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Untangling the changing impact of non-
pharmaceutical interventions and vaccination
on European COVID-19 trajectories
Yong Ge 1,2,14✉, Wen-Bin Zhang 1,2,3,14, Xilin Wu 1,2,14, Corrine W. Ruktanonchai 4,14, Haiyan Liu5,
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Non-pharmaceutical interventions (NPIs) and vaccination are two fundamental approaches

for mitigating the coronavirus disease 2019 (COVID-19) pandemic. However, the real-world

impact of NPIs versus vaccination, or a combination of both, on COVID-19 remains uncertain.

To address this, we built a Bayesian inference model to assess the changing effect of NPIs

and vaccination on reducing COVID-19 transmission, based on a large-scale dataset including

epidemiological parameters, virus variants, vaccines, and climate factors in Europe from

August 2020 to October 2021. We found that (1) the combined effect of NPIs and vacci-

nation resulted in a 53% (95% confidence interval: 42–62%) reduction in reproduction

number by October 2021, whereas NPIs and vaccination reduced the transmission by 35%

and 38%, respectively; (2) compared with vaccination, the change of NPI effect was less

sensitive to emerging variants; (3) the relative effect of NPIs declined 12% from May 2021

due to a lower stringency and the introduction of vaccination strategies. Our results

demonstrate that NPIs were complementary to vaccination in an effort to reduce COVID-19

transmission, and the relaxation of NPIs might depend on vaccination rates, control targets,

and vaccine effectiveness concerning extant and emerging variants.
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S ince the emergence of coronavirus disease 2019 (COVID-
19) and global transmission from early 2020, governments
worldwide have implemented a series of non-

pharmaceutical interventions (NPIs), to varying extents, in an
effort to reduce local transmission of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2)1. The impact of these
NPI strategies has been well documented2–4, yet the consequences
of long-term social restrictions have raised concerns about the
potential for economic recession5 and unintended adverse
mental-health outcomes6. COVID-19 vaccines, which protect
against infections and severe illness, provide the potential for
relaxing NPIs and addressing associated economic and social
burdens. However, evidence on the real-world effect of the
coordinated implementation of NPIs alongside mass vaccination
campaigns is still unclear. As vaccination rates increase in more
countries worldwide, the impact of combined vaccination and
NPI strategies over time, within the context of emerging or extant
variants and their transmission capacity, should be quantified.
This information is vital for informing policymakers who wish to
promote public health while also easing the burden of invasive
and restrictive NPIs.

Following approval of the Pfizer vaccine by the United King-
dom (UK) on 2 December 2020, mass-vaccination campaigns
have commenced in countries worldwide7. The rollout of this
vaccine, along with other COVID-19 vaccine products, such as
Moderna, Johnson & Johnson, AstraZeneca, Sinopharm.Beijing,
and Sputnik.V8, has been observed to have varied efficacy against
the transmission of SARS-CoV-29. However, the number of
confirmed new COVID-19 cases across the world remained high
in 2021, and subsequent waves of transmission have occurred
with emergence of more transmissible variants of concern
(VOCs), e.g. Alpha and Delta due to immune evasion10,11 and the
potential for reinfection amongst previously infected or vacci-
nated populations12,13. For example, Europe reported a 7%
increase in new weekly cases and 11% increase in COVID-19
attributed deaths during the week of 4 to 10 October 2021,
compared with the previous week14, despite 59.6% of the popu-
lation in the European Region having been fully vaccinated by
mid-September 20217. Although countries in Europe have
implemented various roadmaps to relax NPIs with the increase in
vaccination rates since June 202115, rushed relaxation of NPIs
could bring a risk of COVID-19 resurgence due to variation in
the protection of vaccines for preventing transmission of VOCs16.

Previous modelling studies17–20 have preliminarily explored
the implementation and effect of NPIs in the COVID-19 vac-
cination era. For instance, NPIs were estimated to have a higher
impact in preventing infection than vaccination alone, assuming
a variety of immunisation rates, during the first phase of the
vaccination campaign in Italy in January 202119. Furthermore,
using a mathematical model informed by age structure in the
UK, even under an optimistic scenario of vaccines preventing
85% of infections regardless of variant, the reproduction number
was still estimated as 1.58 (suggesting sustainable transmission)
after full vaccination of the population in the absence of NPIs20.
These results suggest that NPIs should be continually imple-
mented during mass-vaccination programmes to prevent
COVID-19 transmission. In addition, levels of population
immunity, which may or may not be reflective of real population
level immunity, were directly defined under various scenarios in
models and the geography of emerging variants and resulting
vaccine effectiveness were often absent or incomplete. The gap
between the de facto vaccination-immune and the vaccinated
population can also lead to a misunderstanding of simulation
results16, where much uncertainty is introduced by varying
vaccine efficacy and variant emergence21. Therefore, the real-
world effect of integrated NPI and vaccination strategies is still

unclear, leading to uncertainty as to which policies and inter-
ventions are most appropriate.

In this study, we estimated the real-world impact of vaccina-
tion programmes and NPI strategies in mitigating COVID-19
transmission among populations over time, against different
emerging variants, and amongst various settings. Based on large-
scale and near real-time datasets, including epidemiological
parameters, virus variants, vaccines, and control variables, we
proposed a data-driven approach for quantifying the changes in
COVID-19 transmission across 31 member states of the World
Health Organization (WHO) European Region (Fig. 1a)22, as a
result of one, or a combination of both of these intervention
strategies from 1 August 2020 to 25 October 2021. Given the
spatiotemporal heterogeneity in COVID-19 transmission, the
instantaneous reproduction number (Rt) was derived to represent
transmissibility under government interventions and vaccination,
and the instantaneous basic reproduction number (R0,t) was used
to represent intrinsic transmissibility without NPIs and/or vac-
cination that governments have taken to tackle COVID-19 (see
Supplementary Information). The relative effect of NPIs and
vaccination, thus, was defined as the contributed percentage
reductions in reproduction number from R0,t to Rt, denoted as
4Rtð%Þ ¼ 1� Rt=R0;t .

As different COVID-19 vaccine products have been used
across countries, the documented vaccination rate of each
country was further standardised as practical vaccination rate,
based on the efficacy of vaccines against SARS-CoV-2 strains
circulating prior to the discovery of VOCs. The practical vacci-
nation rate represents the fraction of populations who might have
sufficient antibodies to prevent COVID-19 infection at individual
level. Our model included this adjusted rate as an independent
variable, to account for the reduction in R0,t attributed to vacci-
nation alone. As countries implemented diverse NPI packages
without coordination23, we used an integrated stringency index of
government interventions generated by the Oxford Covid-19
Government Response Tracker (OxCGRT)24, as a proxy to esti-
mate the general restraint of ‘lockdown style’ NPIs. A Bayesian
model was used to evaluate the effect of NPIs and vaccination
across months for each country, and then a meta-analysis for
pooling national results across 31 countries was conducted to
assess the overall impact of interventions on COVID-19 in the
region over time. The details of the methodology can be found in
Methods and Supplementary Information.

Results
Overall effect of NPIs and vaccination over time. The reductions
in R0,t contributed by NPIs gradually increased from 31% (95%
confidence interval [CI]: 25–36%) in August 2020, to 44% (95% CI:
38–49%) in December 2020 when countries started mass vacci-
nation (Figs. 1 and 2). Thereafter, the relative effect of NPIs on
reducing COVID-19 transmission stabilised at about 44–47% until
the practical vaccination rate exceeded 30% in July 2021. However,
NPI’s effect gradually dropped to 35% (95% CI: 26–43%) by 25
October 2021, with the practical vaccination rate reaching 53% in
Europe. In contrast, the effect of vaccination successively increased,
reaching 38% (95% CI: 30–47%) by 25 October 2021. We found
that the relative importance of vaccination on flattening the tra-
jectory of COVID-19 transmission has exceeded that of NPIs
within the WHO European region since August 2021. Although
the role of vaccines had been flourishing since its rollout, we saw
little growth in the effect of vaccination in September - October
2021 during the circulation of the VOC Delta (Fig. 2).

As of 25 October 2021, NPI measures coupled with vaccination
rates resulted in a total reduction in R0,t by 53% (95% CI:
42–62%), regardless of variants in circulation (Fig. 2). As the
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evolution of COVID-19 is a complex process, and NPIs and
vaccination were not the only explanatory variables for the
observed reduction in R0,t, we further used air temperature to
explore the impact of environmental factors on COVID-19
transmission. During our study period, however, temperature
seems to have had a small influence (0% to 3%) on reducing R0,t
(Supplementary Fig. 2). Moreover, we also estimated reductions
in R0,t contributed by other unknown factors (represented by
residuals), e.g., personal hygiene behaviour, which were relatively
stable from August 2020 to July 2021, ranging from 5% to 8%.
After that, with the significantly improved vaccination rate, the
unexplained reductions in R0,t dropped to 2% in October 2021.
Our estimates for each country over time can be found in
Supplementary Fig. 4.

Interaction between vaccination and NPI effects. As vaccinated
individuals might also be protected by NPIs, we further estimated
the interaction effect of NPIs and vaccination on reducing
COVID-19 transmission among populations. Under a practical
vaccination rate between 20% and 30%, vaccines reduced R0,t in
populations by a median of 18%, while NPIs alone could reduce
R0,t by 40% during the same period (Fig. 3a). However, when the
practical vaccination rate reached 40–50%, the effect of vaccina-
tion (28%) surpassed that of NPIs (25%). Figure 3b showed that
the overall effect of NPIs under various stringency levels tended

to decline over the study period. When the practical vaccination
rate exceeded 30%, NPIs with similar stringency appeared to have
a less impact on COVID-19 transmission. Furthermore, we found
a gradual increase in the interaction of NPIs and vaccination for
reducing R0,t (Fig. 3c). However, due to the low vaccination rates,
the interaction effect from December 2020 to May 2021 remained
small (0–6%), but it increased to 15% (95% CI: 10–19%) in
September - October 2021, even against the more transmissible
Delta variant. In addition, the overall effect of vaccination on
preventing population-wide COVID-19 transmission increased
approximately linearly with the increasing vaccination rate,
whether or not the interaction effect was considered (Fig. 3d).

We also validated our model by using leave-one-out cross-
validation approach for each of the 31 study countries
(Supplementary Information C4), where the median of root-
mean-square error (RMSE) was 0.26 (IQR: 0.24 – 0.33), and
R-squared ranged from 0.35 (Poland with a vaccination rate of
52%) to 0.76 (Ukraine with a vaccination rate of 16%). Sensitivity
analyses were further conducted by altering model settings and
parameters to assess the robustness of model. The output showed
that the overall trends in estimates were highly consistent across
experimental conditions (Supplementary Fig. 13).

Potential relaxation of NPIs amid vaccination. Under a
fixed parameter of vaccination rate on 25 October 2021, we
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investigated the change in the stringency of NPIs required to
halt COVID-19 transmission across the 31 study countries
(Fig. 4a). We compared the actual NPI setting on 25 October
2021 with the scenario of Rt equal to 1, to estimate the
recommended increase (when Rt>1) or potential relaxation
(when Rt<1) of NPI stringency. We found that most countries
should maintain higher stringency of NPIs compared with their
previous levels, until sufficient immunity has been acquired in
the population to contain the spread of COVID-19 with Rt<1.
For example, under the circumstance of vaccination and
COVID-19 transmission by 25 October 2021, Slovakia might
need to increase their NPI stringency index from 29 to 44. NPIs
with a stringency index of 29 in Slovakia were generally at a
moderate level, such as recommending to close school, and
restrictions on gatherings between 11–100 people. Looking back
at Slovakia’s NPIs implemented during previous waves, in order
to reach a stringency index of 44, Slovakia might need to take
additional measures, such as restricting gatherings to 10 people
or less. In order to provide more reliable evidence for decision-
making, we further compared the requirement for changes in
NPI stringency index with the output of an indicator of open-
ness risk, modified from the OxCGRT’s approach25. The
openness risk is a case-evidenced index of risk rating, related to
whether a country is ready to adopt an ‘open’ policy (remove/
reduce NPI measures). Figure 4b shows that findings from these
two indexes are generally consistent. For instance, countries
falling in Group 1 should consider delaying relaxation or
boosting their NPIs, and countries of Group 2 could consider
relaxing their NPIs.

Discussion
We used a data-driven approach to estimate the respective impact
of NPIs and vaccination on COVID-19 mitigations among
populations in Europe by 25 October 2021. We found that the
effect of NPIs alone on preventing COVID-19 decreased in 2021,
along with the progress of vaccine rollout and the relaxation of
NPIs. The effect of vaccination on reducing population-wide
COVID-19 transmission gradually increased, and surpassed that
of NPIs since August 2021 (Fig. 2). However, in the context of
circulation of more transmissible variants, e.g., VOC Delta and
Omicron26,27, NPIs might remain an important complementary
to vaccination in reducing COVID-19 transmission before herd
immunity has been reached. Our findings and approaches can
potentially be used to support prompt COVID-19 mitigation
policy decisions and to inform the implementation of interven-
tions across different settings in current and future waves caused
by different variants under varying vaccination rates.

The effects of NPIs and vaccination were highly correlated with
the intensity of implementation and the actual vaccination cov-
erage among populations, respectively. The higher coverage of
effective vaccines indicates a larger proportion of the population
with immunity against SARS-CoV-2, resulting in greater impact
of vaccination on reducing the spread of COVID-19 in com-
munities. Additionally, more stringent NPIs, such as contact
reductions and travel restrictions, could further increase their
effects to decrease the transmission risk of the virus. However, it
is important to note that NPIs and vaccination affect the pan-
demic through distinct mechanisms28. The former physically
reduces population contact and virus transmission, and the latter
decreases susceptible populations by boosting immunity. Based
on observations of interventions and COVID-19 trajectories, the
overall impact of NPIs was found to decrease in subsequent
waves, from reducing R0,t by 77–82% in the first wave29,30 and
66% in the second wave in Europe31, to 22% in October 2021
found in this study. The reduced stringency, due perhaps to
policy relaxation and fatigue over time32, would result in the
decreased effects of NPIs. However, if people were fully vacci-
nated, they might have immunity to prevent infections, whether
they adopted NPIs or not. Therefore, this might explain that the
relative importance of NPIs with the same stringency also
reduced when vaccination rates increased (Fig. 3b). It is also
worth noting that NPIs interacted with vaccination were observed
to have a similar impact on the reduction of R0,t of the Delta
variant as they had in the period of Alpha variant circulation.

Theoretically, with the progress of vaccination campaigns tar-
geting herd immunity, unvaccinated people in communities are
also likely to be indirectly protected by vaccines. However, our
study findings from empirical data demonstrated that vaccination
alone might not be enough to prevent transmission of COVID-
19, for the time being, in the absence of NPIs33,34. The real-world
effects of vaccination on reducing COVID-19 transmission were
observed to be lower than the efficacy of vaccines reported from
the clinic trails9. Therefore, relaxing NPIs before attaining ade-
quate vaccine coverage would result in a greater number of
infections than would occur if NPIs were to be maintained or
increased35. These changes could lead to a faster and larger
accumulation of infections that greatly undermine the impact of
vaccination efforts36,37. Furthermore, limited by the weakened
effect of various vaccine products against different variants and
the delays of vaccine development and distributions, achieving
herd immunity may be a big challenge, particularly in the face of
highly transmissible variants such as Omicron or even
Delmicron38 (Supplementary Information D3).

There are several limitations in this study. First, as we focused
on the effect of NPIs and vaccination in preventing COVID-19
transmission, this study did not investigate the impact of these
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interventions to reduce severe outcomes, e.g., hospitalisations and
deaths, which warrants investigation in future studies. Second,
although population structure such as age seems to be a major
confounder39, we have not differentiated the NPI and vaccination
effects by demographic factors, due to the limited availability of
case and vaccination data by age and sex across space and time.
Third, vaccines might also be administered to people who were
already infected, and the effect of NPIs might be negatively
reduced by policy fatigue or positively impacted by adherence to
personal protective behaviours against COVID-19 infections.

However, their impact has not been analysed in this work due to a
lack of relevant data. Fourth, it is still unclear to what extent
changes in government interventions and vaccination rate as well
as waning immunity over time40 might have a delayed impact on
COVID-19 transmission and our findings41. We, therefore, esti-
mated the reductions in R0,t caused by interventions for each
month to minimise the effect of delays, and found that our main
results were stable over time. Fifth, randomised control trials
cannot be performed to robustly examine causality between
interventions and the reduction in COVID-19 transmission, and
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Wilcoxon test. The numbers of total independent samples form left (20< stringency index <= 30) to right (80< stringency index <= 90) are n= 466,
1334, 2173, 2055, 1805, 1387, and 459, respectively. c The respective effects attributed to NPIs (in blue) and vaccination (in red), and the interaction effect
between NPIs and vaccination (in yellow) over time across 31 countries. d The comparison of vaccination effects with/without the interaction with NPIs.
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this study was not designed to distinguish the efficiency of indi-
vidual NPIs and their interaction.

However, as with studies using similar approaches that have
been conducted for countries in previous waves28–30, empirical/
observational correlations between changes of interventions and
the dynamic of COVID-19 trajectories can alternatively provide
important evidence for assessing the impact of interventions on
reducing COVID-19 transmission. Due to the uncertainty in the
duration of acquired immunity and a high likelihood of the
emergence of new variants42,43, the most effective strategy for
preventing further waves of COVID-19 may include the dis-
tribution of vaccines to areas and populations with low vaccina-
tion rates, together with a certain level of combined NPIs that are
more appropriate according to local socio-economic contexts and
control targets.

Methods
Data sources and processing
Study countries and epidemiological parameters. The 31 study countries include
Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Esto-
nia, Finland, France, Germany, Hungary, Ireland, Iceland, Italy, Lithuania, Lux-
embourg, Latvia, Liechtenstein, Norway, Poland, Portugal, Slovakia, Slovenia,
Spain, Sweden, Switzerland, Ukraine, the Netherlands, the UK, and Israel (Fig. 1a).
We used the instantaneous reproduction number (Rt) to represent real-world
COVID-19 transmission. In this study, the daily estimates of Rt were obtained from
the Our World in Data data repository and contributed by Arroyo-Marioli et al44,
with Rt being estimated from the number of daily new cases using the Kalman
filter45. Specifically, the dynamics of Rt was considered as

Rt ¼ Rt�1 þ εt ; εt � i:i:d:Nð0; σε2Þ ð1Þ

and output was defined as the growth rate (gt) of COVID-19 infections, which is
derived from the classic SIR model linking to Rt

gt ¼ γ Rt � 1
� �þ ηt ; ηt � i:i:d:Nð0; ση2Þ ð2Þ

where γ is the daily transition rate from infected to recovered, which is the inverse
of the serial interval46. Details can be found in Supplementary Information A1. The

Kalman smoother fit gt to observed growth rates derived from empirical case data
to give best estimates of Rt by minimising the mean-squared error.

To derive the empirical change of transmission trend, we also estimated the
instantaneous basic reproduction number (R0,t) to capture the intrinsic
transmission capability of the virus without government public health
interventions. We first assembled data of the biweekly proportion of sequences of
six main SARS-CoV-2 variants, including lineages B.1.1.7 (VOC Alpha), B.1.351
(Beta), P.1 (Gamma), B.1.617.2 (Delta), B.1.525 (Eta), and B.1.617.1 (Kappa), in
each of the 31 study countries by 25 October 2021. SARS-CoV-2 sequence data
were collected from the Global Initiative on Sharing All Influenza Data
(GISAID)47, as of 25 October 2021. According to the transmissibility of each
variant, we then calculated a weighted average of basic reproduction numbers of
the six variants mentioned above and the SARS-CoV-2 strain in circulation before
VOCs became predominant (seven coronavirus variants in total) within each
country,

R0;t ¼ ∑
7

i¼1
wi;tR0;i ð3Þ

where wi,t is the weight of the basic reproduction number of variant i (R0,i) at day t,
calculated by the biweekly proportion of infections caused by that strain, based on
sequence data. As R0,i of each variant was reported in comparison with the
transmissibility of SARS-CoV-2 strains in the early stages of the pandemic, we first
set a hyperprior over the basic reproduction number of SARS-CoV-2, and
evaluated R0,i by multiplying the corresponding reported expansion parameters
(Supplementary Table 1). More details of epidemiological data collation and
analysis as well as limitations of using reproduction numbers to describe
transmission context can be found in Supplementary Information.

Stringency index of NPIs. We used a large-scale dataset of NPIs collected and
assembled by the Oxford COVID-19 Government Response Tracker (OxCGRT)24.
The stringency index is a composite measure provided by the OxCGRT based on
nine indicators, including eight containment and closure policy indicators (school
closures, workplace closures, public event cancellations, gathering restrictions,
public transport closures, stay-at-home orders, internal movement restrictions, and
international travel controls) and one indicator of public information campaigns,
scaled range from 0 (no interventions) to 100 (implementing the strictest NPIs). In
order to investigate NPI effects over time after the first wave of pandemic, against
different variants and among various settings, we studied NPI effects from 1
August 2020 - about two months before the emergence of Alpha variants. The
details of the stringency index and more discussion on using this index can be
found in Supplementary Information D2.
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Fig. 4 The possible relaxation of NPIs or the requirement of extra stringency to contain COVID-19 across countries. a Under the scenario of vaccination
and COVID-19 transmission by 25 October 2021, required changes of NPI stringency index to contain COVID-19 (Rt<1). The negative change means the
degree of NPI relaxation, compared to the stringency on 25 October 2021. b The comparison between the estimated requirement of changes in NPI
stringency index presented in (a) and the output of the openness risk (from 0 to 1) - an indicator modified from the OxCGRT’s approach25. A higher
openness risk ( > 0.5) means an increasing likelihood of COVID-19 resurgence, and vice versa. Countries in Group 1 (increasing NPI stringency) and Group
2 (relaxing NPIs) mean that they have consistent findings between two indicators. Groups 3 and 4 mean that the two indicators have conflicting results and
extra evidence might be needed.
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Vaccination data. We obtained daily data of fully vaccination rates by country and
manufacturer from Our World in Data48, as of 25 October 2021. Fully vaccination
rate is defined as the fraction of the total population who received all doses pre-
scribed by the vaccination protocol. However, countries generally provided several
COVID-19 vaccine products, and different vaccines might have various efficacy
against SARS-CoV-2 infections, even for the same strain. As this study aimed to
understand the overall impact of vaccination on COVID-19 transmission among
populations rather than the individual effectiveness of vaccine products with dif-
ferent coverages in populations, we created an indicator, practical vaccination rate,
in order to account for the difference between the efficacy of vaccine products used
across different countries. The practical vaccination rate for country c at day t was
defined as:

Vt
c ¼ fully vaccination ratect ∑

6

i¼1
eip

c
i;t ð4Þ

where ei was the effect of vaccine i against SARS-CoV-2 circulated in the early
stages of the pandemic, estimated in clinical trials (see Supplementary Table 3), and
pci;t was the proportion of the vaccine products i used in country c at day t. Thus,
this practical vaccination rate was calculated as a baseline to represent the popu-
lation that might be directly protected by all vaccines distributed in each country.

Index of openness risk. The index of openness risk is based on recommendations set
out by the WHO, regarding measures that should be put in place before COVID-19
response policies can be safely relaxed. The OxCGRT created this index to provide
a cross-national overview of the risk and response of different countries as they
tighten or and relax physical distancing measures25. The index of openness risk
calculates a measure of probability that a country faces from adopting an ‘open’
policy stance (i.e., no extra NPI measures are implemented to contain the virus).
We revised this indicator by further considering the vaccination rate on 25 October
2021, as a comparison with our estimated potential of NPI relaxation (Supple-
mentary Information A4). This index ranges from 0 (lowest risk - lifting all NPIs)
to 1 (highest risk - strengthening NPIs), with 0.5 being assigned as the divide
between the low and high risk of openness.

Control variables. We also used climate data to account for seasonal and weather
effects on virus activity and human behaviour, which might significantly influence
COVID-19 trajectories. Daily air temperature and humidity were assembled for all
31 countries, derived from the Global Land Data Assimilation System49. However,
only temperature was included as a control variable in our model, as humidity was
found to be highly collinear with temperature during preliminary analyses, see
Supplementary Fig. 12. In the modelling, all explanatory variables were normalised
by min-max normalisation, ranging from 0 to 1.

Assessing the effects of NPIs and vaccination. We used a bottom-up approach
(described in Fig. 5) to evaluate the effect of NPIs and vaccination in Europe by
pooling the national effect through meta-analysis. For each country c, we fitted a

Bayesian model by assuming that the effect of NPIs and vaccination on reducing
COVID-19 transmission was relatively stable and constant in each month l. We
measured the empirical change from the instantaneous basic reproduction number
(Rc

0;t) to the instantaneous reproduction number (Rc
t ) as the outcome variable,

representing the daily amount of the reductions in COVID-19 transmissibility
against different variants, NPIs and vaccination settings over time. For each
country, we built the following generalised linear model to use the variation of
NPIs and vaccination explaining the reductions in Rt over time.

Rc
t � gamma Φc

t;l; 0:5
� �

Φc
t;l ¼ Rc

0;t exp �αcl N
c
t � βcl V

c
t � λcl N

c
tV

c
t � φc

l T
c
t � Δc

l

� � ð5Þ

where Nc
t , V

c
t , and Tc

t are the stringency index of NPIs, practical vaccination rate,
and air temperature for country c in month l at day t, respectively. In addition to
NPIs and vaccination, we also modelled their interaction of reducing Rt by directly
incorporating a product term (Nc

tV
c
t ) in our model. Moreover, the unobserved

confounders of the change between Rc
0;t and Rc

t were represented by the residual Δc
l .

To estimate the model parameters, we used a Bayesian framework to provide the

estimates with prior knowledge. We assumed that Rc
t � gamma Φc

t;l ; 0:5
� �

. As

NPIs and vaccination were likely to positively impact the trajectories of COVID-19,
i.e., reducing R0,t, we put a gamma prior with hyperprior over the coefficients of
NPIs, vaccination and their interaction term in our model. Specifically, αcl , β

c
l and

λcl , following gammaðu; 1Þ and u � uniformð0; 1Þ, varied by country according to
their data contexts. Additionally, we had a Gaussian prior over the coefficients
φc
l � Nð0; kÞ and Δc

l � Nð0; kÞ, k � Half normalð0; 0:3Þ, as temperature and other
unknown factors might also be related to the transmission dynamics of the
disease50,51. The posterior estimates of coefficients in Eq. (5) can be found in
Supplementary Information B3. Finally, the relative effect of NPIs and vaccination
for country c in month l could be calculated by 1 − exp (�αcl N

c
l ) and 1 − exp

ð�βcl V
c
l Þ, respectively, wherein Nc

l and Vc
l was the average value of the stringency

index of NPIs and practical vaccination rate. The effect size was defined as the
reduction in R0,t regarding Rt, i.e., 1� Rt=R0;t , with the combined effect of two
independent variables calculated as the sum of the estimated effects of the two
variables minus the corresponding product of their effectiveness. The prior and
posterior predictive estimations can be found in Supplementary Information C1.

We estimated the effect of NPIs and vaccination for every month to account for
seasonal and other potential temporal effects. This process was performed using
Markov Chain Monte Carlo (MCMC) methods with Rstan52. We ran four chains
for 2000 iterations with 500 iterations of warmup and a thinning factor of one to
obtain 600 posterior samples for each month and country (see Supplementary
Information C2). We validated our model using a ‘leave-one-out’ cross-validation
approach (see Supplementary Information C4). Sensitivity analyses were also
performed to assess model robustness in terms of our assumptions on parameters
(see Supplementary Information B5).

Fig. 5 Overview of models using bottom-up approaches. Orange nodes represent the observed data. Blue nodes represent the pseudo variables generated
by the observed data. For each country, we put a prior on R0 with hyperprior varying by country, where the prior mean was setted as the highest Rt before 1
December 2020, see Supplementary Information A2. Then, R0,t representing the intrinsic transmissibility was estimated by Model 1. By comparing
observed Rt with R0,t in Model 2, we estimated coefficients of variables to assess respective effects attributed to various interventions and factors on
curbing COVID-19 for each country by month. A variable, represented by the residual Δ, was used to characterise the impact of other unknown factors on
Rt in addition to practical vaccination rate, NPIs and air temperature. Finally, the overall effect of NPIs and vaccination in the European region was evaluated
in Model 3 by pooling the national effects across countries through meta-analysis with the random-effect model.
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Meta-analysis. We pooled national effects across the 31 study countries (Sup-
plementary Information B2) to estimate the regional effect (Figs. 2 and 3) through
meta-analysis using a random-effects model53. Instead of directly fitting a full
regional model with fixed pooling, we used the meta-analysis approach for pooling
national results as it has a better performance (16% increase regarding R-squared)
on explaining the variation of COVID-19 transmission across countries and higher
computational efficiency in heterogeneous data context (See Supplementary
Information C4). This approach also enables us to examine the effect of NPIs and
vaccination on regions of interest with more flexibility. Additionally, the hetero-
geneity between national effects across each country was estimated using Cochran’s
Q and I2 statistics54. We used a ‘leave-one-out’ validation to evaluate the regional
results by omitting one country at meta-analysis (Supplementary Fig. 24), aiming
to show the individual result effect on the overall estimate derived from the other
30 countries. All calculations were performed using the R meta package55.

Ethical approval. Ethical clearance for collecting and using secondary data in this
study was granted by the institutional review board of the University of South-
ampton (No. 61865). All data were supplied and analysed in an anonymous format,
without access to personal identifying information.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data56 used in this study are publicly available online at https://github.com/owid/
covid-19-data/tree/master/public/data. The processed climate data57 are available online
at https://github.com/wxl1379457192/Vaccine-NPIs-in-EuropeV2.

Code availability
The modelling codes57 for this study are available online at: https://github.com/
wxl1379457192/Vaccine-NPIs-in-EuropeV2.
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