instances.

In this case, the solutions found by Euclidean approximation are noticeably different

to (and worse than) the ones obtained without it. It is also comfirmed by Figure 3.7.

CHAPTER 3. VEHICLE ROUTING AND EUCLIDEAN APPROXIMATION 57

488000 488500 489000 489500 490000

21
44

00
0

21
45

00
0

21
46

00
0

488000 488500 489000 489500 490000

21
44

00
0

21
45

00
0

21
46

00
0

21
47

00
0

(a) U (b) UE

Figure 3.10: Mexico with |V ′| = 1000

487000 488000 489000 490000

21
44

00
0

21
45

00
0

21
46

00
0

21
47

00
0

487000 488000 489000 490000

21
44

00
0

21
45

00
0

21
46

00
0

21
47

00
0

(a) U (b) UE

Figure 3.11: Mexico with |V ′| = 2000

Chapter 4

On Matchings, T-Joins, and Arc

Routing Problems

4.1 Introduction

Matchings are a fundamental concept in graph theory and combinatorial optimisation,

with a wide array of applications (see, e.g., [96, 129, 146]). Given an undirected graph

G = (V,E), with |V | even, a perfect matching is a set of edges that meets each vertex

exactly once. If we are also given a weight we for each e ∈ E, the minimum-weight

perfect matching problem (WPM for short) calls for a perfect matching of minimum

total weight. Edmonds [75] showed that this problem can be solved in polynomial

time, and a variety of efficient algorithms are now available (e.g., [74, 92, 129]).

A closely related concept is that of a T -join. Given a graph G as before, and a set

T ⊆ V with |T | even, a T -join is a set of edges that meets each vertex in T an odd

number of times, and each other vertex an even number of times. Given edge weights

as before, the minimum-weight T -join problem (WTJ) calls for a T -join of minimum

total weight.

58

CHAPTER 4. MATCHINGS, T-JOINS, AND ARC ROUTING 59

v1 v2

v3 v4

v6v5

v1 v2

v3 v4

v6v5

(a) Graph G with nodes in T indicated (b) Graph with minimum weight T -join

Figure 4.1: An example of the original graph

Figure 4.1 illustrates the concept of a T -join. On the left is a graph G, with nodes

in T represented by hollow circles, and weights on the edges. On the right is the same

graph, with the WTJ solution indicated with thick lines. (In the online version of the

thesis, the hollow circles and thick lines are in red.)

Edmonds and Johnson [76] showed that any WTJ instance can be transformed

into a WPM instance, and thereby solved efficiently. (For details, and alternative

algorithms, see Subsection 4.2.1.) They also pointed out that T -joins can be used to

solve a problem that they called the Chinese postman problem (CPP), in honour of

Mei-Gu Guan [113].

In the CPP, G represents a road network, and the weight of an edge represents the

time taken to traverse the corresponding road. A postman wishes to traverse every

road at least once, as quickly as possible, starting and finishing at the same node. Any

CPP instance can be reduced to a WTJ instance by setting T to the set of vertices

that are incident on an odd number of edges. The edges in the optimal T -join then

represent roads that need to be traversed twice.

The CPP is an example of an arc routing problem (ARP). An ARP is a special

CHAPTER 4. MATCHINGS, T-JOINS, AND ARC ROUTING 60

kind of vehicle routing problem, in which the demands are located along edges or arcs,

rather than at nodes (e.g., [53]). Whereas the CPP can be solved in polynomial time,

most ARPs of interest are NP-hard. Matchings have been used to compute useful

lower bounds for such ARPs (e.g., [4, 5, 28, 107, 139, 175, 186, 187, 193, 207, 209]).

In a recent project with real-life instances, we encountered large-scale ARPs, with

over ten thousand edges. For these particular ARPs, matching techniques gave ac-

ceptable lower bounds, but used an excessive amount of both time and memory. The

purpose of this chapter is to show that one can dramatically reduce the amount of

computational effort needed by matching techniques, by exploiting the structure of

real-life road networks. For ease of presentation, we focus on the CPP and another

prominent ARP, the so-called capacitated arc routing problem or CARP [107].

The chapter has a simple structure. The key literature is reviewed in Section 4.2.

Some observations concerning road networks are given in Section 4.3. In Section 4.4,

we show how to solve the CPP more quickly. In Section 4.5, we show how to compute

lower bounds for the CARP more quickly.

Throughout the chapter, all graphs are undirected, simple and loopless, unless

otherwise specified. We let n and m denote |V | and |E|, respectively. We also let

deg(i) denote the degree of node i in G. We also assume that, in any WTJ instance,

all weights are non-negative.

4.2 Literature Review

We now briefly review the relevant literature. Subsection 4.2.1 covers algorithms for

WPM and WTJ. Subsection 4.2.2 deals with the application of matchings and T -joins

to ARPs. Subsection 4.2.3 deals with planar graphs.

CHAPTER 4. MATCHINGS, T-JOINS, AND ARC ROUTING 61

4.2.1 Matchings and T-joins

For surveys of WPM algorithms, see [74, 92, 96, 129, 146]. At present, the fastest

strongly polynomial algorithm is that of Gabow [91, 92], which runs in O
(
n(m +

n log n)
)
time. Among the algorithms that are only weakly polynomial, we mention

the one of Duan et al. [74]. It assumes that all weights are integers, and it runs in

O
(
m
√
n log(nW)

)
time, where W = max

{
|we| : e ∈ E

}
.

Software for matching has lagged behind the theory to some extent. At present,

the most effective available routines for WPM are those of Mehlhorn and Schäfer [154]

and Kolmogorov [128]. They perform very well in practice, but run in O(nm log n)

and O
(
n2m

)
time, respectively.

As for WTJ, Edmonds and Johnson [76] showed that it can be reduced to WPM

as follows. First, compute shortest paths between all pairs of nodes in T . Then

construct a complete undirected “auxiliary” graph, say G+, with T as its node set.

Set the weight of each edge in G+ to the length of the corresponding shortest path

in G. Solve WPM in G+, and then replace each edge in the matching with the

corresponding shortest path in G. We call this approach “Ed-Jo”. Figure 4.2 shows

how Ed-Jo works for the WTJ instance on the left of Figure 4.1.

We remark that Dijkstra’s single-source shortest path algorithm can be imple-

mented to run in O(m + n log n) time [90], and therefore the shortest-path phase in

Ed-Jo takes O
(
|T | (m+n log n)

)
time. The matching phase takes O

(
|T |3

)
time, since

G+ is complete.

Korte & Vygen [129] 1 presented an alternative approach to WTJ, which we will

call “Ko-Vy”. Like Ed-Jo, Ko-Vy involves the solution of WPM in an auxiliary graph.

1It has recently come to our attention that this transformation appeared earlier, in 1983. See

Schrijver [195].

CHAPTER 4. MATCHINGS, T-JOINS, AND ARC ROUTING 62

v2

v3

v4

v6

v2

v3

v4

v6

(a) Auxiliary graph G+ (b) An optimal WPM solution

Figure 4.2: Ed-Jo transformation

However, the auxiliary graph is different. Consider a given node v ∈ V . If deg(v) is

odd and v ∈ T , or deg(v) is even and v /∈ T , then v is replaced with a clique on deg(v)

nodes. We call the new nodes “clones”. If v does not satisfy the stated condition, it

is replaced by a clique on deg(v) + 1 nodes. We call the additional node a “parity

correction” node. The new edges are given a weight of zero.

Figure 4.3 shows how Ko-Vy works for the WTJ instance in Figure 4.1. The

auxiliary graph is shown on the left, with parity correction nodes represented as

green diamonds. An optimal WPM solution is shown on the right.

Ko-Vy is very easy to implement, with no need for shortest-path calculations. On

the other hand, the auxiliary graph has O(m) nodes and O(nm) edges. As a re-

sult, constructing the auxiliary graph takes O(nm) time and solving the WPM takes

O
(
n2m2

)
time. More efficient reductions from WTJ to WPM, which use auxiliary

graphs with only O(m) nodes and edges, appear in [16, 34]. These reductions en-

able one to solve WTJ in only O
(
m2 log n

)
time. They are however more tricky to

implement.

At the time of writing, the fastest known WTJ algorithm is that of Gabow [92],

CHAPTER 4. MATCHINGS, T-JOINS, AND ARC ROUTING 63

v1

v4

v6

v2

v3

v5

v1

v4

v6

v2

v3

v5

(a) Auxiliary graph (b) WPM solution

Figure 4.3: Ko-Vy transformation

which runs in O
(
|T |(m + n log n)

)
time. It is based on a conversion of WTJ into a

capacitated b-matching problem. We omit details for brevity.

4.2.2 Applications to arc routing

We mentioned above that the CPP can be converted to WPM or WTJ. Authors have

also used WPM and/or WTJ to compute lower bounds for NP-hard ARPs (e.g.,

[4, 5, 139, 186, 187]). For brevity, we focus here on the CARP [107], which has

received the most attention.

In the CARP, we are given a graph G = (V,E) and a set ER ⊆ E of required edges.

Node 0 represents the depot. For each e ∈ E, we are given a positive cost ce. For each

e ∈ ER, we are given a positive demand qe. An unlimited fleet of identical vehicles,

each of capacity Q, is located at the depot. The task is to find a minimum-cost set of

trips, each starting and ending at the depot, such that each required edge is serviced

on exactly one trip, and the total demand on each trip does not exceed Q.

Many lower bounds for the CARP have been proposed which use WPM as a sub-

routine [5, 28, 107, 175, 193, 207, 209]. For brevity, we review only one in detail:

CHAPTER 4. MATCHINGS, T-JOINS, AND ARC ROUTING 64

the bound called “LB1” in [28]. To describe it, we need some more notation. We let

VR and VO denote the set of nodes in G that are incident on at least one required

edge, and on an odd number of required edges, respectively. We also let K denote⌈∑
e∈ER

qe/Q
⌉
, which is a lower bound on the number of trips. Finally, for notational

simplicity, we assume that no required edges are incident on the depot. (If this is not

the case, then we can make it so by adding a dummy node to G, along with a dummy

edge of zero cost.)

LB1 works as follows. First, compute shortest paths from the depot to each node

in VR. Let v1 be the closest node to the depot, v2 be the second closest, and so on.

Let ri be the number of required edges incident on node vi. Let s be the smallest

integer such that r1 + · · ·+ rs ≥ 2K, and let Vc denote {v1, . . . , vs}. (The subscript c

is to remind us that the nodes in Vc are “close” to the depot). Let A consist of 2K

“dummy” nodes, representing copies of the depot. Let B contain ri “clones” of vertex

vi, for i = 2, · · · , s. Let S contain all nodes in VO \ Vc, except the depot. Construct

a complete graph, say Ḡ, with node set A ∪ B ∪ S. The weight of each edge in Ḡ

is set to the cost of the shortest path between the corresponding nodes in G, with

one exception: edges between dummy nodes are given infinite weight. Finally, solve

the WPM in Ḡ. Then LB1 is the weight of the WPM solution plus the cost of the

required edges.

The above-mentioned procedure is illustrated in Figure 4.4. On the left, we see

a graph G, with required and non-required edges represented by red lines and grey

dashed lines, respectively. For each edge e ∈ E, the cost ce and demand qe are

indicated. We suppose that Q = 4 and that the depot is node v0. Note that K = 2

and s = 3 for this instance. On the right, we show the auxiliary graph Ḡ, with an

optimal WPM solution indicated by thick red lines. The weight of the matching is

37, which yields a lower bound of 37 + 18 = 55.

CHAPTER 4. MATCHINGS, T-JOINS, AND ARC ROUTING 65

v1v0

v2

v3
v4

v5 v5

v1
v3

v2

A

(a) Graph (b) WPM solution in auxiliary graph

Figure 4.4: LB1 approach

Among the other matching-based bounds for the CARP, we mention only the node

duplication lower bound (NDLB) from [193]. The procedure is very similar to the one

for LB1, but the auxiliary graph is much larger than Ḡ, with up to 2(|ER|+K) nodes.

Ahr [2] showed that NDLB is slightly stronger than LB1, though this comes at the

cost of a significantly increased running time.

4.2.3 Planar graphs

Now we recall some facts concerned with planar graphs. The first is Euler’s theorem,

which states that, in a planar graph, m ≤ 3n−6. This implies that, when G is planar,

one can solve WPM in O
(
n2 log n

)
time.

Lipton and Tarjan [144] showed that, in fact, it is possible to solve planar WPM

in only O(n3/2 log n) time. Their algorithm exploits a famous result in their earlier

paper [143], which states that, in any planar graph, there exists a set S ⊂ V such that

(a) |S| = O
(√

n
)
and (b) if S is removed from G, each connected component in the

resulting graph contains no more than 2n/3 nodes. A suitable S, called a separator,

can be found in linear time [143].

CHAPTER 4. MATCHINGS, T-JOINS, AND ARC ROUTING 66

Henzinger et al. [116] gave an algorithm for single-source shortest-paths in planar

graphs, which runs in only O(n) time. This implies that the shortest-path phase of

Ed-Jo algorithm can be conducted in only O
(
n |T |

)
time in the planar case. The

matching phase, however, still takes O
(
|T |3

)
time.

It is also worth noting that the reduction from WTJ to WPM in Barahona [16]

preserves planarity. Together with the Lipton-Tarjan result, this implies that planar

WTJ can be solved in O(n3/2 log n) time. A more direct algorithm, with the same

running time, is given in Barahona [17].

To close this section, we mention that road networks are often planar and, even

if not, they invariably contain small separators. Fast algorithms for finding small

separators in road networks, together with encouraging computational results, are

given in [66, 194].

4.3 On Road Networks

In this section, we make some observations regarding real-life road networks. Our first

observation is that road networks are not just sparse; they also have bounded degree.

Although this is obvious intuitively, we decided to compute the degree distribution

for a sample of twelve cities from across the world, using the Python package OSMnx

[37]. For each city, we considered the closest 1000 nodes to a central landmark, and

computed their degrees. The results are shown in Table 4.1.

As one might expect, the vast majority of nodes have degree 3 or 4. We expected

the maximum degree to be 5, but we see instead that it is 7. On the other hand, only

3 nodes (out of 12,000) have degree 7. We remark that the average degree ranged

from 2.71 (Hanoi) to 3.71 (New York).

The reason that this is relevant is that, in Ko-Vy, a node of degree d in G becomes

CHAPTER 4. MATCHINGS, T-JOINS, AND ARC ROUTING 67

City 1 2 3 4 5 6 7

Barcelona 38 5 527 418 12 0 0

Hanoi 208 15 635 140 2 0 0

Istanbul 34 29 700 235 2 0 0

Johannesburg 51 14 542 386 5 2 0

Karachi 33 4 733 226 4 0 0

London 111 34 649 202 4 0 0

Madrid 68 12 682 234 4 0 0

Mexico City 68 18 598 312 4 0 0

Moscow 51 51 734 183 8 1 1

New York 10 6 261 709 12 2 0

Paris 50 21 646 261 29 2 1

Seoul 86 6 786 116 5 0 1

Table 4.1: Number of nodes having a given degree for twelve cities.

a clique of size d in the auxiliary graph (or d+1 if a parity correction node is needed).

If G has bounded degree, the size of each clique in the auxiliary graph will be O(1),

and the auxiliary graph will have only O(n) nodes and edges. Not only that, but

Ko-Vy is much easier to implement than either Ed-Jo or the methods in [16, 34].

Thus, for road networks, Ko-Vy may be an attractive alternative to those methods.

We will see in the next section that this is indeed the case.

Next, we considered the issue of planarity. For each city, we computed the graph

induced by the given 1000 nodes. We then tested planarity using a package called

Python Planarity.2. We were surprised to find that none of the graphs were planar.

2https://anaconda.org/conda-forge/python-planarity

https://anaconda.org/conda-forge/python-planarity

CHAPTER 4. MATCHINGS, T-JOINS, AND ARC ROUTING 68

Closer inspection revealed that all of them could be made planar by deleting a very

small number of edges (corresponding to over- or under-passes).

Finally, we decided to test the claim made in [66, 194] that road networks tend to

have small separators. We found that, indeed, all twelve graphs contained separators

of size O
(√

n
)
. Moreover, such separators can be found easily. One way is as follows.

Let G = (V,E) be the graph in question, and let G− be a planar subgraph obtained

by deleting some edges corresponding to over- or under-passes. Compute a separator

S ⊂ V in G− using the linear-time algorithm in [143]. By definition, removing S

from V causes G− to become disconnected. Let F be the set of edges in E that have

end-nodes in different connected components. If F = ∅, we are done. Otherwise, use

a greedy algorithm to construct a minimal set of nodes T ⊂ V \ S that covers the

edges in F . By definition, S ∪ T is a separator in G.

We conjecture that the planar WTJ algorithm of Barahona [17] could be mod-

ified, using the small separators mentioned, to solve the CPP in road networks in

O(n3/2 log n) time.

4.4 The Chinese Postman Problem in Road Net-

works

Armed with the facts mentioned in the previous section, we can now analyse the

theoretical running times of various approaches to the CPP in road networks:

1. Ed-Jo. The number of shortest-path calls is |VO|, and each call takes O(n log n)

time. So the shortest-path phase takes O
(
|VO|n log n

)
time. The auxiliary

graph is complete and has |VO| nodes, so the matching phase takes O
(
|VO|3

)
time.

CHAPTER 4. MATCHINGS, T-JOINS, AND ARC ROUTING 69

2. Ko-Vy. Given that road networks have bounded degree, Korte and Vygen’s

auxiliary graph takes only O(n) time to construct. Moreover, the auxiliary

graph contains only O(n) nodes and edges. As a result, the matching phase

takes O
(
n2 log n

)
time.

3. The approaches in [16, 34]. These also yield auxiliary graphs with O(n) nodes

and edges. Thus, they take the same time (asymptotically) as Ko-Vy.

The above analysis suggests that Ko-Vy should be faster than Ed-Jo when applied

to large-scale CPP instances on road networks. To test this, we created 18 CPP

instances, with cities selected from Paris, London and Moscow, and with n selected

from 1000, 2000, 5000, 10000, 20000 and 50000. The nodes were selected as in the

previous subsection, and all edges having both end-nodes in the given set of nodes

were put into the graph. Note that none of the resulting 18 graphs were planar. The

cost of each edge was set to the length of the corresponding road, rounded to the

nearest meter. The data for each instance, along with the optimal solution values, is

made available at the Lancaster University Data Repository3.

We remark that some of the graphs contained loops (edges that connect a node

with itself). Most of these loops represented small areas, near entrances of hotels,

where taxis can change direction. We removed them, for simplicity of implementation.

For Ed-Jo, we implemented our own version of Dijkstra’s single-source shortest

path algorithm. We used a binary heap, since it is much easier to code than a

Fibonacci heap, yet its running time isO(n log n) for sparse graphs. To solve the WPM

instances, we used the open-source software package Blossom V [128]. Although it

runs in O
(
n2m

)
time in theory, it performs extremely well in practice, as we will see

below. For all experiments, we used a Lenovo ThinkPad laptop with an i5-8250U

3http://www.research.lancs.ac.uk/portal/en/datasets/search.html

http://www.research.lancs.ac.uk/portal/en/datasets/search.html

CHAPTER 4. MATCHINGS, T-JOINS, AND ARC ROUTING 70

processor, running under Windows 10 at 1.6 GHz with 16GB of RAM.

Table 4.2 shows the results obtained when transforming each of the 18 CPP in-

stances into WPM instances. For each instance, we show the name of the city, the

number of nodes (n) and the number of edges (m). Then, for each approach, we show

the number of nodes (ñ) and edges (m̃) in the resulting auxiliary graph. It is clear

that Ed-Jo leads to auxiliary graphs with far fewer nodes than Ko-Vy. On the other

hand, the number of edges is drastically bigger.

Table 4.3 shows, for each instance and each approach, the time taken to construct

the auxiliary graph (T1) and the time taken to solve the WPM instance (T2). All

times are reported in seconds. A dash indicates that Blossom V had to be aborted

due to memory limitations.

It is clear that the traditional approach, Ed-Jo, is to slow to be used for large-scale

instances. In particular, the shortest-path phase is time-consuming. In principle, one

could obtain a speed-up by computing the shortest paths in parallel. Nevertheless, the

matching phase of Ed-Jo is itself rather slow. Moreover, we found that the matching

phase consumed a great deal of memory for these instances.

We were surprised to find that the other approach, Ko-Vy, is orders of magnitude

faster. Indeed, it takes less than one second for every instance. This is no doubt due

to the fact that road networks have bounded degree.

For interest, we also implemented a third reduction from WTJ to WPM, due to

Barahona [16]. The resulting auxiliary graphs were a bit larger than the ones that

we obtained with Ko-Vy. As a result, the WPM phase took about twice as long to

solve. We omit details for brevity. The main conclusion from this section is that, for

large-scale CPP instances on road networks, Ko-Vy is preferable to Ed-Jo.

CHAPTER 4. MATCHINGS, T-JOINS, AND ARC ROUTING 71

Original Graph Ed-Jo Ko-Vy

City n m ñ m̃ ñ m̃

L
on

d
on

1000 2016 432 93096 4032 9294

2000 4209 812 329266 8418 20052

5000 11197 1658 1373653 22394 56941

10000 22833 2712 3676116 45666 118800

20000 46948 4214 8876791 93896 251351

50000 118345 7584 28754736 236690 642368

M
os
co
w

1000 1872 564 158766 3744 7746

2000 3848 1084 586986 7696 16334

5000 10136 2606 3394315 20272 45925

10000 20773 4948 12238878 41546 96736

20000 42410 8900 39600550 84820 203976

50000 115464 12180 74170110 230928 616878

P
ar
is

1000 1992 576 165600 3984 8878

2000 3951 1140 649230 7902 17412

5000 9780 2878 4140003 19560 42291

10000 19707 5638 15890703 39414 85957

20000 40499 10096 50959560 80998 182386

50000 105791 21352 227943276 211582 503268

Table 4.2: Effect of transformations on graph size.

CHAPTER 4. MATCHINGS, T-JOINS, AND ARC ROUTING 72

Ed-Jo Ko-Vy

City n T1 T2 T1 T2

L
on

d
on

1000 0.266 0.040 0.005 0.007

2000 1.237 0.267 0.004 0.010

5000 7.217 1.645 0.018 0.026

10000 24.316 10.162 0.065 0.056

20000 89.500 13.877 0.178 0.101

50000 466.152 55.507 0.456 0.216

M
os
co
w

1000 0.337 0.137 0.007 0.004

2000 1.652 0.564 0.005 0.015

5000 11.325 3.886 0.023 0.023

10000 48.196 16.587 0.030 0.056

20000 210.821 68.541 0.237 0.106

50000 788.479 142.496 0.463 0.197

P
ar
is

1000 0.348 0.180 0.005 0.005

2000 2.061 0.712 0.004 0.013

5000 11.895 7.463 0.009 0.038

10000 54.263 38.424 0.098 0.105

20000 252.912 137.879 0.209 0.160

50000 1520.404 — 0.566 0.752

Table 4.3: Computing times for two approaches to the CPP.

CHAPTER 4. MATCHINGS, T-JOINS, AND ARC ROUTING 73

4.5 The Capacitated Arc Routing Problem in Road

Networks

We now move on to consider the CARP. We start by analysing the time taken to

compute LB1 in the case of road networks. The procedure begins by solving |VO|

shortest-path problems in G. Since G is sparse, this takes O
(
|VO|n log n

)
time. The

next step is to construct the auxiliary graph, which we will call G̃. Note that G̃ has

O(|VO|+K) nodes, and therefore solving the WPM takes O
(
|VO|3 +K3

)
time. This

is O
(
n3
)
in the worst case.

We now present a procedure that yields lower bounds of comparable quality to

those of LB1, but which exploits the properties of road networks. The procedure

incorporates concepts from both LB1 and Ko-Vy.

The first steps in our algorithm are identical to that of LB1. That is, we compute

K (the lower bound on the number of vehicles), the shortest paths in G from the

depot to each node in VR, the values r1, . . . , rs, and s (the smallest integer such that

r1 + · · ·+ rs ≥ 2K). We then let Vc denote {v1, . . . , vs}.

The next step is different. We take G and apply the Korte-Vygen procedure with

T set to VO, the set of nodes that are incident on an odd number of required edges.

The resulting graph will be called G+. Figure 4.5 shows the graph G+ for the CARP

instance on the left of Figure 4.4. We remind the reader that K = 2 and s = 3 for

this example.

As before, we call the copies of the original nodes “clones”, and any additional

nodes “parity correction” nodes. If a clone is incident on a required edge, it will be

called an “R-clone”. Note that, if a node in G is incident on t required edges, then

t of its clones will be R-clones. In particular, there are ri R-clones of node vi. Note

CHAPTER 4. MATCHINGS, T-JOINS, AND ARC ROUTING 74

g(v0)

g(v2)

g(v5)

g(v3)

g(v4)

g(v1)

Figure 4.5: Graph G+ for the CARP instance in Figure 4.4.

also that, since G has bounded degree, G+ has only O(n) nodes and edges.

For a given node v ∈ V , we will call the corresponding set of nodes in G+ a

“gadget”, and denote it by g(v). In Figure 4.5, each gadget is enclosed in a circle. We

also let g′(v) denote the corresponding set of nodes in G̃, the auxiliary graph that is

used for LB1 (see Subsection 4.2.2). Note that |g(v)| ≥ deg(v) ≥ degR(v) ≥ |g′(v)| for

every v ∈ V . Moreover, |g(v)| − |g′(v)| is always even. (Indeed, degR(v) and deg(v)

have the same parity if and only if there is no parity correction node in g(v)).

We now create an even bigger graph, called G++. We begin by taking G+ and

adding 2K extra “dummy” nodes, representing copies of the depot. We will call the

dummy nodes D1, D2, · · · , D2K . We then add several sets of edges:

• We connect D1 to the first R-clone of v1, D2 to the second R-clone of v1, and so

on. In this way, we connect each dummy node to its own R-clone. The weight

of each additional edge is the length of the shortest path from the depot to the

corresponding member of Vc.

• For each i ∈ VO \ Vc, we pick one R-clone as a “representative” of i. We then

CHAPTER 4. MATCHINGS, T-JOINS, AND ARC ROUTING 75

g(v0)

g(v2) g(v5)

g(v3)

g(v4)

g(v1)

D1

D2

D3

D4

Figure 4.6: Graph G++ for the same CARP instance

add an edge between each dummy node and each representative. The weight of

each edge is the length of the shortest path from the depot to the given node i.

• Now let p =
∑s

i=1 ri − 2K. If p > 0, we have p R-clones of vs that are not

connected to any dummy nodes. We pick one of those as a “representative”,

and connect each dummy node to it. The weight of each additional edge is the

length of the shortest path from the depot to vs.

Figure 4.6 shows the graph G++ for the same CARP instance as before. Since

K = 2, there are 4 dummy nodes. We have s = 3 and Vc = {v1, v2, v3}. Thus, two

dummy nodes are connected to R-clones of v1, one is connected to the R-clone of v2,

and the other is connected to an R-clone of v3. We also have VO \Vc = {v5}. Thus, all

dummy nodes are connected to a representative of v5. Finally, we have p = 5− 4 = 1.

Since p is positive and s = 3, all dummy nodes are connected to a representative of v3

(namely, the unique R-clone of v3 that was not already connected to a dummy node).

Note that, when G is sparse and has bounded degree, G++ has only O(n) nodes

and O
(
n+K|VO|

)
edges. We will show that the solution to the WPM in G++ yields

a valid lower bound for the CARP. We will need the following lemma.

CHAPTER 4. MATCHINGS, T-JOINS, AND ARC ROUTING 76

Lemma 4.1. Let p′ = 2K −
∑s−1

i=1 ri, and note that 1 ≤ p′ ≤ rs. In G̃, there exists a

minimum-weight perfect matching in which no more than p′ dummy nodes are matched

with R-clones of vs.

Proof. Let M be a perfect matching in G̃ that matches k dummy nodes with R-clones

of vs, where k > p′. We will show that we can construct a perfect matching M ′, of no

larger cost, such that at most k − 1 dummy nodes are matched with R-clones of vs.

Let j1 and j2 be two R-clones of vs that are currently matched with dummy nodes.

We assume w.l.o.g. that those dummy nodes are D1 and D2. Also let I denote the set

of R-clones of nodes in Vc \ {vs} that are currently not matched with dummy nodes,

and note that |I| ≥ k − p′ ≥ 1. We consider two cases:

Case 1: if |I| ≥ 2 and there exist two R-clones in I, say i1, i2, that were matched in

M . We obtain a matching of no larger cost by deleting the edges {D1, j1}, {D2, j2}

and {i1, i2}, and adding the edges {j1, j2}, {D1, i1} and {D2, i2} (see Figure 4.7). To

see why, note that the nodes in Vc represented by i1 and i2 are no further from the

depot than vs.

Case 2: if |I| ≥ 2 and no pair of R-clones in I were matched in M or if |I| = 1. In this

case, the R-clones in I must be matched with R-clones of nodes in (VO \ Vc)∪ vs. Let

i1 be an R-clone in I, and i2 be an R-clone of a node in (VO \Vc)∪vs, such that i1 and

i2 are matched in M . As before, we obtain a matching of no larger cost by deleting

the edges {D1, j1}, {D2, j2} and {i1, i2} and adding the edges {j1, j2}, {D1, i1} and

{D2, i2}. To see why, note that the cost of the shortest path from the depot to the

node represented by i2 is no larger than the cost of any path that passes through the

node represented by i1.

Theorem 4.1. A valid lower bound for the CARP is obtained by solving WPM in

G++, and then adding the cost of the required edges.

CHAPTER 4. MATCHINGS, T-JOINS, AND ARC ROUTING 77

D1 D2

j1
j2i1

i2

j1
j2

i2

i1

D1
D2

g(vs) g(vs)
g(v) g(v)

Figure 4.7: A matching M (left) and a matching M ′ (right)

Proof. Recall that |g(v)| − |g′(v)| ≥ 0 and even for every v ∈ V . Let M be a perfect

matching in G̃. We construct a perfect matching M ′ in G++, as follows:

• We first match the dummy nodes. If k R-clones of a given node v are matched

with dummy nodes in G̃, we match k corresponding R-clones of v with dummy

nodes in G++. We can apply this procedure until all dummy nodes are matched

since, by Lemma 4.1, there are no more than 2K −
∑s−1

i=1 ri R-clones of vs

matched with dummy nodes in G̃.

• We then take the other edges in M , if any, and construct the corresponding

edges in M ′. Initially, let multiset P = ∅. For each matched edge {i, j} in G̃,

we add edges in the shortest path between the corresponding nodes in G to P .

For each edge {i, j} ∈ P whose multiplicity is odd, we match in G++ the pair of

clones of the endpoints in the corresponding edge. We can repeat this until all

edges in P are considered since, for any node v ∈ V , the gadget g(v) contains

at least deg(v) clones.

• Finally, we check to see if there are any unmatched nodes in G++. Consider a

node v ∈ V . By construction, the number of unmatched copies of v in G++, if

any, must be even. Thus, if such copies of v exist, we can match pairs of them

using edges in G++ of zero cost.

CHAPTER 4. MATCHINGS, T-JOINS, AND ARC ROUTING 78

g(v0)

g(v2) g(v5)

g(v3)

g(v4)

g(v1)

D1

D2

D3

D4

Figure 4.8: Graph G++ and an optimal matching

By construction, the cost of M ′ is at most that of M .

Figure 4.8 illustrates Theorem 4.1 for our CARP example. The graph G++ is

shown once more, but with an optimal WPM solution indicated by thick red lines.

The weight of the matching is 37, so the resulting lower bound is 37 + 18 = 55. We

remark that LB1 has the same value for this example.

To test the new bounding procedure, we converted each of our 18 CPP instances

into CARP instances, as follows. The depot is located near the center. Edges incident

on the depot were made non-required. Each other edge was made required with

probability 1/2. The demand of each required edge was set to a random integer

between 1 and 10. To make the fleet size (K) realistic, we set the vehicle capacity

(Q) in such a way that K is |ER|/500, rounded up to the nearest integer. The cost

of traversing each edge is set to be the length of the corresponding road, in metres,

rounded up to the nearest integer. The data for each instance is made at the Lancaster

University Data Repository as well.

As before, we used Blossom V to solve the matching problems. For the largest

instances, with 50, 000 nodes, our PC ran into memory difficulties. Accordingly, we

CHAPTER 4. MATCHINGS, T-JOINS, AND ARC ROUTING 79

used a workstation with Intel Xeon E5-2640 v3 processor at 2.6 Ghz and 32 GB of

RAM for those instances.

Table 4.4 gives information concerning the size of the auxiliary graphs. It is clear

that our transformation leads to auxiliary graphs with more nodes, but the number

of edges is dramatically smaller.

Table 4.5 shows, for each instance and each approach, the time taken to construct

the auxiliary graph (T1), the time taken to solve the WPM instance (T2), and the

resulting lower bound. One can see that, for these instances, our procedure is much

faster than the one in [28]. Moreover, our lower bound matches LB1 in 16 out of 18

cases, and is only slightly weaker in the remaining two cases.

For interest, we also implemented NDLB from [193]. The resulting auxiliary graphs

were much larger than the ones from either LB1 or our procedure, and they took much

longer to compute. The lower bounds were slightly better than LB1, by around 5%

on average, but the WPM phase took around ten times longer than it did for LB1.

We also experienced even more problems with memory. We omit details for brevity.

We close this section with a remark. In our approach, we use 2K dummy nodes.

It would be much more efficient to use just one dummy node, and require it to have

degree 2K. One would then have to solve a minimum-weight f -factor problem in

G++, instead of a WPM. Unfortunately, at the time of writing, no efficient open-

source f -factor code was available.

CHAPTER 4. MATCHINGS, T-JOINS, AND ARC ROUTING 80

Original Graph LB1 Our LB

City n |ER| K Q ñ m̃ ñ m̃
L
o
n
d
on

1000 1024 3 2708 498 123753 4524 14157

2000 2141 5 2777 1044 544446 9462 34670

5000 5594 12 2757 2522 3178981 24906 127586

10000 11461 23 2760 5150 13258675 50728 374675

20000 23327 47 2747 10186 51872205 104058 1240173

50000 59276 119 2757 25628 328384378 262116 6758031

M
os
co
w

1000 986 2 2717 506 127765 4244 11587

2000 1870 4 2762 1046 546535 8694 28440

5000 5133 11 2738 2534 3209311 22790 110935

10000 10518 22 2742 5080 12900660 46520 337427

20000 21220 43 2758 10052 50516326 94958 1098936

50000 57601 116 2747 25382 322110271 256068 6528654

P
ar
is

1000 959 2 2735 500 124750 4490 12806

2000 1940 4 2760 1010 509545 8876 29212

5000 4908 10 2754 2552 3255076 22016 102164

10000 9884 20 2760 5108 13043278 44530 307497

20000 20015 41 2758 10144 51445296 91138 1043119

50000 52712 106 2746 25350 321298575 236874 5905450

Table 4.4: Effect of transformation on graph size.

CHAPTER 4. MATCHINGS, T-JOINS, AND ARC ROUTING 81

LB1 Our LB

City n T1 T2 Result T1 T2 Result
L
o
n
d
on

1000 0.19 0.085 19802 0.015 0.007 19802

2000 0.895 0.549 41883 0.023 0.021 41753

5000 6.866 3.787 109887 0.05 0.11 109887

10000 39.557 28.556 241669 0.182 0.762 241669

20000 196.482 190.093 507085 0.486 5.231 507085

50000 930.762 — — 3.46 293.399 1479122

M
os
co
w

1000 0.268 0.085 37010 0.016 0.005 37010

2000 1.819 0.542 73604 0.037 0.016 73604

5000 13.106 3.987 224397 0.077 0.1 224397

10000 50.759 30.401 546161 0.145 0.856 546161

20000 207.967 163.09 1254144 0.552 6.312 1254144

50000 800.54 — — 5.684 72.698 3929460

P
ar
is

1000 0.194 0.073 23259 0.016 0.005 23259

2000 1.011 0.49 48370 0.024 0.022 48370

5000 7.318 4.916 118381 0.068 0.123 118381

10000 32.711 21.152 250189 0.167 0.69 250189

20000 145.326 201.194 539548 0.447 3.415 538600

50000 771.473 — — 2.928 87.328 1523393

Table 4.5: Computing times and bounds for two approaches to the CARP.

Chapter 5

Improving a Constructive Heuristic

for the General Routing Problem

5.1 Introduction

The General Routing Problem (GRP) is an NP-hard vehicle routing problem, first

defined by Orloff in 1974 [168]. We are given an undirected graph G = (V,E), a cost

ce ∈ Q+ for each edge e ∈ E, a set VR ⊆ V of required nodes and a set ER ⊆ E of

required edges. The task is to find a minimum-cost closed walk in G that visits each

required vertex at least once and traverses each required edge at least once.

The GRP contains several other vehicle routing problems as special cases:

• When VR = ∅, we have the Rural Postman Problem or RPP [168].

• When VR = ∅ and ER = E, we have the Chinese Postman Problem or CPP

[76, 113].

• When ER = ∅, we have the Steiner Travelling Salesman Problem or STSP [62].

• When ER = ∅ and VR = V , we have the Graphical Travelling Salesman Problem

82

CHAPTER 5. IMPROVING A HEURISTIC FOR THE GRP 83

or GTSP [62].

The RPP is NP-hard in the strong sense [133], and so is the GTSP [62]. This implies

that the STSP and GRP are also NP-hard in the strong sense. The CPP, on the

other hand, can be solved in polynomial time [76].

The GRP is particularly suitable for modelling vehicle routing problems that in-

volve road networks [84, 137, 168]. The edges in E represent roads or road segments,

the nodes in VR represent customers, the nodes in V \ VR represent road junctions,

and the edges in ER represent (usually urban) streets that require service.

Several methods have been proposed for the GRP and its special cases, including

both exact methods (e.g., [7, 48, 54, 58, 61, 81, 84, 101, 137, 160, 189, 211]) and

heuristic methods (e.g., [27, 48, 82, 89, 100, 112, 117, 122, 123, 124, 178]). Here, we

are interested in a constructive heuristic that is obtained by adapting the well-known

Christofides heuristic for the TSP [47] to the GRP. This heuristic has a rather com-

plicated history, and it is difficult to attribute it to any single author (see Subsections

5.2.3 and 5.2.4). For brevity, we call it the “C-heuristic”.

The goal of this chapter is to show how to speed up the C-heuristic, in both theory

and practice, without incurring any loss in solution quality. (In fact, the solutions

obtained by our version of the C-heuristic are guaranteed to be at least as good

as those obtained by the original version.) After that, we present some extensive

computational results, on instances created using real road network data. It turns

out that, for large instances, our version of the C-heuristic is faster than the original

by several orders of magnitude.

The chapter has a simple structure. Section 5.2 contains a brief literature review.

Section 5.3 presents the new heuristic, and Section 5.4 presents the computational

results.

Throughout the chapter, we assume without loss of generality that end-nodes

CHAPTER 5. IMPROVING A HEURISTIC FOR THE GRP 84

of required edges do not belong to VR. We let V +
R denote the union of VR and

the set of end-nodes of required edges. Note that VR ⊆ V +
R ⊆ V . We sometimes

refer to the subgraph GR =
(
V +
R , ER

)
. The connected components of GR will be

called “R-components”. Finally, traversing an edge without servicing it will be called

“deadheading”.

5.2 Literature Review

We now briefly review the relevant literature. For purposes of exposition, we cover

the CPP, the RPP and the GRP in that order.

5.2.1 The CPP

To tackle the CPP, one needs to be familiar with matchings and T -joins. Given a

graph G = (V,E) with |V | even, a perfect matching is a set of edges that touches each

vertex exactly once. In the minimum-weight perfect matching problem (WPM), one

is also given a weight ce ∈ Q for each edge e ∈ E, and one seeks a perfect matching of

minimum total weight. Edmonds [75] showed that WPM can be solved in polynomial

time. An O(|V |3) time algorithm was given in [132]. More recently, Gabow [92]

presented an O(|V ||E|+ |V |2 log |V |) time algorithm.

Given a graph G = (V,E) and a set T ⊆ V with |T | even, a T -join is a set of

edges that meets each vertex in T an odd number of times, and each other vertex

an even number of times. In the minimum-weight T -join problem (WTJ), one is also

given a weight ce ∈ Q for each edge e ∈ E, and one seeks a T -join of minimum total

weight. Edmonds and Johnson [76] showed that one can reduce WTJ to WPM as

follows. Create a complete graph in which the vertex set is T , and the weight of an

edge {u, v} ⊂ T is the cost of the shortest path from u to v in G. Solve the WPM

CHAPTER 5. IMPROVING A HEURISTIC FOR THE GRP 85

in the complete graph, and replace each edge in the matching with the corresponding

shortest path in G. This T -join algorithm takes O
(
|V |3

)
time. A faster algorithm,

which runs in O
(
|T |(|E|+ |V | log |V |)

)
time, was recently found by Gabow [92].

Korte and Vygen [129] gave an alternative reduction from the WTJ to the WPM.

The resulting WPM instance is rather large, with O(|E|) nodes and O(|V ||E|) edges.

If the vertex degrees in G are bounded by a constant, however, the WPM instance

has only O(|V |) nodes and edges.

Edmonds and Johnson [76] observed that an optimal CPP solution can be con-

structed by setting T to the set of nodes incident on an odd number of edges, and

then finding a minimum-cost T -join in G. (The edges in the T -join are the ones that

need to be traversed twice in the CPP solution.)

Finally, Boyacı et al. [41] pointed out that the Korte-Vygen approach is well-suited

to CPP instances on road networks, since road networks have bounded degree. Using

the Korte-Vygen approach in conjunction with an open-source matching routine, they

were able to solve CPP instances with 50,000 nodes in less than a second on a laptop.

5.2.2 Exact algorithms for the RPP

Christofides et al. [48] gave an exact algorithm for the RPP based on Lagrangian

relaxation. It could solve instances with up to 180 edges. Corberán and Sanchis [61]

presented a cutting-plane algorithm, which could solve instances of around the same

size. Ghiani and Laporte [101] presented a full branch-and-cut algorithm, which could

solve instances with up to around 600 edges. A different branch-and-cut algorithm

was given by Fernández et al. [81].

The above-mentioned algorithms all begin by transforming the RPP instance into

an equivalent RPP instance with V = V +
R . For what follows, we explain this trans-

formation. We take the subgraph GR =
(
V +
R , ER

)
. For all pairs {i, j} ⊂ V +

R , we add

CHAPTER 5. IMPROVING A HEURISTIC FOR THE GRP 86

a non-required edge, whose cost is that of the shortest path from i to j in G. We

then simplify the resulting graph by deleting all non-required edges (i, j) such that

cij = cik + cjk for some k ∈ V +
R \ {i, j}. We also delete a non-required edge if there is

a parallel required edge with the same cost. We remark that this transformation can

increase the number of non-required edges in the RPP instance. In practice, however,

it usually decreases it.

Jünger et al. [125] show that one can easily transform any RPP instance into

a standard TSP instance, as follows. Construct a complete undirected “auxiliary”

graph, say G+, with 2|ER| nodes. Each required edge in G is replaced by a clique

of size two in G+. The cost of an edge in G+ is set to the cost of the corresponding

shortest path in G, with the following exception: the cost of an edge whose end-nodes

are in the same clique is set to be the cost of the corresponding required edge in G,

minus a large positive numberM . Then, a TSP solution in G+ can be easily converted

into an optimal RPP solution. Using this method, in conjunction with their own TSP

solver, Jünger et al. were able to solve RPP instances with up to 300 edges.

5.2.3 Heuristics for the RPP

There are also many papers on heuristics for the RPP. Frederickson [89] stated that

the famous “spanning tree + matching” heuristic for the TSP, due to Christofides

[47], could be modified to give a 3/2-approximation algorithm for the RPP. He did

not however give any details. A detailed “spanning tree + matching” heuristic for the

RPP was given in Christofides et al. [48], and it was proven to be a 3/2-approximation

algorithm by Benavent et al. [27].

For what follows, we describe the heuristic in [48] in detail. The first step is

to transform the RPP instance into an equivalent RPP instance with V = V +
R , as

described above. We let G′ denote the transformed graph. The next step is to

CHAPTER 5. IMPROVING A HEURISTIC FOR THE GRP 87

construct a “shrunk graph” as follows. We take a copy of G′, shrink each R-component

down to a single node, and delete any loops. Then, for each set of parallel edges (if

any), we delete all apart from the one with the smallest cost. We then compute a

Minimum-Weight Spanning Tree (MST) in the shrunk graph. Let F denote the set

of edges in the tree. By construction, ER∪F induces a connected spanning subgraph

of G′. Finally, we set T equal to the set of nodes in V +
R that are incident on an odd

number of edges in ER ∪ F , and solve the WTJ in G′. The desired RPP solution is

obtained by deadheading the edges in the T -join and the edges in ER ∪ F .

Modified versions of the above heuristic can be found in [122, 178]. Other heuristics

for the RPP can be found in, e.g., [82, 100, 112, 117, 178]. For the sake of brevity, we

do not go into details.

5.2.4 The GRP

The GRP has received much less attention than the RPP. We are aware of only two

papers on exact algorithms. Corberán et al. [54] gave a cutting-plane algorithm, which

solved instances with up to 300 edges. Later on, Corberán et al. [58] presented a very

effective branch-and-cut algorithm, which can solve instances with up to 3000 edges.

There are also very few papers on heuristics for the GRP. Heuristics based on local

search algorithms are given in [160, 169]. Jansen [124] extended the RPP heuristic in

[48] to a variant of the GRP, in which nodes in VR must be visited exactly once rather

than at least once.

Finally, for completeness, we mention that there are several papers on exact algo-

rithms for the STSP (e.g., [7, 84, 137, 189, 211]), plus a paper on a heuristic [123].

The algorithm in [7] is capable of solving instances with over 2000 required nodes.

CHAPTER 5. IMPROVING A HEURISTIC FOR THE GRP 88

5.3 Improving the Heuristic

Observe that the constructive heuristic of Christofides et al. [48], mentioned in Sub-

section 5.2.3, can be easily extended from the RPP to the GRP. The only alterations

are that (i) each node in VR needs to be treated as a (trivial) R-component in itself,

and (ii) those R-components do not need to be “shrunk”. (Recall that we are using

the convention that end-points of required edges do not lie in VR.) We will call the

resulting heuristic for the GRP the “C-heuristic”.

The purpose of this section is to show that the C-heuristic can be significantly

improved. In Subsection 5.3.1, we point out two drawbacks of the original C-heuristic.

The improved C-heuristic is described in Subsection 5.3.2 and analysed in Subsection

5.3.3.

5.3.1 Drawbacks of the C-heuristic

In our preliminary experiments with the C-heuristic, we soon noticed two significant

drawbacks. The first is that the heuristic can take a very long time when applied

to large-scale GRP instances. The second is that the heuristic can yield solutions

that are “obviously bad”, in the sense that they can be easily improved by visual

inspection.

To understand the first drawback better, let us analyse the running time of the

C-heuristic. The first step is to compute shortest paths in G between all pairs of nodes

in V +
R . This can be done by calling Dijkstra’s single-source shortest-path algorithm

O(V) times. If we use the Fibonacci heap version of Dijkstra’s algorithm [90], each

Dijkstra call takes O(|E| + |V | log |V |) time. Thus, the shortest-path phase takes

O
(
|V | (|E|+ |V | log |V |)

)
time.

The next step is to construct the graph G′. The most time-consuming part of

CHAPTER 5. IMPROVING A HEURISTIC FOR THE GRP 89

that is the deletion of non-required edges (i, j) such that cij = cik + cjk for some

k ∈ V +
R \ {i, j}. This takes O

(
|V |3

)
time. Compared to that, the time taken to

compute the MST in G′ is negligible. As for the WTJ phase, it takes O
(
|V |3

)
time

using the Edmonds-Johnson approach. Thus, the C-heuristic as a whole takes O
(
|V |3

)
time. This is rather slow when one is dealing with large-scale GRP instances.

The other drawback of the C-heuristic is best illustrated through a couple of

examples. First consider the STSP instance in Figure 5.1(a). Required and non-

required nodes are represented by big and small circles, respectively. (In the online

version of the chapter, the big circles are red.) The costs are also indicated on the

edges. Figure 5.1(b) shows the transformed instance, defined on the graph G′. Note

that, for this instance, G′ is equal to the shrunk graph. Figure 5.1(c) shows the shrunk

graph, with the edges in F indicated by thick black lines. One can check that the

edges {1, 5} and {2, 4} form an optimal T -join. Figure 5.1(d) shows the resulting

STSP solution in G′, and Figure 5.1(e) shows the corresponding STSP solution in G.

This solution is obviously sub-optimal, since the edge {1, 3} is traversed four times.

Now consider the GRP instance in Figure 5.2(a). In this instance, there is only one

required edge, represented by a thick red line. Figure 5.2(b) shows the transformed

instance, defined on G′. Figure 5.2(c) shows the shrunk graph, with an optimal

spanning tree represented as thick lines. Figure 5.2(d) shows the graph G′ with the

edges in the tree as thick lines. One can check that the edges {3, 6} and {6, 8} form

an optimal T -join. Figure 5.2(e) shows the GRP solution in G′, and Figure 5.2(f)

shows the corresponding GRP solution in G. This solution is obviously sub-optimal,

since we can make a saving by deadheading the edge {2, 3} instead of the edges {2, 5},

{5, 6} and {3, 6}.

CHAPTER 5. IMPROVING A HEURISTIC FOR THE GRP 90

1

2
3

4

5

2 2

2

1

1

2 4

5

3 33

4 4

4

(a) Original STSP instance (b) Transformed instance

1

2 4

5

1

2 4

5

(c) Shrunk graph and tree (d) STSP solution in G′

1

2
3

4

5

(e) STSP solution in G

Figure 5.1: Bad STSP instance for the C-heuristic

CHAPTER 5. IMPROVING A HEURISTIC FOR THE GRP 91

1

4

7

3

6

2

5

8

2 8

2 4

2

1

3

3

4

7

3

6

2

8

8

4

5

6

7

6
7

7

(a) Original GRP instance (b) Transformed instance

{2}

{3, 6}

{7} {8}

5

6

6

7

7

7

7

3

6

2

8

(c) Shrunk graph and tree (d) Graph G′ with tree

7

3

6

2

8

1

4

7

3

6

2

5

8

(e) GRP solution on G′ (f) GRP solution on G

Figure 5.2: Bad GRP instance for the C-heuristic.

CHAPTER 5. IMPROVING A HEURISTIC FOR THE GRP 92

5.3.2 The improved C-heuristic

Our improved version of the C-heuristic is intended to overcome both of the above-

mentioned drawbacks simultaneously. It has five main phases: a shortest-path phase,

a spanning-tree phase, a mapping phase, a sparsification phase, and a T -join phase.

To proceed, we need some more notation. We assume that there are κ R-components,

called C1, . . . , Cκ. For i = 1, . . . , κ, we let E(i) denote the set of required edges (if

any) that have both end-nodes in Ci. A path in G that connects a node in Ci to a

node in Cj will be called an “(i, j)-link”. We let c(i, j) denote the cost of the shortest

(i, j)-link in G.

The first phase of our heuristic is described in Algorithm 5.1. Observe that the

algorithm solves only κ − 1 shortest-path problems in G, whereas the standard C-

heuristic solves |V +
R | − 1 of them. (Note that κ ≤ |V +

R |, with equality if and only if

ER = ∅.) Moreover, we do not bother to construct the graph G′. (It will turn out

later on that G′ is not actually needed.)

In the second phase, we construct the shrunk graph and compute a MST in it,

just as in [48]. Note that the weights of the edges in the shrunk graph are nothing but

the c(i, j) values that were stored at the end of phase 1. Note also that the shrunk

graph has only κ nodes.

In the third phase, we map the spanning tree onto G. Let F denote the set of

edges in the MST. Each edge {i, j} ∈ F corresponds to an (i, j)-link in G, and we

can identify the edges in that link using the shortest-path trees that were generated

in phase 1. We let F ′ denote the set of edges in E that correspond to the edges in F .

Note that F ′ is actually a multi-set, i.e., it may contain more than one copy of a given

edge. (Indeed, for the example in Figure 5.1, our set F ′ will contain three copies of

the edge {v1, v5}.)

CHAPTER 5. IMPROVING A HEURISTIC FOR THE GRP 93

Algorithm 5.1: Shortest-Path Phase

input : Graph G, set of required nodes VR ⊆ V , set of required edges

ER ⊆ E, edge costs ce

Compute the R-components C1, . . . , Cκ and their edge sets E(1), . . . , E(κ);

for i = 1 to κ− 1 do

Temporarily change to zero the cost of all edges in E(i);

Let v be an arbitrary node in Ci;

Run Dijkstra’s single-source shortest path algorithm to get the shortest

paths in G from v to all other nodes in V ;

Let T (i) be the shortest-path tree;

for j = 1 to κ do

Let c(i, j) be the cost of the shortest path from v to the nearest node

in Cj;

end

Restore the costs of the edges in E(i) to their original values;

end

output: Costs c(i, j) and shortest-path trees T (i)

CHAPTER 5. IMPROVING A HEURISTIC FOR THE GRP 94

By construction, the edge set ER ∪ F ′ induces a connected subgraph of G that

contains all required nodes and edges. It may happen, however, that one can drop

edges from F ′ without causing that subgraph to become disconnected. This observa-

tion is the motivation for our fourth phase, which we call sparsification. Details are

given in Algorithm 5.2.
Algorithm 5.2: Sparsification Phase

input : Graph G, edge costs ce, R-components C1, . . . , Cκ, edge (multi-)set

F ′

Construct a graph with vertex set V and edge set F ′;

Shrink each R-component of the graph to a single node;

Remove any loops and/or isolated nodes;

Compute an MST in the resulting graph;

Let F− denote the set of edges in the MST;

output: Edge set F− ⊂ E

Figure 5.3 shows how the sparsification phase works, when applied to the GRP

instance that was presented in Figure 5.2(a). Figure 5.3(a) shows the graph G, with

the multi-set F ′ represented by thick black lines. Figure 5.3(b) shows the same graph

with the reduced set F−. For this instance, sparsification eliminates the edge {2, 5},

one copy of the edge {3, 6}, and one copy of the edge {4, 7}.

Now, consider the graph G− =
(
V,ER ∪ F−). By construction, G− has one non-

trivial connected component, which contains all required nodes and edges. (There

may also be some trivial components, consisting of isolated non-required nodes.) In

our fifth and final phase, we attempt to make G− Eulerian at minimal cost.

Let T be the set of nodes in V that are incident on an odd number of edges in

ER ∪ F−. To obtain our desired GRP solution, we solve a WTJ problem in G, with

the given set T , and add the edges in the T -join to the edges in ER ∪ F−.

Figure 5.4 shows how the T -join phase works, using the same GRP instance as

CHAPTER 5. IMPROVING A HEURISTIC FOR THE GRP 95

1

4

7

3

6

2

5

8

1

4

7

3

6

2

5

8

(a) Graph G with ER ∪ F ′ in bold (b) Graph G with ER ∪ F− in bold

Figure 5.3: Sparsification applied to the GRP instance in Figure 5.2

before. Figure 5.4(a) is the same as Figure 5.3, except that the nodes in T are

represented by big hollow circles. One can check that the edges {2, 3}, {4, 7} and

{5, 8} form an optimal T -join. The resulting GRP solution is shown in Figure 5.4(b).

Note that the GRP solution in Figure 5.4(b) is cheaper than the one that was

found by the traditional C-heuristic, which was already shown in Figure 5.2(f). One

can check that our version of the C-heuristic also yields a cheaper solution for the

STSP instance shown in Figure 5.1(a).

To complete the description of our heuristic, it suffices to explain how we solve

the WTJ. We decided to use the Korte-Vygen algorithm rather than the Edmonds-

Johnson algorithm. The reason is that most real-life GRP instances are defined on

road networks. In road networks, most nodes have degree less than 5. As a result,

when applied to a WTJ on a road network, the Korte-Vygen algorithm involves the

solution of a matching problem with only |V | nodes and edges (see also [41]).

CHAPTER 5. IMPROVING A HEURISTIC FOR THE GRP 96

1

4

7

3

6

2

5

8

1

4

7

3

6

2

5

8

(a) Graph G− and set T (b) Final GRP solution

Figure 5.4: Illustration of T-join phase for the graph in Figure 5.2

5.3.3 Advantages of the modified C-heuristic

We now give some theoretical evidence that the modified C-heuristic is superior to

the original. First, we show that, under a mild assumption, the modified version is

faster and uses less memory.

Proposition 5.1. Suppose the degrees of the nodes in G are bounded from above

by a constant (as is the case for GRP instances on road networks). The modified

C-heuristic can be implemented so that it runs in O
(
|V |2 log |V |

)
time and O(κ |V |)

space.

Proof. Under the stated condition, |E| = O(|V |). Now, Algorithm 5.1 involves the

solution of κ shortest-path problems in G. Using a heap version of Dijkstra’s algo-

rithm, this takes O(κ |V | log |V |) time and O(|V |) space. Storing the κ shortest-path

trees takes O(κ |V |) space. Constructing the shrunk graph takes only O
(
κ2
)
time and

space. Computing the MST using Prim’s algorithm takes only O
(
κ2 log κ

)
time and

O
(
κ2
)
space. Mapping the tree F to the multi-set F ′ takes O(κ |V |) time and space. If

we use Prim’s algorithm also in the sparsification phase, it takes O
(
|V |2 log |V |

)
time

CHAPTER 5. IMPROVING A HEURISTIC FOR THE GRP 97

and O(|V |) space. Computing the set T takes only O(|V |) time and space. Converting

the WPM into a WTJ, as in Korte & Vygen [129], takes only O(|V |) time and space

when the node degrees are bounded. Finally, using a decent matching algorithm, such

as the one of Gabow [92], the WPM can be solved in O
(
|V |2 log |V |

)
time and O(|V |)

space (since the WPM is defined on a graph with only O(|V |) nodes and edges).

One can check that the original C-heuristic takes O
(
|V |3

)
time and O

(
|V |2

)
space

under the same assumption.

Next, we show that, under mild conditions, the solution found by the modified

C-heuristic is at least as good as the one found by the original.

Proposition 5.2. If the following two conditions are satisfied, then the modified C-

heuristic produces a GRP solution that costs no more than the solution found by the

original C-heuristic:

(a) There is a unique optimal tree F in the shrunk graph.

(b) For each edge {i, j} ∈ F , if there is more than one shortest (i, j)-link in G, then

all such links connect the same node in Ci to the same node in Cj.

Proof. If condition (a) is satisfied, then both heuristics will produce the same MST

F in the shrunk graph. Now, consider the standard C-heuristic. Let F be the set of

edges in the spanning tree, let T be the set of nodes used in the T -join phase, and

let J be the set of edges in the resulting T -join. Note that F ∪ J is a multi-set in

general. By replacing each edge in F ∪ J with the corresponding shortest path in G,

we obtain a (multi-)set F ′ ∪ J ′ in the original graph G. Note that F ∪ J and F ′ ∪ J ′

have the same cost.

Now consider the modified version of the heuristic. If condition (b) is satisfied,

then F ′ will be the same as in the previous paragraph, and T will be the set of nodes

CHAPTER 5. IMPROVING A HEURISTIC FOR THE GRP 98

that are incident on an odd number of edges in ER ∪F ′. Finally, we let T ′ denote the

set of nodes that are incident on an odd number of edges in ER ∪F−, and we observe

that the union of F ′ \ F− and J ′ is a T ′-join. In the modified heuristic, however, we

compute an optimal T ′-join. By definition, the cost of F− together with the cost of

the optimal T ′-join is no larger than the cost of F ′ ∪ J ′.

When the conditions do not hold, the performance of both heuristics can vary

depending on the choice of tie-breaking rule. In practice, if we wish to ensure that

the modified C-heuristic performs at least as well as the original, it suffices to use

the same tree T and the same (i, j)-links in both versions. In other words, given any

solution obtained by using the C-heuristic, one can always find a solution, produced

by the modified version, which is at least as good. This is also confirmed by the

results in the next section.

5.4 Computational Experiments

In this section, we present the results of some computational experiments. For most of

the experiments, we used a PC with an i7-6820HQ processor, running under Windows

10 at 2.7 GHz with 8GB of RAM. For the largest instances, with 10, 000 or 20, 000

nodes, our PC ran into memory difficulties when running the C-heuristic. So, for

those instances, we used a workstation with an Intel Xeon W-1390P processor, at 3.5

Ghz and 128 GB of RAM, instead.

All algorithms were implemented with C# in the .NET framework and compiled

with Microsoft Visual Studio 2019. To solve the matching problems, we used the

open-source software package Blossom V [128]. It runs in O
(
|V |3

)
time in the worst

case, but performs extremely well in practice.

CHAPTER 5. IMPROVING A HEURISTIC FOR THE GRP 99

5.4.1 Results for existing benchmark instances

There exist several sets of benchmark GRP, RPP and STSP instances in the literature

(see, e.g., [54, 58, 61, 101, 117, 123, 137]). Some of them are available on the following

web site:

https://www.uv.es/corberan/instancias.htm

These include:

• Three sets of GRP instances taken from [58]. These sets are called ALBA, GRP

and MADR.

• Three sets of RPP instances taken from [58]. These sets are called UR500,

UR750 and UR1000.

• A set of miscellaneous GTSP instances taken from [54].

The results that we obtained for these instances are shown in Table 5.1. The first

three columns of the table show the following for each set of instances: the problem

type, the name of the set (where applicable), and the number of instances in the set.

The column headed “%gap” shows the average gap between the upper bound from

the heuristics and the optimum, expressed as a percentage of the optimum. (For

these instances, the improved C-heuristic gave the same upper bound as the classical

version.) The remaining columns show the average running time, in seconds, for the

original C-heuristic and our version.

It is clear that our version of the heuristic is much faster than the original, espe-

cially for the RPP instances. The average percentage gaps are also encouraging for

the GRP and RPP instances. On the other hand, the gaps for the GTSP instances

are large. Moreover, it is disappointing that our version of the heuristic gave no im-

provement in the upper bounds. Closer inspection of the problem data revealed that,

https://www.uv.es/corberan/instancias.htm

CHAPTER 5. IMPROVING A HEURISTIC FOR THE GRP 100

Type Set # %gap C-time New-time

ALBA 15 3.03 0.06 0.04

GRP GRP 10 3.86 0.08 0.04

MADR 15 3.84 0.08 0.04

UR500 12 1.91 0.17 0.05

RPP UR750 12 1.96 0.37 0.07

UR1000 12 2.29 0.60 0.09

GTSP — 7 19.30 0.09 0.07

Table 5.1: Results for several sets of benchmark instances.

for all instances, the transformation from G to G′ had already been applied. This

meant that F ′ was equal to F for all instances.

After contacting several authors directly, we managed to find only three sets of

“raw”, untransformed instances:

• 2 manually constructed RPP instances based on the road network of Albaida,

a municipality of Valencia, Spain [61].

• 20 STSP instances created using the procedure in [137], which produces random

planar graphs that resemble road networks. The procedure takes two parame-

ters: the number of nodes (|V |) and the probability that a node is required (p).

Further details can be found in [123, 137].

• 10 additional real-world STSP instances created by Interian & Ribeiro [123],

based on road and telecommunications networks.

Table 5.2 shows the results for the two RPP instances. For each instance, we show

the number of vertices, the number of edges, the number of required edges, and the

CHAPTER 5. IMPROVING A HEURISTIC FOR THE GRP 101

C-heuristic New heuristic

|V | |E| |ER|
∣∣V +

R

∣∣ %gap time %gap time

116 174 100 103 0.00 0.48 0.00 0.05

116 174 88 90 0.00 0.13 0.00 0.09

Table 5.2: Results for 2 RPP instances from [61].

number of vertices incident on at least one required edge. We also show the following

for each of the two heuristics: the gap between the upper bound and the optimum,

expressed as a percentage of the optimum, and the running time, in seconds. It is

apparent that these instances are very easy for both heuristics.

Table 5.3 shows the results that we obtained for the first set of STSP instances. For

each instance, we show the probability p, the number of vertices, the number of edges

and the number of required vertices, along with the percentage gaps and times, as

before. The last column, labelled “%impr”, shows the percentage gap improvement

gained by using the new heuristic. It is computed as (UB1-UB2)/(UB1-OPT) ×

100%, where UB1 and UB2 are the upper bounds from the old and new heuristics,

respectively, and OPT is the optimal value. The improvement is significant, especially

on the instances with p = 1/3.

Table 5.4 gives some additional details for the 20 STSP instances. For each in-

stance, we show the probability (p), the number of vertices (|V |), the number of edges

in the spanning tree in the shrunk graph (|F |), the number of edges in G that corre-

spond to the edges in the spanning tree (|F ′|), and the number of those edges that

remain after sparsification (|F−|). We also show the number of additional edges in G

that come from the T-join, for the C-heuristic (|J |) and the new heuristic (|J ′|). The

benefit of sparsification is apparent.

CHAPTER 5. IMPROVING A HEURISTIC FOR THE GRP 102

C-heuristic New heuristic

p |V | |E| |VR| %gap time %gap time %impr

50 69 16 14.07 0.07 14.07 0.06 —

75 105 25 12.89 0.06 10.96 0.05 14.95

100 139 33 15.23 0.09 12.40 0.06 18.57

125 179 41 17.06 0.09 16.01 0.06 6.15

1/3 150 215 50 11.58 0.11 10.32 0.05 10.94

175 252 58 10.46 0.10 9.67 0.06 7.52

200 291 66 11.20 0.11 10.73 0.10 4.14

225 326 75 12.13 0.18 8.50 0.07 29.94

250 367 83 18.96 0.16 17.42 0.07 8.16

300 440 100 14.67 0.19 13.93 0.08 4.18

50 69 33 14.42 0.08 11.66 0.05 19.15

75 105 50 14.38 0.07 14.38 0.05 —

100 139 66 19.78 0.09 19.70 0.05 0.42

125 179 83 16.74 0.10 16.74 0.13 —

2/3 150 215 100 13.98 0.12 13.98 0.06 —

175 252 116 14.95 0.18 14.83 0.08 0.81

200 291 133 12.79 0.23 11.60 0.11 9.32

225 326 150 14.62 0.27 14.52 0.11 0.72

250 367 166 17.10 0.31 16.95 0.12 0.88

300 440 200 17.15 0.57 16.49 0.17 3.84

Table 5.3: Results for 20 STSP instances from [123, 137].

CHAPTER 5. IMPROVING A HEURISTIC FOR THE GRP 103

Edges from tree Edges from T -join

p |V | |F | |F ′| |F−| |J | |J ′|

50 15 22 22 12 12

75 24 44 42 16 14

100 32 56 53 25 24

125 40 74 71 30 31

1/3 150 49 83 78 30 31

175 57 103 99 29 31

200 65 117 109 37 42

225 74 135 124 44 44

250 82 148 140 48 51

300 99 182 172 58 62

50 32 47 44 16 16

75 49 59 59 24 26

100 65 78 76 29 29

125 82 98 98 37 38

2/3 150 99 122 119 46 43

175 115 138 135 48 47

200 132 170 163 62 64

225 149 180 177 75 73

250 165 195 194 78 77

300 199 230 226 90 84

Table 5.4: Additional details for the 20 STSP instances from [123, 137].

CHAPTER 5. IMPROVING A HEURISTIC FOR THE GRP 104

C-heuristic New heuristic

|V | |E| |VR| %gap time %gap time %impr

58 13.20 0.65 4.40 0.11 66.69

1174 1417 117 12.09 0.73 5.40 0.17 55.30

176 9.60 0.82 5.93 0.28 38.25

234 11.34 1.03 6.08 0.30 46.41

105 6.10 2.49 2.21 0.43 63.70

2113 6632 211 6.70 2.93 1.92 0.70 71.29

316 5.35 4.23 2.43 0.82 54.66

167 12.98 5.91 10.02 0.49 22.83

3353 8870 335 11.34 8.19 9.45 0.83 16.68

502 13.67 11.39 11.22 1.23 17.91

Table 5.5: Results for 10 larger STSP instances from [123].

Finally, Table 5.5 shows the results for the 10 larger STSP instances from [123]. For

these instances, the new heuristic performs significantly better than the C-heuristic.

Indeed, the average percentage gap between the upper bound and the optimum is

10.2% for the C-heuristic and 5.9% for the new heuristic. Moreover, the new heuristic

is more than seven times faster than the C-heuristic on average.

5.4.2 New test instances

Since we found no suitable GRP instances in the literature, and very few RPP in-

stances, we created some of our own. Our instances have |V | ∈ {100, 200, 500, 1000,

2000, 5000, 10000, 20000}, and they are based on real road network data for the city

of London, extracted using OpenStreetMap [166]. For each desired value of |V |, we

CHAPTER 5. IMPROVING A HEURISTIC FOR THE GRP 105

|V | 100 200 500 1000

Length 269.9 396.0 645.0 932.7

|V | 2000 5000 10000 20000

Length 1323.0 2165.9 3096.5 4366.2

Table 5.6: Computation of initial squares.

computed the smallest square, centred on Mayfair, that contain the given number of

nodes. Table 5.6 shows the length of the eight resulting squares, in metres.

For each of the eight squares, we created an undirected graph G as follows. We

set E to the set of all street segments for which both end-nodes lay in the square.

The cost of each edge e ∈ E was set to the length of the corresponding road, rounded

to the nearest metre. We assume for simplicity that all streets are two-way streets.

For each of the eight resulting graphs, we created three GRP instances, by making

each node and edge required with probability p, where p ∈ {0.25, 0.5, 0.75}. Some

relevant statistics for the resulting GRP instances can be found in Table 5.7. We

also created 24 RPP instances, simply by taking the GRP instances and setting VR =

∅. The data for each instance is made available at the Lancaster University Data

Repository 1.

Before running the heuristics, we attempted to find the optimal solution values

for the new instances. To do that, we converted all instances into standard TSP

instances, using a transformation similar to the one described in [125]. We then fed

the resulting TSP instances into CONCORDE, the leading open-source exact TSP solver

[9]. We set a time limit of one day per instance. We found that CONCORDE was able

to solve 13 GRP instances and 13 RPP instances within the time limit. For the

1http://www.research.lancs.ac.uk/portal/en/datasets/search.html

http://www.research.lancs.ac.uk/portal/en/datasets/search.html

CHAPTER 5. IMPROVING A HEURISTIC FOR THE GRP 106

|V | |E| p |VR|
∣∣V +

R

∣∣ |ER| κ

0.25 14 59 29 30

100 124 0.50 10 88 68 23

0.75 3 97 90 13

0.25 30 123 61 62

200 252 0.50 17 185 144 46

0.75 13 193 187 20

0.25 63 324 162 162

500 656 0.50 47 456 346 118

0.75 21 494 479 51

0.25 134 639 328 312

1000 1326 0.50 99 908 684 240

0.75 48 978 969 93

0.25 237 1290 676 619

2000 2627 0.50 217 1805 1329 507

0.75 111 1969 1953 210

0.25 613 3280 1719 1567

5000 6525 0.50 518 4514 3289 1287

0.75 287 4921 4927 471

0.25 1230 6339 3273 3077

10000 12798 0.50 1051 8899 6436 2575

0.75 538 9823 9618 971

0.25 1235 11697 6724 4998

20000 26749 0.50 1031 16989 13259 4050

0.75 443 19179 20019 1154

Table 5.7: Statistics for the new GRP instances.

CHAPTER 5. IMPROVING A HEURISTIC FOR THE GRP 107

|V | p GRP RPP

0.25 4360 3678

100 0.50 6476 5746

0.75 6937 6815

0.25 9407 7605

200 0.50 13116 12063

0.75 14494 13512

0.25 22929 19844

500 0.50 31825 28746

0.75 37051 35785

0.25 42735 36260

1000 0.50 60816 55278

0.75 73647 71164

2000 0.25 90857 76726

Table 5.8: Optimal values for some of the new GRP and RPP instances.

remaining instances, we ran into serious time and/or memory problems. Table 5.8

shows the optimal values for the instances that CONCORDE was able to solve.

5.4.3 Results for new GRP instances

The next step was to run both heuristics on the 24 new GRP instances. Table 5.9

shows the results. For each instance, we show the number of nodes |V | and the

probability p. Also, for each instance and each of the two heuristics, we show the

upper bound (“UB”), the gap between the upper bound and the optimum, expressed

as a percentage of the optimum (“%gap”), and the running time, in seconds. We set

CHAPTER 5. IMPROVING A HEURISTIC FOR THE GRP 108

a time limit of 24 hours for each run. A dash indicates either that the run did not

terminate within the time limit, or ran into memory problems.

For the 13 instances that CONCORDE was able to solve within the time limit, the

average percentage gap was 2.94% for the C-heuristic and 2.75% for our heuristic.

Looking at the 21 instances for which the C-heuristic terminated within the time limit,

the new heuristic found a better upper bound than the C-heuristic for 13 instances,

the same bound for 7 instances, and a worse bound for 1. (It appears that the instance

with |V | = 5000 and p = 0.5 does not satisfy the conditions in Proposition 5.2.)

Note that the percentage gap decreases dramatically as p increases. A likely

explanation for this phenomenon is that the cost of servicing the required edges is

effectively a “fixed cost”. As p increases, this “fixed cost” makes up a larger proportion

of both “Opt” and “UB”. (Indeed, when p = 1, the GRP reduces to a CPP, and both

heuristics will yield the optimal solution.)

In terms of running time, we see that the C-heuristic takes several hours for some

instances with |V | = 10000. The new heuristic, on the other hand, takes just a few

seconds on all instances but the largest. For |V | ≥ 1000, our heuristic is several orders

of magnitude faster than C-heuristic.

5.4.4 Results for new RPP instances

Table 5.10 presents the results for the 24 new RPP instances. The table has an

identical format to Table 5.10.

The results here are similar to what we saw in the case of the GRP. For the 13

instances that CONCORDE was able to solve within the time limit, the average percent-

age gap was 3.23% for the C-heuristic and 3.15% for our heuristic. Looking at the 22

instances for which the C-heuristic terminated within the time limit, the new heuristic

found a better upper for 11 instances and the same bound for 11 instances.

CHAPTER 5. IMPROVING A HEURISTIC FOR THE GRP 109

C-heuristic New heuristic

|V | p UB %gap time UB %gap time %impr

0.25 4536 4.04 0.09 4472 2.57 0.04 36.36

100 0.50 6580 1.61 0.14 6580 1.61 0.04 —

0.75 6937 0.00 0.14 6937 0.00 0.04 —

0.25 9934 5.60 0.19 9930 5.56 0.05 0.76

200 0.50 13315 1.52 0.31 13315 1.52 0.05 —

0.75 14494 0.00 0.29 14494 0.00 0.06 —

0.25 24729 7.85 1.54 24639 7.46 0.12 5.00

500 0.50 32572 2.35 3.75 32543 2.26 0.11 3.88

0.75 37210 0.43 4.22 37210 0.43 0.09 —

0.25 45489 6.44 10.21 45365 6.15 0.36 4.50

1000 0.50 61888 1.76 31.36 61876 1.74 0.28 1.12

0.75 73911 0.36 41.86 73910 0.36 0.19 0.38

0.25 96605 6.33 102.33 96411 6.11 0.91 3.38

2000 0.50 127021 — 302.56 126925 — 0.69 —

0.75 151038 — 385.08 151027 — 0.45 —

0.25 254675 — 1896.34 253351 — 5.70 —

5000 0.50 328744 — 6061.84 328784 — 4.58 —

0.75 394331 — 6559.32 394331 — 1.96 —

0.25 515965 — 16667.58 513817 — 14.84 —

10000 0.50 663559 — 50611.01 663318 — 11.33 —

0.75 798603 — 71370.72 798539 — 4.41 —

0.25 — — — 1317827 — 66.60 —

20000 0.50 — — — 1795515 — 51.83 —

0.75 — — — 2220663 — 20.68 —

Table 5.9: Results for new GRP instances.

CHAPTER 5. IMPROVING A HEURISTIC FOR THE GRP 110

C-heuristic New heuristic

|V | p UB %gap time UB %gap time %impr

0.25 3696 0.49 0.08 3696 0.49 0.04 —

100 0.50 5850 1.81 0.10 5850 1.81 0.04 —

0.75 6815 0.00 0.10 6815 0.00 0.04 —

0.25 8380 10.19 0.11 8380 10.19 0.04 —

200 0.50 12263 1.66 0.23 12263 1.66 0.04 —

0.75 13512 0.00 0.33 13512 0.00 0.04 —

0.25 21553 8.61 0.93 21423 7.96 0.09 7.61

500 0.50 29392 2.25 2.49 29385 2.22 0.07 1.08

0.75 35985 0.56 3.59 35985 0.56 0.06 —

0.25 38963 7.45 4.77 38904 7.29 0.20 2.18

1000 0.50 56267 1.79 21.93 56267 1.79 0.17 —

0.75 71318 0.22 33.63 71317 0.21 0.11 0.65

0.25 82040 6.93 51.64 81900 6.74 0.51 2.63

2000 0.50 112665 — 193.36 112665 — 0.46 —

0.75 143960 — 317.16 143960 — 0.28 —

0.25 218046 — 976.69 217281 — 3.15 —

5000 0.50 297873 — 3486.04 297616 — 2.37 —

0.75 374044 — 5982.47 374044 — 0.91 —

0.25 437382 — 9409.54 435771 — 7.98 —

10000 0.50 598008 — 33867.66 597815 — 6.04 —

0.75 759760 — 62245.68 759696 — 2.04 —

0.25 1221458 — 77533.41 1218154 — 59.73 —

20000 0.50 — — — 1711591 — 59.96 —

0.75 — — — 2175634 — 19.09 —

Table 5.10: Results for new RPP instances.

CHAPTER 5. IMPROVING A HEURISTIC FOR THE GRP 111

As before, the percentage gap decreases dramatically as p increases, and our heuris-

tic is several orders of magnitude faster than C-heuristic for |V | ≥ 1000.

Acknowledgement: We thank Ángel Corberán for helping us locate some of the

benchmark instances.

Chapter 6

Fast Upper and Lower Bounds for

a Large-Scale Real-World Arc

Routing Problem

6.1 Introduction

The optimisation of vehicle routes is of crucial importance in modern society, and

there is a huge literature on models, theory, applications and algorithms [105, 199].

Arc Routing Problems (ARPs) are a special kind of vehicle routing problems, in which

the demands are located along the edges or arcs of the network, rather than at the

nodes. Typical applications of ARPs include postal delivery, meter reading, refuse

collection, salt spreading and snow removal (see the books [53, 72] and the surveys

[52, 159]).

Recently, while working with an industrial partner, we encountered some very chal-

lenging real-life ARPs. These problems had multiple vehicles, capacity constraints,

intermediate facilities, a time deadline, multiple objectives, and a combination of one-

112

CHAPTER 6. BOUNDS FOR A REAL-WORLD ARP 113

and two-way streets. Moreover, some instances had over ten thousand roads, which

is much larger than those usually considered in the literature.

To further complicate matters, the industrial partner wanted a procedure that

could produce reasonably good upper and lower bounds within a couple of minutes.

This was for three reasons:

• Such a procedure could enable the sales representatives to give convincing

demonstrations in real-time, to attract new customers.

• The expert trip planners in the company had stated that they would find tight

initial bounds extremely useful, so that they knew what to aim for.

• It was hoped that the planners could take the feasible solutions from our pro-

cedure as a starting point, and then make adjustments to make the trips more

“visually attractive” (see [189] for a discussion of visual attractiveness in vehicle

routing).

The ARP in question is a (bi-objective) Mixed Capacitated Arc Routing Problem

with Intermediate Facilities and a Deadline, or MCARPIFD for short. Although there

exist a few heuristics for the MCARPIFD in the literature [140, 157, 158, 204, 205,

206], the severe restriction on computing time meant that we could not use any of

them. Accordingly, we devised our own procedures, which are specially tailored to

give good bounds as quickly as possible for real-life instances. We were pleased to

discover that our procedures were highly suitable for the intended application.

The rest of the chapter is structured as follows. Subsection 6.1.1 presents our

notation and terminology. Section 6.2 is a brief literature review. Sections 6.3 and

6.4 describe our upper-bounding and lower-bounding procedures, respectively. Section

6.5 presents the computational results.

CHAPTER 6. BOUNDS FOR A REAL-WORLD ARP 114

6.1.1 Notation and terminology

We are given a mixed graph G =
(
V,E ∪ A

)
, where V is the vertex set, E is the set

of (undirected) edges, and A is the set of (directed) arcs. This graph represents a

road network. The nodes are numbered 1 to n and have known coordinates. Node 1

is called the depot. We are also given a set ER ⊆ E of required edges, a set AR ⊆ A

of required arcs, and a set I ⊂ V of intermediate facilities. We call L = E ∪A the set

of links, and let LR denote ER ∪ AR. We will call the weakly connected components

of the graph (V, LR) “R-components”.

Each link ℓ ∈ L has a positive rational traversal time tℓ. Each required link ℓ ∈ LR

has a positive rational supply qℓ and servicing time sℓ. A fleet of identical vehicles is

located at the depot, each with positive rational capacity Q and time limit T . If a

vehicle is used on any given day, it must depart from the depot, service some required

links, go to an intermediate facility to unload, service some more required links, and

so on. When the vehicle has unloaded for the last time, it must return to the depot.

Each required link must be serviced by exactly one vehicle. The load of each vehicle

must not exceed Q at any time, and each vehicle must return to the depot no more

than T hours after it departed.

The problem has two objective functions. The primary objective is to minimise

the number of trips, but a secondary objective is to minimise the maximum trip

duration. The reason for the second objective is that, if one trip has a significantly

longer duration than another, then the drivers may complain that the solution is

unfair. An additional peculiarity of the problem is that the number of trips must

be a multiple of some given positive integer h. For example, if collections are made

Monday to Friday, and each household has a collection once every two weeks, then h

is set to 10.

CHAPTER 6. BOUNDS FOR A REAL-WORLD ARP 115

Traversing a link without servicing is called “deadheading”. The set of nodes

incident on at least one required link is denoted by VR. Given a set S ⊆ V , L(S)

denotes the set of links with both end-nodes in S, and δ(S) denotes the set of edges

with exactly one end-node in S. We let δ+(S) and δ−(S) denote the set of arcs leaving

and entering S, respectively, and ∆(S) denotes δ(S) ∪ δ+(S) ∪ δ−(S). We let LR(S)

denote L(S) ∩ LR, and similarly for δR(S), δ
+
R(S), δ

−
R(S) and ∆R(S). For simplicity,

we sometimes write δ(v) instead of δ({v}). A node v is called “R-odd” if
∣∣∆R(v)

∣∣ is
odd. Finally, given a set F ⊂ L and a vector x ∈ RL, we let x(F) denote

∑
ℓ∈F xℓ.

6.2 Literature Review

The literature on arc routing is vast. For the sake of brevity, we cover here only papers

of direct relevance. For further details, the reader is referred to the books [53, 72] and

the surveys [52, 159].

6.2.1 The Capacitated Arc Routing Problem

Golden & Wong [107] introduced the Capacitated Arc Routing Problem or CARP.

It is simpler than our problem, since (a) A is empty; (b) there are no intermediate

facilities, and (c) there is no time deadline. Instead of times se and te, we are given

a deadheading cost ce for each e ∈ E. The objective is simply to minimise the total

deadheading cost.

Golden and Wong showed that the CARP isNP-hard in the strong sense. Current

exact methods can cope only with instances with up to around 180 required edges;

see [24] for a survey. For larger instances, various heuristics and lower-bounding

procedures are available; see [45, 183, 201, 210] and [5, 18, 31, 151], respectively.

Among the many heuristics, we mention the one of Ulusoy [200]. It is a “route-first

CHAPTER 6. BOUNDS FOR A REAL-WORLD ARP 116

cluster-second” heuristic (see [20, 36]). The idea is to construct a single “giant” tour,

that visits all of the required links, and then “split” this giant tour into segments

that can be traversed by a single vehicle. The giant tour is constructed using a

heuristic, but the splitting is done optimally, via a series of shortest-path problems.

An improved version of this heuristic, suitable for large-scale instances, was given in

[210].

Among the many lower-bounding procedures, we will be interested in the following

linear programming (LP) relaxation, which was proposed independently by Letchford

[135] and Belenguer & Benavent [23]. For each e ∈ E, let ye be a general integer

variable, representing the total number of times edge e is deadheaded. Given a set

S ⊆ V \ {1}, define

k(S) =

⌈∑
e∈ER(S)∪δR(S) qe

Q

⌉
.

Note that k(S) is a lower bound on the number of vehicles that need to go from V \S

to S. A valid lower bound for the CARP is then obtained by solving the following

LP (either exactly or approximately) with a cutting-plane algorithm:

min
∑

e∈E ceye

s.t. y
(
δ(S)

)
≥ 2k(S)− |δR(S)|

(
S ⊆ V \ {1}

)
(6.1)

y
(
δ(S)

)
≥ 1

(
S ⊆ V \ {1} : |δR(S)| odd

)
(6.2)

ye ∈ R+ (e ∈ E).

The constraints (6.1) and (6.2) are called capacity inequalities and R-odd-cut inequal-

ities, respectively.

We remark that the y variables are “aggregated” over all trips, and therefore do

not give us information about individual trips. As a result, one cannot obtain a valid

formulation of the CARP by adding an integrality constraint to the above LP.

Separation routines for the capacity and R-odd cut inequalities can be found in

CHAPTER 6. BOUNDS FOR A REAL-WORLD ARP 117

[23, 31, 151]. We remark that Martinelli et al. [151] used the inequalities within a dual

ascent scheme instead of a cutting-plane algorithm. In this way, they could compute

strong lower bounds for instances with a few hundred nodes and edges in reasonable

computing times.

6.2.2 Other relevant ARPs

Li [139] considered a variant of the CARP in which all required edges must be serviced

by a given time deadline. (We call this the CARPD.) He devised a simple constructive

heuristic, along with a lower-bounding procedure based on the solution of a series of

matching problems. Letchford [135] obtained improved lower bounds for the same

problem, using cutting planes. A local search heuristic, suitable for instances with

thousands of nodes and edges, was given by Wøhlk & Laporte [210]. We remark that

Eglese [77] devised a heuristic for a multi-depot version of the same problem.

The mixed CARP, or MCARP, is the generalisation of the CARP in which both

edges and arcs may be present. Heuristic approaches, based on constructive heuris-

tics and genetic algorithms, were described in [25, 131]. Effective lower-bounding

procedures, based on LP and cutting planes, were presented in [25, 109]. Lacomme

et al. [131] gave a heuristic for the MCARP with turn penalties and a route-length

constraint.

To our knowledge, the first paper to consider ARPs with intermediate facilities was

Li & Eglese [140]. They devised a constructive heuristic for the problem that we called

the MCARPIFD in the introduction. Mourão & Amado [157] presented a different

constructive heuristic for the same problem, along with a lower-bounding procedure

based on the solution of a transportation problem. A local search heuristic was later

proposed in [158], but the heuristic was rather slow and strugged with instances having

more than a few hundred nodes. Additional heuristics, suitable for instances with a

CHAPTER 6. BOUNDS FOR A REAL-WORLD ARP 118

few thousand nodes, were later presented by Willemse et al. [204, 205, 206].

Some authors have considered the undirected version of the MCARPIFD. Ghiani

et al. [98] developed two constructive heuristics, a local search heuristic, and an LP-

based lower-bounding scheme. Some additional heuristics were given in [97, 181].

We will also need a known result concerned with the Directed Rural Postman

Problem (DRPP). The DRPP is the special case of the MCARP in which E = ∅

and there is a single vehicle with infinite capacity. If the DRPP has only a single

R-component, then it can be solved in polynomial time via a reduction to an (unca-

pacitated) minimum-cost flow problem [76, 141].

Finally, we mention a couple of relevant papers of our own. In [40], we show

that one can use Euclidean distances instead of real road distances when solving

certain node routing problems, while incurring only a small loss of quality. In [39],

we present a method, called sparsification, for improving solutions to another vehicle

routing problem. We will adapt both of these ideas to our problem (see Subsections

5.3.1–6.3.4).

6.3 Upper Bounds

In this section, we present a fast heuristic for our version of the MCARPIFD. The

heuristic is of “route-first cluster-second” type, but includes several enhancements

to improve both speed and accuracy. The heuristic has seven “phases”, which are

described in the following subsections. Throughout this section, m denotes |LR|.

6.3.1 Tour construction phase

Our heuristic begins with the construction of a “giant tour” through the required links.

To do this, we use a procedure similar to the well-known “farthest insertion” heuristic

CHAPTER 6. BOUNDS FOR A REAL-WORLD ARP 119

for the TSP [190]. The differences are (a) we have to consider the orientation of each

required link when we insert it into the giant tour, and (b) we use planar Euclidean

distances instead of true road network distances (as in [40]), to avoid solving all-pairs

shortest path problems in G. The details are given in Algorithm 6.1.

Note that the algorithm takes as input the planar coordinates of each node in VR.

(We were able to get these coordinates from our industrial partner.) One can check

that the algorithm runs in only O
(
m2
)
time and O

(
m
)
space.

6.3.2 Local search phase

The giant tour is then improved, if possible, with the local search procedure described

in Algorithm 6.2. This procedure is a variant of the well-known “λ-interchange” neigh-

bourhood for the VRP [170], but tailored to work quickly on large-scale MCARPIFD

instances. In particular, the procedure takes only O
(
m2
)
time and O(m) memory.

We remark that we use Euclidean distances in Algorithm 6.2, instead of real road

network distances, just as in the previous subsection. Moreover, if ℓ′i and/or ℓ′j are

edges, then we consider all possible orientations when evaluating the potential benefit

of a swap.

6.3.3 Shortest-path phase

In the first two phases of our heuristic, we used Euclidean distances to estimate the

amount of deadheading between consecutive links in the giant tour. The next step is

to replace those Euclidean distances with the true road distances.

As before, assume that the ith link in the giant tour is ℓ′i. The giant tour starts by

servicing ℓ′1, goes to service ℓ′2, and so on. For i = 1, . . . ,m− 1, we have to compute

the shortest path in G from the end-node of ℓ′i to the start-node of ℓ′i+1. (We also

CHAPTER 6. BOUNDS FOR A REAL-WORLD ARP 120

Algorithm 6.1: Giant Tour Construction

input : Set of required links ℓ1, · · · , ℓm ∈ LR, planar coordinates of all nodes

in VR

Let GT be an initial giant tour, in which the link ℓ1 is traversed, and the

vehicle deadheads back to its starting point;

Create a one-dimensional array of length m, called dist;

for i = 2 to m do

Set dist[i] to the Euclidean distance between the midpoints of ℓi and ℓ1;

end

for j = 2 to m do

Among all links that have not yet been inserted, let ℓ∗ be a link with

maximum dist value;

Insert ℓ∗ into GT, choosing the position and orientation that causes the

smallest increase in the (Euclidean) length of the giant tour;

for each link ℓi that has not yet been inserted do

Let Eudist[i] be the Euclidean distance between the midpoints of ℓi

and ℓ∗;

if dist[i] > Eudist[i] then

Set dist[i] to Eudist[i];

end

end

end

output: Giant tour GT

CHAPTER 6. BOUNDS FOR A REAL-WORLD ARP 121

Algorithm 6.2: Local Search

input : Set of required links ℓ1, · · · , ℓm ∈ LR; planar coordinates of all nodes

in VR; giant tour GT

for i = 1 to m do

Let ℓ′i be the ith link in the giant tour;

end

for i = 1 to m− 1 do

for j = i+ 1 to m do

if swapping ℓ′i and ℓ′j reduces the tour length then

swap ℓ′i and ℓ′j;

end

end

end

output: Improved giant tour

CHAPTER 6. BOUNDS FOR A REAL-WORLD ARP 122

have to compute the shortest path from the end-node of ℓ′m to the start-node of ℓ′1.)

To do this, for a given i, we use Dijkstra’s algorithm, with a binary heap to update

distance labels (see, e.g., [6]).

In theory, each shortest-path call takes O
(
|L| log |V |

)
time. In practice, however, it

is extremely fast, since (a) the end-node of ℓ′i and the start node of ℓ′i+1 are frequently

identical, and (b) we can abort a given call as soon as the start-node of ℓ′i+1 becomes

permanently labelled.

In the fifth phase of our heuristic (Subsection 6.3.5), we will need to know the

distance from node 1 (the depot) to each node in VR, from each node in VR to each

node in I, and from each node in I to each node in VR ∪ {1}. To calculate all these

values, we run Dijkstra’s algorithm 2|I|+ 1 more times. This takes O
(
|L| |I| log |V |

)
time in total. Fortunately, |I| was less than five in the instances that our client

encountered.

6.3.4 Sparsification phase

In the fourth phase of our heuristic, we attempt to reduce the length of the giant

tour. The procedure is essentially an extension of the “sparsification” method in [39]

to the case of mixed graphs. The procedure is rather complicated, but we have found

that it is very worthwhile, typically leading to reductions in tour length of over 10%

in just a few seconds.

The next step is to construct a digraph G′ = (V,A1∪A2). This is done as follows.

Initially A1 = AR and A2 = ∅. Then, for each required edge {i, j} in ER, we add the

arc (i, j) or (j, i) to A1, according to the direction in which it is traversed in the giant

tour. After that, we do the following for each deadheading arc in the giant tour: we

take the corresponding shortest dipath in G, and add the arcs in that dipath to A2.

Finally, we remove from A2 any arc whose end-nodes lie in the same R-component.

CHAPTER 6. BOUNDS FOR A REAL-WORLD ARP 123

Note that G′ is weakly connected.

We now construct a smaller undirected graph, which we call the “shrunk graph”

and denote by GS. To do this, we take G′, shrink each R-component into a single

(required) node, delete all loops, and ignore the directions of the arcs in A2. We also

delete all nodes of degree zero. Note that GS is connected.

Next, we compute a Minimum Spanning Tree (MST) in GS, and delete all edges

that are not in the tree from GS. We then check if there are any non-required nodes in

GS that have degree one. Any such node is deleted from GS, along with the incident

edge, and this is done iteratively until no such nodes remain. Note that GS remains

connected.

We now return to the digraph G′, and construct a “sparsified” version of it. Specif-

ically, given any edge that was removed from GS, we remove the corresponding arc

from A2. Note that, by construction, G′ now contains one huge weakly connected

component that contains all nodes in VR and all arcs in A1. On the other hand, this

component typically does not represent a tour, due to the presence of “unbalanced”

nodes (i.e., nodes for which the number of incoming arcs is not equal to the number

of outgoing arcs).

To find the minimum-cost amount of extra deadheading needed to make all nodes

balanced, we solve a Directed Rural Postman Problem (DRPP). Due to the result men-

tioned in Subsection 5.2.2, this DRPP can be reduced to an uncapacitated minimum-

cost flow problem inG. This problem in turn can be reduced toO(|V | log |V |) shortest-

path problems in G (see [167]). For ease of implementation, we used the MinCostFlow

solver from Google’s “OR-Tools”1. For the instances we tested, it was extremely fast.

Adding the additional deadheading arcs to G′, we obtain a strongly connected and

balanced component that contains all arcs in A′. Thus, the component represents a

1http://developers.google.com/optimization

http://developers.google.com/optimization

CHAPTER 6. BOUNDS FOR A REAL-WORLD ARP 124

giant tour. To construct the giant tour explicitly, we use Hierholzer’s algorithm [121],

which takes only O(|L|) time.

The sparsification phase is illustrated in Figure 6.1. First consider the mixed

graph G in Figure 6.1(a). Required and non-required links are represented by thick

and thin lines, respectively. (In the online version of the chapter, the thick lines

are red.) The costs are also indicated on the links. Suppose that the first two

phases have produced a giant tour which traverses the required links in the order

(1, 2), (3, 4), (8, 9), (9, 10), (13, 12), (12, 11). Figure 6.1(b) shows the corresponding di-

graph G′, before we remove any arcs from A2. We see that the arc (12, 11) is in A2,

yet both of its nodes are in the same R-component. So, this arc will be removed

from G′. Figure 6.1(c) shows G′ after this arc removal, and Figure 6.1(d) shows the

shrunk graph GS. The edges in the MST on GS are indicated by red thick lines in

Figure 6.1(e). Now, node 6 is a non-required node with unit degree, so it will be

removed from the MST. Figure 6.1(f) represents the reduced MST on GS. Figure

6.1(g) represents the sparsified version of G′, which only contains required arcs and

deadheading arcs corresponding to edges in the reduced MST. One can check that

links (4, 7), (7, 12) and (11, 8) form the minimum cost amount of extra deadheading

needed to make all nodes balanced. Figure 6.1(h) shows the new giant tour in G. It

can be checked that the new giant tour costs 3 less than the old one.

6.3.5 Trip construction phase

Recall that we have a vehicle capacity Q and time limit T . In the next phase of the

algorithm, we construct a collection of “potential” trips that satisfy both of these

restrictions. In this phase, the indices of the links in the giant tour are taken modulo

m. In other words, the link ℓ′i may also be called ℓ′i+m.

For i = 1, . . . ,m, a trip is created as follows. The vehicle departs from the depot,

CHAPTER 6. BOUNDS FOR A REAL-WORLD ARP 125

1
2

3 4

5

6 8 9 10

7

11 12 13

1

1

2

1

2

2 2

5

4

5

44

2 2

2 2

1
2

3 4

5

6 8 9 10

7

11 12 13

(a) Original mixed graph G (b) digraph G′ before arc removal

1
2

3 4

5

6 8 9 10

7

11 12 13

{1, 2}

{3, 4}

5

6 {8, 9, 10}

7

{11, 12, 13}

2 2

1

1 5 4

2

4

(c) Digraph G′ after arc removal (d) Graph GS

{1, 2}

{3, 4}

5

6 {8, 9, 10}

7

{11, 12, 13}

{1, 2}

{3, 4}

5

6 {8, 9, 10}

7

{11, 12, 13}

(e) MST on graph GS (f) MST with redundant edge removed

CHAPTER 6. BOUNDS FOR A REAL-WORLD ARP 126

1
2

3 4

5

8 9 10

7

11 12 13

1
2

3 4

5

8 9 10

7

11 12 13

(g) Sparsified version of digraph G′ (h) New giant tour

Figure 6.1: An illustration for the sparsification phase

deadheads to the start node of ℓ′i, and then services ℓ′i, ℓ
′
i+1 and so on, until it cannot

service any more links due to the capacity limit. At this point, it visits a node in I to

unload. The vehicle then continues to service links and periodically visit nodes in I,

until it cannot service any more links without violating the time limit. At that point,

it unloads one last time at a node in I and returns to the depot.

Our method to generate trips is similar to the “first-fit bin-packing heuristic” in

[205]. The heuristic takes only O(m) time for a given i, which makes the running

time of this phase O
(
m2
)
in total. Once all m trips are created, we let len[i] denote

the number of required links that are serviced in the ith trip.

For reasons which will become clear in Subsection 6.3.7, we compute and store

some additional information. Specifically, for a given i, and for β ∈
{
5, 10, 15

}
, we let

len[i,β] be the number of links that would be serviced in the ith trip, if the time limit

were decreased by β minutes. Note that the additional computing time and memory

that is required to calculate and store this extra information is negligible.

CHAPTER 6. BOUNDS FOR A REAL-WORLD ARP 127

6.3.6 Trip selection phase

Next, we attempt to construct an MCARPIFD solution that uses as few trips as

possible, but we temporarily ignore the fact that the number of trips must be a

multiple of h. For this, we use Algorithm 6.3.

The algorithm constructs m MCARPIFD solutions, and stores the best along

the way. The asterisk indicates the best solution found so far (sometimes called the

“incumbent”). The number of trips used in the incumbent is denoted by N .

In the ith solution, the first link to be serviced by the first vehicle is ℓ′i and the

last link to be serviced by the last vehicle is ℓ′i+m−1 (with indices again being taken

module m). The index k represents the number of trips that have been selected so far

(for the given i), and cu[k] represents the cumulative number of required links that

have been serviced by those k trips.

Algorithm 6.3 takes only O
(
m2
)
time and O(m) space. It is similar to the fastest

tour-splitting procedure in [205], the difference being the addition of the “backtrack-

ing” step. This loop allows us to see if a saving can be made by “backtracking” along

the kth trip. That is, while considering the kth trip, we check if there exists an index

j, with cu[k−1] < j ≤ cu[k]−1, such that ending the kth trip at ℓ′i+j and starting the

(k + 1)th trip from ℓ′i+j+1 increases the cumulative number of required links serviced

so far. We found that this extra step frequently leads to a reduction in the number

of trips, with negligible additional computing effort.

To see how backtracking works, suppose len[1] = 10, len[10] = 11 and len[11] =

9. When i = 1 and k = 1, before we start backtracking, we obtain cu[1] = len[1]

= 10 and cu[2] = cu[1] + len[11] = 10 + 9 = 19. So, the first trip in our solution

services 10 links and the second services 9. Now consider what happens when we

apply backtracking. When j = 9, we have j+ len[i + j] = 9 + 11 = 20 > 19 = cu[2].

CHAPTER 6. BOUNDS FOR A REAL-WORLD ARP 128

Algorithm 6.3: Trip Selection

input : Number of required links m and trip length len[i] for i = 1, . . . ,m

Set N to ∞;

for i = 1 to m do

Set k to 1, cu[0] to 0 and cu[1] to len[i];

while cu[k] < m do

Set cu[k + 1] to cu[k] + len[i+cu[k]];

// Check if all required links have been served

if cu[k + 1] ≥ m then

Set cu[k + 1] to m;

else

// Check if we can serve more required links by backtracking

for j = cu[k-1]+1 to cu[k]-1 do

if j + len[i+ j] > cu[k + 1] then

Set cu[k] to j and increase cu[k + 1] to j + len[i+ j];

end

end

end

Increase k by 1;

end

if cu[k] ≥ m then

Set cu[k] to m;

end

if k < N then

Set N to k and i∗ to i;

for k = 1 to N do

Set cu∗[k] to cu[k];

end

end

end

output: Number of trips N , starting point i∗,

and collection of trips (represented by cu∗[1] to cu∗[N])

Thus, we reduce cu[1] from 10 to 9 and increase cu[2] from 9 to 11. After this change,

the first trip services 9 links and the second services 11. Thus, the total number of

links serviced by the first two trips has increased from 19 to 20.

CHAPTER 6. BOUNDS FOR A REAL-WORLD ARP 129

6.3.7 Time reduction phase

The procedure in the previous subsection yields a collection of N trips. Let r =

N mod h. If r = 0, we have a feasible MCARPIFD solution, and our upper-bounding

procedure ends. If r ̸= 0, however, then we do some more work. Let U = h⌈N/h⌉. By

definition, U is an upper bound on the minimum number of trips needed. Moreover,

there is a chance that, if we use U trips instead of N , we will be able to reduce the

maximum trip duration.

To deal with this, we use the “len[i,β]” values, that we mentioned at the end of

Subsection 6.3.5. In more detail, for β ∈ {5, 10, 15}, we re-run Algorithm 6.3, with

the “len[i]” values replaced with the “len[i,β]” values. If we find a solution that uses

no more than U trips, but has a smaller maximum trip duration, we replace the old

solution with the new solution.

For example, suppose that T = 8, h = 10 and N = 33. We have U = 40 and

r = 3. Suppose that the number of trips used for β = 5, 10 and 15 is 35, 38 and 41,

respectively. We now have an MCARPIFD solution that uses no more than 40 trips

and has a maximum trip duration of no more than 7 hours and 50 minutes. (Note

that the maximum trip duration in that particular solution may well be even smaller

than that.)

6.4 Lower Bounds

In this section, we present a lower-bounding algorithm for the MCARPIFD. This

algorithm is specifically designed to give bounds of acceptable quality in just a couple

of minutes.

The algorithm actually computes lower bounds on three quantities: the total num-

CHAPTER 6. BOUNDS FOR A REAL-WORLD ARP 130

ber of trips, the total number of visits to intermediate facilities, and the total travel

time. We denote these bounds by K, α and τ , respectively. The following six subsec-

tions present the key components of our algorithm.

6.4.1 Initial lower bounds

The first step is to compute initial estimates of K, α and τ . To do this, we use

Algorithm 6.4. In this algorithm, t(ℓ) denotes the minimum time needed to travel

from the depot to an end-node of link ℓ, t′(ℓ) denotes the minimum time needed to

travel from an end-node of ℓ to the nearest node in I, t′′(ℓ) denotes the minimum

time needed to travel from a node in I to an end-node of ℓ, and t′′′(ℓ) denotes the

minimum time needed to travel from an end-node of ℓ to the depot via a node in I.

Lemma 6.1. The bounds produced by Algorithm 6.4 are valid.

Proof. Let K ′ be the minimum number of trips in an optimal solution. If K ′ = K,

then the total number of times a vehicle travels from a required link to a node in I is

at least α−K, and the same is true for the number of times a vehicle travels from a

node in I to a required link. The result is then immediate.

Suppose instead that K ′ > K. Consider one specific trip. It forms a closed walk

in G that includes the depot and passes through an intermediate facility at least

once. Suppose we short-cut this closed walk, by omitting the depot, and then add

the resulting closed walk to one of the other trips. The cost of the resulting (possibly

infeasible) solution is no larger than that of the original. Repeating this argument,

if necessary, we obtain a (possibly infeasible) solution that costs no more than the

optimal solution, but uses only K trips. We can then apply the argument in the

preceding paragraph.

CHAPTER 6. BOUNDS FOR A REAL-WORLD ARP 131

Algorithm 6.4: Initial Lower Bounds

input : mixed graph G = (V, L), sets LR ⊆ L, I ⊂ V ,

demands qℓ, servicing times sℓ, traversal times tℓ,

vehicle capacity Q, deadline T , positive integer h

for i = 1, . . . , |LR| do

let ℓi denote the ith closest required link from the depot;

let ℓ′i denote the ith closest required link to the set I;

let ℓ′′i denote the ith closest required link from the set I;

let ℓ′′′i denote the ith closest required link to the depot via a node in I;

end

Set K to h and set α to max
{
h,
⌈∑

ℓ∈LR
qℓ/Q

⌉}
;

repeat

Let τ =
∑
ℓ∈LR

sℓ +
K∑
i=1

t
(
ℓi
)
+

α−K∑
i=1

t′
(
ℓ′i
)
+

α−K∑
i=1

t′′
(
ℓ′′i
)
+

K∑
i=1

t′′′
(
ℓ′′′i
)
;

If τ/T > K, then set K to K + h;

If K > α, then set α to K;

until no further increase in K is possible;

output: Initial lower bounds K, α and τ .

CHAPTER 6. BOUNDS FOR A REAL-WORLD ARP 132

6.4.2 Auxiliary digraph

For what follows, it is helpful to define an auxiliary directed graph, which we denote

by Ḡ =
(
V̄ , Ā

)
. This digraph is created as follows. Initially, Ḡ is a copy of G. We

then replace each edge e ∈ E with a pair of directed arcs, one in each direction.

Next, we add some “dummy” nodes and arcs. We add a node 1∗ and a node

set I∗, which can be thought of as copies of the depot and intermediate facilities,

respectively. For each node v ∈ VR, we add the arc (1∗, v) to Ā. (This arc represents

the journey from the depot to the v.) For each node v ∈ VR and each dummy node

i∗ ∈ I∗, we add the arcs (v, i∗) and (i∗, v) to Ā. (These arcs represent journeys from

v to an intermediate facility, or vice-versa.) Finally, for each i∗ ∈ I∗, we add the arc

(i∗, 1∗) to Ā. (These arcs represent journeys from intermediate facilities to the depot,

at the end of the day.)

For each dummy arc (u, v) ∈ Ā, we let tuv denote the time taken to travel from

u to v in G if one follows the quickest path. To compute these times, it suffices to

call Dijkstra’s single-source shortest-path algorithm |I| + 1 times in G. This takes

O
(
|I|(|L|+ |V | log |V |)

)
time.

For notational ease, we identify tuv and tvu for each edge {u, v} ∈ E, and we

identify suv and svu for each edge {u, v} ∈ ER. We also let δ̄+(S) and δ̄−(S) denote

the set of arcs in Ḡ leaving and entering S, respectively. Finally, we let ĀR denote

the set of arcs in Ā that represent arcs in LR. (That is, there are two arcs in ĀR for

each edge in ER, plus one arc for each arc in AR.)

6.4.3 Initial LP relaxation

Our initial LP relaxation is an extension of the one for the CARP mentioned in

Subsection 6.2.1. It uses two kinds of variables, called x and y.

CHAPTER 6. BOUNDS FOR A REAL-WORLD ARP 133

For each edge {u, v} ∈ ER, the binary variables xuv and xvu indicate the direction

in which {u, v} is serviced. (For notational simplicity, we also define a variable xuv for

each arc (u, v) ∈ AR. These latter variables are fixed to 1.) For each arc (u, v) ∈ Ā,

the general-integer variable yuv represents the total number of times that (u, v) is

deadheaded.

We remark that the y variables for the dummy arcs take into account any dead-

heading that occurs while vehicles are (a) on the way from the depot to the first link

that they service, (b) travelling to and from the intermediate facilities, or (c) return-

ing to the depot at the end of the day. The y variables for the remaining arcs deal

with any additional deadheading.

The initial LP is then as follows:

∑
a∈Ā taya (6.3)

xuv + xvu = 1
(
{u, v} ∈ ER

)
(6.4)

xuv = 1
(
(u, v) ∈ AR

)
(6.5)

y
(
δ̄+(1∗)

)
≥ K (6.6)

y
(
δ̄+(I∗)

)
≥ α (6.7)

x
(
δ̄+R(v)

)
+ y
(
δ̄+(v)

)
= x

(
δ̄−R(v)

)
+ y
(
δ̄−(v)

)
(v ∈ VR) (6.8)

y
(
δ̄+(v)

)
= y
(
δ̄−(v)

) (
v ∈ V̄ \ VR

)
(6.9)

y1∗,v +
∑

i∗∈I∗
(
yv,i∗ + yi∗,v

)
≤
∣∣δR(v)∣∣ (v ∈ VR) (6.10)

xuv, xvu ≥ 0
(
{u, v} ∈ ER

)
yuv ≥ 0

(
(u, v) ∈ Ā

)
.

The objective function (6.3) represents the total amount of time spent deadheading.

Constraints (6.4) and (6.5) ensure that each required link is serviced. Constraint (6.6)

ensures that at least K trips are used. Constraint (6.7) ensures that the intermediate

CHAPTER 6. BOUNDS FOR A REAL-WORLD ARP 134

facilities are visited at least α times. Constraints (6.8) and (6.9) ensure that the

number of vehicles leaving each node is equal to the number of vehicles arriving.

Constraints (6.10) arise due to the fact that each node in VR is incident on a small

number of required links. The remaining constraints are trivial.

We remark that, due to the sparsity of road networks, our initial LP contains only

O(n) constraints. In practice, it can be solved in a few seconds, even for very large

instances.

6.4.4 Cutting-plane algorithm

Recall that the industrial partner wanted lower bounds to be available within a couple

of minutes. Since our initial LP was typically solved in a few seconds, we had some

spare time. This led us to devise a cutting-plane algorithm, which uses analogues of

the capacity inequalities (6.1) and R-odd-cut inequalities (6.2).

To this end, we define:

k(S) =

⌈∑
ℓ∈LR(S)∪∆R(S) qℓ

Q

⌉
(∅ ≠ S ⊆ V).

The analogue of the capacity inequalities is then:

y
(
δ̄+(S) ∪ δ̄−(S)

)
≥ 2k(S)− |∆R(S)|

(
∅ ≠ S ⊆ V

)
. (6.11)

The analogue of the R-odd-cut inequalities is:

y
(
δ̄+(S) ∪ δ̄−(S)

)
≥ 1

(
S ⊂ V : |∆R(S)| odd

)
. (6.12)

For a high-level description of our algorithm, refer to Algorithm 6.5. Note that,

each time the LP is re-optimised, we check whether any of K, α or τ can be increased.

CHAPTER 6. BOUNDS FOR A REAL-WORLD ARP 135

Algorithm 6.5: Cutting-Plane Algorithm

input : mixed graph G = (V,L), sets LR ⊆ L, I ⊂ V ,

demands qℓ, vehicle capacity Q, deadline T ,

positive integer h, initial lower bounds K, α, τ

Construct the initial LP relaxation;

Solve the initial LP via primal simplex;

repeat

Update τ ;

Set improved to false;

if τ/T > K then

Set improved to true;

Set K to K + h and update constraint (6.6);

if K > α then

Set α to K and update constraint (6.7);

end

else

Call separation algorithms for constraints (6.11) and (6.12);

if any violated inequalities are found then

Set improved to true;

Add the inequalities to the LP;

end

end

Re-optimise the LP via dual simplex;

Delete all cutting planes that have slack > 0.1;

until improved = false;

output: Final lower bounds K, α and τ .

Due to the limited computation time available, we do not use sophisticated sepa-

ration algorithms. Instead, we use the following fast and simple heuristic:

CHAPTER 6. BOUNDS FOR A REAL-WORLD ARP 136

1. Let y∗ be the value of the vector y at the current LP solution.

2. Let ϵ = 0.01.

3. Construct a graph G∗ = (V,E∗) as follows. For each arc (u, v) ∈ Ā such that

{u, v} ⊂ V and y∗uv ≥ ϵ, the edge {u, v} is included in E∗.

4. Check whether G∗ is connected. If not, check each connected component, to see

if it violates a capacity inequality (6.11) or R-odd cut inequality (6.12).

5. Expand E∗ as follows. For each arc (u, v) ∈ ĀR such that the edge {u, v} is not

already in E∗, insert {u, v} into E∗.

6. Repeat step 4.

Our implementation of this heuristic runs in O
(
|V | |L|

)
time (because there are O(|V |)

components, and checking each one takes O(|L|) time).

In our preliminary computational tests, we found that the cutting-plane algorithm

exhibited a pronounced “tailing-off” effect. That is, the lower bound improved rapidly

in the early iterations, but extremely slowly after that. For this reason, we run the

algorithm for one minute only for any given instance.

6.4.5 Additonal flow variables

Observe that the cutting planes (6.11) take the vehicle capacity into account, but

not the time deadline. In principle, it is possible to strengthen the right-hand side of

(6.11) by taking time into account. However, we could not find a fast algorithm for

doing this. Instead, we found it more effective to introduce additional variables and

constraints to represent the flow of time.

Assume without loss of generality that all trips begin at time 0. For each arc

(u, v) ∈ Ā, let fuv be a non-negative continuous variable, with the following interpre-

CHAPTER 6. BOUNDS FOR A REAL-WORLD ARP 137

tation. If the arc is not traversed by any vehicle, then fuv takes the value 0. If the

arc is traversed exactly once, then fuv represents the time at which the corresponding

vehicle departs from node u. If the arc is traversed several times, then fuv repre-

sents the sum of the corresponding elapsed times. In other words, the f variables are

“aggregated” over all trips, just like the y variables.

Before presenting the constraints, we need a little more notation. For each node

u ∈ V̄ , let e(u) and ℓ(u) be the earliest and latest times at which a vehicle can arrive

at node u, or depart from node u, respectively. (These values can be computed with

two calls to Dijkstra’s algorithm.)

We then add the following constraints to the LP:

f
(
δ̄+(v)

)
= f

(
δ̄−(v)

)
+
∑

a∈δ̄−(v) taya
(
v ∈ V̄ \ (VR ∪ {1∗}

)
f
(
δ̄+(v)

)
= f

(
δ̄−(v)

)
+
∑

a∈δ̄−R (v) saxa +
∑

a∈δ̄−(v) taya
(
v ∈ VR \ {1∗}

)
fuv ≥ e(u)yuv

(
(u, v) ∈ Ā \ ĀR

)
fuv ≥ e(u)(xuv + yuv)

(
(u, v) ∈ ĀR

)
fuv ≤

(
ℓ(v)− tuv

)
yuv

(
(u, v) ∈ Ā \ ĀR

)
fuv ≤

(
ℓ(v)− suv − tuv

)
xuv +

(
ℓ(v)− tuv

)
yuv

(
(u, v) ∈ ĀR

)
.

The interpretation of these constraints is straightforward and omitted for brevity.

6.5 Computational Results

For all of our computational experiments, we used a laptop with an 11th Gen Intel

Core i7 processor, running under Windows 10 at 3GHz with 16GB of RAM. All

algorithms were implemented with C# in the .NET framework, and compiled with

Microsoft Visual Studio 2019. To solve the LP relaxations, the code called on the

dual simplex solver of CPLEX (v. 12.10).

CHAPTER 6. BOUNDS FOR A REAL-WORLD ARP 138

City Centre Len 1 Len 2 Len 3 Len 4

Seoul Arario Gallery Seoul 2229.5 3032.5 3567.5 4088.1

NewYork RidgeWood 2969.0 3942.0 4892.6 5676.8

Istanbul City Center AVM 1269.0 1839.0 2361.0 2811.0

Hanoi National Cinema Center 1947.0 2811.0 3559.0 4299.0

London MayFair 1898.0 2811.0 3516.0 4040.0

Table 6.1: Computation of initial squares.

6.5.1 Test Instances

Since we were asked by the industrial partner not to share details of their MCARPIFD

instances, we created some artificial instances for this chapter. We did however take

care to ensure that they are realistic. In particular, we used real road network data,

extracted using the Python package OSMnx [37].

We selected five cities: Seoul, New York, Istanbul, Hanoi and London. For each

city, we selected a central landmark. After that, we did the following for each city and

each value β ∈ {2500, 5000, 7500, 10000}. We computed the smallest square, centred

on the landmark, that contains at least β nodes. Table 6.1 shows, for each of the five

cities, the name of the landmark and the length (and therefore also width) of the four

squares, in metres.

For each of the 20 resulting squares, we created a mixed graph G as follows. The

set of links L was determined by the set of roads that were wholly contained in the

square. After that, we set V to the set of nodes that were incident on at least one

link in L.

Unfortunately, we found that a few of the resulting mixed graphs were not strongly

connected. To deal with this, we used Kosaraju’s Algorithm [1] to compute the

CHAPTER 6. BOUNDS FOR A REAL-WORLD ARP 139

strongly connected components for each graph. We then redefined G to be the largest

component in each case. Note that, by construction, |V | is always smaller than β.

The next step was to decide which links were required. For simplicity, we just made

each link required with probability 1/2. Some summary statistics for the resulting 20

graphs can be found in Table 6.2. Note that all cities have a significant number of

one-way streets.

We now describe the default parameters used. (We explore the effect of varying

these parameters in Subsection 6.5.3). We set the time limit T to 8 hours, the vehicle

capacity Q to 10.5 tonnes, and the travelling speed to 30 kph. We set h to 10, which

means that each household has a weekday collection every two weeks. The depot was

placed at the top-left, while two intermediate facilities were located at the top-right

and bottom-left. Two-way streets were treated as edges.

The servicing times sℓ, measured in hours, followed a log-normal distribution.

The mean and standard deviation in the log scale were set to −3.933 and 1.005,

respectively. To set the demands qℓ, we used the regression equation qℓ = 0.0035 +

2.7879sℓ + ϵℓ, where the noise terms ϵℓ were i.i.d. normal variables with mean 0 and

standard deviation 0.0386. (All of these parameters were based on our experience

with real instances.)

Full details of all instances will be made available at the Lancaster University Data

Repository2.

6.5.2 Results for the default scenario

First we present the results obtained with our upper-bounding procedure. Table 6.3

shows the following for each of the 20 instances: the city name, the number of nodes

(|V |), the number of trips in the heuristic solution (K), the number of visits to the

2http://www.research.lancs.ac.uk/portal/en/datasets/search.html

http://www.research.lancs.ac.uk/portal/en/datasets/search.html

CHAPTER 6. BOUNDS FOR A REAL-WORLD ARP 140

intermediate facilities (α), the mean and maximum trip durations (in hours), and the

computing time (in seconds).

As one might expect, the number of trips scales roughly linearly with the number

of nodes, and so does the number of visits to intermediate facilities. Note that, in all

instances, α ≈ 2K. This means that the vehicles tend to visit an intermediate facility

twice in each trip. This is similar to what we encountered in practice.

The mean and maximum trip durations are well within 8 hours in every case. It

is clear that the procedure mentioned in Subsection 6.3.7 has succeeded in reducing

the maximum duration in all cases. Closer inspection of the output showed that, for

some instances, the last trip generated had a significantly shorter duration than all

of the others. This suggests that one could reduce the maximum duration further,

while keeping the number of trips the same, by applying some kind of local search

procedure.

As for the running times, the heuristic runs in less than 25 seconds in all cases.

Our industrial partner was very happy with the upper bounds and running times.

We now turn our attention to the lower-bounding procedure. Table 6.4 shows

the following for each instance: the city name and the number of nodes (as before);

the lower bounds on the number of trips (K), number of visits to the intermediate

facilities (α) and total travel time (τ); the ratio between the lower and upper bounds

on K and τ ; and the computing time in seconds.

We see that the lower-bounding procedure produces excellent lower bounds on

K and α, and good lower bounds on τ , within one and a half minutes. Moreover,

despite the severe restrictions on computing time, our procedures have found the

proven optimal value of K for 18 instances. We suspect that, for the remaining two

instances, one could find a solution that uses 10 fewer trips (and therefore one fewer

vehicle), given additional computing time.

CHAPTER 6. BOUNDS FOR A REAL-WORLD ARP 141

6.5.3 Sensitivity analysis

For completeness, and to aid insight, we conduct a sensitivity analysis. We experiment

with varying three parameters: the number of weeks between consecutive visits to

customers, the number of intermediate facilities, and the deadheading speed. We also

examine the effect of having to service each required edge twice, once in each direction.

Visit frequency

In our default scenario, h is 10, which means that each customer is visited every two

weeks. We explore the effect of changing h to 5 (corresponding to weekly visits) and

15 (corresponding to one visit every three weeks). Note that, when h is reduced to 5,

the demand for each required link is halved. Similarly, when h is increased to 15, the

demands are multiplied by 1.5.

Figure 6.2 shows the gap between the lower and upper bounds on the number of

trips K, for all 20 instances and for the three values of h. In each box, the first 5 lines

represent the default setting (h = 10), the next 5 lines represent the case h = 5, and

the last 5 lines represent the case h = 15. (In the online version, the lines are colored

blue, red and green, respectively.) A line of zero length indicate that the upper and

lower bounds coincide.

Remarkably, changing the value of h does not make a big difference to the number

of trips. Closer inspection of the output revealed that an increase in h usually led

to a significant increase in α (the number of visits to the intermediate facilities), but

not much difference to K or τ . This suggests that larger values of h are much more

economical for the service provider, since they significantly reduce the number of trips

per week (and therefore also the number of vehicles required). We remark that some

local councils in the UK recently suggested increasing h from 10 to 15, but they were

CHAPTER 6. BOUNDS FOR A REAL-WORLD ARP 142

10
20

30
40

50
60

|V|

N
um

be
r

of
 tr

ip
s

2500 5000 7500 10000

Seoul New York Istanbul Hanoi London

BaseCase h=5 h=15

Figure 6.2: Estimates of K when h varies.

forced to abandon the idea due to opposition from the public.

Number of intermediate facilities

In our default scenario, there are two intermediate facilities (IFs). We now explore

the effect of having just one (located in the top-right of the square) or three (located

at top-right, bottom-left and bottom-right).

Figure 6.3 is similar to Figure 6.2, except that the three cases are |I| = 2, 1, 3. It

is apparent that changing the number of IFs has no effect on the number of trips in

almost all cases. Closer inspection of the output showed that increasing the number

of IFs led to a small increase in α, a small decrease in τ , and a small decrease in

the maximum trip duration. This is because vehicles can travel to the nearest IF to

unload, instead of being forced to go to one specific IF.

Deadheading speed

Next, we explored the effect of changing the deadheading speed from 30kph to either

20kph or 40kph. Figure 6.4 shows the resulting estimates of K. As one would expect,

the number of trips needed tends to decrease as the deadheading speed increases.

CHAPTER 6. BOUNDS FOR A REAL-WORLD ARP 143

10
20

30
40

50
60

|V|

N
um

be
r

of
 tr

ip
s

2500 5000 7500 10000

Seoul New York Istanbul Hanoi London

BaseCase |I|=1 |I|=3

Figure 6.3: Estimates of K when |I| varies.

The effect is however fairly small. This is probably because, in an urban setting, the

majority of time is spent servicing rather than deadheading. For the same reason,

increasing the deadheading speed tended to lead to only small decreases in τ . As for

α, there was no discernable pattern.

10
20

30
40

50
60

|V|

N
um

be
r

of
 tr

ip
s

2500 5000 7500 10000

Seoul New York Istanbul Hanoi London

BaseCase Speed 20kmph Speed 40kmph

Figure 6.4: Estimates of K when deadheading speed varies.

CHAPTER 6. BOUNDS FOR A REAL-WORLD ARP 144

Two-lane service

Finally, we consider the case in which each required edge must be serviced twice, once

in each direction. (More precisely, each edge in ER is replaced by a pair of anti-parallel

required arcs, each with half the demand.)

Figure 6.5 shows the resulting bounds on K. As one might expect, requiring

edges to be serviced twice tends to lead to an increase in the number of trips. Again,

however, the effect is less marked than one might expect. A possible explanation is

that replacing each required edge with a pair of required arcs causes the total number

of R-odd nodes to decrease. As a result, the amount of deadheading tends to decrease,

even if the amount of servicing increases. A similar pattern was seen with τ .

10
20

30
40

50
60

Seoul New York Istanbul Hanoi London

BaseCase 2 Lanes Service

2500 5000 7500 100002500 5000 7500 10000

Figure 6.5: Estimates of K with one or two visits to required edges.

We remark that, throughout our experiments, the lower bound on τ was never

less than 83% of the upper bound. In fact, in 85% of the cases, it was above 90%.

We also remark that requiring edges to be serviced twice caused our upper-bounding

procedure to take around twice as long. This is because the giant tour becomes nearly

twice as large. On the other hand, there was no significant increase in the time taken

by our lower-bounding procedure, due to the fact that we imposed a limit of one

CHAPTER 6. BOUNDS FOR A REAL-WORLD ARP 145

minute for the cutting-plane phase.

CHAPTER 6. BOUNDS FOR A REAL-WORLD ARP 146

City |V | |L| |A| |LR| |AR|

Seoul

2446 3483 722 1760 353

4972 7034 1186 3479 583

7478 10625 1535 5374 725

9936 14134 1817 7122 951

New York

2447 4072 2258 2057 1159

4939 8334 5058 4207 2547

7416 12630 7634 6285 3822

9849 16877 10213 8373 5084

Istanbul

2490 3776 368 1925 176

4961 7627 921 3745 464

7432 11454 1501 5741 743

9862 15219 2353 7696 1221

Hanoi

2356 3150 779 1570 377

4918 6482 1558 3199 774

7439 9951 2186 4977 1080

9853 13222 2848 6630 1474

London

2437 3505 1779 1760 888

4927 6950 2900 3537 1500

7415 10296 3945 5034 1957

9899 13508 4628 6674 2278

Table 6.2: Summary statistics for 20 graphs

CHAPTER 6. BOUNDS FOR A REAL-WORLD ARP 147

Duration (hrs)

City |V | K α mean max Time (s)

Seoul

2446 10 19 6.87 7.50 1.20

4972 20 39 7.43 7.75 2.35

7478 30 59 7.56 7.75 5.13

9936 40 79 7.74 7.91 8.71

New York

2447 20 28 4.44 4.67 4.77

4939 30 59 6.49 6.67 7.12

7416 40 79 7.14 7.25 10.80

9849 60 119 7.01 7.08 23.13

Istanbul

2490 10 20 6.80 7.50 1.62

4961 20 39 7.05 7.33 4.93

7432 30 60 7.54 7.75 6.76

9862 40 79 7.68 7.83 11.94

Hanoi

2356 10 19 6.13 6.75 2.07

4918 20 39 6.73 7.00 4.96

7439 30 59 7.19 7.42 7.32

9853 40 79 7.36 7.50 14.12

London

2437 10 19 6.77 7.41 1.48

4927 20 39 7.31 7.67 3.19

7415 30 59 7.17 7.33 9.65

9899 40 79 7.37 7.50 13.70

Table 6.3: Upper bounding results under default scenario

CHAPTER 6. BOUNDS FOR A REAL-WORLD ARP 148

City |V | K α τ Ratio K Ratio τ Time (s)

Seoul

2446 10 16 63.4 1.000 0.923 65.54

4972 20 34 137.3 1.000 0.924 67.67

7478 30 52 207.8 1.000 0.916 71.50

9936 40 70 283.0 1.000 0.914 85.59

New York

2447 10 20 79.2 0.500 0.891 63.40

4939 30 41 176.5 1.000 0.906 65.44

7416 40 60 259.8 1.000 0.909 68.83

9849 50 81 365.3 0.833 0.868 82.12

Istanbul

2490 10 18 64.6 1.000 0.949 62.51

4961 20 36 133.3 1.000 0.945 70.03

7432 30 56 211.7 1.000 0.935 74.92

9862 40 75 285.9 1.000 0.930 85.95

Hanoi

2356 10 15 57.4 1.000 0.937 62.41

4918 20 31 124.6 1.000 0.925 76.81

7439 30 48 195.9 1.000 0.908 68.97

9853 40 64 268.0 1.000 0.911 74.66

London

2437 10 17 63.6 1.000 0.939 61.90

4927 20 34 135.5 1.000 0.926 71.26

7415 30 48 196.9 1.000 0.915 74.19

9899 40 65 268.5 1.000 0.912 73.50

Table 6.4: Lower bounding results under default scenario

Chapter 7

Conclusion

7.1 Summary

As mentioned in Chapter 1, road transportation gives rise to a wide array of vehicle

routing problems (VRPs). These VRPs are combinatorial optimisation problems, and

most of them are NP-hard. In this thesis, we introduced some exact and heuristic al-

gorithms for certain VRPs involving road networks, and gave computational evidence

of their effectiveness.

In Chapter 1, we discussed the motivation of the thesis. The work was inspired

by some large and complex VRPs arising in the context of waste collection. We

introduced several variants of the VRP, and introduced the concept of arc routing

problems (ARPs). After that, we focused on waste routing problems (WRPs) in

particular, and gave an overview of the types of planning processes involved.

In Chapter 2, we reviewed the ARP literature in more detail. Several types of ARP

were covered, including undirected, directed and mixed versions of the CPP, RPP and

CARP. For each type of ARP, we mentioned some formulations, exact algorithms and

heuristics that are widely used in the literature.

149

CHAPTER 7. CONCLUSION 150

In Chapter 3, we explored the potential of a heuristic approach to large-scale

VRPs on road networks. The true road distances are initially replaced with planar

Euclidean distances, and the solution to the transformed instance is then converted

into a solution for the original instance. To explore the quality of this heuristic scheme,

we conducted extensive computational experiments. In particular, we created 96 VRP

instances with up to 2000 nodes, using available real road network data. It turned

out that the proposed heuristic works rather well in most cases. To be specific, the

gap between the approximate solution and the solution obtained with the original

algorithm was never more than 21%, and usually considerably smaller.

In Chapter 4, we considered matching-based methods for computing lower bounds

for ARPs. By exploiting the structure of real-life road networks, we were able to speed

up the existing matching techniques dramatically, without incurring any significant

deterioration in the quality of the lower bound. Two specific ARPs were considered:

the CPP and the CARP. In both cases, the algorithm contains two phases. The first

phase creates a sparse auxiliary graph, whereas the second phase solves a matching

problem on that graph. We conducted extensive experiments with 36 new instances,

having up to 50,000 nodes. It turned out that our approach is orders of magnitude

faster than previous procedures in the literature.

In Chapter 5, we considered the GRP, a generalisation of the RPP which is partic-

ularly suitable for modelling routing problems that involve road networks. We showed

how to speed up one well-known constructive heuristic for the GRP, without incurring

any loss in the quality of the solution. Some extensive computational results were also

presented, on both existing benchmark instances and 48 new instances created using

real road network data. The improvement in solution quality was modest in all cases

(around 0.08% on average), but the improvement in running time was dramatic, with

a speed-up factor of around 1000 for instances with at least 5,000 nodes.

CHAPTER 7. CONCLUSION 151

Finally, in Chapter 6, we turned our attention to a real-life WRP faced by our

industrial partner. This problem is extremely complex, with vehicle capacities, in-

termediate facilities, a time deadline, a combination of one- and two-way streets,

and fairness considerations. Moreover, the instances encountered in practice are very

large. We developed fast bounding procedures for this problem. Our upper-bounding

algorithm combines several ingredients, including a constructive heuristic, Euclidean

approximation, local search, a minimum-cost flow routine and a tour-splitting tech-

nique. Our lower-bounding algorithm is based on linear programming and specialised

cutting planes. To explore the quality of these procedures, we created and solved 20

instances, with up to 10,000 nodes, using real road network datas. Both algorithms

produced bounds in less than 2 minutes. They produced optimal solutions, in terms

of the number of trips, in 18 out of 20 instances. In terms of the total cost, the lower

bound was above 90% of the upper bound in almost all cases. We also conducted a

sensitivity analysis.

7.2 Further Work

We believe that the methods in this thesis have the potential to be extended in various

ways. In this last section, we make some suggestions along these lines. For ease of

presentation, we consider one topic at a time.

7.2.1 Euclidean approximation

We saw in Chapter 3 that using Euclidean distances instead of real road distances

can yield acceptable feasible solutions (and upper bounds) for the Steiner TSP and

Steiner CVRP, as long as one uses shortest paths between consecutive required nodes.

The results were especially promising when only a small proportion of nodes require

CHAPTER 7. CONCLUSION 152

service, which is the case in almost all real-life applications. (Further evidence of the

effectiveness of the approach was given in Chapter 6, where the approach was applied

to a real-life waste routing problem.)

We believe that Euclidean approximation would also work well for some other

Steiner VRPs, for example with split deliveries, backhauls, multiple depots, interme-

diate facilities, a mixture of pickups and deliveries, and/or demands located on edges

as well as nodes.

It would be hard, however, to adapt the approach to problems with time windows.

The issue is that distances on a road network are often significantly longer than

Euclidean distances (around 30% longer, see Subsection 3.1.4). As a result, a trip that

is feasible for the planar Euclidean version of a problem may well become infeasible

when the edges in the trip are replaced with shortest paths in the road network.

This difficulty could perhaps be alleviated somewhat by multiplying the Euclidean

distances with a suitable constant, such as 1.3, before solving the planar Euclidean

version of the problem. Nevertheless, even if this is done, there is still a chance

of obtaining trips that are infeasible for the original instance, especially if the time

windows are narrow.

7.2.2 Matching-based approaches

In Chapter 4, we explored in depth the use of matching algorithms to solve the

CPP, and to compute lower bounds for more complex ARPs. We found that that,

by exploiting the special structure of road networks, we could solve large-scale CPP

instances in less than a second, and compute strong lower bounds for large-scale CARP

instances within a few seconds. Moreover, any future improvements in matching

software will make our procedures even better.

We believe that our approach could be fairly easily adapted to other ARPs, such as

CHAPTER 7. CONCLUSION 153

ARPs with time deadlines [79, 139], multiple depots [77] and/or intermediate facilities

[98]. It could perhaps also be adapted to ARPs on mixed graphs [25, 38]. (One would

probably have to relax the problem by allowing arcs to be traversed in either direction.)

We remark that Miller [155] computed lower bounds for the standard VRP using

a ‘b-matching’ approach. The idea is that a vehicle must arrive at and depart from

any given customer node. As a result, all customer nodes must have degree 2 in

any feasible VRP solution. An interesting question is whether one could develop a

b-matching approach to Steiner VRPs with a mixture of required nodes and required

arcs. (Presumably, in the b-matching, isolated required nodes should have degree 2

and R-odd nodes should have degree 1.)

7.2.3 Constructive heuristics for the general routing problem

In Chapter 5, we took an existing constructive heuristic for the GRP, due to Christofides

and others, and improved it in terms of both solution quality and running time. Al-

though the improvement in quality was modest in most cases, the improvement in

time was dramatic, even amounting to four orders of magnitude in some cases. The

improved heuristic worked particularly well on GRP instances involving road net-

works.

One obvious potential topic for future research is to improve the heuristic even

further. We have one suggestion in that regard. A key step in our version of the

heuristic is the “sparsification” phase, in which we compute a minimum spanning

tree in a suitable shrunk graph. It would be interesting to compute several different

spanning trees, rather than just one. This would enable us to generate several heuristic

solutions, and then pick the best. Of course, this would come at a cost of increased

running time, since several T -join problems would need to be solved.

CHAPTER 7. CONCLUSION 154

7.2.4 Fast bounds for large-scale arc routing problems

Finally, in Chapter 6, we considered a “rich” real-life arc routing problem. The prob-

lem had complex constraints and objective functions, and the instances encountered

in practice were very large, with thousands of nodes and edges. For this problem,

our industrial partner wanted algorithms that could produce lower and upper bounds

within just a couple of minutes. We were eventually able to accomplish this, by using

a judicious combination of known and new techniques.

We can think of three possible topics for future research. The first is the de-

velopment of local search heuristics to improve the upper bounds obtained with our

approach. The second is the development of a heuristic to decompose the problem

into a number of smaller problems, based on dividing the city into suitable smaller

regions. (This is called “districting” in the arc routing literature [44, 161].) The third

is the development of an exact algorithm for the single-vehicle version of the problem

(which could perhaps be called the “Mixed Capacitated Rural Postman Problem with

Intermediate Facilities”). Such an algorithm could perhaps be used to “polish” the

individual trips that are generated by our heuristic, or indeed the trips found by the

expert trip planners.

Appendix A

Appendix

A.1 Steiner TSP Results

Tables A1 and A2 give results for the 96 Steiner TSP instances. They show the follow-

ing for each instance: the number of required nodes, the length of the optimal Steiner

TSP solution in metres, and various ratios of interest. Dashes indicate instances for

which U− is the same as U . In the column headed “TU/TOPT”, TU and TOPT denote

the total time taken by the heuristic and exact methods, respectively. The cities are

sorted in increasing order of DF.

A.2 Steiner CVRP Results

Tables B1 and B2 give results for the 96 Steiner CVRP instances.

155

APPENDIX A. APPENDIX 156

City |VR| OPT TOPT U/OPT U−/OPT OPT/L U/L TU/TOPT

125 30096 0.354 1.024 1.024 1.286 1.317 1.056

Paris 250 40152 1.275 1.080 1.059 1.270 1.372 0.623

500 53942 26.041 1.088 1.069 1.208 1.315 1.200

1000 71682 331.798 1.178 1.119 1.198 1.411 0.072

125 26744 0.561 1.027 1.027 1.264 1.298 0.462

Barcelona 250 39568 1.209 1.065 1.058 1.323 1.409 0.442

500 52218 12.175 1.124 1.081 1.244 1.398 1.107

1000 70638 5046.630 1.175 1.109 1.154 1.357 0.082

125 25988 0.381 1.046 1.037 1.266 1.324 1.919

Karachi 250 35786 3.121 1.106 1.106 1.265 1.399 0.494

500 46272 12.742 1.112 1.099 1.247 1.387 1.270

1000 58323 247.505 1.181 1.128 1.187 1.401 5.142

125 50085 0.384 1.081 1.060 1.493 1.614 1.594

Moscow 250 66486 0.779 1.211 1.148 1.400 1.695 2.338

500 90680 2.755 1.326 1.202 2.440 3.236 1.187

1000 114911 147.940 1.530 1.267 1.351 2.066 3.184

125 21736 1.034 1.038 1.028 1.319 1.368 0.548

London 250 35164 0.771 1.081 1.060 1.432 1.547 1.791

500 46528 19.245 1.165 1.105 1.408 1.640 0.135

1000 62671 860.181 1.309 1.171 1.351 1.768 0.751

125 37002 0.327 1.058 1.050 1.430 1.512 1.719

Jo’ Burg 250 48524 2.170 1.144 1.114 1.395 1.595 2.169

500 67491 36.416 1.256 1.197 1.388 1.743 0.416

1000 85686 26315.294 1.369 1.218 1.335 1.828 0.001

125 24609 0.375 1.167 1.154 1.399 1.633 1.552

Istanbul 250 31669 1.110 1.222 1.184 1.316 1.608 7.094

500 43777 38.501 1.435 1.238 1.353 1.942 0.576

1000 55225 40683.340 1.453 1.227 1.273 1.850 0.001

125 25726 0.468 1.094 1.064 1.469 1.607 0.983

Madrid 250 36843 0.792 1.108 1.074 1.428 1.583 5.880

500 43777 27.846 1.249 1.160 1.362 1.702 0.728

1000 61255 1655.390 1.264 1.183 1.300 1.642 0.016

125 38188 0.496 1.088 1.088 1.254 1.364 1.746

New York 250 48556 4.919 1.056 1.047 1.209 1.276 0.241

500 65166 6.318 1.085 1.064 1.161 1.260 4.085

1000 81534 12353.004 1.145 1.087 1.119 1.281 0.625

125 30949 0.820 1.160 1.149 1.704 1.977 0.491

Hanoi 250 43837 1.007 1.160 1.100 1.806 2.094 0.982

500 57353 14.019 1.299 1.198 1.663 2.160 0.305

1000 78770 612.035 1.494 1.202 1.714 2.559 0.431

125 21633 0.464 1.094 1.087 1.392 1.523 8.931

Seoul 250 30088 1.040 1.127 1.092 1.422 1.602 1.263

500 39855 12.489 1.211 1.099 1.375 1.665 0.953

1000 52281 1537.915 1.310 1.151 1.318 1.728 0.008

125 31055 0.499 1.224 1.174 1.565 1.915 0.924

Mexico 250 41187 1.620 1.330 1.509 1.574 2.093 1.273

500 55464 20.106 1.560 1.317 1.492 2.327 0.322

1000 71650 6321.966 1.826 1.336 1.480 2.703 0.006

Table A1: Results for Steiner TSP instances with |V ′| = 1000.

APPENDIX A. APPENDIX 157

City |VR| OPT TOPT U/OPT U−/OPT OPT/L U/L TU/TOPT

125 45523 0.527 1.046 1.045 1.282 1.341 0.767

Paris 250 64232 6.741 1.064 1.060 1.292 1.375 0.124

500 85955 41.998 1.079 1.069 1.295 1.398 0.141

1000 112237 182.721 1.126 1.099 1.246 1.403 0.099

125 43880 0.381 1.019 1.019 1.306 1.332 0.591

Barcelona 250 57636 3.106 1.044 1.040 1.326 1.384 0.599

500 79516 8.290 1.104 1.090 1.321 1.459 0.545

1000 113157 72.104 1.176 1.129 1.307 1.538 0.680

125 34876 0.479 1.031 1.028 1.305 1.345 1.054

Karachi 250 49319 6.494 1.050 1.040 1.330 1.396 0.147

500 65688 7.234 1.124 1.089 1.290 1.450 0.542

1000 87759 200.307 1.138 1.115 1.238 1.409 2.604

125 74460 0.490 1.053 1.051 1.432 1.508 0.902

Moscow 250 104426 2.048 1.157 1.114 1.496 1.731 1.490

500 131120 4.272 1.217 1.184 1.424 1.733 5.212

1000 182210 46.094 1.341 1.216 1.460 1.959 1.051

125 37193 0.428 1.026 1.025 1.376 1.411 0.871

London 250 49487 0.939 1.054 1.044 1.416 1.492 1.167

500 68414 13.314 1.099 1.086 1.365 1.501 0.144

1000 89623 340.684 1.206 1.110 1.374 1.656 0.133

125 54215 0.874 1.096 1.071 1.387 1.520 0.523

Jo’ Burg 250 74904 7.781 1.102 1.087 1.475 1.626 2.495

500 95815 4.048 1.150 1.123 1.386 1.594 1.120

1000 130495 579.892 1.242 1.147 1.378 1.711 0.007

125 38105 0.636 1.111 1.092 1.458 1.620 0.619

Istanbul 250 47075 1.956 1.112 1.093 1.362 1.514 2.327

500 67996 231.774 1.190 1.138 1.440 1.714 0.100

1000 87435 130.098 1.350 1.201 1.352 1.825 1.345

125 35963 0.512 1.036 1.032 1.323 1.372 1.082

Madrid 250 56481 2.596 1.181 1.144 1.464 1.729 1.291

500 78007 10.522 1.363 1.198 1.458 1.987 0.244

1000 101852 424.388 1.402 1.211 1.414 1.983 0.100

125 61746 0.497 1.099 1.095 1.422 1.563 0.948

New York 250 76981 1.753 1.108 1.089 1.333 1.476 2.315

500 105543 7.706 1.108 1.092 1.295 1.436 2.845

1000 137741 378.269 1.150 1.099 1.231 1.415 0.167

125 45157 0.706 1.065 1.061 1.589 1.692 0.467

Hanoi 250 61001 3.184 1.141 1.090 1.577 1.798 0.456

500 86562 17.374 1.201 1.125 1.683 2.021 0.809

1000 117795 455.635 1.299 1.189 1.677 2.178 0.038

125 30619 0.694 1.051 1.049 1.367 1.437 0.520

Seoul 250 46969 3.065 1.084 1.055 1.477 1.601 0.225

500 66638 13.576 1.184 1.152 1.505 1.783 0.432

1000 90786 377.850 1.294 1.174 1.461 1.890 0.699

125 40018 3.183 1.130 1.125 1.481 1.673 0.173

Mexico 250 52156 1.977 1.180 1.130 1.460 1.723 0.465

500 75101 5.761 1.321 1.226 1.533 2.025 7.143

1000 103667 187.237 1.575 1.286 1.518 2.390 0.082

Table A2: Results for Steiner TSP instances with |V ′| = 2000.

APPENDIX A. APPENDIX 158

Graph Solution Phase 1 Phase2

City |V ′| |VR| U T UE/U TE/T U ′
E/U T ′

E/T

1000 125 39387 0.288 1.027 0.389 1.025 0.403

1000 250 49405 6.145 1.057 0.057 1.045 0.058

Paris 1000 500 64205 40.119 1.078 0.128 1.066 0.128

1000 1000 81105 182.045 1.166 0.092 1.131 0.092

1000 125 36189 0.409 0.989 0.352 0.982 0.362

1000 250 46902 2.987 1.093 0.572 1.089 0.573

Barcelona 1000 500 59834 7.692 1.112 0.556 1.089 0.557

1000 1000 78542 70.542 1.180 0.695 1.144 0.695

1000 125 34706 0.286 1.038 0.671 1.035 0.689

1000 250 44025 6.039 1.120 0.069 1.114 0.070

Karachi 1000 500 54695 5.770 1.105 0.515 1.089 0.515

1000 1000 64549 197.549 1.219 2.638 1.170 2.638

1000 125 62679 0.250 1.133 0.780 1.129 0.796

1000 250 81481 1.352 1.172 1.950 1.156 1.953

Moscow 1000 500 108101 2.647 1.261 8.066 1.193 8.067

1000 1000 132527 43.911 1.442 1.072 1.295 1.073

1000 125 29374 0.316 1.074 0.443 1.058 0.456

1000 250 42474 0.650 1.093 0.891 1.079 0.895

London 1000 500 55500 12.536 1.121 0.080 1.084 0.080

1000 1000 70096 338.395 1.282 0.130 1.194 0.130

1000 125 47098 0.342 1.069 0.471 1.065 0.482

1000 250 59274 6.954 1.107 2.728 1.090 2.729

Jo’ Burg 1000 500 77447 2.111 1.219 1.601 1.195 1.603

1000 1000 98001 576.304 1.304 0.005 1.235 0.005

1000 125 32398 0.332 1.131 0.434 1.120 0.443

1000 250 40379 0.887 1.143 4.640 1.109 4.646

Istanbul 1000 500 51766 230.977 1.402 0.097 1.293 0.097

1000 1000 64426 128.776 1.372 1.353 1.228 1.353

1000 125 34763 0.300 1.041 1.003 1.034 1.017

1000 250 44890 2.129 1.110 1.290 1.088 1.292

Madrid 1000 500 56146 8.675 1.235 0.157 1.181 0.158

1000 1000 70813 422.553 1.212 0.097 1.168 0.097

1000 125 50217 0.289 1.060 0.806 1.060 0.820

1000 250 60523 1.285 1.042 2.795 1.034 2.798

New York 1000 500 78315 6.077 1.051 3.457 1.038 3.458

1000 1000 94061 376.965 1.122 0.167 1.086 0.168

1000 125 37036 0.392 1.187 0.355 1.176 0.365

1000 250 51679 2.625 1.124 0.389 1.092 0.390

Hanoi 1000 500 65519 15.831 1.266 0.839 1.214 0.839

1000 1000 85719 453.008 1.486 0.037 1.318 0.037

1000 125 33792 0.286 1.161 0.839 1.140 0.853

1000 250 40297 2.230 1.130 0.214 1.117 0.216

Seoul 1000 500 53020 11.842 1.169 0.462 1.100 0.462

1000 1000 63617 377.450 1.269 0.699 1.163 0.699

1000 125 44980 2.827 1.146 0.100 1.139 0.102

1000 250 55517 0.930 1.384 0.456 1.257 0.460

Mexico City 1000 500 67630 3.380 1.478 11.893 1.343 11.894

1000 1000 85090 184.903 1.711 0.074 1.338 0.074

Table B1: Results for Steiner CVRP with |V ′| = 1000.

APPENDIX A. APPENDIX 159

Graph Solution Phase 1 Phase2

City |V ′| |VR| U T UE/U TE/T U ′
E/U T ′

E/T

2000 125 59555 0.331 1.050 0.834 1.045 0.843

2000 250 78003 1.261 1.034 0.463 1.030 0.466

Paris 2000 500 98272 25.891 1.090 1.192 1.084 1.192

2000 1000 126146 331.089 1.075 0.071 1.059 0.071

2000 125 55457 0.563 1.016 0.284 1.012 0.290

2000 250 68377 1.195 1.061 0.291 1.060 0.294

Barcelona 2000 500 92880 12.514 1.066 1.050 1.058 1.050

2000 1000 126761 5045.895 1.152 0.082 1.126 0.082

2000 125 48010 0.324 0.984 0.954 0.981 0.972

2000 250 61408 2.947 1.031 0.182 1.026 0.184

Karachi 2000 500 78360 12.079 1.095 1.225 1.070 1.226

2000 1000 100169 247.115 1.102 5.143 1.090 5.143

2000 125 93548 0.364 1.064 1.011 1.060 1.033

2000 250 121731 0.753 1.159 1.348 1.144 1.352

Moscow 2000 500 151465 2.582 1.192 0.716 1.179 0.718

2000 1000 204989 147.940 1.289 3.172 1.217 3.172

2000 125 48934 0.943 1.029 0.267 1.026 0.270

2000 250 62347 0.680 1.038 1.204 1.026 1.210

London 2000 500 81685 18.868 1.055 0.081 1.047 0.081

2000 1000 102689 859.985 1.166 0.751 1.102 0.751

2000 125 70955 0.326 1.049 0.742 1.032 0.755

2000 250 90505 2.018 1.102 2.041 1.087 2.043

Jo’ Burg 2000 500 111526 36.197 1.118 0.378 1.106 0.378

2000 1000 145352 26315.217 1.227 0.001 1.185 0.001

2000 125 48660 0.311 1.088 0.955 1.073 0.968

2000 250 57547 0.843 1.101 8.686 1.089 8.690

Istanbul 2000 500 78710 37.830 1.199 0.554 1.158 0.554

2000 1000 98115 40683.938 1.315 0.001 1.227 0.001

2000 125 48513 0.372 1.092 0.433 1.090 0.441

2000 250 68328 0.686 1.138 6.044 1.136 6.050

Madrid 2000 500 89592 27.635 1.315 0.679 1.277 0.679

2000 1000 114311 1654.951 1.362 0.015 1.227 0.015

2000 125 79175 0.435 1.075 0.940 1.075 0.947

2000 250 94726 4.794 1.115 0.109 1.106 0.110

New York 2000 500 119121 5.894 1.162 4.152 1.153 4.152

2000 1000 152221 12353.404 1.169 0.625 1.148 0.625

2000 125 55992 0.882 1.064 0.150 1.064 0.153

2000 250 71724 0.966 1.130 0.322 1.118 0.325

Hanoi 2000 500 97896 13.977 1.169 0.221 1.128 0.221

2000 1000 129269 610.425 1.269 0.432 1.195 0.432

2000 125 45757 0.378 1.043 10.463 1.042 10.487

2000 250 62760 0.847 1.045 1.138 1.023 1.145

Seoul 2000 500 79397 11.662 1.202 0.957 1.176 0.958

2000 1000 106821 1537.491 1.229 0.007 1.155 0.007

2000 125 56698 0.477 1.103 0.319 1.101 0.327

2000 250 68801 1.583 1.094 0.717 1.069 0.720

Mexico City 2000 500 91527 19.801 1.289 0.223 1.255 0.223

2000 1000 117344 6321.233 1.555 0.005 1.352 0.005

Table B2: Results for Steiner CVRP with |V ′| = 2000.

Bibliography

[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. Data Structures and Algorithms.

Addison-Wesley, Amsterdam, 1983.

[2] D. Ahr. Contributions to Multiple Postmen Problems. PhD thesis, Institut für

Mathematik, Heidelberg University, 2004.

[3] D. Ahr. Multiple Postmen Problems: Fundamentals and New Algorithms. VDM

Verlag Dr. Müller, Saarbrücken, Germany, 2007.

[4] D. Ahr and G. Reinelt. New heuristics and lower bounds for the min-max k-

Chinese postman problem. In R. Möhring and R. Raman, editors, Proceedings

of ESA ’02, pages 64–74, Heidelberg, 2002. Springer.

[5] D. Ahr and G. Reinelt. The capacitated arc routing problem: combinatorial

lower bounds. In Á. Corberán and G. Laporte, editors, Arc Routing: Problems,

Methods, and Applications, pages 159–181. SIAM, Philadelphia, PA, 2015.

[6] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: Theory, Algo-

rithms, and Applications. Englewood Cliffs, Prentice-Hall, NJ, 1993.

[7] E. Álvarez-Miranda and M. Sinnl. A note on computational aspects of the

Steiner traveling salesman problem. International Transactions in Operational

Research, 26(4):1396–1401, 2019.

160

BIBLIOGRAPHY 161

[8] A. Amberg and S. Voß. A hierarchical relaxations lower bound for the capaci-

tated arc routing problem. In R.H. Sprague, editor, Proceedings of HICSS ’02,

pages 1415–1424, Washington, DC, 2002. IEEE.

[9] D.L. Applegate, R.E. Bixby, V. Chvátal, and W.J. Cook. The Traveling Sales-

man Problem: A Computational Study. Princeton University Press, Princeton,

NJ, 2006.

[10] S. Arora. Polynomial time approximation schemes for Euclidean traveling sales-

man and other geometric problems. Journal of the ACM, 45(5):753–782, 1998.

[11] A.A. Assad. Leonhard Euler: a brief appreciation. Networks, 49(3):190–198,

2007.

[12] A.A. Assad, W.-L. Pearn, and B.L. Golden. The capacitated Chinese postman

problem: lower bounds and solvable cases. American Journal of Mathematical

& Management Sciences, 7(1-2):63–88, 1987.

[13] R. Baldacci and V. Maniezzo. Exact methods based on node-routing formula-

tions for undirected arc-routing problems. Networks, 47(1):52–60, 2006.

[14] M.O. Ball, T.L. Magnanti, C.L. Monma, and G.L. Nemhauser, editors. Network

Routing. North Holland, Amsterdam, 1995.

[15] R.H. Ballou, H. Rahardja, and N. Sakai. Selected country circuity factors for

road travel distance estimation. Transportation Research Part A, 36(9):843–848,

2002.

[16] F. Barahona. On the computational complexity of Ising spin glass models.

Journal of Physics A, 15:3241–3253, 1982.

BIBLIOGRAPHY 162

[17] F. Barahona. Planar multicommodity flows, max cut, and the Chinese postman

problem. In W. Cook and P.D. Seymour, editors, Polyhedral Combinatorics,

pages 189–202. AMS, Providence, RI, 1990.

[18] E. Bartolini, J.-F. Cordeau, and G. Laporte. Improved lower bounds and exact

algorithm for the capacitated arc routing problem. Mathematical Programming,

137(1):409–452, 2013.

[19] J. Bautista, E. Fernández, and J. Pereira. Solving an urban waste collection

problem using ants heuristics. Computers & Operations Research, 35(9):3020–

3033, 2008.

[20] J.E. Beasley. Route first—cluster second methods for vehicle routing. Omega,

11(4):403–408, 1983.

[21] T. Bektaş and A.N. Letchford. Using ℓp-norms for fairness in combinatorial

optimisation. Computers & Operations Research, 120, 2020. Article 104975.

[22] J.M. Belenguer and E. Benavent. The capacitated arc routing problem: valid

inequalities and facets. Computational Optimization & Applications, 10(2):165–

187, 1998.

[23] J.M. Belenguer and E. Benavent. A cutting plane algorithm for the capacitated

arc routing problem. Computers & Operations Research, 30(5):705–728, 2003.

[24] J.M. Belenguer, E. Benavent, and S. Irnich. The capacitated arc routing prob-

lem: exact algorithms. In A. Corberán and G. Laporte, editors, Arc Routing:

Problems, Methods, and Applications, pages 183–221. SIAM, Philadelphia, PA,

2015.

BIBLIOGRAPHY 163

[25] J.M. Belenguer, E. Benavent, P. Lacomme, and C. Prins. Lower and upper

bounds for the mixed capacitated arc routing problem. Computers & Operations

Research, 33(12):3363–3383, 2006.

[26] H. Ben Ticha, N. Absi, D. Feillet, and A. Quilliot. Vehicle routing problems

with road-network information: state of the art. Networks, 72(3):393–406, 2018.

[27] E. Benavent, V. Campos, A. Corberán, and E. Mota. Análisis de heuŕısticos

para el problema del cartero rural. Trabajos de Estad́ıstica y de Investigación

Operativa, 36:27–38, 1985.

[28] E. Benavent, V. Campos, A. Corberán, and E. Mota. The capacitated arc

routing problem: lower bounds. Networks, 22(7):669–690, 1992.

[29] E. Benavent, A. Carrotta, A. Corberán, J.M. Sanchis, and D. Vigo. Lower

bounds and heuristics for the windy rural postman problem. European Journal

of Operational Research, 176(2):855–869, 2007.

[30] E. Benavent, A. Corberán, E. Piñana, I. Plana, and J.M. Sanchis. New heuristic

algorithms for the windy rural postman problem. Computers & Operations

Research, 32(12):3111–3128, 2005.

[31] E. Benavent, A. Corberán, and J.M. Sanchis. Linear programming based meth-

ods for solving arc routing problems. In M. Dror, editor, Arc Routing: Theory,

Solutions and Applications, pages 231–275. Kluwer, Dordrecht, 2000.

[32] W. Berens. The suitability of the weighted ℓp-norm in estimating actual road

distances. European Journal of Operational Research, 34(1):39–43, 1988.

[33] W. Berens and F.J. Körling. Estimating road distances by mathematical func-

tions. European Journal of Operational Research, 21(1):54–56, 1985.

BIBLIOGRAPHY 164

[34] P. Berman, A. Kahng, D. Vidhani, and A. Zelikovsky. The T-join problem in

sparse graphs: applications to phase assignment problem in VLSI mask layout.

In F. Dehne, A. Gupta, J.-R. Sack, and R. Tamassia, editors, Proceedings of

WADS ’99, pages 25–36, Heidelberg, 1999. Springer.

[35] C. Bode and S. Irnich. Cut-first branch-and-price-second for the capacitated

arc-routing problem. Operations Research, 60(5):1167–1182, 2012.

[36] L.D. Bodin. A taxonomic structure for vehicle routing and scheduling problems.

Computers & Urban Society, 1(4):11–29, 1975.

[37] G. Boeing. OSMnx: new methods for acquiring, constructing, analyzing, and

visualizing complex street networks. Computers, Environment and Urban Sys-

tems, 65:126–139, 2017.

[38] B. Boyacı, T.H. Dang, and A.N. Letchford. Fast upper and lower bounds for

a large-scale real-world arc routing problem. Technical report, Department of

Management Science, Lancaster University, UK, 2021.

[39] B. Boyacı, T.H. Dang, and A.N. Letchford. Improving a constructive heuristic

for the general routing problem. Technical report, Department of Management

Science, Lancaster University, UK, 2021.

[40] B. Boyacı, T.H. Dang, and A.N. Letchford. Vehicle routing on road networks:

how good is Euclidean approximation? Computers & Operations Research, 129,

2021. Article 105197.

[41] B. Boyacı, T.H. Dang, and A.N. Letchford. On matchings, T-joins and arc

routing in road networks. Networks, 79(1):20– 31, 2022.

BIBLIOGRAPHY 165

[42] J. Brandão and R.W. Eglese. A deterministic tabu search algorithm for the ca-

pacitated arc routing problem. Computers & Operations Research, 35(4):1112–

1126, 2008.

[43] J. Brimberg and R.F. Love. A new distance function for modeling travel dis-

tances in a transportation network. Transportation Science, 26(2):129–137,

1992.

[44] A. Butsch, J. Kalcsics, and G. Laporte. Districting for arc routing. INFORMS

Journal on Computing, 26(4):809–824, 2014.

[45] Y. Chen, J.-K. Hao, and F. Glover. A hybrid metaheuristic approach for the

capacitated arc routing problem. European Journal of Operational Research,

253(1):25–39, 2016.

[46] N. Christofides. The optimum traversal of a graph. Omega, 1(6):719–732, 1973.

[47] N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman

problem. Technical Report 388, Graduate School of Industrial Administration,

Carnegie-Mellon University, Pittsburgh, PA, 1976.

[48] N. Christofides, V. Campos, Á. Corberán, and E. Mota. An algorithm for the

rural postman problem. Technical report, Imperial College, London, 1981.

[49] N. Christofides, V. Campos, Á. Corberán, and E. Mota. An algorithm for the

rural postman problem on a directed graph. In G. Gallo and C. Sandi, editors,

Netflow at Pisa, pages 155–166. Springer, Heidelberg, 1986.

[50] G. Clarke and J.W. Wright. Scheduling of vehicles from a central depot to a

number of delivery points. Operations Research, 12(4):568–581, 1964.

[51] C.A.M. Cole, J.P. & King. Quantitative Geography. Wiley, London, 1968.

BIBLIOGRAPHY 166

[52] A. Corberán, R.W. Eglese, G. Hasle, I. Plana, and J.M. Sanchis. Arc routing

problems: a review of the past, present, and future. Networks, 77(1):88–115,

2021.

[53] A. Corberán and G. Laporte, editors. Arc Routing: Problems, Methods, and

Applications. SIAM, Philadelphia, PA, 2015.

[54] A. Corberán, A.N. Letchford, and J.M. Sanchis. A cutting plane algorithm for

the general routing problem. Mathematical Programming, 90(2):291–316, 2001.

[55] A. Corberán, R. Mart́ı, and A. Romero. Heuristics for the mixed rural postman

problem. Computers & Operations Research, 27(2):183–203, 2000.

[56] A. Corberán, G. Mej́ıa, and J.M. Sanchis. New results on the mixed general

routing problem. Operations Research, 53(2):363–376, 2005.

[57] A. Corberán, E. Mota, and J.M. Sanchis. A comparison of two different for-

mulations for arc routing problems on mixed graphs. Computers & Operations

Research, 33(12):3384–3402, 2006.

[58] A. Corberán, I. Plana, and J.M. Sanchis. A branch & cut algorithm for the

windy general routing problem and special cases. Networks, 49(4):245–257,

2007.

[59] A. Corberán, I. Plana, and J.M. Sanchis. The Chinese postman problem on di-

rected, mixed, and windy graphs. In A. Corberán and G. Laporte, editors, Arc

Routing: Problems, Methods, and Applications, pages 65–83. SIAM, Philadel-

phia, PA, 2015.

[60] A. Corberán and C. Prins. Recent results on arc routing problems: an annotated

bibliography. Networks, 56(1):50–69, 2010.

BIBLIOGRAPHY 167

[61] A. Corberán and J.M. Sanchis. A polyhedral approach to the rural postman

problem. European Journal of Operational Research, 79(1):95–114, 1994.

[62] G. Cornuéjols, J. Fonlupt, and D. Naddef. The traveling salesman problem

on a graph and some related integer polyhedra. Mathematical Programming,

33(1):1–27, 1985.

[63] G.B. Dantzig, D.R. Fulkerson, and S.M. Johnson. Solution of a large-scale

traveling-salesman problem. ORSA Journal, 2(4):393–410, 1954.

[64] G.B. Dantzig and J.H. Ramser. The truck dispatching problem. Management

Science, 6(1):80–91, 1959.

[65] M. de Berg, H.L. Bodlaender, S. Kisfaludi-Bak, and S. Kolay. An ETH-tight

exact algorithm for Euclidean TSP. In M. Thorup, editor, Proceedings of FOCS

’18, pages 450–461, Los Alamitos, CA, 2018. IEEE.

[66] D. Delling, I. Goldberg, A.V .and Razenshteyn, and R.F. Werneck. Graph

partitioning with natural cuts. In Proceedings of IPDPS ’11, pages 1135–1146,

Washington, DC, 2011. IEEE.

[67] UK Department for Enviroment Food & Rural Affairs. Air quality a brief-

ing for directors of public health. https://laqm.defra.gov.uk/assets/

63091defraairqualityguide9web.pdf, 2017.

[68] UK Department for Enviroment Food & Rural Affairs. Uk statistics

on waste. https://assets.publishing.service.gov.uk/government/

uploads/system/uploads/attachment_data/file/1002246/UK_stats_on_

waste_statistical_notice_July2021_accessible_FINAL.pdf, 2021.

https://laqm.defra.gov.uk/assets/63091defraairqualityguide9web.pdf
https://laqm.defra.gov.uk/assets/63091defraairqualityguide9web.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1002246/UK_stats_on_waste_statistical_notice_July2021_accessible_FINAL.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1002246/UK_stats_on_waste_statistical_notice_July2021_accessible_FINAL.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1002246/UK_stats_on_waste_statistical_notice_July2021_accessible_FINAL.pdf

BIBLIOGRAPHY 168

[69] UK Department for Transport. Transport statistics great britain

2020. https://assets.publishing.service.gov.uk/government/uploads/

system/uploads/attachment_data/file/945829/tsgb-2020.pdf, 2020.

[70] UK Department for Transport. Domestic road freight statistics,

united kingdom 2020. https://assets.publishing.service.gov.uk/

government/uploads/system/uploads/attachment_data/file/1006792/

domestic-road-freight-statistics-2020.pdf, 2021.

[71] G. Desaulniers, J. Desrosiers, M.M. Solomon, F. Soumis, and D. Villeneuve. A

unified framework for deterministic time constrained vehicle routing and crew

scheduling problems. In T.G. Crainic and G. Laporte, editors, Fleet Manage-

ment and Logistics, pages 57–93. Springer, Boston, MA, 1998.

[72] M. Dror. Arc Routing: Theory, Solutions and Applications. Kluwer, Dordrecht,

2000.

[73] M. Dror, H. Stern, and P. Trudeau. Postman tour on a graph with precedence

relation on arcs. Networks, 17(3):283–294, 1987.

[74] R. Duan, S. Pettie, and H.-H. Su. Scaling algorithms for weighted matching in

general graphs. ACM Transactions on Algorithms, 14(1), 2018.

[75] J. Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. Journal

of Research of the National Bureau of Standards B, 69:125–130, 1965.

[76] J. Edmonds and E.L. Johnson. Matching, Euler tours and the Chinese postman.

Mathematical Programming, 5(1):88–124, 1973.

[77] R.W. Eglese. Routeing winter gritting vehicles. Discrete Applied Mathematics,

48(3):231–244, 1994.

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/945829/tsgb-2020.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/945829/tsgb-2020.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1006792/domestic-road-freight-statistics-2020.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1006792/domestic-road-freight-statistics-2020.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1006792/domestic-road-freight-statistics-2020.pdf

BIBLIOGRAPHY 169

[78] R.W. Eglese and A.N. Letchford. Polyhedral theory for arc routing problems.

In M. Dror, editor, Arc Routing: Theory, Solutions and Applications, pages

199–230. Kluwer, Dordrecht, 2000.

[79] R.W. Eglese and L.Y.O. Li. A tabu search based heuristic for arc routing with

a capacity constraint and time deadline. In I.H. Osman and J.P. Kelly, editors,

Meta-Heuristics: Theory and Applications, pages 633–649. Kluwer, Boston, MA,

1996.

[80] J.R. Evans and E. Minieka. Optimization Algorithms for Networks and Graphs.

Marcel Dekker, New York, 1992.

[81] E. Fernández, O. Meza, R. Garfinkel, and M. Ortega. On the undirected ru-

ral postman problem: tight bounds based on a new formulation. Operations

Research, 51(2):281–291, 2003.

[82] P. Fernández de Córdoba, L.M. Garćıa Raffi, and J.M. Sanchis. A heuristic

algorithm based on Monte Carlo methods for the rural postman problem. Com-

puters & Operations Research, 25(12):1097–1106, 1998.

[83] B. Fleischmann. Linear programming approaches to traveling salesman and

vehicle scheduling problems. Presented at the XIth International Symposium

on Mathematical Programming, Bonn, 1982.

[84] B. Fleischmann. A cutting plane procedure for the travelling salesman problem

on road networks. European Journal of Operational Research, 21(3):307–317,

1985.

[85] M. Fleury. Deux problèmes de géométrie de situation. Journal de Mathématiques

Élémentaires, 2(2):257–261, 1883.

BIBLIOGRAPHY 170

[86] L.R. Ford and D.R. Fulkerson. Flows in Networks. Princeton University Press,

Princeton, NJ, 1962.

[87] B.A. Foster and D.M. Ryan. An integer programming approach to the vehicle

scheduling problem. Operational Research Quarterly, 27(2):367–384, 1976.

[88] L. Foulds, H. Longo, and J. Martins. A compact transformation of arc rout-

ing problems into node routing problems. Annals of Operations Research,

226(1):177–200, 2015.

[89] G.N. Frederickson. Approximation algorithms for some postman problems.

Journal of the ACM, 26(3):538–554, 1979.

[90] M.L. Fredman and R.E. Tarjan. Fibonacci heaps and their uses in improved

network optimization algorithms. Journal of the ACM, 34(3):596–615, 1987.

[91] H.N. Gabow. Data structures for weighted matching and nearest common an-

cestors with linking. In D. Johnson, editor, Proceedings of SODA ’90, pages

434–443, Philadelphia, PA, 1990. SIAM.

[92] H.N. Gabow. Data structures for weighted matching and extensions to b-

matching and f -factors. ACM Transactions on Algorithms, 14(3), 2018.

[93] T. Garaix, C. Artigues, D. Feillet, and D. Josselin. Vehicle routing problems

with alternative paths: an application to on-demand transportation. European

Journal of Operational Research, 204(1):62–75, 2010.

[94] M.R. Garey, R.L. Graham, and D.S. Johnson. Some NP-complete geometric

problems. In Proceedings of STOC ’76, pages 10–22, New York, 1976. ACM.

[95] R.S. Garfinkel and I.R. Webb. On crossings, the crossing postman problem, and

the rural postman problem. Networks, 34(3):173–180, 1999.

BIBLIOGRAPHY 171

[96] A.H.M. Gerards. Matching. In M.O. Ball, T.L. Magnanti, C.L. Monma, and

G.L. Nemhauser, editors, Network Models, pages 135–224. North Holland, Am-

sterdam, 1995.

[97] G. Ghiani, F. Guerriero, G. Laporte, and R. Musmanno. Tabu search heuris-

tics for the arc routing problem with intermediate facilities under capacity

and length restrictions. Journal of Mathematical Modelling and Algorithms,

3(3):209–223, 2004.

[98] G. Ghiani, G. Improta, and G. Laporte. The capacitated arc routing problem

with intermediate facilities. Networks, 37(3):134–143, 2001.

[99] G. Ghiani, D. Laganà, G. Laporte, and F. Mari. Ant colony optimization for

the arc routing problem with intermediate facilities under capacity and length

restrictions. Journal of Heuristics, 16(2):211–233, 2010.

[100] G. Ghiani, D. Laganá, and R. Musmanno. A constructive heuristic for the undi-

rected rural postman problem. Computers & Operations Research, 33(12):3450–

3457, 2006.

[101] G. Ghiani and G. Laporte. A branch-and-cut algorithm for the undirected rural

postman problem. Mathematical Programming, 87(3):467–481, 2000.

[102] B.E. Gillett and L.R. Miller. A heuristic algorithm for the vehicle-dispatch

problem. Operations Research, 22(2):340–349, 1974.

[103] B.L. Golden and A.A. Assad. Vehicle Routing: Methods and Studies. North-

Holland, Amsterdam, 1988.

BIBLIOGRAPHY 172

[104] B.L. Golden, J.S. De Armon, and E.K. Baker. Computational experiments with

algorithms for a class of routing problems. Computers & Operations Research,

10(1):47–59, 1983.

[105] B.L. Golden, S. Raghavan, and E.A. Wasil, editors. The Vehicle Routing Prob-

lem: Latest Advances and New Challenges. Springer, Boston, MA, 2008.

[106] B.L. Golden and W. Stewart. Vehicle routing with probabilistic demands. In

D. Hogben and D.W. Fife, editors, Computer Science and Statistics: Tenth

Annual Symposium on the Interface, pages 252–259, Gaithersburg, MD, 1978.

National Bureau of Standards.

[107] B.L. Golden and R.T. Wong. Capacitated arc routing problems. Networks,

11(3):305–315, 1981.

[108] D. Gómez-Cabrero, J.M. Belenguer, and E. Benavent. Cutting plane and col-

umn generation for the capacitated arc routing problem. Presented at ORP3,

Valencia, 2005.

[109] L. Gouveia, M.C. Mourão, and L.S. Pinto. Lower bounds for the mixed capac-

itated arc routing problem. Computers & Operations Research, 37(4):692–699,

2010.

[110] M. Groiez, G. Desaulniers, and O. Marcotte. Valid inequalities and separation

algorithms for the set partitioning problem. INFOR, 52(4):185–196, 2014.

[111] J.L. Gross, J. Yellen, and M. Anderson. Graph Theory and Its Applications.

Chapman and Hall/CRC, Boca Raton, FL, 3rd edition, 2018.

[112] G.W. Groves and J.H. Van Vuuren. Efficient heuristics for the rural postman

problem. ORiON, 21(1):33–51, 2005.

BIBLIOGRAPHY 173

[113] M.-G. Guan. Graphic programming using odd or even points. Chinese Mathe-

matics, 1:273–277, 1962.

[114] G. Gutin and A.P. Punnen. The Traveling Salesman Problem and its Variations.

Kluwer, Dordrecht, 2002.

[115] M. Held and R.M. Karp. A dynamic programming approach to sequencing prob-

lems. Journal of the Society for Industrial and Applied Mathematics, 10(1):196–

210, 1962.

[116] M.R. Henzinger, P. Klein, S. Rao, and S. Subramanian. Faster shortest-path al-

gorithms for planar graphs. Journal of Computer and System Sciences, 55(1):3–

23, 1997.

[117] A. Hertz, G. Laporte, and P.N. Hugo. Improvement procedures for the undi-

rected rural postman problem. INFORMS Journal on Computing, 11(1):53–62,

1999.

[118] A. Hertz, G. Laporte, and M. Mittaz. A tabu search heuristic for the capacitated

arc routing problem. Operations Research, 48(1):129–135, 2000.

[119] A. Hertz and M. Mittaz. Heuristic algorithms. In M. Dror, editor, Arc Routing:

Theory, Solutions and Applications, pages 327–388. Kluwer, Dordrecht, 2000.

[120] A. Hertz and M. Mittaz. A variable neighborhood descent algorithm for the

undirected capacitated arc routing problem. Transportation Science, 35(4):425–

434, 2001.

[121] C. Hierholzer and C. Wiener. Über die Möglichkeit, einen Linienzug ohne

Wiederholung und ohne Unterbrechung zu umfahren. Mathematische Annalen,

6(1):30–32, 1873.

BIBLIOGRAPHY 174

[122] K. Holmberg. Heuristics for the rural postman problem. Computers & Opera-

tions Research, 37(5):981–990, 2010.

[123] R. Interian and C.C. Ribeiro. A GRASP heuristic using path-relinking and

restarts for the Steiner traveling salesman problem. International Transactions

in Operational Research, 24(6):1307–1323, 2017.

[124] K. Jansen. An approximation algorithm for the general routing problem. In-

formation Processing Letters, 41(6):333–339, 1992.

[125] M. Jünger, G. Reinelt, and G. Rinaldi. The traveling salesman problem. In

M.O. Ball, T.L. Magnanti, C.L. Monma, and G.L. Nemhauser, editors, Network

Models, pages 225–330. North-Holland, Amsterdam, 1995.

[126] C.H. Kappauf and G.J. Koehler. The mixed postman problem. Discrete Applied

Mathematics, 1(1-2):89–103, 1979.

[127] R.M. Karp. Reducibility among combinatorial problems. In R.E. Miller, J.W.

Thatcher, and J.D. Bohlinger, editors, Complexity of Computer Computations,

pages 85–103, New York, 1972. Plenum.

[128] V. Kolmogorov. Blossom V: a new implementation of a minimum cost perfect

matching algorithm. Mathematical Programming Computation, 1:43–67, 2009.

[129] B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms.

Springer, Heidelberg, 6th edition, 2018.

[130] P. Lacomme, C. Prins, and W. Ramdane-Chérif. A genetic algorithm for the

capacitated arc routing problem and its extensions. In E.J.W. Boers, editor, Ap-

plications of Evolutionary Computation, pages 473–483, Berlin, 2001. Springer.

BIBLIOGRAPHY 175

[131] P. Lacomme, C. Prins, and W. Ramdane-Chérif. Competitive memetic algo-

rithms for arc routing problems. Annals of Operations Research, 131(1-4):159–

185, 2004.

[132] E.L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rine-

hart and Winston, New York, 1976.

[133] J.K. Lenstra and A.H.G. Rinnooy-Kan. On general routing problems. Networks,

6(3):273–280, 1976.

[134] A.N. Letchford. New inequalities for the general routing problem. European

Journal of Operational Research, 96(2):317–322, 1997.

[135] A.N. Letchford. Polyhedral Results for Some Constrained Arc-Routing Problems.

PhD thesis, Department of Management Science, Lancaster University, UK,

1997.

[136] A.N. Letchford, S.D. Nasiri, and A. Oukil. Pricing routines for vehicle rout-

ing with time windows on road networks. Computers & Operations Research,

51:331–337, 2014.

[137] A.N. Letchford, S.D. Nasiri, and D.O. Theis. Compact formulations of the

Steiner traveling salesman problem and related problems. European Journal of

Operational Research, 228(1):83–92, 2013.

[138] A.N. Letchford and A. Oukil. Exploiting sparsity in pricing routines for the ca-

pacitated arc routing problem. Computers & Operations Research, 36(7):2320–

2327, 2009.

[139] L.Y.O. Li. Vehicle Routeing for Winter Gritting. PhD thesis, Department of

Management Science, Lancaster University, 1992.

BIBLIOGRAPHY 176

[140] L.Y.O. Li and R.W. Eglese. An interactive algorithm for vehicle routeing for

winter-gritting. Journal of the Operational Research Society, 47(2):217–228,

1996.

[141] T. Liebling. Graphentheorie in Planungs- und Tourenproblemen. Springer, Hei-

delberg, 1970.

[142] Vivid Economics Limited. The value of freight. https://nic.org.uk/app/

uploads/Future-of-Freight_The-Value-of-Freight_Vivid-Economics.

pdf, 2019.

[143] R.J. Lipton and R.E. Tarjan. A separator theorem for planar graphs. SIAM

Journal on Applied Mathematics, 36(2):177–189, 1979.

[144] R.J. Lipton and R.E. Tarjan. Applications of a planar separator theorem. SIAM

Journal on Computing, 9(3):615–627, 1980.

[145] H. Longo, M. Poggi, and E. Uchoa. Solving capacitated arc routing prob-

lems using a transformation to the CVRP. Computers & Operations Research,

33(6):1823–1837, 2006.

[146] L. Lovász and M.D Plummer. Matching Theory. AMS, Providence, RI, 2009.

[147] R.F. Love and J.G. Morris. Modelling inter-city road distances by mathematical

functions. Journal of the Operational Research Society, 23(1):61–71, 1972.

[148] R.F. Love and J.G. Morris. Mathematical models of road travel distances.

Management Science, 25(2):130–139, 1979.

[149] V. Maniezzo and M. Roffilli. Algorithms for large directed capacitated arc

routing problem instances. In C. Cotta and J. van Hemmert, editors, Recent

https://nic.org.uk/app/uploads/Future-of-Freight_The-Value-of-Freight_Vivid-Economics.pdf
https://nic.org.uk/app/uploads/Future-of-Freight_The-Value-of-Freight_Vivid-Economics.pdf
https://nic.org.uk/app/uploads/Future-of-Freight_The-Value-of-Freight_Vivid-Economics.pdf

BIBLIOGRAPHY 177

Advances in Evolutionary Computation for Combinatorial Optimization, pages

259–274. Springer, Heidelberg, 2008.

[150] R. Martinelli, D. Pecin, M. Poggi, and H. Longo. A branch-cut-and-price algo-

rithm for the capacitated arc routing problem. In P. Pardalos and S. Rebennack,

editors, Proceedings of SEA ’11, pages 315–326, Heidelberg, 2011. Springer.

[151] R. Martinelli, M. Poggi, and A. Subramanian. Improved bounds for large

scale capacitated arc routing problem. Computers & Operations Research,

40(8):2145–2160, 2013.

[152] C. Martinez, I. Loiseau, M.G.C. Resende, and S. Rodriguez. BRKGA algo-

rithm for the capacitated arc routing problem. Electronic Notes in Theoretical

Computer Science, 281:69–83, 2011.

[153] P. Matl, R.F. Hartl, and T. Vidal. Workload equity in vehicle routing problems:

a survey and analysis. Transportation Science, 52(2):239–260, 2018.

[154] K. Mehlhorn and G. Schäfer. Implementation of O(nm log n) weighted match-

ings in general graphs: the power of data structures. Journal of Experimental

Algorithmics, 7, 2002.

[155] D.L. Miller. A matching based exact algorithm for capacitated vehicle routing

problems. ORSA Journal on Computing, 7:1–9, 1995.

[156] E. Minieka. The Chinese postman problem for mixed networks. Management

Science, 25(7):643–648, 1979.

[157] M.C. Mourão and M.T. Almeida. Lower-bounding and heuristic methods for

a refuse collection vehicle routing problem. European Journal of Operational

Research, 121(2):420–434, 2000.

BIBLIOGRAPHY 178

[158] M.C. Mourão and L. Amado. Heuristic method for a mixed capacitated arc rout-

ing problem: a refuse collection application. European Journal of Operational

Research, 160(1):139–153, 2005.

[159] M.C. Mourão and L.S. Pinto. An updated annotated bibliography on arc routing

problems. Networks, 70(3):144–194, 2017.

[160] L. Muyldermans, P. Beullens, D. Cattrysse, and D. Van Oudheusden. Exploring

variants of 2-opt and 3-opt for the general routing problem. Operations Research,

53(6):982–995, 2005.

[161] L. Muyldermans, D. Cattrysse, and D. Van Oudheusden. District design for arc-

routing applications. Journal of the Operational Research Society, 54(11):1209–

1221, 2003.

[162] Y. Nobert and J.-C. Picard. An optimal algorithm for the mixed Chinese post-

man problem. Networks, 27(2):95–108, 1996.

[163] J. Nossack, B.L. Golden, E. Pesch, and R. Zhang. The windy rural postman

problem with a time-dependent zigzag option. European Journal of Operational

Research, 258(3):1131–1142, 2017.

[164] K.O.K. Oduyemi and B. Davidson. The impacts of road traffic management on

urban air quality. Science of The Total Environment, 218(1):59–66, 1998.

[165] Royal College of Physicians. Every breath we take: the lifelong impact of air

pollution. Technical report, Royal College of Physicians, 2016. Report of a

working party.

[166] OpenStreetMap contributors. Planet dump retrieved from

https://planet.osm.org . https://www.openstreetmap.org, 2017.

 https://www.openstreetmap.org

BIBLIOGRAPHY 179

[167] J.B Orlin. A faster strongly polynomial minimum cost flow algorithm. Opera-

tions Research, 41(2):338–350, 1993.

[168] C.S. Orloff. A fundamental problem in vehicle routing. Networks, 4(1):35–64,

1974.

[169] C.S. Orloff and D. Caprera. Reduction and solution of large scale vehicle routing

problems. Transportation Science, 10(4):361–373, 1976.

[170] I.H. Osman. Metastrategy simulated annealing and tabu search algorithms for

the vehicle routing problem. Annals of operations research, 41(4):421–451, 1993.

[171] M.W. Padberg and M.R. Rao. Odd minimum cut-sets and b-matchings. Math-

ematics of Operations Research, 7(1):67–80, 1982.

[172] M.W. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolution of

large-scale symmetric traveling salesman problems. SIAM Review, 33(1):60–100,

1991.

[173] C.H. Papadimitriou. On the complexity of edge traversing. Journal of the ACM,

23(3):544–554, 1976.

[174] C.H. Papadimitriou and M. Yannakakis. The traveling salesman problem with

distances one and two. Mathematics of Operations Research, 18(1):1–11, 1993.

[175] W.-L. Pearn. New lower bounds for the capacitated arc routing problem. Net-

works, 18(3):181–191, 1988.

[176] W.-L. Pearn. Approximate solutions for the capacitated arc routing problem.

Computers & Operations Research, 16(6):589–600, 1989.

[177] W.-L. Pearn, A.A. Assad, and B.L. Golden. Transforming arc routing into node

routing problems. Computers & Operations Research, 14(4):285–288, 1987.

BIBLIOGRAPHY 180

[178] W.-L. Pearn and T.C. Wu. Algorithms for the rural postman problem. Com-

puters & Operations Research, 22(8):819–828, 1995.

[179] D. Pecin, A. Pessoa, M. Poggi, and E. Uchoa. Improved branch-cut-and-price for

capacitated vehicle routing. Mathematical Programming Computation, 9(1):61–

100, 2017.

[180] C.S. Phibbs and H.S Luft. Correlation of travel time on roads versus straight

line distance. Medical Care Research and Review, 52(4):532–542, 1995.

[181] M. Polacek, K.F. Doerner, R.F. Hartl, and V. Maniezzo. A variable neighbor-

hood search for the capacitated arc routing problem with intermediate facilities.

Journal of Heuristics, 14(5):405–423, 2008.

[182] D. Porumbel, G. Goncalves, H. Allaoui, and T. Hsu. Iterated local search and

column generation to solve arc-routing as a permutation set-covering problem.

European Journal of Operational Research, 256(2):349–367, 2017.

[183] C. Prins. The capacitated arc routing problem: heuristics. In A. Corberán and

G. Laporte, editors, Arc Routing: Problems, Methods, and Applications, pages

131–157. SIAM, Philadelphia, PA, 2015.

[184] C. Prins, N. Labadi, and M. Reghioui. Tour splitting algorithms for vehicle

routing problems. International Journal of Production Research, 47(2):507–535,

2009.

[185] H.N. Psaraftis. Dynamic vehicle routing problems. In B.L. Golden and A.A.

Assad, editors, Vehicle Routing: Methods and Studies, pages 223–248. North

Holland, Amsterdam, 1988.

BIBLIOGRAPHY 181

[186] B. Raghavachari and J. Veerasamy. A 3/2-approximation algorithm for the

mixed postman problem. SIAM Journal on Discrete Mathematics, 12(4):425–

433, 1999.

[187] B. Raghavachari and J. Veerasamy. Approximation algorithms for the asym-

metric postman problem. In R.E. Tarjan and T. Warnow, editors, Proceedings

of SODA ’99, pages 734–741, Philadelphia, PA, 1999. SIAM.

[188] J. Renaud, F.F. Boctor, and G. Laporte. An improved petal heuristic for the ve-

hicle routeing problem. Journal of the Operational Research Society, 47(2):329–

336, 1996.

[189] J. Rodŕıguez-Pereira, E. Fernández, G. Laporte, E. Benavent, and A. Mart́ınez-

Sykora. The Steiner traveling salesman problem and its extensions. European

Journal of Operational Research, 278(2):615–628, 2019.

[190] D.J. Rosenkrantz, R.E. Stearns, and P.M. Lewis. An analysis of several heuris-

tics for the traveling salesman problem. SIAM Journal on Computing, 6(3):563–

581, 1977.

[191] L. Santos, J. Coutinho-Rodrigues, and J.R. Current. An improved heuristic

for the capacitated arc routing problem. Computers & Operations Research,

36(9):2632–2637, 2009.

[192] L. Santos, J. Coutinho-Rodrigues, and J.R. Current. An improved ant colony

optimization based algorithm for the capacitated arc routing problem. Trans-

portation Research Part B, 44(2):246–266, 2010.

[193] Y. Saruwatari, R. Hirabayashi, and N. Nishida. Node duplication lower bounds

for the capacitated arc routing problem. Journal of the Operations Research

Society of Japan, 35:119–133, 1992.

BIBLIOGRAPHY 182

[194] A. Schild and C. Sommer. On balanced separators in road networks. In

E. Bampis, editor, Proceedings of SEA ’15, pages 286–297, Heidelberg, 2015.

Springer.

[195] A. Schrijver. Min-max results in combinatorial optimization. In A. Bachem,

B. Korte, and M. Grötschel, editors, Mathematical Programming: The State of

the Art, pages 439–500. Springer, Heidelberg, 1983.

[196] O.C. Sokmen, S. Emec, M. Yilmaz, and G. Akkaya. An overview of Chinese

postman problem. In E. Öner, E. Uslu, and B. Tayfur, editors, Proceedings of

the 3rd International Conference on Advanced Engineering Technologies, 2019.

[197] W.R. Stewart and B.L. Golden. Stochastic vehicle routing: a comprehensive

approach. European Journal of Operational Research, 14(4):371–385, 1983.

[198] K. Tang, Y. Mei, and X. Yao. Improved memetic algorithm for capacitated arc

routing problem. In 2009 IEEE Congress on Evolutionary Computation, pages

1699–1706. IEEE, 2009.

[199] P. Toth and D. Vigo. Vehicle Routing: Problems, Methods and Applications.

SIAM, Philadelphia, PA, 2014.

[200] G. Ulusoy. The fleet size and mix problem for capacitated arc routing. European

Journal of Operational Research, 22(3):329–337, 1985.

[201] F.L. Usberti, P. Morelato França, and A.L. Morelato França. GRASP with

evolutionary path-relinking for the capacitated arc routing problem. Computers

& Operations Research, 40(12):3206–3217, 2013.

BIBLIOGRAPHY 183

[202] T. van Aardenne-Ehrenfest and N.G. de Bruijn. Circuits and trees in oriented

linear graphs. Simon Stevin: Wis-en Natuurkundig Tijdschrift, 28:203–217,

1951.

[203] R. van Bevern, C. Komusiewicz, and M. Sorge. A parameterized approximation

algorithm for the mixed and windy capacitated arc routing problem: theory and

experiments. Networks, 70(3):262–278, 2017.

[204] E.J. Willemse and J.W. Joubert. Constructive heuristics for the mixed capacity

arc routing problem under time restrictions with intermediate facilities. Com-

puters & Operations Research, 68:30–62, 2016.

[205] E.J. Willemse and J.W. Joubert. Splitting procedures for the mixed capaci-

tated arc routing problem under time restrictions with intermediate facilities.

Operations Research Letters, 44(5):569–574, 2016.

[206] E.J. Willemse and J.W. Joubert. Efficient local search strategies for the mixed

capacitated arc routing problems under time restrictions with intermediate fa-

cilities. Computers & Operations Research, 105:203–225, 2019.

[207] Z. Win. Contributions to Routing Problems. PhD thesis, Institut für Mathe-

matik, Augsburg University, 1987.

[208] S. Wøhlk. Contributions to Arc Routing. PhD thesis, University of Southern

Denmark, 2005.

[209] S. Wøhlk. New lower bound for the capacitated arc routing problem. Computers

& Operations Research, 33(12):3458–3472, 2006.

[210] S. Wøhlk and G. Laporte. A fast heuristic for large-scale capacitated arc routing

problems. Journal of the Operational Research Society, 69(12):1877–1887, 2018.

BIBLIOGRAPHY 184

[211] Y. Xia, M. Zhu, Q. Gu, L. Zhang, and X. Li. Toward solving the Steiner travel-

ling salesman problem on urban road maps using the branch decomposition of

graphs. Information Sciences, 374(C):164–178, 2016.

	Abstract
	Acknowledgements
	Declaration
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Introduction
	Vehicle Routing Problems
	Arc Routing Problems
	Waste Routing Problems
	Structure of the Thesis

	Overview of the Arc Routing Literature
	The Chinese Postman Problem
	The Undirected Chinese Postman Problem
	The Directed Chinese Postman Problem
	The Mixed Chinese Postman Problem

	The Rural Postman Problem
	The Undirected Rural Postman Problem
	The Directed Rural Postman Problem
	The Mixed Rural Postman Problem

	The Capacitated Arc Routing Problem
	Heuristics for the CARP
	Combinatorial lower bounds for the CARP
	Integer programming approaches to the CARP

	Some Extensions of the CARP

	Vehicle Routing on Road Networks: How Good is Euclidean Approximation?
	Literature Review
	 The Steiner TSP
	Other Steiner VRPs
	The planar Euclidean TSP
	Road distances versus Euclidean distances

	Data Collection and Instance Creation
	Data collection
	Road distances versus Euclidean distances
	Creation of Steiner TSP instances
	Creation of Steiner Capacitated VRPs

	Experiments with the Steiner TSP
	Solution of Steiner TSP instances
	The heuristic
	Results

	Experiments with the Steiner CVRP
	Heuristics
	Results

	On Matchings, T-Joins, and Arc Routing Problems
	Introduction
	Literature Review
	Matchings and T-joins
	Applications to arc routing
	Planar graphs

	On Road Networks
	The Chinese Postman Problem in Road Networks
	The Capacitated Arc Routing Problem in Road Networks

	Improving a Constructive Heuristic for the General Routing Problem
	Introduction
	Literature Review
	The CPP
	Exact algorithms for the RPP
	Heuristics for the RPP
	The GRP

	Improving the Heuristic
	Drawbacks of the C-heuristic
	The improved C-heuristic
	Advantages of the modified C-heuristic

	Computational Experiments
	Results for existing benchmark instances
	New test instances
	Results for new GRP instances
	Results for new RPP instances

	Fast Upper and Lower Bounds for a Large-Scale Real-World Arc Routing Problem
	Introduction
	Notation and terminology

	Literature Review
	The Capacitated Arc Routing Problem
	Other relevant ARPs

	Upper Bounds
	Tour construction phase
	Local search phase
	Shortest-path phase
	Sparsification phase
	Trip construction phase
	Trip selection phase
	Time reduction phase

	Lower Bounds
	Initial lower bounds
	Auxiliary digraph
	Initial LP relaxation
	Cutting-plane algorithm
	Additonal flow variables

	Computational Results
	Test Instances
	Results for the default scenario
	Sensitivity analysis

	Conclusion
	Summary
	Further Work
	Euclidean approximation
	Matching-based approaches
	Constructive heuristics for the general routing problem
	Fast bounds for large-scale arc routing problems

	Appendix
	Steiner TSP Results
	Steiner CVRP Results

	Bibliography

