
Combinatorial Optimisation:

Relaxation, Duality and Heuristics

Mohammad Hasan Mansoor

Department of Management Science

Lancaster University Management School

A thesis submitted for the degree of

Doctor of Philosophy

February 2022

bi-smi llāh

(with God’s name)

Abstract

Relaxation and dual-based heuristics have been a part of research in

combinatorial optimisation since the early 1970s. This thesis extends

that strand of research into less popular forms of relaxations in

particular surrogate relaxation, which is theoretically a tighter relaxation

than the two most common relaxations (Linear Programming and

Lagrangian relaxations). The aim is to show surrogate dual information

can add to the performance of dual-based matheuristics. In chapter 2 we

provide some theoretical results related to surrogate and group

relaxation. We follow it up with an exact and a heuristic surrogate dual

method along with computation results, in chapters 3 and 4 respectively.

Finally, in chapter 5, we take a step back and seek to make an

introductory empirical investigation into the value of good and better

dual solutions in guiding primal heuristics using LP relaxation as an

example.

Acknowledgements

A big thank you to the Department of Management Science at Lancaster Uni-

versity for providing me with the funding for my PhD. To the administrators of the

department, in particular Gay, who have always been forthwith any support and ad-

ministration needs I required.

To my supervisor Prof. Adam Letchford, whose passionate teaching at Masters

level inspired my research interest in Operational Research. Then his ever support-

ive and keen interest in my PhD and belief in me without which I would not have

been able to complete this thesis. To my other supervisor Trivikram Dokka for his

unflinching support and candid meetings which were a great source of motivation and

insight through the years.

To my parents whose continual prayers have granted me strength and who have

sacrificed for my educational and personal journey. To my mother-in-law, who has

helped us in so many ways and has been there for us when we needed her.

To our friends in Lancaster, the Kazmis, Shahs, Talibs, Khans, Kheiris and the

rest, for being available to us at all times.

To my wife, Maheen, who has been a rock by my side and provided me with

comfort and counsel through the ups and downs of our journey. Lastly, to our chil-

dren - Muhammad, for his invigorating company and trying his best to help us, and

Maryam, for her refreshing smiles and kisses

Statement of Originality

This thesis has not been submitted in support of an application for an-

other degree at this or any other university. It is the result of my own

work and includes nothing that is the outcome of work done in collabora-

tion except where specifically indicated. Many of the ideas in this thesis

were the product of discussions with my doctoral supervisors Prof. Adam

N. Letchford and Dr. Trivikram Dokka.

Chapter 2 of this thesis has been published as:

T. Dokka, A.N. Letchford & M.H. Mansoor (2021) On the complexity of

surrogate and group relaxation for integer linear programs. Oper. Res.

Lett., 49(4), 530–534.

Chapter 3 is under preparation for submission as:

T. Dokka, A.N. Letchford & M.H. Mansoor (2022) Revisiting Surrogate

Relaxation for the Multidimensional Knapsack Problem.

Chapter 4 of this thesis has been submitted to J. Heur. as:

T. Dokka, A.N. Letchford & M.H. Mansoor (2022) Using Surrogate Re-

laxation as a Matheuristic.

Chapter 5 is under preparation for submission as:

T. Dokka, A.N. Letchford & M.H. Mansoor (2022) Anomalous Behaviour

of Dual-Based Heuristics.

M. Hasan Mansoor

Lancaster University, UK

Contents

1 Introduction 1

1.1 Linear and Nonlinear Programming 2

1.2 Integer Programming and Combinatorial Optimisation 4

1.3 Algorithms and Complexity . 7

1.4 Relaxation and Duality . 10

1.5 Exact Methods for Integer Programming 12

1.6 Heuristic Methods . 14

1.7 Heuristics Based on Relaxation and Duality 17

1.8 Overview of Thesis . 19

2 On the Complexity of Surrogate and Group Relaxation for Integer

Linear Programs 21

2.1 Introduction . 21

2.2 Literature Review . 22

2.3 Surrogating Inequalities . 25

2.4 Surrogating Equations . 30

2.5 Group Relaxation . 32

2.6 Final Remark . 35

3 Revisiting Surrogate Relaxation for the Multidimensional Knapsack

Problem 36

3.1 Introduction . 36

3.2 Literature Review . 37

v

3.3 Solving the Surrogate Dual . 40

3.4 Primal Heuristic . 42

3.5 Computational Results . 45

3.6 Conclusion . 50

4 Using Surrogate Relaxation as a Matheuristic 52

4.1 Introduction . 52

4.2 Literature Review . 53

4.3 The Multidimensional Knapsack Problem 57

4.4 The Simple Plant Location Problem 65

4.5 The 3-Dimensional Assignment Problem 74

4.6 Concluding Remarks . 81

5 Anomalous Behaviour of Dual-Based Heuristics 85

5.1 Introduction . 85

5.2 Literature Review . 87

5.3 The Simple Plant Location Problem 92

5.4 The Set Covering Problem . 102

5.5 Conclusion . 107

6 Conclusion 109

6.1 Summary . 109

6.2 Suggestions for Future Research . 111

Bibliography 114

vi

Chapter 1

Introduction

One hears about optimisation quite often both within and outside academia. In

layman’s terms, optimisation can be thought of as improving the way one does a

certain thing. For example, people might think about “optimising” their morning

routine, to be as time efficient as possible. Or an online retailer could speak of

“optimising” the shopping experience on their website, to make it as easy as possible

to browse through their collection. As a third example, a cyclist might think about

“optimising” their saddle position; low enough to stop safely, yet high enough for an

efficient peddle stroke.

Mathematical optimisation, sometimes also calledmathematical programming, pro-

vides a formal framework for modelling and solving optimisation problems (see,

e.g., [53, 143]). Mathematical optimisation is an extremely important branch of Ap-

plied Mathematics, having a wealth of applications not only in Operational Research

and Management Science, but also in Statistics, Computer Science, Engineering and

the Physical Sciences.

The essential features of a mathematical optimisation problem are:

• One or more decision variables, which represent quantities over which one has

some control.

• One or more goals or objectives, which are quantities that one wishes to max-

imise or minimise.

1

• One or more constraints, which restrict the possible values that the decision

variables can take.

It must be possible to represent all objectives and constraints as functions of the

decision variables. (The process of converting a real problem into its mathematical

representation is called modelling or formulation.)

This thesis is concerned with combinatorial optimisation problems, in which each

variable is restricted to take values from a finite set. Although these problems may

seem a little obscure at first sight, they arise frequently in industry. Examples of such

problems include facility location, vehicle routing, timetabling, scheduling, rostering,

packing and cutting problems, along with various network design and production

planning problems (see, e.g., the textbooks [40,105,122,143]).

A summary of the contribution of the thesis will be given later on, in section 1.8.

First, however, we provide some background, notation and terminology (in Sections

1.1 to 1.7).

1.1 Linear and Nonlinear Programming

An important kind of optimisation problem arises when there is a single objective,

all variables are continuous, and all functions are linear. Such a problem is called a

Linear Program or LP (see, e.g., the textbooks [45,136,139]). An LP with n variables

and m constraints can be written as:

min
{
cTx : Ax ≥ b, x ≥ 0

}
, (1.1)

where c ∈ Qn
+ is the vector of cost coefficients, A ∈ Qmn

+ is the matrix of constraint

coefficients, and b ∈ Qm
+ is the vector of right-hand sides. The term cTx is called the

objective function, and the set of all x vectors that satisfy the constraints is called

the feasible region.

We now make some remarks. First, note that the feasible region is a convex

polyhedron. Second, in this thesis, all vectors are assumed to be column vectors rather

2

than row vectors. Third, the condition x ≥ 0 is assumed to operate “component-

wise”. (That is, we require xj ≥ 0 to hold for j = 1, . . . , n.) Finally, one may change

the objective from “min” to “max”, or change the sense of some or all constraints

from “≥” to “≤” or “=”. The resulting problem is still called an LP.

Although LPs may appear to be a very restricted family of problems, they are

very useful in practice. Important examples of applications include blending prob-

lems, problems involving flows in networks, problems involving allocation of divisible

resources, and various problems in statistics and data mining (e.g., [45, 139,143]).

A variety of algorithms exist to solve LPs (e.g., [45, 122, 136]). The most well-

known is the simplex method, proposed by Dantzig in 1947. It begins by finding

a corner (or extreme point) of the feasible region. It then iteratively moves to an

adjacent corner with lower cost, until no such corner exists. Also worth mentioning

are Interior Point Methods or IPMs, which find a point in the interior of the feasible

region and then iteratively move towards an optimal point.

Modern IPMs can be competitive with the simplex method, especially on very

large LPs. On the other hand, the simplex method makes it easier to “re-optimise”

after a small change has been made to the problem (such as the addition or deletion

of a constraint or variable).

An obvious way to generalise LPs is to allow some of the functions involved to

be nonlinear (e.g., [12, 20]). A Nonlinear Program or NLP with n variables and m

constraints can be written as:

min f 0(x)

s.t. f i(x) ≤ 0 (i = 1, . . . ,m)

x ∈ Rn.

Here, f 0(·), . . . , fm(·) are arbitrary continuous functions mapping Rn onto R. (Note

that the convention in the NLP literature is to write the objective as “min” and the

constraints as “≤”.)

NLPs have many applications, for example in Operational Research, Statistics,

Finance and Engineering. Unfortunately, they can be much harder to solve than

3

LPs, due for example to the possible presence of local minima that are not global

minima. If however all of the functions involved are convex, then NLPs typically

become much easier to solve. For details on the available solution approaches for the

convex case, along with a description of the main applications, we refer the reader

to [27].

1.2 Integer Programming and Combinatorial Op-

timisation

Integer programming refers to optimisation problems in which some or all of the vari-

ables are constrained to take integer values (see, e.g., [36,38,122,136]). An important

family of integer programs is that of the Mixed-Integer Linear Programs or MILPs.

An MILP with n variables and m constraints can be written in the form:

min cTx (1.2)

s.t. Ax ≥ b (1.3)

x ∈ Rn
+ (1.4)

xj ∈ Z (j ∈ I), (1.5)

where c ∈ Qn
+, A ∈ Zmn

+ , b ∈ Zm
+ , and the set I ⊆ {1, . . . , n} contains the indices of

the integer-constrained variables. It is also common to hear of “ILPs” (in which all

variables are integral), and “0-1 LPs” (in which all variables are binary).

An obvious application of integer programming is when one is dealing with in-

divisible items, such as jobs, people, vehicles or machines but the reach of integer

programming goes far beyond that. Indeed, as far back as 1960, Dantzig [44] pointed

out that binary variables can be used to model a variety of logical conditions, and

also to approximate nonlinear functions with piecewise-linear functions. Since then, a

huge variety of problems have been modelled successfully as 0-1 LPs, ILPs or MILPs

(see, e.g., [36, 94, 122, 136, 143]). We remark that a 0-1 LP can be formulated as an

NLP, by replacing the binary condition xi ∈ {0, 1} with the quadratic constraint

4

xi = x2i . Nevertheless, integer programming and nonlinear programming are usually

treated separately, since they use very different solution methods.

Integer programming is closely related to combinatorial optimisation (e.g., [40,

105, 122, 143]). A generic Combinatorial Optimisation Problem (or COP) can be

defined as follows. We are given a finite ground set E and a family S of subsets of E.

The members of S are called feasible solutions and all other subsets of E are called

infeasible. We are also given an objective function f(·), which maps each subset of E

to a real number. The task is to find a member S ∈ S that minimises f(S). (One

may of course wish to maximise instead of minimise.)

Many COPs have linear objective functions. That is, there exists a vector c ∈ QE

such that

f(S) =
∑
e∈S

ce
(
∀S ⊆ E

)
.

In this case, it is often possible to formulate the COP as a 0-1 LP. For each e ∈ E,

define a binary variable xe that takes the value 1 if and only if e ∈ S. Then minimise∑
e∈E cexe subject to a suitable collection of linear constraints. The constraints must

be chosen in such a way that a vector x ∈ {0, 1}E satisfies them if and only if it

represents a feasible solution to the COP.

To illustrate the difference between a COP and its 0-1 LP formulation, we consider

the example of the 0-1 Knapsack Problem and the Set Covering Problem.

Definition 1.1 (0-1 Knapsack Problem or 0-1 KP) We have n “items”, where

n is a positive integer. For each item j = 1, . . . , n, we are given a positive rational

“profit” pj and a positive integer “weight” wj. We are also given a positive integer

“capacity” c. The task is to find a set of items of maximum total profit, whose

collective weight does not exceed the capacity.

Here, E = {1, . . . , n}, and a set S ⊆ E is feasible if and only if
∑

e∈S wj ≤ b. The

function f(S) is simply
∑

j∈S pj. The corresponding 0-1 LP formulation is:

max
{
pTx : wTx ≤ c, x ∈ {0, 1}n

}
,

where the binary variable xj takes the value 1 if and only if the jth item has been

selected.

5

Definition 1.2 (Set Covering Problem or SCP) We are given positive integers

m and n, a family of sets T1, . . . , Tn ⊂ {1, . . . ,m}, and a cost cj for j = 1, . . . , n. The

task is to find a minimum-cost collection of sets such that each member of {1, . . . ,m}

is contained in at least one set in the collection.

Here, E = {1, . . . , n} as before, and a set S ⊆ E is feasible if and only if ∪e∈STe =

{1, . . . ,m}. The function f(S) is simply
∑

j∈S cj. The corresponding 0-1 LP formu-

lation is:

min
{
cTx : Ax ≥ em, x ∈ {0, 1}n

}
. (1.6)

Here, the binary variable xj indicates whether the jth set has been selected; A ∈

{0, 1}mn is a matrix whose columns encode the sets T1, . . . , Tn; and em denotes the

all-ones vector of order m.

We now give an example of a COP that has a nonlinear objective function, yet

can still be formulated as a 0-1 LP.

Definition 1.3 (Simple Plant Location Problem or SPLP) We are given pos-

itive integers m and n, representing the number of ‘facilities’ and ‘clients’, respec-

tively. For i = 1, . . . ,m, we are given a constant fi ∈ Q+, representing the cost

of opening facility i. For i = 1, . . . ,m and j = 1, . . . , n, we are given a constant

cij ∈ Q+, representing the cost of serving client j from facility i. The task is to

decide which facilities to open, and assign each client to an open facility, in order to

minimise the total cost.

To fit this within our framework, it suffices to let E = {1, . . . ,m}. A set S ⊆ E is

feasible if and only if it is non-empty. The objective function to minimise is:

f(S) =
∑
i∈S

fi +
∑
j∈J

min
i∈S

{cij}.

To formulate this as a 0-1 LP, we use two sets of variables. For i = 1, . . . ,m, let yi

take the value 1 if and only if facility i is opened. For i = 1, . . . ,m and j = 1, . . . , n,

6

let xij take the value 1 if and only if client j is served from facility i. We then have:

min
∑m

i=1 fiyi +
∑m

i=1

∑n
j=1 cijxij

s.t.
∑m

i=1 xij = 1 (∀j)

yi − xij ≥ 0 (∀i, j)

x ∈ {0, 1}mn, y ∈ {0, 1}m.

1.3 Algorithms and Complexity

An algorithm is a step-by-step procedure that can be written as a computer program

(see, e.g., Harel & Feldman [87]). It often happens that more than one algorithm

is known for a given problem. (For example, there are several algorithms known for

sorting a list of integers, such as ‘bubblesort’, ‘quicksort’ and ‘heapsort’.) This leads

naturally to the question of which algorithm is fastest.

In Computer Science, it is common to measure the number of elementary mathe-

matical operations (addition, multiplication, comparison, etc.) that an algorithm will

perform, for a given input size, in the worst case. This can easily be determined for

an instance of size ‘n’ by counting the number of nested ‘loops’ (such as ‘for’, ‘while’

or ‘repeat’ loops) that run n times. For example, an algorithm that contains one

loop of nesting depth three and two loops of nesting depth two will perform around

n3 + 2n2 elementary operations in the worst case.

Note that, when n is large, n3 will be much larger than 2n2. Computer scientists

use the so-called “big O” notation to deal with this (see again [87]). An algorithm

that performed around n3+2n2 elementary operations in the worst case would be said

to run in O
(
n3
)
time. More generally, an algorithm is said to run in O

(
f(n)

)
time,

for some function f(n), if there exists a positive constant c such that the number of

elementary operations is never more than cf(n).

An algorithm is said to run in ‘polynomial time’ if it runs in O
(
nc
)
time for some

positive constant c. It is said to run in ‘exponential time’ if it runs in O
(
cn
)
time

for some positive constant c. Intuitively, algorithms that runs in polynomial time are

7

more likely to be useful than ones that runs in exponential time. There are however

exceptions. For example, the Simplex algorithm is very fast for most LPs arising in

practice, but it takes exponential time in the worst case [102].

It can sometimes be useful to express the running time of an algorithm in terms

of more than one parameter. For example, an algorithm for solving an optimisation

problem that involves graphs might run in O(mn) time, where n is the number of

nodes and m is the number of edges.

It can also happen that the running time of an algorithm depends on some numeric

value that appears as part of the input. A well-known example is the classical dynamic

programming algorithm for the 0-1 KP, discovered by Bellman [18]. It runs in O(nc)

time, where n is the number of items and c is the knapsack capacity.

Note that Bellman’s algorithm does not run in polynomial time. This is because

the knapsack capacity c will be represented in binary on a computer. If d is the

number of bits needed to represent c, then the algorithm ‘really’ runs in O
(
n 2d

)
time, which is exponential in d. On the other hand, provided that c is reasonably

small, then Bellman’s algorithm will be fast enough to be useful. The algorithm is

said to run in ‘pseudo-polynomial time’, which means that it runs in polynomial time

if c is bounded by a polynomial in n.

Instead of analysing specific algorithms, it is also possible to study the complexity

of specific problems (see [67,87]). A problem is said to be ‘solvable in polynomial time’

if there exists an algorithm that solves the problem exactly in polynomial time. For

example, the problem of multiplying two n× n matrices can be solved in polynomial

time, since there is a simple algorithm that runs in O
(
n3
)
time.

When discussing complexity, computer scientists often prefer to work with decision

problems rather than optimisation problems. A decision problem is a problem that

has a ‘yes-no’ answer. A common example is the following:

Definition 1.4 (Partition Problem or PP) We have a positive integer n and a

set of positive integers a1, . . . , an. Does there exists a set S ⊂ {1, . . . , n} such that∑
j∈S aj =

1
2

∑n
j=1 aj?

8

Note that the PP can be reduced to the 0-1 KP. This is done by setting the

profits and weights of the items to a1, . . . , an, and setting the knapsack capacity to

1
2

∑n
j=1 aj. If the optimal solution to the resulting 0-1 KP instance has a profit equal

to the knapsack capacity, then we know that the answer to the PP is ‘yes’. Moreover,

suppose that the answer to a given PP instance is ‘yes’, and someone has found a

suitable set S. They can quickly convince someone that the answer to the given

instance is ‘yes’, just by showing them the set S. In other words, the set S is a ‘short

certificate’ that the answer is ‘yes’.

This leads to the following definitions. The set of all decision problems that can be

solved in polynomial time is called P . The set of all decision problems for which there

is a short certificate when the answer is ‘yes’ is called NP . By definition, P ⊆ NP ,

and a famous open question in Computer Science is whether P = NP .

A problem is called ‘NP-complete’ if (a) it is in NP , and (b) all other prob-

lems in NP can be reduced to it in polynomial time. The PP, mentioned above,

is NP-complete (Karp [96]). The NP-complete problems can be thought of as the

‘hardest’ problems in NP . If a polynomial-time algorithm were ever found for any

NP-complete problem, then NP would equal P . Most computer scientists believe

that this is unlikely.

Of course, most optimisation problems (such as MILPs and COPs) are not decision

problems. We can however easily define a decision version of any given optimisation

problem. Instead of requiring one to find the optimal solution, we can ask whether a

solution of cost less than k exists, where k is an input parameter. In principle, one

can then solve the optimisation problem by solving the decision version a polynomial

number of times, provided that all variables are bounded. This can be done for

example, by performing binary search on the optimal value.

An optimisation problem is called ‘NP-hard’ if its corresponding decision problem

is NP-complete. Problems that are NP-hard are ‘at least as hard as’ the NP-

complete problems. The 0-1 KP is NP-hard, since the decision version includes the

PP. This implies that 0-1 LPs are NP-hard as well. In fact, many other important

COPs are NP-hard, including the SCP and SPLP (see again [67]).

9

To end this section, we mention that an NP-hard problem that can be solved

in pseudo-polynomial time is called weakly NP-hard. Otherwise it is called strongly

NP-hard. The 0-1 KP is weakly NP-hard, but the SCP and SPLP are strongly

NP-hard [96,106], and so is 0-1 LP in general [67].

1.4 Relaxation and Duality

In this section, we discuss two other key ideas in optimisation: relaxation and duality.

Relaxation means making the original problem easier to solve by expanding the

set of feasible solutions. Typically, this is done by dropping some of the constraints.

The solution of the relaxed problem gives a lower bound on the optimal cost for the

original problem (assuming that the objective is to minimise cost).

The most common way to relax a MILP of the form (1.2)-(1.5) is simply to drop

the integrality constraint (1.5). This is called continuous relaxation. Note that the

relaxed problem is an LP, which is likely to be much easier to solve than the original

MILP.

It may happen that the solution to the LP is already feasible for the original MILP.

If that happens, the solution is optimal for the MILP and we are done. This happens,

for example, when the constraint matrix A is totally unimodular (see [90, 136]). In

practice, however, the LP solution is frequently infeasible for the MILP. In that case,

one must do more work (see the next section for details).

Another popular approach is Lagrangian relaxation (LR). We partition the con-

straints Ax ≥ b in (1.3) into a set of ‘complicating’ constraints and a set of ‘simple’

constraints. Let A1x ≥ b1 and A2x ≥ b2 denote the two sets of constraints, and

suppose that the number of complicating constraints is t. We pick a vector λ ∈ Rt
+

of Lagrangian multipliers, and then solve the following simpler MILP:

min
{
cTx+ λT

(
b1 − A1x

)
: A2x ≥ b2, (1.4), (1.5)

}
. (1.7)

The idea here is that we penalise violation of the complicating constraints in the

objective function. It can be shown that, for any choice of λ, LR yields a lower bound

on the optimal cost for the original MILP [56,70].

10

Surrogate relaxation (SR), proposed in [75,79], is similar to LR. The difference is

that, instead of modifying the objective function (1.2), we replace the complicating

constraints with a single constraint. More precisely, we pick a vector µ ∈ Rt
+ of

surrogate multipliers and replace the constraints A1x ≥ b1 with the constraint:

(
µTA1

)
x ≥ µT b1. (1.8)

The constraint (1.8) is called a ‘surrogate’ constraint.

Yet another relaxation method, called group relaxation (GR), was introduced by

Gomory [77, 78]. Consider again the MILP (1.2)-(1.5). If we define a vector s ∈ Rm
+

of surplus variables, we can write the MILP as:

min
{
cTx : Ax− s = b, (1.4), (1.5), s ∈ Rm

+

}
. (1.9)

Now, suppose we solve the continuous relaxation of this modified MILP with the

Simplex method. This yield a basic optimal solution, say (x∗, s∗). Exactlym variables

will be basic and n variables will be non-basic at (x∗, s∗). The GR is then obtained

from (1.9) by retaining integrality, but dropping the non-negativity restriction on

the basic variables. Provided that (x∗, s∗) is non-degenerate, this is equivalent to

dropping all non-binding constraints in the original MILP (including all non-binding

non-negativity constraints, if any). Thus, GR yields a lower bound that is at least as

good as the one obtained with continuous relaxation.

Closely related to relaxation is the concept of duality. Suppose we have two

optimisation problems, called ‘P’ and ‘D’. Suppose also that P is a minimisation

problem, whereas D is a maximisation problem. We call D a dual of P if the optimal

profit for D is no larger than the optimal cost for P. In that case, P is called the

primal and D is called the dual. If the optimal profit for D is equal to the optimal

cost for P, we call D a strong dual; otherwise it is a weak dual (see, e.g., [45,122,139]).

There is a well-developed duality theory for LPs (see, e.g., [45, 136, 139]). In

particular, if the primal problem is an LP of the form (1.1), then the following LP is

a strong dual:

max
{
bTy : ATy ≤ c, y ≥ 0

}
, (1.10)

11

where y ∈ Rm
+ is the vector of dual variables.

We remark that the LP (1.10) is also a weak dual for any MILP of the form

(1.2)-(1.5). Indeed, the optimal cost for the LP (1.1) is itself a lower bound for such

an MILP. From this it follows that the optimal profit for (1.10) cannot exceed the

optimal cost for the MILP.

There is also a duality theory for LR [70]. For a given multiplier vector λ ∈ Rt
+, let

L(λ) denote the lower bound from the relaxed problem (1.7). The problem of finding

the vector λ which maximises L(λ) is a (typically weak) dual of the original MILP,

called the Lagrangian dual. For details on Lagrangian duality and its applications,

see, e.g., [56, 57,84,109].

In a similar way, one can define a surrogate dual. For a given multiplier vector

µ ∈ Rt
+, let S(µ) denote the lower bound from the relaxed problem. The surrogate

dual is then the problem of finding the vector µ that maximises S(µ). For details,

see, e.g., [75, 79,98].

1.5 Exact Methods for Integer Programming

Exact methods solve an optimisation problem to proven optimality, which involves

not only providing a feasible solution, but also a proof that no better solution exists.

We now review popular general purpose exact methods for MILPs.

Branch-and-bound, first proposed by Land and Doig in [108], implicitly enumerates

the feasible set by a strategy of branching (i.e., partitioning) and bounding (i.e.,

pruning) the search space. In LP-based branch-and-bound, the LP relaxation of the

original MILP is solved, yielding a solution x∗ and a lower bound cTx∗ (minimisation

case). If x∗j is fractional for some j ∈ I, the problem is divided into two sub-problems.

In the first sub-problem, the constraint xj ≤ ⌊x∗j⌋ is added. In the second sub-

problem, the constraint xj ≥ ⌈x∗j⌉ is added. The LP relaxation is solved again at

each child node, and the process repeats. Along the way, the subproblems are stored

in a ‘tree’ structure.

If at any stage a feasible solution to the original problem is encountered, it becomes

12

a candidate solution, and no further branching is performed at that node. Any

candidate solution encountered is compared with the best candidate solution so far,

and the best upper bound is recorded. Furthermore, any node with a (fractional)

lower bound larger than the current upper bound is ‘pruned’ from the search space.

In the absolute worst case, branching continues until all solutions are enumerated.

In practice, however, we expect branch-and-bound to perform much better. In the

whole process, there are four ingredients that will impact the performance of any

branch-and-bound algorithm (see [92] for a detailed survey):

1. Choice of relaxation: This is the ‘bounding’ part of the algorithm. Instead of

the LP relaxation, other relaxations like those mentioned in section 1.4 can also

be used (e.g. [17] use LR and [135] use SR to compute lower bounds).

2. Branching rule: the standard way to branch is as described above, but other

rules may be used if desired.

3. Variable selection: which of the variables to branch on from the selected node

(e.g., one could branch on the most fractional variable).

4. Node selection: which of the nodes to explore next. A simple strategy could be

to pick an arbitrary child node each time, this would be a type of ‘depth first’

search. A more refined strategy may involve picking the node with the smallest

lower bound.

Cutting-plane methods, first introduced by Gomory in [76], are another method

for solving MILPs. Whereas branch-and-bound used linear constraints to ‘partition’

the relaxed feasible space at each branching operation, cutting-plane methods use

linear constraints to ‘cut’ off fractional LP solutions, without excluding any feasible

solutions from the original MILP. Gomory [76] proposed a process of strengthening

the LP relaxation by adding a cutting plane obtained from the simplex tableau, and

resolving the LP relaxation. If the new LP solution is feasible for the MILP, the

procedure ends. If not, the LP is further strengthening by adding another cutting

13

plane from the resultant simplex tableau. This is repeated until an integer solution

is obtained.

The strength of a cutting plane depends on its ‘depth’, i.e., the proportion of the

LP feasible region that it cuts off. In this context, it is helpful to consider the convex

hull of the feasible solutions to the MILP. This convex hull is always a polyhedron.

The strongest cutting planes are then the ones that define the facets of the convex

hull. Unfortunately, the general purpose cutting planes in [76] tend to be weak in

practice, which means that a high number of iterations is usually needed to reach the

integral optimal solution. Fortunately, various special-purpose ‘deep’ cutting planes

have been found for a range of COPs and MILPs (see, e.g., [38, 122]).

Finally, we mention that Padberg & Rinaldi [124] proposed the branch-and-cut

approach, which fully integrates cutting planes with branch-and-bound. The idea is

that cutting planes may be used to tighten the LP (and thereby improve the lower

bound) at any branch of the enumeration tree. While hard to implement, branch-and-

cut algorithms have proven very useful, to the point that they are now incorporated

into many modern specialised software packages for MILP (such as CPLEX, Gurobi

and Xpress).

1.6 Heuristic Methods

In practice, exact methods are not always used to solve MILPs or COPs. Indeed, while

a sufficiently small instance of any NP-hard problem can be solved in reasonable time

by an exact method, solving a large-scale real-world instance to proven optimality may

take a prohibitively large amount of time and/or memory. In such cases, it becomes

necessary to resort to heuristics.

Heuristics, first introduced in [125], are methods that are intended to provide

a feasible solution of ‘sufficiently’ good quality in an ‘acceptable’ amount of time.

Whereas exact methods draw on concepts from mathematics, heuristics tend to draw

on concepts from artificial intelligence and machine learning.

A nice feature of many heuristics is that they enable one to choose the ‘trade-off’

14

between solution quality and computing time. (For some time-critical applications,

one may need a solution in less than a second, whereas for some strategic problems,

one may be able to run a heuristic for hours or even days.) On the other hand, most

heuristics do not provide a mechanism to evaluate the quality of the solutions that

they find (but see the end of the next section for an important exception). In practice,

therefore, the quality of a heuristic solution is often evaluated using past experience,

or by comparing it to the status quo.

It is popular in the heuristics literature to make a distinction between constructive

heuristics, which build a solution from scratch, and improvement heuristics, which

start with a given solution and try to improve it. If we take the example of the 0-1

KP (introduced in Section 1.2), a simple constructive heuristic would be to start with

an empty knapsack, and then insert items into the knapsack in non-increasing order

of profit, until no more items can be inserted.

Nowadays, constructive heuristics are seldom used on their own, since they usually

provide non-competitive solutions. They are however often used to provide initial

solutions for improvement heuristics to work on.

The simplest kind of improvement heuristics are the so-called ‘local search’ or

‘neighbourhood search’ heuristics (see, e.g., [1]). Given a feasible solution to the

problem, a set of similar solutions, called the ‘neighbourhood’ of the current solution,

is defined. The neighbourhood is then searched in a systematic manner. If a neigh-

bouring solution is found with lower cost than the current solution, we ‘move’ to the

neighbouring solution, which then becomes the current solution. This procedure is

repeated, in an iterative manner, until no more improvement is possible.

The choice of neighbourhood is related to the structure of the given optimisation

problem. In fact, even for a given optimisation problem, more than one type of

neighbourhood may exist. Taking the example of the 0-1 KP again, one simple

neighbourhood could be to remove one item from the knapsack and replace it with

another item. A different neighbourhood, that allows for changes in the total number

of items in the knapsack, could be removing one item while inserting one or more

different items.

15

A problem with local search heuristics is that they may become trapped at sub-

optimal solutions (so-called ‘local optima’). Several methods have been developed to

mitigate against this problem. One option is simply to restart the heuristic many

times, from many different random initial solutions. Another option is to switch

to a different neighbourhood as soon as a local optimum is found for the current

neighbourhood. Another is to occasionally accept a solution that does not improve

the objective function, in the hope of finding better local optima later on.

There are more sophisticated general-purpose heuristics, known as metaheuris-

tics, that extend the idea of local search with mechanisms to help them escape from

local optima. Some of the most popular metaheuristics take inspiration from natu-

ral phenomena. Simulated Annealing, proposed by Kirkpatrick et al. in [101], drew

parallels between the physical process of annealing (slowly cooling molten metals)

and searching for good solutions to optimisation problems. The idea is to accept

worst neighbouring solutions with a small probability, and then slowly decrease this

probability over time. Genetic Algorithms, developed by Holland and others in the

1970s (see [91]), take inspiration from natural selection. They work with a population

of solutions instead of a single solution. The idea is that pairs of ‘parent’ solutions

produce ‘child’ solutions with similar characteristics. The probability that a child

solution ‘survives’ to the next generation is inversely proportional to its cost.

Another popular metaheuristic is Tabu Search, developed by Glover [74]. In each

iteration, it explores the entire neighbourhood of the current solution, and moves to

the best neighbour, regardless of whether or not that neighbour improves on the cur-

rent solution. To prevent the algorithm from returning to an already-visited solution,

recent moves are stored in a ‘tabu list’. Moves in the tabu list are forbidden, unless

they lead to a solution that is better than the best found so far.

For a more detailed discussion about local search and meta-heuristics, the reader

is referred to the textbooks [1, 69].

16

1.7 Heuristics Based on Relaxation and Duality

In addition to the approaches mentioned in the last section, there are also heuristic

approaches that are based on relaxation and/or duality. In one such approach, the

LP relaxation of an 0-1 LP is solved first, yielding a lower bound. The LP solution is

then rounded to integers, in an intelligent way, with the hope of obtaining a feasible

solution to the 0-1 LP (and therefore also an upper bound).

A good example of the LP rounding approach is the heuristic of Hochbaum [89] for

SCP instances in which no element is contained in more than k sets or, equivalently,

no row of the matrix A in the 0-1 LP (1.6) has more than k ones. After solving the

LP relaxation, she takes the LP solution and rounds up to 1 each variable whose LP

value is at least 1/k. (The other variables are rounded down to 0.) The resulting

heuristic solution is guaranteed to be feasible and have a cost no more than k times

the optimum.

Hochbaum’s heuristic is also a good example of an ‘approximation algorithm’. An

approximation algorithm is a heuristic that runs in polynomial time, yet is guaranteed

to produce a solution whose cost is within a known factor of the optimum. For more

details on approximation algorithms, see [140, 144]. For more on heuristics based on

LP rounding, see Chapter 4 of [144].

A variant of the LP rounding approach, called randomised rounding, was developed

by Raghavan and Tompson [129]. The idea is to set each variable to 1 independently

at random, with a probability proportional to its value in the LP solution. Although

the resulting solutions are not guaranteed to be feasible for the 0-1 LP, they can often

be easily ‘repaired’ to make them feasible. For more on this approach, see Chapter 5

of [144].

Observe that, to obtain a valid lower bound on the optimal cost, it is not necessary

to solve the LP relaxation to proven optimality. Indeed, any feasible solution to the

dual of the LP yields a valid lower bound. This leads naturally to methods that use

heuristics to construct ‘reasonably good’ primal and dual solutions simultaneously.

An early example of a ‘primal-dual’ heuristic is the ‘dual ascent’ heuristic of [21,51]

17

for the Simple Plant Location Problem. The problem is formulated as a 0-1 LP of

minimisation type. A greedy constructive heuristic is used to find a feasible solution

to the dual of the LP relaxation. The dual solution is then used to compute an

‘approximate reduced cost’ for each facility. To obtain a heuristic solution to the 0-1

LP, the facilities with zero reduced cost are opened, and each client is assigned to the

nearest open facility. This yields an upper bound.

Since the publication of [21, 51], dual ascent has been applied to many other

problems, such as the SCP [5, 13, 59], the Generalised Assignment Problem [58], the

Uncapacitated Network Design Problem [4], and the Directed Steiner Tree Problem

[146]. There is also a more sophisticated version, called the primal-dual schema, which

has been used to create approximation algorithms for several important combinatorial

optimisation problems. For details, see [140,144].

There are also heuristics based on Lagrangian relaxation. For example, Beasley

[16] developed heuristics for several different facility location problems as follows. The

problem is formulated as an 0-1 LP that contains constraints stating that each client

must be served by exactly one facility. These constraints are relaxed in a Lagrangian

way. The relaxed problem, which is a very simple 0-1 LP, is trivial to solve. Next,

facilities that are open in the solution to the relaxed problem are opened. To complete

the heuristic solution, each client is simply assigned to the nearest open facility. This

procedure can be repeated for different choices of Lagrangian multipliers, if desired.

Another good example of a Lagrangian heuristic, this time for the SCP, is that of

Caprara et al. [32]. The subgradient method is used to derive several near-optimal sets

of Lagrangian multipliers. Each set of multipliers is used to generate an approximate

reduced cost for each variable. To create the heuristic solution, all variables are

initially set to 0, and variables are then iteratively set to 1, in non-decreasing order

of approximate reduced cost, until a feasible solution is obtained.

We remark that all of the heuristics mentioned so far in this section have a desir-

able property that the heuristics in the previous section do not have: they produce

both lower and upper bounds. They are also a special case of so-called ‘matheuristics’,

which are heuristics that incorporate concepts from exact algorithms, such as relax-

18

ation, duality, branching, bounding or decomposition. For surveys on matheuristics,

see [9, 25,114,115,130].

1.8 Overview of Thesis

We are now in a position to explain the topics addressed in this thesis.

In Chapter 2, we present some theoretical results related to surrogate and group

relaxation (see Section 1.4). We prove that (a) when only inequalities are surrogated,

the surrogate dual is NP-hard, but solvable in pseudo-polynomial time under certain

conditions; (b) when equations are surrogated, the surrogate dual exhibits unusual

complexity behaviour; (c) the group relaxation is NP-hard for the 0-1 KP and its

general-integer version; and (d) the group relaxation is strongly NP-hard for another

COP, known as the Set Packing Problem.

In Chapter 3, we examine in detail the surrogate dual for another COP, the

Multidimensional Knapsack Problem or MKP. Although several authors have used

surrogate relaxation to compute upper bounds for the MKP (e.g., [63, 68, 98, 134]),

those authors solved the surrogate dual heuristically. We present an exact algorithm

for the surrogate dual, along with a primal heuristic. Computational results show

that our algorithms are fast, and that our primal heuristic yields good lower bounds.

On the other hand, the upper bound from the dual tends to be only slightly stronger

than the one from the LP relaxation.

In Chapter 4, we turn our attention to matheuristics, which we defined in the

previous section. It turns out that, while there is already a substantial literature on

matheuristics that draw on dual ascent, Lagrangian relaxation, Dantzig-Wolfe decom-

position or Benders decomposition, very little has been published on matheuristics

based on surrogate relaxation. To address this, we present surrogate-based matheuris-

tics for three specific COPs: the MKP, the SPLP, and the so-called Three-Dimensional

Assignment Problem. The computational results obtained are rather encouraging.

Chapter 5 is concerned with matheuristics that begin by constructing a feasible

solution to the dual of the 0-1 LP. We show that such ‘dual-based’ matheuristics can

19

exhibit highly counter-intuitive behaviour. In particular, for some problem classes,

solving the dual exactly invariably leads to much worse primal solutions than solving

the dual with a simple greedy heuristic. We provide a tentative explanation for this

phenomenon, based on the concept of primal degeneracy. We use the SPLP and SCP

as examples.

Finally, in Chapter 6, we summarise the contributions of this thesis, and make

some concluding remarks.

20

Chapter 2

On the Complexity of Surrogate

and Group Relaxation for Integer

Linear Programs

2.1 Introduction

Many important NP-hard problems have a natural formulation as an integer linear

program or ILP (see, e.g., Conforti et al. [38]). To obtain a bound on the optimal value,

one can solve the continuous relaxation of the ILP, which is obtained by permitting

variables to take fractional values. The resulting bound can however be very weak

in some cases. Popular ways to obtain stronger bounds include cutting planes (e.g.,

[39,119]), Lagrangian relaxation (e.g., [70,84]) and Dantzig-Wolfe decomposition (e.g.,

[11, 46]).

Two further methods for obtaining strong bounds, which are less well known, are

surrogate and group relaxation (see [75, 79] and [77, 78], respectively). The existing

literature on these techniques leaves unanswered several natural questions concerned

with computational complexity. In an attempt to address this gap, we show the

following:

• For the case in which only inequalities may be surrogated, the surrogate dual

21

is NP-hard, but solvable in pseudo-polynomial time under certain conditions.

• For the case in which only equations may be surrogated, the surrogate dual

exhibits unusual complexity behaviour: computing the bound is NP-hard in

the strong sense, but optimal multipliers can be found in polynomial time.

• The group relaxation is NP-hard for the integer knapsack and 0-1 knapsack

problems, and strongly NP-hard for the set packing problem.

The paper has a simple structure. The literature is reviewed in Section 4.2. The

subsequent three sections present the three theoretical results mentioned above. Some

concluding remarks are made in Section 2.6.

Throughout the paper, we let n denote the number of variables, and let N denote

{1, . . . , n}. We call surrogate and group relaxation “SR” and “GR”, respectively.

Given a vector v ∈ Qp
+, we let ||v||1 denote

∑p
i=1 vi. Given a rational scalar s, vector

v or matrix M , we let “size(s)”, “size(v)” and “size(M)” denote the number of bits

needed to represent s, v or M , respectively. We assume that the reader is familiar

with the basics of computational complexity theory, including ordinary and strong

NP-hardness, and pseudo-polynomial time (see [67]). Finally, we remind the reader

that a function f : S 7→ R with convex domain C is called quasi-convex if

f
(
λx+ (1− λ)y

)
≤ max

{
f(x), f(y)

} (
∀x, y,∈ C, λ ∈ (0, 1)

)
.

2.2 Literature Review

In this section, we recall the key papers on SR and GR.

2.2.1 Surrogate relaxation

Consider an ILP of the form

max
{
cTx : Ax ≤ b, x ∈ X

}
, (2.1)

where c ∈ Zn, A ∈ Zm×n, b ∈ Zm, and

X =
{
x ∈ Zn

+ : Dx ≤ e
}

22

for some integral matrix D and integral vector e. In SR, we pick a vector µ ∈ Rm
+ of

surrogate multipliers, and solve the following simpler ILP [75,79]:

max
{
cTx :

(
µTA

)
x ≤ µT b, x ∈ X

}
. (2.2)

This gives an upper bound, that we call U(µ).

Note that computing U(µ) is itself an ILP, and may even be NP-hard. On the

other hand, when X has a sufficiently simple structure, the ILP in question may be

solvable reasonably quickly in practice. For example, if X is Zn
+ or {0, 1}n, then (2.2)

is a knapsack problem, and can be solved in pseudo-polynomial time by dynamic

programming [18].

The problem of finding the vector µ that gives the best upper bound is called the

surrogate dual. Greenberg & Pierskalla [79] were the first to present theory related

to the surrogate dual. They showed that the surrogate dual upper bound is at least

as good as the one from LP relaxation. It is also shown that U(µ) is a quasi-convex

function of µ. Glover [75] extended the previous work and formalised Surrogate

Duality theory to make it directly comparable to Lagrangian relaxation. Glover

generalised the concepts of perturbation functions and subgradients from Lagrangian

duality to be applicable to surrogate duality and provided necessary and sufficient

conditions for weak and strong duality in the surrogate case.

For heuristic methods for solving the surrogate dual see, e.g., [97,98,134]. Karwan

& Rardin [97,98] showed some negative results regarding the possibility of determining

optimal surrogate multipliers when ‘direct search methods’ are used. They proposed

a heuristic approach to compute surrogate multipliers, by iteratively solving linear

relaxations obtained from the solution of sub-optimal surrogate relaxations. Sarin

et al. [134] proposed a modified sub-gradient approach for obtaining surrogate mul-

tipliers by solving a Lagrangian sub-problem. They do not however show that this

procedure is capable of solving the surrogate dual to proven optimality.

Exact algorithms for solving the surrogate dual can be found in, e.g., [22,23,100].

Boros [23] was the first to propose an exact algorithm for finding optimal surrogate

multipliers based on the ellipsoid method. Kim & Kim [100] extended the previous

23

work of Sarin et al. [134], and proved convergence in their stopping rule for solving the

Lagrangian subproblem and hence their overall problem. More recently. Boland et

al. [22] incorporated the use of the so-called ‘bundle trust region’ method to improve

search efficiency in the surrogate multiplier space.

Note that U(sµ) = U(µ) for any positive scalar s. Accordingly, most authors

impose the condition that ||µ||1 = 1. We will not do this, however, for reasons which

will become clear in Section 2.3.

We will also consider the case in which equations, rather than inequalities, are

surrogated. For this situation, we will need a result of Glover & Woolsey [73]. It

states that, if Cx = d is a set of m equations in n binary variables, one can compute

in polynomial time a non-negative integral vector µ, with coefficients bounded by

2m
∏m

i=1(|di| + 1), such that the single equation (µTC)x = µTd has the same set of

binary solutions.

2.2.2 Group relaxation

Now consider an ILP written in the slightly different form

max
{
cTx : Ax ≤ b, x ∈ Zn

+

}
, (2.3)

where c ∈ Zn, A ∈ Zm×n and b ∈ Zm. Adding slack variables we obtain

max
{
cTx : Ax+ s = b, (x, s) ∈ Zn+m

+

}
. (2.4)

Suppose we solve the continuous relaxation of (2.4) by the simplex method, yielding

a basic optimal solution (x∗, s∗). Exactly m variables will be basic and n variables

will be non-basic at (x∗, s∗).

Gomory’s GR is obtained from (2.4) by retaining integrality, but dropping the

non-negativity restriction on the basic variables [77,78]. Provided that (x∗, s∗) is non-

degenerate, this is equivalent to dropping all non-binding constraints in the original

ILP (2.3), including all non-binding non-negativity constraints, if any. Thus, the

upper bound obtained with GR is at least as good as the one obtained with LP

relaxation.

24

The reason for the name group relaxation is that Gomory showed how to express it

in group-theoretic terms. He also showed that the GR can be reduced to a shortest-

path problem in a graph with D nodes, where D is the determinant of the basis

matrix. This has led to several algorithms for solving the GR (see, e.g., [35, 132]).

Unfortunately, none of them run in polynomial time.

It is stated in [110] that, for general ILPs, the GR is NP-hard in the strong sense.

An explicit proof is given in [54]. Interestingly, however, there are some NP-hard

ILPs whose GR can be solved in polynomial time. Indeed, Cornuéjols et al. [41] show

that this is true for ILPs of the form

max
{
pTx : xu + xv ≤ 1

(
{u, v} ∈ E

)
, x ∈ Zn

+

}
. (2.5)

where p ∈ Zn
+ and E is the edge set of an arbitrary (simple, loopless, undirected)

graph on n nodes. Such ILPs are used to model the independent set problem (also

known as the node packing problem or stable set problem), which is well-known to

be strongly NP-hard [96].

2.3 Surrogating Inequalities

In this section, we consider the computational complexity of the surrogate dual when

only inequalities are surrogated. To begin, for any θ ∈ Z, let

Λ(θ) =
{
µ ∈ Rm

+ : U(µ) ≤ θ
}
.

That is, Λ(θ) is the lower level set of U(µ) for the given θ. Observe that Λ(θ) is the

set of points µ ∈ Rm
+ satisfying the following linear inequalities:

(Ax̄− b)Tµ > 0
(
∀x̄ ∈ X : cT x̄ ≥ θ + 1

)
. (2.6)

Thus, Λ(θ) is a convex cone. On the other hand, it is not closed (except in the trivial

cases when it is either empty or equal to Rm
+). This makes it rather difficult to work

with.

Now, consider the following modified version of the inequalities (2.6):

(Ax̄− b)Tµ ≥ 1
(
∀x̄ ∈ X : cT x̄ ≥ θ + 1

)
. (2.7)

25

Observe that, if a vector lies in Λ(θ), we can multiply it by a suitable positive scalar

to make it satisfy (2.7). This leads us to define the following (unbounded) convex set:

Λ̃(θ) =
{
µ ∈ Rm

+ : (2.7) holds
}
.

From the above argument, Λ(θ) is empty if and only if Λ̃(θ) is empty. We also have

the following result.

Proposition 2.1 Λ̃(θ) is a polyhedron.

Proof. Define the polyhedron

P θ =
{
x ∈ Rn

+ : Dx ≤ e, cT x̄ ≥ θ + 1
}
,

and let P θ
I denote the convex hull of the integral points in P . By Meyer’s theorem

[118], P θ
I is a polyhedron. Thus, it can be described by a finite set of extreme points

and extreme rays. Let p1, . . . , ps be the points and r1, . . . , rt be the rays. By definition,

Λ̃(θ) is the set of all points in Rm
+ that satisfy the following inequalities:

(Apk − b)Tµ ≥ 1 (k = 1, . . . , p) (2.8)

(Ark)Tµ ≥ 0 (k = 1, . . . , r). (2.9)

It is therefore the intersection of a finite number of half-spaces. □

The above concepts are made clear by the following example:

Example 1: Consider the following trivial ILP:

max
{
x1 + x2 : 6x1 + 3x2 ≤ 4, 3x1 + 6x2 ≤ 4, x ∈ {0, 1}2

}
.

The optimal solution is (0, 0), with profit 0. The optimal solution to the LP relaxation

is (4/9, 4/9), giving the upper bound 8/9.

Suppose we set X to {0, 1}2, and surrogate both of the linear constraints, with

multipliers µ1 and µ2. Suppose also that we set θ to 0. There are three points in

X with profit greater than 0; namely, (0, 1), (1, 0) and (1, 1). The corresponding

26

constraints (2.6) are −µ1 + 2µ2 > 0, 2µ1 − µ2 > 0 and 5µ1 + 5µ2 > 0, respectively.

The last of these is redundant. Therefore:

Λ(0) =
{
µ ∈ R2

+ : −µ1 + 2µ2 > 0, 2µ1 − µ2 > 0
}

Λ̃(0) =
{
µ ∈ R2

+ : −µ1 + 2µ2 ≥ 1, 2µ1 − µ2 ≥ 1
}
.

One can check that Λ̃(0) has the unique extreme point (1, 1). Thus, SR with this

choice of µ yields the upper bound 0. □

We will also need the following lemma.

Lemma 2.1 The number of bits needed to represent any inequality of the form (2.8)

or (2.9) is polynomial in n, size(c), size(D), size(e) and size(θ).

Proof. This follows from [136], Corollary 17.1c, and the definition of the pk and rk.

□

Next, consider the following decision problem associated with the surrogate dual:

The Level Set Problem (LSP): Given some θ ∈ Z, is Λ(θ) empty?

It follows from the above observations that the answer to the LSP is “yes” if and

only if the following LP is infeasible:

min
{
||µ||1 : (2.7) hold, µ ∈ Rm

+

}
. (2.10)

We remark that, if X has infinite cardinality, then (2.10) is a semi-infinite LP.

Clearly, solving the LSP cannot be harder than solving the surrogate dual. On

the other hand, we have the following negative result.

Proposition 2.2 Even when only inequalities are surrogated, the LSP is NP-complete.

Proof. Consider the special case of the ILP (2.1) in which m = 1, A ≥ 0, b > 0 and

X = {0, 1}n. In this case, the ILP reduces to the 0-1 knapsack problem. Moreover,

by setting µ1 to any positive quantity, we can make the upper bound U(µ) exact (i.e.,

27

equal to the profit of the optimal solution of the knapsack problem). So, the answer

to the LSP is “yes” if and only if there exists a solution to the knapsack problem with

profit larger than θ. This is NP-hard to check.

To complete the proof, we just have to show that the LSP is in NP . For a

given θ, let S be the system of linear inequalities formed by the union of (2.8) and

(2.9). By definition, the answer to the LSP is “yes” if and only if S is inconsistent.

Moreover, if S is inconsistent, then, by Helly’s theorem [88], there exists a subset of

S of cardinality at most m + 1 that is also inconsistent. Moreover, by Lemma 2.1,

each of the m+1 inequalities involves a polynomially bounded number of bits. Thus,

whenever the answer to the LSP is ‘yes’, there exists a short certificate of that fact.

This shows that the LSP is in NP . □

We now return to the surrogate dual itself.

Theorem 2.1 Consider once more an ILP of the form (2.1). Suppose that the fol-

lowing three assumptions hold:

1. For any θ ∈ Z and v ∈ Qn, one can solve the following ILP in time that is

polynomial in n, size(D), size(e), size(θ), size(v) and ||c||1:

min
{
vTx : x ∈ X , cTx ≥ θ

}
.

2. The continuous relaxation of the ILP (2.1) is feasible and bounded.

3. One can compute in polynomial time a lower bound L on the optimal profit,

whose encoding length is polynomial in n, size(A), size(b), size(c), size(D) and

size(e).

Then one can solve the surrogate dual in time that is polynomial in n, size(A), size(b),

size(D), size(e) and ||c||1.

Proof. First, suppose that θ ∈ Z is fixed. Consider the separation problem for the

constraints (2.7) (i.e., the problem of detecting when a given µ̄ ∈ Rm
+ violates one of

the constraints). The separation problem is equivalent to the ILP

min
{(
µ̄TA

)
x : x ∈ X , cTx ≥ θ + 1

}
.

28

(Indeed, one of the linear constraints is violated if and only if the optimal solution of

this ILP, say x̄, satisfies
(
µ̄TA

)
x̄ < 1 + µ̄T b.) Now, under the first assumption, the

separation problem can be solved in time that is polynomial in the parameters listed.

Then, by Lemma 2.1 and the polynomial equivalence of separation and optimisation

[80], the LP (2.10) can be solved in time that is polynomial in n, size(A), size(b),

size(D), size(e), size(θ) and ||c||1. This implies in turn that the LSP can be solved in

time that is polynomial in the same parameters.

Now suppose that assumption 2 holds. Using the ellipsoid method [80, 136], we

can solve the LP relaxation of the ILP (2.1) in time that is polynomial in n, size(A),

size(b), size(c), size(D) and size(e). This yields an upper bound on the optimal profit,

which we denote by U . Moreover, from [136], Theorem 10.3, size(U) is bounded by a

polynomial in the same parameters.

Now suppose that assumption 3 also holds. We now have both lower and upper

bounds on the optimal value of θ, each of which has polynomial encoding length.

Thus, by applying binary search on the value of θ, one can reduce the surrogate dual

to a number of LSP instances that is polynomial in the stated parameters. □

This result generalises a result of Boros [23], who proved it for the case in which

X is the hypercube. It means that, if we can solve the surrogate relaxed problem in

pseudo-polynomial time, then the surrogate dual cannot be NP-hard in the strong

sense (unless of course P = NP).

We remark that computing L is often easy in practice. Indeed, if it is known

that all points x̄ ∈ X satisfy ℓ ≤ x̄ ≤ u, for some vectors ℓ, u ∈ Zn
+, then an easily-

computable value for L is

n∑
j=1

ℓj max{0, cj}+
n∑

j=1

uj min{0, cj}.

29

2.4 Surrogating Equations

Now we turn our attention to the case in which equations, rather than inequalities,

are surrogated. More precisely, we now assume that the ILP takes the form:

max
{
cTx : Ax = b, x ∈ X

}
.

Similarly, we now assume that

U(µ) = max
{
cTx :

(
µTA

)
x = µT b, x ∈ X

}
.

Note also that, here, it may make sense to allow some of the surrogate multipliers to

take negative values.

As in the previous section, we can define lower level sets:

Λ(θ) = {µ ∈ Rm : U(µ) ≤ θ} .

Note however that, in this case, we have:

Λ(θ) =
{
µ ∈ Rm :

(
µTA

)
x̄ ̸= µT b

(
∀x̄ ∈ X : cTx > θ

)}
.

The presence of the symbol “̸=” suggests that Λ(θ) is not convex in general. This is

indeed the case. In fact, Λ(θ) can even be disconnected, as shown by the following

example.

Example 2: Consider the following equality-constrained 0-1 LP:

max
{
x1 + 5x2 : x1 = 0, x1 + x2 = 0, x ∈ {0, 1}2

}
.

Trivially, the optimal solution has profit 0. Now, as before, we set X to {0, 1}2 and

surrogate both of the linear constraints. Note that the domain of µ is now R2. One

can check that

U(µ) = 6 (if µ1 + 2µ2 = 0)

= 5 (if µ2 = 0 and µ1 ̸= 0)

= 1 (if µ1 + µ2 = 0 and µ2 ̸= 0)

= 0 (otherwise).

30

So the lower level sets Λ(1), . . . ,Λ(6) are all disconnected. □

Now recall that, in the inequality-constrained case, we reduced the Level Set

Problem to the LP (2.10). The equivalent problem in the equality-constrained case

is:

min
{
||µ||1 :

(
Ax̄
)T
µ ̸= bTµ

(
∀x̄ ∈ X : cT x̄ > θ

)
, µ ∈ Rm

}
. (2.11)

Note that (2.11) looks much harder to solve than (2.10). Indeed, we have the following

negative result.

Theorem 2.2 If only equations are surrogated, then the surrogate dual is NP-hard

in the strong sense, and the LSP is NP-complete in the strong sense.

Proof. Suppose that X = {0, 1}n, i.e., we are dealing with a 0-1 LP. By using a slack

variable sj, we can convert the condition xj ∈ {0, 1} to xj + sj = 1, xj, sj ∈ Z+. In

this way, we can transform a 0-1 LP into an ILP in which all constraints (apart from

the non-negativity and integrality constraints) are equations. The result of Glover &

Woolsey [73] mentioned in Subsection 5.2.1 then implies that there exists an integral

vector µ, whose encoding length is polynomial in that of the input, such that U(µ)

is equal to the profit of the optimal solution of the original 0-1 LP. Thus, solving

the surrogate dual problem is as hard as solving a 0-1 LP, and is therefore strongly

NP-complete. Moreover, the answer to the LSP is “yes” if and only if there is a

feasible solution to the 0-1 LP with profit greater than θ. For 0-1 LPs in general,

checking whether such a feasible solution exists is strongly NP-complete. □

Thus, in the equality-constrained case, one cannot determine the best possible

value of U(µ) in pseudo-polynomial time (unless P = NP). Bizarrely, however,

one can find an optimal vector µ in polynomial time (by applying the procedure

in [73]). The explanation of this apparent paradox is that the components of µ may

be exponentially large, which makes solving the surrogate relaxed problem as hard as

solving the ILP itself.

31

2.5 Group Relaxation

In this section, we prove some results concerned with the complexity of GR. We start

with two results concerned with knapsack problems (KPs). We remind the reader

that the integer KP takes the form

max
{
pTx : aTx ≤ b, x ∈ Zn

+

}
, (2.12)

where p, a ∈ Zn
+ and b is a positive integer. The 0-1 KP is similar, except that

all variables are constrained to be binary. Both problems are known to be weakly

NP-hard [96,113]. Our results are as follows.

Proposition 2.3 The GR is NP-hard for the integer KP.

Proof. Consider an integer KP instance of the form (2.12). Let M be a “large”

positive integer. (In fact, it suffices to set M to any integer that is larger than

(b+ 1)maxj∈N{pj/aj}.) We construct a different integer KP instance, which we call

the augmented KP:

max pTx+My

s.t. aTx+ (b+ 1)y ≤ 2b+ 1 (2.13)

(x, y) ∈ Zn+1
+ .

Note that the LP relaxation of the augmented KP has a unique optimal solution with

x∗j = 0 for all j, and y∗ = (2b+1)/(b+1) < 2. This solution is non-degenerate, since

the only binding constraints are the non-negativity constraints on the x variables and

the constraint (2.13). Thus, applying GR to the augmented KP just means dropping

non-negativity on y. Since y has a very large profit, it will be set to 1 in the optimal

GR solution. So the optimal x for the GR of the augmented KP is identical to the

optimal x of the original integer KP. □

Proposition 2.4 The GR is NP-hard for the 0-1 KP.

32

Proof. Consider again an integer KP instance of the form (2.12), and let M be as

in the previous proof. We construct the following 0-1 KP with n+ 2 variables:

max pTx+ 2My +Mz

s.t. aTx+ (b+ 1)(y + z) ≤ 2b+ 1 (2.14)

(x, y, z) ∈ {0, 1}n+2.

The LP relaxation of the 0-1 KP has an optimal solution with x∗j = 0 for all j, y∗ = 1

and z∗ = b/(b + 1) < 1. This solution is non-degenerate, since the only binding

constraints are the non-negativity constraints on the x variables, the constraint (2.14),

and the upper bound of 1 on y. Thus, applying GR to the 0-1 KP means dropping

the upper bounds of 1 on the xj, the lower bound of 0 on y, and the lower and upper

bounds on z. Since y has a very large profit, it will be set to 1 in the optimal GR

solution. This forces z to take the value 0. So the optimal x for the GR of the 0-1

KP is identical to the optimal x of the original integer KP. □

Next, we consider the set packing problem (SPP). In the SPP, we are given a

positive integer n, a positive integer profit pj for each j ∈ N , and a collection of

m non-empty subsets of N , say S1, . . . , Sm. The task is to select a subset of N of

maximum profit, subject to the constraint that, for i = 1, . . . ,m, at most one element

of Si is selected. The SPP is strongly NP-hard [96]. The standard ILP formulation

is as follows [123]:

max
{
pTx :

∑
j∈Si

xj ≤ 1 (i = 1, . . . ,m), x ∈ Zn
+

}
. (2.15)

Theorem 2.3 The GR is NP-hard in the strong sense, even for set packing problems

that are formulated as ILPs of the form (2.15).

Proof. Consider an SPP of the form (2.15), and let M be a “large” positive integer.

(Here, it suffices to set M to 2
∑

j∈N pj.) We construct an augmented SPP with

33

n+ 3m variables. It takes the form:

max pTx+M
∑m

i=1

(
yi + y′i

)
+ (M + 1)

∑m
i=1 zi

s.t.
∑

j∈Si
xj + yi + y′i ≤ 1 (i = 1, . . . ,m) (2.16)

yi + zi ≤ 1 (i = 1, . . . ,m) (2.17)

y′i + zi ≤ 1 (i = 1, . . . ,m) (2.18)

x ∈ Zn
+

y, y′, z ∈ Zm
+ .

The LP relaxation of the augmented SPP has a feasible solution with xj = 0 for all

j, and yi = y′i = zi = 1/2 for all i. This LP solution is optimal, as one can verify by

setting the dual variables for (2.16) to (M − 1)/2, and the dual variables for (2.17)

and (2.18) to (M + 1)/2. In fact, it is the unique optimal solution, as one can verify

by noting that every x variable has a positive reduced cost.

Now note that, at this LP solution, the binding constraints are (2.16)–(2.18),

together with the non-negativity constraints on the x variables. Thus, exactly n+3m

constraints are binding, and the LP solution is non-degenerate. Applying GR to

the augmented SPP therefore means just dropping non-negativity on the y, y′ and z

variables. Now, note that the remaining constraints imply that yi + y′i + zi ≤ 1 for

all i. Since zi has a larger profit than yi and y
′
i, it will be set to 1 in the optimal GR

solution. This in turn will force yi and y
′
i to take the value 0. Then, the optimal x of

the GR of the augmented SPP is identical to the optimal x of the original SPP. □

We close this section by noting that the complexity of GR for a particular combi-

natorial optimisation problem depends on the way it is formulated as an ILP. Indeed,

Padberg [123] showed that the SPP and the independent set problem are equivalent,

i.e., any ILP of the form (2.15) can be converted into one of the form (2.5) and

vice-versa. Yet, as mentioned in Subsection 5.2.2, the GR of (2.5) can be solved in

polynomial time.

34

2.6 Final Remark

We close the paper by mentioning some interesting open problems concerned with

composite relaxation (CR), which is a hybrid of Lagrangian and surrogate relaxation

[75,79]. In CR, we choose vectors λ, µ ∈ Rm
+ , and solve the relaxed problem

max
{
cTx+ λT

(
b− Ax

)
:
(
µTA

)
x ≤ µT b, x ∈ X

}
.

In theory, CR can produce better upper bounds than both Lagrangian and surrogate

relaxation. Unfortunately, the dual function is not even quasi-convex in λ and µ. In

fact, it may have local minima that are not global minima [97]. Thus, the composite

dual is even harder to solve than the surrogate dual. We conjecture that, even in

the inequality case, the composite dual is strongly NP-hard. As for the Level Set

Problem in CR, we do not even know whether it lies in NP or co-NP .

Acknowledgement: We are grateful to an anonymous reviewer, whose comments

enabled us to improve the paper significantly.

35

Chapter 3

Revisiting Surrogate Relaxation

for the Multidimensional Knapsack

Problem

3.1 Introduction

The multidimensional knapsack problem (MKP) is a classic problem in combinatorial

optimisation. It is defined as follows. We have n items and m resources. The profit of

item j is pj. The amount of resource i available is bi. Item j uses aij units of resource

i. The goal is to select a set of items of maximum total profit, while respecting the

availabilities of the resources.

There is a vast literature on the MKP. For reviews of the literature up to 2004

or so, see the surveys [61,62,99]. For recent examples of exact algorithms, heuristics

and upper bounds, see [116,142], [3, 47, 128] and [82,95], respectively.

In the 1980s, several authors proposed to compute upper bounds for the MKP

using a method called surrogate relaxation [63,68,98,134]. To obtain a strong bound

with surrogate relaxation, one must solve an auxiliary optimisation problem, called

the surrogate dual. It is shown in [23] that the dual can be solved exactly in pseudo-

polynomial time. Nevertheless, in the four above-mentioned papers, the dual was

36

solved only approximately, using variations of the subgradient method.

In this paper, we present an algorithm for solving the surrogate dual exactly. The

algorithm exploits the fact that excellent simplex-based linear programming solvers

are now available. We then show how to use the information generated during the

solution of the dual to drive a “primal heuristic”, and thereby obtain lower bounds

for the MKP. We also report extensive computational results, obtained by applying

our algorithms to benchmark instances.

The paper has the following structure. The literature is reviewed in Section 3.2.

The algorithm for the dual is described in Section 3.3, and the primal heuristic is

given in Section 3.4. The computational results are in Section 3.5. Finally, some

concluding remarks are made in Section 3.6.

Throughout the paper, we assume that the reader is familiar with the basics

of linear, integer and dynamic programming (see [36, 38]). We write “LP”, “DP”

for linear program and dynamic program, respectively. We write “SR” and “SD” for

surrogate relaxation and surrogate dual, respectively. We let N denote {1, . . . , n}. We

assume that the pj, bi and aij are positive integers. Finally, given a vector v ∈ Rp
+,

we let |v| denote
∑p

i=1 vi.

3.2 Literature Review

We now review the literature. For brevity, we mention only papers of direct relevance.

3.2.1 The MKP

The MKP is NP-hard in the strong sense [67], but solvable in pseudo-polynomial

time for fixed m [99]. It has a natural formulation as a 0-1 LP. For all j ∈ N , define a

binary variable xj, taking the value 1 if and only if item j is selected. We then have:

max
{
pTx : Ax ≤ b, x ∈ {0, 1}n

}
. (3.1)

The LP relaxation of the 0-1 LP is obtained by replacing the binary condition

with the weaker condition x ∈ [0, 1]n. This LP can be solved extremely quickly in

37

practice. We will let x∗ ∈ [0, 1]n denote the LP solution, ULP the corresponding upper

bound, π ∈ Qm
+ the vector of dual prices, and ρ ∈ Qn

+ the vector of reduced costs.

Several exact and heuristic algorithms for the MKP attempt to exploit information

in the LP solution, by giving “priority” to variables with large x∗j and/or small ρj

(e.g., [3, 47, 142]). Angelelli et al. [3] use such a criterion to construct an initial

“kernel” of promising items in their adaptation of the kernel search heuristic to the

MKP. Della Croce & Grosso [47] use the reduced costs to calculate “penalties” for

each item. They fix the variables with the largest penalties to either 0 or 1, and

solve the reduced problem exactly with an ILP solver. Vimont et al. [142] branch on

the variables with the largest absolute reduced costs in their “implicit enumeration

scheme”. They also generate useful additional linear constraints using “reduced-cost

propagation”.

3.2.2 Surrogate relaxation and duality

Now consider an arbitrary 0-1 LP of the form (3.1), where negative coefficients are

permitted. In SR, we pick a vector µ ∈ Qm
+ of surrogate multipliers, and solve the

following simpler 0-1 LP [75,79]:

max
{
pTx :

(
µTA

)
x ≤ µT b, x ∈ {0, 1}n

}
. (3.2)

We will let U(µ) denote the resulting upper bound.

The SD is the problem of finding the vector µ that minimises U(µ). It is shown

in [79] that U(µ) is a quasi-convex function of µ. This fact is used in various algorithms

for the SD (e.g., [22, 97, 98, 100, 134]), most of which are variants of the subgradient

method. Karwan & Rardin [97,98] showed some negative results regarding the possi-

bility of determining optimal surrogate multipliers when “direct search” methods are

used. They proposed a heuristic approach to compute surrogate multipliers, by iter-

atively solving linear relaxations obtained from the solution of suboptimal surrogate

relaxations. Sarin et al. [134] proposed a modified subgradient approach for obtaining

surrogate multipliers, which involves the solution of Lagrangian subproblems. They

did not however show that this procedure is capable of solving the surrogate dual to

38

proven optimality. Kim & Kim [100] extended the previous work of Sarin et al. [134],

and proved convergence in their stopping rule for solving the Lagrangian subproblem

and hence their overall problem. More recently, Boland et al. [22] incorporated the

use of the so-called “bundle trust region” method to improve search efficiency in the

surrogate multiplier space.

It has been proved that, under certain conditions, the SD can be solved in pseudo-

polynomial time [23, 48]. However, the proofs in [23, 48] rely on the equivalence

of separation and optimisation, which in turn relies on the ellipsoid method [80].

Given that the ellipsoid method is very slow in practice, the results in [23, 48] are of

theoretical interest only.

Now recall the definition of π from the previous subsection. It was shown in [79]

that U(π) ≤ ULP . Thus, the upper bound from the SD is at least as strong as the

one from the LP.

3.2.3 Surrogate relaxation for the MKP

Observe that, if we apply SR to the MKP, all coefficients are non-negative in (3.2).

Thus, in this case, (3.2) is a 0-1 knapsack problem (0-1 KP). Although the 0-1 KP

is itself NP-hard [96], it is often easy in practice [99]. Moreover, if µ ∈ Zm
+ , then

(3.2) can be solved in O
(
n (µT b)

)
time, by DP [18]. For these reasons, SR may be an

attractive option for the MKP.

In the 1980s, several papers applied SR to the MKP (e.g., [63,68,98,134]). Gavish

& Pirkul [68] provided an ϵ-approximate algorithm to determine the surrogate mul-

tipliers for the special case in which there are only two constraints. They observed

that, in this case, the search for the surrogate multipliers can be reduced to an opti-

misation problem involving a single variable. They then used their algorithm for the

bi-dimensional case within a heuristic method for the multi-dimensional case. They

avoided solving 0-1 KP by solving the LP relaxation of the surrogate dual instead.

Fréville & Plateau [63] provided an exact method for determining the surrogate multi-

pliers in the bi-dimensional case, based on the solution of a sequence of real-weighted

0-1 KP instances. Finally, the authors of [98, 134] tested their general-purpose SD

39

algorithms on the MKP.

In all these early papers, the SD was either solved for only the two-constraint

version, or heuristically, via iterative approaches. The resulting upper bounds were

good, but the test instances were rather small by today’s standards (see again [47,

116]).

Crama & Mazzola [42] proved two negative results concerning the application of

SR to the MKP. The first is that, for any µ ∈ Qm
+ , we have U(µ) ≥ ULP/2. The

second is that, again for any µ ∈ Qm
+ , we have U(µ) ≥ ULP − p+, where p+ is the

maximum of pj over all j ∈ N . Intuitively, these results show that the upper bound

from the SD cannot be much stronger than one from the LP.

3.3 Solving the Surrogate Dual

As mentioned above, the exact algorithms in [23, 48] for solving the SD are of the-

oretical interest only, since the ellipsoid method is very slow in practice. Given the

fact that excellent simplex-based LP solvers are now available, we consider using a

simplex-based method instead.

Our starting point is the following observation, made in [48]. For any given θ ∈ Z+,

we can check whether there exists a vector µ ∈ Qm
+ such that U(µ) ≤ θ by solving

the following LP:

min |µ|1 (3.3)

s.t. (Ax̄− b)Tµ ≥ 1
(
∀x̄ ∈ {0, 1}n : pT x̄ > θ

)
(3.4)

µ ∈ Rm
+ . (3.5)

Indeed, if this LP is feasible, the solution gives us the desired µ vector. If the LP is

infeasible, it means that no such µ vector exists.

We call the LP (3.3)-(3.5) the “master” LP. Note that the number of constraints

(3.4) is typically exponential in n. Thus, to solve the master LP (for a given θ), one

must use a cutting-plane algorithm. As mentioned above, our cutting-plane algorithm

uses the simplex method.

40

In each iteration of our cutting-plane algorithm, the solution to the master LP

yields a “tentative” multiplier vector, say µ̄. The problem of checking whether µ̄

satisfies all of the constraints (3.4) is called the separation problem. (See [80] for a

thorough treatment of separation problems in convex and combinatorial optimisa-

tion.)

Intuitively, the separation problem attempts to find a binary vector x̄ which has

large profit, but satisfies the current “tentative” surrogate constraint. The separation

problem can itself be formulated as the following 0-1 LP:

min
{(
µ̄TA

)
x : x ∈ {0, 1}n, pTx > θ

}
. (3.6)

Let x̄ denote the optimal solution of this 0-1 LP (for a given µ̄). There are three

cases:

• Case 1:
(
µ̄TA

)
x̄ ≥ 1+ µ̄T b and x̄ is feasible for the MKP instance. In this case,

we know that the profit of the optimal MKP solution is at least pT x̄ > θ. Thus,

our trial value θ was too small.

• Case 2:
(
µ̄TA

)
x̄ ≥ 1 + µ̄T b and x̄ is not feasible for the MKP instance. In this

case, the multiplier vector µ̄ satisfies U(µ̄) ≤ θ.

• Case 3:
(
µ̄TA

)
x̄ < 1 + µ̄T b. In this case, the corresponding constraint (3.4) is

violated by µ̄.

The problem (3.6) is a 0-1 KP (of minimisation type). It is not hard to show that

it can be solved in O(nθ) time, by DP. Note the profit of the optimal MKP solution

cannot exceed |p|. Thus, we can assume without loss of generality that θ ≤ |p|. As

a result, we can solve (3.6) in O
(
n |p|

)
time. Note that this running time is pseudo-

polynomial.

The above-mentioned cutting-plane algorithm takes a given value of θ ∈ Z+ as

input, but we do not know the optimal value of θ in advance. Thus, we perform a

binary search on θ, solving the LP (3.3)-(3.5) in each major iteration.

Let µ∗ denote the (as yet unknown) optimal solution to the SD, and let θ∗ = U(µ∗)

denote the corresponding upper bound (also unknown) for the MKP. For the binary

41

search, we need initial lower and upper bounds on θ∗. We will call these ℓ and u.

To obtain ℓ, we simply run a greedy heuristic for the MKP (inserting items in non-

increasing order of profit), and then set ℓ to the profit of the resulting MKP solution.

As for u, we simply use ⌊ULP ⌋.

The overall approach is described in Algorithm 1. Note that, towards the end of

the outer “while” loop, we set θ to ⌊0.9u + 0.1ℓ⌋ rather than to ⌊(u + ℓ)/2⌋. This is

because, in our experience, θ∗ tends to be closer to u than to ℓ.

We remark that the algorithm as stated returns only the upper bound θ∗. One

can easily modify the algorithm so that it also returns the optimal multiplier vector

µ∗, and/or the associated x vector. We omit details for brevity.

3.4 Primal Heuristic

Observe that, each time we solve the separation problem (3.6), we obtain a vector

x̄ ∈ {0, 1}n. Typically, x̄ is not a feasible solution to the MKP. Our primal heuristic

attempts to “repair” x̄, to make it feasible for the MKP.

Before running the heuristic for the first time, we sort the items in order of “at-

tractiveness” and create a sorted list. In more detail, when we solve the LP relaxation

at the start of Algorithm 1, we store the vectors x∗ and ρ. We then sort the items in

N according to two criteria. First, we sort them in non-increasing order of x∗j value.

Then, if there are any items with x∗j = 0, we sort those in non-decreasing order of ρj.

We call the sorted list “SL”.

Our primal heuristic is described in Algorithm 2. The idea is that, instead of

relying entirely on the list SL, we give priority to items that have x̄j = 1. Since the

separation problem is solved many times during Algorithm 1, this gives our primal

heuristic several chances to find a good solution. Of course, the best primal solution

found so far is stored in memory.

We remark that, if Algorithm 2 obtains a solution whose profit is larger than ℓ, we

can update ℓ in Algorithm 1. This can be accomplished by adding the following line

to Algorithm 1, immediately after the cutting-plane phase: “if the primal heuristic

42

Algorithm 1: Solving the Surrogate Dual of the MKP

input: positive integers m, n; non-negative integer matrix A;

positive integer vectors p and b.

// initialisation

Solve the LP relaxation of the MKP and set u to ⌊ULP ⌋;
Run a greedy heuristic for the MKP to get initial lower bound ℓ;

Set up initial “master” LP min
{
|µ| : |µ| ≥ 1, µ ∈ Rm

+

}
;

Solve the master LP via primal simplex;

Set θ to u;

// binary search

while u ̸= ℓ do

// cutting-plane algorithm

while the master LP is feasible do

Let µ̄ be the current solution to the master LP;

Solve the 0-1 LP (3.6), yielding a solution x̄;

if
(
µ̄TA

)
x̄ < 1 + µ̄T b then

// we have found a violated constraint

Add the constraint (3.4) to the master LP;

Re-optimise the master LP via dual simplex;

else

Break;

end

end

// check whether θ∗ ≤ θ

if the master LP remains feasible then

Set u to θ;

Clean the master LP by deleting all cuts with positive slack;

end

else

Set ℓ to θ + 1;

Let S denote the set of newly-added cutting-planes;

Clean the master LP by deleting the cutting planes in S;

end

Set θ to ⌊0.9u+ 0.1ℓ⌋;
end

Output θ and stop.

43

Algorithm 2: Primal Heuristic

input : positive integers m, n; positive integer vectors p and b,

non-negative integer matrix A, sorted list SL,

current solution x̄ of the subproblem (3.6).

output: feasible MKP solution S ⊂ N .

Let N1 be the set of items for which x̄j = 1;

Let N2 = N \N1;

Set S = ∅;

for k = 1, 2 do

for t = 1 to |Nk| do

Let j be the tth item in SL that belongs to Nk;

if item j fits into the knapsack then

Place item j into S;

end

end

end

44

has found a new best MKP solution, then set ℓ to the profit of that solution”.

3.5 Computational Results

In this section, we present our computational results. Our algorithm was implemented

in C++ and compiled with Microsoft Visual Studio (v. 15.0) in Windows 10. To solve

the master LPs, we used the CPLEX (v. 12.7.1) dual simplex solver, under default

settings. All experiments were conducted on a 2.80GHz, 4-core Intel i7-7700HQ

laptop, with 16GB RAM.

3.5.1 Test instances

The standard benchmark MKP instances, created by Chu & Beasley [37], are available

at the OR-Library [15]. The weights aij are random integers between 1 and 1000.

Each profit pj is set to:
m∑
i=1

aij/m+ 500uj,

where uj is a random number between 0 and 1. The bi are set to ∆
∑n

j=1 aij, where

0 < ∆ < 1 is a parameter.

For each combination of n ∈ {100, 250, 500},m ∈ {5, 10, 30} and ∆ ∈ {0.25, 0.5, 0.75},

there are ten instances. This makes 3× 3× 3× 10 = 270 instances in total. For the

instances with n = 100 and/or m ≤ 10, the optimal values are known [116]. The

remaining 60 instances, with n ∈ {250, 500} and m = 30, remain unsolved. The best

known lower bounds for those instances can be found in [116].

We remark that the above-mentioned instances have rather large pj values. Since

our separation algorithm for the constraints (3.6) runs in O
(
n |p|

)
time, these are

unfavourable instances for our approach. Nevertheless, we will see that the running

times were acceptable for the instances in question.

45

3.5.2 Results

Table 3.1 presents the results obtained for the 210 solved MKP instances. Each

entry in the table is the average over 10 instances. The columns headed “UB %gap”

show the average gap between two upper bounds and the optimum, expressed as a

percentage of the optimum. The upper bounds are obtained by LP and SD. The

columns headed “LB %gap” show the average gap between three lower bounds and

the optimum, again expressed as a percentage of the optimum. These three lower

bounds are explained below. Finally, the last column shows the average time taken

by our SD algorithm, in seconds. (The time taken to solve the LP, and time taken

by our primal heuristic, were negligible, being less than 0.1 seconds in every case.)

We now explain the lower bounds. The column “Gr’” corresponds to the greedy

heuristic, in which items are inserted in non-increasing order of profit. The column

“LP” corresponds to the case in which items are first inserted in non-increasing order

of x∗j , and then in non-decreasing order of ρj. (This is equivalent to running Algorithm

2 with N1 set to N .) The column “SD” corresponds to our primal heuristic.

A comparison of the 4th and 5th columns shows that the upper bound from the SD

is often only slightly stronger than the one obtained with linear programming. The

only exception is when n = 100 and m = 5, where SD closes a significant proportion

of the integrality gap. We found this rather surprising, given the fact, mentioned in

the introduction, that several authors recommended applying SR to the MKP.

Another observation is that both integrality gaps tend to decrease as n increases,

but increase as m increases. The effort required to solve the SD, however, seems to

be an increasing function of both n and m.

The news on the lower bounds is much more positive. The LP-based heuristic

performs much better than the greedy heuristic, and our primal heuristic performs

much better still. As for the computing times, the final column shows that we could

solve the SD exactly within a few seconds for most of the instances. (No instance

took more than 40 seconds.)

Table 3.2 presents the results obtained for the 60 unsolved MKP instances. For

46

UB %gap LB %gap Time

n m ∆ LP SD Gr LP SD (sec)

.25 0.997 0.881 35.04 1.554 0.672 3.48

100 5 .50 0.452 0.418 24.56 0.883 0.272 4.00

.75 0.318 0.271 13.43 0.561 0.259 2.47

.25 0.220 0.204 35.09 0.582 0.416 4.32

250 5 .50 0.108 0.105 24.36 0.383 0.149 4.76

.75 0.076 0.070 12.27 0.226 0.117 4.30

.25 0.071 0.070 35.53 0.405 0.268 9.24

500 5 .50 0.038 0.037 22.92 0.166 0.104 8.87

.75 0.023 0.023 12.26 0.118 0.067 7.66

.25 1.584 1.565 41.65 2.029 1.103 7.23

100 10 .50 0.796 0.789 28.99 1.218 0.461 6.65

.75 0.478 0.476 16.22 0.667 0.243 4.95

.25 0.454 0.452 40.94 0.965 0.720 10.15

250 10 .50 0.231 0.230 27.48 0.528 0.322 14.02

.75 0.141 0.141 15.13 0.242 0.197 12.95

.25 0.166 0.166 39.96 0.503 0.427 23.71

500 10 .50 0.078 0.076 25.99 0.260 0.234 22.12

.75 0.056 0.056 14.20 0.138 0.123 15.80

.25 2.971 2.971 42.97 3.306 2.680 12.50

100 30 .50 1.336 1.336 32.05 0.873 0.761 11.47

.75 0.830 0.830 18.49 0.986 0.581 8.04

Table 3.1: Results for the solved MKP instances.

47

UB %gap LB %gap Time

n m ∆ LP SD Gr LP SD (sec)

.25 1.065 1.065 43.20 1.595 1.517 35.75

250 30 .50 0.477 0.477 31.32 0.616 0.600 32.71

.75 0.278 0.278 16.98 0.417 0.387 26.11

.25 0.480 0.480 42.29 0.807 0.807 108.64

500 30 .50 0.209 0.209 29.91 0.451 0.451 89.76

.75 0.134 0.134 16.20 0.180 0.180 106.78

Table 3.2: Results for unsolved benchmark MKP instances.

these instances, the average percentage gaps are computed with respect to the best

known lower bound, rather than the optimal solution value. The results here are

similar to those obtained for the solved instances, but the similarity between the

LP and SD bounds is even more apparent. In fact, closer inspection of the output

revealed that, for almost all of these instances, the SD upper bound was equal to the

LP upper bound rounded down to the nearest integer. Thus, for large-scale random

instances, one may as well just solve the continuous relaxation, without bothering to

use SR.

We now move on to look at the distribution of results for individual instances.

Figure 3.1 plots the difference between the LP and SD lower bound gaps and the

difference between SD and LP upper bound gaps for each of the 210 instance for

which the optimum is known. The dotted line shows the improvement in lower bound

gaps when the SD is used while the solid line shows the same thing for the upper

bound. The differences in upper bounds have been magnified by a factor of 10 to

make them more discernible. The first thing to note is each line lies completely on

one side of the horizontal axis. In the case of the upper bounds, this is simply because

the SD bound is at least as good as the LP bound. In the case of the lower bounds,

this means the SR-based ones are always better than the LP-based ones. Secondly,

noting that the 90 instances in each group have the same number of constraints (with

48

Figure 3.1: LP vs Surrogate bounds - 210 instances with known optima

Figure 3.2: LP vs Surrogate bounds - 60 largest instances

49

100 items in the first 30 instances, 250 in the next 30, and 500 in the last 30), we

see a clear pattern that, regardless of the number of constraints, the improvement

provided by the surrogate approach to the lower bounds is most pronounced for fewer

items. Finally, there appears to be a decreasing trend in each group of 30 instances

as well. This suggests that the surrogate approach works best when the capacity of

each knapsack is around 25 percent of the weight of all items, and performs less well

as the capacity increases to 50 percent and 75 percent, respectively.

Figure 3.2 plots the same for the largest 60 instances, whose optimum values are

not known. It reconfirms that for each individual instance the LP and SD upper

bounds are identical. Furthermore, the SR-based lower bounds are only sporadically

better than the LP-based ones (although, again, never worse).

We remark that some additional implementation “tricks” could potentially im-

prove our algorithm. For example, one could begin by running a local-search heuris-

tic for the MKP, in order to obtain a better initial lower bound ℓ. One could use

a heuristic to solve the separation problem (3.6), and only use an exact separation

algorithm when the heuristic fails. Finally, one could also use local search to improve

the solutions found by the primal heuristic.

3.6 Conclusion

Although surrogate relaxation has been applied many times to the MKP, we are the

first to solve the surrogate dual exactly for instances of meaningful size. To do this,

we used an approach based on cutting planes and binary search, rather than one of

the classical heuristics, which are all essentially variations of the subgradient method.

The results indicate that one can solve the dual quite quickly in practice, using

a modern implementation of the simplex method to solve the intermediate linear

programs. They also indicate that our primal heuristic produces solutions of good

quality. On the other hand, the upper bounds from the surrogate dual were rarely

much better than the upper bounds from linear programming relaxation.

An interesting topic for future research would be to improve our bounding proce-

50

dures, and integrate them within an exact algorithm for the MKP. It would also be

interesting to adapt the approach to some other combinatorial optimisation problems.

51

Chapter 4

Using Surrogate Relaxation as a

Matheuristic

4.1 Introduction

In the field of combinatorial optimisation, it is important to distinguish between exact

algorithms, which are guaranteed to yield a provably optimal solution, and heuristics,

which are not (see, e.g., [117,131]). In recent years, there has been increasing interest

in heuristics which draw on concepts and algorithms from the literature on exact

methods (e.g., [9, 25, 130]). These hybrid solution methods have come to be known

as matheuristics [114,115].

There is a long history of matheuristics that are based on dual ascent (e.g., [4,

10, 146]) or Lagrangian relaxation (LR for short) (e.g., [15, 16, 34]). More recently,

matheuristics have been proposed based on Benders decomposition and Dantzig-Wolfe

decomposition (e.g., [9, 25, 115, 130]). The goal of this paper is to show that one can

also easily design matheuristics based on a different technique, known as surrogate

relaxation [75, 79].

Our approach exploits the fact that, in SR, the relaxed problem is typically solved

using dynamic programming (DP). This enables one to easily extract a large number

of “promising partial solutions”, each of which can be “repaired” to obtain a feasible

solution to the original problem.

52

To show the generality of our approach, we conduct computational experiments

on three specific combinatorial optimisation problems: themultidimensional knapsack

problem (MKP), the simple plant location problem (SPLP) and the three-dimensional

assignment problem (AP3).

The paper has a simple structure. Section 4.2 is a literature review. Sections 4.3

to 4.5 concern the MKP, SPLP and AP3, respectively. Concluding remarks are made

in Section 4.6.

4.2 Literature Review

In this section, we briefly review the relevant literature. We cover surrogate relaxation

in Subsection 4.2.1. The other three subsections are concerned with the MKP, SPLP

and AP3.

4.2.1 Surrogate relaxation

Consider an integer linear program (ILP) of the form

max
{
pTx : Ax ≤ b, Cx ≤ d, x ∈ Zn

}
, (4.1)

where p ∈ Qn, A ∈ Qm×n, b ∈ Qm, C ∈ Qr×n and d ∈ Qr. In surrogate relaxation (SR

for short), we pick a vector µ ∈ Qm
+ of surrogate multipliers, and solve the following

simpler ILP [75,79]:

max
{
pTx :

(
µTA

)
x ≤ µT b, Cx ≤ d, x ∈ Zn

}
. (4.2)

This gives an upper bound, that we call U(µ).

The following results are proved in [75,79]:

• If suitable multipliers are chosen, then the upper bound from SR is at least as

strong as the one obtained by relaxing the integrality condition.

• If an optimal solution to (4.2) is feasible for (4.1), then it is also optimal for

(4.1).

53

• U(·) is a piecewise-constant quasi-convex function of µ.

The problem of finding a vector µ that maximises U(µ) is called the surrogate

dual. Heuristics for solving the surrogate dual can be found in [50,98,134]. Dyer [50]

provides two methods, one based on interior-point methods for non-convex non-linear

programs and another based on ”quasi-subgradients”. The latter are a generalisation

of the well-known subgradients used in convex non-differentiable minimisation. Dyer

was able to show finite termination only for the first method, and optimality was not

guaranteed for either method. Karwan & Rardin [98] proposed a different heuris-

tic approach, based on the iterative solution of linear programs. Sarin et al. [134]

proposed yet another heuristic, a modified subgradient approach which involves the

solution of Lagrangian subproblems.

Exact algorithms for the surrogate dual can be found in [22,23,48,100]. Boros [23]

showed that, when the relaxed problem is a 0-1 knapsack problem (KP), the dual can

be reduced to the solution of a polynomial number of KPs. This result relies however

on the ellipsoid method, which is notoriously slow in practice. Kim & Kim [100]

extended the previous work of Sarin et al. [134], and proved convergence in their

stopping rule for solving the Lagrangian subproblem and hence their overall problem.

More recently, Boland et al. [22] incorporated the use of the so-called ‘bundle trust

region’ method to improve search efficiency in the surrogate multiplier space. Finally,

Dokka et al. [48] extended the result of Boros to a more general family of problems

and relaxations (see the previous chapter).

SR has been applied to several combinatorial optimisation problems (e.g., [60,62,

65, 99, 112, 121]). Fisher et al. [60] applied SR to the job shop scheduling problem.

They tried relaxing two different constraints sets: (i) the capacity constraints, which

resulted in a 0-1 KP that they solved using dynamic programming, and (ii) the prece-

dence constraints, which left them with a set of single-machine problems. Despite the

pseudo-polynomial and polynomial time complexity for solving each of these relax-

ations, respectively, they reported prohibitive running times when the lower bounds

from the relaxation were incorporated in the state-of-the-art implicit enumeration

scheme of the era.

54

Lorena & Lopes [112] applied a combination of SR and LP relaxation to the set

covering problem. They updated their multipliers with a sub-gradient scheme. They

also obtained feasible primal solutions, using a simple greedy heuristic, that was

initialised using a ‘critical’ variable identified by the solution of the SR. The idea of

using SR and LP relaxation in combination was also used by Galvão et al. [65], in the

context of the maximal covering location problem. They used a subgradient-based

heuristic to calculate multipliers, and they construct a primal solution by opening

facilities present in the relaxed solution. Narciso & Lorena [121] applied SR to the

generalised assignment problem. They too used a sub-gradient scheme, but they

solved the relaxed problems via specialist algorithms, rather than resorting to LP

relaxation as in [65, 112]. They also converted the solutions to the relaxation into

primal solutions, using an efficient constructive heuristic.

Finally, the book ‘Knapsack Problems’ [99] provides a couple of heuristics for

the MKP that use SR. Each time the surrogate multipliers are updated, two primal

heuristics are called. The first heuristic uses the multipliers to construct a kind of

‘artificial’ weight for each item. It then applies the classical ‘profit-per-weight’ greedy

heuristic for the 0-1 KP, but with the artificial weights in place of actual weights.

The second heuristic is similar, but based on a combination of SR and LP relaxation.

We say more about the MKP in the next subsection.

As one can see, although SR has been applied to several combinatorial optimisa-

tion problems, only a few papers use SR within a heuristic scheme [60, 65, 112, 121].

Moreover, our approach, which exploits the nature of DP algorithms, is different to

the approaches in those papers.

4.2.2 The MKP

The MKP takes the form:

max
∑n

j=1 pjxj (4.3)

s.t.
∑n

j=1 aijxj ≤ bi (i = 1, . . . ,m) (4.4)

xj ∈ {0, 1} (j = 1, . . . , n), (4.5)

55

where the pj are positive rationals and the aij and bi are positive integers. The MKP

is NP-hard in the strong sense [67]. For surveys of solution approaches, including

applications of SR to the MKP, see [62] or Chapter 9 of [99].

4.2.3 The SPLP

In the SPLP (also known as the uncapacitated facility location problem), we have m

facilities and n clients. The cost of opening facility i is fi. The cost of assigning

client j to facility i is cij. The goal is to decide which facilities to open, and to assign

each client to an open facility at minimum cost. The standard ILP formulation of

the SPLP is:

min
∑m

i=1 fiyi +
∑m

i=1

∑n
j=1 cijxij (4.6)

s.t.
∑m

i=1 xij = 1 (∀j) (4.7)

yi − xij ≥ 0 (∀i, j) (4.8)

x ∈ {0, 1}mn, y ∈ {0, 1}m. (4.9)

The SPLP is NP-hard in the strong sense [106]. For surveys, see, e.g., [106,141].

4.2.4 The AP3

In the (axial) three-index assignment problem (AP3), we have n tasks, n workers and

n machines, and the cost incurred if task i is performed by worker j on machine

k is cijk. The problem calls for an assignment of tasks to workers and machines of

minimum total cost. The standard 0-1 LP formulation of the AP3 is:

min
∑n

i=1

∑n
j=1

∑n
k=1 cijkxijk (4.10)

s.t.
∑n

j=1

∑n
k=1 xijk = 1 (i = 1, . . . , n) (4.11)∑n

i=1

∑n
k=1 xijk = 1 (j = 1, . . . , n) (4.12)∑n

i=1

∑n
j=1 xijk = 1 (k = 1, . . . , n) (4.13)

xijk ∈ {0, 1} (i, j, k = 1, . . . , n). (4.14)

56

The AP3 is NP-hard in the strong sense [67]. For surveys, see, e.g., [72] or Chapter

10 of [28].

4.3 The Multidimensional Knapsack Problem

In this section, we present and test an SR-based matheuristic for the MKP. The four

subsections in this section cover the relaxation, the primal heuristic, the test instances

and the computational results.

From now on, given some v ∈ Zr, we let |v| denote
∑r

i=1 |vi|. Also, ⌊v⌋ denotes

the vector obtained by rounding down each component of v to the nearest integer.

We also call the constraint
(
µTA

)
x ≤ µT b the “surrogate constraint”.

4.3.1 Relaxation

Suppose that we relax constraints (4.4) with multiplier vector µ ∈ Qm
+ . The relaxed

problem is:

max pTx

s.t.
(
µTA

)
x ≤ µT b (4.15)

x ∈ {0, 1}n.

This is a 0-1 knapsack problem (0-1 KP). Although the 0-1 KP is NP-hard [96], it

can be solved in pseudo-polynomial time using DP [18]. More precisely, if µTA ∈ Zm
+

and µT b ∈ Z+, then the 0-1 KP can be solved in O
(
n
(
µT b
))

time.

Unfortunately, if we place no restrictions on µ, there is no guarantee that µTA

and µT b will be integral. Moreover, even if we are able to make them integral, there is

no guarantee that µT b will be small. As a result, the naive DP approach may not be

viable. This led us to devise a heuristic to obtain a surrogate constraint with “small

enough” integer coefficients:

1. Let t be a positive integer target value for the right-hand side of the surrogate

constraint.

57

2. Solve the continuous relaxation of the ILP (4.3)-(4.5), and let π ∈ Qm
+ be the

optimal dual vector.

3. Compute the “scaling factor” s = (t+ 1− ϵ)/
(
πT b
)
, where ϵ is a small positive

quantity.

4. Set µ to sπ. The resulting “tentative” surrogate constraint is:(
(sπ)TA

)
x ≤ t+ 1− ϵ. (4.16)

5. Round the coefficients of (4.16) down to the nearest integer. The resulting

surrogate constraint is ⌊
(sπ)TA

⌋
x ≤ t.

In our experience, setting t to somewhere between n1.5 and n2.5 gives a good compro-

mise between upper bound strength and running time. We provide details with the

computational results.

We now make an important observation. Let T be any positive integer not less

than t. For q = 0, . . . , T , let f(q) denote the optimal solution to a modified version

of the relaxed problem, in which the right-hand side of (4.15) is changed to q. Using

DP, one can compute f(q) for q = 0, . . . , T in O(nT) time. Moreover, for any given

q, one can extract the corresponding optimal (binary) x vector in O(n) time. We will

let x̄q denote the optimal x vector for a given q.

4.3.2 Primal heuristics

A very simple greedy heuristic for the MKP is as follows. Sort the items in non-

increasing order of profit. Starting with an empty knapsack, go through the sorted

list. Each time one encounters an item that fits into the knapsack, insert that item

and proceed to the next item.

A slightly more sophisticated version of this heuristic is as follows. Solve the

continuous relaxation of the ILP (4.3)-(4.5). Let x∗ ∈ [0, 1]n be the optimal solution,

and let ρ ∈ Qn
+ be the vector of reduced costs. Sort the items in non-increasing order

58

of x∗, and then sort the items with x∗j = 0 in non-decreasing order of ρj. Then start

with an empty knapsack, and go through the sorted list, as before.

We now modify the second heuristic so that it exploits information obtained during

the DP. Let q be an integer that is “close” to t. We say that xj is promising if x̄qj = 1.

We start with an empty knapsack, and then proceed through the sorted list twice.

The first time, we insert only promising items into the knapsack. The second time,

we insert non-promising items (if there is space).

Assuming that the sorted list has been constructed in a pre-processing step, our

heuristic takes O(nm) time for a given q. In practice, it is extremely fast. We therefore

run it for O(n) values of q. More precisely, we run it for q = t − n, . . . , t + n. This

gives us 2n + 1 primal solutions, of which we pick the best. The entire matheuristic

runs in O
(
n2m

)
time (not including the time taken to solve the LP). In practice, it

is very fast.

Intuitively, the vectors x̄q can be viewed as “partial” MKP solutions, and scanning

the sorted list can be viewed as a way to “repair” those partial solutions. The at-

tractive feature of DP is that it enables us to extract many different partial solutions

quickly. The use of many different partial solutions can be viewed as a “diversifica-

tion” mechanism, which gives the matheuristic many chances to find a good MKP

solution.

4.3.3 Test instances

The standard benchmark MKP instances, created by Chu & Beasley [37], are available

at the OR-Lib [15]. The weights aij are random integers between 1 and 1000, and

each profit pj is set to:
m∑
i=1

aij/m+ 500uj,

where uj is a random number between 0 and 1. The bi are set to ∆
∑n

j=1 aij, where

0 < ∆ < 1 is a parameter.

For each combination of n ∈ {100, 250, 500},m ∈ {5, 10, 30} and ∆ ∈ {0.25, 0.5, 0.75},

there are ten random instances. This makes 270 instances in total. As mentioned in

59

the previous chapter, the instances with n ∈ {250, 500} and m = 30, sixty instances

in total, remain unsolved. The optimal solution values for the solved instances, and

the best known lower bounds for the others, can be found in [26, 116]. We verified

the optimal values for a sample of the solved instances with CPLEX (v. 12).

4.3.4 Computational results

We implemented the lower- and upper-bounding procedures in C, and we used the

dual simplex solver of the CPLEX callable library (v. 12.0) to solve the LP relaxation.

We set the “target” t to n2.

Table 4.1 shows the results obtained for the 210 solved MKP instances. Each

row corresponds to a particular combination of m, n and ∆. The columns headed

“UB gaps (%)” show the average gaps between two upper bounds and the optimum,

expressed as a percentage of the optimum. Each figure is the average over ten random

instances. Similarly, the columns headed “LB gaps (%)” show the average percentage

gaps between three lower bounds and the optimum. The column labelled ‘Gr’ cor-

responds to a simple greedy heuristic, in which items are inserted in non-increasing

order of profit. The column labelled “LP” was obtained using the LP-based heuristic

mentioned above. finally, the column labelled ‘SR’ was obtained using our matheuris-

tic.

We see that all upper bounds are pretty tight for these instances, but the SR upper

bounds are consistently a little worse than the LP upper bounds. The situation is

very different for the lower bounds. Indeed, the LP lower bounds are much better

than the greedy ones, and the SR lower bounds are much better still. Note also that

the SR-based primal heuristic described in this chapter performs slightly better than

the one described in the previous chapter (see Table 3.1 in Section 3.5).

Table 4.2 presents the results obtained for the 60 unsolved MKP instances. For

these instances, the average percentage gaps are computed with respect to the best

known lower bound, rather than the optimal solution value. The results here are

similar to those obtained for the solved instances, with the SR upper bounds slightly

60

UB gaps (%) LB gaps (%)

m n ∆ LP SR Gr LP SR

0.25 1.00 1.05 35.04 1.554 0.595

5 100 0.50 0.45 0.65 24.56 0.883 0.245

0.75 0.32 0.58 13.43 0.561 0.157

0.25 0.22 0.26 35.09 0.582 0.344

5 250 0.50 0.11 0.19 24.36 0.383 0.103

0.75 0.08 0.19 12.27 0.226 0.088

0.25 0.07 0.09 35.53 0.405 0.147

5 500 0.50 0.04 0.08 22.92 0.166 0.046

0.75 0.02 0.08 12.26 0.118 0.035

0.25 1.59 1.70 41.65 2.029 1.132

10 100 0.50 0.80 1.00 28.99 1.218 0.451

0.75 0.48 0.77 16.22 0.667 0.202

0.25 0.46 0.50 40.94 0.965 0.569

10 250 0.50 0.23 0.32 27.48 0.528 0.176

0.75 0.14 0.26 15.13 0.242 0.113

0.25 0.17 0.19 39.96 0.503 0.242

10 500 0.50 0.08 0.12 25.99 0.260 0.110

0.75 0.06 0.11 14.20 0.138 0.061

0.25 2.97 3.11 42.97 3.306 2.066

30 100 0.50 1.34 1.57 32.05 0.873 0.763

0.75 0.83 1.14 18.49 0.986 0.477

Table 4.1: Results for the 210 solved MKP instances

61

UB %gap LB %gap

m n ∆ LP SR Gr LP SR

.25 1.065 1.011 43.20 1.595 1.027

30 250 .50 0.477 0.567 31.32 0.616 0.404

.75 0.278 0.401 16.98 0.417 0.259

.25 0.480 0.504 42.29 0.807 0.598

30 500 .50 0.209 0.253 29.91 0.451 0.269

.75 0.134 0.193 16.20 0.180 0.136

Table 4.2: Results for the 60 unsolved MKP instances.

worse than the LP ones. As before, the LP-based primal heuristic performs much

better than the greedy one, and the SR-based primal heuristic performs better still.

Note that most of the bounds deteriorate as m increases, but get better as n

increases. This is consistent with other works on the MKP [62,99].

We now move on to look at the distribution of results for individual instances.

Figure 4.1 plots the difference between the LP and SR lower bound gaps (dotted line)

and the difference between SR and LP upper bound gaps (solid line) for each of the

180 instances that have either 5 or 10 constraints. Note that a positive number for

the dotted line means that the SR lower bound is better than the LP one, whereas a

negative number for the solid line means that the SR upper bound is worse than the

LP one. The upper bound differences are also magnified by a factor of 10 so that the

trend is easier to observe. We remark that the instances are sorted by m first, then

by n, and finally by ∆, just as in the above tables.

The first thing to note is that each line lies completely on one side of the horizontal

axis. In the case of the upper bounds, this means that the LP bound is always better

than the SR bound. We remark however that 115 out of 180 instances have an SR

upper bound that is within 0.01 percent of the LP bound. In the case of lower bounds,

the SR lower bound is always better than the LP one. On the other hand, there are

52 instances out of the 180 for which the improvement is less than 0.1 percent.

62

Figure 4.1: LP vs SR - 180 instances with m = 5 or 10

Figure 4.2: LP vs SR - 90 instances with m = 30

63

Figure 4.3: Average Percentage Upper Bound Gap as t varies

Looking at the upper bounds in more detail, it is apparent that the performance

of the SR bound deteriorates as ∆ increases (i.e., as the knapsack capacity gets larger

relative to the total weight of the items). As for the lower bounds, it seems that,

regardless of the number of constraints, the improvement in bound provided by the

surrogate approach is most pronounced for the case of fewer items. Moreover, the

SR lower bound seems to be particularly good when ∆ is 25 percent. Finally, there

seems to be some kind of correlation present, in the sense that, when the SR upper

bound is weak, the SR lower bound tends to be weak as well.

Figure 4.2 plots the same for the most difficult 90 instances that have 30 con-

straints. (We remind the reader that the optimal values are not known for the last

60 of these instances.) It reconfirms the behaviour of upper bounds as discussed

above. Also, the SR-based lower bounds are nearly always better than the LP-based

ones, although there are a few exceptions. The improvement seems to decrease as the

number of items n or knapsack capacity ∆ increases.

For the sake of brevity, we do not report detailed running times for the MKP

instances. The DP algorithm took a few seconds for the instances with n = 100,

and a few minutes for those with n = 500. The time taken by the matheuristic was

negligible in all cases.

64

Finally, we mention that we also experimented with setting the target t to other

values, such as ⌈n1.5⌉ and ⌈n2.5⌉. This had a clear effect on running times but,

oddly, did not have a consistent effect on bound quality. Figure 4.3 shows the SR

upper bound gap versus the target t for a subset of the instances. The upper bound

improves significantly as the the target t is increased from ⌈n1.5⌉ to ⌈n2⌉. Thereafter

as t increases there is a significant increase in computing time with little appreciable

improvement in the upper bound. All things considered, setting t to n2 seems like a

good compromise.

4.4 The Simple Plant Location Problem

In this section, we apply our approach to the SPLP. The structure of this section is

the same as the previous one.

4.4.1 Relaxation

When applying SR to the SPLP, one can relax either (4.7) or (4.8). If we relax (4.7),

using a multiplier vector µ ∈ Zn
+, the relaxed problem is to minimise
m∑
i=1

fiyi +
m∑
i=1

n∑
j=1

cijxij, (4.17)

subject to (4.8), (4.9) and
m∑
i=1

n∑
j=1

µjxij = |µ|. (4.18)

If, on the other hand, we relax (4.8), using a multiplier vector µ ∈ Zmn
+ , the relaxed

problem is to minimise (4.17) subject to (4.7), (4.9) and

m∑
i=1

n∑
j=1

µijxij ≤
∑
i

(∑
j

µij

)
yi. (4.19)

In the Appendix, we show that both of the relaxed problems can be solved in

O
(
mn |µ|

)
time via DP.

In our preliminary computational tests, we found that a good compromise between

running time and bound quality was obtained by using the first relaxation and setting

|µ| to around mn. To generate a suitable µ, we used the following heuristic:

65

1. Solve the continuous relaxation of the ILP (4.6)-(4.9), and let π ∈ Qn
+ be the

optimal dual vector for the constraints (4.7).

2. Compute the scaling factor s = mn/|π|.

3. Set µ to sπ, and round each component of µ to the nearest integer.

One peculiarity of the SPLP is that the constraints (4.8) make the LP relaxation

massively primal degenerate. This slows down the simplex method, and it also means

that there are typically many basic optimal dual solutions to the LP. We decided to

solve the LP with an interior-point method rather than the simplex method, to speed

things up. This also had the side-effect of making the dual solution π “central” (in

the interior of the optimal face in the dual) rather than “extreme”.

As in the previous section, we will find it helpful to have several SR solutions rather

than only one. So, let T be any positive integer not less than |µ|. For q = 0, . . . , T ,

let f(q) denote the optimal solution to a modified version of the relaxed problem, in

which the right-hand side of (4.18) is changed to q. Using DP, one can compute f(q)

for q = 0, . . . , T in O(nmT) time. Moreover, for any given q, one can extract the

corresponding (binary) vectors x and y in O(mn) time. Actually, for our purposes,

we will need only to extract the y vector, which can be done in O(m) time for a given

q. We will let ȳq denote the y vector for a given q.

4.4.2 Primal heuristics

One of the best performing constructive heuristics for the SPLP is the “drop” heuristic

(see [52]). Sort the facilities in non-increasing order of fixed cost fi. Temporarily

open all facilities, and assign each client to its nearest facility. Then proceed through

the sorted list, checking whether the cost can be reduced by closing the current

facility and reassigning clients to their nearest open facility. The drop heuristic can

be implemented to run in O(mn+m logm) time [111].

One can improve this heuristic as follows. Solve the continuous relaxation of the

ILP (4.6)-(4.9). Let y∗ ∈ [0, 1]m be the optimal y vector, and let ρ ∈ Qm
+ be the vector

66

of reduced costs for the y variables. Sort the facilities in non-decreasing order of y∗i ,

and then sort the facilities with y∗i = 0 in non-increasing order of ρi. Then apply the

drop heuristic, but using the new sorted list in place of the original one.

As in the case of the MKP, we now modify the second heuristic so that it exploits

information obtained during the DP. Let q be an integer that is “close” to mn. We

say that yi is promising if ȳqi = 1. We start with all facilities open, and then proceed

through the sorted list twice. The first time, we only consider non-promising facilities

for closure. The second time, we consider the promising facilities.

We run this heuristic for q = 0.900 |µ|, 0.901 |µ|, . . . , 1.100 |µ|. This gives us 201

primal solutions, of which we pick the best. The whole matheuristic runs in O
(
m2n

)
time (not including the time taken to solve the LP).

4.4.3 Test instances

Many different benchmark SPLP instances have been created, most of which are

available at UflLib [138]. We selected the following instances:

1. BK instances, constructed as in Bilde & Krarup [21]. These instances have

random integer costs. They are small by modern standards, but have quite

large integrality gaps. There are 10 instances each of type “B” and “C”, and

100 each of types “D” and “E”. We were able to compute the optimal solution

values quite quickly using CPLEX.

2. K-med instances, constructed as in Anh et al. [2]. In these instances, the facility

and client locations are points in the unit square. For m = n = 250, we created

five instances with large facility costs (Kmed-L), five with medium facility costs

(Kmed-M) and five with small facility costs (Kmed-S). Again, we computed the

optimal values with CPLEX.

3. The M* instances of Kratica et al. [107]. These instances have a negative cor-

relation between facility costs and assignment costs. We selected the fifteen

smallest instances (five for each value of m = n ∈ {100, 200, 300}). Optimal

values are given in [127].

67

4. The KG instances. These were created by Ghosh [71] using a scheme proposed

by Koerkel [104]. They come in two types, symmetric (KG-S) and asymmetric

(KG-A). We selected the fifteen smallest instances of each type, which have

m = n = 250. Optimal values for these are given in [55,127].

5. Instances from Kochetov & Ivanenko [103], which we call KI. They only have

m = n = 100. The ones of type “A”, “B” and “C” are designed to have large

integrality gaps. In the ones of type A, each client has 10 cheap connections. In

the ones of type B, each facility has 10 cheap connections. The ones of type C

satisfy both properties. Finally, the ones of type “U” have costs taken from a

uniform distribution. There are 30 instances of each type, making 120 in total.

Optimal values are given in [103].

4.4.4 Computational results

As before, we implemented the lower- and upper-bounding procedures in C. To solve

the LP relaxation, we used the “barrier” solver of CPLEX 12.0. Table 4.3 shows the

results. The table has a similar format to Table 4.1.

For most of the instances, the SR lower bound is not quite as strong as the LP

lower bound. This is consistent with what we saw for the MKP. For the KI-A, KI-B

and KI-C instances, however, the SR lower bound is a bit stronger than the LP lower

bound.

As for the upper bounds, the LP and SR heuristics do much better than the

classical drop heuristic, with the single exception of the MO instances. On the other

hand, the superiority of the SR heuristic over the LP-based one is not as clear as it

was in the case of the MKP: the SR heuristic does noticeably better on the BK and

KI instances, but gives no significant advantage on the other instances.

68

LB gaps (%) UB gaps (%)

Set m n LP SR Drop LP SR

BK-B 100 50 1.87 2.09 4.35 0.62 0.00

BK-C 100 50 6.08 6.35 8.02 2.27 1.97

BK-D 80 30 7.16 7.42 14.51 2.00 1.33

BK-E 100 50 9.19 9.33 16.63 2.96 2.16

Kmed-L 0.00 0.01 11.67 0.00 0.00

Kmed-M 250 250 0.00 0.01 7.17 0.00 0.00

Kmed-S 0.00 0.01 0.03 0.00 0.00

MO 100 100 2.85 2.96 0.83 0.86 0.86

MP 200 100 4.20 4.25 1.31 0.21 0.21

MQ 300 100 4.04 4.07 1.07 0.28 0.28

KG-S-a 0.13 0.18 0.48 0.11 0.11

KG-S-b 250 250 0.96 1.00 1.35 0.39 0.39

KG-S-c 3.29 3.30 2.27 0.49 0.33

KG-A-a 0.14 0.19 0.48 0.11 0.11

KG-A-b 250 250 0.98 1.01 1.34 0.28 0.28

KG-A-c 3.13 3.15 2.32 0.67 0.37

KI-A 25.63 22.48 56.83 19.30 14.60

KI-B 100 100 21.10 17.65 41.43 21.66 15.53

KI-C 28.15 28.24 40.92 25.42 18.53

KI-U 100 100 4.64 4.81 28.96 3.71 3.12

Table 4.3: Average percentage gaps for the SPLP

69

Figure 4.4: Group 1 - LP vs SR Bound Gap Differences & Absolute Bound Gaps

70

We now analyse the results in more detail. We will find it helpful to divide the

sets of instances into three groups. Group 1 contains the 220 BK instances; Group

2 contains the 60 instances from the K-med, M* and KG sets; and Group 3 contains

the 120 KI instances. For each group, we present a figure that has a top half and a

bottom half. The top half shows the differences between the upper bounds (dotted

line) and lower bounds (solid line). As in the previous section, a positive number

for the dotted line means that the SR upper bound improves upon the LP upper

bound, and a negative number for the solid line indicates that the LP lower bound is

better than the SR lower bound (this is reversed for KI instances, since on average the

SR lower bound is better in those instances). The lower bound differences are also

magnified by a factor of 10 to make the trend discernible (except for KI instances,

since the lower bound differences are already big for those). The bottom half of each

figure is self-explanatory: it just plots the percentage gaps.

Figure 4.4 shows the detailed results for the BK instances. A slight trend is observed

in the lower bound differences for the BK-D and BK-E instances, suggesting that the

SR bound, though nearly always worse than the LP bound, improves as the constant

facility opening costs get larger. As for upper bounds, the SR bound improves on the

LP bound in about 40 percent of the instances. The frequency and magnitude of the

improvements does not significantly vary between the various categories of instances.

The lower half of the chart, showing the actual percentage gaps, does not show any

glaring trends apart from an appreciable deterioration of LP and SR lower bounds

after the first 10 instances. These instances have the largest facility opening costs.

Finally, looking at the upper bounds, we see that the SR-based ones are optimal for

about a third of the BK instances.

We now move on to the second group, containing the K-med, M* and KG instances.

The K-med instances were uninteresting, since nearly all LP and SR bounds were zero.

Figure 4.5 shows the detailed results for the remaining M* and KG instances. Looking

at the top half, we see two things. Firstly, the SR lower bounds get closer to the LP

lower bound as (a) the size of the instances get bigger (from MO to MQ), and (b) as

the facility opening costs get larger (from KG-*-A to KG-*-C). This is consistent with

71

Figure 4.5: Group 3 - LP vs SR Bound Gap Differences & Absolute Bound Gaps

72

Figure 4.6: Group 3 - LP vs SR Bound Gap Differences & Absolute Bound Gaps

73

what we saw for the BK instances. Secondly, the SR-based approach rarely improves

the upper bounds compared to the LP-based approach.

Coming to the lower half of Figure 4.5, we see a clear pattern in the lower bounds

of the KG instances: the LP and SR lower bounds decrease in crisp steps as the

facility opening costs get larger. The SR and LP upper bounds are strong, and are

only occasionally more than 0.5 percent away from the optimum.

Finally, Figure 4.6 shows the detailed results for the KI instances. Starting with

the differences, and reminding the reader that a negative number for the difference in

lower bounds means that the SR bound is better, we see some peculiar behaviour. The

SR lower bound improves the most compared to the LP lower bound for the KI-A and

KI-B instances. The KI-A instances show some extreme differences, while the KI-B

instances shows a more standard distribution. The LP and SR lower bounds are

nearly identical for the KI-C and KI-U instances. The SR upper bound improvement

also displays some “step-wise” behaviour, consistent with the nature of the first three

sets of instances. The lower half of the figure suggests a similar step-wise behaviour

in the SR lower bound for the KI-A and KI-B instances.

As before, we do not report detailed running times. We just mention that solving

the LP and running the primal heuristics took just a few seconds, whereas the DP

algorithm took up to a couple of minutes.

4.5 The 3-Dimensional Assignment Problem

Finally, we apply our approach to the AP3. This section has the same structure as

the previous two.

4.5.1 Relaxation

In the AP3, there are three “blocks” of linear constraints, i.e., (4.11)-(4.13). We

decided to relax two of the three blocks, and leave the other block intact. Suppose, for

example, that we relax constraints (4.11) and (4.12) using multiplier vectors µ1, µ2 ∈

74

Zn. The relaxed problem is to minimise

n∑
i=1

n∑
j=1

n∑
k=1

cijkxijk,

subject to (4.13), (4.14) and

n∑
i=1

n∑
j=1

(
µ1
i + µ2

j

) n∑
k=1

xijk =
∣∣µ1
∣∣+ ∣∣µ2

∣∣ .
This is an equality-constrained version of the well-known multiple-choice knapsack

problem or MCKP (see Chapter 4 of [99]). Provided that µ1
i + µ2

j ≥ 0 for all i and j,

the standard DP algorithm for the MCKP can be applied. It can be shown that, in

our context, the DP algorithm runs in O
(
n3
(∣∣µ1

∣∣ + ∣∣µ2
∣∣)) time (details omitted for

brevity).

To generate suitable vectors µ1 and µ2, we used the following heuristic:

1. Take the ILP (4.10)-(4.14).

2. Change the sense of the equations (4.11) and (4.12) to “≥” and change their

right-hand sides to 0.999.

3. Solve the LP relaxation of the resulting ILP with an interior-point method.

4. Let π1 and π2 be the optimal dual vectors for the first two blocks of constraints.

5. Compute the scaling factor s = 2n2/(|π1|+ |π2|).

6. Set µ1 to sπ1 and µ2 to sπ2.

7. Round each component of µ1 and µ2 to the nearest integer.

We now make a few comments about this heuristic. First, the reason for modifying

the constraints in step 2 is to ensure that π1 and π2 (and therefore also µ1 and µ2) are

non-negative. Second, we use an interior-point method in step 3 to obtain a “central”

dual solution, just as we did for the SPLP. Third, due to the choice of scaling factor

in step 5, |µ1| + |µ2| is approximately 2n2. As a result, the DP runs in O
(
n5
)
time.

75

Although this is rather slow, we found that it was acceptable for the benchmark AP3

instances described later.

As usual, we store several SR solutions rather than one. This is done using a

similar method as in the previous two sections.

4.5.2 Primal heuristics

A very simple greedy heuristic for the AP3 is as follows. Sort the x variables in non-

decreasing order of cost. Start with all variables set to zero. Go through the sorted

list, setting each variable to one if it is feasible to do so. Note that the sorting step

itself takes O
(
n3 log n

)
time, which is fairly time-consuming.

As in the previous sections, we consider a modified greedy heuristic in which we

use information from the continuous relaxation of the ILP. Specifically, we sort the x

variables in non-increasing order of x∗ value, and then sort the ones with x∗ijk = 0 in

non-decreasing order of reduced cost.

Next, as usual, we modify the heuristic so that it exploits the information from

the DP. Let q be an integer that is “close” to |µ1| + |µ2|. We say that the variable

xijk is “promising” if x̄qijk = 1. We then start with all variables set to zero, and

proceed through the sorted list twice, first for the promising variables and then for

the non-promising ones.

Now let α = |µ1|+ |µ2|. We run the above heuristic for q = 0.9α to 1.1α in steps

of 0.01α. This gives us 201 primal solutions, of which we pick the best. The whole

matheuristic runs in O
(
n3
)
time (not including the time taken for the LP and DP).

4.5.3 Test instances

For our experiments we consider six sets of test instances, taken from [49]:

1. Instances generated using the method described in Burkard et al. [29]. In these

instances, the cost coefficients cijk are of the form ai · bj · ck, where each of ai,

bj and ck is uniformly distributed in the interval [1, 10]. We call these instances

BRW. There are five instances for each value of n ∈ {25, 54, 66, 80}.

76

2. Instances generated using the method in Crama & Spieksma [43]. For these

instances, n points are placed at random in the plane and the cijk are propor-

tional to the perimeter of the corresponding triangle. There are 9 instances of

size 33 and 9 of size 66. We call these instances CS.

3. Instances generated using the method in Grundel & Pardalos [81]. These

instances are constructed in such a way that the optimal solution value is

known a priori. We call these instances GP. There are five instances for each

n ∈ {25, 50, 66, 80}.

4. Instances in which the cijk are chosen with equal probability from one of three

intervals [0, 49],[450, 499],[950, 999]. Within each interval, the cijk are randomly

picked integers with uniform probability. We call these instances CLUSTER.

There are five instances for each n ∈ {25, 54, 66, 80}. In [49], these instances

are attributed to Armin Fügenschuh.

5. Instances generated using the method in Fügenschuh & Höfler [64]. The coef-

ficients cijk in these instances take the value ⌊10000 · z2⌋, where z is uniformly

distributed in the interval [0,1]. We call these instances QUAD. There are five

instances for each n ∈ {25, 54, 66, 80}.

6. Instances generated using the method in Balas & Saltzman [6]. In these in-

stance, the cijk are random integers generated uniformly in the interval [0, 99].

We call these instances UNIFORM. There are four instances for each n ∈ {25, 54, 66, 80}.

4.5.4 Computational results

As before, we implemented the lower- and upper-bounding procedures in C. Since

the LP relaxation contains n3 variables and is primal degenerate, we used the CPLEX

barrier solver once more.

Table 4.4 shows the results for the BRW, CS and GP instances. The table has

a similar format to Tables 4.1 and 4.3, the only difference being that the column

labelled “#” shows the number of instances of each type. We see that the LP lower

77

LB gaps (%) UB gaps (%)

Set n # LP SR Gr LP SR

25 5 0.05 2.19 212.76 0.96 0.14

BRW 54 5 0.05 0.93 212.22 0.43 0.12

66 5 0.05 0.75 233.04 1.26 0.41

80 5 0.05 0.68 210.27 1.00 0.40

CS 33 9 0.02 0.35 10.80 0.91 0.46

66 9 0.02 0.33 13.32 0.17 0.09

25 5 0.72 1.54 8.91 0.27 0.27

GP 50 5 0.43 0.85 5.53 0.23 0.23

66 5 0.79 1.22 4.59 0.00 0.00

80 5 0.02 0.35 3.70 0.77 0.75

Table 4.4: Average percentage gaps for some benchmark AP3 instances.

bounds are quite tight on all instances, whereas the SP lower bounds are a little

worse. As for the upper bounds, the LP-based heuristic performs much better than

the greedy heuristic in all cases, and the SR-based matheuristic performs much better

still.

We had to treat the CLUSTER, QUAD and UNIFORM instances a little differently.

For most of those instances, the optimal solution has a cost of zero. This makes it

impossible to compute percentage integrality gaps. Moreover, the LP and SR lower

bounds are almost always zero as well. Thus, in Table 4.5, we show only the average

of the “raw” optimal values and upper bounds.

Table 4.5 reveals that, for these instances, the LP-based heuristic performs only a

little better than the greedy heuristic. The SR-based matheuristic does much better,

giving solutions whose cost is an order of magnitude smaller.

We now report the detailed results by instance, in Figures 4.7 and 4.8. Figure 4.7

is related to the instances from Table 4.4 and is constructed exactly like the Figures

4.4 and 4.5 in the previous section. The lower bound differences show that as the BRW

78

UBs

Set n # Opt Gr LP SR

25 5 5.6 724.8 709.6 29.2

CLUSTER 54 5 0.0 719.0 630.2 33.4

66 5 0.0 722.6 704.6 29.8

80 5 0.0 460.8 612.4 28.2

25 5 1.0 4481.8 3012.8 136.0

QUAD 54 5 0.0 5029.2 6013.0 210.0

66 5 0.0 5082.0 3985.0 161.6

80 5 0.0 3092.8 4832.8 160.8

25 4 1.0 109.5 56.8 24.5

UNIFORM 54 4 0.0 94.5 76.5 16.8

66 4 0.0 96.0 67.5 16.3

80 4 0.0 103.8 106.3 18.8

Table 4.5: Average optima and upper bounds for remaining AP3 instances.

79

Figure 4.7: LP vs SR Bound Gap Differences & Absolute Bound Gaps

instances get larger the SR lower bound gets closer to the LP bound. Coming to the

upper bounds, the SR-based one consistently improves upon the LP-based one in the

BRW instances, but we do not see any trend related to instance size. In the case of the

CR instances, we see a couple of outliers biasing the average results reported in Table

4.4. The lower part of the figure shows how the LP and SR based upper bounds come

within 0.1 percent of optimal with high frequency (26 out of 38 instances).

For the “problematic” instances that mostly have an optimal value (and lower

bounds) of zero, we show in Figure 4.8 the ”raw” values of the LP and SR upper

bounds. The top part of the figure is reproduced in the lower half, but with the SR

upper bounds scaled as shown in the axis on the right-hand-side. This has been done

to make any patterns more discernible. Overall, however, we do not see any extra

information in the distribution of bounds compared to the average case.

As before, we do not report detailed running times. We just mention that solving

80

Figure 4.8: LP vs SR Bounds Differences & Absolute Bounds

the LP and running the primal heuristics took just a few seconds, whereas the DP

algorithm took up to five minutes for the larger instances.

4.6 Concluding Remarks

We have shown that surrogate relaxation, a well-known technique for finding dual

bounds for combinatorial optimisation problems, can also be used within a matheuris-

tic scheme. The results that we obtained for the MKP, SPLP and AP3 show that

this approach has promise.

There are several possible avenues for further research. In the first place, it would

be worthwhile applying the surrogate approach to other combinatorial optimisation

problems. Secondly, one could attempt to improve the primal solutions from our

method, for example by using some kind of local search procedure. Lastly, one could

81

experiment with alternative methods for computing the surrogate multipliers. (In

principle, one could use one of the methods for the surrogate dual mentioned in Sub-

section 5.2.1. One would however have to be careful to get a good trade-off between

bound quality and running time.)

Acknowledgement: We like to thank two former masters students at Lancaster

University, Dongqi Liu and Karn Verochana, for performing some preliminary exper-

iments with surrogate relaxations of the SPLP.

Appendix

In this appendix, we show how to solve two surrogate relaxations of the SPLP in

pseudo-polynomial time using DP.

Option 1: relaxing the assignment equations

First, we consider the case in which the equations (4.7) are relaxed. Let µ ∈ Zn
+ be

the multiplier vector. The relaxed problem is to minimise (4.17) subject to (4.8),

(4.9) and (4.18).

For k = 1, . . . ,m and q = 0, . . . , |µ|, let ϕ(k, q) denote the optimal solution to the

following 0-1 LP:

min
∑k

i=1 fiyi +
∑k

i=1

∑n
j=1 cijxij

s.t.
∑k

i=1

∑n
j=1 µjxij = q

yi − xij ≥ 0 (i = 1, . . . , k; j = 1, . . . , n)

x ∈ {0, 1}kn, y ∈ {0, 1}k.

In other words, ϕ(k, q) represents the smallest contribution that the first k facilities

can make to the lower bound, under the condition that they service a set of clients that

contributes q units to the left-hand side of (4.18). By convention, we set ϕ(0, q) = 0

for all q. We also set ϕ(k, q) = ∞ if the above 0-1 LP is infeasible.

82

For k = 1, . . . ,m, ℓ = 1, . . . , n and q = 0, . . . , |µ|, let ψ(k, ℓ, q) denote the optimal

solution to the same 0-1 LP as before, but with the added constraints yk = 1 and

xkj = 0 for j > ℓ.

We have the following DP recursions for k = 1, . . . ,m and q = 0, . . . , |µ|:

ϕ(k, q) = min
{
ϕ(k − 1, q), ψ(k, n, q)

}
ψ(k, 0, q) = ϕ(k − 1, q) + fk.

We also have the following DP recursion for k = 1, . . . ,m, ℓ = 1, . . . , n and q =

0, . . . , |µ|:

ψ(k, ℓ, q) = min
{
ψ(k, ℓ− 1, q), ψ(k, ℓ− 1, q − µℓ) + ckℓ

}
.

From this it is possible to compute all ϕ and ψ values in O
(
mn |µ|

)
time. Once this

is done, the lower bound is ϕ
(
m, |µ|

)
.

To save memory, one can use the following trick: re-use the same array to compute

the ψ values when you go from one value of k to the next. This means that you need

an array of size m |µ| to store the ϕ values and an array of size n |µ| to store the ψ

values. Once the algorithm is finished, you only need the ϕ array to find out which

facilities should be opened.

Option 2: relaxing the variable upper bounds

Now suppose that we relax the inequalities (4.8) instead, using multiplier vector

µ ∈ Zmn
+ . The relaxed problem is to minimise (4.17) subject to (4.7), (4.9) and

(4.19). We complement the y variables, by defining ȳi = 1 − yi. The objective

function (4.17) can then be written as:∑
i

fi(1− ȳi) +
∑
i,j

cijxij.

Constraint (4.19) becomes

∑
i

(∑
j

µij

)
ȳi +

∑
i,j

µijxij ≤ |µ|. (4.20)

83

For k = 1, . . . , n and q = 0, . . . , |µ|, let ϕ(k, q) denote the optimal solution to the

following 0-1 LP:

min
∑m

i=1

∑k
j=1 cijxij∑m

i=1

∑k
j=1 µijxij = q

s.t.
∑m

i=1 xik = 1 (j = 1, . . . , k)

x ∈ {0, 1}mk, y ∈ {0, 1}m.

In other words, ϕ(k, q) represents the smallest contribution that the first k clients

can make to the lower bound, under the condition that they contribute q units to the

left-hand side of (4.20). By convention, we set ϕ(j, q) = ∞ if the 0-1 LP is infeasible.

The above 0-1 LP is similar to a multiple-choice knapsack problem (see Chapter

4 of [99]). The ϕ(k, q) can be easily computed in O
(
mn |µ|

)
time via DP. Once this

is done, the relaxed problem reduces to minimising∑
i

fi(1− ȳi) + ϕ(n, q),

subject to the constraint

∑
i

(∑
j

µij

)
ȳi + q ≤ |µ|

and the conditions ȳ ∈ {0, 1}m and q ∈
{
0, . . . , |µ|

}
. This last problem is similar to

a separable knapsack problem, and can be easily solved in O
(
m |µ|

)
time via DP.

84

Chapter 5

Anomalous Behaviour of

Dual-Based Heuristics

5.1 Introduction

Many important combinatorial optimisation problems arising in practice are NP-

hard. Although highly effective exact solution methods have been developed for

NP-hard problems (see, e.g., [38,94]), large-scale instances can still pose a challenge

for exact methods. In such cases, one must resort to heuristics (see, e.g., [30]).

This paper is concerned with what we call dual-based heuristics. These heuristics

start by constructing a feasible solution to some kind of dual problem (such as a linear

programming dual or a Lagrangian dual). Once a dual solution is obtained, they then

attempt to use information from the dual solution (such as reduced costs) to guide

a primal heuristic. In fact, they usually generate a sequence of dual solutions, which

then yields a sequence of primal solutions. At the end, one can just pick the best

primal solution found during the course of the procedure.

Dual-based heuristics can be regarded as primitive examples of what are now

called matheuristics, by which is meant heuristics that draw on concepts from the

traditional mathematical programming literature (see, e.g., [114]). In comparison

with other matheuristics, however, dual-based heuristics have two very nice features.

The first is that their running times and memory requirements tend to be bounded

85

by a low-order polynomial in the instance size. As a result, they can easily be applied

to large-scale instances. The second is that they yield both lower and upper bounds

on the optimal objective value. If these bounds are close, one has the reassurance

that the primal solution is of high quality.

Dual-based heuristics have proven to be highly successful on many well-known

problems. This includes problems on networks (such as the simple plant location [16,

21,51], Steiner tree [126,146], uncapacitated network design [4] and fixed-charge trans-

portation [31] problems), together with classical combinatorial optimisation problems

(such as the set covering [7,14,32], set partitioning [24,59], generalised assignment [58]

and multi-dimensional knapsack [3] problems).

A natural question, however, is whether there really is any useful information to

be extracted from “good” dual solutions, or whether a random dual solution would do

just as well. A partial answer to this question is that some dual-based heuristics have

been shown to be approximation algorithms (see, e.g., [145]). Roughly speaking, this

means that there is a bound on their worst-case error. Another partial answer is given

in [147], in the context of the set covering problem (SCP). They show empirically that,

if a dual solution is optimal, then the variables with zero reduced cost have a high

probability of belonging to an optimal solution.

In this paper, we continue to study this question from an empirical (and statistical)

viewpoint. We use the SCP and the simple plant location problem (SPLP) as test

cases. For each problem, we consider several ways to construct dual solutions, and

conduct extensive computational experiments. It turns out that dual-based heuristics

can exhibit highly counter-intuitive behaviour. In particular, in the case of the SPLP,

solving the dual exactly invariably leads to much worse primal solutions than solving

the dual with a simple greedy heuristic. We provide a tentative explanation of this

phenomenon, based on the presence or absence of primal degeneracy.

The paper has a very simple structure. In Section 5.2, we review the relevant

literature. Sections 5.3 and 5.4 are devoted to the SPLP and SCP, respectively.

Concluding remarks are made in Section 5.5. Throughout, we assume that the reader

is familiar with the basic concepts of linear and integer programming (see, e.g., [38]

86

for a fine treatment).

5.2 Literature Review

We now briefly review the relevant literature. We recall the basics of dual-based

heuristics in Subsection 5.2.1. In Subsections 5.2.2 and 5.2.3, we cover applications

of the heuristics to the SPLP and SCP, respectively.

5.2.1 Dual-based heuristics

Suppose we have formulated a combinatorial optimisation problem as an integer linear

program (ILP) of the form

min
{
cTx : Ax ≥ b, x ∈ Zn

+

}
,

where A ∈ Qm×n and b ∈ Qm. The dual of the LP relaxation of this ILP is

max
{
bTπ : ATπ ≤ c, π ∈ Rm

+

}
.

Any feasible solution π to this dual provides a lower bound for the original problem.

Thus, if we wish to obtain a lower bound quickly, we can solve the dual approximately

using some kind of heuristic.

In dual ascent, one starts with all π variables set to small values, and then iter-

atively increases the value of a π variable, until no more can be increased without

violating dual feasibility [21, 51]. If desired, one can attempt to improve the dual

solution further by applying local search. This is called dual adjustment in [51].

Now, for a given primal variable xj and a given dual solution π, consider the

following quantity:

c̄j(π) = cj −
m∑
i=1

πjAij.

We call this the approximate reduced cost. Intuitively speaking, if π is a near-optimal

dual solution, one might expect variables with small approximate reduced cost to

have a high probability of belonging to an optimal solution of the original ILP. This

87

leads to the idea of an integrated scheme in which the approximate reduced costs

are used to guide a primal heuristic [21, 51]. This is what we mean by a dual-based

heuristic.

For some problems, Lagrangian relaxation (LR) can provide an attractive alter-

native to dual ascent. Consider an ILP of the form:

min
{
cTx : Ax ≥ b, Cx ≥ d, x ∈ Zn

+

}
,

where A ∈ Qm×n and C ∈ Qq×n. Relaxing the constraints Cx ≥ d, with a vector

λ ∈ Rq
+ of Lagrangian multipliers, we obtain

min
{
cTx+ λT (d− Cx) : Ax ≥ b, x ∈ Zn

+

}
,

The solution of this relaxed problem yields a lower bound. (For a theoretical treat-

ment of LR for integer programming, see Geoffrion [70]. For a more informal treat-

ment, together with examples of applications, see Fisher [56,57]. For a more thorough

and more recent treatment, see Guignard [84].)

It is possible to use LR to drive dual-based heuristics. Indeed, for a given primal

variable xj and a given λ, the quantity

c̄j(λ) = cj −
q∑

i=1

λjCij

can also be viewed as an approximate reduced cost (see, e.g., [32]).

5.2.2 Application to the SPLP

In the SPLP (a.k.a. the Uncapacitated Facility Location Problem), there is a set I

of facilities and a set J of clients. For any i ∈ I, it costs fi to open facility i. For

any i ∈ I and j ∈ J , it costs cij to serve client j from facility i. One must decide

which facilities to open, and assign each client to an open facility, at minimum cost.

88

Balinski [8] formulated the SPLP as the following 0-1 LP:

min
∑

i∈I fiyi +
∑

i∈I
∑

j∈J cijxij (5.1)

s.t.
∑

i∈I xij = 1 (∀j ∈ J) (5.2)

yi − xij ≥ 0 (∀i ∈ I, j ∈ J) (5.3)

xij ∈ {0, 1} (∀i ∈ I, j ∈ J) (5.4)

yi ∈ {0, 1} (∀i ∈ I). (5.5)

Here, xij indicates whether client j is assigned to facility i, and yi indicates whether

facility i is opened.

The LP relaxation of this formulation often gives very tight lower bounds [2,120].

On the other hand, the constraints (5.3) cause massive primal degeneracy, which

makes the LP relaxation hard to solve (see, e.g., [137]).

A dual ascent approach was proposed in [21,51]. They start by showing that the

dual of the LP relaxation can be written as:

max
∑

j∈J vj

s.t.
∑

j∈J max{0, vj − cij} ≤ fi (∀i ∈ I) (5.6)

vj ≥ 0 (∀j ∈ J),

where v ∈ R|J | is the vector of dual variables for constraints (5.2). They then proceed

as follows. First, set each vj to the cost of assigning client j to its closest facility

(i.e., the smallest cij value over all i ∈ I). Then, examine each client j ∈ J in turn,

and increase vj to the next smallest cij value, or, if this renders the dual solution

infeasible, by as much as possible while maintaining feasibility. Repeat until no more

increases are possible.

One can check that, for a given v, the approximate reduced costs of the facilities

are just the slacks of the constraints (5.6). Moreover, for any pair i, j, the quantity

max{0, vj−cij} can be viewed as an estimate of the dual price of the constraint (5.3).

This led Erlenkotter to propose a primal heuristic, in which one iteratively opens

facilities whose approximate reduced cost is zero until, for each client j ∈ J , there is

an open facility such that vj ≥ cij.

89

Erlenkotter [51] pointed out that one can sometimes obtain improved dual solu-

tions by applying local search. His dual adjustment procedure seeks a decrease of δ

in some vj such that two other vjs can increase by δ. Körkel [104] and Janáček &

Bunza [93] presented faster implementations of dual adjustment. More sophisticated

dual search procedures were developed in [86,127]. All of these procedures yield a se-

quence of dual solutions, which in turn enables one to obtain several primal solutions

rather than just one.

An analogous Lagrangian approach, in which constraints (5.2) are relaxed, was

studied in [16, 66]. Galvão and Raggi [66] found good results by running Erlenkot-

ter’s procedure first, and then using the subgradient method to improve the dual

solution further. Beasley [16] devised a purely Lagrangian framework, which uses

the subgradient method to determine the multipliers, and calls a primal heuristic

periodically.

Some related approaches can be found in [19,83,111]. Guignard [83] solved the La-

grangian dual using ‘Lagrangian dual ascent’ and proposed a method to strengthen the

relaxation by incorporating some cutting planes that she called Benders inequalities.

Beltran-Royo et al. [19] proposed to split each equation (5.2) into two inequalities, and

relax only one of them in Lagrangian fashion. This method is called semi-Lagrangian

relaxation. It gives stronger bounds, but the relaxed problem is harder to solve. Fi-

nally, Letchford & Miller [111] showed how to speed up dual ascent by computing a

‘base level’ for the dual multipliers. They also devised an improved primal heuristic.

It is based on the classical ‘drop’ heuristic [52], but drops facilities in decreasing order

of approximate reduced cost.

5.2.3 Application to the SCP

In the SCP, we are given positive integers m and n, a family of sets S1, . . . , Sn ⊂

{1, . . . ,m}, and a cost cj for j = 1, . . . , n. The task is to find a minimum-cost

collection of sets such that each member of {1, . . . ,m} is contained in at least one set

90

in the collection. The SCP can be formulated as a 0-1 LP of the form:

min
{
cTx : Ax ≥ em, x ∈ {0, 1}n

}
, (5.7)

where xj indicates whether the jth set has been selected, the columns of A ∈ {0, 1}mn

encode the sets, and em is the all-ones vector of order m.

Since the upper bounds of one on the x variables are redundant, the dual of the

LP relaxation can be written in the simple form:

max
{
eTmπ : ATπ ≤ c, π ∈ Rm

+

}
.

Balas and Ho [5] were the first to apply dual ascent to the SCP. They begin with

π set to the all-zeroes vector. They then sort the rows of A in non-decreasing order

of density (i.e., number of ‘1’s), and then go through the sorted list, pushing each π

variable up to its maximum possible value. To construct primal solutions, they set

to one all x variables for which c̄j(π) = 0, and then drop variables, if necessary, to

make the cover minimal. Beasley [13] followed a similar scheme.

Fisher & Kedia [59] improved the scheme in two ways. First, they added a local

search phase to improve the dual solution. Second, they used an improved primal

heuristic, which proceeds as follows. Start with an empty cover. For j = 1, . . . , n,

let κ(j) ⊂ {1, . . . ,m} be the set of currently uncovered rows that have a 1 in column

j, and compute c̃j = cj −
∑

i∈κ(j) πi. (Note that c̃j lies between the original cost cj

and the approximate reduced cost c̄j(π).) Set to one the x variable that minimises

c̃j/|κ(j)|. Recompute the c̃j, and repeat until a cover is obtained. At the end, the

cover is again made minimal if necessary.

Lagrangian relaxation has been applied to the SCP by many authors (e.g., [5,7,13,

14,17,32,34,85]). Balas & Ho [5] incorporated it into their branch-and-bound scheme,

by occasionally using it to improve the lower bounds from dual ascent. Beasley [13]

improved the framework in [5], by proposing several effective ‘problem reduction’

procedures. These reduce the size of the problem, which makes the dual easier to

solve. Beasley [14] proposed a Lagrangian heuristic that used reduced-cost fixing and

computes a feasible solution after every subgradient iteration. Beasley & Jörnsten [17]

91

enhanced the algorithm in [13], by replacing the heuristic to obtain a ‘prime cover’

from [5] with the one from [14] (they also added some cutting planes). Balas & Carrera

[7] introduced dynamic subgradient optimisation, that re-states the Lagrangian dual

whenever a significant proportion of variables have been fixed. Finally, Ceria et

al. [34] devised a heuristic for large-scale instances, which selects a subset of the

columns based on the Lagrangian reduced costs c̄j(λ).

In all of the papers mentioned in the last paragraph, all of the linear constraints

are relaxed, and the subgradient method is used to get good multipliers. To construct

primal solutions, most of those authors simply set x variables to one in non-decreasing

order of c̄j(λ) until a cover is obtained, and then make the cover minimal, if neces-

sary, by setting a few variables back to zero. To date, the best-performing Lagrangian

scheme is that of Caprara et al. [32], who used a clever technique to improve conver-

gence in the subgradient method, sophisticated rules for fixing primal variables, and

a primal heuristic analogous to that of [59] (mentioned above).

An initial study of the value of dual information for the SCP has been made

in [147]. They give evidence that, when the dual solution is optimal, variables with

zero reduced cost have a high probability of belonging to an optimal solution.

5.3 The Simple Plant Location Problem

This section is concerned with the SPLP. In Subsections 5.3.1 and 5.3.2, we present

deterministic and randomised procedures, respectively, for generating dual and primal

solutions. In Subsections 5.3.3 and 5.3.4, we present and analyse computational

results obtained with the deterministic and randomised procedures, respectively.

5.3.1 Deterministic procedures

Dual ascent is fast and simple, but the dual solution obtained is typically sub-optimal.

We found it useful to compute an optimal dual solution as well. To do this, we simply

solve the LP relaxation of (5.1)–(5.5). (This is easy using modern LP solvers, even

for quite large instances.)

92

We also experimented with using Lagrangian relaxation instead of dual ascent, as

in [16]. The idea is to relax the constraints (5.2), and then use the subgradient method

to generate a near-optimal vector of Lagrangian multipliers, from which approximate

reduced costs can be computed. Unfortunately, we did not find the results illuminat-

ing, because the multipliers and primal solutions encountered depended heavily on

the starting point, the step size, the stopping rule, and so on.

To generate a primal solution from a given dual solution, we use the dual-based

drop heuristic that was presented in [111]. This heuristic, which is a modified version

of the classical drop heuristic of Feldman et al. [52], is described in Algorithm 3.

In our experience, the heuristic tends to perform slightly better than Erlenkotter’s

primal heuristic. Moreover, it is fast. (Specifically, it can be implemented to run in

O(mn logm) time, where m is the number of facilities and n the number of clients.)

In order to provide a benchmark, we also consider a primal heuristic that does not

exploit dual information. This heuristic is identical to Algorithm 3, except that we

sort the facilities in non-increasing order of cost fi rather than f̄i. We call this latter

heuristic the cost-based drop heuristic.

5.3.2 Randomised procedures

The algorithms presented in the previous subsection yield only a small number of

dual and primal solutions. Since we are interested in exploring potential correlations

between the quality of dual and primal solutions, we really want many solutions of

each type. This led us to devise randomised versions of the algorithms, which produce

many solutions, rather than just one. After trying several alternative ways to generate

dual solutions, we settled on the following two methods.

1. Randomised Dual Ascent. As already noted by Erlenkotter [51], the precise

dual vector obtained via dual ascent depends on the order in which the clients

are considered. So we simply run dual ascent a large number of times, with the

clients sorted in a random order in each major iteration.

2. Perturbed LP. We solve the LP relaxation of (5.1)–(5.5), but add a small random

93

Algorithm 3: Dual-Based Drop Heuristic for SPLP

input : positive integers m, n, cost vectors f ∈ Zm
+ , c ∈ Zmn

+ ,

dual solution v ∈ Zn
+.

Temporarily open all facilities;

Temporarily assign each client to the nearest facility;

Let U be the cost of the initial solution;

for all i ∈ I do

Let f̄i = fi −
∑

j∈J max
{
0, vj − cij

}
;

end

Sort the facilities in non-increasing order of f̄i (breaking ties at random);

for i = 1 to m do

Let k be the ith facility in the sorted list;

Let ∆ be the increase in total cost that would be incurred by closing

facility k and re-assigning each of its clients to the next nearest open

facility;

if ∆ < 0 then

Close facility k and re-assign its clients;

Set U := U +∆;

end

end

output: SPLP solution and associated upper bound U .

94

number, uniformly distributed in [−0.25, 0.25], to the right-hand side of each

constraint (5.2). The effect of the perturbation is to make some of the vj more

“attractive” than others in the dual. For the instances that we tested, 0.25 was

the smallest value that enabled us to generate a reasonable number of distinct

dual solutions. (We will see in Subsection 5.3.4 that those dual solutions were

all optimal or near-optimal.)

In order to provide a benchmark, we also designed a randomised version of the

cost-based drop heuristic, that we described in the previous subsection. Instead of

selecting the next facility in the sorted list as the next candidate to be dropped,

we select a facility at random from the next five facilities in the list. (Five was the

smallest value that led to a diversity of primal solutions.)

5.3.3 Results with deterministic procedures

An extensive collection of benchmark SPLP instances is available here:

http://www.mpi-inf.mpg.de/departments/d1/projects/benchmarks/UflLib/

After some experimentation, we selected four families of instances:

• K-median instances, constructed as in Anh et al. [2]. In these instances, the

facility and client locations are points in the unit square. For m = n = 250, we

created five instances with large facility costs (Kmed-L), five with medium facility

costs (Kmed-M) and five with small facility costs (Kmed-S). These instances have

small integrality gaps, and we were able to find the optimal solutions easily

using CPLEX.

• The M* instances of Kratica et al. [107]. In these instances, there is a negative

correlation between the facility costs and assignment costs. They are hard to

solve and have fairly large gaps. There are 22 instances: five each with m =

n ∈ {100, 200, 300, 500}, one with m = n = 1000, and one with m = n = 2000.

Optimal solution values can be found in [127].

95

• The KG instances. These were created by Ghosh [71] using a similar scheme to

that of Koerkel [104]. They too are hard to solve and have fairly large gaps.

They come in two types, symmetric and asymmetric. We denote these by KG-S

and KG-A, respectively. We selected the 30 smallest ones, for which optimal

solutions are known (see, e.g., [55, 127]). They have m = n = 250.

• The instances from Kochetov & Ivanenko [103]. They only have m = n = 100,

but they are designed to have very large integrality gaps (over 25% in all cases).

There are 90 instances in total, and optimal solutions are now known for all of

them. We selected the 30 hardest ones, called Gap-C instances.

We implemented the lower- and upper-bounding procedures in C, and we used

the CPLEX callable library (v. 12) to solve all LP relaxations. Out of interest, we

computed dual solutions using both simplex and barrier methods. (In the case of the

barrier method, we switched off “crossover”, to ensure that we found a dual solution

that lies near the centre of the optimal face in the dual.)

For each instance and each procedure, we computed the gap between the resulting

bound and the optimum, expressed as a percentage of the optimum. Table 5.1 dis-

plays, for each set of instances and each procedure, the average gap over the instances

in the given set.

As expected, the K-median instances are the easiest, and the Gap-c instances

the most challenging. Also as expected, dual ascent consistently yields worse lower

bounds than LP relaxation.

As for the four options for producing upper bounds, the best upper bounds are

obtained when the dual-based heuristic is applied to an optimal dual solution obtained

via the barrier method, (This fact was confirmed with a binomial test, which gave p <

10−10.) In our view, this provides strong evidence for the claim that dual information

can be useful when driving a primal heuristic. Moreover, the upper bounds from the

heuristic based on dual ascent are better than those from the cost-based heuristic on

all instances apart from the M* and Gap-C instances. (This was confirmed with sign

tests.)

96

Table 5.1: SPLP: Average percentage gaps with deterministic procedures.

lower bounds upper bounds

Set m = n ascent LP ascent simplex barrier cost-based

Kmed-L 0.54 0.00 2.09 1.97 0.36 11.8

Kmed-M 250 0.30 0.00 0.72 0.82 0.00 7.17

Kmed-S 0.00 0.00 0.02 0.04 0.00 0.03

MO 100 6.06 2.85 2.07 21.4 0.86 0.83

MP 200 7.27 4.20 2.64 20.7 0.21 1.31

MQ 300 7.21 4.04 1.47 23.7 0.28 1.07

MR 500 10.2 6.52 3.41 27.6 0.63 1.29

MS 1000 10.1 6.69 6.18 8.75 0.26 0.32

MT 2000 12.7 9.18 0.76 7.69 0.37 1.30

KG-S-A 0.31 0.13 0.14 0.94 0.11 0.47

KG-S-B 250 1.48 0.96 0.64 3.42 0.37 1.35

KG-S-C 4.31 3.29 0.78 7.34 0.49 2.27

KG-A-A 0.30 0.14 0.16 0.86 0.11 0.48

KG-A-B 250 1.50 0.98 0.56 3.34 0.31 1.33

KG-A-C 4.11 3.13 0.79 8.08 0.67 2.32

Gap-C 100 68.8 28.2 43.1 41.0 32.0 40.9

97

The big surprise, however, is that the dual-based heuristic performs very poorly

when the simplex method is used to compute the dual solution. This is so despite

the fact that the dual solution is guaranteed to be optimal. A likely explanation for

this unusual behaviour is the following. As mentioned in Subsection 5.2.2, the primal

LP is massively degenerate. This means that there are typically a huge number of

alternative optimal dual solutions to the LP. Of those, the simplex method will select

just one (more or less arbitrary) basic solution, which will be an extreme point of

the optimal face in the dual. It seems that the “central” dual solution provided by

barrier leads to much more reliable reduced costs than the “extreme” one found by

simplex.

To test this hypothesis, we inspected the LP solutions in detail. It turns out that,

for most of the instances, over 90% of the basic variables took the value zero in the

LP solutions obtained by simplex. Moreover, around 90% of the facility reduced costs

were zero, with the remaining 10% bein g very large. When barrier was used instead,

both of these phenomena disappeared.

5.3.4 Results with randomised procedures

Now we turn our attention to the randomised procedures. Table 5.2 has a similar

interpretation to Table 5.1, except that each figure is averaged, not only over the

instances in the given set, but also over 100 runs of the randomised procedures. (The

missing entries for the instances MS and MT are due to memory problems in the LP

solver.)

By comparing Table 5.2 with Table 5.1, we see that randomisation has little

effect on the lower bound obtained with dual ascent. (This is to be expected, since

there is nothing special about the order of the clients in the input file.) We also see

that perturbing the primal LP causes the lower bound to deteriorate only a little

on average, which confirms our belief that the perturbed LP approach yields near-

optimal dual vectors. As for the upper bounds, randomisation has no noticeable effect

in most cases. When barrier is used, however, the perturbation tends to cause a small

worsening. (This too can be confirmed with a sign test.)

98

Table 5.2: SPLP: Average percentage gaps with randomisation.

lower bounds upper bounds

Set m = n ascent LP ascent simplex barrier cost-based

Kmed-L 0.55 0.12 1.19 6.73 0.52 11.0

Kmed-M 250 0.29 0.02 0.67 5.97 0.17 7.25

Kmed-S 0.00 0.00 0.02 0.04 0.00 0.03

MO 100 6.07 3.24 2.47 19.9 0.95 3.56

MP 200 7.29 4.65 2.03 22.0 0.60 2.52

MQ 300 7.21 4.46 1.91 23.2 0.49 2.20

MR 500 10.2 7.08 3.17 30.3 0.92 2.23

MS 1000 10.1 7.08 3.14 — 0.26 1.48

MT 2000 12.7 9.55 2.75 — — 1.60

KG-S-A 0.31 0.15 0.13 0.95 0.11 0.48

KG-S-B 250 1.47 1.03 0.69 3.38 0.45 1.37

KG-S-C 4.31 3.49 0.94 6.65 0.57 2.17

KG-A-A 0.30 0.16 0.16 0.91 0.12 0.48

KG-A-B 250 1.50 1.05 0.60 3.37 0.37 1.35

KG-A-C 4.10 3.33 1.04 7.02 0.62 2.27

Gap-c 100 68.8 29.9 42.6 39.9 29.9 41.1

99

Figure 5.1: SPLP: lower bound gap vs upper bound gap

Since randomisation leads to multiple primal and dual solutions, a natural strategy

is to run the procedures a fixed number of times, and then pick the best lower and

upper bounds obtained. The results for this approach can be found in Table 5.3. We

see that this leads to vastly improved upper bounds in almost all cases. Nevertheless,

the relative ordering remains much the same, with barrier performing best and simplex

performing poorly in most cases.

Finally, for each instance and each of three methods (randomised dual ascent,

perturbed simplex and perturbed barrier), we produced scatterplots to see whether

good lower bounds tended to lead to good upper bounds. Figure 5.1 shows two such

scatterplots for one of the Kmed-S instances. The horizontal and vertical axes repre-

sent the percentage gap for the lower and upper bound, respectively. The scatterplots

indicate that the correlation, if any, is very weak. The same behaviour was found

for other instances and methods. In general, we found that the correlation coefficient

varied between -0.1 and 0.2, with no discernable pattern.

All things considered, we believe that randomised dual ascent is a very promising

approach for large-scale SPLP instances. It is extremely easy to implement and, in

our experiments, it was about 100 times faster than the perturbed LP approach. It

also has the advantage that one does not need to use LP software.

100

Table 5.3: SPLP: Average percentage gaps when randomisation applied and best of

100 bounds taken.

lower bounds upper bounds

Set m = n ascent LP ascent simplex barrier cost-based

Kmed-L 0.49 0.00 0.17 1.71 0.00 7.82

Kmed-M 250 0.13 0.00 0.14 0.82 0.00 6.49

Kmed-S 0.00 0.00 0.00 0.00 0.00 0.03

MO 100 5.93 2.85 0.43 8.29 0.25 0.10

MP 200 7.23 4.20 0.35 10.8 0.12 0.11

MQ 300 7.18 4.04 0.02 12.8 0.23 0.11

MR 500 10.2 6.52 0.29 19.0 0.49 0.47

MS 1000 10.1 6.69 0.05 — 0.00 0.05

MT 2000 12.7 9.18 0.55 — — 0.75

KG-S-A 0.29 0.13 0.04 0.66 0.03 0.43

KG-S-B 250 1.45 0.96 0.25 2.01 0.19 0.98

KG-S-C 4.29 3.29 0.10 2.92 0.11 0.75

KG-A-A 0.28 0.14 0.06 0.60 0.05 0.39

KG-A-B 250 1.48 0.98 0.18 2.13 0.10 0.97

KG-A-C 4.09 3.13 0.19 3.04 0.18 0.87

Gap-c 100 56.4 28.2 17.1 21.2 12.9 28.6

101

5.4 The Set Covering Problem

Now we move on to the SCP. This section is structured in exactly the same way as

the previous one.

5.4.1 Deterministic procedures

To obtain our initial dual solutions for the SCP, we use the same three approaches

that we proposed for the SPLP in Subsection 5.3.1: dual ascent, LP via simplex

and LP via interior-point. The only difference is that, for dual ascent, we use the

procedure of Balas & Ho [5] described in Subsection 5.2.3. Our implementation of

this procedure runs in O
(
m(n+ logm)

)
time. In practice, it is very fast.

To generate a primal solution from a given dual solution, we use the heuristic

of Fisher & Kedia [59], described in Subsection 5.2.3. Our implementation runs in

O(mn) time and is extremely fast in practice.

Again, in order to provide a benchmark, we also considered a primal heuristic that

does not use dual information. After some experimentation, we settled on Algorithm

4, which is similar to a heuristic in Balas & Ho [5]. With some care, it can be

implemented to run in O(mn) time.

5.4.2 Randomised procedures

To obtain a large number of good quality dual solutions for the SCP, we use the same

two approaches that we used for the SPLP, i.e., randomised dual ascent and perturbed

LP. In each iteration of randomised dual ascent, instead of picking the next row in

the sorted list, we pick one row at random from the next five in the list. As for the

perturbed LP approach, we simply solve the LP relaxation of (5.7), but add a small

random number to each component of em. As in the case of the SPLP, we let these

random numbers be uniformly distributed in [−0.25, 0.25].

Finally, we devised a randomised version of Algorithm 4. In each major iteration,

instead of selecting the column that minimises cj/|s(j)|, we select a column at random

102

Algorithm 4: Greedy Heuristic for Set Covering

input : positive integers m, n, cost vector c ∈ Zn
+.

Set M := {1, . . . ,m}, N := {1, . . . , n}, C := ∅ and U := 0;

repeat

for all j ∈ N do

Let s(j) be the set of rows in M covered by column j;

if s(j) = ∅ then

Set N := N \ {j};

end

end

Let k ∈ N be the column that minimises cj/|s(j)|;

Set M :=M \ s(k), N := N \ {k}, C := C ∪ {k} and U := U + ck;

until M = ∅;

for all j ∈ C do

if C \ {j} is a cover then

set C := C \ {j} and U := U − cj;

end

end

output: Minimal cover C and associated upper bound U .

103

from the five columns with smallest values of cj/|s(j)|. The running time remains

O(mn).

5.4.3 Results with deterministic procedures

As in the case of the SPLP, we implemented all of our lower- and upper-bounding

procedures in C. We ran our code on the standard collection of benchmark SCP

instances, which are available in the OR-Library [15]. For these instances, the number

of variables n is in {3000, 4000, 5000, 10000}, and the number of constraints m is set

to n/10. Another parameter is the density, which is the expected proportion of non-

zero entries in the matrix A. This parameter takes values in {2%, 5%, 10%, 20%}.

There are 8 sets of instances, labelled ‘A’ to ‘H’, with different parameter settings. In

each set, there are 5 instances, making 40 instances in total. Data on these instances

can be found in the first three columns of Table 5.4. Optimal values are known for

the sets A to F [33]. For sets G and H, we used the best-known upper bounds, again

taken from [33].

The last six columns in Table 5.4 have a similar meaning to the corresponding ones

in Table 5.1. The only difference is that, for sets G and H, the average percentage

gaps are with respect to the best-known upper bounds, rather than the optimum.

The results are very different than the ones for the SPLP. In the first place, the

lower bounds from dual ascent are of very poor quality, and even the ones from LP

relaxation are not great. This is in line with the well-known result that the cost of

an optimal SCP solution can be as much as lnm times larger than the LP bound

(see, e.g., [133] and the references therein). As for the upper bounds, there is no

evidence that any of the three dual-based heuristics performs better than the cost-

based heuristic. In fact, if anything, they look slightly worse. However, the differences

are not statistically significant (at the 0.05 level).

104

Table 5.4: SCP: average percentage gaps with deterministic procedures

lower bounds upper bounds

Set n density ascent LP ascent simplex barrier cost-based

A 3000 2% 25.1 1.51 6.42 6.52 10.5 6.05

B 3000 5% 39.1 7.69 6.93 9.47 10.0 5.07

C 4000 2% 27.8 2.32 6.35 7.27 7.65 5.21

D 4000 5% 41.0 8.27 5.54 9.96 9.19 9.66

E 5000 10% 62.5 24.7 11.9 14.1 10.6 9.99

F 5000 20% 77.1 36.4 15.8 14.5 17.4 15.8

G 10000 2% 47.3 10.1 8.89 8.78 9.51 7.53

H 10000 5% 62.5 23.5 11.9 11.8 11.5 11.9

Mean 47.8 14.3 9.22 10.3 10.8 8.91

5.4.4 Results with randomised procedures

Table 5.5 presents the gaps obtained with the randomised procedures. By comparing

Table 5.5 with Table 5.4, we see that randomisation has little effect on the lower

bounds. For the upper bounds, however, randomisation causes the cost-based heuris-

tic to perform much worse. Oddly, it also seems to cause the ascent-based heuristic

to perform better. Indeed, there is now a clear ordering, with dual ascent coming

first and cost-based coming last. This was confirmed by sign tests (Table 5.6).

Table 5.7 shows the results obtained when randomisation is applied 100 times and

the best bounds are retained. As in the case of the SPLP, this leads to vastly improved

upper bounds in almost all cases. Nevertheless, the relative ordering remains much

the same, with dual ascent performing best and cost-based coming last in most cases.

This confirms our belief that dual information, if used intelligently, can be useful for

guiding primal heuristics. It also makes us more convinced that randomised dual

ascent is a promising technique for producing upper bounds quickly.

Observe that, in the case of the SCP, the choice between simplex and barrier has

little effect on the quality of the resulting upper bounds. This is very different from

105

Table 5.5: SCP: average percentage gaps with randomisation

lower bounds upper bounds

Set n density ascent LP ascent simplex barrier cost-based

A 3000 2% 23.6 2.49 5.76 6.72 7.04 10.4

B 3000 5% 39.6 9.26 7.22 8.29 8.49 13.7

C 4000 2% 28.4 3.44 6.49 6.76 6.89 11.7

D 4000 5% 43.3 9.93 7.45 8.96 9.30 14.1

E 5000 10% 63.8 26.9 9.72 11.4 11.3 15.9

F 5000 20% 75.1 38.8 13.0 15.3 15.5 19.3

G 10000 2% 44.5 11.9 8.10 10.2 10.2 10.7

H 10000 5% 62.5 25.5 12.4 13.8 13.6 16.2

Mean 47.6 16.0 8.74 10.2 10.3 13.9

Table 5.6: SCP: Results of sign tests on the quality of the upper bounds.

Hypothesis: ascent beats simplex simplex beats barrier barrier beats cost

Result: p < 10−6 p < 0.01 p < 10−12

106

Table 5.7: SCP: average percentage gaps when randomisation applied and best of 100

bounds taken.

lower bounds upper bounds

Set n density ascent LP ascent simplex barrier cost-based

A 3000 2% 17.5 1.51 2.07 2.86 2.77 4.16

B 3000 5% 30.5 7.69 0.79 0.79 1.59 3.72

C 4000 2% 21.4 2.32 3.00 2.90 3.08 4.52

D 4000 5% 34.2 8.27 2.13 3.44 2.86 4.35

E 5000 10% 52.1 24.7 1.41 2.07 2.07 3.55

F 5000 20% 65.8 36.4 4.40 4.40 4.40 7.16

G 10000 2% 37.8 10.1 4.09 5.77 5.77 6.50

H 10000 5% 55.2 23.5 7.42 7.39 6.93 10.2

Mean 39.3 14.3 3.16 3.70 3.68 5.52

what we saw for the SPLP. The reason is probably that primal degeneracy is less of

an issue for the SCP. To confirm this, we check the LP solutions in detail. In the

solutions obtained by the simplex method, only around 10% of the basic variables

were at zero, compared with around 90% in the case of the SPLP.

Finally, Figure 5.2 shows two typical scatterplots obtained for the SCP. As in the

case of the SPLP, there is no obvious positive correlation between the quality of the

lower and upper bounds. In fact, the scatterplot on the right suggests a small negative

correlation. In general, we found that the correlation coefficient varied between -0.1

and 0.1, with no discernable pattern.

5.5 Conclusion

At the time of writing, dual-based heuristics have been around for about fifty years.

Although more sophisticated heuristics (and indeed meta-heuristics) exist, dual-based

heuristics are easy to code, scale well with problem size, and tend to give solutions

of acceptable quality in practice. We have shown, however, that they can behave in

107

Figure 5.2: SCP: lower bound gap vs upper bound gap

counter-intuitive ways. In particular, (a) if the primal LP is highly degenerate, then

the simplex method typically yields “very misleading” dual solutions, and (b) when

randomisation is used, the dual solutions obtained via dual ascent may be “much

more useful” than optimal dual solutions obtained by either simplex or interior-point

methods.

The main lesson from our work is that, when faced with a given combinatorial

optimisation problem, it is well worth coding and testing several different heuristics

for finding dual solutions, before jumping to conclusions about the effectiveness of

dual-based heuristics. We believe that it is worth coding and testing more than one

primal heuristic as well.

108

Chapter 6

Conclusion

In this final chapter, we summarise the main contributions of this thesis and make

some suggestions for further research.

6.1 Summary

In Chapter 1, we introduced the field of integer programming and combinatorial

optimisation, and gave an overview of the key concepts (such as algorithms, NP-

hardness, relaxation, duality, branching, cutting, and heuristics). We also argued

that there was a need for further work on various relaxations (especially surrogate

relaxation), and on matheuristics based on those relaxations.

In Chapter 2, we presented some theoretical results related to surrogate and group

relaxation. We proved that, when only inequalities are surrogated, the surrogate dual

is solvable in pseudo-polynomial time under certain conditions. (These conditions

hold, for example, when the surrogate relaxed problem is a 0-1 or general-integer

Knapsack Problem.) We also found that, when only equations are surrogated, the

surrogate dual exhibits unusual complexity behaviour: the optimum multipliers can

be found in polynomial time, but the solution of the relaxed problem itself isNP-hard

to compute. Finally, we showed that the group relaxation is NP-hard for the 0-1

and general-integer Knapsack Problems, and strongly NP-hard for the Set Packing

Problem.

109

In Chapter 3, we considered surrogate relaxation for the Multidimensional Knap-

sack Problem (MKP). We presented a new exact algorithm for solving the surrogate

dual, based on the simplex method, cutting planes and binary search. (We remark

that our algorithm is completely different from the classical methods for the surro-

gate dual, which are all heuristic in nature and based on variations of the subgradient

method.) We also presented a primal heuristic, which attempts to exploit information

generated in the cutting-plane phase.

The computational results in Chapter 3 were mixed. On the positive side, our

algorithm is fast, being the first to solve the surrogate dual exactly for MKP instances

of meaningful size. Moreover, the primal heuristic tends to produce solutions of good

quality. On the other hand, the upper bounds from the surrogate dual were typically

only a little better than the ones obtained from the standard Linear Programming

(LP) relaxation. (This last fact is surprising, given that many authors have recom-

mended applying surrogate relaxation to the MKP.)

In Chapter 4, we explored in more depth the potential of using surrogate re-

laxation within matheuristics for combinatorial optimisation problems. We selected

three specific problems: the MKP, the 3-dimensional Assignment Problem (AP3)

and the Simple Plant Location Problem (SPLP). To set the surrogate multipliers for

each problem, we used a fast heuristic, based on scaling and rounding certain dual

prices from the LP relaxation. We then solve the surrogate relaxation via Dynamic

Programming (DP), and use the output from the DP to construct several ‘partial

solutions’ to the original problem. The matheuristic then ‘repairs’ each of the partial

solutions to make it feasible.

The computational results in Chapter 4 were again mixed. The matheuristics gave

excellent primal solutions for the MKP and AP3, but not for the SPLP. Moreover,

the bounds that we obtained by applying surrogate relaxation (upper bounds for the

MKP and lower bounds for the AP3 and SPLP) were somewhat disappointing, often

being even weaker than the standard LP bounds. (This may be because we were

using a simple heuristic to generate the multipliers.)

110

In Chapter 5, we turn our attention to matheuristics that are based on LP du-

ality rather than surrogate duality. We investigate (a) whether LP dual information

is useful at all for driving a matheuristic, and (b) whether it is necessary to have

optimal (or near-optimal) dual solutions in order to get good solutions from dual-

based matheuristics. For this, we considered two specific combinatorial optimisation

problems: the SPLP and the Set Covering Problem (SCP). For each problem, we

considered several ways to solve the LP dual: the simplex method, an interior-point

method, and dual ascent. We also developed several deterministic and randomised

matheuristics for each of the three problems.

In our view, the computational results in Chapter 5 show convincingly that it

is generally better to use dual information than not. More surprisingly, we found

that good dual solutions do not always lead to good primal solutions. Indeed, for

both the SCP and SPLP, the primal solutions tended to be better when the dual LP

was solved approximately, by dual ascent, than when it was solved exactly, by the

simplex method. Moreover, in the case of the SPLP, the primal solutions tended to

be much better when the dual LP was solved by an interior-point method rather than

the simplex method. In other words, when the primal LP is massively degenerate,

a “central” near-optimal dual solution tends to be much more useful than to an

“extreme” optimal one.

6.2 Suggestions for Future Research

In this last section, we mention some possible avenues for future research.

In Chapter 2, we presented some complexity results for surrogate relaxation. A

closely related technique is composite relaxation (CR), which is a hybrid of Lagrangian

and surrogate relaxation [75,79]. Consider again an ILP of the form (2.1). In CR, we

choose vectors λ, µ ∈ Qm
+ , and solve the relaxed problem

max
{
cTx+ λT

(
b− Ax

)
:
(
µTA

)
x ≤ µT b, x ∈ X

}
.

In theory, CR can produce better upper bounds than both Lagrangian and surrogate

relaxation. Unfortunately, the dual function is not even quasi-convex in λ and µ. In

111

fact, it may have local minima that are not global minima [97]. Thus, in practice,

the “composite dual” is even harder to solve than the surrogate dual. It would be

good to settle the complexity status of the composite dual and related problems. We

conjecture that, even in the inequality case, the composite dual is strongly NP-hard.

As for the Level Set Problem in CR, we do not even know whether it lies in NP or

co-NP .

In Chapter 3, we implemented an exact algorithm for solving the surrogate dual

of the MKP. Although the algorithm was simplex-based, and therefore not guaran-

teed to converge in pseudo-polynomial time, it performed very well in practice. The

natural next step would be to adapt the algorithm to other combinatorial optimisa-

tion problems with inequality constraints, such as the SCP. Another interesting topic

for future research would be to find an efficient way to embed our upper-bounding

procedure within an exact branch-and-bound algorithm for the MKP.

In Chapter 4 we showed that surrogate relaxation can also be used to good ef-

fect within a matheuristic scheme. There are several possible ways in which the

matheuristic scheme could be extended or improved. First, one could adapt it to

other combinatorial optimisation problems. Second, one could attempt to improve

the primal solutions, for example by using some kind of local search procedure. Lastly,

one could experiment with alternative methods for computing the surrogate multipli-

ers. (In principle, one could use one of the existing iterative methods for the surrogate

dual, mentioned in Subsection 5.2.1. One would however have to be careful to get a

good trade-off between bound quality and running time.)

Finally, in Chapter 5, we explored the impact of dual solution quality on the

performance of dual-based heuristics. The most surprising outcome is that clearly

sub-optimal dual solutions (obtained via dual ascent) are often more useful than

provably optimal dual solutions (obtained by simplex or interior-point methods).

It would be worthwhile experimenting with some other combinatorial optimisation

problems, to see if this phenomenon appears elsewhere. It would also be good to

perform analogous experiments with heuristic based on Lagrangian relaxation. (That

112

is, do good Lagrangian multipliers tend to lead to good primal solutions?)

The main lesson from our work is that, if one wishes to compute both lower

and upper bounds for any given combinatorial optimisation problem, it is well worth

coding and testing (a) several different relaxations, (b) several different methods for

solving the relaxations (either exactly or approximately), and (c) several different pri-

mal heuristics. If care is taken to design and analyse the algorithms, and appropriate

data structures are used when implementing them, one can often obtain bounds of

good quality in very reasonable computing times.

113

Bibliography

[1] E.H.L. Aarts & J.K. Lenstra (eds) (2003) Local Search in Combinatorial Opti-

mization. Princeton, NJ: Princeton University Press.

[2] S. Ahn, C. Cooper, G. Cornuéjols & A.M. Frieze (1988) Probabilistic analysis

of a relaxation for the p-median problem. Math. Oper. Res., 13, 1–31.

[3] E. Angelelli, R. Mansini & M.G. Speranza (2010) Kernel search: a general

heuristic for the multi-dimensional knapsack problem. Comput. Oper. Res., 37,

2017–2026.

[4] A. Balakrishnan, T.L. Magnanti & R.T. Wong (1989) A dual-ascent procedure

for large-scale uncapacitated network design. Oper. Res., 37, 716–740.

[5] E. Balas & A. Ho (1980) Set covering algorithms using cutting planes, heuristics,

and subgradient optimization: a computational study. Math. Program. Study,

12, 37–60.

[6] E. Balas & M.J. Saltzman (1991) An algorithm for the three-index assignment

problem. Oper. Res., 39, 150–161.

[7] E. Balas & M.C. Carrera (1996) A dynamic subgradient-based branch-and-

bound procedure for set covering. Oper. Res., 44, 875–890.

[8] M. Balinski (1965) Integer programming: methods, uses, computation. Manag.

Sci., 12, 254–313.

[9] M.O. Ball (2011) Heuristics based on mathematical programming. Surveys in

Oper. Res. & Manag. Sci., 16, 21–38.

114

[10] C. Barnhart (1993) Dual-ascent methods for large-scale multi-commodity flow

problems. Nav. Res. Logist., 40, 305–324.

[11] C. Barnhart, E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh & P.H. Vance

(1998) Branch-and-price: column generation for solving huge integer programs.

Oper. Res., 46, 316–329.

[12] M.S. Bazaraa, H.D. Sherali & C.M. Shetty (2006) Nonlinear Programming:

Theory and Algorithms, 3rd edn. Hoboken, NJ: Wiley.

[13] J.E. Beasley (1987) An algorithm for set covering problems. Eur. J. Oper. Res.,

31, 85–93.

[14] J.E. Beasley (1990) A Lagrangian heuristic for set covering problems. Nav. Res.

Logist., 37, 151–164.

[15] J.E. Beasley (1990) OR-Library: distributing test problems by electronic mail.

J. Oper. Res. Soc., 41, 1069–1072.

[16] J.E. Beasley (1993) Lagrangian heuristics for location problems. Eur. J. Oper.

Res., 65, 383–399.

[17] J.E. Beasley & K. Jörnsten (1992) Enhancing an algorithm for set covering

problems. Eur. J. Oper. Res., 58, 293–300.

[18] R.E. Bellman (1957) Dynamic Programming. Princeton, NJ: Princeton Univer-

sity Press.

[19] C. Beltran-Royo, J.-P. Vial & A. Alonso-Ayuso (2012) Semi-Lagrangian relax-

ation applied to the uncapacitated facility location problem. Comput. Optim.

Appl., 51, 387–409.

[20] D.P. Bertsekas (2016) Nonlinear Programming, 3rd edn. Belmont, MA: Athena

Scientific.

[21] O. Bilde & J. Krarup (1977) Sharp lower bounds and efficient algorithms for

the simple plant location problem. Ann. Discr. Math., 1, 79–88.

115

[22] N. Boland, A.C. Eberhard & A. Tsoukalas (2015) A trust region method for

the solution of the surrogate dual in integer programming. J. Optim. Th. Appl.,

167, 558–584.

[23] E. Boros (1986) On the complexity of the surrogate dual of 0–1 programming.

Zeit. Oper. Res., 30, A145–A153.

[24] M.A. Boschetti, A. Mingozzi & S. Ricciardelli (2008) A dual ascent procedure

for the set partitioning problem. Discr. Optim., 5, 735–747.

[25] M. Boschetti, V. Maniezzo & M. Roffilli (2010) Decomposition techniques as

metaheuristic frameworks. In V. Maniezzo, T. Stützle & S. Voß (eds)Matheuris-

tics, pp. 135–158. Boston, MA: Springer.

[26] S. Boussier, M. Vasquez, Y. Vimont, S. Hanafi & P. Michelon (2010) A multi-

level search strategy for the 0–1 multidimensional knapsack problem. Discr.

Appl. Math., 158, 97–109.

[27] S. Boyd & L. Vandenberghe (2004) Convex Optimization. Cambridge: Cam-

bridge University Press.

[28] R. Burkard, M. Dell’Amico & S. Martello (2012) Assignment Problems (Revised

Reprint). Philadelphia, PA: SIAM.

[29] R. Burkard, R. Rudolf & G. Woeginger (1996) Three-dimensional axial as-

signment problems with decomposable cost coefficients Discr. Appl. Math., 65,

123–139.

[30] E.K. Burke & G. Kendall (eds) (2014) Search Methodologies: Introductory Tu-

torials in Optimization and Decision Support Techniques (2nd edn.). New York:

Springer.

[31] E. Buson, R. Roberti & P. Toth (2014) A reduced-cost iterated local search

heuristic for the fixed-charge transportation problem. Oper. Res., 62, 1095–

1106.

116

[32] A. Caprara, M. Fischetti & P. Toth (1999) A heuristic method for the set

covering problem. Oper. Res., 47, 730–743.

[33] A. Caprara, M. Fischetti & P. Toth (2000) Algorithms for the set covering

problem. Ann. Oper. Res., 98, 353–371.

[34] S. Ceria, P. Nobili & A. Sassano (1998) A Lagrangian-based heuristic for large-

scale set covering problems. Math. Program., 81, 215–228.

[35] D.-S. Chen & S. Zionts (1976) Comparison of some algorithms for solving the

group theoretic integer programming problem. Oper. Res., 24, 1120–1128.

[36] D.-S. Chen, R.G. Batson & Y. Dang (2010) Applied Integer Programming. Hobo-

ken, NJ: Wiley.

[37] P.C. Chu & J.E. Beasley (1998) A genetic algorithm for the multidimensional

knapsack problem. J. Heur., 4, 63–86.

[38] M. Conforti, G. Cornuéjols & G. Zambelli (2014) Integer Programming. Cham,

Switzerland: Springer.

[39] W.J. Cook (2010) Fifty-plus years of combinatorial integer programming. In:

M. Jünger et al. (eds) 50 Years of Integer Programming: 1958-2008, pp. 387–

430. Berlin: Springer.

[40] W.J. Cook, W.H. Cunningham, W.R. Pulleyblank & A. Schrijver (1998) Com-

binatorial Optimization. New York: Wiley.

[41] G. Cornuéjols, C. Michini & G. Nannicini (2012) How tight is the corner relax-

ation? Insights gained from the stable set problem. Discr. Optim., 9, 109–121.

[42] Y. Crama & J.B. Mazzola (1994) On the strength of relaxations of multidimen-

sional knapsack problems. INFOR, 32, 219–225.

[43] Y. Crama & F. Spieksma (1992) Approximation algorithms for three-

dimensional assignment problems with triangle inequalities. Eur. J. Oper. Res.,

60, 273-279.

117

[44] G.B. Dantzig (1960) On the significance of solving linear programming problems

with some integer variables. Econometrica, 28, 30–44.

[45] G.B. Dantzig (1998) Linear Programming and Extensions (revised edn). Prince-

ton, NJ: Princeton University Press.

[46] G.B. Dantzig & P. Wolfe (1960) Decomposition principle for linear programs.

Oper. Res., 8, 101–111.

[47] F. Della Croce & A. Grosso (2012) Improved core problem based heuristics for

the 0/1 multi-dimensional knapsack problem. Comput. Oper. Res., 39, 27–31.

[48] T. Dokka, A.N. Letchford & M.H. Mansoor (2021) On the complexity of sur-

rogate and group relaxation for integer linear programs. Oper. Res. Lett., 49,

530–534.

[49] T. Dokka, I. Mourtos & F.C. Spieksma (2017) Fast separation for the three-

index assignment problem. Math. Program. Comput., 9, 39–59.

[50] M.E. Dyer (1980) Calculating surrogate constraints. Math. Program., 19, 255–

278.

[51] D. Erlenkotter (1978) A dual-based procedure for uncapacitated facility loca-

tion. Oper. Res., 26, 992–1009.

[52] E. Feldman, F.A. Lehrer & T.L. Ray (1966) Warehouse location under contin-

uous economies of scale. Manag. Sci., 12, 670–684.

[53] M. Fischetti (2019) Introduction to Mathematical Optimization. Independently

published.

[54] M. Fischetti & M. Monaci (2008) How tight is the corner relaxation? Discr.

Optim., 5, 262–269.

[55] M. Fischetti, I. Ljubić, M. Sinnl (2017) Redesigning Benders decomposition for

large-scale facility location. Manag. Sci., 63, 2146–2162.

118

[56] M.L. Fisher (1981) The Lagrangian relaxation method for solving integer pro-

gramming problems. Manag. Sci., 27, 1–18.

[57] M.L. Fisher (1985) An applications-oriented guide to Lagrangian relaxation.

Interfaces, 15, 10–21.

[58] M.L. Fisher, R. Jaikumar & L.N. Van Wassenhove (1986) A multiplier adjust-

ment method for the generalized assignment problem. Manag. Sci., 32, 1095–

1103.

[59] M.L. Fisher & P. Kedia (1990) Optimal solution of set covering/partitioning

problems using dual heuristics. Manag. Sci., 36, 674–688.

[60] M.L. Fisher, B.J. Lageweg, J.K. Lenstra & A.R. Kan (1983) Surrogate duality

relaxation for job shop scheduling. Discr. Appl. Math., 5, 65–75.

[61] A. Fréville (2004) The multidimensional 0–1 knapsack problem: an overview.

Eur. J. Oper. Res., 155, 1–21.

[62] A. Fréville & S. Hanafi (2005) Multidimensional 0–1 knapsack problem: bounds

and computational aspects. Ann. Oper. Res., 139, 195–227.

[63] A. Fréville & G. Plateau (1993) An exact search for the solution of the surrogate

dual of the 0-1 bidimensional knapsack problem. Eur. J. Oper. Res., 68, 413–

421.

[64] A. Fügenschuh & B. Höfler (2006) Parametrized GRASP heuristics for three-

index assignment. In J. Gottlieb & G.R. Raidl (eds) Evolutionary Computation

in Combinatorial Optimization, pp. 61–72. Berlin: Springer.

[65] R.D. Galvão, L.G. Acosta Espejo & B. Boffey (2000) A comparison of La-

grangean and surrogate relaxations for the maximal covering location problem.

Eur. J. Oper. Res., 124, 377–389.

[66] R. Galvão & L. Raggi (1989) A method for solving to optimality uncapacitated

location problems. Ann. Oper. Res., 18, 225–244.

119

[67] M.R. Garey & D.S. Johnson (1979) Computers and Intractability: A Guide to

the Theory of NP-Completeness. New York: Freeman.

[68] B. Gavish & H. Pirkul (1985) Efficient algorithms for solving multiconstraint

zero-one knapsack problems to optimality. Math. Program., 31, 78–105.

[69] Gendreau, M., & Potvin, J. Y. (eds.) (2010) Handbook of metaheuristics (Vol.

2, p. 9). New York: Springer.

[70] A.M. Geoffrion (1974) Lagrangean relaxation for integer programming. Math.

Program. Study, 2, 82–114.

[71] D. Ghosh (2003) Neighborhood search heuristics for the uncapacitated facility

location problem. Eur. J. Oper. Res., 150, 150–162.

[72] K.C. Gilbert & R.B. Hofstra (1988) Multidimensional assignment problems.

Decis. Sci., 19, 306–321.

[73] F. Glover & R. Woolsey (1972) Aggregating Diophantine equations. Zeit. Oper.

Res., 16, 1–10.

[74] F. Glover (1989). Tabu search—part I. ORSA Journal on computing, 1(3), 190–

206.

[75] F. Glover (1975) Surrogate constraint duality in mathematical programming.

Oper. Res., 23, 434–451.

[76] R.E. Gomory (1958) Outline of an algorithm for integer solutions to linear

programs. Bull. Amer. Math. Soc., 64, 275–278.

[77] R.E. Gomory (1965) On the relation between integer and non-integer solutions

to linear programs. Proc. Nat. Acad. Sci., 53, 260–265.

[78] R.E. Gomory (1969) Some polyhedra related to combinatorial problems. Lin.

Alg. Appl., 2, 451–558.

120

[79] H.J. Greenberg &W.P. Pierskalla (1970) Surrogate mathematical programming.

Oper. Res., 18, 924–939.

[80] M. Grötschel, L. Lovász & A.J. Schrijver (1988) Geometric Algorithms and

Combinatorial Optimization. New York: Wiley.

[81] D.A. Grundel & P.M. Pardalos (2005) Test problem generator for the multidi-

mensional assignment problem. Comput. Optim. Appl., 30, 133–146.

[82] H. Gu (2018) Local cuts for 0-1 multidimensional knapsack problems. In

R. Sarker et al. (eds) Data and Decision Sciences in Action. Cham, Switzerland:

Springer.

[83] M. Guignard (1988) A Lagrangian dual ascent algorithm for simple plant loca-

tion problems. Eur. J. Oper. Res., 35, 193–200.

[84] M. Guignard (2003) Lagrangean relaxation. Trabajos de Operativa (TOP), 11,

151–228.

[85] S. Haddadi (1997) Simple Lagrangian heuristic for the set covering problem.

Eur. J. Oper. Res., 97, 200–204.

[86] P. Hansen, J. Brimberg, D. Urošević & N. Mladenovič (2007) Primal-dual vari-

able neighborhood search for the simple plant-location problem. INFORMS J.

Comput., 19, 552–564.

[87] D. Harel & Y. Feldman (2004) Algorithmics: The Spirit of Computing (3rd

edn). Harlow, Essex: Addison-Wesley.

[88] E. Helly (1923) Über Mengen konvexer Körper mit gemeinschaftlichen Punkten.

Jahresbericht der Deutschen Mathematiker-Vereinigung, 32, 175–176.

[89] D.S. Hochbaum (1982) Approximation algorithms for the set covering and ver-

tex cover problems. SIAM J. Comput., 11, 555–556.

121

[90] A.J. Hoffman & J.B. Kruskal (1956) Integral boundary points of convex poly-

hedra. In H.W. Kuhn & A.J. Tucker (eds.) Linear Inequalities and Related

Systems, pp. 223—246. Princeton, NJ: Princeton University Press.

[91] J.H. Holland (1975) Adaption in Natural and Artificial Systems. Cambridge,

MA: MIT Press.

[92] L. Huang, X. Chen, W. Huo, J. Wang, F. Zhang, B. Bai, & L. Shi (2021)

Branch and Bound in Mixed Integer Linear Programming Problems: A Survey

of Techniques and Trends. arXiv:2111.06257.

[93] J. Janáček & L. Buzna (2008) An acceleration of Erlenkotter–Körkel’s algo-

rithms for the uncapacitated facility location problem. Ann. Oper. Res., 164,

97–109.

[94] M. Jünger et al. (eds) (2009) 50 Years of Integer Programming: 1958–2008.

Berlin: Springer.

[95] K. Kaparis & A.N. Letchford (2008) Local and global lifted cover inequalities

for the multidimensional knapsack problem. Eur. J. Oper. Res., 186, 91–103.

[96] R.M. Karp (1972) Reducibility among combinatorial problems. In R.E. Miller

et al. (eds) Complexity of Computer Computations, pp. 85–103. New York:

Plenum.

[97] M.H. Karwan & R.L. Rardin (1980) Searchability of the composite and multiple

surrogate dual functions. Oper. Res., 28, 1251–1257.

[98] M.H. Karwan & R.L. Rardin (1984) Surrogate dual multiplier search procedures

in integer programming. Oper. Res., 32, 352–69.

[99] H. Kellerer, U. Pferschy & D. Pisinger (2004) Knapsack Problems. Berlin:

Springer.

122

[100] S.-L. Kim & S. Kim (1998) Exact algorithm for the surrogate dual of an integer

programming problem: subgradient method approach. J. Optim. Th. Appl., 96,

363–375.

[101] S. Kirkpatrick, C.D. Gelatt & M.P. Vecchi (1983) Optimization by simulated

annealing. Science, 220, 671–680.

[102] V. Klee & G.J. Minty (1972) How good is the simplex algorithm? In O. Shisha

(ed.) Proceedings of the Third Symposium on Inequalities, pp. 159–175. New

York: Academic Press.

[103] Y. Kochetov & D. Ivanenko (2005) Computationally difficult instances for the

uncapacitated facility location problem. In T. Ibaraki, K. Nonobe & M. Yagiura

(eds) Metaheuristics: Progress as Real Problem Solvers, pp. 351–367. Boston,

MA: Springer.

[104] M. Körkel (1989) On the exact solution of large-scale simple plant location

problems. Eur. J. Oper. Res., 39, 157–173.

[105] B.H. Korte & J. Vygen (2018) Combinatorial Optimization: Theory and Algo-

rithms, 6th edn. Heidelberg: Springer.

[106] J. Krarup & P.M. Pruzan (1983) The simple plant location problem: survey

and synthesis. Eur. J. Oper. Res., 12, 36–81.

[107] J. Kratica, D. Tosic, V. Filipovic & I. Ljubic (2001) Solving the simple plant

location problem by genetic algorithm. RAIRO Oper. Res., 35, 127–142.

[108] A.H. Land & A.G. Doig (1960) An automatic method of solving discrete pro-

gramming problems. Econometrica, 28, 497–520.

[109] C. Lemaréchal (2001) Lagrangian relaxation. In M. Jünger & D. Naddef (eds)

Computational Combinatorial Optimization, pp. 115–160. Heidelberg: Springer

Verlag.

123

[110] A.N. Letchford (2003) Binary clutter inequalities for integer programs. Math.

Program., 98, 201–221.

[111] A.N. Letchford & S.J. Miller (2012) Fast bounding procedures for large instances

of the simple plant location problem. Comput. Oper. Res., 39, 985–990.

[112] L.A.N. Lorena & F.B. Lopes (1994) A surrogate heuristic for set covering prob-

lems. Eur. J. Oper. Res., 79, 138–150.

[113] G.S. Lueker (1975) Two NP-complete problems in nonnegative integer pro-

gramming. Technical Report No. 178, Department of Electrical Engineering,

Princeton University.

[114] V. Maniezzo, T. Stützle & S. Voß (eds) (2010)Matheuristics: Hybridizing Meta-

heuristics and Mathematical Programming. Boston, MA: Springer.

[115] V. Maniezzo, M.A. Boschetti & T. Stützle (2021) Matheuristics: Algorithms

and Implementations. Cham: Springer.

[116] R. Mansini & M.G. Speranza (2012) CORAL: an exact algorithm for the mul-

tidimensional knapsack problem. INFORMS J. Comput., 24, 399–415.

[117] R. Mart́ı, P.M. Pardalos & M.G. Resende (eds) (2018) Handbook of Heuristics.

Cham: Springer.

[118] R.R. Meyer (1974) On the existence of optimal solutions to integer and mixed-

integer programming problems. Math. Program., 7, 223–235.

[119] J.E. Mitchell (2011) Branch and cut. In J.J. Cochran et al. (eds) Wiley Ency-

clopedia of Operations Research and Management Science. New York: Wiley.

[120] J.G. Morris (1978) On the extent to which certain fixed-charge depot location

problems can be solved by LP. J. Oper. Res. Soc, 29, 71–76.

[121] M.G. Narciso & L.A.N. Lorena (1999) Lagrangean/surrogate relaxation for gen-

eralized assignment problems. Eur. J. Oper. Res., 114, 165–177.

124

[122] G.L. Nemhauser & L.A. Wolsey (1988) Integer and Combinatorial Optimization.

New York: Wiley.

[123] M.W. Padberg (1973) On the facial structure of set packing polyhedra. Math.

Program., 5, 199–215.

[124] M.W. Padberg & G. Rinaldi (1987) Optimization of a 532-city symmetric trav-

eling salesman problem by branch and cut. Oper. Res. Lett., 6, 1–7.

[125] G. Polya (1945) How to Solve It. Princeton, NJ: Princeton University Press.

[126] T. Polzin & S.V. Daneshmand (2001) Improved algorithms for the Steiner prob-

lem in networks. Discr. Appl. Math., 112, 263–300.

[127] M. Posta, J.A. Ferland & P. Michelon (2014) An exact cooperative method

for the uncapacitated facility location problem. Math. Program. Comput., 6,

199–231.

[128] J. Puchinger, G.R. Raidl & U. Pferschy (2010) The multidimensional knapsack

problem: structure and algorithms. INFORMS J. Comput., 22, 250–265.

[129] P. Raghavan & C.D. Tompson (1987) Randomized rounding: a technique for

provably good algorithms and algorithmic proofs. Combinatorica, 7, 365–374.

[130] G.R. Raidl (2015) Decomposition based hybrid metaheuristics. Eur. J. Oper.

Res., 244, 66–76.

[131] C.R. Reeves (ed.) (1993) Modern Heuristic Techniques for Combinatorial Prob-

lems. New York: Wiley.

[132] J.-P. Richard & S.S. Dey (2010) The group-theoretic approach in mixed integer

programming. In M. Juenger et al. (eds) 50 Years of Integer Programming 1958–

2008, pp. 727–801. Berlin: Springer.

[133] R. Saket & M. Sviridenko (2012) New and improved bounds for the minimum

set cover problem. In A. Gupta et al. (eds), Proc. APPROX-RANDOM XV,

pp. 288–300. Berlin: Springer.

125

[134] S. Sarin, M.H. Karwan & R.L. Rardin (1987) A new surrogate dual multiplier

search procedure. Nav. Res. Logist., 34, 431–450.

[135] S. Sarin, M.H. Karwan & R.L. Rardin (1988) Surrogate duality in a branch-

and-bound procedure for integer programming. Eur. J. Oper. Res., 33, 326–333.

[136] A. Schrijver (1986) Theory of Linear and Integer Programming. Chichester:

Wiley.

[137] M.J. Todd (1982) An implementation of the simplex method for linear pro-

gramming problems with variable upper bounds. Math. Program., 23, 34–49.

[138] UflLib: a library of instances of the uncapacitated facility location problem.

Available at

http://resources.mpi-inf.mpg.de/departments/d1/projects/benchmarks/UflLib/

[139] R.J. Vanderbei (2020) Linear Programming: Foundations and Extensions, 5th

edn. Cham: Springer.

[140] V.V. Vazirani (2001) Approximation Algorithms. Berlin: Springer.

[141] V. Verter (2011) Uncapacitated and capacitated facility location problems. In

H.A. Eiselt & V. Marianov (eds) Principles of Location Science, pp. 25–37.

Heidelberg: Springer.

[142] Y. Vimont, M. Boussier, M. Vasquez (2008) Reduced costs propagation in an

efficient implicit enumeration for the 0-1 multidimensional knapsack problem.

J. Combin. Optim., 15, 165–178.

[143] H.P. Williams (2013) Model Building in Mathematical Programming, 5th edn.

New York: Wiley.

[144] D.P. Williamson & D.B. Shmoys (2011) The Design of Approximation Algo-

rithms. Cambridge: Cambridge University Press.

[145] D.P. Williamson (2002) The primal-dual method for approximation algorithms.

Math. Program., 91, 447–478.

126

[146] R.T. Wong (1984) A dual ascent approach for Steiner tree problems on a di-

rected graph. Math. Program., 28, 271–287.

[147] B. Yelbay, Ş.İ. Birbil & K. Bülbül (2015) The set covering problem revisited:

an empirical study of the value of dual information. J. Indust. Manag. Optim.,

11, 575–594.

127

