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Abstract

Characterising the neuron spike train firing as a function of external stimulus applied in
an experiment and intrinsic dynamics of neurons such as absolute and relative refractory
periods, history effects are important in neuroscience. Such a characterisation is very
complex and the broad class of models to capture such details are required consistently.
One of the useful method which characterising neuron spike trains activity is a point
process model. For instance, they have successfully characterised spiking activity of rat
hippocampal place cells and sea hare nerve cells.

In general there are two approaches estimating the point process. One is the paramet-
ric modelling and there are many parametric point process models based on likelihood
analysis. The self exiting process is carried out with history dependence which were
selected by decaying function of effect of history. A simulation study is performed by
Thinning method to check the self exciting process with selected history dependence
reflects well neuron firings. Another is non-parametric method, point process based on
B-spline basis function is carried out to characterise the single neuron firing rate and
the FPCA (Functional Principal Component Analysis) is also performed to consider the
dominant mode of variation of the functional data from the same session. In addition,
the mFPCA (Multivariate Functional Principal Component Analysis) is applied to take
into account the variation of a different session as well. The comparison of these methods

with the same data set is performed in Chapter 6.
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Chapter 1

Introduction, Motivation and

Preliminaries of the study

1.1 Introduction

One type of complex recurrent events observed in many modern neuroscience experi-
ments, is known as spike train data. In simple terms, these are represented as a sequence
of event times and are considered to represent our brain activities. Understanding and
characterising the activity patterns and their variations constitute important steps in
many scientific investigations.

A point process modelling framework is commonly employed to analyse these types
of data [7, 8, 1, 2, 9]. Nevertheless, due to the advancement in technology, more and
more complex forms of data, from multiple brain regions under various experimental
conditions for a longer period in a much finer resolution, are available and thus there is
a continuous need to develop more sophisticated tools to utilise additional information
and exploit the potentially rich structure in such data. Also with increasing amount of
data collection, there is much higher variation across different recordings which could
potentially be related to the quality of data. Scientists tend to perform various cleaning
and preprocessing steps to ensure the quality and to choose appropriate experimental
datasets to analyse but are generally less interested in quantifying the variations them-
selves. Whereas it could be argued that understanding and quantifying these variations
are the principal objectives of statistical analysis, which could help us gain a deeper

understanding and a better insight.
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Motivated by these modern challenges, this thesis investigates various statistical ap-
proaches to handling the complexity of such types of data, with a particular attention to
flexible nonparametric approaches. A point process modelling approach is well developed
for a single process, but its extension to multiple point processes is quite challenging in
general. Also the analysis of multivariate recurrent events tends to focus on low fre-
quency events, whereas the spike neuron dataset tends to be of very high frequency.
To address some of these limitations, we will focus on more flexible nonparametric ap-
proaches, in the sprit of functional data analysis [21]. Functional data analysis provides
a flexible and efficient tool to simultaneously analyse data from multiple subjects. How-
ever, traditionally functional data analysis is considered for the analysis of continuous
and curve-like datasets, but rarely used for recurrent events of high frequency. In this
work, we consider both parametric and nonparametric approaches in the standard point
process modelling framework and also develop its extension by combining ideas from
functional data analysis viewpoint. Instead of directly working with the observations
as events, we can utilise the functional representation of the intensity function of the
events. This perspective is also more advantageous when dealing with high volume of
data, that is, the number of observation is huge.

Before proceeding, we give a brief background of the subject on neurons and some

related literature.

1.1.1 Neuron

Neurons are nerve cells and carry information between the brain and other parts of the
body. Many scientists believe that the communication system of neurons could be viewed
as an input output system of a particular structure which has important functions. Brain
areas accumulate, process and transmit information through the stereotype of electrical
events called spike trains or action potentials. Figure 1.1 shows the structure of a typical
neuron. A neuron consist of a cell body (soma), dendrites, synapse and an axon. The
dendrites typically branch abundantly and they collect the information. It is propagated
to the soma and along the axon then activates the synapse to communicate with other
neurons.

As we mention briefly the mechanism of propagation of the information, at first the

dendrite branches absolve the input from other neurons through the chemical process
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Figure 1.1: Drawing of neuron network .

then this input is delivered to the soma. From that time the input is converted to a
membrane potential. At the axon hillock, which is considered as a trigger zone, the
membrane potential sometimes reaches a threshold and then fires. This stage creates
the action potential or spike train. This action potential propagates along the axon to

the synapses and sends message to other neurons.

1.1.2 Motivation

Neuroscience is the scientific study of the nervous system. It is recognized as a branch
of biology. However, it is currently an interdisciplinary science that collaborates with
other fields such as chemistry, cognitive science, computer science, engineering and math-
ematics. This concerns with how the elements of the nervous system function and work
together. The operation of the nervous system involves the chemical mechanisms, phys-
ical arrangement and electrical mechanism. A fundamental question is how a neuron
responds to stimuli, transmits information and changes with alterations of the environ-
ment. In order to answer those questions, many researchers have tried to collect varied
and extensive data sets, which include photographs made by electron microscopes, fluc-
tuating voltages and electroencephalograms to record electrical activities of the brain.
In the earlier times, scientists studied the movements of the individual ions [7], [8].
They tried to represent the single neuron activity with several methods. A general
mathematical tool for describing sequences of events occurring in time and space is the
theory of point processes [4]. For example, a history-dependent conditional intensity

model was considered for modelling a Hippocampal Place Cell[33].
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Thanks to the rapid advancement in technology, nowadays the interest extends to
the joint behaviour of the multiple components of the brain, such as Hippocampal en-
semble activity, by spatio-temporal point processes [6] [20]. Similarly, the examination
of multiple regions of hippocampal loop relationships is made in [16]. The brain region
is often modelled as multiple-input/multiple-output (MIMO) or nonlinear dynamic sys-
tems [30], [31] [27] for the identification and modelling of functional connectivity in the
brain using spike train data [32].

Although there have been many attempts to develop an effective statistical model,
the modern neuron datasets are still too complex to be easily represented in a common
framework. Although as the experimental study tends to focus on a very specific prob-
lem, it is difficult to generalise the approaches developed for one to the other scenarios.
Besides, the massive datasets collected in any given experiment also create a huge vari-
ation within the dataset, and it is not clear how to compare the results from different
experiments. Hence, given our limited knowledge in brain science, it would be useful to
develop in parallel more advanced statistical modelling approaches to understand and
characterise these variations.

As quantitative modelling has become an important component of neuroscience,
many consortiums were created to make experimental neuron datasets publicly available
to promote the practice of shared knowledge in science. This thesis uses the modern
experimental neuron datasets available from http://crcns.org to study and develop
statistical modelling approaches. Much of these datasets have not been considered in a
real data analysis. As most of these datasets are directly coming from the experiments,
compared to the well studied neuron data examples shown in the literature, they are
also quite noisy in high volume and very complex. Although scientific implications can
go much deeper, our main interest lies in statistical modelling of such types of data in a

more realistic setting.

1.2 A motivating example

As one of our interests is to understand statistical variations, we study the spike neuron
datasets that cover multiple experiments. Here we introduce one of our motivating

examples. This data set contains multi-unit recordings from different rat hippocampal
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Figure 1.2: The raster plot of the Mwheel data.

regions while the animals were performing multiple behaviour as tasks. The data were
recorded on two different brain regions which are EC3 and EC5 and the number of cells
recorded are 201 and 110 respectively. There are two types of neuron cells which are
called principal neurons and inter neurons. In this study, we focus on the principal
neurons. The firing rate of inter neurons was too high relatively, almost acting as a
background noise so it can dominate the effect of intensities.

The data set was obtained during 70 sessions during which the animal performed
one of 3 different tasks such as Big-square, Mwheel and Linear, with 24, 28 and 18
sessions respectively. The Big-square is a 180cm x 180cm box, the Mwheel is running
a wheel and the Linear is a 250cm linear maze. These sessions were performed during
the 16 days, 8 days for performing Mwheel task and 8 days for performing Big-square
and Linear task. The Big-square task and Linear task were performed on the same day.
Table 1.1 shows the duration of each session by days. The Big-square task seems to take
longer to perform than the Linear task. The variation of the duration between days is
similar and but there are some differences between tasks. Table 1.2 shows the number

of neuron firings on each performing day and task. Even if a rat performed the same
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Figure 1.3: The peri-stimuli histogram of the Mwheel data.

task, the number of neuron firings recorded was quite different. It may happen that
one day rat finished 10 repetitions of their task but one other day they only finished
few repetitions of their task. The largest number of neuron firings was observed on the

Big-square task and the smallest number was collected on the Linear task.

Table 1.1: Duration of the session by days
Days Mwh EC3 Mwh EC5 B-S EC3 B-S EC5 Linear EC3 Linear EC5

1 2183.8 2210.0 3419.6 3413.6 1109.1 1103.0
2 1971.2 1971.0 3470.3 3476.1 820.9 823.0
3 2460.4 2451.7 3484.8 3483.7 1032.3 1031.1
4 2765.8 2766.1 3079.5 3126.8 1134.0 1035.8
) 2078.8 2273.7 3538.4 3533.7 809.1 803.3
6 2166.9 2167.1 2804.9 2796.2 1152.2 1016.1
7 2111.3 2110.2 3464.2 3464.3 1088.5 1088.6
8 1943.0 1943.1 3472.3 3471.6 824.2 823.7

This experiment was conducted for several days and it is recorded as a single data
set. This single data contains up to ten repetitions of the accomplished task. Figure
1.2 is an example of visualisation of the raw data. These plots are called the raster plot

which depicts the sequence of times of neuron firing events under the Mhweel task for
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Table 1.2: The number of neuron firings
Days Mwhl EC3 Mwhl EC5 B-S EC3 B-S EC5 Linear EC3 Linear EC5

1 27407 25257 48140 5693 25549 2629
2 3902 7545 7344 11934 745 5871
3 11695 15774 61366 10698 14362 1991
4 9983 8218 44691 14040 2405 2232
5 37630 1911 16319 6292 6619 773
6 14884 12889 28312 849 13355 6812
7 43196 9703 21301 18456 11836 5447
8 33480 9501 70617 29470 25626 2891

8 days. Although helpful, the raster plot is exploratory and has limited information, so
it is difficult to infer its firing pattern and any connection between EC3 and EC5. The
main objectives of the analysis would be to develop and fit some analytic models for the
basic features of neuron behaviour and to investigate any connection between neurons.
In addition, the firing rate seems to differ from recording days. Except for two raster
plots on the top of panel, EC3 brain region is more likely to fire than region EC5.

The peri-stimulus time histogram, abbreviated PSTH histogram, provides another
view on the raw data through a histogram of the times between which neurons fire. An
example of the peri-stimulus histogram is shown in Figure 1.3, the black line indicates
the mean of instantaneous neuron firing rate for Mwheel task on the brain region EC 3.
The 95% of confidence interval is shown as interval filled with green colour.

We will consider various statistical modelling approaches later appropriate to analyse
such types of data. The main objective of this work is to systematically assess the

performance of these methods under realistic settings.

1.3 Organisation of the Thesis

Our main methodology is driven by the need for the analysis of spike neuron data, but
is not limited to them. Historically, similar methodologies have been considered for
both neurophysiology and seismology [1]. This is especially true for low frequency data.
We will begin with a relatively small dataset from seismology to demonstrate parametric
approaches in Chapter 2. Nonparametric approaches in later chapters are mostly applied
to spike neuron data. We note that the illustrating dataset may vary across the chapters,
and will be introduced within each chapter if necessary. The choice simply reflects the

availability of the particular dataset while working on a particular project during the
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study period. For better comparison across the chapters, the final chapter is prepared
as a case study to illustrate various approaches discussed in this work with a common
dataset.

The thesis is organised as follows. It consists of six chapters:

e The first part of Chapter 1 explains what is a neuron and how the information
propagate through the neuron, and the main purpose of studying neuron activities.
A motivating example dataset was presented with descriptive analysis, raster plot
and peri-stimulus time histogram. The remaining of the Chapter 1 covers some
background knowledge of parametric and non-parametric modelling for point pro-

cesses.

e The second chapter introduces the parametric point process modelling with self-
exciting process (Hawkes process) and epidemic type aftershock sequence model.
The example data set is an experiment involving earthquake data. The condi-
tional intensity function is estimated using self-exciting process and the simple
inhomogeneous Poisson process, and model checking is performed by time rescal-

ing theorem.

e The third chapter introduces the non-parametric point process with,which the
example of the neuron data. The generalised linear model is used to model the
conditional intensity function of point process data by discretization of time into

bins.

e The fourth chapter defines functional principal component analysis, and introduces

functional density model with point process.

e The fifth chapter discusses multivariate functional principal component analysis.
FPCA in chapter 4 considers a variation of the mode of each trial in the session
whereas mFPCA (multivariate functional principal component analysis) takes into

account the variation of the mode of the trials from different region of the brain.

e The final chapter gives a case study. Since the data set has been changed four
times so the different data set were used in each chapter. Hence this chapter shows

the comparison of three different methods with a new data set.
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All implementations are done using statistical language R. The codes for computation

are collected in the Appendix.

1.4 Preliminaries

1.4.1 Parametric modelling of Point process data

A temporal point process is a stochastic process composed of a time-series of binary
events that occur in continuous time[5]. It describes data that are localised at a finite
set of time points. As opposed to continuous-valued processes, which can take countless
values at each point in time, a point process can take on only values indicating whether
or not an event occurs at that time. Theoretically, this makes the probability models
used to describe point process data relatively easy to express mathematically.

For purposes of both modeling and statistical analysis, the concept of intensity func-
tion and counting processes may be useful. Let T, Ts, --- be random variables of the
event time of a point process, where T; is the time of the ith event. The realisation of
a point process is the event T7 = t1, To = to, --- for some collection of times 0 < t1 <
to < ---. Let X1, Xa,--. be a set random variables describing the inter arrival time.
In order to describe a set of events in terms of the number of events observed during
the time interval, the total number of events until time point ¢ is denotes by N(t). In
addition, let N(s,t) denote the number of events occurred between time interval (s, ].
Events occur in continuous time but the model for recurrent events can be formulated
in discrete time. The events in terms of discrete increments is denoted by AN(t) =
N(t+ At™) — N(t), denoting the number of events in the interval [¢,t + At]. Here ¢t~

indicates the times that are infinitesimally smaller than ¢.

Poisson Process

The Poisson process is one of the most commonly used models for recurrent events, which
explains how the events occur randomly and how many events occur in independent time

intervals. The homogeneous Poisson process can be defined in three different ways.

e One event occurs in an infinitesimal time interval At and the probability of an

event occurrence is AAt.
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e The number of events N(¢) in interval up to time ¢ follows the Poisson(At) distri-

bution.

Pr{N(t) =n} = (M) e M

n!

e The inter arrival times are independent and they follow the Exp(\) distribution.

PriX; >t} =e N

These three approaches are all equivalent and use the same intensity function to char-
acterise an event. The homogeneous Poisson process, as it was defined above, is charac-
terised by a constant arrival rate A, but it is inappropriate to use when the the arrival
rate varies as a function of time. In order to consider a time varied rate function,
the intensity function A\(¢) which expresses the instantaneous occurring probability and

completely defines a probability model for the point process [23].

PT(AN(t,tJrAt])

At) = lim ~ (1.1)

At—0
For example, we can now define a Poisson process function as the limit of a Bernoulli
process with an event probability determined by the intensity function. As the time
interval we consider becomes sufficiently small, no more than one events occur in any
bin, so we only need to characterise the probability. The probability of not occuring an
event in that bin is then 1 — p, and the probability of occuring more than one event in
that bin is negligibly small. Then the probability of an event occurring can be analysed

as Bernoulli process, the probability of an event in small interval;
Pr(AN(t) =1) = A(t)At
and that of no event in that small interval:
Pr(AN(t) =0) = 1 — A(t)At.

We can compute the distribution of the time to the next experimental earthquake oc-

curence given the previous occuring time by nothing that the event that the time until the
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next event is greater than some time t;, i.e. {T; > t; | T;—1 = t;—1}, is equivalent to the
event that no event occurs in the interval (¢;_1,t;). Therefore Pr(T; > t; | T;—1 = ti—1)
= Pr(ANy, 1) = 0) = exp{— Lzl—l A(u)du}, and the cumulative distribution function
(CDF) is Pr(T; < t;| Ti—1 = ti-1) = 1 —exp{— fttz; Au)du}. The probability density
function of the next experimental earthquake occurence time is given by derivation of

CDF, fr,(t; | Ti-1 = ti—1) = d% [1 —exp{— fttil )\(u)du}} which implies,

it | Toos = i) = At exp{= [ Mu)du}

_f@)
A =T"F

(1.2)
where f(t) is the density function and F(t) is the distribution function of the inter
arrival times. We now derive the probability density function for an event process that
is observed over the fixed time interval [0, 7]. From the equation (1.2), the probability
density function is given by f(t) = A(t)(1 — F(t)). The probability density of the event

occurrence (n events, at time t; < --- < t,,) for a process with intensity over the specified

interval is

[[2) - eap {— /OT )\(u)du} .

i=1
The parametric rate function can be specified as exp(5y + fiti). The likelihood

function for non-homogeneous Poison process is given by

16) = T[0e)-expi= [ Aujdu)
i=1 s

= et + At} -expl- [ exp(d + frujan)
=1 s
e Ve [ [ 000 + Brs)  exp{fo + Bt}
= et sty p[{ i o H
_ N o [fexpfBo+ Bis}  exp{Bo + Bit}
W)—»Z¥%+mm H 5 N H (1.3)
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Point Process with history dependence

Many systems that produce point process data have a history dependent structure that
makes the Poisson process inappropriate. It is useful to define a unified mathematical
construct that will allow to describe a physically relevent point process. A new model
for recurrent event data can be specified by considering the probability distribution for
the number of events in short intervals [t,¢ + At], given the history of the previous
event. Now consider the history dependence on the non-homogeneous model which can
be specified very generally by considering the probability distributions for the number
of events in short intervals [t,t + At), given the history of the events before the time t.

The history H(t) of the event process at time ¢ is defined as
H(t)={N(s):0<s <t}

When the value N(0) is included in H(t), typically H(¢) should be treated as 0.
We consider the conditional intensity function [24] for the event process defined as

Mt H @) = 1im DHAANO =1 H{D))

At—0 At ’ (1.4)

where Pr{AN(t) = 1 | H(t)} is the instantaneous conditional probability of an event.
The At value should be sufficiently small in order to avoid multiple events occurring in
a single bin. Additional important intuition behind the conditional intensity function

can be gained by choosing At to be a small interval and re-expressing equation (1.4) as
Pr({AN(t)=1| H(t)}) = A(t | H(t))At. (1.5)

Equation (1.5) states that the conditional intensity function multiplied by At gives the
probability of an occurence in a small time interval At. The likelihood function, for a

process with intensity function (1.4), over the specified interval [0, 7] is
[IAt | H(t)) - exp {—/ AMu | H(u))du}. (1.6)
0

i=1

The first term of [ [, A(¢; | H(t;)) characterises the distribution of the event occurrences

at exactly the observed times and the second term of exp {— [J A(u | H(u))du} gives
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the probability of not occurring any events during the observation interval (0, 7]. Hence
the equation (1.6) represents the distribution of events occurring only at the observed
times. The exponential term in (1.6) is obtained from the product of integration for the
interval defined by each observed event times. If the parametric intensity function can
be specified as exp(fo + Sit + B2(t — tn(-))), then the simplified log-likelihood function

is shown as;

16) = Zz:;log [A(ti\H(ti))-{—/OT)\(u|H(u))duH

= Z(ﬁg + Bit + Baz(t)) — /OT exp(fBo + fru + P2z(u))du (1.7)

=1

where z(t) = I(N(t7) > 0)(t — ty-)) denotes the time since the last event.

1.4.2 Non-parametric modelling for point process data
Generalised linear model

Generalised linear models are a large class of statistical model for relating responses
to linear combinations of predicted variables, including many commonly encountered
types of dependent variables and error structures as special cases. The GLM approach
is attractive because it provides a general theoretical framework for many commonly en-
countered statistical models and it enables the implementation of these different models
in statistical software, since essentially the same algorithm can be used for the estima-

tion, inference and accessing model adequacy for all GLMs.

T .
eta; =z;08; +e€, 1=1,...,n

where z; is a vector of k£ independent variables, 5 is a k by 1 vector of unknown param-
eters and the ¢; are mean-zero stochastic disturbances. Typically, the ¢; are assumed to
be independent across observations with constance variance o2 and distributed normal.

That is, normal linear regression model is characterised by following features;

e stochastic components: the y; are assumed to have independent normal distribu-

tions with E(y;) = )i, with constant variance o2
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e systematic components: the covariates x; combines linearly with coeflicients to

form the linear predictor n; = :L'Z-Tﬁ

e link between the random and systematic components: the linear predictor x?ﬂ =1

is a function of mean parameter \; via a link function, g(\;).

In this study we assume the intensity function is alway positive, then we fit the

Poisson regression which assumes
N(t) ~ Poission(\;),i=1,...,N

The canonical link is the log,

log(\i) =n =z} B.

A Poisson model with a log link is commonly called a loglinear model. Under the Poisson
model the variance function is V/(A\) = XA. When overdispersion is evident, it is usually
handled by a scale parameter, Var(Y;) = w);. To fit this model, iterative weighted
least square method was used. Suppose the current estimates are B , yielding estimated
probability A;. We form the linearised response z; = n + (¥; — \j)/w;. A new /5’ is

obtained by weighted linear regression of z; onto the z; with weight w;.
B=(XTwx) ' XxTwe,

This will repeated untill 3 converges.

The dependent variable y follows the exponential family,

f(y;0) = exp { )

“ad) + c(y, ¢)},

where 6 is the canonical parameter and E(y) = A = b'(0) and var(y) = a(¢)b" (). For
example in Poisson distribution, y ~ Poisson()), then the log-probability mass function
is

logf = ylogh — A+ ¢

where ¢ does not involve A, therefore the canonical parameter is

0 = log(\),
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and the b-function is

b(6) = A.

The linear predictors is

n=Xp,

A smooth and invertible linearising link function g(-), which transforms the expectation

of the dependent variable, \; = E(y;), to the linear predictor:

g(\) =n=Xp.

Fitting GLM via Fisher scoring

Maximum likelihood estimation for 8 may be carried out via Fisher scoring,

¢

gD = gty B (80)] " 1(8Y)

where [ is the loglikelihood function for the entire sample y1,...,yny. Ignoring the

constants, the loglikelihood is

Ly Yo —b(0)
=)

= () (3) (3) (35) 49

ol y—0b(B) y—2A\
)

The score vector is

The first factor is

90~ ale)  ale

Because A = b (6), the second factor is

9 11 a9
b)) V() Var(y)

where V(y) = b"(0) is the variance function, the third factor d\/dn, will depend on the
link function. The fourth factor is dn/0f; = x;j, where the z;; is the jth element of

covariate vector x; = x for the ith observation. Putting all together we have

oy (Y
8ﬁj_Var(y) on )
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If we are using the canonical link 7 = 6, then ON/On = AN/00 = b"(6), so the score

becomes
8[ y— )\ " y— )\
— = —0——b (0)z;j = —F—ij.
9B;  Var(y) (0)wiy a(o) J

To find the expected second derivates, we can use the property

S(52) - Fl( )
080k 9B; OBk
y—X\2 /0A\?
(Farr) () =

L (o
 Var(y) \On Tijik

&

|
=

With the canonical link, this becomes

H21 7_b”(0) ;.
E(@@M) = T a(g) T

We have just shown that

oL _y=h (0N,

ﬁﬁj_Var(y) on i
() v (8)

9;0B,) ~ Var(y) \on) 7"

o _r B
%—X Aly — N)

It can be written as

where X = (z1,...,25)7,

4= g ror (2]

The expected Hessian matrix becomes

-E (821> = XTwx
0300k

where .

W = Diag

Var(y) (gg)]
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An iteration of Fisher scoring is then
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Chapter 2

Parametric point process

modelling for single neuron

2.1 Introduction and example of data

Many scientific investigations involve collecting and observing repeated events over time.
Common examples include recurrent episodes of epileptic fits in clinical studies, recurrent
episodes of a firing of an action potential in neuron or repeated events of earthquake
occurrences. A typical question of interest is how these patterns of occurrences can be
described. When the number of events is small or relatively regular for a short period of
time, the pattern of events can be summarised as frequency, or rate per unit time, and
subsequent analyses are carried out based on these numbers. When the number of events
is relatively large and varies a lot over time, it is not easy to summarise the pattern of
events in a single number, then, understanding and characterising the sequence of event
times poses a serious challenge.

In statistical analysis, the sequence of the event times is referred to as time-to-event
data: time-to-event data consist of the times to any number of repeated events for each
sample unit. In this chapter, we present a statistical analysis of such type of data repre-
senting experimental earthquake occurrence events. The experimental earthquake events
have been collected in the lab in Lancaster Environmental Centre and this data set in-
cludes the times of earthquakes and magnitudes for a given time period under controlled
experimental conditions. The main questions of interest regarding the earthquake oc-

currence events are; is there any systematic pattern in the sequences of the occurrences?
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What type of stochastic models are suitable for explaining structure within recurrent
events? We try to answer these questions through searching for suitable statistical mod-

els. In this work we consider a parametric class of models.
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Figure 2.1: The earthquake events (left panel) and the distribution of the stress drop with its
magnitude (right panel)

The left hand side of figure 2.1 shows the times of events, the right hand side of figure
2.1 shows the magnitude of the earthquakes during the time interval. The rate of events
does not appear to be constant and the magnitude also varies a lot. In the original data
set, the first event occurred at time 135.39, then 266 more earthquakes occurred until
time 487.11 with varying rate. In order to simplify the analysis the time period has been
shifted, from 0 for the first event to 351.7 for the last occurrence.

The occurrence of events could be considered as point process in time. One of the
simplest models for recurrent event data is the Poisson process, which assumes that the
occurrences in non-overlapping time intervals are independent. The Poisson process is
the canonical model for recurrent events and more general models may be formulated as
extensions of it. Even if the observed data of occurrences are considered to be statistically
independent, the inter-arrival times between events may not be identically distributed.

The independence assumption may be easily violated when the occurrence of the
current events depends on its past. Then a history-dependent model is more appropriate.
For example, the earthquake events tend to occur in clusters. The most basic illustration
of history dependence in earthquake occurrence events is linked to the mechanism of how

the aftershock events occur after the previous main earthquakes. To accurately describe

28



the event occurrence in recurrent data such as earthquakes, we consider the case where
the probability of an event occurring at a given time may depend on previous event
occurrences.

The rest is organised as follows. In Section 2 we briefly introduce fundamentals
of point process modelling. An extension of the Poisson process modelling framework
is considered by adding history dependence and a self-exciting process. In section 3,
two simulation methods are reviewed. One is the inversion method and another is the
thinning method. The results of model fitting to the real data are presented in Section

4, with its goodnees-of-fit investigated in Section 5.

2.2 Point process

In the previous chapter, we introduced the temporal point process and the Poisson pro-
cess which is the one of the commonly used model for point process data. Moreover
we defined how to construct the conditional intensity function for the history depen-
dent point process. In this section, we will present two methods, one is the self-exciting
process. Intuitively, a process is self-exciting if the occurrence of past points makes
the occurrence of future points more probable. Another method is the Epidemic-type
aftershock sequence (ETAS) model, which is based on point process modelling of the
earthquake events with three assumptions: One is that the occurrence of earthquake
events follows the Poisson process, another one is that the number of aftershocks is pro-
portional to exp(aM ) for a magnitude M earthquake, and the finally degree of aftershock

follows the Omori law.

2.2.1 Self exciting process

A Poisson process always has a deterministic conditional intensity A(¢). If the process
is stationary then A(t) is a constant. If we assume positive correlations between present
and nearby events, then this is called a self-exciting point process. This means that if an
event occurs, another event becomes more likely to occur locally in time and space. This
is not true for a Poisson process, since the increments are dependent. We investigate a

special class of point processes termed a Hawkes Process [12], which can be represented
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by the conditional intensity function:

MELHD) = olt) +/t v(t — w)dN, (2.1)
= Xo(t)+ > vt —t)
ti<t

where N is the normal counting process [13]. In Equation (2.2), \o(t) represents the
background rate of events, which is in the simplest model assumed to be constant in
time. The second half of the sum describes the self-exciting part of the process. Many

choices for the kernel v have been proposed [12]. We use an exponential kernel

At | He) =X+ Y ae P01 (2.2)
t;<t
Here, « is a rate of decay constant for the triggering kernel controlling how quickly the

overall rate X returns to its baseline level \g after an event occurs.

ETAS model

Japanese reasercher Omori [19] put forward his law, which shows the inverse power
relation between the cumulative number of events and the time after the main shocks,
and the exponent is —1 in his formula. Ogata [18] builds up such a model named
Epidemic-type Aftershock-sequence (ETAS) model, which combines the Omori law with
frequency magnitude relation for history dependent occurence rate of a point process.
The general ETAS model is a spatio-temporal model, but I consider only the temporal
model. The intensity function assumes that certain earthquake aftershock sequences
can be modelled like an epidemic, i.e., large earthquakes including more aftershocks in
a given interval of time and also, the aftershock sequence extends for a long time after

the main shock. The conditional intensity function is

t—t;\ 7
At | He) =X+ AY_ eMimto) (1 + > .t >0, M; > My (2.3)
C

t;<t

The parameters (A, A, a, ¢, p) are all positive, ¢; is the time of the ith event with
magnitude M;, and My is threshold magnitude. The history of the process up to time

t includes all event times and magnitudes but not including ¢. The first term under
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the summation determines that larger events raise the intensity more, and the last term

describes the lasting effect of the previous events.

2.3 Simulation study

2.3.1 Inversion method

The event times from a Poisson process with history dependence can be generated by
the inversion method. The inversion method is based on generating a non-homogeneous
Poisson process from the inter arrival times [25]. We can consider the i+ 1th inter arrival
time X;11 = T;41 — T; conditional on the first ¢ event times 77 = ¢y, Tp = to, -+, T; =
ti. Fy, is the distribution function of the (i + 1)th inter arrival time given times up to
ith event times. Then the cumulative density function of X; conditional on 17, Ts, - - -,

T; can be derived as

th(ﬂ?) = PT{XZ+1§J;|IT7:t]’j:]-727)Z}

= PT{Ntz_Fx—NtlZl|]}:t],j:1,2,,Z}

= Pr{Nyto — Ny, 2 1| Hy}

= 1_Pr{Nti+1_Nti:O|Hti}
ti+x t;

= 1- e:z:p{—/ AMu | Hy,)du + —/ AMu | Hy,)du
ti 1 ti—1

= 1—exp{—A(ti+z)+ A(t;)}

(2.4)

where A(t;) = \[Zl—l Au | Hy,)du. The cdf in (2.4) is inverted to simulate the (i 4+ 1)th

event time, given the previous ith event times. The algorithm for inversion method is

following;
1. Initialise t = 0.
2. Generate x ~ F} given by (2.4)
3. Sett«+t+x
4. Deliver t
5. Go to step 2
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2.3.2 Thinning method

When we are at time ¢, we need to find out where to place the next point 7; > t. To do
this we simulate a homogeneous Poisson process on some interval [¢,t + [(¢)] for some
chosen function. Here [(t) is the maximum distance we may go forward in time from ¢
and it may be infinite. This Poisson process has a chosen constant intensity on [¢,t4(t)]
which fulfills A\* > supsep i41(1))A(s | Hs). Let us denote Ujg 1) the uniform distribution on
the interval [0, 1] and [t, ¢ +1(¢)] the time interval on which the process is to be simulated
[10].
Algorithm:

1. Initialisation : Set \* = A\g(0), n = 1.
2. First event : Generate U ~ Unif(0,1) and set s; = -3-In U.

o If s < t+1(t), then set t; = s1

e Flse go to step 4

3. General routine : Set n=n+1

(a) Update maximum intensity : Set A\* = supg, cr 1410\ (Sn | Hs).

(b) New event : Generate U, ~ Unif(0,1) and set s, = sp,—1 — /\—ﬂln(Un).
e If s, > t+1(t), then go to step 4

(c) Rejection Test : Generate D,, ~ Unif(0,1)

o If D, < )‘(/\Sf), then t,, = s, and go through the general routine again.

4. Output : Retrieve the simulated process {t,,} on [t,t + [(t)]

Proof :
Consider the problem of generating samples of a counting process N (t) = > .-, le,<ty
with intensity A(s). This amounts to sampling jump times ¢;, from the knowlege of A(s).

The thining method requires:
e To select \* as an upper bound for A(s) on its domain.

e Perform an acceptance-rejection test on each t; which consists of sampling random

variable 1y, <x(t;))-
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e Accept jump time of N provided that the test succeeds

To prove this, we need to check that the counting process of the accepted jump times

N(t) = Zi:s<ti§t 1{)\*Ui§)\(ti)} has intensity A that is

E(N(t)-N(s)|FN)=E (/:A(u)du | FN>

where FV is the completed filtration generated by N. It can be interpreted that the
expected number of jump time occurring in an interval (s,t] is given by occruing the
jump intensity A over the same interval. We assume that the function A is superiorly
bounded and set \* = sup(A(t)). Using the linearity property and the rule of iterated

conditional expectation, we have
E(N®) =N [FY) = B > lpvawy | B (2.5)
1:8<t; <t

= B| > [E(lpuaey | FY) IR ) FY R

G:8<t; <t

= B > [P <A@/ EY) [ FY]

1:8<t; <t
= Le[ S e RN
x| Vs
i=N(s)+1
) N(t)
_ N
_A*EE.Z)\ YIFN | | F!
i=N(s)+1

Recall that the jump times are uniformly distributed on the interval (s, ¢] conditional on

the number of jumps having occured in the same interval. The Wald theorem leads to :

E(N(t) - N(s) | FY¥) = E(E [N(#) = N(s) | Y] < B [A(t) | FY] | FYY)

)\*

Given FV, the increment N(t) — N(s) and the random variable t; are mutually inde-
pendent. Moreover, t; is uniformly distributed in [s,#] given F}¥. The last term then

becomes equals to:

[ vaus (2 BY) < B ([ e £Y)
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Parameters

Ao = 0.05
aq (0% Qs Qay Qs (073 Qg asg Qg Q10
0.917 | 6.766 | 3.353 | 3.037 | 4.970 | 1.955 | 5.590 | 1.524 | 1.623 | 4.507

b1 B2 B3 Ba Bs Be B7 B8 Bo B1o
3.476 | 5.857 | 3.104 | 2.900 | 0.681 | 1.368 | 4.668 | 1.824 | 1.494 | 4.783

Table 2.1: Estimated parameters for conditional intensity function and the negative Log-
likelihood value

2.3.3 Analysing the simulated dataset

Decomposition by ETS(AN,N) method
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Figure 2.2: Intensity for the simulated data: true intensity (left panel), non-parametric estima-
tion (middle panel) and conditional intensity (Model 1, 2 and 3)

We simulated a data set by using thinning algorithm, the true intensity function
is shown at the left hand side of figure 2.3.3. It describes the instantaneous occurring
probability of simulated experimental earthquakes at time ¢. The figure in the middle
of figure 2.3.3 describes A(¢) from the non-parametric estimation with the top image
showing the A(¢) from the exponential smoothing. Finally the right side hands of figure
2.3.3 describes the conditional intensity function from three different methods which we
have fitted. At first we fit the data to the non-homogeneous Poisson process (Model 1),
then fit the data to the point process which is an extension of the Poisson process by
adding history dependence (Model 2) and finally model 3 is fitting data to the ETAS
model. The black solid line indicates conditional intensity function from the Model 3,

the green dotted line shows the CIF from the Model 2 and the red dotted line shows the
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Model 1
A(t) = exp{Bo + Bit}
estimates —0.88735?0.1230) 0.0031?(1).0006)
1(0) 327.0508
Model 2
At | H) = exp{Bo + Bit + Bo(t — tne))}
cstimates 0.10716(00.1714) 0.0013/6;10.0007) -0.3184%0.0416)
1(0) 275.7227
Model 3
At | Hy) = Mo+ AY, o e@MiMo) (1 4 20)7P
estimates Ao A o ¢ p
0.15279 2.2708 | 0.1386 | 0.0752 | 1.15301
1(0) 246.0085

Table 2.2: Estimated parameters for conditional intensity function and the - log-likelihood value

Model 1. According to figure 7?7, Model 1 and 2 do not seem to explain data compared
to the non-parametric estimation, but Model 3 seems to give a similar intensity function

to the true intensity function and non-parametric estimation.

2.4 Application to data

We analyse the experimental earthquake occurrence data set with three different pro-
cesses. The estimations for each point process are shown in table 2.2. The left hand side
of figure 2.3 shows the conditional intensity function from the nonparametric estima-
tion with the top of figure shows the conditional intensity function from the exponential
smoothing. The right side of figure 2.3 shows the conditional intensity functions from
the three different models. The red and green dotted lines indicate the CIF from the
model 1 and model 2 respectively and the black solid line demonstrates the CIF from
the model 3.

First of all, we fit the model 1 with the time varied rate to the intensity. Then add
the history effect, which is since the last event, to the model 1. Table 2.2 summarises the
estimates of these models. The negative log-likelihood values decrease a lot compared
to the previous model which did not consider the history depedence on the intensity
function. According to likelihood ratio test, a test of the model with history dependence

versus the model without it gives a likelihood ratio statistics of 2(—275.7227 + 327.0508)
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= 51.3281. Using x?, this gives a p—value under 0.05, hence it can be said that the
latter model gives the better estimation. However, when we compare the conditional
intensity function from model 1 and model 2 to the conditional intensity function from
the nonparametric estimation, these two models do not explain the data. Model 3, which
add the magnitude effect and all histories, seems to have similar trend with conditional
intensity function from the nonparametric estimation. Also the -log-likelihood estimation
decreases. Hence the model 3 gives the best estimation, but we cannot say that the model

3 fits well because there is no evidence to say that.

Decomposition by ETS(A,N,N) method
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Figure 2.3: Intensity for the experimental earthquake events: non-parametiric estimation (left
panel) and conditional intensity (Model 1, 2 and 3)

2.5 Model checking ; Time-rescaling theorem

One essential component of any statistical modelling analysis is to check that the model
accurately describes the structure observed in the data. One way of doing this is to apply
the time-rescaling theorem to transform point processes data into continuous measures
and then assess goodness-of-fit. Let 0 < t; < to <,...,t, < T be a realisation from a

point process with conditional intensity function A(¢ | Hy) satisfying 0 < A(¢ | Hy) for all
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t € (0,T]. Define

A) = /Otl)\(th)du, and (2.6)

Then these A(t;) are independent, exponential random variabels with rate parameter 1.

This result is called the time-rescaling theorem, since we can think of the transfor-
mation as stretching and shrinking the time axis based on the value of the conditional
intensity function. If A(t | Hy) is constant and equal to 1 everywhere, then this is a
simple Poisson process with independence and time does not need to be rescaled. Any
time when A\(¢ | Hy) is less than 1, the A(¢;) values accumulate slowly and they represent
a shrinking of time, so that distant earthquake occurence times are brought closer to-
gether. Likewise, any time when A(¢ | Hy) is greater than 1, the A(¢;) value accumulate
more rapidly and they represent a stretching of time, so that nearby events are drawn
futher apart. Because the transformation in Equation (??) is one-to-one, any statistical
assessment that measures the agreement between the A(¢;) values and an exponential
distribution directly evaluates how well the original model agrees with the earthquake

occurence data. If we make the futher transformation
w; = A(t; | Hy), for i=1,...,n

Then Ty = U; — Ui—1

5= 1— eap(—7)

then z/s are independent uniform random variables on the interval (0, 1].

A Kolmogrov-Smirnov(KS) plot is a plot of the empirical cumulative distribution
function (CDF) of the rescaled A(¢;) against an exponential CDF, or the rescaled z;
against the cumulative distribution of the uniform density defined as b; = % for
i = 1,...,n against the ordered values z(;s. If the conditional intensity model ac-
curately describes the observed earthquake occurence events, the KS plot should follow

a 45° line. Confidence intervals for the degree of agreement between the models and the
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data might be constructed by using the distribution of the Kolmogrov-Smirnov statis-

tics. The 95% of confidence interval can be constructed as b; 4 1.36/n'/2 [3]

Another approach to checking goodness-fit between the model and data is to con-
struct a quantile-quantile plots, which plot the quantile of the rescaled time interval
against the uniform distribution. To construct confidence intervals, we note that if the
7; are independent exponential random variables with mean 1 and the z/s are uniform
on the interval (0, 1), then each z(;y has a beta probability density [3] with parameter i

and n — 7 + 1 defined as

n!

mzi_l(l — )" (2.7)

f(z|i,n—i+1):

for 0 < z < 1. Then the approximation of a 95% confidence interval is given by the
Gaussian approximation to the binomial probability distribution as z; £ 1.96[z;(1 —
z;)/n]Y/? Likewise KS plot, exact agreement occurs between the point process and the

exponential data if the points lie on the 45° line.
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2.5.1 KS plots and Q-Q plots of a experimenta earthquake data
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Figure 2.4: Q-Q plot and KS plot for distribution of rescaled intervals for the model 1, 2, and
3.

KS plot and QQ plot for the transformed earthquake occurence data can be con-
structed. Three QQ plots for the models 1, 2 and 3 are shown in the left hand side
of Figure 2.4 and KS plots for the three different models are shown in the right hand
side of Figure 2.4. First of all, by examining the QQ plot and KS plot for the model 1
in Figure 2.4, we see that the model does not seem to explain the small rescaled time
interval and midrange time interval. Only some parts of the large time interval were

lying on the confidence interval. This suggests that this nonhomogeneous Poisson model
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for the earthquake occurence events is unable to completely describe the structure in
the data. According to QQ plot and KS plot for the model 2, it also suggests that the
extended model from the nonhomogeneous model by adding history dependence does
not fit to this dataset. Since the results from the QQ plot and KS plot do not lie on the
confidence interval. Finally, the results from QQ plot and KS plot for the self-exciting
process is showing a significant improvement compared to the model 1 and model 2. It
still does not describe the small rescaled time interval but the rest of part seems to lie
in the confidence interval. It cannot be said that the self-exciting process compeletely

describes the earthquake occurence events, but it provides a much closer fit to the data.

2.6 Discussion and conclusion

Point process methods are essential for understanding how earthquake events represent
information about history dependence and magnitude. In particular, point process the-
ory provides approaches to visualising earthquake occurence data, constructing, fitting

models and assessing the ability of these models to explain structure in the data.

The most important of these methods is the conditional intensity function, which
provides information for analysing point process data. The conditional intensity func-
tion practically determines the instantaneous occuring probability at time ¢ as a function
of history dependence and external covariates. In the parametric model, it can be con-
structed by writing down the conditional intensity function in terms of covariates and a
set of parameters. According to the definition of the conditional intensity function, it is
easy to find that the likelihood function of any point process model has a standard form.
The model parameters that best fit the data can be obtained by maximum likelihood

method.

The goodness-of-fit can be assessed by the time-rescaling theorem. Determining
goodness-of-fit is an important step, since this step is fundamental for establishing
whether the model is appropriate for making statistical inference and establishing how

reliable those inferences are.
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Chapter 3

Non-parametric point process

modelling for single neuron

3.1 Introduction

Characterising the neuron spike train firing as a function of external stimilus applied in
the experiment and intrinsic dynamics of neurons such as absolute and relative refrac-
tory periods, the history effect is important in neuroscience. Such a characterisation is
very complex and the broad class of models to capture such details are keep required.
One of the useful methods for characterising neuron spike trains activity is a point pro-
cess model. For instance, they have successfully characterised spiking activity of rat
hippocampal place cells[9] and sea hare nerve cells[1].

There are many parametric point process models based on likelihood analysis. ([4];
[1]; [2]; [29]). They assumed that the conditional intensity function is belonging to a

class of parametric functions. Parametric models have several advantages.
e Efficiently computable
e The parameters may be related to environmental factor
e Asymptotic property- if the actual distribution lies in the assumed parameter class.

However, if the true conditional intensity function does not lie in the assumed class, it
may cause large error of estimation and mislead the inference.
On the other hand, non-parametric methods for estimating conditional intensity function

of a point process model are difficult to compute. However there are several advantages
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of non-parametric estimation methods. First, non-parameteric methods do not rely on
data belonging to any particular distribution, for which reason they are also called dis-
tribution free methods. Recently, Truccolo and Donoghue introduced a computationally
efficient non-parametric approach to model neural point processes via stochastic gradi-

ent boosting regression[15].

We propose a non-parametric point process which is computationally efficient for the
intrinsic dynamic model. We formulate the log of the conditional intensity function in
terms of a discrete time Volterra expansion of the baseline spike rate and the neuron’s
spiking history, and use a generalised linear model in a regression spline framework
to address the maximum likelihood estimation problem. We illustrate our approach
by fitting the model to the 25 input and 18 output neuron spike trains. The residual

analysis is performed by the time-rescaling theorem|3].

3.2 Methodology

3.2.1 Point process model

e The conditional intensity function is given by:

. PT{AN tt At}
A HE) = fmg — =5,

e The inter spike interval density at time ¢; is given by derivation of CDF, fr,(¢; |

Ti1=ti—1) = d%[l —exp{— ftt;l A(u)du}] which implies,
t;
ot | Ty = ti1) = A(ts) exp{— / Au)du}
ti—1

e The likelihood of a point process on [0, 7] is given by:
n

[17 ) - exp {— /OT )\(u)du} :

i=1

e The generalised linear model has recently been used to model conditional intensity

functions of point processes. It requires discretised time in bins with no more than
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one event in each bin. Then the likelihood function is given by:
N
Pr(AN(t1),AN(t2),...,AN(t,)) = H Pr (AN(t;) | AN(t1),...,AN(t;_1)))
=1

The conditional Bernoulli probability follows:

Pr(AN(t;) | AN(t1),..., AN (1)) = (MNAHANE (1 - NA)I- AN )

N At
= exp AN(ti)logl_it +log {1 — \;At}

PYVAN
(3.1)

where \; = . The mean of the Bernoulli probability at i-th bin is 4 = E(AN(t;)) =

A At Approximation by Poisson follows:

(\AL) AN
PHANGE) | AN, ANy = ((258;) (-0
~ [AtN(ti)lOg()\iAt) — /\ZAt]
(3.2)
The mean of the Poisson probability at i-th bin is p = E(AN(t;)) = MiAt.
The spike count in a small bin is then approximated as:
PT(AN:n):Me_AAt: M 1_)\At+1()\At)2_|_
n! n! 2
In particular,
Pr(AN=0) = 1 [1 — AAt + %()\At)2 + - ] =1— AAt + o(At)
1
Pr(AN =1) = MAt [1 — At + i(AAt)Q +-- ] = AAt +0o(A)
Pr(AN =2) = (A\At)? [1 — AAt + %()\At)Q + - ] = o(At)
(3.3)

The probability of having a spike train or no spike train is an approximation of

the Poisson count distribution for a small time bin. The likelihood of discrete-time
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conditional Poisson distribution is given:

Pr(AN(tn) | AN(t1),...,AN(t(o-1))) = []exp[AN(t:)log{\iAt} — \;At] + o(At")
=1

= A"exp Z AN (t;)logh; — NiAt| + O(At”)
i=1

(3.4)
The likelihood of a point process by continuous time limit is given:
. PT’ANtZ‘ ANtl),...,ANti_
i O [0 AN(t)loghi — ST, ML + o(At")
A—0 Atn
T T
= exp {/ logA,dN (t,,) — / )\udu]
0 0

(3.5)

The probability of having a spike or no spike is an approximation of the Poisson

count distribution for a small bin. It can be represented parametically as follows:

log(A(t)) = Bo+ Y _ B;o;(t),
History dependence - The conditional intensity function is given by:

Pr{AN(t) =1| H}}
At ’

A ) = Jim,

,where H; is the history of the event occurrence up to time ¢ as well as possibly
extrinsic covariates. When the value N(0) is included in Hy, typically H; should

be treated as 0. The likelihood function is :
p(t1,te,...,thn, "NN(T)=n) = H)‘(ti | H(t;)) - exp {—/ Au | H(uz))du}
0

i=1

Modeling the conditional mean rate via a canonical link function is given:

AN (#)

E [dt] = A(t] Hy) = exp(Bo + 3 B;65(t) + v9(HL)).
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e The Time-Rescaling Theorem allows for a way to transform an arbitrary point
process with strict positive conditional intensity function to a unit rate Poisson
process. Let 0 < t; < t9 <,...,t, < T be a realisation from a point process with
conditional intensity function (¢ | Hy) satisfying 0 < A(¢ | Hy) for all t € (0,7].

Define

(3.6)

Then these A(t;) are independent, exponential random variabels with rate param-

eter 1.

3.2.2 Nonparametric modeling of intensity functions of point process

Using neuron data set, which discretised time into bin, we found generalised linear model

can be a point process and it can be expressed as

log(A(t)) = Y B;;(1)
i

where ¢;(t) is a sequence of unknown basis functions. In this section, we will describes

methods involving spline as well as piecewise polynomial methods.

The discovery that piecewise polynomials or splines could be used in place of poly-
nomials occurred in the early twentieth century. Splines have since become on of the

most popular ways of approximating non-linear functions.

Bspline basis function

B-splines constitute an appealing method for the non-parametric estimation of a range
of statistical objects of interest. A spline is a function that is constructed piece-wise
from a polynomial function. A B-spline function is a differentiable interpolative basis
function and it is defined by order m and number of interior knots. The degree of the

B-spline polynomial is m — 1.
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Let 7 = {7 | i € Z} be a sequence of non-decreasing real numbers (7; < 7;41) such

that

Define the boundary knots 74, ..., 7as such that

Tji+m =& for j=1,...,k and

ter1 < Tpami1 < < Tegom

The extra knots are usually chosen 71 = --- =7y =719 and {41 = Thyrpge1 = -+ =

Tr+2m- The basis functions are defined as;

1 if T <z < Ti+1
B;1=

0 otherwise

fori=1,...,k+2M — 1. Next, for m < M we define

Xr —T;
Bim=———Bim-1+
Ti+m—1 — T§ Ti+m — Ti+1

MBHLmA
fori=1,....k+2M —m.

Cubic spline The functions {B; 4,7 = 1,...,k 4+ 4} form a basis for the set of cubic
splines. Therefore any spline ¢(z) can be written as ¢(z) = Zfif BiBj(z).

B-spline basis function have compact support which makes it possible to speed up
calculations. Figure 3.1 shows the cubic B-spline basis using eight equally spaced knots
on (0,5000).

According to B-spline basis function ¢ is a cubic spline. Therefore we can write
N
¢(x) = B;Bj(x)
j=1

where N = n + 4. We only need to find the coefficients B = (Bl, e ,BN)T.
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Figure 3.1: Bspline basis function

3.2.3 History effects

In the non-parametric model with Bspline basis function the function of form was 5y +
Bj¢(t). Now we will describe an expansion of the class of generalised linear models which
is called generalised additive model. They extend the generalised linear model in the
same manner that the additive model extends the linear regression model by replacing
the linear form By + B;¢(t) with the additive form vg(t). The function g(t) explain the
history dependent effects which can explains the bursty behaviour of neuron spike train

firing. We investigate a special class of point processes termed a Hawkes Process [12],

which can be represented by the conditional intensity function:

At Hy) = Xo(t) + /t v(t —u)dN,

—0o0

= Xo(t)+ > _v(t—t)
1 (3.7)
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where N,, is the normal counting process [13]. In Equation (3.7), Ao(t) represents the
background rate of events. The second half of the sum describes the self-exciting part
of the process. Many choices for the kernel v have been proposed [12]. We use an

exponential kernel v(t) = ae™ "
At | Hy) =expq > Biop(t) + Y ae (71
j=1 ti<t
Here, « is a rate of decay constant for the triggering kernel controlling how quickly the
overall rate A(t) returns to its baseline level ., 3;¢(t) after an event occurs.
3.2.4 Estimation inference

The first model which does not consider history effects on the single neuron spike train

is a regression spline based on Bspline basis function

N
logA(t) = Y _ Bjo(t).
j=1
We can rewrite in a more concise form as
log\(t) = X

where X is (n x k) matrix of covariates. It follows that the log likelihood function for
estimating [ is

1(B) = ) N(tlog(\idd) = AiAd (3.8)
i=1

An advantage of this concise form is that it shows that 3.8 is equivalent to a generalised
linear model with a Poisson log likelihood function. We can, therefore, use the Fisher
scoring algorithm to estimate 5. It is common that iterative re-weighted lease-square
is used to solve Fisher scoring algorithm for GLM parameter estimation with canonical

link function. The implementation is provided in the Appendix B.
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3.3 Algorithm

3.3.1 Iterative re-weighted least squares for non-linear model

Given n log of intensity functions f = (fi,..., fn) of k variables 8 = (f1,..., B;) with

n < k, the Gauss-Newton algorithm iteratively finds the minimum of the sum of squares

log(\i) = f (i, B)

we show the iterative re-weighted least square algorithm for the GLM in the previous
section, for the non-linear model the last part of 1.8 will change. In the GLM 9n/dp
was xj;j, however in the non-linear model 0n/08 = 0f/0f. For example, let the n is a

Hawkes process,

logh = M\o(t) + « Z exp(—y(t; — t))

t;<t
where )\ is a Bspline basis function with coefficients Bl, e Bk—l- An iteration of Fisher

scoring is then

BEHY = (JTW )t I Wz,
where the entries of the Jacobian matrix are

of

(Jr) = 95

e log)\; = Zle d1(xi) B, - where ¢y (z;) is a Bspline basis function, it is a n x K
design matrix and it has a linear combination with K vectors Si. For a Jacobian

matrix J for this the same as x;;, since it has a linear combination with j3.

e log); = f(z;, B) - the function f(z;, 8) is a Hawkes process Ao(t)+a >, _, exp(—(t—
t;)). Here \o(t) is a Bspline basis function which is the same as the above model
and the last term explains the historical dependence. The Jacobian matrix J for

the first term is the z;; and J for a historical term is ), _, exp(—v(t — t;))

e log); = log{Ao(t) +ad; . exp(—(t —t:))}
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3.4 Application to neuron spike train data

3.4.1 Experimental procedures

The dataset contains 25 input of neuron spike trains and 18 output of neuron spike
trains. Figure A.2 in Appendix shows the spiking activities of all such neuron firing

spontaneously over a period of 30 seconds.

3.4.2 Application to data

The dataset used in this study is a 3030 s continuous recording of 43 neurons. The main
aim of this study is to find out the spiking activity on each neuron. The knot sequence
of the B-spline basis is determined by Bayesian information criterion.

Figure A.3 illustrates kernel functions estimated for the 25 neuron spike train input
data using B-spline. Some input neuron spike trains seem to have similar pattern. The
activity of the first three inputs seem to have lots of signal time between 0 to 500 and
sending a signal after 2500. The signal of input for the inputs 4, 5, 6 and 7 is different
to other patterns. The input signal for rest of them peak on time between 500 and 1000
and around 2500. We will find out the similar patterns using the clustering method.
Figure A.7 shows the Kolmogorov-Smirnov plot of the intensity function for the 25 input
neurons. For some of the ks plots, does not lie on the confidence interval, therefore some
of estimation of intensity functions are incorrect. One possible reason of this is that we
set the knots for the Bspline basis function, but many neurons sent the signal in short
period. In the input 1 neuron, for example, most of signal were sent at times between
0 and 500 hence the inter-arrival times were very short in that period. However other
periods have large inter-arrival time. Another possible reason is that neuron spike train
will affect the refractory period. We will deal with two possible reasons of this problems.
Figure A.4 shows kernel estimated for the 18 output neuron spike train using Bspline ba-
sis function. The first six neurons have a similar pattern which have high intensity time
between 0 and 500 and time between 2500 and 3000. The intensity of the rest of them
peak at time 1000 and increasing trend time after 2500. By visualizing, it can be shown
that there are two different patterns of intensity of output neuron spike train data. The
Kolmogorov-Smirnov plot A.9 for the kernel function estimated for the outputs shows

that some of the ks lines does not lie in the confidence interval. However most of the KS
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lines lie adjacent confidence interval.
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Figure 3.2: Kernel estimation using Bspline basis function and Kolmogorov-Smirnov plot, (black
line-original data, red line-modified data)

We chose three kernel of which residual analysis are the bad, moderate and good
from input and output data set, selected neurons are input 1, 5 and 7 and output 1, 7
and 9 respectively. Figure 3.3 shows the different estimation between the original dataset
and a version in which we deleted events with inter-arrival times of less than 30m sec.
The reason why we delete the data is that too small inter-arrival times may cause a
wrong estimation of the model. For example, in the input 1 data, we found more than
400 times of neuron firing out of 779. In addition, by looking at raster plot A.2, we can
find most of events were happening at times between 0 and 500. According to K-S plot,
deleting small inter-arrival times improves the estimation, it is still bad, but the K-S

line is much close, to the 45 degree line.
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Figure 3.3: Kernel estimation using Bspline basis function and Kolmogorov-Smirnov plot, (black
line-original data, red line-modified data)

3.5 Discussion and conclusion

In the previous section, some kernel have bad estimation according to residual analysis.
We tried to improve the model by deleting the small inter-arrival times and using a
history dependent model. We found that very small inter-arrival times may cause bad
estimation and deleting them improved the model estimation, however deleting data from
the original dataset is not a good idea. Hence we tried to cut the data and estimate
kernel function separately for the input 1 data. It also improved the model estimation
but it does not tell why other neuron have bad estimation. In addition, we used additive
model, adding historical terms in the model, but there was a computation problem that

adding all history dependence does not lead to convergence.
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Chapter 4

Non-parametric point process

modelling for multiple neurons

4.1 Introduction

In the previous chapter, we perform the parametric and non-parametric point process
modelling for the single neuron data. Since we had technical problems, the result seemed
quite bad. But we found that some individual neurons have similarities and the main
aim of this chapter is to find the similarities within multiple neurons and show what is
the proper method to analyse the multivariate neurons. One simple way of representing
the multivariate neuron is to simply repeat the analysis, but it is time consuming and
it may not capture the variation from the neurons. The alternative approach is to use
the functional data analysis.

To begin with, functional data refers to data where each observation is a curve, a
surface, as opposed to a point or a finite-dimensional vector. In this study, we want
to characterise the neuron activities. Spike train data which were collected over time
at different regions are producing a curve over the observation interval. Although each
measurement is a discrete time point, the collection of points possess a certain smooth-
ness property that facilitates the functional data interpretation. The main difference
between multivariate analysis and FDA is that the FDA manipulates the functional
representation of each individual and therefore can take into account smoothness of the
considered functions.

The functional principal component(FPCA) analysis is usually used to find out the
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dominant modes of the variation of functional data. In particular, the covariance function
for functional data is a smooth fixed function, whereas in high-dimensional multivariate
data, the dimension of covariance matrices is assumed to increase with sample size. In
principle, the FPCA applies for the functional regression model, but the neuron data
set consist of point process data. Hence we will show how to apply FPCA on the point
process data. We tried two different approach of FPCA on the point process, one is a
common approach [21],[22] which smooths the individual curves of the data, which is a
established functional data analysis method. Another approach has proposed by [35],
to supplement the non-parametric estimation of object-specific local intensity functions
when the data have rare events. The first approach is more likely to depend on the local
sparsity from the pre-smoothing individual trajectories whereas the second approach is
more likely to rely on the global sparsity from the smoothing for the pooled trajectory.
With four different simulation studies, these two approach will be tested through average
mean squared error and Kolmogorov-Smirnov plot.

To develop functional data analysis tools for point process, we met some challenges
and our proposed methods is hence different from the literature in a number of ways.
First functional data analysis[? |, the data consist of n independent units. However
in out data set is the realisation of temporal point process and the data is correlated
with time. Secondly in the classical way of FDA the functional trajectories can be
directly observed, however we first tried to establish covariance structure of the process,
we propose the a novel methods based on composite kernel estimation and principal
component analysis. Therefore the random effects can be highlight with unusual high
event rates or increasing trends in event rates.

This study is organised as follows. We introduce the definition of the classical princi-
pal component analysis and the functional principal component analysis. The functional
modelling of point processes is applied to analyse the multivariate neuron spike train in
section 2. In addition, a computational method for choosing the bandwidth for a kernel
density and the number of principal components will be explained. A simulation study
with four different scenarios is shown in section 3. Consistency results are the theme of

Section 4. The conclusion of the study can be found in Section 5.
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4.2 Method

4.2.1 Principal component analysis

Principal component analysis (PCA) is the most common multivariate statistical method
and it is used by almost all scientific disciplines. There are several advantages of using
PCA, firstly it is possible to extract the most important information from the data,
secondly it can compress the size of the data set by keeping only this important infor-
mation, thirdly the description of the data set can be simplified and finally it is good to

analyse the structure of observations and the variables.

Principal component analysis for multivariate data

PCA computes new variables called principal components which are obtained as a linear
combinations of the original variables. Conditional on a realisation f; and N; for the
i-th neuron, we have observed event times x; = (21, ... ;n,) with variance-covariance
matrix var(z;) = ) _,. Consider the linear combination, the principal component score

; can be expressed

N;
(Pi:Z€jxijai: 1,...,N
7j=1

where ¢; is a weighting coefficient applied to the observed event time x;; of the jth

variable. It can be express as
Pi :glmhi =1,...,N

Note that ¢; is a function of random data, and so is also random. Therefore it has a

population variance and covariance

N, N
var(ei) = Y &ibuoj = £5€;
j=11=1
Ni N;
cov(is om) = Y Y &ijémioji = £5bm
j=11=1

For multivariate data, we choose the weight which indicates the type of variation which
represents the data. Principal component analysis can be defined in terms of the follow-

ing stepwise procedure. The first principal component (;; is required to have the largest
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possible variance that are very strongly represented in the data. Select weighting vector

&1 = (&1, - ,fp1)/ that maximize
N; N;
var(pn) =YY &j€uop = €56
j=11=1

subject to the constraint that

N;
dgi=lalP=1
j=1

The second principal component ;s is required to have a largest remaining variance as

possible with constraint that the correlation between first and second principal compo-

nent is 0. Select weighting vector €2 = ({12, ..., &p2)" that maximize
N, N;
var(pio) = Y Y &ojuoj = €55
j=11=1

subject to the constraint that the sums of squared coefficients add up to one the same as
the constraint for the first principle component and the additional constraint that these

component will be uncorrelated with one another.

N; N;

cov(@in, pia) = D> &1j€u0y = €52 =0

j=11=1

On the mth step, compute a new weight vector &,,, with component ,,,; and new scores
Pml = ;nlxi' Thus, the values ¢,,,; have maximum variance, subject to the constraint

|€]|> = 1 and the m — 1 additional constraint
D il = Ejlm = 0,5 <m
l

Principal component analysis and eigen analysis

Assume that the observed value z;; in the multivariate context is x;(t) in the functional
situation. Principal components analysis in multivariate data analysis can be defined by
finding eigenvalues and eigenvectors of the covariance matrix. Let the N x N matrix

X contain the values z;; and the vector & of length N; contain the weight for linear
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combination.

max€/€:1§’X'XE

Since the principal component score f; can be written as X&. Let X is the N; x N; matrix
to indicate the sample variance-covariance matrix > = %X 'X. By eigenequation, the

maximization problem is solved

3¢ = p§

There are several number of different pairs of eigenvalues and eigenvectors which satisfied
this equation, and the all eigenvectors §; are orthogonal. For each j, the eigenvector
&, satisfies the maximisation problem 4.2.1 subject to the additional constraint of being
orthogonal to all eigenvectors &i,...,€&;—1. For the functional context of PCA, the

covariance function v(s,t) defined as

N

v(s,t) = N"') " mi(s)mi(t)

=1

/v@wawﬁzpa@ (4.1)

for an appropriate eigenvalue p. The left side of 4.1 is an integral transform V of the

weight function £ defined by
26 = [ ot nee

This integral transform is called the covariance operator . Hence it the eigenequation

can be expressed directly as

€= pk

Principal component analysis for functional data

In the functional context, the counterpart of variable values are function values x(s), so
that the discrete index j in the multivariate context has been replaced by the continuous
index s. The principal component score in the multivariate case was a linear combination
of variable values, but in the functional case, the appropriate way of combining a weight

function &(s) with a data function z(s) is a form of integration over s to define the inner

fi= /fivz‘ = /{(s)xi(s)ds.
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The first procedure for functional PCA is to choose the weight function £(s) to maximise
N7 f2 = N7UY ([ &ai)? subject to [ &1(s)%ds = [|&1]|> = 1 of the unit sum of
squares constraint. Then as for multivariate PCA, the weight function &,, also need to

satisfy the orthogonality constraint [¢;§ =0, < [ in subsequent steps.

4.2.2 Functional density model with point process data

In the concept of stochastic processes, any single real random variable is a stochastic
process {x; : t € 7} with 7 = {t;}. When 7 = (t1,t2,...,%) € 7" the stochastic process
{x; : t € 7} becomes a sequence of random variables. Thus the point process data
can be generated from the intensity function, and we assume that the neuron firing
spike train produced by an intensity process. Based on this assumption, we produce the
random density function. Let our neuron firing time data t;1,%2,...,t;n, observed at
the i-th day during the Big-square task, the sample x;; ~ f;,7 = 1,..., N;. The neuron
firing times z;; is a single recurrent event process starting for simplicity at ¢ = 0, and
it is observed as ordered sequences ;1) < Tj2),... < ;). The sparsity of observed
event times x;5,¢ = 1,...,N,j = 1,...,N;, makes it difficult to infer the individual
densities with classical density estimation methods. One of the classical method performs
first the principal component and principal component score for individual functions.
Then those functions are applied to the spline regression for smoothing. Another way
of FPCA for point process performs smoothing methods first and the performs the
principal component analysis to find PC and PC score. Both of ways seems to be
chasing the same thing but we assume that the later approach performs the FPCA for
the original functional data, the first approach performs the FPCA for the smoothed
function, hence it refer the precise random effects. In addition, the second approach has
a better estimation for the small data set.

Once the random density f is estimated, then define the mean density function
Ef(x) = fu(z) and covariance function cov[f(s), f(t)] = v(s,t). The functional density

can be expressed by the Karhunen-Loeve representation
F@) = fu(@) + > oréu(x),x € [0,T) (4.2)
k

where ¢y, is the functional principal component scores. As we assume that ¢y is a
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zero-mean random field with Ecp% variance pg, and ), pr < 0o, where the eigenvalue
has ordered sequence p; > p2 >,.... The number of principal components k can be oo

in theory, but is often assumed to be finite for practical considerations.

4.2.3 Kernel density

In this section, we try to predict the object-specific densities f; from the observed sparse
event data based on the expansion in 4.2. The mean density function f, = E(f;) was
calculated by using pooled data Ny = Zf\il N; and applying kernel density estimation.

The estimated mean density function is defined as

where h,, is a bandwidth which was selected by the rule-of-thumb, and 1 is a kernel
function. We tried several different kernels (Gaussian, triangular, biweight and Epane-
chinikov kernel), then we decided to use the Epanechinikov kernel. To estimate the

covariance function v(s,t) between jointly distributed random variables s and ¢, we use

v(s,t) = covlf(s), f(D)] = Elf(s)f(1)] = Ef(s)ES(t) = g(s,1) = fu(s) fu(t)

Then g(s,t) is estimated by a two-dimensional kernel density with pooled pairs of event

data Néw = Z’f\iLNiZQ Nz(Nz - ]-)7

1 N Ny M S—x;i t—x

N —Tij U— T4
g(s,t) = K2 < <, - >
N/T ; Z Z : hg, hg,

Here hg,, hg, are bandwidths which were selected by the rule-of-thumb and k2 is a
symmetric two-dimensional probability density function. We use the two-dimensional

Epanechinikov kernel for k9. The estimated covariance function v(s,t) is then

0(s,t) = g(s,t) = fuls) fu(t)

Once we obtain this covariance function 9(s, t), the eigenvalues gy and the eigenfunction
ék (z) can be obtained. Then the individual trajectories can be determined by using an

object’s functional principal component scores @i,k = 1,..., K. According to 4.2, we
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observed ¢, = [(fi(z) — fu(x))&k(x)dz, then the estimates are follows
1 Ni A -
b= - Y ala) — [ Fu@é(ois
gt

Including how many number of eigen-composition K is important, the choice of the
number of principal component K will explain next section. Onece K has been chosen,
the prediction for the object-specific density fdi is given by

K

fdz(x) = fu(m) + Z@zkék(x)vx S [O’T]
k

=1

Given the density fdi, intensity functions are estimated by

Bandwidth selection

A good introduction to kernel density estimation with an interesting collection of its use
in data analysis is given by [28]. The choice of bandwidth h is much more important for
the behaviour of fh than the choice of kernel k. Small values of bandwidth h cause an
overestimation which may have too many peaks, whereas too big values of the bandwidth
h will lead to an over smoothing in the sense that it is biased and may not reveal
structural features. The bandwidth selection methods studied in the literature can be
divided into two broad classes. One class of methods is given by classical methods, such
as, Cross validation, Mallows’C),, Akaike’s information criterion and the like [14]. These
methods are extensions of methods used in parametric modelling. The second class of
methods are plug-in methods which are based on the asymptotically best choice of h
given in equation 4.4 while minimize an estimate of the asymptotic mean integrated
squared error AMISFE(h) in order to find the optimal bandwidth h. In the denominator
R(f®) is an unknown function.

It is necessary to choose a measure of distance between the true density f and the

estimator f to evaluate the performance of the kernel density estimator fh. The common
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choice to measure the distance are the integrated squared error (ISE)

ISE(h) = / i)~ 1)) de

and its expected value, the mean integrated squared error (MISE),

. 2
MISE(L) = E U {fh(a:) - f(a:)} dw}
Define that hg the minimizer of ISE(h) and by hg the minimizer of MISE(h).

MISE(R) = [E{fu()- f(x)} da
— [E{fi@) - Bl @) + Eliu(@)] - F0)} s
2 ~ 2
= JE{i@) - Blf@]} + {+EU@)] - f@)} de
= fVarfh x)da:+fb1a52fh( Ydx

MISE(h) is the sum of the integrated variance of fy(x), I = [Var fn(z)dz, and
IB(h) is the integrate squared bias of fh szasth ()dz . Then by change of

variables and Taylor expansion of f it is easy to show that

v(h) = R84+ LR(f)+ONhF)
IB(h) = (o3 (R)R(F®) + O(h2+)

Thus it is clear that for MISE(hg) — 0 with IV; — oo it is necessary and sufficient that
ho — 0 such that N;hg — oo with N; — co. For the mathematical details see [26],[34].
Define the Asymptotic Mean Squared Error (AMISE) as

L R(k) + W2 (ui () K2 R(F®) (4.4)

AMISE(h) =

It follows that for h, such that h — 0 and N;h — oo, we have MISE(h) = AMISE(h)+
o(AMISE(h)). Denote by h the minimizer of AMISE(h). h is easily obtained from
equation 4.4 by differentiating with respect to h and calculating the root of the derivative.

This results in the minimiser of AMISE:
R(k) \#7 -
~ K + R —
h — ( ) Nl 2k+1
3(R)R(f2)
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We discuss the three different bandwidths which are hg, fzo and h for the minimiser of
MISE, ISE and AMISFE respectively. These bandwidths can be an optimal bandwidth
for density estimation. However the unknown density f makes it difficult to estimate the
optimal bandwidth. Here is the method to estimate the optimal bandwidth. The rule
of thumb replaces the unknown density function x by a reference distribution function

which is rescaled to have variance equal to the sample variance[28]. Then the estimate

hpor = 1.066m~1/°

where o2 is a sample variance. A more robust version of this rule of thumb method
against outliers in the sample can be constructed by using the interquartile range as a

measure of spread instead of the standard deviation. The modified estimator is

. (. Gors —qo2s\  _1/5
=1. —
hrot 06min <0, Y ) n

where ¢ and ¢°?° are the 75% and 25% sample quantiles.

4.2.4 Choice of the number of principal components

One of the simplest way to determine the number of principal components is the per-
centage of the cumulative variance and Kaiser’s stopping rules. At first, the Kaiser’s
stopping rule states that only the number of principal components with eigenvalues over
1.00 should be considered in the analysis. Another method that is close to Kaiser’s stop-
ping rule is the percentage of the cumulative variance. If we select all positive eigenvalues
then the percentage of cumulative variance is 100%, but that does not mean anything.
The acceptable level of explained variance depends on how to use principal components.
It can be 80% or 90%, depending on the analysis.

Another way to determine the number of include functional principal components
is by the pseudo-poisson information criterion which is borrowing the idea of pseudo-
likelihood estimation. We introduce the pseudo maximum likelihood techniques, which
was applied to basic Poisson models [11], to investigate how many number of principal
component are needed. AIC type criteria are computationally more efficient but give
similar results compared to other methods such as cross validation [36]. In section

3.4, we explained about the object-specific density fz(x) which contains the effect of
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the principal components. Denote the estimated density fiK that contains K number
of principal components. Then the Poisson deviance for the observed data x;;,i =

1,...,N,j=1,...,N; is approximated by

N N;
K)=2)" ) [fz (@) zOg< filzy) ) ~ (filwg) - Firc @)

i=1 j=1 ik (2i5)

where the density function f; is unknown. Hence a histogram can be substituted for a
smoothed version of f;. To construct a histogram , first set a small bin size. Given the
sample z1,...,zn; € (a,b), the bin is defined as a =ty < t; < ... < tp = b. The bin
width A; of jth binis A; =t; —t;_1. Let the number of observations within the jth bin
is yj,7=1,..., P, so that Zle y; = m, Then the histogram density estimation fr(x)
of f is follows;

fu@)= % j=1,....P

mAj
Then the deviance estimates
& fin (i)
iH\ g s P
=2>" [sz zj)log <j> — (firr(zij) — firc(w45)) (4.5)
o1 g1 firc(w5)

The pseudo-Poisson information criterion (PPIC) is then

PPIC(K) = D(K) + 2K.

4.2.5 Component as perturbations of the mean

One of the common problems of functional PCA is that interpreting the components is
usually difficult. One useful method is to examine plots of the overall mean function and
the functions obtained by adding and subtracting a suitable multiple of the principal
component function.

In constructing this plot, it is necessary to choose which multiple of the pricipal compo-
nent function to use. Define a constant C' to be the root-mean-square difference between
[ and its overall time average

C* =T —
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where

It is reasonable to plot /i and fi+aCzi. Here « is an adjustable number while makes

the interpreting the result more easily.

4.3 Simulation study

A simulation study was performed to compare the proposed multivariate functional prin-
cipal component analysis with a simple simulated data set. One approach for simulating
a point process is a thinning algorithm. Four different simulation studies were designed,
the main purpose of the simulation study is to illustrate the implementation of the
functional principal component analysis. In the first two scenarios, the simulation was
designed from the equation 4.2. The third simulation was designed from the exponential
form of the equation 4.2 and in fourth scenario the data were simulated from the Hawkes

process.
4.3.1 Analysing the simulated dataset

Scenario 1

At first we construct the 100 true intensity functions A;(¢),7 = 1,...,100. The true
intensity function is the number of events multiplied by their density function \;(t) =

N, fi(t). The density function was constructed by the Karhunen-Loeve representation,
K
fit) = a0+ pinki(?)
k=1

with the mean density function f,(¢t) = 2 + £ + sin(t), and two eigen functions & =
—cos(mt/10)/v/5 and & = sin(nt/10)//5,0 < t < 20. The eigen values were chosen
as p1 = 4 and ps = 1, then the covariance function can be represented in terms of

eigenfunctions & and eigenvalues pj

(s, t) = prr(s)én(t)
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The point processes data set was simulated by the thinning algorithm each true in-
tensity function. The Table 4.1 shows that the average mean squared error, MSE =
s S 0100{/\i (t) — \i(t)}2dt, where X\;(t) = fu (2)+ 330, il (x) , for the true curve
Ai(t) with the number of simulations. The number of eigenfunction K was chosen by
the number of eigenvalues which represent the mode of variability over 95%. The simu-
lation results are listed in Table 4.1. As the number of simulation increases the average
mean square error decreased. The AMSE for the only one simulated neuron sample
has approximately four times larger AMSE than the estimator for 100 simulated neu-
ron sample. As increasing the number of simulated neuron sampling may reduce the
AMSE, however we chose n = 100, since the discrepancy of AMSE from 100 to 300
or 500 seems small and consider time consumption for computation we decided to select

100 is enough.

Table 4.1: Mean squared error depending on the number of simulations
# of simulations 1 10 100 300 500
AMSE 42.81 19.52 10.86 9.89 9.03

According to the result of AMSE, we generated 100 simulated neurons for each
true intensity function. One of our purposes was to predict the object-specific density
fi or intensities A; which are expressed in Equation 4.2, and Figure 4.1 shows that the
object-specific intensity function for 100 simulated data for each true intensity function.
The black solid lines indicate the 50 true intensity functions and the blue dotted lines
show the estimated mean rate function. And the yellow dotted lines indicate the 100
individual object-specific intensity functions which contains 2 principal components. The
mean intensity functions seem to well represent the true intensity function. except for
the time between 19 to 20 seconds. Also all the Kolmogrov-Smirnov plot lay on the
95% confidence interval in Figure 4.2. Figure 4.2 only plotted 6 Kolmogrov-Smirnov
plots for the first true intensity function, but all the other plots also lay within the
confidence interval. Hence it can be said that the object-specific intensity function with
Epanechnikov kernel estimation and principal component analysis well represents the

true intensities.

65



Intensity
Intensity
Intensity
Intensity
Intensity

20
15 20

Intensity

Intensity

Intensity

Intensity

Intensity
10

Time Time Time Time Time

= s =
= = =
oo o
3 3
= = =
S < S o S o
= = = =] = S
S S S
= = =
& & = & =
= £ = £ =
] = =
~ o~ ~
=] = =
= = =
= =) =4
=
3
o oo
=} =)
= = =
S < S o S
= = = = =
b= S S
& = TS = S =
a S al =) g =
= = =
] &= &=
o~
=
=
=)

Figure 4.2: The kolmogrov-smirnov plot for the simulated data.

Scenario 2

In the second scenario, we simulate the 100 neurons which have the same and fixed

mean density function f,(t), eigenfunction & (t) and eigenvalue p, which are the same
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Figure 4.4: The kolmogrov-smirnov plot for the simulated data.

as the mean density function in the scenario 1 and the principal component score ;i
were generated from N (0, p). Each simulation was performed by thinning algorithm
with rate function \;(¢) and this step repeated 50 times. This simulation means that we

have 100 multiple neuron data set on each 50 days. The performance measure is average
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mean integral squared error.

50 100

1 T L2
AMISE = oo ‘:1;/0 (- fiw} a

J

Table 4.2: Comparison of mean squared error of the individual intensity and object-
specific intensity

Ai(t) | Ari(t) | A2:(t)
AMISE || 407.58 | 44.58 | 44.83

The 100 true intensity functions and the estimated object-specific intensity functions
are shown in Figure 4.3. The black dotted lines describe the true intensity functions and
the red dotted lines show the estimated intensity functions. Figure 4.4 is the kolmogrov-
smirnov plot for the first six repeated 100 neuron samples. In Figure 4.3, the estimated
intensity functions seems to have similar pattern with true, but it does not enough
to explain the variability on the peak of the true intensity function. However, most
kolmogrove-smirnov plot lay in the 95% confidence interval. Therefore it can be said
that the FPCA for the simulated neuron data set gives a good estimation.

Likewise the results from functional data analysis with an individual smoothing are
shown in Figure ??7. It is hard to define whether the intensity function is well charac-
terised or not, there is a broad distinction between the true intensity and the estimated
intensity. However the test statistics indicates that it is significantly well estimated.
But compared to object-specific intensity function with average mean squared error 4.2,
the FDA approach with individual smoothing has 407.58 AMISE, whereas the object-
specific intensity has 44.83. Furthermore the comparison between two approaches /\Ali(t)
and )\Azi(t) are shown in Table 4.2. Those two approaches do not seem to have significant
difference and both approaches lead to good estimation according to AMISE and K-S

plot.
Scenario 3

Table 4.3: Comparison of mean squared error of the individual intensity and object-
specific intensity

Ai(t) | Ailt)
AMISE || 76.16 | 12.95
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Figure 4.6: The kolmogrov-smirnov plot for the simulated data.

In the scenario 1 and 2, the density function was constructed by the Karhunen-Loeve

representation,

k
fi(t) = fu(t) + Z oirér(t)
=1
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then we simulated 100 sample from the 1 true intensity function in scenario 1 and
100 intensity functions in scenario 2. After that we performed the functional principal
component analysis, both results were quite well estimates. In scenario 3, we do the same
analysis with functional principal component analysis, but the true intensity has the form
of Gaussian Cox process which is not the same as Karhunen-Loeve representation. The

true density function is defined as

k
fi(t) = exp <fu(t) + Z%kﬁk(’f))
k=1

where the mean density function is f,,(t) = t/T + sin(t) and the right side is the same
as the scenario 1 and 2. We simulate 100 neuron samples from the \;,7 = 1,...,100,
then perform the same analysis as in scenario 2. The average mean integral squared
error (AMISE) was 12.95. The 100 true intensity functions and the estimates object-
specific intensity functions are shown in Figure 4.5. The black dotted lines describe the
true intensity functions and the red dotted lines show the estimated intensity functions.
Figure 4.6 is the kolmogrov-smirnov plot for the first six repeated 100 neuron samples.
In Figure 4.5, the estimated intensity functions seems to have very similar patterns as
the true ones, only three curves have big discrepancy to the estimates. In addition, most
Kolmogrove-Smirnov plots were within the 95% confidence interval. Therefore it can be
said that the FPCA works well on the Gaussian Cox process.

Likewise the results from functional data analysis with an individual smoothing are
shown in Appendix Figure 7?7. According to estimated intensity function and test statis-
tics, they indicate that it is significantly well estimated. But compare to the object-
specific intensity function with average mean squared error 4.3, the FDA approach with
individual smoothing has 76.16 AMISE, whereas the object-specific intensity has 23.95.
Hence the object-specific intensity has better representation than the individual smooth-

ing approach.

Scenario 4

In this scenario, we will test that FPCA is a good method for the history dependent
model. Hence we simulate the history dependent point process data set using Hawkes

process. The univariate Hawkes process is defined to be a self-exciting process. If
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Figure 4.8: The kolmogrov-smirnov plot for the simulated data.

we assume that correlations between present and nearby events are positive, then this
is called a self-exciting point process. This means that if an event occurs, another
event becomes more likely to occur locally in time and space. We investigate a special

class of point processes termed a Hawkes Process [12], which can be represented by the
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conditional intensity function:

METH) = ot + / "t~ waN, (4.6)
= Xo(t)+ > vt —t)
ti<t

where N is the normal counting process [13]. In Equation (4.7), \o(t) represents the
background rate of events, which is in the simplest model assumed to be constant in
time. The second half of the sum describes the self-exciting part of the process. Many

choices for the kernel density v have been proposed [12]. We use an exponential kernel

At | He) =X+ Y ae P01 (4.7)
ti<t
Here, « is a rate of decay constant for the triggering kernel controlling how quickly the
overall rate X returns to its baseline level \g after an event occurs.

We simulated only six neuron samples and repeated 10 times of the simulation. For
the comparison of visualisation between true intensities and simulated neuron, we only
simulated this small number of neuron data. The true intensities have the fixed \g set as
the 0.5 and the two parameters for the Hawkes process a and 3 are follows N (0.3,0.01)
and N (0.7,0.01) respectively. The true intensity functions are shown in Figure 4.7 as the
black solid lines. Figure 4.7 displays only six repetitions of simulations. Then we perform
the functional principal component analysis, and the estimated intensity function for six
neurons for each repetition were displayed as red dotted line in Figure 4.7. It only seems
to capture the global sparsity, it does not capture the local sparsity of the neurons. The
K-S plot represents all six neurons of first repetition lay on the 95% confidence interval,
so it can not be said that it is a bad estimator. However it does not seem to fit the

model which has history dependent effect.
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Figure 4.9: The individual neuron firing rate function.

4.4 Application to data

4.4.1 Individual intensity function

One of our purpose of the study is to estimate the density or intensity of the neuron
firing event. The simplest way of the non-parametric method is the kernel smoothing.
The Figure 4.9 shows the individual intensity function of the neuron firing event when
the rat performed the three different tasks. In general, there are larger variabilities on
the brain region EC 3 than the region EC 5. The largest variability of intensity function
on the brain region EC 3 was shown on the Big-square task. The intensity function from

the brain region EC 5 seem to have small variability, the discrepancy intensity functions
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between brain region on the task of Big-square was more than five times. The colors
indicate the experiment day such as red color denote the first day of the experiment and
the yellow means the last day. In addition according to the Figure 4.9, it can be seen that
if there is a high firing rate on the region EC 3 than region EC 5 fired the small amount
of spike trains. However it is hart to find difference of the patterns between tasks and

sessions, the major variability was dominated by the difference number of event times

which affects the intensity function.

Q-Q plot for Mwheel—-electrode 1(EC 3)
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Figure 4.10: The eight days for Kolmogrove-Smirnov plot for the task on the Mwheel (EC 3).

Then we performed the time-rescaling theorem to the individual rate function. Figure
4.10 shows the Kolmogrov-Smirnov plot, the solid black line indicates the KS statistics
and the dashed red line indicate the 95% confidence interval for each KS test statistics.

Some confidence intervals seem too wide, since few firing events were observed. Most
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of KS test statistics does not lay on the confidence interval. Therefore it can be said
that the individual rate function is not well estimated, we aim at predicting the random

density f; from observed sparse event data based on the expansion in 4.2.

4.4.2 Functional principal component analysis
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Figure 4.11: The first four principal component curves of the neuron firing data on the Mwheel
task.

We discussed about principal component analysis for functional data set in section
4.2.1 and the choice of the number of principal components was discussed in section 4.2.4.
The pseudo-Poisson information criterion (PPIC) shows that four principal components.
Figure 4.11 displays the weight function &; to &4 for the neuron firing data on the Mwheel
task on the brain region EC 3.

According the &1, most of the values are negative, whereas only three points have a
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positive value. This explains the discrepancy of intensity functions in Figure 4.9. It also
shows that the there are large variabilities in the beginning and the end of the experiment
rather than in the middle of the experiment. In addition, the percentage 75% at the
top of the left panel indicates that this type of variation is a dominate variation on the
eight functions. The weight function & for the neuron firing data is displayed in the
upper right panel of Figure 4.11. It cannot be the mode of the variation in the neuron
firing data by the set of constraint that it must be orthogonal to &. The weight function
& is the second mode accounts for 11% of the total variation, and it seems to have
large contribution at the beginning of the experiment and it gradually decrease to the
negative contribution at the end of the experiment. The third component has a similar
proportion of the second component, it accounts for 5%. It has a negative contribution
at the beginning of the experiment and gradually increased, then it has positive and
negative contribution with big fluctuations until the the end of the experiment. The
fourth component account for small proportion of the variation, since it has constrains
that it must be orthogonal to other components. It is difficult to interpret.

One helpful way to examine the variability of the neuron firing between different days
on the same task is to produce plots of the overall mean function and the functions which
are obtained by adding and subtracting a suitable multiple of the principal component
function. Figure 4.12 shows such a plot for the neuron firing for the Mwheel task on
the brain region EC 3. In this plot, the solid line indicates the overall mean functions
and the dashed lines shows the adding and subtracting of a multiple of the principal
component curves.

The random intensities of the neuron firing activity for the three different tasks are
demonstrated in the Fig4.13. These random intensities contain 4 principal components
because they explain more than 95 % of the variability. The results are very similar
to the kernel density estimation. For the intensities on the Mwheel task, there is a
large parallel discrepancy of the neuron firing rate between experiment days, since the
principal component £ explains that difference, as seen on the Figure 4.12 and 4.13. The
rest of three principal component helps to explains 95% of the variation. Intensities, on
the other region EC 5 on the Mwheel task, have a similar pattern. The majority of the
variation is a difference of firing rate between experiment days.

The first principal components &; of the Big-square on the brain region EC 3 and
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Figure 4.12: The overall mean neuron firing rate function and the effect of adding and sub-
tracting a suitable multiple of each principal component curve.

EC 5 also explain the parallel difference of firing spike trains. However there is a big
difference of the firing rate between regions, since the number of spike trains on the
region EC 5 is much lower than region EC 3. The intensity functions for the Linear task
seem to have a similar trend with the Big-square task. Compare to the individual rate
function in the section 4.1, this rate function is less smoother, since it is affected by &

which play the role of the random effects.

4.4.3 Model checking

In the previous section 4.1 we performed the time-rescaling theorem for the individual
intensities, and only a few of them lay on the 95% confidence interval. In this section, we

will perform the time-rescaling theorem again to the random intensities then compare
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Figure 4.13: The random rate function for the neuron firing data.

with Kolmogrov-Smirnov test statistics. In addition, it will show how many principal
component will be suitable. Figure 4.14 shows the Kolmogrov-Smirnov test statistics
for the neuron firing rate function, the thick black solid line indicates the most suitable
KS test statistics of the random intensity which includes 4 principal components. The
dashed red line indicates that other random intensities with rest of principal components
and the thick dashed green line displays the KS test statistics of the individual intensi-
ties. According to Figure 4.14, most of the KS test statistics of the random intensities
which includes 4 principal component have better test statistics than individuals. Still
lots of them are laying outside of confidence interval, hence it is hard to say that these
random intensities are good estimations. However the random intensities with the se-

lected number of principal components gives a better explanation of the firing rate of

the neuron.
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Kolmogrov—Smirnov plot for Mwheel
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Figure 4.14: Kolmogrov-smirnov plot for the neuron firing on the Mwheel task.

4.5 Discussion and conclusion

We applied the functional data analysis method for the repeated point process data
in the simulation study and one may say that it is a useful method to characterise
the intensity function for individual objects. In the model checking procedure, all four
different scenarios have good Kolmogrov-Smirnov statistics and the comparison of the
estimated individual intensity functions with the true intensity function does not seem
too different. In the scenario 4, however, the estimated intensity function does not
explain the history effects which are represented in the self-exciting process. The FPCA
only represents the global sparsity of the data.

The interesting finding from the simulation study is that the estimated intensity

function from borrowing the strength from all objects seems more reliable than the
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functional data analysis with individual smoothing method. The test statistics indicates
that both methods are reliable since most of Kolmogrov-Smirnov plot lay on the 95%
confidence interval, but by looking at the intensity function, the approach, which bor-
row the strength from all object, is more likely to capture the effect of the covariance
function. In general, both approach have a good estimates for the characterising the
neuron activities in the simulation study.

In the result section, the majority factor for obstruction of comparing intensity func-
tion on each neuron is the number of neuron activities. The intensity function was
defined as multiply the number of events on their density function 4.3. However the
number of neuron activities in real neuron have very big difference between trials. Some
trial have more than 20 times larger, hence it may affect on the FPCA, the first principal
components explain that difference and the proportion of that is almost 100%. It is quite
difficult to analyse the characterised intensity functions,since they are too fluctuated and
it is hard to find similar patterns. But they seems to have some different pattern on the
region. At this stage, we can only find that there is an opposite trend of firing neuron
spike, if region EC3 fire many number of spike train, there are only few number of spike

trains are fired.
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Chapter 5

Multivariate functional principal
component analysis with multiple

neurons

5.1 Introduction

In the previous chapter, we introduced functional data analysis and univariate functional
principal component analysis with the multivariate neuron spike train data. We char-
acterised each intensity function with principal components on each trials. We found
that characterising the intensity functions with FPCA has better performance than their
individual smoothing. At this point, the question may arise how to model the multi-
variate neuron spike train data on the different regions. We tried to study the variation
of more than one function. Each neuron on the same task has been collected from two
different regions EC3 and EC5. To understand the total system of firing activities, we
want to know how the neuron firing activities are characterised in the regions EC3 and
ECS5 jointly. Assuming that they are measured in the same units and have similar varia-
tion, then the classical multivariate functional principal component (mFPCA) can work
well. The idea of mFPCA is the extension of the FPCA idea to deal with multivariate
functional data. A successful example is shown in [21]. They modelled bivariate PCA
for the children’s gait cycles.

This study is organised as follows. We first discuss the definition of the classical

multivariate principal component analysis. A simulation study is shown in section 3.
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Consistency results are the theme of Section 4. The conclusion of the study can be

found in Section 5.

5.2 Method

5.2.1 Multivariate principal component analysis

In the previous chapter, we studied how the principal component analysis in multivariate
data analysis can be defined by finding eigenvalues and eigenfunctions of the covariance
matrix. Then we denoted that N x p matrix X which contains the values x;;.

In multivariate principal component analysis, let {X,},—1 _, be a set of random
functions where each function X}, lies in the Hilbert space L?(7) of square integrable
function for a compact domain 7. Denote by X the vector (Xi,...,X;)T. Assume
that each function X} has an unknown smooth mean function pu(t) = (u1(),. .., up(t))”
where p(t) = E(Xy(t)) and the covariance function v(s,t) = {vn(s,t)}1<k,i<p, Where
vgi(s,t) = cov(Xg(s), X;(t)). The covariance function v(s, t) is symmetric hence v(s,t) =
v(t,s)T, in the same sense as the covariance function for fixed k and [ vy (s, t) = vy (t, 5).
Define the inner product of two functions f and g with respect to a measure ¢ in Lo(T)
as (f,g) = [ f(t)g(t)dt with || - ||>= (-,-). The vectors of function f, and g, in the
Hilbert space H denote as f = (f1, f2,..., fp)! and g = (g1,92,...,9,)7. The inner
product of the vectors of two function f and g in Hilbert space H is defined as (f, g)m =

P {fr gr), with norm || - 3= (-, )m. In addition, the inner product can be expressed

as (f,g) = > wf(t)g(t), where w is the weight function.

Classical method for multivariate functional principal component analysis

In the previous chapter, we introduced the Karhunen-Loeve representation, then the

multivariate random function can be expressed as
(o]
X(t) = p(t)+ D erér(t)
k=1

where p = p1, po,. .., 1y is the mean function of X, and & is an orthonormal basis
function in Hilbert space H and it satisfies the orthogonality constraints [ ;& = 0,k < L.

The ¢ are random variables, the functional principal component scores (FPCS). The
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FPCS are associated with the eigenvalues, since their mean and variance are E(&;) = 0,
E (5,%) = pi and ), pr, < oo. In the previous chapter, we studied the covariance function

v(s,t) defined as

N
v(s,t) = N"U) " mi(s)mi(t)
=1

/v@ﬂﬂﬂﬂzpﬂﬁ

for an appropriate eigenvalue p. The left side of 4.1 is an integral transform V of the

weight function £ defined by
26 = [ ot e

This integral transform is called the covariance operator . Hence the eigenequation

can be expressed directly as

€= pg

In multivariate principal component case, let vy = (vg1, ..., vkp) T and v(s,t) = {vg(s,t)}.

<'U1(S? t)v £>H

2(s) = [ w(s, €0t = - ,

(vp(s,1),)m

where (vi(s,-),€&)m = Y11 (vki(s,-),&). Since ¥ is a linear operator, X&(s) = p&(s)
satisfied. The multivariate covariance function v is continuous, symmetric and non-
negative-definite ((X&,&)g > 0 for any & € H). By the multivariate version of Mercer’s

theorem, (vg(s,-),&)m can be written as
p
(Oe(s,), Ervm = D _ (ki[5 ), §ir) = pr&ir(5)

=1

for Kk = 1,...,p and all . The covariance of (k,l) elements can be represented as

v (s,t) = Y02 pr&er(s)&,(t), and the multivariate covariance function v expressed as

U(S7 t) = Z:O:l prér(s)gr(t)T‘
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5.3 Simulation study

This simulation study was designed to propose the multivariate functional principal
component analysis with two simple simulated neurons. The thinning algorithm was
used to simulate the point process data. Two different simulations were designed, the
purpose of the first simulation is to check how well mFPCA estimates bivariate functions
with similar variation. The second scenario was designed to have two functions with large

variation.

5.3.1 Scenario 1

Neuron 1 Neuron 2

Intensity
Intensity

Time Time

EMPERICAL CDF
EMPERICAL CDF

MODEL CDF MODEL CDF

Figure 5.1: Intensity function of the true and simulated neuron and Kolmogrov-smirnov plot.

We construct the 100 true intensity functions A} (¢),7 =1,...,100,r = 1,2. The true
intensity function has form of the number of events multiplies their density function
AL (t) = N[ fI'(t). The density function was constructed by the exponential form of

Karhunen-Loeve representation,
k
FE() = exp(fr () + Y oiéi(t)
k=1

where the mean density function f; (t) = t/T + sin(t) and fﬁ(t) = t/T + cos(t) , two
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Figure 5.2: Intensity function of the true and simulated neuron and Kolmogrov-smirnov plot.

eigen functions for the first neuron &} = —cos(t/10)/v/5, and &3 = sin(nt/10)/+/5,0 <
t < 20, and two eigen functions for the second neuron &2 = +cos(wt/5)/v/3, and &3 =
—sin(mt/5)/v/3,0 < t < 20.The eigen value were chosen as pl = 1 and pi = 0.8 for
the first neuron and p? = 0.1 and p3 = 0.3 for the second neuron, then the covariance

function can be represented in terms of eigenfunctions & and eigenvalues pj

v(s,t) = Z Prr(5)Ek(t)

Then we performed the bivariate functional principal component analysis, the true in-
tensity function and the simulated intensity function are shown on the upper panel in
Figure 5.1. To have small variation of two functions, the intensity seems similar. The
black solid lines displays true intensities and the red dotted lines show the simulated
neuron. The mean of true and simulated intensity functions are displayed as sky-blue
dashed line and yellow dashed line respectively. By comparing mean intensity functions,
the simulation seems work well. The simulated neuron is more likely to have large vari-
ation than the true one, but the kolmogrov-smirnov plot shows that all estimates are

significant.

85



The best way to display the FPCA result is plotting the principal component as
perturbations of the mean and it is sufficient to consider individual £} and &2 separately.
Figure 5.2 displays the first two principal components for neuron 1 and 2 with its mean
density function.

Since || &€& |2 + || €2 ||*= 1 by the definition, calculating || £} ||? gives the proportion
of the variability accounted for by the i — th principal component in the neuron 1 curve.
For the first principal components, the contributions of neuron 1 and neuron 2 are 50.01%
and 49.99% respectively. Therefore both neuron 1 and 2 are important and so there is
very substantial interaction between the two neurons. However for the second principal
components, the measure indicates that 77.88% of the variation is due to the neuron 1
curves. The effect on the neuron 1 curves of the first combined principal component of
variation is virtually identical to the first principal component curve extracted from the

neuron 1 curves considered alone.

5.3.2 Scenario 2
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Figure 5.3: Intensity function of the true and simulated neuron and Kolmogrov-smirnov plot.

In this scenario, we designed the simulation to check the performance of multivariate

functional principal component analysis with large variabilities on random functions. We
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Figure 5.4: Intensity function of the true and simulated neuron and Kolmogrov-smirnov plot.

construct 100 true intensity functions A} (¢),7 = 1,...,100,7 = 1,2. The true intensity
function has form of the number of events multiplied by their density function ! (t) =

N fI'(t). The density function was constructed by the Karhunen-Loeve representation,
k
Filt) = fL(t) + D ohéil(t)
k=1

where the mean density function f,(t) = 2+ £ + sin(t), two eigen functions for the first
neuron &1 = —cos(7t/10)/+/5, and &3 = sin(7t/10)/+/5,0 < t < 20, and two eigen func-
tions for the second neuron £ = +0.3cos(7t/5)/v/3, and €2 = —0.3sin(nt/5)//3,0 <
t < 20. The eigen values were chosen as pi = 4 and p} = 1 for the first neuron and p? = 6
and p3 = 2 for the second neuron. Then we performed the bivariate FPCA, the true
intensity function and the simulated intensity function are shown on the upper panel
in Figure 5.3. The function for neuron 1 is a increasing function with sin(t) and the
function for neuron 2 is a decreasing function of cos(t). It has a larger variability than
scenario 1. The black solid lines displays true intensities and the red dotted lines show
the simulated neuron. The mean of true and simulated intensity functions are displayed

as skyblue dashed line and yellow dashed line respectively. By comparing mean intensity
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functions, the simulation seems work well. The simulated neuron more likely to have
large variation than true, but the kolmogrov-smirnov plot shows that all estimates are
significant.

Figure 5.4 displays the first two principal components for neuron 1 and 2 with its
mean density function. For the first principal components, the contributions of neuron
1 and neuron 2 are 49.19% and 50.81% respectively. The contribution of both neuron 1
and 2 are important and so there is very substantial interaction between the two neurons.
In addition, for the second principal components, the measure indicates that 42.38% of
the variation is due to the neuron 1 curves and 57.62 due to the neuron 2. Also the

second principal component has similar contribution as the first principal component.

5.4 Application to data

The main purpose of the study is to characterise the multiple neuron activities which
were collected in the different regions. The neuron data set were collected in the brain
regions EC3 and EC5, so we performed the bivariate functional principal component
analysis and the intensity functions for each neuron are displayed in Figure 5.5. The
estimated intensity functions from the bivariate FPCA seems to have more fluctuation
than univariate FPCA, and generally the brain region EC 3 has larger variability than
the region EC 5. Although bandwidth for the kernel was selected by optimal bandwidth
with plug-in method, the intensity functions seems over-estimated. Compared with
the univariate FPCA estimation, the region EC 3 has similar trend but the variability
of EC 5 increased with several peaks. Moreover the details about the effect of the
principal components are shown in Figure 5.6. These displays the bivariate FPCA
results with plotting the principal component as perturbations of the mean density
function. The first principal component for the Mwheel task explains 42.75% of the
total variability, and the contribution of neurons from the regions EC 3 and EC 5 are
13.53% and 86.47%, respectively. This is the main factor of large variation on the EC
5 in Figure 5.5. The second and third principal component capture 18.42% and 11.72%
proportion of total variation respectively. The second principal component may represent
on the larger variability for bivariate FPCA than for univariate FPCA. The proportion

of the variability and the proportion of contribution are described in Table 5.1
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Figure 5.5: The individual neuron firing rate function.

The Kolmogrov-Smirnov plots of the bivariate FPCA for Big-square task are dis-
played in Figure 5.7. The black solid line indicates the univariate FPCA and the red
line show the bivariate FPCA. Most of K-S statistics describes bivariate FPCA works

better than univariate one. However it does not work well.

5.5 Discussion and conclusion

We applied the multivariate functional principal component method on the bivariate
repeated point process neuron data in the simulation study and one may say that it
is a useful method to characterise the intensity functions for individual objects and to
understand how two neurons vary jointly in the total system. In the model checking

procedure, all two different scenarios have good Kolmogrov-Smirnov statistics.
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In the result section, there are the same problems with the discrepancy of the number
of neuron spike trains in each trial as in Chapter 4. The intensity function was defined
as multiple of the number of events on their density function (4.3). It is quite difficult to
analyse the characterised intensity functions, since they are too fluctuated and it is hard
to find similar patterns. But there seems to be some different pattern on the region. At
this stage, we can only find that there is an opposite trend of firing neuron spike, if region
EC3 fire many number of spike train, there are only few number of spike trains are fired.
In addition, most of proportion for the contribution of two region was dominated by one
region. Only fourth principal component on Big-square task had a similar contribution.

According to K-S plot there is a significant improvement from the univariate FPCA, but
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Figure 5.6: The first four principal component curves of the neuron firing.

it still gave a bad estimation.
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Table 5.1: Proportion of principal component and the proportion of contribution of each

region.

PC1 PC 2 PC 3 PC 4

Mwh 42.75% 18.44% 11.72% 6.51%
EC 3 EC 5 EC 3 EC 5 EC 3 EC 5 EC 3 EC 5
13.53% | 86.47% | 78.41% | 21.59% | 5.74% | 94.26% | 20.47% | 79.53%

PC1 PC 2 PC 3 PC 4

B-S 67.82% 12.25% 4.93% 4.29%
EC 3 EC 5 EC 3 EC 5 EC 3 EC 5 EC 3 EC 5
11.89% | 88.11% | 1.12% | 98.88% | 32.54% | 67.46% | 50.48% | 49.52%

PC1 PC 2 PC 3 PC 4

Lin 99.00% 0.56% 0.01% 0.01%
EC 3 EC 5 EC 3 EC 5 EC 3 EC 5 EC 3 EC 5
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Chapter 6

Case study - The comparison of

three approaches

6.1 Motivation and data description

In the previous chapter, we applied the parametric modelling and the non-parametric
modelling to estimate a single intensity function, and the multiple principal component
analysis to investigate the influence between the different tasks on each neuron. However
the data set had some problems every time when we applied new approaches, hence it
may be difficult to compare the improvements of new approaches.

The main aim of this chapter is to compare or check how the analysis improves with
different approaches with the same data set. The data set was collected from the rat in
the maze session, which is 180 cm x 180 cm size of square platform. The reward was
the water and the duration was 90.9 minutes. One of the raw data sets given the time
of each spike in 20 MHz and they were rounded to 1 ms bins. Another raw data set is a
corresponding file containing cluster information for each spike.

In chapter 2 and 3, the data set contained spike trains where inter-arrival time were
less than 2 ms and some spike trains occurred at the same time. This had not met
the condition of the spike train which was explained in chapter 1, as the time interval
we consider becomes sufficiently small so that no more events occur jointly in any bin.
In this data set, the eight spike trains are N1, No, N3, N4, N5, Ng, N7 and Ng, there
are no spikes with an inter-arrival time of less than 2 ms, and no spike occurred at the

same time. Figure 6.1 top left panel shows the raster plot of the eight neurons over 3
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seconds on the session EC 582. It can be seen that there are different spike trends, and
frequencies are also different. Ng, N7 and Ng seems to have much higher frequency than
others. In the top right panel on Figure 6.1, all trials have high frequency whereas the
trial EC 430 has a small frequency. It is difficult to find the pattern of spike train by

visualisation due to high frequency.
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Figure 6.1: Spike of eight neurons within 1 ms bin in 3 seconds .

Figure 6.2 shows the raster plot of the same data set but it increases the bin size to
5ms. In general, the absolute refractory period of the neuron firing is a 1 ms and the
relative refractory period is up to 5 ms. To investigate how much different on neuron
activity with 5 ms binned data compare to 1 ms binned data, the same analysis was
performed twice with different bin size of data. However it is very difficult to find the
difference between 1 ms and 5 ms data set.

Figure 6.3 to 6.6 show the histograms of inter-spike times for eight neurons for each
sessions and the summary of inter-spike times are described in Table 6.2 to 6.4. The
scale of histogram is log scale. Because most of the inter-spike times are less than 0.1
seconds (99%), and they show an exponential decay. All the inter-spike distributions
seems similar, only the 8th trial seems to have a heavier tail. In general, it is very
difficult to find any different patterns of neuron activities in terms of different sessions
and trials. One of the simple approaches to investigate the neuron firing activities is

kernel density estimation.
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Figure 6.2: Spike of eight neurons within 5 ms bin in 3 seconds .
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Figure 6.6: Histograms of the inter-spike time for eight neurons of EC448.

Table 6.1: Summary of the inter-spike time for the EC582

N1 N2 N3 N4 N5 N 6 N7 N8
0% | 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008
1% | 0.0009 0.0010 0.0009 0.0009 0.0010 0.0009 0.0009 0.0009
5% | 0.0013 0.0017 0.0015 0.0014 0.0014 0.0013 0.0012 0.0014
10% | 0.0019 0.0028 0.0025 0.0022 0.0023 0.0019 0.0017 0.0021
25% | 0.0044 0.0063 0.0059 0.0051 0.0070 0.0041 0.0034 0.0050
50% | 0.0116 0.0174 0.0154 0.0137 0.0250 0.0098 0.0075 0.0129
75% | 0.0307 0.0433 0.0388 0.0368 0.0843 0.0241 0.0161 0.0334
90% | 0.0642 0.0851 0.0772 0.0757 0.1659 0.0496 0.0322 0.0691
95% | 0.0900 0.1153 0.1038 0.1066 0.2480 0.0714 0.0473  0.0954
99% | 0.1604 0.2097 0.1744 0.1932 0.4812 0.1224 0.0909 0.1613
mean | 0.0246 0.0336 0.0298 0.0292 0.0644 0.0196 0.0138 0.0263
n 221921 162451 182986 186776 84617 278332 395883 207189
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Table 6.2: Summary of the inter-spike time for the EC397

N1 N 2 N 3 N 4 N5 N6 N7 N8
0% 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008
1% 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009
5% 0.0011 0.0010 0.0011 0.0010 0.0010 0.0011 0.0011 0.0011
10% | 0.0015 0.0013 0.0014 0.0013 0.0013 0.0014 0.0014 0.0014
25% | 0.0029 0.0023 0.0028 0.0023 0.0021 0.0025 0.0024 0.0028
50% | 0.0070 0.0047 0.0071 0.0050 0.0045 0.0057 0.0047 0.0069
75% | 0.0165 0.0098 0.0177 0.0113 0.0099 0.0128 0.0099 0.0166
90% | 0.0337 0.0195 0.0376 0.0224 0.0190 0.0263 0.0206 0.0343
95% | 0.0490 0.0294 0.0551 0.0322 0.0272 0.0388 0.0331 0.0503
99% | 0.0874 0.0583 0.0974 0.0576 0.0488 0.0722 0.0698 0.0883
mean | 0.0136 0.0085 0.0147 0.0092 0.0080 0.0108 0.0092 0.0136
n 401378 638156 371794 589203 677431 502968 594696 399565

Table 6.3: Summary of the cleaned inter-spike time for the EC582

N1 N 2 N 3 N 4 N5 N6 N7 N38
0% 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010
10% | 0.0020 0.0030 0.0030 0.0020 0.0020 0.0020 0.0020 0.0020
25% | 0.0040 0.0060 0.0060 0.0050 0.0070 0.0040 0.0030 0.0050
50% | 0.0120 0.0170 0.0150 0.0140 0.0250 0.0100 0.0080 0.0130
75% | 0.0310 0.0430 0.0390 0.0370 0.0840 0.0240 0.0160 0.0330
90% | 0.0640 0.0850 0.0770 0.0760 0.1660 0.0500 0.0320 0.0690
95% | 0.0910 0.1150 0.1040 0.1070 0.2480 0.0720 0.0470 0.0950
99% | 0.1600 0.2100 0.1740 0.1930 0.4810 0.1230 0.0910 0.1610
mean | 0.0246 0.0336 0.0298 0.0292 0.0645 0.0196 0.0138 0.0263
n 221564 162269 182796 186552 84525 277862 395033 206910

Table 6.4: Summary of the cleaned inter-spike time for the EC397

N1 N2 N 3 N 4 N5 N6 N7 N8
0% 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010
10% | 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010
25% | 0.0030 0.0020 0.0030 0.0020 0.0020 0.0030 0.0020 0.0030
50% | 0.0070 0.0050 0.0070 0.0050 0.0050 0.0060 0.0050 0.0070
75% | 0.0170 0.0100 0.0180 0.0110 0.0100 0.0130 0.0100 0.0170
90% | 0.0340 0.0200 0.0380 0.0220 0.0190 0.0260 0.0210 0.0340
95% | 0.0490 0.0290 0.0550 0.0320 0.0270 0.0390 0.0330 0.0500
99% | 0.0870 0.0580 0.0970 0.0580 0.0490 0.0720 0.0700 0.0880
mean | 0.0136 0.0086 0.0147 0.0093 0.0081 0.0109 0.0092 0.0137
n 400322 635970 370760 587328 675067 501512 592767 398576
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The individual firing rate for the eight neurons on each sessions are shown in Figure
6.7. These intensity functions are estimated by Epanechnikov kernel estimation. As
shown in the raster plot 6.1, the lowest frequency was on the session EC 582, so the
intensity function on EC 582 has the lowest value. The intensity function is highest for
the session EC 397, and for EC430 and EC448 it is similar. According to the individual
kernel density estimation, it is hard to find any similarity and dissimilarity of neuron
activities on the session. One of the reasons is that the simple kernel density estimation
shows the individual pattern of the activity and the other possible reason is that the
time scale is too big. So this intensity function shows only the global effect of the single

neuron firing rate.
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Figure 6.7: The individual intensity functions of four sessions by kernel density estimation.
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6.2 Application to data.

The main purpose of this section is to compare the estimation on the same data set with
different approaches such as parametric point processes, non-parametric point processes
and functional principal component analysis. In the previous section, we performed
the kernel estimation, it gives the simple idea of characterising the single neuron firing
rates. It was difficult to find any connection between sessions or trials. The aim of
the parametric point process to characterising single neuron activities and self-exciting

process gives the effect of history dependence.

6.2.1 Characterising single neuron activities by non-parametric mod-

elling
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Figure 6.8: The individual intensity functions of four sessions by bspline basis function.

The smoothing spline has been applied with the B-spline basis function which was
introduced in chapter 3. The knot sequence of the B-spline basis is determined by
Bayesian information criterion. Figure 6.8 shows the intensity function of single neuron
activity by trials. Its pattern of intensity function is quite similar compared to the
intensity function in Figure 6.7, but the intensity function by smoothing spline using B-

spline seems to be more clear. In the session EC 582, the main variation of the intensity
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function seems the number of firings. Most intensity functions have a similar trend which
fluctuates regularly at the same time, only the different intensity is outstanding. There
is also variation in the different number of firing spike trains in session EC 397. Most of
trials have a decreasing trend at the beginning of the experiment, from 0 to 1000, then
the intensity stay stable with some fluctuations then increase. However it is not clear in
session EC 582, since the time points which have high intensity are all different. There
seems to be an outlier in the session EC 430 and EC 448, most of the intensities lie in
between 20 to 30, some trial’s intensities are lower than 20. They also have variation in
the different number of neuron firing spike trains, but those variations seems to be lower

than for EC 582 and EC 397. Some of the intensities have very different pattern.
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Figure 6.9: The Kolmogorov-smirnov plot of four sessions by bspline basis function.

The results of the Kolmogorov-Smirnov plot in Figure 6.9 tells characterising the
single neuron activities are not very successful. Most of the K-S statistics are below 45
degree line. One of the possible reasons is that the intensity functions do not contain the
history dependence and the correlation between other neurons. It might be very difficult
to have a good estimation for characterising the neuron intensity functions without those
effects. In addition, the limitation of this approach is that it can only represent the single
neuron firing rate and one of the important mechanism of a neuron network, which is

the communication, was omitted.
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6.2.2 Characterising neuron activities using functional data analysis

In previous section, we have seen the intensity function in Figure 6.8 and we tried to find
the similarity or dissimilarity of the intensity function between the session. The only
thing we found was the variation in the number of neuron firings, because that was too
obvious. In this section, we will find the other variation and how it affects the model by
principal component analysis. First of all, Figure 6.10 shows the principal component
curves of the session EC 582. The first principal component curve £ is dominant which
percentage of variability being more than 99%. The first principal component curve &;
is positive throughout the times, and time at 500, 2000 to 3000 and 4500 seconds have
a large variability. Moreover the percentage 99.1% indicates that this type of variation
strongly dominates all other type of variations. The second principal component curve
&9 account for 0.4% of the total variation so we cannot expect & to be as important as
the curve £;. It has a negative contribution at where the & had low variability. The
third and fourth component curves also represent very small percentages of variability

and they are difficult to interpret.
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Figure 6.10: The first four principal component curves of the EC582.

The principal component curve & on the session EC 397 also strongly dominates

all other curves with percentage 94.8%. It has all positive contribution with decreasing
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trend, which reflects that at the beginning of the experiments there are large variations,
then it decreases. Second component curve & contributes very little, it has 2.7% of
the variability. In the period between 0 and 1000 it is positive, then most of the rest
is negative, it may emphasize the explanation of £&;. The &3 and &4 also account for
very small proportions of the variation since they have to be orthogonal to & and &;.
The third &3 shows large variation between 0 to 3500 and the fourth &4 represents low

variation at the middle of the experiments.
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Figure 6.11: The first four principal component curves of the EC397.

The principal component curve for the session EC 430 has similar pattern as for EC
397. The top left panel Figure 7?7 in Appendix shows that & has an increasing trend with
big fluctuation at the middle of experiments explaining 85.6%. The second PC curve
accounts for 9.9% which is a higher proportion than for the previous two sessions and it
describes that contribution to variation between first half and second half are opposite.
There are similar patterns in the session EC 448. At the beginning, the middle and the
end of the experiments, there seem to be large variation in the first PC which contributes
88.6%. And the effect of & is very close to & for EC 430. Figure 77 is placed in the
Appendix.

According to principal component curves, all in cases the first PC curve & is domi-

nant with more than 85% proportions of explained variability. In addition, all £ consist

102



of a positive contribution, which supports that there are huge variations in the shape
of each & for all the sessions. Only two & show an effective contribution to the model
which are EC 430 and EC 448 with 9.9% and 9.8%, respectively. Those effect could be
seen for other sessions too.

PCA function 1 (Percentage of variability 99) PCA function 2 (Percentage of variability 0.4 )

o~

e o

E:
o E
2 — s
= M %
S

Harmonic 1
30
|
Harmonic 2
29
|

= _| T — P S e
<~ = S =S = = -
= = == ~ _|
== ~ =
T T T T T T T T T T T T
o 1000 2000 3000 4000 5000 o 1000 2000 3000 4000 5000
argvals argvals

PCA function 3 (Percentage of variability 0.3) PCA function 4 (Percentage of variability 0.1 )

o~

|
+

Harmonic 3
2
|
Harmonic 4
t g T

T T T T T T o T T T T T T
o 1000 2000 3000 4000 5000 o 1000 2000 3000 4000 5000

argvals argvals

Figure 6.12: The mean functions of the EC582 with four principal component curves.

The effects of the principal component curves are shown in Figure 6.12 by adding
and subtracting each PC curve on the mean function. Figure for other session were
plotted in the Appendix. As we saw the first PC curve &;, a positive contribution
which indicates the different number of neuron firing spike trains. It is reflected in the
individual intensity functions which contain the principal component effects.

The individual intensities of the neuron firing in the session EC 582 are demonstrated
in Figure 6.13. These individual intensities contains four principal components, because
of the dominance of mode &; there is an obvious difference in the number of neuron
firings in the trials. The intensity functions for EC 582 seem to have a lower firing rate
rather than the other sessions and have only gentle fluctuations. Likewise the session EC
397, the proportion of the first PC curve & was about 95% hence the major mode is the
variation of the number of events. Other effects seem hard to find. The session EC 430
has similar pattern as the session EC 582 but a higher firing rate but there seem to have

simple fluctuation. In addition, the variation of the number of events seems less than
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other sessions. Only one trial has lower intensity. There are also outliers in the session
for EC 448. Except two intensity function, all of them have a very similar pattern.

One of the important aspects of the principal component analysis is the examination
of the scores of each PC curve on each component. Figure 6.14 displays the first two PC
scores, four different colours were used such as black, red, green and blue which indicate
four different sessions EC 582, EC 397, EC 430 and EC 448 respectively. According
to the individual intensities in Figure 6.13, we suspect that there are some outliers in
the session EC 430 and EC 448. There are obvious outliers which numbers are 3 and 8
in the session EC 448. They might be considered as the two lower intensity functions
in the bottom right of Figure 6.13. In addition, there are four more potential outliers,
which is not very clear, the 5 and 7 with black colour and 3 and 7 with green colour. It
may be consider as the lowest and the highest intensity function on the EC 582 and two
lowest intensity on the EC 430. There is no outlier on the EC 397. Moreover there is no
cluster effects on the sessions. It means that there is no significant difference between
the session, one of the assumption at the beginning of the study we had considered there
might be a discrepancy between the sessions. However the scatter plot in Figure 6.14
tells there is no significant discrepancy between the sessions.

The intensity functions were estimated again without outliers as we mentioned. The
general patterns are the same as previous one, because the principal components did not
have many changes. According to Figure 6.15 the intensity functions from the session EC
582 shows significant difference compared to other sessions. The mean of the intensity
function for other sessions stays about 100, but it fluctuates in a range of 40.

While there is some improvement compare to Kolmogorov-Smirnov plot 6.9, it can
not be said that the estimation is good enough. However after considering the correlation
between other neurons using principal component analysis the K-S statistics is closer to

45 degree line.

6.2.3 Characterising single neuron activities by parametric modelling

We discussed about parametric modelling strategies in Chapter 2, such as Poisson pro-
cesses, or self exciting processes. In Chapter 2, we applied the Epidemic Type Aftershock

Sequence model which was introduced by Ogata[18], [17] on the earthquake data set. In
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this section, the self exciting process will be applied which is defined as
At | He) = Mo+ Z e Pl=t)
t; <t

Here, Ag is the constant baseline intensity, « is a factor increasing the neuron firing
intensity, and 8 influences the decay function which controls how quickly the overall rate

returns to its baseline level Ao after an event occurs.
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Figure 6.17: The individual intensity functions by Hawkes process.

Before performing the self exciting process on the new data set, we cut the data so
that the range of time is 0 to 50 seconds and consider history dependent as time since 5
seconds. The estimated intensity function of the self exciting process is shown in Figure
6.17, each colour represents the trials. The general trend of neuron firing rate seems
similar, there are two large peaks in common at times around 2 and 25. After the large
peaks it has decreasing trend with small fluctuation. The trial 1 and 3 seem to have
more peaks and compared to the result of the functional principal component analysis,
the pattern is not exactly the same but it can be said it may have similar results. The
reason for the difference may be caused by the history effects because during 1 second
there are more than 50 neuron spike train firings.

The comparisons of K-S plots are shown in Figure 6.18. The thick black line indi-
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cates the K-S plot of Hawkes process and the red line denote K-S statistics from the
FPCA. These K-S plots show that the estimation form the Hawkes process had a better
estimation rather than non-parametric method of FPCA. It means that considering a

history dependence effect on the modelling might lead to the good estimation.

6.2.4 Characterising single neuron activities by Semi-parametric mod-

elling

According to results from the self-exiting process, the history dependence is very crucial
feature in analysis of neuron activities. Parametric modelling can consider the history
dependence and it leads to the better estimation of neuron activities. However the
computations are too expensive so it was too difficult to estimate the patterns for whole
period of data set. On the other hand, non-parametric modelling can take account of
whole period of data set but it was hard to add history effect on the model. Hence
the model estimation which the history dependence was omitted does not seem to have
good estimation. To supplement each limitation of both modellings, the semi-parametric
model will be applied.

The main method of this approach is the same of the Hawke’s process in self-exiting
process. In previous work I use the base intensity as a constance A\g, but I will use
the base intensity as the intensity function which was estimated by Functional princi-
pal component analysis. The background of main assumption are: firstly, adding time
varying base intensity function, it may lead to better results than using constant base
intensity function. Secondly, it might be reduce the time consuming on the computation.
Because in previous work, the optimisation was estimated three parameters Ao, « and j.
In current approach we only need to estimate o and 3 so the computation needs will be
reduced. The self exciting process for semi-parametric modelling will be applied which

is defined as

At | Hy) =X+ Y ae P71

t;<t

Here, )\; is the baseline intensity which was estimated from the functional principal
component analysis, « is a factor increasing the neuron firing intensity, and 8 influences
the decay function which controls how quickly the overall rate returns to its baseline

level \; after an event occurs.
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Figure 6.18: The Kolmogorov-smirnov plot of session EC 582 by Hawkes process and FPCA.
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The Figure 6.19 shows the intensity functions from the semi-paramteric modelling.
It seems to have very similar results compare to Hawke’s process with constant base
intensity, there are some discrepancy on the base line but it can not be a major. Therefore
it can be said that the history dependence is the most important in analysing neuron

activities. According to Figure 6.20, there is no big difference between Hawke’s process
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Figure 6.20: The individual intensity functions by Hawkes process with time varying base
intensity function.

with constance base intensity and time varying base intensity. Trial 2 and 4 seem to
same and Hawke’s process with constant base intensity function gives better results on
trial 1 but Hawke’s process with time varying base intensity lead to better results on

trial 3.

6.3 Discussion and conclusion

In this chapter, we discussed the modelling of neuron firing activities by parametric
and non-parametric approaches which we have already applied in Chapters 2, 3 and 4.
The main purpose of this chapter was comparing those modelling strategies and finding
which approach is the most suitable for characterising the neuron activities.

Two different approaches of non-parametric modelling were applied in this chapter,

one is the smoothing spline with B-spline basis function and another one is the functional
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principal component analysis. There was no significant discrepancy from the two meth-
ods in the non-parametric modelling, intensity functions and the K-S plot had similar
results. However the intensity function for the later approach contains other behaviour
of the neighbouring neurons whereas the spline smoothing can only show the single neu-
ron activities. One limitation of these approaches is that it is difficult to add history
dependent effects. The history dependence is a very important factor for characterising
neuron spike trains, hence ignoring this effect may cause a weakness of the study.

The history dependence model in the parametric modelling was not very suitable for
this neuron data set. One of the reasons is the computational time consumption, the
data set contains too many firing events and adding the history effects made it more
difficult for computation. Non-parametric modelling did not have serious problems of
time consumption for computing whereas the parametric approach took much more
than non-parametric modelling. Therefore the first two approaches estimated intensity
function for the whole data set, on the other hand the Hawkes process only estimated 1%
of data set. If more time had been given it might estimate intensity function up to 10% or
15% which might represent 1 experiment of the trials because one trial on each session
had ten repetitions of experiments, nevertheless it does not seem to suit large scale
data sets. In addition, without smoothing the rate function seemed to have too many
spikes, hence it made the interpretation difficult even if its Q-Q plot showed the better
estimates. To improve the parametric modelling approach, time varying base intensity
functions, that were estimated in functional principal component analysis, were applied
as the semi-parametric modelling. It seem to reduce the computation time consuming,
but the results did not seem to improve. It means that the most important feature of
neuron activity is the history dependence effect.

To conclude this case study which compared of three different approaches for mod-
elling the high frequency neuron data set, non-parametric approaches have the big ad-
vantage of the computing. Optimising parameters by optim in R took too much time
therefore it does not seem to suit for the large data set. Considering the neighbour
effect by applying functional principal component analysis, the estimation was improved
however without history dependence which is a very important factor in neuron spike
trains, there was a limitation. Although the Hawkes process took too much time, it had

a better estimation.
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Appendix A
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Figure A.1: Raster plot of 25 input data
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Figure A.2: Raster plot of 18 output data
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Figure A.5: kormogrov-smirnov plot, (black line-original data, red line-modified data)
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Figure A.6: kormogrov-smirnov plot, (black line-original data, red line-modified data)
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Figure A.8: kormogrov-smirnov plot, (black line-original data, red line-modified data)
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Figure A.9: kormogrov-smirnov plot, (black line-original data, red line-modified data)
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A.2 Graphics for chapter 4
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Figure A.10: The comparison of true intensity function and the individual intensity function
from functional data analysis without PCA.
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Figure A.11: The comparison of true intensity function and the intensity function for the first
approach of principal component analysis with point process.
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A.3 Graphics for chapter 6
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Figure A.14: The kolmogrov-smirnov plot for the simulated data.
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Figure A.15: The first four principal component curves of the EC430.
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Figure A.16: The first four principal component curves of the EC448.
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Figure A.17: The mean functions of the EC397 with four principal component curves.
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Figure A.18: The mean functions
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Figure A.19: The mean functions of the EC448 with four principal component curves.
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Appendix B

R codes for computation

A Code for Hawkes process

load(’bintimesecll.Rdata’)

library (Rcpp );library (inline );library (splines );library (cubature)
library (splines)

CUI-50

t11 <— rep(NA,8);t12 <— rep(NA,8);t13 <— rep(NA,8);t14 <— rep(NA,8)
for (i in 1:8) {

£11[i] <= list ((T11[[i]][which(T11[[i]] < CUT)]))
t£12[1] <= list ((T12[[i]][which(T12[[i]] < CUT)]))
£13[i] <= list ((T13[[i]][which(T13[[i]] < CUT)]))
t14[i] <— list ((T14[[i]][which(T14[[i]] < CUT)]))

t1 <— rep(NA,6);t2 <— rep(NA,6);t3 <— rep(NA,6);t4 <— rep(NA,6)
t1 <— list (t11[[1]],t11[[2]],¢11[[3]],t11[[4]],t11[[6]],t11[[8]])
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t2 <— list (t12[[1]],t12[[2]],t12[[4]],t12(]
t3 <— list (t13[[1]],t13[[2]],t13[[4]] ,t13[[5]],t13[[6]] ,t13[[8]])
t4 <— list (t14[[1]] ,t14[[2]],t14[[4]],t14[[5]],t14[[6]],t14[[7]])

(@)
-+
—_
\)
D
-+
—_
[\]
N
~—

Lenl <— unlist (lapply(tl,length))
Len2 <— unlist (lapply (t2,length))
Len3 <— unlist (lapply (t3,length))
Len4 <— unlist (lapply (t4,length))
Iml <— length(t1)
Im2 <— length(t2)
Im3 <— length(t3)
Im4 <— length(t4)
7 7. 7777 7 7777 7777 7 7777 7777 7 7.

rang <— ¢ (0,50)
hl <— rep(NA,6);h2 <— rep(NA,6);h3 <— rep(NA,6);hd <— rep(NA,6)

h1[i] <— list (c(0,t11[[i]])[—(Lenl[i]+1)])
h2[i] < list (c(0,t12[[1]])[—(Len2[i]+1)])
h3[i] <— list (c(0,t13[[i]])[—(Len3[i]+1)])
ha[i] <— list (c(0,t14[[i]])[—(Lend[i]+1)])
}

1x2 <—function (p,x,h,t0=0.1,tmax=50D=1) {
n <— length (x)
lambda <— rep(0,n)
for (i in 1:n){
lambda[i] <— p[1] + sum(p[2]*exp(—p[3]*(x[i] — h[which(x[i]>h)])
[which (x[i]—h[which(x[i]>h)]<D)]))
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}
for(i in 1l:length(x)){
if (lambda[i]<=0){
lambda[i] <— 0

h

int.lam <— function(t,b,H){
b[1]4+sum(b[2]*exp(—b[3]*(t—H[which(t>H)])
[which (t—H[which (t>H)]|<D)]))

}

integral <— adaptlntegrate (int.lam,lowerLimit=t0

,upperLimit= tmax,b=p,H=h)$integral

return (—sum(log(lambda))+ integral )

sxh <-rep(0.001,3) # initial values
yparl <— rep(NA,6);ypar2 <— rep(NA,6)
ypar3 <— rep(NA,6);ypard <— rep(NA,6)
for(i in 1:lm1){

yparl[i] <— list (optim(p=sxh,1x2 ,x=t11[[i]], control=list (maxit=100000
,trace=TRUE) ,h=h1[[i]]) $par)
ypar2[i] <— list (optim(p=sxh,lx2 ,x=t12[[i]], control=list (maxit=100000
,trace=TRUE) ,h=h2[[1i]]) $par)
ypard[i] <— list (optim(p=sxh,1x2 ,x=t13[[i]],control=list (maxit=100000
,trace=TRUE) ,h=h3 [[i]]) $par)
ypard [i] <— list (optim(p=sxh,1lx2 ,x=t14[[i]], control=list (maxit=100000
,trace=TRUE) ,h=h4 [[i]]) $par)

}

lamx1l <— rep(NA,6);lamx2 <— rep(NA,6)
lamx3 <— rep(NA,6);lamx4 <— rep(NA,6)
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for (j in 1:1m1){
lamx1 [

lamx2

[
lamx3 [ ]
(;

J

]
il
]
]

lamx4

}

} # intensity

<— list (rep(0,Lenl[j]))
<~ list (rep(0,Len2[j]))
<— list (rep(0,Len3[j]))
<~ list (rep(0,Lend[j]))

[iDA
lamx1 [[j]][i] < (yparl[[j]][1]+sum(yparl [[j]][2]
xexp(—yparl [[j]][3]*(t11[[j]][i]-h1[[j]][which(t11[[]]]
[1]>h1[[j]])]) [which(t11 [[j]][i]-h1[[j]][which(t11[[]j]]
[i]>h1[[j]])]<1)])))

lamx2 [[j]][i] <= (ypar2[[j]][1]+sum(ypar2 [[]]][2]
sexp(—ypar2 [[J]][3]«(t12 [[j]][1]=h2[[j]][which(t12[[]]]
[1]>h2[[j]])]) [which(t12 [[j]][i]-h2[[]]][which(t12[[]]]
[1>h2[[J]1D]<1)])))

lamx3 [[j]][i] <= (ypar3[[j]][1]+sum(ypar3 [[]]][2]
*exp(—ypar3 [[J]][3]*(t13 [[j]][1]-h3[[j]][which(t13[[]]]
[1]>h3[[j]])]) [which(¢13 [[j]][i]-h3[[j]][which(t13[[]]]
[1]>h3[[J1D]<1)])))

lamx4 [[j]][1] <= (ypard [[J]][1]+sum(ypard [[]]][2]
xexp(—ypard [[j]][3]*(t14 [[j]][1]-h4[[j]][which(t14 [[]]]
[1]>h4 [[j]])]) [which(t14 [[j]][i]-h4[[j]][which(t14 [[]]]
[1]>0h4[[j]D)]<1)])))

Code for B-Spline basis function

load (’chsecnew.Rdata’);load(’c6data.Rdata’)
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load (’bintimesecll.Rdata’)
CUI<-4900

t11 <— rep(NA,8);t12 <— rep(NA,8);t13 <— rep(NA,8);t14 <— rep(NA,8)
for (i in 1:8) {
t11[i] <— list ((T11[[i]][which(T11[[i]] < CUT)]

t13[i] <— list

(( (

£12]i] <= list ((T12[[i]][which(T12[[i]] < CUT)]
((T13[[i]][which(T13[[i]] < CUT)]
(( (

t14[i] <— list ((T14[[i]][which(T14[[i]] < CUT)]
tl <— rep(NA,6);t2 <— rep(NA,6);t3 <— rep(NA,6);t4 <— rep(NA,6)
t1 <— list

t11[[1]],t11[[2]],¢11[[3]],t11([[4]],t11[[6]],t11[[8]]

t3 <— list

( )
2 < list (t12[[1]],t12[[2]],t12[[4]],t12[[5]],t12[[6]],¢t12[[7]])
(¢13[[1]],e13 [[2]],t13 [[4]],¢13[[5]],¢13[[6]],t13[[8]])
( )

t4 <— list (t14[[1]],t14[[2]],t14[[4]],t14[[5]],t14[[6]],t14 [[T]]

Lenl <— unlist (lapply(tl,length));Len2 <— unlist (lapply(t2,length))

~— —

Len3 <— unlist (lapply (t3,length));Lend <— unlist (lapply(t4,length))

)
)
Iml <— length(tl);lm2 <— length(t2);lm3 <— length(t3);lm4 <— length(t4)
Rl <— range(0,4900);R2 <— range(0,4900)

R3 <— range(0,4900);R4 <— range(0,4900)

S1 <— seq(0,4900,by=10);S2 <— seq(0,4900,by=10)

S3 <— seq(0,4900,by=10);54 <— seq(0,4900,by=10)

Snl <— length(S1);Sn2 <— length(S2);Sn3 <— length(S3);Sn4 <— length(S4)

El <— matrix(rep(0,lm1%Snl),ncol=lm1l)
E2 <— matrix(rep(0,lm1%Sn2),ncol=lm2)

E3 <— matrix(rep(0,Ilm1%Sn3),ncol=lm3)
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E4 <~ matrix(rep(0,Ilm1%Sn4),ncol=lm4)

oc <~ function (x,n,1){
0l <~ rep(0,1)
for (i in 1:1){
0l[i] <— list (rep(0,n[i]))
}

return(ol)
}
0ol <— oc(tl,Lenl,lml);02 <— oc(t2,Len2,lm2)
03 <— oc(t3,Len3,lm3);04 <— oc(t4,Lend, lm4)

fl <— function(x,o0,b,n,y,1){
for (k in 1:1){
for (i in 1:n[k]){
o[[k]][i] <~ min(which(x[[k]][i]<b))
}
for(i in 1:length(b)){
y[i,k] <= length(which(o[[k]]==1))

}

return(y/10)

yl <— fl(t1,01,S1,Lenl El1,Iml);y2 <~ fl(t2,02,52,Len2,E2,Ilm2)
y3 <— fl1(t3,03,53,Len3 ,E3,Im3);y4 <— fl(t4,04,5S4,Lend ,E4,1lm4)

library (fda)
nl <— length(S1);n2 <— length(S2);n3 <~ length(S3);n4 <~ length(S4)

basisl <— create.bspline.basis(range(S1),17)

basis2 <— create.bspline.basis(range(S2),17)
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basis3 <— create.bspline.basis(range(S3),17)

basis4 <— create.bspline.basis(range(S4),17)

yfdl <— smooth.basis(S1,yl,basisl)$fd
#functional data object containing a smooth of the data
yfd2 <— smooth.basis(S2,y2,basis2)$fd
yfd3 <— smooth.basis(S3,y3,basis3)$fd
yfd4 <— smooth.basis (S4,y4, basis4)$fd

ifl <— eval.basis(S1,basisl)%%yfd18$coefs
if2 <— eval.basis(S2,basis2)%%yfd2$8coefs
if3 <— eval.basis(S3,basis3)%%yfd38coefs
if4 <— eval.basis(S4,basisd)%+%yfd48$coefs

# model checking

7 7777 7777 7 7777 777 7777 7 7777 7777

Denfl <— function(o,s,n,g){
DY <— rep(NA,3)
dy <— rep(NA,n)
for (i in 1:n){
dy[i] <= list ((approx(x=s,y=o[,i],xo=g[[i]])8y))
}

return (dy)

DM1 <— Denfl (o=ifl ,s=S1,n=lml,g=t1

DM2 <— Denfl (0=if2 ,s=S2 ,n=Im2, g=t2

( )
( )
DM3 <— Denfl (o=if3 ,s=S3,n=lm3,g=t3)
DM4 <— Denfl (o=if4 ,s=S4 ,n=lm4,g=t4)
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plot (t1[[1]] ,DML[[1]], type="1",ylim=c(0,150))
for(i in 2:6){
lines (t1[[i]],DML[[i]])
}
plot (t2[[1]] ,DM2[[1]] , type="1",ylim=c(0,150))
for(i in 2:6){
lines (t2[[i]] ,DM2[[i]])
}
QQl <— function(x,y,n,1){
ul <— rep(NA,n);cul <— rep(NA,n);cll <— rep(NA,n)
ql <— rep(NA,n):qll <— rep(NA,n)
for(i in 1:n){
wl[i] <= list(1/1]i] #(1:(1[i]-1)—1/2))
cul [i] <— list (ul[[i]]+1.36/((1[i]-1)"(1/2)) )
cl1[i] <= list(ul[[i]]=1.36/((1[i]-1)"(1/2)) )
all[i] <— list (rep(NA,1[i]—1))
for(j in 1:(1[i] —1)){
qli[[i]][J] <= ((=[[1]][i+2=x[[i]][Jj])
[2x(y [[1]][i+1]+y [[1]]00]))
}

ql[i] <— list (sort(l—exp(—qll[[i]]) ,decreasing=F))

return(list (u=ul, cu=cul , cl=cll ,q=ql))

}

MQl <— QQIl(x=t1l,y=DMIl, n=lml, l=Lenl) # K-S plot

( )
MQ2 <— QQl(x=t2 ,y=DM2,n=Im2, I=Len2)
M3 <— QQl(x=t3 ,y=DM3,n=Im3, I=Len3)
( )

M4 <— QQI1(x=t4 ,y=DM4,n=Ilm4 , 1=Len4
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HHAAH A Code for Functional principal component analysis

A 4 Y/ Y/ Y/ [/, Y/ Y/ Y/
va v 7 va v 7 v y va v

pcal <— pca.fd(yfdl ,4

pca2 <— pca.fd(yfd2 ,4

( )
( )
pcad <— pca.fd (yfd3,4)
( )

pcad <— pca.fd(yfd4 ,4

DT1 <— rep(NA,Im1);DT2 <— rep(NA,Im2)
DT3 <— rep(NA,1m3);DT4 <— rep(NA,1lm4)
for (i in 1:1ml1){
DT1[i] <— list (density(tl1[[i]], kernel="epanechnikov’
,from=0,t0=4900,n=Snl)

DT2[i] <— list(density(t2[[i]], kernel="epanechnikov’

(

)

(

,from=0,t0=4900,n=Sn2))

DT3[i] <— list (density(t3[[i]], kernel="epanechnikov’
,from=0,t0=4900,n=Sn3))

DT4[i] <— list (density(t4[[i]], kernel="epanechnikov’
,from=0,t0=4900,n=Sn4))

DYl <— matrix(r NA,Im1%Snl) ,nrow=lm1l

DY2 <— matrix(rep (NA,Im2*Sn2) ,nrow=Ilm2

(rep ( ) )
(rep( ) )
DY3 <— matrix(rep (NA,Im3%Sn3) ,nrow=lm3)
(rep( ) )

DY4 <— matrix NA,Im4*Sn4

,nrow=Ilm4

for(i in 1:lml){
DY1[i,] <— DT1[[i]]$y
DY2[i,] < DT2[[i]]$y
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DY3[i,] <— DT3[[i]]$y
DY4[i,] <— DT4[[i]]$y

}
DX <— DT1[[1]] $x

Dmul <— colMeans (DY1)
Dmu2 <— colMeans ( )
Dmu3 <— colMeans (DY3)
Dmu4 <— colMeans (DY4)

#pdf(’'pdaind.pdf’)
par (mfrow=c (2,2))
plot (DX,DY1[1,]*Lenl[1],type="1",ylim=c(0,69),main="EC582’
,xlab="Time’ ,ylab="Intensity ")
for (i in 2:1ml){
lines (DX,DY1[i,]*Lenl[i])
}
plot (DX,DY2[1 ,]*Len2[1],type="1",ylim=c(0,69),main="EC397"’
,xlab="Time’ ,ylab="Intensity ")
for (i in 2:lm2){
lines (DX,DY2[i,]*Len2[i])
}
plot (DX,DY3[1 ,]*Len3[1],type=’"1",ylim=c(0,69),main="EC430’
,xlab="Time’ ,ylab="Intensity )
for (i in 2:lm3){
lines (DX,DY3[i,]*Len3[i])
}
plot (DX,DY4[1,]*Lend [1] ,type="1",ylim=c(0,69) ,main="EC448"’
,xlab="Time’ ,ylab="Intensity ")
for (i in 2:1lm4){
lines (DX,DY4[i,]*Len4[i])
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#dev. off ()

A Y/ Y/ /. Y/ Y/ [/, Y/ Y/ v’ Y/ Y/
va v 7 va v 7 v y va va v s

scorel <— pcal$scores

score2 <— pca2$scores

score3 <— pca3$scores

scored <— pcad$scores

#Plot of score function

plot(scorel [,1],scorel[,2],pch=20,xlim=c(—-180,150),ylim=c(—32,62)
,ylab="Component.2nd._Score’ ,xlab="Component._1st _.Score )
text (scorel [,1],scorel[,2],labels=1:8,cex=0.5,col=1,pos=3)
points(score2[,1],score2[,2],pch=20,col=2)
text(score2[,1],score2[,2],labels=1:8,cex=0.5,col=2,pos=3)
points(score3 [,1],score3d[,2],pch=20,col=3)

text (score3[,1],score3[,2],labels=1:8,cex=0.5,col=3,pos=3)
points(score4 [,1],scored [,2],pch=20,col=4)

text (scored [,1],scored [,2],labels=1:8,cex=0.5,col=4,pos=3)

77, 7777 77, 7777 7 7) 777 77, 7777 77, 7777

efl <— eval.basis(S1,basisl)%*%pcal$harmonics$coefs

(

ef2 <— eval.basis(S2,basis2)%%%pca28harmonics$coefs

ef3 <— eval.basis(S3, basis3 )%+%pca3$harmonics$coefs
(

)
)
)
ef4 <— eval.basis(S4,basisd )%+%pcad$harmonics$coefs
meanl <— eval.basis(S1,basisl)%%pcal$meanfd$coefs

)

mean2 <— eval.basis (S2, basis2 )%+%pca2$meanfd$coefs

mean3 <— eval.basis(S3,basis3)%%pcad$meanfd$coefs
)

(
(
(
meand <— eval.basis(S4,basisd)%+%pcad$meanfd$coefs
mxijl <— rep(NA,Im1l)
mk <— function(x,y,1,z){
mkl <— rep(NA,3)
for(k in 1:3){
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for(j in 1:1){

emx]l <— rep(NA,(k+1))
for(i in 1:(k+1)){
emxl|[i] <— list (approx(x=x,y=y|[,1],x0=2z[[]j]])8y)

}

mxijl[j] <— list (emxl)

¥

mkl[k] <— list (mxijl)
}
return (mkl)
}
mkl <— mk(x=S1,y=efl ,1=lml,z=t1)
mk2 <— mk(x=S2,y=ef2 ,1=lm2,z=t2)
mk3 <— mk(x=S3,y=ef3 ,1=Im3,z=t3)
mkd <— mk(x=S4,y=efd , 1=lm4, z=t4)
h=20

MP <— function(x,y,z,1,11){

MP1 <—

Mpl <—

rep (NA,3)
rep (NA,Im1)

for (k in 1:3){

for(i in 1:1){

}

Mpll <— rep(NA,(k+1))
for(j in 1:(k+1)){

Mpll[j] <= (1/length(x[[k]][[1]][[Jj]])

ssum (x [[K ] [[1]][[J]])*11[i] — sum(y*z[,]j])*h)
}

Mpl[i] <— list (Mpll)

MP1[k] <— list (Mpl)
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return (MP1)

}

MP1 <— MP(x=mkl, y=meanl ,z=efl , 1=lml, l1=Lenl)
MP2 <— MP(x=mk2, y=mean2 ,z=ef2 , 1=lm2, 11=Len2)
MP3 <— MP(x=mk3, y=mean3, z=ef3 , 1=lm3, l1=Len3)
MP4 <— MP(x=mk4, y=meand , z=ef4 , 1=lm4 , 11=Len4)

LLLL AL AL AL L LL L LLLLLL
va va ..

Denf <— function (x,y,z,1,n){
Mden <— rep(NA,3);Mam <— rep (NA,3)
for(k in 1:3){
mden <— rep (NA,lm1);mdenl <— rep(NA,Im1);:mlam <— rep(NA,Iml)
for (i in 1:1)]
mden[i] <— list(z + y[,1:(k+1))%%[[k]][[i]])
mdenl [i] <— list(z + y[,1:(k+1)]%%[[k]][[i]])

mden [[i]][which(mdenl [[i]] <0)] <— 0
mlam[i] <— list (mdenl[[i]]*n[i])
}
Mden[k] <— list (mdenl)
Mlam [k]| <— list (mlam)
}
return(list (den=Mden, int=Mlam))
}
Mdenl <— Denf(x=MP1,y=efl ,z=meanl, l=Ilm1,n=Lenl)$den
# individual intensity function of FPCA
Mden2 <— Denf(x=MP2,y=ef2 , z=mean2, 1=Ilm2 ,n=Len2)$den
Mden3 <— Denf (x=MP3,y=ef3 , z=mean3, 1=Ilm3 ,n=Len3)$den
Mdend <— Denf(x=MP4, y=ef4 , z=mean4 , 1=lm4 ,n=Len4 )$den
par (mfrow=c (2,2))
plot (S1,Mdenl [[3]][[1]] , type="1",ylim=c(0,159),col=1,xlab="Time’
,ylab="Intensity ’ ,main="EC_582")

for (i in 2:lml1){
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lines (S1,Mdenl [[3]][[i]],col=1)

}
plot (S2,Mden2 [[3]][[1]] , type=’1",ylim=c(0,159),col=1,xlab="Time’
,ylab="Intensity ’ ,main="EC_.397 ")
for (i in 2:lm2){
lines (S2,Mden2 [[3]][[i]],col=1)

}
plot (S3 ,Mden3 [[3]][[1]] ,type="1",ylim=c(0,159),col=1,xlab="Time’
,ylab="Intensity ’ ,main="EC_430 ")
for (i in 2:lml1){
lines (S3,Mden3 [[3]][[i]],col=1)

}
plot (S4 ,Mden4 [[3]][[1]] , type="1",ylim=c(0,159),col=1,xlab="Time’
,ylab="Intensity ’ ,main="EC_448 ")
for (i in 2:lm4){
lines (S4,Mdend [[3]][[i]],col=1)

# model checking

7 v v v v 7 v 7 7 v
7777 777 7 7) 7 7 777 777 7) 7777 7

Denfl <— function(o,s,n,g){
DY <— rep(NA,3)
for(k in 1:3){
dy <— rep(NA,n)
for (i in 1:n){

dy[i] <= list ((approx(x=s,y=o[[k]][[i]],xo=g[[i]])8y))
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t
DY[k] <— list (dy)

}
return (DY)

DM1 <— Denfl (o=Mdenl, s=S1,n=Iml,g=t1

DM3 <— Denfl

(o )
DM2 <— Denfl (0o=Mden2, s=S2 ,n=lm2,g=t2)
(0o=Mden3, s=S3 ,n=lm3 ,g=t3)
(o )

DM4 <— Denfl (o=Mden4, s=S4 ,n=lm4 , g=t4

QQl <— function(x,y,n,1){
u<— rep(NA,3);cl <~ rep(NA,3);cu <— rep(NA,3);q <— rep(NA,3)
for(k in 1:3){
ul <— rep(NA,n);cul <— rep(NA,n);cll <— rep(NA,n)
ql <~ rep(NA,n);qll <— rep(NA n)
for(i in 1:n){
ul[i] <= list(1/1[i] *(1:(1[i]-1)—-1/2))

/2 (y (BT ity L3 LLE LG ]))
}
ql[i] < list (sort(l—exp(—qll[[i]]) ,decreasing=F))
}
ulk] <— list(ul)
culk] < list(cul)
cl[k] <= list(cll)

qlk] <— list(ql)
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return(list (u=u,cu=cu, cl=cl ,q=q))

}
MQl <— QQl(x=t1,y=DMl,n=Im1,1=Lenl) # K-S plot
MQ2 <— QQl(x=t2 ,y=DM2,n=Im2, I=Len2)
M3 <— QQl(x=t3 ,y=DM3,n=Im3, I=Len3)
M4 <— QQl(x=t4 ,y=DM4,n=Im4 , I=Len4)

v’ Y/ Y/ Y/ v’ v’ Y/
y v v 11 7 7 v yv v

library (fda.usc)
unlis <— function (x,1){
m <— matrix(unlist (x[[3]]) ,ncol=l)

return (m)

mdl <— unlis (Mdenl,lml)
md2 <— unlis (Mden2,1m?2)
md3 <— unlis (Mden3,1m3)
md4 <— unlis (Mden4,1m4)
D1 <— rep(NA,Im1);D2 <— rep(NA,Im2);D3 <— rep(NA,lm3);D4 <— rep(NA,1lm4)
for (i in 1:lml1){
D1[i] <— list(density(t1[[i]],bw=bwl[i]
/sqrt (66),kernel="epanechnikov” ,from=0,to=R1[2] ,n=Snl))
D2[i] <— list(density (t2[[i]],bw=bw2][i]
/sqrt (66),kernel="epanechnikov” ,from=0,to=R2[2] ,n=Sn2))
D3[i] <— list (density (t3[[i]],bw=bw3[i]
/sqrt (66),kernel="epanechnikov” ,from=0,to=R3[2] ,n=Sn3))
D4[i] <— list(density (t4[[i]],bw=bw4[i]

/sqrt (66),kernel="epanechnikov” ,from=0,to=R4[2] ,n=Sn4))

}

Dyl <— (matrix(rep(NA,lm1%Snl) ,nrow=lml))
Dy2 <— (matrix(rep (NA,lm2%Sn2) nrow=Im?2))

Dy3 <~ (matrix (rep(NA,Im3%Sn3) ,nrow=Ilm3))
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Dy4 <— (matrix (rep(NA,1m4xSn4) ,nrow=lm4))
for (i in 1:lml1){

Dyl[i,] <- D1[[i]]8y

Dy2[i,] <- D2[[i]]$y

Dy3[i,] <- D3[[i]]8y

Dy4[i,] <- D4[[i]]$y

mdatosl2 <— cbind (mdl,md2)
mdatosl3 <— cbind(mdl,md3)
mdatosl4 <— cbind(mdl,md4)
mgroupl2 <— c(rep(1,lml),rep(2,lm2))
mgroupl3 <— c(rep(1l,lml),rep(2,lm3))
mgroupl4d <— c(rep(1,lml),rep(2,lm4))
tdatos2 <— cbind (mdl,md2,md3,md4)

tgroup <— c(rep(1,lml),rep(2,lm2) ,rep(3,lm3),rep(4,lm4))

mfd12 <— fdata(t(mdatosl2),argvals=S1)
mfd13 <— fdata(t(mdatosl3),argvals=S1)
mfdl4 <— fdata(t(mdatosl4), argvals=S1)

tfd2 <— fdata(t(tdatos2),argvals=S1)
mresl2=anova.onefactor (mfd12, mgroupl2,nboot=20,plot=IRUE)
mresl3=anova.onefactor (mfd13, mgroupl3,nboot=20,plot=TRUE)

mresl4=anova.onefactor (mfd14 ,mgroupl4 ,nboot=20,plot=TRUE)

mres2=anova.onefactor (mfd2, tgroup ,nboot=20,plot=TRUE) # functional anova
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mres3=anova. onefactor (mfl2 , tgroup ,nboot =20, plot=TRUE)
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