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Abstract 

Molecular electronics is a flexible approach to studying nanoscale thermoelectricity and helping the 

discovery of new low-cost and environmentally friendly organic thermoelectric materials. This thesis 

introduces the theoretical tools used to support this process, starting in chapters 2 and 3, respectively. I 

have addressed the fundamental equations and techniques that support my work, such as the 

Schrodinger equation, density functional theory (DFT), and the SIESTA programme, which implements 

DFT and solves the underlying equations. I also explain single particle transport theory, which is based 

on the Hamiltonian and Green's functions, and provide some illustrations of how it may be employed. 

Chapter 4 is the first results chapter in this thesis, in which the three endohedral metallofullerenes 

(EMFs) Sc3N@C80, Sc3C2@C80 and Er3N@C80 are studied and compared with C60. I commenced my 

investigation by displaying the wave function plots of the molecules under investigation. I examined 

the charge transfer between metallic moieties and the cage employing three different methods: Mulliken 

population, Hirshfeld, and Voronoi. The charge transfer analyses were performed on a gold substrate 

and in the gas phase. The counterpoise approach was utilised to determine the most energy-favourable 

orientation for metallic moieties like Sc3N@C80, Sc3C2@C80 and Er3N@C80 to settle within the Ih-cage. 

I have shown how rotation angles  θ,𝛷, α and 𝛽 about different axes play an important role in the 

conductance and Seebeck coefficient fluctuations. I investigated how the total energy varies with the 

angle of rotation, both in presence and absence of the gold substrate. There are an infinite number of 

inequivalent orientations of the metallic moieties comparative to their fullerene cage. Therefore, for 

each of the four axes, I considerd one mode of rotation in the gas phase and three modes of rotation on 

a substrate. I used DFT to determine the optimum distances between EMFs and the metallic electrodes.  

In chapter 5, I address the parameters that I investigated in Chapter 4 to enhance my simulations. Then 

I demonstrated how standard deviations in the Seebeck coefficient  𝜎𝑆 of EMF-based junctions are 

associated to the geometric standard deviation 𝜎 and charge inhomogeneity 𝜎𝑞, exhibiting a fascinating 

structure-function relation. I compared EMF molecules to C60 and identified that 𝜎𝑞 , 𝜎𝑆 are the highest 
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for Sc3C2@C80, and the lowest for C60, whereas the other EMFs follow the order Sc3C2@C80 >Sc3N@C80 

> Er3N@C80 > C60.  

A significant value of 𝜎𝑆 indicates that a molecule could exhibit a wide range of Seebeck coefficients, 

and if the orientations corresponding to the large range can be isolated and controlled, the molecule has 

the potential to exhibit high-performance thermoelectricity. Large values of 𝜎𝑆 are associated with a 

broad Seebeck coefficient distribution, with both positive and negative signs. Ffor the EMFs explored 

here, this shows that they are bi-thermoelectric materials. Furthermore, molecules with high charge 

inhomogeneity reveal rare examples of high thermopower, suggesting that such molecules have the 

potential to produce high-performance thermoelectricity if these rare junction configurations can be 

isolated and controlled. 
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Chapter 1 

Molecular electronics and thermopower 

Molecular electronics is the study of molecules in order to build up electronic components or electronic 

devices [1]. Electrical components such as single-molecule [2] junctions, have the potential to deliver: 

memories [3], sensors [4], logic gates [5], and thermoelectric energy with ultralow energy needs and 

device areas less than 10 nm. These are also of interest due to their ability to probe room-temperature 

quantum properties at a molecular scale, including thermoelectricity and quantum interference [6].  

In 1974, the first molecular rectifier was proposed by Aviram and Ratner [7]. Since then, the field of 

single molecule electronics has stimulated the interest of many scientists. A vast number of molecules 

have been investigated by modifying their chemical structure, some of which act as fundamental 

electronic elementary devices, including conducting wires [8] rectifiers [9] and negative differential 

resistance devices, [10]. The use of specialised intermolecular interactions to create molecular devices 

is a significant challenge in molecular electronics. As a consequence, a thorough understanding of 

electron transport between nearby molecules is required. 

In this thesis, electrode molecule-electrode systems are examined primarily using theoretical 

methodologies. Experimental measurements of these systems have been made by experimental groups 

using two kinds of equipment: Scanning Tunneling Microscopy Break Junctions (STM-BJ) [11] and 

Mechanically Controllable Break Junctions (MCBJ) [12]. Lately, more scalable methods for connecting 

single molecules, such like graphene-based junctions and silicone-based junctions have been developed. 

However, structural issues in 2D hexagonal materials have been discussed for some years [13]and 

consequently their recruitment as electrodes is still in its initial stages. Therefore, for the time being, 

gold break junctions are the recommended contacting approach. Several strategies for regulating 

electron transport have been devised within such limits, including electrochemical gating [14] and 

mechanical gating [15]. 
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Recently, there has been significant progress in understanding the thermoelectrical characteristics of 

single-molecule junctions [16], stimulated in part by observations of high Seebeck coefficient of order 

161 µVK for PEDOT: PSS organic films [17]. It was recently found that the sign of endohedral 

metallofullerenes EMF and nanotubes may be altered by applying pressure, strain, and intermolecular 

interactions [18]. In endohedral fullerenes, the presence of transport resonances closer to the Fermi 

level, according to theoretical predictions, is a major factor to determine the thermoelectric performance 

of a molecular junction. The effect of transmission resonances was explored theoretically by Finch et 

al [19]. Fano resonance mostly around the Fermi level enhances thermopower and thermoelectric 

efficiency. Enhanced thermoelectric properties have also been predicted in the vicinity of interference-

induced transmission nodes [20]. Sc3N@C80 EMF, is known to have a relatively small energy gap [21] 

and to be particularly stable at room temperature and even at elevated temperatures [22]. The presence 

of a metallic moiety within the fullerene cage not only will provide new resonances, but also allowed 

tuning of the position of the resonance and hence the sign of the thermopower by mechanically 

compressing the junction according on the orientation of the molecule. 

Kroto, Curl, and Smalley [23] discovered fullerenes in 1985 and were awarded the 1996 Nobel Prize of 

Chemistry for their work. Fullerenes are closed-cage molecules composed entirely of carbon atoms. C60 

was the first example synthesised and is the most stable and common fullerene. The discovery of smaller 

and higher fullerenes, (see e.g. Figure 1.1a, C78) made up of 28 to hundreds of carbon atoms, extends 

the family of fullerenes. Other significant breakthroughs in carbon nanoscience have followed their 

discovery, including the discovery of carbon nanotubes and graphene. Fullerenes are made up of 

combined pentagons and hexagons., with C60 possessing 12 pentagons and 20 hexagons. However, 

regardless of the fact that it contains all-conjugated carbon atoms, C60 is not a particularly aromatic 

compound.  

The closed-cage form of fullerene molecules is suitable for encapsulating a diverse range of atoms, 

molecules, and clusters. These compounds are known as endohedral fullerenes, an example of which is 

shown in Figure 1.1b. In 1991, La@C82 was identified as the first endohedral fullerene [24]. From then 

on, a diverse variety of endohedral fullerenes have been synthesised, whose striking features, result 
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from the interaction between the encapsulated species and the cage [25,26]. Endohedral 

metallofullerenes (EMFs) are formed by encapsulating metal species, which interact with the 

surrounding cage and affect the electrical structure, leading to various of applications in materials 

science, photovoltaics, and medicine.  

 

 

 

 

 

 

 

Figure 1.1. a: C78   an example for fullerene and b: La@C82  an example for endohedral fullerenes. 

 

1.2 Thesis outline 

As an introduction to the theoretical methods used to describe electron transport in molecular-scale 

junctions, chapter 2, provides an outline of density functional theory (DFT). The Hohenberg-Kohn 

theorems and the Kohn-Sham theorems are described and the Exchange Correlation Functionals and 

correlation energies in the local density approximation and the generalized gradient approximation are 

explained. Finally, the SIESTA code is introduced, along with some fine details of the calculations, 

such as the use of pseudopotentials and finite basis sets. 

Chapter 3, discusses electron transport and the Landauer formula. It also, provides examples of the 

Green’s functions for a Scattering Theory in simple one-dimensional discretized lattice and then moves 

on to calculating the scattering matrix of a ssytems connected to one-dimensional leads. In addition, it 

presents a generalized approach to transport calculations. 

In Chapter 4, the electronic structure of three endohedral metallofullerenes (EMFs), including 

Sc3N@C80, Sc3C2@C80, and Er3N@C80, in addition to an empty cage such as C60 were intensively 

b a
a 
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explored. I start by examining the wave functions of the studied molecules. Three different methods 

including Mulliken pobulation, Hirshfeld and Voronoi analyses, were employed to track down the 

charge transfer between metallic moieties and the cage. The charge transfer analyses were applied in 

the gas phase and on a gold substrate. The counterpoise method was used to determine the most probable 

orientation for metallic moieties inside the cage. The orientations of metallic moieties were also 

explored relative to 3 different rotation axes θ,Φ and β in gas phases. A similar approach, was used on 

Au-substrate, where in 4 different rotation angles θ,Φ, α and β are defined I also demonstrate how 

θ,𝛷, α and 𝛽 axes pass through the metallic moieties and investigateing how the total energy varies 

with the angle of rotation, both in presence and absence of a gold substrate. For each of the 4 axes, I 

consider one mode of rotation in the gas phase and three modes of rotation on a substrate. 

In chapter 5, the electrical conductance and Seebeck coefficient of three endohedral metallofullerenes 

(EMFs) Sc3N@C80, Sc3C2@C80, and Er3N@C80, are thoroughly investigated and it is found that their 

standard deviations are correlated with the degree of structural variations and the degree of charge 

inhomogeneity on the fullerene cages.  

All EMFs studied are bi-thermoelectric systems, exhibiting both positive and negative Seebeck 

coefficients, in contrast to the empty C60. The distance 𝑑 between the top-most plane of the Au substrate 

and the closest metallic atom fluctuates due to rotations on the surface and the degree of variation is 

characterised by the associated standard deviation 𝜎, which is a purely geometric quantity. Similarly, 

the degree of charge inhomogeneity on the fullerene cage can be characterised by a standard deviation 

𝜎𝑞.  

In chapter 5, I also prove that standard deviations in the Seebeck coefficients 𝜎𝑆 of EMF-based junctions 

are correlated with the geometric quantity 𝜎 and the charge inhomogeneity 𝜎𝑞. I benchmark these 

molecules against C60 and find that all of 𝜎𝑞 , 𝜎𝑆 are the largest for Sc3C2@C80, all are the smallest for 

C60 and for the other EMFs. This means that external measurements of fluctuations in the Seebeck 

coefficient provide insight into the internal structure and charge distribution of endohedral 

metallofullerene. 
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Chapter 2 

Density Functional Theory 

This chapter introduces the density functional theory (DFT) formalism as well as the SIESTA DFT 

code, which is employed in all of the electronic structure computations in this thesis. The initial step in 

determining the molecule's electron transport characteristics is to use DFT to obtain a mean-field 

Hamiltonian. However, since the Hamiltonian only pertains to the isolated molecule, it must still be 

linked to semi-infinite leads, as described in the next chapter. 

 

2.1 Introduction 

It is necessary to have a reliable source of structural and electronic information in order to describe the 

behaviour of molecular electronic devices. In this chapter, I will give a brief summary of density 

functional theory (DFT) and the SIESTA (Spanish Initiative for Electronic Simulations with Thousands 

of Atoms) code [1], which I utilised extensively during my PhD studies as a theoretical tool for 

investigating both qualitatively and quantitatively the architectures of molecules, charge densities, and 

band structures. SIESTA is a collection of algorithms and a fully integrated software programme for 

performing DFT calculations on a large number of atoms (1000) in a matter of hours, days, or weeks. 

The fundamental principle of DFT is that every physical attribute of a complex system composed of 

several interacting particles can be represented as a function of the system's ground state density. The 

proof of the existence of such a functional was first presented by Hohenberg and Kohn [2] in 1964. 

However, the proof does not provide us any information on the shape of the functional. However, an 

ansatz proposed by Kohn and Sham [3] opened the door to applications for realistic physical systems. 

Since then, DFT has been a common tool in theoretical physics and molecular chemistry. This chapter 

will give an overview of the principles of DFT and all of its numerical applications. The literature is 

quite broad and deals with the subject with considerably more detail [4-7]. I will begin by outlining the 

several alternative approaches to the many body issue, and then I will demonstrate the Hartree-Fock 
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technique and the Hohenberg-Kohn theorems, followed by a demonstration of the Kohn-Sham ansatz. 

Next, I distil the most often used functional forms, which are critical in applied numerical analysis. I 

also focus on localised base sets, pseudo-atomic orbits defining the number space of the Hilbert 

computations in this thesis, and Basis Set Superposition Error Correction (BSSE) and Counterpoise 

Correction (CP). 

 

2.2 The Schrödinger Equation and Variational Principle 

The Schrödinger equation, which is time independent and non-relativistic, may be used to 

describe any non-relativistic multi particle system: 

H𝜓𝑖(𝑟1, 𝑟2, … , 𝑟𝑁 , �⃗⃗�1, �⃗⃗�2, … , �⃗⃗�𝑀 = 𝐸𝑖𝜓𝑖(𝑟1, 𝑟2, … , 𝑟𝑁 , �⃗⃗�1, �⃗⃗�2, … , �⃗⃗�𝑀)                    (2.1)   

Where  𝜓𝑖  is the wavefunction of the  𝑖𝑡ℎ state of the system and  𝐸𝑖 is the numerical value of the 

energy of the state represented by  𝜓𝑖  represents the Hamiltonian operator of a system consisting of 

N-electrons and M-nuclei that explains the interaction of particles with each other. The Hamiltonian 

operator of such a system can be written as a sum of five terms given by [2, 3, 8-12]: 
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(2.2) 

 

Where 𝑖 and 𝑗 denote the N-electrons while 𝑛 and �́� run over the M-nuclei in the system, 𝑚𝑒 and 𝑚𝑛 

are the mass of electron and nucleus respectively, 𝑒 and 𝑍𝑒 are the electron and nuclear charge 

respectively. The position of the electrons and nuclei are denoted as 𝑟𝑖⃗⃗⃗  and �⃗⃗�𝑛  respectively, and  𝛻2 is 

the Laplacian operator, in Cartesian coordinates is defined as 
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𝛻𝑖
2 =

𝜕2

𝜕𝑥𝑖
2 +

𝜕2

𝜕𝑦𝑖
2 +

𝜕2

𝜕𝑧𝑖
2 

According to the illustration given by the equation (2.2), the terms, 𝑇𝑒  is the kinetic energy of electrons, 

while 𝑇𝑛  is denoted as kinetic energy of nuclei in the system. Additionally, the last three terms describe 

the potential part of the Hamiltonian; the term 𝑈𝑒𝑛 represents the attractive electrostatic interaction 

between nuclei and electrons in the system. The electron-electron(𝑈𝑒𝑒) and nuclear-nuclear (𝑈𝑛𝑛) are 

the repulsive part of the potential respectively [1, 3, 4, 9, 11] 

 

The Born-Oppenheimer approximation, also known as the clamped nuclei approximation, may be used 

in the analysis because about 99.9% of the mass of an atom is contained in the nucleus; also, the nuclei 

in the system can be regarded fixed in comparison to the electrons. This implies, for example, that the 

hydrogen atom's mass concentration is shown by the fact that the nucleus weighs about 1800 times 

more than the electron. If the nuclei of the treated atoms are maintained stable, the resultant kinetic 

energy accumulates to zero, implying that they no longer contribute to the complete wave-function. 

As a consequence of the preceding assumption, the electron system's Hamiltonian expression decreases 

the Hamiltonian to a different figure; similarly, the electronic Hamiltonian H𝑒𝑙𝑒, which in a fixed 

nuclear representation may well be given by [3, 4, 9, 11]: 
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Where; the 𝑈𝑛𝑛  is an obtained constant for the system. The Schrödinger equation for ‘clamped-nuclei’ 

is represented as: 

 

Where; 𝜓𝑒𝑙𝑒  is dependent on the electron coordinates for the system, while the nuclear part enters only 

dimensionally and does not clearly appear in 𝜓𝑒𝑙𝑒. 

Total energy 𝐸𝑡𝑜𝑡𝑎𝑙 is given as the sum of  𝐸𝑒𝑙𝑒 and the constant nuclear repulsion term for the system 

which is given as: 

 

Wave-function for a system is not an observable quantity, its modulus squared can be written in the 

form as: 

 

  

The above expression represents the fact that the probability that electrons 1, 2…, N are found in the 

volume elements𝑑𝑟1 𝑑𝑟2… . . 𝑑𝑟𝑁, this is because the electrons are indistinguishable, and this 

probability is unchangeable if the coordinates of any two of electrons (i and j) are swapped [15]: 

H𝑒𝑙𝑒 = −
ℏ2

2𝑚𝑒
∑ ∇𝑖

2𝑁
𝑖=1

⏞        
𝑇𝑒

−
1

4𝜋𝜀𝑜
∑ ∑

1

|�⃗�𝑖−�⃗⃗�𝑛|
𝑍𝑛𝑒

2𝑀
𝑛=1

𝑁
𝑖=1

⏞                
𝑈𝑒𝑛

+

1

4𝜋𝜀𝑜

1

2
∑ ∑

𝑒2

|�⃗�𝑖−�⃗⃗�𝑗|

𝑁
𝑖≠𝑗

𝑁
𝑖=1

⏞              
𝑈𝑒𝑒

 +
1

4𝜋𝜀𝑜

1

2
∑ ∑

𝑍𝑛𝑍𝑛′𝑒
2

|�⃗⃗�𝑛−�⃗⃗�𝑛′|
𝑀
𝑛≠𝑛′

𝑀
𝑖=1

⏞                
𝑈𝑛𝑛

              

    (2.3) 

H𝑒𝑙𝑒𝜓𝑒𝑙𝑒 = 𝐸𝑒𝑙𝑒𝜓𝑒𝑙𝑒               (2.4) 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑒𝑙𝑒 +𝑈𝑛𝑛               (2.5) 

|𝜓(𝑟1, 𝑟2, … , 𝑟𝑁)|
2𝑑𝑟1 𝑑𝑟2…𝑑𝑟𝑁                (2.6) 

|𝜓(𝑟1, 𝑟2, … 𝑟𝑖 , 𝑟𝑗, … , 𝑟𝑁)|
2
= |𝜓(𝑟1, 𝑟2, … 𝑟𝑗, 𝑟𝑖 , … , 𝑟𝑁)|

2
          (2.7) 
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Because of the reason that electrons are fermions with spins of a half then the value of 𝜓 must therefore 

be anti-symmetric with respect to the interchange of the spatial and the spin coordinates as well in any 

pair of electrons: 

 

A logical result of probability interpretation format of the wave-function is that the integral of equation 

2.6 over the full range of all variables gives an output of one. This mean, the probability of finding the 

N-electron at any position in a space must be exactly unity, 

  

A wave-function that meets the requirements for equation (2.9) is a normalized one. 

 

Since the Schrödinger wave-equation does not have an exact solution, several theories have been 

developed to fulfil this objective; this effort start with Hartree, Hartree-Fock and many others. A large 

number of these theories were based on a significant theoretical principle referred to as variational 

principle of the wave-function where this principle leads an analysts on how to look for solutions by 

using suitable trial wave-functions 𝜓𝑇𝑟𝑖  [11]. The above principle is meaningful in the study of the 

ground state, but is not very fruitful in the study of excited states. When a system is in the state 𝜓𝑇𝑟𝑖 , 

the expectation value of the energy is given by the expression:  

 

 

 

  

𝜓(𝑟1, 𝑟2, … 𝑟𝑖 , 𝑟𝑗 , … , 𝑟𝑁) = −𝜓(𝑟1, 𝑟2, … 𝑟𝑖 , 𝑟𝑗 , … , 𝑟𝑁)           (2.8) 

∫…∫|𝜓(𝑟1, 𝑟2, … , 𝑟𝑁)|
2

𝑑𝑟1 𝑑𝑟2…𝑑𝑟𝑁 = 1 
    (2.9) 

 

〈𝐸𝑇𝑟𝑖〉 =
∫𝜓𝑇𝑟𝑖H 𝜓𝑇𝑟𝑖 

∗ 𝑑�⃗�

∫𝜓𝑇𝑟𝑖 𝜓𝑇𝑟𝑖
∗  𝑑�⃗�

       (2.10) 

〈𝐸𝑇𝑟𝑖〉 =
∫𝜓𝑇𝑟𝑖H 𝜓𝑇𝑟𝑖 

∗ 𝑑�⃗�

∫𝜓𝑇𝑟𝑖 𝜓𝑇𝑟𝑖
∗  𝑑�⃗�

         (2.11) 
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Variational principle that is given in the equation 2.10 implies that the energy computes as the 

expectation value of the Hamiltonian operator from any 𝜓𝑇𝑟𝑖  that is an upper bound of the true ground-

state energy 𝜓𝐺𝑆. Suppose 𝜓𝑇𝑟𝑖  is normalized as per the equation 2.9 while 𝜓𝑇𝑟𝑖  then it equals to the 

ground state (𝜓𝑇𝑟𝑖 = 𝜓𝐺𝑆). This indicates that entity 𝐸𝑇𝑟𝑖  is equal to the exact ground state energy 𝐸𝐺𝑆, 

additionally, we can reconfigure the equation 2.10 for the ground state as: 

 

  

From the normalized 𝜓𝑇𝑟𝑖   we can clarify that 𝐸𝑇𝑟𝑖 > 𝐸𝐺𝑆 or 𝐸𝑇𝑟𝑖 = 𝐸𝐺𝑆. The best chose for 𝐸𝑇𝑟𝑖 is 

therefore the one in which 𝐸𝑇𝑟𝑖  is reduced [3]. 

 

2.3 The Hohenberg-Kohn Theorems 

P. Hohenberg and W. Kohn demonstrated in 1964 [2] that there is a relationship between the ground 

state energy and the density, 𝜌(𝑟) ,of an interacting electron system. The Hohenberg-Kohn theorems 

are two simple but strong statements: 

a) The external potential, 𝑉𝑒𝑥𝑡 , is a density-specific functional (𝑟). Given that 𝑉𝑒𝑥𝑡  fixes the 

system's Hamiltonian, 𝐻, it is obvious that the complete many-body ground state is a unique 

functional of  𝜌(𝑟). 

 b)   The ground state, 𝐸𝐻𝐾 , is a ground state density  𝜌(𝑟).  

 

It is a straightforward matter of reduction ad absurdum to demonstrate the validity of the first theorem 

presented above. Assume we have two external potentials, 𝑉𝑒𝑥𝑡
1  and 𝑉𝑒𝑥𝑡

2 , that vary by a constant. 

Assume that the two external potentials provide the same ground-state density 𝜌(𝑟). Each system's 

Hamiltonians are designated by   𝐻(1) and  𝐻(2)  and, since they vary, they will have distinct ground-

state wavefunctions,  𝜓(1) and 𝜓(2).  We have  𝜓(2) since it is not a ground state of 𝐻(1), we have: 

〈𝐸𝐺𝑆〉 = ∫𝜓𝐺𝑆 H 𝜓𝐺𝑆 
∗ 𝑑𝑟         (2.12) 
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Similarly: 

The simplified assumption is that our ground states are non-degenerate. The problem has been  

formulated to incorporate degeneracies in the literature [10, 17]. We can rewrite equation 2.14: 

Also, equation 2.15: 

When we combine equations 2.14 and 2.15, we get the following contradiction:  

𝐸(1) + 𝐸(2) <  𝐸(1) + 𝐸(2) 

Two or more potentials may vary by no more than a constant and can produce the same ground-state 

density, hence it is impossible for there to be two such potentials. 

The second theorem is just as easy to prove as the first. Consider the following equation for the system's 

total energy, 𝐸: 

The kinetic term,  𝑇 and internal interaction of the electrons,  𝐸𝑖𝑛𝑡 , are, by definition, universal. 

𝐸(1) = 〈𝜓(1)|𝐻(1)|𝜓(1)〉  <  〈𝜓(2)|𝐻(1)|𝜓(2)〉         (2.13) 

𝐸(2) = 〈𝜓(2)|𝐻(2)|𝜓(2)〉  <  〈𝜓(1)|𝐻(1)|𝜓(1)〉      (2.14) 

 

〈𝜓(2) |𝐻
(1)
| 𝜓(2)〉 = 〈𝜓 |𝐻

(2)
| 𝜓(2)〉 〈𝜓(2) |𝐻

(1) −𝐻
(2)
| 𝜓(2)〉 

= 𝐸(2) + ∫ 𝑑𝑟 (𝑉𝑒𝑥𝑡
(1)(𝑟) − 𝑉𝑒𝑥𝑡

(2)(𝑟)) ρo (r) 

      (2.15) 

〈𝜓(2) |𝐻
(1)
| 𝜓(2)〉 = 𝐸(2) + ∫ 𝑑𝑟 (𝑉𝑒𝑥𝑡

(1)(𝑟) − 𝑉𝑒𝑥𝑡
(2)(𝑟)) 𝜌𝑜 (𝑟)        (2.16) 

𝐸(𝜌) = 𝑇(𝜌) + 𝐸𝑖𝑛𝑡(𝜌) + ∫ 𝑑𝑟𝑉𝑒𝑥𝑡(𝜌)(𝑟) (2.17) 
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Consider a system with a ground-state density of  𝜌𝑜 , an external potential of   𝑉𝑒𝑥𝑡  , and a wavefunction 

of  𝜓0 . According to the first theorem,  𝜌𝑜 determines the Hamiltonian, therefore for any density and 

wavefunction, 𝜓, other than the ground state, we get: 

 

This reduces the functional density of the ground, 𝜌𝑜, equation 2.18. As a result, if we know the 

functional:  𝑇(𝜌) + 𝐸𝑖𝑛𝑡(𝜌)  , we can extract the ground-state of the system and compute all ground-

state attributes by minimising equation 2.18. 

 

2.4 The Kohn-Sham Theorems 

We have already shown that by acquiring the ground-state density, we can calculate the ground-state 

energy, and it is theoretically possible to compute the ground-state energy by getting the ground-state 

density. The precise form of the functional indicated in equation 2.18, however, is unknown. The kinetic 

term as well as the internal energy of the interacting particles cannot be represented as a function of 

density in general. The solution was introduced by Kohn and Sham in 1965 [3].   

The original Hamiltonian can be substituted, according to Kohn and Sham, with an effective 

Hamiltonian of non-interacting particles, with a real external potential having the same ground-state 

density as the original system. Because this is not a defined recipe, it is merely an ansatz, but a non-

interacting problem is far easier to resolve. Contrary to equation 2.18, the functional energy of the ansatz 

Kohn-Sham will have the formula: 

 

𝐸𝑜 = 〈𝜓0|𝐻|𝜓0〉  <  〈𝜓|𝐻|𝜓〉 = 𝐸          (2.18) 

 

𝐸𝐾𝑆(𝜌) =  𝑇𝐾𝑆(𝜌) + +∫ 𝑑𝑟𝑉𝑒𝑥𝑡(𝑟)𝜌(𝑟) + 𝐸𝐻(𝜌) + 𝐸𝑥𝑐(𝜌)            (2.19) 



17 

 

 𝑇𝐾𝑆  is the non-interacting system's kinetic energy. The kinetic energy of the interacting system was 

employed in equation 2.18.  𝑇 the distinction is known as the exchange correlation functional, 𝐸𝑥𝑐 , 

equation 2.21. 

The Hartree functional, 𝐸𝐻 , represents the electron-electron interaction using the Hatree-Fock method 

and has the following form: 

This is a roughly 𝐸𝑖𝑛𝑡  version, as previously defined. Again,  𝐸𝑥𝑐 refers to the difference. As a result, 

the exchange correlation functional, 𝐸𝑥𝑐 , represents the difference between the exact and approximation 

solutions to the kinetic energy term and the electron-electron interaction term. Its definition is as 

follows: 

In practice, the first three functionals of equation 2.19 are easily defined and account for the majority 

of the contribution to ground-state energy. In comparison, the exchange correlation functional makes a 

minor contribution. Despite decades of investigation, there is no exact remedy. The next part discusses 

several excellent approximations that have been developed. 

 

2.5 The Exchange Correlation Functionals 

Several modifications on the exchange and correlation energy have been published in the literature. The 

first successful form was the Local Density Approximation (LDA) [26, 27], That depends on the density 

only, and hence is functional locally. Then the next step was the Generalized Gradient Approximation 

(GGA) [17-20], Including the density derivative, it also includes neighbourhood information and is thus 

semi-local. 

         𝐸𝐻(𝜌) =  
1

2
∫
𝜌(𝑟)𝜌(𝑟′)

|𝑟 − 𝑟′|
 𝑑𝑟𝑑𝑟′          (2.20) 

         𝐸𝐻(𝜌) =  
1

2
∫
𝜌(𝑟)𝜌(𝑟′)

|𝑟−𝑟′|
 𝑑𝑟𝑑𝑟′                                           (2.14)                       

 

𝐸𝑥𝑐(𝜌) = (𝐸𝑖𝑛𝑡(𝜌) − 𝐸𝐻(𝜌)) + (𝑇(𝜌) − 𝑇𝐾𝑆(𝜌))           (2.21) 
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One of the most commonly used approximations in density functional theory is LDA and GGA.LDA 

and GGA can't be considered the only possible functionals. Some of these functionals are tailored to fit 

specific needs of basis sets used in solving the Kohn-Sham equations, equation 2.12 and a large category 

is the so-called hybrid functionals (e.g. B3LYP [3], HSE [30] and Meta hybrid GGA [29, 31]), which 

combine the LDA and GGA forms. 

One of the most recent and universal features, the Van der Waals density functional (vdW-DF) [32], 

contains non-local terms and has proven to be very accurate in systems where dispersion forces are 

important [33, 34].  

Following sections will provide a brief introduction to the Local Density Approximation and the 

Generalized Gradient Approximation. 

 

2.5.1 Local Density Approximation (LDA) 

The exchange correlation functional in LDA simply depends on the local density. This approximation 

can be expected to produce satisfactory results for systems where the density is does not change too 

rapidly. 

In some ways, the LDA is the most basic representation of the exchange and correlation energy. It is a 

basic yet powerful functional, and it is known to be correct for graphene and carbon nanotubes, as well 

as where the electron density is not changing rapidly. For example, for atoms that have d and f-type 

orbits, a bigger inaccuracy is expected. But LDA has numerous drawbacks: the band gap in 

semiconductors and insulators is sometimes underestimated with a significant inaccuracy (alternative 

to 10 –30%), for example. For instance. So, it is advisable to try to improve your functionality. 
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2.5.2 Generalized Gradient Approximation (GGA) 

When derivatives are included in the functional form of the exchange and correlation energies the GGA 

is obtained. In this condition there is no closed form for the functional exchange, so analytical solutions 

have to have been used to calculate the correspondence contributions. Just as in the case of the LDA 

there exist many parameterizations for the exchange and correlation energies in GG [17- 19, 35]. 

For the approximation of exchange-correlation energies in the DFT, LDA and GGA are two of the most 

widely utilized approximations. Several functionalities, beyond LDA and GGA, are also provided. In 

overall, the validity of these functions is not a sensible theory. Tests are performed on diverse materials 

to test functional properties for a wide range of systems and then statistical comparisons are performed 

to establish valid data. 

 

2.6 Pseudopotentials 

I have demonstrated how to transform a huge interacting problem into an effective non-interacting 

problem using the Kohn Sham formalism and an exchange-correlation functional. This greatly 

simplifies the situation from a physical point of view. When molecules with a significant number of 

atoms are involved, however, the calculation becomes too massive and computationally intensive to 

use. By introducing pseudopotentials, the number of core electrons in an atom can be reduced. 

Pseudopotentials were first introduced by Fermi in 1934 [19, 20] and since then methods have evolved 

from creating not so realistic empirical pseudopotentials [21, 22] to more realistic ab-initio 

pseudopotentials [22, 24]. 

Electrons, which are commonly found in the nucleus of an atom, can be classified into two types: core 

and valence. Core electrons are found within the nucleus while the valence electrons are located in 

partially filled atomic shells. As long as core electrons are restricted around the nucleus, the only 

valence electron states overlap when atoms are brought together. This makes it possible to remove the 

core electron and replace it with a pseudopotential that allows the valence electrons to still be screened 



20 

 

as if the core electrons are still present. This dramatically lowers the number of electrons in a system 

and reduces the time and stored properties of molecules that contain a significant number of electrons.  

 

2.7 Basis Sets 

Obviously, the Hamiltonian must be diagonalized to find the wavefunctions. This procedure includes 

inverting a big matrix. The Hamiltonian must be sparse with several zeros for effective calculations. 

SIESTA uses a Linear Atomic Orbital Combination (LCAO) basis set, which decays to zero after a 

certain specified cut-off radius, and is created from atom orbitals. As the overlap between basis 

functions is reduced, the former produces the required sparse form of the Hamiltonian, even if the latter 

allows even a slight basis set to produce similar properties with that of the studied system. The simplest 

form of the atomic basis set for an atom is called a single 𝜉 basis, which corresponds to a single basis 

function, 𝜓𝑛𝑙𝑚(𝑟)  per electron orbital. In this case each basis function consists of a product of one radial 

wavefunction, 𝛷𝑛𝑙
1  and spherical harmonic 𝑌𝑙𝑚: 

 

The radial part of the wavefunction is found by using the method proposed by Sankey [25], where the 

Schrodinger equation is solved for the atom placed inside a spherical box. It is under the constraint to 

vanish at a cut-off radius 𝑟𝑐 . This constraint produces an energy shift  𝛿𝐸 within the Schrödinger 

equation such that the eigen functions first node occurs at 𝑟𝑐: 

 

𝜓𝑛𝑙𝑚(𝑟) = 𝛷𝑛𝑙
1 (𝑟)𝑌𝑙𝑚(𝛳, 𝛷)      (2.22) 

[−
𝑑2

𝑑𝑟2
+ 
𝑙(𝑙 + 1)

2𝑟2
+ 𝑉𝑛𝑙

𝑖𝑜𝑛(𝑟)]𝛷𝑛𝑙
1 (𝑟) =  (𝜀𝑛𝑙 + 𝛿𝐸) 𝛷𝑛𝑙

1 (𝑟))  
    (2.23) 
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For higher accuracy basis sets, multiple, additional radial wavefunctions can be included for each 

electron orbital. The additional radial wavefunctions, 𝛷𝑛𝑙
𝑖   for > 1 , are calculated using a split-valence 

method. This involves defining a split valence cut off for each additional wavefunction, 𝑟𝑠
𝑖  , so it is 

split into two piecewise functions: a polynomial below the cut-off and the previous basis wavefunction 

above it: 

 

Further parameters are located at the point when such wavefunction and its derivative are supposed to 

be continuous. 

Further accuracy (multiple-𝜉 polarized) can be obtained by including wavefunctions with different 

angular momenta corresponding to orbitals which are unoccupied in the atom. This is done by solving 

Eq. 2.23 in an electric field such that the orbital is polarized or deformed due to the field (see [6] for 

details) so a different radial function is obtained. This is now combined with the appropriate angular 

dependent spherical harmonic which increases the size of the basis. Table 2.1 shows the number of 

basis orbitals for a selected number of atoms for single- 𝜉 , single- 𝜉 polarised, double- 𝜉 , double- 𝜉  

polarised.  

Table 2.1: Example of the number of radial basis functions per atom as used within the SIESTA for 

different degrees of precision.   

 

𝛷𝑛𝑙
1 (𝑟) = { 

𝑟𝑙(𝑎𝑛𝑙 − 𝑏𝑛𝑙𝑟
2)                     𝑟 <  𝑟𝑠

𝑖     

𝛷𝑛𝑙
𝑖−1                               𝑟𝑠

𝑖 <  𝑟 <  𝑟𝑠
𝑖−1
                  (2.24) 

Atom Valence 

configuration 

SZ SZP DZ DZP 

H 1𝑠 1 4 2 5 

C (2s2 2P2) 4 9 8 13 

S (3S2 3P4) 4 9 8 13 

Au (6S1 5d10) 6 9 12 15 
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2.8 Basis Set Superposition Error Correction (BSSE) and Counterpoise 

Correction (CP) 

Basis Set Superposition Error Correction (BSSE) is one of the fundamental factors that impact the 

precision of energy interactions calculations with incomplete bases. It is usually understood in addition 

to intermolecular interactions, particularly for systems that have weak intermolecular interactions. The 

SIESTA implementation of DFT, applied in this thesis, means that the BSSE starts employing the linear 

combination of the atomic orbital formalism, consisting of a final nuclei-focusing basis when atoms are 

close enough to overlap their basis functions. This may artificially reinforce the atomic connection and 

artificially shorten the atomic distances and so alter the overall system energy. 

In1970, Boys and Bernardi presented a method of reducing BSSE in molecular complexes made up of 

a so-called counterpoise-correction scheme [25, 26, 29] with two geometrical configurations. Consider 

two molecular systems A and B, separated by a distance R. The interactive energy can be expressed in 

[28] 

where ∆𝐸𝑖𝑛𝑡𝑒𝑟  AB  is the overall energy of the supersystem,  𝐸𝐴 and  𝐸𝐵 are the energies of the  

isolated subsystems [32]. Figure 2.1 highlights the counterpoise correction for dimers 𝐴 and 𝐵.  

 

 

 

 

 

 

 

∆𝐸𝑖𝑛𝑡𝑒𝑟
𝐴𝐵 (𝑅) = 𝐸𝐴𝐵(𝑅) − 𝐸𝐴 − 𝐸𝐵        (2.25) 

  

a b c                      d e 
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 Figure 2.1. Illustrating the Counterpoise method to calculate the binding energy. (a) represents the 

basis functions for a total system where atoms are shown in white, and the basis functions are in grey. 

(b) and (c) show the basis function for the individual monomers whereas (d) and (e) represent the 

counterpoise correction. Every single molecule is evaluated with the same basis function as the total 

system in (a) [30]. 

 

Figures 2.1 a, b and c represent the two isolated molecules with their individual and corresponding basis 

functions, while the shaded grey atoms in figure 2.1 d and e represent the ghost states (basis set functions 

having no electrons or protons). The Basis Set Superposition Error Correction (BSSE) is calculated by 

recalculating the binding energy  𝐸𝐵𝑖𝑛 using the mixed basis sets obtained by introducing the ghost 

orbitals and then reducing the error from the uncorrected energy. 

 

where 𝐸𝑎 , 𝐸𝑑  and 𝐸𝑒  are the total energy of (a), (d) and (e) systems in figure 2.1, respectively. 

In what follows, this an important concept that has been successfully implemented in many 

systems to give reliable and realistic energies [26, 35, 38]. 

2.9. Conclusion 

In conclusion, I have presented a summary of the DFT formalism and the SIESTA DFT code, which is 

used throughout this thesis to compute the electronic structure. The first step in identifying the electron 

transport properties of a molecule is to obtain a DFT mean-field Hamiltonian describing the isolated 

molecule. The next step is to connect the molecule, to semi-infinite leads, as will be explained in the 

next chapter. 

 

𝐸𝐵𝑖𝑛 = 𝐸𝑎 − (𝐸𝑑 + 𝐸𝑒)     (2.26) 
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Chapter 3 

Single Particle Transport 

Density functional theory, which may be used to determine the electrical structure of an isolated 

molecule, was discussed in chapter 2. Connecting this isolated molecule to semi-infinite leads and 

computing the transmission coefficient out across system are the next step. This is performed by using 

the Green's function scattering formalism, which I discuss in this chapter and which is employed 

throughout the thesis. The electric and thermoelectric characteristics of nanoscale systems sandwiched 

between a number of macroscopic sized metal electrodes are described using scattering theory and 

Green's function techniques. 

 

3.1 Introduction 

In this chapter, I  begin with a brief overview of the Landauer formula. Subsequently, I  introduce the 

simplest form of a retarded Green's function for a Scattering Theory in one-dimensional tight binding 

chain. After this, I break the periodicity of this lattice at a single connection and show that the Green's 

function is related directly to the transmission coefficient across the scattering region. The methods 

used on these simple systems will then be used to derive the transmission coefficient of mesoscopic 

conductors of arbitrarily complex geometry The method presented here assumes negligible interaction 

between carriers, the absence of inelastic processes, and zero temperature. 

 

3.2 The Landauer Formula 

The Landauer formula [1, 6] is used to describe electron transport in mesoscopic systems and is 

applicable to phase coherent systems, in the absence of inelastic scattering. It relates the conductance 

of a mesoscopic sample to the transmission properties of electrons passing through it. The method used 

to calculate the transmission properties will be discussed later in this chapter. 
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Figure 3.1. A mesoscopic scatterer linked to contacts with ballistic leads. 𝜇𝐿 and 𝜇𝑅 represent 

the chemical potential of the left and right contacts, respectively. 

 

 

A mesoscopic scattering region connected to contacts by ballistic leads. The chemical potential in the 

contacts is  𝜇
𝐿
 and  𝜇

𝑅
 respectively. If an incident wave packet hits the scattering region from the left, 

it will be transmitted with probability 𝑇 = 𝑡𝑡∗ and reflected with probability  𝑅 = 𝑟𝑟∗ . Charge 

conservation requires 𝑇 +  𝑅 =  1. 

 

To begin, consider a mesoscopic scatter coupled to two contacts that operate as electron reservoirs 

through two ideal ballistic leads Figure 3.1. All inelastic relaxation processes are limited to the 

reservoirs [1]. The reservoirs have slightly different chemical potentials, 𝜇𝐿 and 𝜇𝑅, such that 𝜇𝐿 − 𝜇𝑅 

is small. Here we use the notation   𝜇𝐿 − 𝜇𝑅 =  𝛿𝐸 =  𝑒𝛿𝑉 >  0 , which will drive electrons from the 

left to the right reservoir. Initially, I will discuss the solution for one open channel (i.e. where only one 

electron is allowed to travel in a given direction).  

The incident current passing through this system from the left to the write reservoir is: 

 

δI = e𝑣 (
∂n

∂E
 ) (μL − μR) 

 

     (3.1) 
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Where 𝑒 is the electronic charge, 𝑣  in the group velocity and  
∂n

∂E
  is the density of states per unit lengthin 

the lead in the energy window defined by the chemical potentials of the contacts. 

 

∂n

∂E
=
∂n

∂k
 
∂k

∂E
=
∂n

∂k

1

𝑣ℏ
 

 

     (3.2) 

 

In one dimension, after including a factor of 2 for spin dependency, 
∂n

∂k
=

1

π
  Substituting this Into 

Equation 3.2, we find that  
∂n

∂k
=

1

𝑣ℏ
.  This simplifies Equation 3.1 to: 

𝛿𝐼 =
2𝑒

ℎ
(𝜇𝐿 − 𝜇𝑅) =

2𝑒2

ℎ
𝛿𝑉 

 

     (3.3) 

 

Where  𝛿𝑉  is the voltage generated by the chemical potential mismatch. From equation 3.3 it is clear 

that in the absence of a scattering region, the conductance of a quantum wire with one open channel is 

2𝑒2

ℎ
   , which is approximately   77.5𝜇𝑆  (or in other words, aresistance of 12.9 𝑘𝛺 ). This is an everyday 

quantity; it typically appears on the circuit boards of everyday electrical appliances.  If now we consider 

a scattering region, the current collected in the right contacts will be 

 

This is the well-known Landauer formula, relating the conductance, 𝐺  of a mesoscopic scatterer to the 

transmission probability,𝑇  of the electrons traveling through it. It describes the linear response 

conductance, hence it only holds for small bias voltages 𝛿𝑉 ≈  0 . 

    

The Landauer formula has been generalized for the case of more than one open channel by Buttiker [3]. 

In this case the transmission coefficient is replaced by the sum of all the transmission amplitudes 

δI =
2𝑒2

ℎ
 𝑇𝛿𝑉 →

𝛿𝐼

𝛿𝑉
= 𝐺 =

2𝑒2

ℎ
 𝑇 (3.4) 
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describing electrons incoming from the left contactand arriving to the right contact. The Landauer 

formula  equation 3.3 for many open channelshence becomes: 

 

 

Where   𝑡𝑖𝑗  is the transmission amplitude describing the scattering from the 𝑗𝑡ℎ channel of the  

left lead to the  𝑖𝑡ℎ channel of the right lead. With the definition of the transmission amplitudes, one can  

similarly introduce the reflection amplitudes  𝑟𝑖𝑗 which describe the scattering processes where 

theparticle is scattered from the  𝑗𝑡ℎ  channel of the left lead to the 𝑖𝑡ℎ channel of the same lead. 

Combining reflection and transmission amplitudes, one can define the 𝑆 matrix, which connects the 

states coming from the left lead to the right lead and vice versa. 

 

Here 𝑟 and 𝑡 describe electrons coming of the left and t′ and r′ describe electrons coming from the right. 

Equation 3.6 suggests that 𝑟, 𝑡, 𝑟́ and 𝑡′ are matrices for more than one channel, and could be complex 

(in the presence of a magnetic field for example). On the other hand charge conservation demands the 

𝑆 matrix be unitary: SS+=I. The 𝑆 matrix is a central object of scatteringtheory. It is useful not just in 

describing transport in the linear response regime, but also in other problems, such as adiabatic 

pumping. 

 

3.3 Thermoelectric coefficients 𝑺 

Seebeck, Peltier and Thompson developed the relationship between heat, current, temperature and 

voltage at the turn of the 19th century [16]. The Seebeck effect explains the production of electrical 

current as a result of a temperature difference, while the Thompson and Peltier effects explain the 

δI

𝛿𝐼
= 𝐺 =

2𝑒2

ℎ
∑ |𝑡𝑖,𝑗|

2

𝑖,𝑗
=
2𝑒2

ℎ
𝑇𝑟𝑎𝑐𝑒(𝑡𝑡†) (3.5) 

𝑆 = (
𝑟 t′
𝑡 r′

) 

 

(3.6) 
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cooling or heating of a current-carrying conductor. A deeper mechanism can be imagined where the 

difference temperature is ∆𝒯 and a theoretical drop in value ∆𝑉 occurs in the system that causes heat 

and charge fluctuations. For heat (𝒬) and charge (𝐼) currents under the linear base and temperature 

schematic, the common Landauer-Büttiker formulas can be generalised to determine the thermoelectric 

coefficients of a device with two terminals. The system is composed of a scattering region that has 

connections to two leads, which are themselves connected to a pair of electron reservoirs. These 

reservoirs are constructed using the chemical potentials  𝜇𝐿 and  𝜇𝑅, temperatures 𝒯𝐿 and 𝒯𝑅, and the 

Fermi distribution function [17]:   

𝑓𝑖  (𝐸) = (1 + 𝑒
𝐸−𝜇𝑖
𝑘𝐵𝒯𝑖 )

−1

       (3.7) 

 

It is possible to write the right moving charge current of an individual k-state emerging from the left 

reservoir on the basis of the number of electrons per unit length 𝑛, Fermi distribution 𝑓𝐿, group velocity 

𝜈𝑔 as well as the scattering region’s transmission coefficient 𝑇(𝐸).  

 

  𝐼𝑘
+ = 𝑛𝑒𝜈𝑔(𝐸(𝑘)) 𝑇(𝐸(𝑘))  𝑓𝐿(𝐸(𝑘))                             (3.8) 

 

The overall charge from right moving states may therefore be found by summing up all positive k states 

and then integrating them into an integral form; 

 where 𝑛 =  1/𝐿 for the electron density and 𝜈𝑔 =
1

ℏ
 
𝜕𝐸(𝑘)

𝜕𝑘
. 

 

𝐼𝑘
+ =∑𝑒 

1

𝐿
 
1

ℏ
 
𝜕𝐸(𝑘)

𝜕𝑘
 𝑇(𝐸(𝑘)) 𝑓𝐿(𝐸(𝑘)) =

𝑘

 ∫
2𝑒

ℎ
 𝑇(𝐸)

+∞

−∞

𝑓𝐿(𝐸) 𝑑𝐸    (3.9) 

 

Consequently, for the left moving states, we obtain: 
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𝐼𝑘
− = ∫

2𝑒

ℎ
 𝑇(𝐸)

+∞

−∞

𝑓𝑅(𝐸) 𝑑𝐸        (3.10) 

As a result, the entire right-moving current can be written as: 

 

𝐼 = 𝐼+ − 𝐼− = 
2𝑒

ℎ
∫  𝑇(𝐸)
+∞

−∞

(𝑓𝐿(𝐸) − 𝑓𝑅(𝐸)) 𝑑𝐸       (3.11) 

Equation 3.11 represents the Landauer-Büttiker formula. An analogous derivation can be performed for 

the heat current (alternatively, energy current) of the identical system by beginning with the relation 

𝒬 = 𝐸𝑛𝜈𝑔  instead of 𝐼 = 𝑛𝑒𝜈𝑔. The outcome is comparable to the previous result, but includes two 

additional terms: 

 

(
𝐼

�̇�
) = (

𝐺 𝐿
𝑀 𝐾

)(
∆𝑉
∆𝒯
)             (3.12) 

 

The thermoelectric coefficients 𝐿 and 𝑀, in the absence of a magnetic field, are related by the Onsager 

relation:    

𝑀 = −𝐿𝒯                (3.13) 

 

where 𝒯 is temperature. By rearranging these equations, the current relations can be expressed in terms 

of the measurable thermoelectric coefficients, electrical resistance 𝑅 =  1/𝐺, thermopower  𝑆 =

−∆𝑉 ∆𝒯⁄  , Peltier coefficient Π, and the thermal constant 𝑘: 

(
∆𝑉

�̇�
) = (

1

𝐺
−
𝐿

𝐺
𝑀

𝐺
𝐾 −

𝐿𝑀

𝐺

)(
1
∆𝒯
) = (

𝑅 𝑆
𝛱 −𝐾

)(
1
∆𝒯
) 

            (3.14) 

 

The thermopower 𝑆 is defined as the potential drop due to a temperature difference in the absence of an 

electrical current: 
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𝑆 = −(
∆𝑉
∆𝒯
)
𝐼=0

=
𝐿

𝐺′
 

          (3.15) 

 

The Peltier coefficient 𝛱 is defined as the heat transferred purely due to the charge current in the absence 

of a temperature difference: 

𝛱 = (
�̇�

𝐼
)
𝛥𝒯=0

=
𝑀

𝐺
= −𝑆𝒯 

         (3.16) 

 

Lastly, the thermal conductance 𝑘 is defined as the heat current caused by a temperature drop in the 

absence of an electric current: 

𝑘 = −( �̇�
∆𝒯
)
𝐼=0

= −(1 +
𝑆2𝐺𝒯

𝑘
) 

 

   
(3.17) 

  

  

Obviously, the evaluation of 𝑆 or 𝛱 gives an idea of how well the device will act as a heat-driven current 

generator or a current driven cooling device. 

The thermoelectric figure of merit, 𝑍𝒯 [18, 19], can alternatively be defined in terms of these observable 

thermoelectric coefficients: 

 

𝑍𝒯 =
𝑆2𝐺𝒯

𝑘
   (3.18) 

In classical electronics, the 𝑍𝒯 is calculated by computing the maximum induced temperature 

difference produced by an applied electrical current while Joule heating is present. Consider a current-

carrying conductor sandwiched between two heat baths 𝒯𝐿 and 𝒯𝑅, as well as two electrical potentials 

𝑉𝐿 and 𝑉𝑅  



35 

 

The thermoelectric figure of merit is obtained by calculating the highest induced temperature 

differential in a conductor caused by an electrical current. By defining (�̇̇�) as the gain in heat from bath  

𝐿 to 𝑅, then from equation 3.14 we obtain: 

�̇� = 𝛱 𝐼 − 𝑘𝛥𝒯 
 

  (3.19) 

This heat transfer will cause the left bath to cool and the right bath to heat, with a result that 𝛥𝒯 

increases. The amount of Joule heating can be expressed as �̇�𝐽 = 𝑅𝐼
2, which is proportional to the 

electrical resistance and the square of the current. This Joule heating will also affect the temperature 

difference induced by the heat transfer, and therefore in the steady state case: 

 

𝛱 𝐼 − 𝑘𝛥𝒯 =
𝑅 𝐼2

2
 

 

(3.20) 

where, 𝑅/2 is the sum of two parallel resistances (internal and external resistance). After rearranging 

this, the temperature difference is 

𝛥𝒯 =
1

𝑘
(𝛱 𝐼 −

𝑅 𝐼2

2
) 

                                (3.21) 

 

 

This expression shows how the temperature difference depends on the current. To find the maximum 

temperature difference, the derivative of equation 3.21 with respect to the electric current is taken: 

𝜕∆𝒯

𝜕𝐼
=
𝛱 − 𝐼𝑅

𝑘
= 0 

                    (3.22) 

 

Finally, by writing back  𝐼 = Π /𝑅 and substituting equation 3.16 into equation 3.22, for the maximum 

of the temperature different we obtain: 

(∆𝒯)𝑚𝑎𝑥 =
𝛱2

2𝑘𝑅
=
𝑆2𝒯2𝐺

2𝑘
                  (3.23) 
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(∆𝒯)𝑚𝑎𝑥
𝒯

=
𝑆2𝐺𝒯

2𝑘
=
1

2
𝑍𝒯 

  (3.24) 

 

A dimensionless number that can be used to describe a molecular device's 'efficiency'  

 

3.4 Scattering Theory in One Dimension 

 It is useful to calculate the scattering matrix for a simple one-dimensional system before presenting the 

extended methods. This will provide a detailed description of the approach used. Because Green's 

functions will be utilised in the derivation, I go over the form of the Green’s function for a simple one-

dimensional discretized lattice  section 3.4.1 and then move on to calculating the scattering matrix of a 

one-dimensional scattered section 3.4.2. 

 

3.4.1 Perfect One-Dimensional Lattice 

In this section, I will discuss the form of the Green’s function for a simple one dimensional lattice 

with on-site energies ɛ𝑜  and real hopping parameters −γ as shown in Figure 3.2. 

 

 

 

 

 

Figure 3.2. Tight-binding approximation of a one-dimensional periodic lattice with one site energies 

𝜺𝒐 and coupling 𝜸. 
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The matrix form of the Hamiltonian can be simply written: 

 

Within the tight-binding approximation, the Schrödinger equation (Equation 3.26) can be expanded at 

a lattice site 𝑧 in terms of the energy and wavefunction 𝜓𝑧  (Equation 3.27). 

 

The wavefunction for this perfect lattice takes the form of a propagating Bloch state equation 3.28, 

normalized by its group velocity 𝑣 in order for it to carry unit current flux. When this is substituted 

into equation 3.27, it leads to the well-known one-dimensional dispersion relation equation 3.29. 

 

 

𝐻 =

(

 
 
 
 
 
 

−∞ . . . . . . . .
. . . . . . . . .
. . 𝜀𝑜 −𝛾 0 0 0 . .
. . −𝛾 𝜀𝑜 −𝛾 0 0 . .
. . 0 −𝛾 𝜀𝑜 −𝛾 0 . .
. . 0 0 −𝛾 𝜀𝑜 −𝛾 . .
. . 0 0 0 −𝛾 𝜀𝑜 . .
. . . . . 0 −𝛾 . .
. . . . . . . . +∞)

 
 
 
 
 
 

 

 

(3.25) 

(𝐸 −  𝐻)𝜓 =  0 

 

 (3.26) 

 

𝜀𝑜𝜓𝑧  −  𝛾𝜓𝑧 + 1 −  𝛾𝜓𝑧 − 1 =  𝐸𝜓𝑧   (3.27) 

 

𝜓𝑧 =
1

√𝑣
𝑒𝑖𝑘𝑍                                                             

 

 

        (3.28) 

 

 

  

𝐸 = 𝜀0 − 2γ cos (k) (3.29) 
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Where we introduced the quantum number, 𝑘, commonly referred to as the wavenumber. The retarded 

Greens function 𝑔(𝑧, �́�) is closely related to the wavefunction and is in fact the solution to an equation 

very similar to that of the Schrödinger equation: 

 

 

Physically, the retarded Greens function,𝑔(𝑧, 𝑧′), describes the response of a system at a point 𝑧 due to 

a source at a point 𝑧′. Intuitively, we expect such an excitation to give rise to two waves, traveling 

outwards from the point of excitation, with amplitudes 𝐴+ and 𝐴− as shown in Figure 3.3 

 

 

 

 

 

 

 

Figure 3.3. The structure of Retarded Green's Function of an infinite one-dimensional lattice. The 

excitation at z = z′causes wave to propagate left and right with amplitudes 𝑨+ and 𝑨−  respectively. 

 

These waves can be expressed simply as: 

 

 

This solution satisfies equation 3.30 at every point but 𝑧 =  �́�. To overcome this, the Green's  

function must be continuous equation 3.32, so we equate the two at 𝑧 =  �́� 

(𝐸 − 𝐻) 𝑔(𝑧, 𝑧′) = 𝛿(𝑧,𝑧′)  (3.30) 

 

𝑔(𝑧, 𝑧′) = {
𝐴+  𝑒𝑖𝑘𝑧, 𝑧 ≥ 𝑧′

𝐴− 𝑒−𝑖𝑘𝑧, 𝑧 ≤ 𝑧′
 

 

(3.31) 

 

𝑨− 

 

𝑨−

𝑨+  

 

𝑨+
𝒛 = 𝒛′ 

 

 

z 
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Substituting equation 3.33 into the Green's functions equation 3.31 yields: 

 

 

It is obvious that this can be stated as: 

 

Where: 

 

It is possible to find a more extended derivation in the literature [6- 8]. 

 

𝐴+ 𝑒𝑖𝑘𝑧
′
= 𝐴− 𝑒−𝑖𝑘�́�                                                              (3.32) 

 

 

 

𝐴+ 𝑒2𝑖𝑘𝑧
′
= 𝐴−    

   

 (3.33) 

 

 

𝑔(𝑧, 𝑧′) =  𝐴+𝑒𝑖𝑘𝑧
′
𝑒𝑖𝑘(𝑧−𝑧

′)     𝑧′ >  𝑧  

𝑔(𝑧, 𝑧′)  =  𝐴+𝑒𝑖𝑘𝑧
′
𝑒𝑖𝑘(𝑧

′−𝑧́ )    𝑧′ <  𝑧 

  

 (3.34) 

 

 

𝑔(𝑧, 𝑧′) =  𝐴+𝑒𝑖𝑘𝑧
′
𝑒𝑖𝑘 |𝑧−𝑧

′|   

  

   (3.35) 

 

𝐴+ =
𝑒−𝑖𝐾�́�

𝑖ℏ𝑣
 

 

 

    (3.36) 

 

 

𝑔(𝑧, 𝑧′) =
𝑒𝑖𝑘 |𝑧−𝑧

′| 

𝑖ℏ𝑣
 

 

    (3.37) 
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3.4.2 One-Dimensional Scattering 

I  study two single-axis, half-infinite leads that are linked by a coupling element −𝛼. Both leads have 

equal on-site potentials, εo, and hopping elements, −𝛾 (see Figure 3.4). The analytical solutions for 

the transmission and reflection coefficients can be calculated easily. 

 

 

 

 

 

 

 

 

Figure 3.4. Simple tight-binding model of a one dimensional scattered attached to one dimensional 

leads. 

 

We need to define a Hamiltonian, which takes the form of an infinite matrix. 

𝑣 =
𝑑𝐸(𝑘)

ℏ𝑑𝑘
=
2𝛾𝑠𝑖𝑛(𝑘)

ℏ
 

  

   (3.38) 

 

𝐻 =

(

 
 
 
 
 
 

⋱ . . . . . . . .
. . . . . . . . .
. . 𝜀𝑜 −𝛾 0 0 0 . .
. . −𝛾 𝜀𝑜 −𝛾 0 0 . .

. . 0 −𝛾 𝜀𝑜 −α 0 . .

. . 0 0 −α 𝜀𝑜 −𝛾 . .

. . 0 0 0 −𝛾 𝜀𝑜 . .

. . . . . 0 −𝛾 . .

. . . . . . . . ⋱)

 
 
 
 
 
 

 

 

 

(3.39) 

 

 

 +∞ 

 

-γ 

 

-γ 

-γ 

 

−𝛄 

 

−𝛄

−𝛄 

 
    

−𝛂 

 

−𝛂

  -∞ 

 

  𝜺𝒐                 𝜺𝒐                𝜺𝒐                 𝜺𝒐             𝜺𝒐                𝜺𝒐 

 

𝜺𝒐 𝜺𝒐 𝜺𝒐 𝜺𝒐 𝜺𝒐 𝜺𝒐

 

Scattering 

Region                             
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For real 𝛾, the dispersion relation corresponding to the leads introduced above was given in equation 

3.29  and the group velocity was given in equation 3.38: 

 

                                          𝐸(𝑘) = 𝜀0 − 2γ cos (k)                                           (3.40) 

                                            𝑣 =
1

ℏ

𝑑𝐸

𝑑𝑘
                                                                 (3.41) 

 

In order to obtain the scattering amplitudes we need to calculate the Green's function of the system. The 

formal solution to equation 3.30 can be written as: 

 

Equation 3. 42 is singular if the energy 𝐸 is equal to an eigenvalues of the Hamiltonian 𝐻. To 

circumvent this problem, it is practical to consider the limit: 

 

 

Here 𝜂 is a positive number and 𝐺+, 𝐺− is the retarded (advanced) Green's function. In this thesis I 

will only use retarded Green's functions and hence choose the + sign.  The retarded Green's function 

for an infinite, one dimensional chain with the same parameters is defined in equation 3.37:  

 

 

 

𝐺 = (𝐸 − 𝐻)−1  

 

 (3.42) 

 

 

𝐺± = lim
𝜂→0

(𝐸 − 𝐻 ± 𝑖𝜂 )−1 

 

(3.43) 

𝑔∞(𝑗, 𝑙) =  
𝑒𝑖𝑘|𝑗−𝑙|

𝑖ℏ𝑣
     (3.44) 
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Where 𝑗, 𝑙 are the labels of the sites in the chain. In order to obtain the Green's function of a semi-infinite 

lead we need to introduce the appropriate boundary conditions. In this case, the lattice is semi-infinite, 

so the chain must terminate at a given point,  𝑖0, so that all points for which 𝑖 ≥  𝑖0 are missing. This is 

achieved by adding a wave function to the Green's function to mathematically represent this condition. 

The wavefunction in this case is: 

 

The Green's function     𝑔(𝑗, 𝑙)  =  𝑔𝑗,𝑙
∞  + 𝜓𝑗,𝑙

𝑖0   will have the following simple form at the  

Boundary  𝑗 =  𝑙 =  𝑖0 − 1: 

If we consider the case of decoupled leads, 𝛼 =  0, the total Green's function of the system will 

simply be given by the decoupled Green's function: 

 

If we now switch on the interaction, then in order to obtain the Green's function of the coupled system 

𝐺 ,we need to use Dyson's equation, 

𝜓𝑗,𝑙
𝑖0 = 

−𝑒𝑖𝑘(2𝑖0−𝑙−𝑗)

𝑖ℏ𝑣
     (3.45) 

 

 

 

 

𝑔 (𝑖0 − 1, 𝑖0 − 1) =  −
𝑒𝑖𝑘

γ
 

 

(3.46) 

 

 

 

 

𝑔 =  

(

 
 
−
𝑒𝑖𝑘

γ
0

0 −
𝑒𝑖𝑘

γ )

 
 
= (

𝑔𝐿 0
0 𝑔𝑅

)   (3.47) 
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Where the operator 𝑉 describing the interaction connecting the two leads will have the form: 

Substituted equation 3.47 and 3.49 into 3.48 to get the solution to the Dyson's equation: 

The only remaining step is to calculate the transmission, 𝑡 , and reflection, 𝑟 , amplitudes from the 

Green's function equation 3.50. This is done by making use of the FisherLee relation [4, 6] which 

relates the scattering amplitudes of a scattering problem to the Green's function of the problem. The 

Fisher-Lee relations in this case becomes: 

 

These amplitudes correspond to particles incident from the left. If one would consider particles 

coming from the right than similar expressions could be recovered for the transmission, �́� , and 

reflection, 𝑟́, amplitudes. 

Since we are now in the possession of the full scattering matrix we can use the Landauer formula 

equation 3.4 to calculate the zero bias conductance. 

 

3.5 Generalization of the Scattering Formalism  

In this section, I show a generalized approach to transport calculations following the derivation of 

Lambert, presented in [2]. This is similar to the previous approach. First the surface Green's function of 

crystalline leads is computed, and the scattering amplitudes are recovered by means of a generalization 

of the Fisher-Lee relation. 

𝐺−1 =  (𝑔−1 − 𝑉) 
(3.48) 

𝑉 = (
0 𝑉𝑐

𝑉𝑐
† 0

) = (
0 𝛼 
𝛼∗ 0

)         (3.49) 

𝐺 = 
1

|𝛼|2−γ2𝑒−2𝑖𝑘
(
γ𝑒−𝑖𝑘 𝛼

𝛼∗ γ𝑒−𝑖𝑘
)   (3.50) 

𝑟 =  𝑖ℏ 𝑣𝐿𝐺00 − 1       (3.51) 

𝑡 = 𝑖ℏ√𝑣𝑅𝑣𝐿 𝐺10       (3.52) 
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3.5.1 Hamiltonian and Green's Function of the Leads 

We investigate a fundamental semi-infinite crystalline electrode of arbitrary complexity. Because the 

leads are crystalline, the structure of the Hamiltonian is a generalization of the one-dimensional 

electrode Hamiltonian in equation 3.7. Figure 3.5 shows the general system topology. Instead of site 

energies, we have Hamiltonians for each repeating layer of the bulk electrode, 𝐻0 , and a coupling 

matrix to describe the hopping parameters between these layers, 𝐻1.   

 

 

 

  

 

 

 

 

Figure 3.5. Schematic representation of a semi-infinite generalized lead. States described by the 

Hamiltonian 𝐻0 are connected via a generalized hopping matrix 𝐻1. The direction 𝑧 is defined to be 

parallel to the axis of the chain. One can assign for each slice a label 𝑧. 

 

The Hamiltonian for such a system has the form: 

 

𝐻 =

(

 
 
 
 
 

•
•
0
0
0
0
0
0

     

•
•

𝐻1
†

0
0
0
0
0

  

0
𝐻1
𝐻𝑜

𝐻1
†

0
0
0
0

  

0
0
𝐻1
𝐻𝑜

𝐻1
†

0
0
0

  

0
0
0
𝐻1
𝐻𝑜

𝐻1
†

0
0

  

0
0
0
0
𝐻1
𝐻𝑜

𝐻1
†

0

  

0
0
0
0
0
𝐻1
•
•

    

0
0
0
0
0
0
•
•

  

)

 
 
 
 
 

        (3.53) 

𝑯𝟏 

𝑯

𝑯𝟏 

 

𝑯𝟏

𝑯𝟏 

𝑯𝟏

𝑯𝟎 

 

𝑯𝟎

𝑯𝟎 

 

𝑯𝟎

𝑯𝟎 

 

𝑯𝟎

𝑯𝟎 

 

𝑯𝟎

Z 
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Where 𝐻𝑜  and 𝐻1 are generally complex matrices and the only limitation is that the full Hamiltonian, 

𝐻 , must be Hermitian. In this section, the initial objective is for the Green’s function of this type of 

lead to be calculated for general 𝐻1 and 𝐻0 . to calculate the Green's function one has to calculate the 

spectrum of the Hamiltonian by solving the Schrödinger equation of the lead. 

 

 

 

Here, 𝜓𝑧  is the wave function describing layer 𝑧, where 𝑧 is an integer measured in units of inter-layer 

distance. We assume the system is infinitely periodic in the 𝑧 direction only, so the on-site 

wavefunction, 𝜓𝑧 , can be represented in Bloch form; consisting of a product of a propagating plane 

wave and a wavefunction, 𝛷𝑘 , which is perpendicular to the transport direction, 𝑧. layer Hamiltonian, 

𝐻0, has dimensions 𝑀 ×  𝑀  (or in other words consists of M site energies and their respective hopping 

elements), then the perpendicular wavefunction, 𝛷𝑘 , will have 𝑀 degrees of freedom and take the form 

of a 1 × 𝑀 dimensional vector. So the wave function, 𝜓𝑧 , takes the form: 

 

Where, 𝑛𝑘 is an arbitrary normalization parameter. Substituting this into the Schrödinger equation 

(Equation 3.55) , these yields: 

 

To dertmine the band structure for such a problem, one would select values of 𝑘 and calculate the 

eigenvalues at that point, 𝐸 = 𝐸𝑙(𝑘), where = 1,2,3, … ,𝑀. Here, 𝑙 denotes the band index. For every 𝑘 

value, the eigenvalue problem will have 𝑀 solutions, and thus, 𝑀 energy values. By selecting multiple 

values for 𝑘, it is relatively simple to build up a band structure. In a scattering problem, the problem is 

tackled using the different approach. Instead of finding the eigenvalues at a given 𝑘, we find the values 

𝐻1
†𝜓𝑧−1 +𝐻𝑜𝜓𝑧 + 𝐻1𝜓𝑧+1 = 𝐸𝜓𝑧 (3.55) 

𝜓𝑧 = √𝑛𝑘𝑒
𝑖𝑘𝑧𝛷𝑘 

    (3.56) 

(𝐻0+𝑒
𝑖𝑘𝐻1 + 𝑒

−𝑖𝑘𝐻1
† − 𝐸)𝛷𝑘 = 0     (3.57) 
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of 𝑘 at a given 𝐸. In order to accomplish this, a root-finding might have been used, but this would have 

required an enormous numerical effort since the wave numbers are in general complex. However, we 

can write down an alternative eigenvalue problem in which energy is the result and wave numbers are 

the result by introducing the function: 

which is then combined with equation 3.57: 

Given a layer Hamiltonian, 𝐻𝑜 , that has dimensions of M×M, equation 3.59 will produce 2𝑀 

eigenvalues, 𝑒𝑖𝑘𝑙𝑧 and eigenvectors, 𝛷𝑘 , with magnitude 𝑀. These states can then be sorted into four 

categories based on whether they are propagating or decaying and whether they are left going or right 

going. A state is considered to be propagating when it has a real 𝑘𝑙 value. Where the wave number has 

a positive imaginary part, it is defined as a left decaying state, whereas if the imaginary part is negative, 

it is defined as a right decaying state. The sorting of propagating states is based on the state’s group 

velocity, which is given by: 

 

 

If the group velocity, 𝑣𝑘𝑙 , of the state is positive than it is a right propagating state if it is negative 

than it is a left propagating state. 

 

 

 

 

 

 

 

𝑣𝑘 = 𝑒
−𝑖𝑘𝑧𝛷𝑘   

(3.58) 

  

(−𝐻1
−1(𝐻𝑜 − 𝐸) −𝐻1

−1𝐻1
†

𝐼 0
) (
𝛷𝑘
𝑣𝑘
) = 𝑒𝑖𝑘𝑧 (

𝛷𝑘
𝑣𝑘
) 

     

(3.59) 

  

𝑣𝑘𝑙 =
1

ℏ

𝜕𝐸𝑘,𝑙
𝜕𝑘

 (3.60) 
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 Table 3.1: Sorting the eigenstates into left and right propagating or decaying states according to the 

wave number and group velocity. 

 

Category Left Right 

Decaying 𝐼𝑚(𝑘𝑙) > 0 
𝐼𝑚(𝑘𝑙) < 0 

Propagation 𝐼𝑚(𝑘𝑙) = 0, 𝑣𝑔
𝑘𝑙 < 0 

𝐼𝑚(𝑘𝑙) = 0, 𝑣𝑔
𝑘𝑙 > 0 

 

Now, I will denote the 𝑘𝑙 wave numbers which belong to the left propagating-decaying set of wave 

numbers by 𝑘𝑙 and the right propagating decaying wave numbers will remain plainly 𝑘𝑟 . Hence, 𝜙𝑘𝑟   

is a wave function associated to a right state and 𝜙𝑘𝑙 is associated to a left state. If 𝐻1 is invertible, there 

must be exactly the same number, 𝑀, of left and right going states. It is clear that if 𝐻1 is singular, the 

matrix in equation 3.59 cannot be constructed, since it relies of the inversion of 𝐻1. Furthermore, any 

one of several methods can be used to overcome this problem. The first [2, 8, 10] uses the decimation 

technique to create an effective, non-singular 𝐻1. Another possibility is to populate a solitary H1 with 

small random numbers, introducing an explicit numerical mistake. The introduced numerical error 

could be as little as the numerical error introduced by decimation, making this approach reasonable. 

Another solution is to rewrite equation 3.59 without inverting 𝐻1: 

 

 

However, solving this generalized Eigen-problem is more computationally expensive. Any of the 

aforementioned methods work reasonably in tackling the problem of a singular 𝐻1 matrix, and so can 

the condition that there must be exactly the same number, 𝑀, of left and right going states, whether 𝐻1is 

singular or not [11-15].  

 

(−(𝐻𝑜 − 𝐸) −𝐻1
†

𝐼 0
) (𝛷𝑘

𝑣𝑘
) = 𝑒𝑖𝑘𝑧 (

𝐻1 0
0 𝐼

) (𝛷𝑘
𝑣𝑘
)      (3.61)  
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The solutions to the eigenvalue equation 3.57 at a given wave number, 𝑘,will form an orthogonal basis 

set, however, the eigenstates,  𝛷𝑘𝑙 ,obtained by solving the Eigen problem equation 3.61 at a given 

energy, 𝐸,will not generally form an orthogonal set of states. This is very significant, as we will have 

to calculate the Green's function non-orthogonally when constructing the Green's function. It is, 

therefore, necessary to introduce the duals to, 𝛷𝑘𝑙, and,  𝛷�̅�𝑙,  in such a way that they obey: 

 

This yields the generalized completeness relation: 

We are in possession of the whole set of eigenstates at a given energy we can calculate the Green's 

function first for the infinite system and then, if suitable boundary conditions are satisfied, for the semi-

infinite leads at their surface. Since the Green's function satisfies the Schrödinger equation when 𝑧 =

𝑧′, we can build up the Green's function from the mixture of the eigenstates 𝛷𝑘𝑙 and 𝛷�̅�𝑙: 

 

Where the 𝑀-component vectors 𝜔𝑘𝑙 and 𝜔�̅�𝑙 are to be determined. It is important to note the structural 

similarities between this equation and equation 3.31 and also that all the degrees of freedom in the 

transverse direction are contained in the vectors 𝛷𝑘 and 𝜔𝑘. 

The big picture now is to obtain the vectors. As stated in section 3.4.1, equation 3.64 must be continuous 

at 𝑧 = 𝑧′ and must satisfy Green's function equation (equation 3.30). The first condition is written as: 

�̃�(𝑘𝑖)
† 𝛷𝑘𝑗 = �̃�(�̅�𝑖)

† 𝛷�̅�𝑗 = 𝛿𝑖𝑗      (3.62) 

∑�̃�(𝑘𝑙)
† 𝛷(𝑘𝑙) =∑�̃�

(�̅�𝑙)
†
𝛷(�̅�𝑙) = 𝐼

𝑀

𝑙=1

𝑀

𝑙=1

  (3.63) 

𝑔(𝑧, 𝑧′) =

{
 
 

 
 ∑𝛷(𝑘𝑙)𝑒

𝑖𝑘𝑙(𝑧−𝑧
′) 𝜔𝑘𝑙

†

𝑀

𝑙=1

, 𝑧 ≥ 𝑧′

∑𝛷(�̅�𝑙)𝑒
𝑖�̅�𝑙(𝑧−𝑧

′) 𝜔
�̅�𝑙

†

𝑀

𝑙=1

, 𝑧 ≤ 𝑧′

 
(3.64) 
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and the second: 

∑[(𝐸 −𝐻𝑜)𝛷(𝑘𝑙)𝜔𝑘𝑙
† + 𝐻1𝛷(𝑘𝑙)𝑒

𝑖𝑘𝑙𝜔𝑘𝑙
† +𝐻1

†𝛷(�̅�𝑙)𝑒
−𝑖�̅�𝑙𝜔

�̅�𝑙

† + 𝐻1
†𝑒−𝑖𝑘𝑙𝜔𝑘𝑙

† − 𝐻1
†𝑒−𝑖𝑘𝑙𝜔𝑘𝑙

† ]

𝑀

𝑙=1

= 𝐼 

 

∑[𝐻1
†𝛷(�̅�𝑙)𝑒

𝑖�̅�𝑙𝜔
�̅�𝑙

† − 𝐻1
†𝛷(𝑘𝑙)𝑒

−𝑖𝑘𝑙𝜔𝑘𝑙
† ] +

𝑁

𝑙=1

∑[(𝐸 − 𝐻𝑜) + 𝐻1𝑒
𝑖𝑘𝑙 +𝐻1

†𝑒−𝑖𝑘𝑙]

𝑀

𝑙=1

𝛷(𝑘𝑙)𝜔𝑘𝑙
† = 𝐼 

 

We also know that from the Schrödinger equation. 

This yields to: 

Next, the dual vectors defined in equation 3.62 are used. The multiplication of equation 3.65 by �̃�(𝑘𝑝) 

yields: 

 

 

∑𝛷(𝑘𝑙)𝜔𝑘𝑙
† =∑𝛷(�̅�𝑙)𝜔�̅�𝑙

†

𝑙=1

𝑀

𝑙=1

 (3.65) 

∑[(𝐸 −𝐻𝑜)𝛷(𝑘𝑙)𝜔𝑘𝑙
† + 𝐻1𝑒

𝑖𝑘𝑙𝜔𝑘𝑙
† +𝐻1

†𝛷(�̅�𝑙)𝑒
−𝑖�̅�𝑙𝜔

�̅�𝑙

† ]

𝑀

𝑙=1

= 𝐼 

 

 

 

∑[(𝐸 −𝐻𝑜) + 𝐻1𝑒
𝑖𝑘𝑙 +𝐻1

†𝑒−𝑖𝑘𝑙]

𝑀

𝑙=1

𝛷(𝑘𝑙) = 0 
      (3.66) 

∑𝐻1
† [𝛷(�̅�𝑙)𝑒

𝑖�̅�𝑙𝜔
�̅�𝑙

† + 𝛷(𝑘𝑙)𝑒
−𝑖𝑘𝑙𝜔𝑘𝑙

† ]

𝑁

𝑙=1

= 𝐼  (3.67) 
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and similarly multiplying by �̃�
(�̅�𝑝)
†

  gives: 

Using the continuity equation 3.65 and equations 3.68 and 3.69, the Green's function equation 

(equation 3.67) becomes: 

Hence, it follows that: 

This immediately gives us an expression for 𝜔𝑘
†
: 

where  𝜈 is defined as: 

 

In equation 3.72, the wave number (𝑘) denotes both left and moving states. The substitution of equation 

3.72 into equation 3.64 produces the Green’s function of an infinite system: 

∑�̃�(𝑘𝑝)
†

𝑀

𝑙=1

𝛷(�̅�𝑙)𝜔�̅�𝑙
†
= 𝜔𝑘𝑝

†      (3.68) 

∑�̃�
(�̅�𝑝)
†

𝑀

𝑙=1

𝛷(𝑘𝑙)𝜔𝑘𝑙
† = 𝜔

�̅�𝑝

†
 

 (3.69) 

∑∑𝐻1
† (𝛷(�̅�𝑙)𝑒

−𝑖�̅�𝑙�̃�
(�̅�𝑙)
†

− 𝛷(𝑘𝑙)𝑒
−𝑖𝑘𝑙�̃�(𝑘𝑙)

† )

𝑀

𝑝=1

𝑀

𝑙=1

𝛷(�̅�𝑝)𝜔�̅�𝑝
†
= 𝐼 

(3.70) 

∑[𝐻1
† (𝛷(�̅�𝑙)𝑒

−𝑖�̅�𝑙�̃�
(�̅�𝑙)
†

−𝛷(𝑘𝑙)𝑒
−𝑖𝑘𝑙�̃�(𝑘𝑙)

† )]
−1

𝑀

𝑙=1

= ∑𝛷(�̅�𝑝)𝜔�̅�𝑝
† = ∑𝛷(𝑘𝑝)𝜔𝑘𝑝

†

𝑀

𝑝=1

𝑀

𝑝=1

 

     (3.71) 

𝜔𝑘
† = �̃�(𝑘)

† 𝜈−1  (3.72) 

𝜈 =∑𝐻1
† (𝛷(�̅�𝑙)𝑒

−𝑖�̅�𝑙�̃�
(�̅�𝑙)
† −𝛷(𝑘𝑙)𝑒

−𝑖𝑘𝑙�̃�(𝑘𝑙)
† )

𝑀

𝑙=1

 (3.73) 
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To obtain the Green’s function for a semi-infinite lead, a wave function must be added to the Green’s 

function so that the boundary conditions at the lead’s edge can be satisfied, similar to the one-

dimensional example. In this case, the boundary condition stipulates that the Green’s function must 

disappear at a particular place ( 𝑧 = 𝑧𝑜). For this to be achieved, 

 

To the Green's function, equation 3.74, 𝑔 =  𝑔∞ +△. This yields the surface Green's function fora 

semi-infinite lead going left: 

 

 

and going right: 

 

All that remains is to obtain the Hamiltonian of the scattering region using DFT and combine this with 

the surface Green's functions via Dyson's equation, to obtain the total Green's function and transmission 

amplitude 𝑡𝑘𝑙  [16]. 

𝑔𝑧,𝑧′
∞ =

{
 
 

 
 ∑𝛷(𝑘𝑙)𝑒

𝑖𝑘𝑙(𝑧−𝑧
′)�̃�(𝑘𝑙)

† 𝜈−1
𝑀

𝑙=1

, 𝑧 ≥ 𝑧′

∑𝛷(�̅�𝑙)𝑒
𝑖�̅�𝑙(𝑧−𝑧

′)�̃�
(�̅�𝑙)
†
𝜈−1

𝑀

𝑙=1

, 𝑧 ≤ 𝑧′

 (3.74) 

△= − ∑ 𝛷�̅�𝑙𝑒
𝑖�̅�𝑙(𝑧−𝑧𝑜)�̃�

(�̅�𝑙)
†
 𝛷(𝑘𝑝)𝑒

𝑖𝑘𝑝(𝑧𝑜−𝑧)�̃�(𝑘𝑝)
†

𝑀

𝑙,𝑝=1

𝜈−1 (3.75) 

𝑔𝐿 = (𝐼 − ∑ 𝛷(�̅�𝑙)𝑒
−𝑖�̅�𝑙  �̃�

(�̅�𝑙)
†  𝛷(𝑘𝑝)𝑒

𝑖𝑘𝑝  �̃�(𝑘𝑝)
†

𝑀

𝑙,𝑝=1

)𝜈−1   (3.76) 

 

𝑔𝑅 = (𝐼 − ∑ 𝛷(𝑘𝑙)𝑒
𝑖𝑘𝑙 �̃�(𝑘𝑙)

†  𝛷(�̅�𝑝)𝑒
−𝑖�̅�𝑝  �̃�

(�̅�𝑝)
†

𝑀

𝑙,𝑝=1

)𝜈−1     (3.77) 
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𝐺𝑡𝑜𝑡𝑎𝑙 = [(
𝑔
𝐿

0

0 𝑔
𝑅

) − 𝐻𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔]       (3.78) 

  

𝑡𝑘𝑙 =  �̃�(𝑘𝑙)
† 𝐺𝑡𝑜𝑡𝑎𝑙𝑣𝛷(𝑘𝑙)√

𝑣𝑘
𝑣𝑙
 𝑒𝑖𝑘𝑙   

      (3.79) 

 

 

 

 

 

3.6 Conclusion 

In this chapter, I have discussed the Landauer formula for the electrical conductance 𝐺 and 

thermoelectric coefficients, such as the Seebeck coefficient 𝑆.  This chapter also shows how to 

calculate the scattering matrix of a system linked to one-dimensional leads using the Green's 

function approach to scattering Theory. This was generalised to transport calculations in higher 

dimensions, which form a basis of the GOLLUM transport code and will be used in the following 

chapters. 
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Chapter 4 

 

Electronic structure investigation of endohedral metallofullerenes (EMFs) 

 

This work was a joint collaboration between the group of Prof. Nicolas Agrait (Departamento de Física 

de la Materia Condensada, Universidad Autónoma de Madrid, Spain), who conducted the experiments 

and the group of Prof. Kyriakos Porfyrakis (Department of Materials, University of Oxford), who 

synthesised the molecules. This work has been submitted as part of the following paper:  

 

“Exploiting fluctuations in the search for high-thermoelectric performance molecular junctions” 

 

Laura Rincón-García, Charalambos Evangeli, Panagiotis Dallas, Turki Alotaibi, Alaa A. Al-Jobory, 

Gabino Rubio-Bollinger, Kyriakos Porfyrakis, Nicolas Agrait and Colin J. Lambert.  

In this chapter, the electronic structure of three endohedral metallofullerenes (EMFs), including 

Sc3N@C80, Sc3C2@C80, and Er3N@C80, in addition to an empty cage such as C60 are intensively 

explored. I start these investigations with wave function plots of the studied molecules. Three different 

methods including Mulliken, Hirshfeld [11] and Voronoi population analyses [12], were employed to 

track down the charge transfer between metallic moieties and the cage. The charge transfer analyses 

were carried out in the gas phase and on a gold substrate. To determine the most probable orientation 

for metallic moieties such as Sc3N, Er3N and Sc3C2 inside the cage, the counterpoise method was 

employed for their different rotation angles θ,Φ and β (defined below) in the gas phase. A similar 

approch was used on a Au-substrate in which case, rotations about four different rotation axes θ,Φ, α 

and β are explored.  
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I also investigate how θ, 𝛷, α and 𝛽 axes pass through the metallic moieties and how the total energy 

varies with the angle of rotation, both in the presence and absence of a gold substrate. There are an 

infinite number of inequivalent orientations of the metallic moieties relative to their fullerene cage. 

However, for each of the four axes, I consider one mode of rotation in the gas phase and three modes 

of rotation on a substrate. 

4.1 Introduction 

Since the discovery of fullerenes in 1985 [1] significant attention has been devoted to study the solid-

state properties of fullerenes and their derivatives, because they are a well-known class of n-type 

semiconductors, that are promising candidates for practical application in molecular electronics such as 

organic thin-film transistors and organic photovoltaic devices [2]. The encapsulation of one or more 

atoms into fullerenes leads to the formation of endohedral metallofullerenes (EMFs). Because of the 

influence of interaction between endohedral metal atoms and the fullerene cage, the electronic 

properties of EMFs are changed drastically from those of empty fullerenes [3]. Fullerene derivatives, 

like endohedral fullerenes, are now widely used in organic photovoltaics [4], catalysis [5], and 

biological and medicinal applications [6]. Fullerenes with over 60 carbon atoms are called higher 

fullerenes. In this thesis, I shall study the C80 fullerene cage which can encapsulate metallic moieties to 

form EMFs as shown in Figure 4.1.  

4.2 Studied Molecules  

Figure 4.1 shows four molecules, Sc3C2@C80   which has three scandium and 82 carbon atoms (a), 

Sc3N@C80   which has three scandium, one nitrogen and eighty carbon atoms (b), Er3N@C80 which has 

three erbium and eighty carbon atoms (c), C60 with sixty carbon atoms (d). The metallic moieties are 

called scandium carbide, scandium nitride and erbium nitride Sc3C2, Sc3N and Er3N respectively. The 

C60 is empty cage as shown in Figure 4.1d.    

Using the DFT code SIESTA, the optimum geometries of the isolated molecules were obtained by 

relaxing the molecules until all forces on the atoms were less than 0.05 eV/Å. A double-zeta plus 
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polarization orbital basis set, norm-conserving pseudopotentials were utilised, an energy cut-off of 200 

Rydbergs defined the real space grid and the local density approximation (LDA) was chosen to be the  

exchange correlation functional. I also computed results using GGA and found that the resulting 

transmission functions were comparable with those obtained using LDA [8-10]. 

 

 

 

 

 

 

 

    

 

  

Figure 4.1. Endohedral metallofullerenes and fullerene studied Molecules. Schematic of the three 

endohedral metallofullerenes (EMFs), namely, a: Sc3C2@C80, b: Sc3N@C80, and c: Er3N@C80 and an 

empty cage d: C60.  

 

4.3 Frontier orbitals of the EMFs molecules and the C60 

To obtain a better understanding of the electronic properties of these structures (see Figure 4.1), the 

methods introduced in chapter 2 have been employed. Thus, I will investigate the wave function plots 

of the EMFs molecules and C60. The highest occupied molecular orbitals (HOMO), lowest unoccupied 

orbitals (LUMO), HOMO+1 and LUMO+1 along with their energies are calculated. The blue and red 

colours correspond to the regions in space of positive and negative orbital amplitude. 

a 

 

b 

c d 
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4.3.1 Frontier orbitals of Sc3C2@C80 EMF 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Wave function plots of Sc3C2@C80. Top panel: fully optimised geometry of Sc3C2@C80 

EMF. Lower panel: HOMO, LUMO, HOMO-1, LUMO+1 of Sc3 C2@C80 molecule along with their 

energies. 

EF=-4.05 𝐞𝐕 

HOMO =-4.36 𝐞𝐕 

HOMO-1=-3.95 𝐞𝐕 LUMO+1=-2.97 𝐞𝐕 

LUMO =-3.89 𝐞𝐕 
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4.3.2 Frontier orbitals of Sc3N@C80 EMF 

 

 

 

 

 

 

 

 

 

Figure 4.3. Wave function plots of Sc3N@C80. Top panel: fully optimised geometry of Sc3N@C80 

EMF. Lower panel: HOMO, LUMO, HOMO-1, LUMO+1 of Sc3N@C80 molecule along with their 

energies. 

4.3.2 Frontier orbitals of Er3N@C80 EMF 

 

 

 

 

 

 

 

 

EF=-3.58 𝐞𝐕 

HOMO=-4.35 𝐞𝐕 

HOMO-1=-4.39 𝐞𝐕 LUMO+1=-2.55 𝐞𝐕 

LUMO=-2.83 𝐞𝐕 

EF=-3.91 𝐞𝐕 

HOMO =-3.94 𝐞𝐕 

HOMO-1=-3.95 𝐞𝐕 LUMO+1=-3.74 𝐞𝐕 

LUMO =-3.84 𝐞𝐕 
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Figure 4.4. Wave function plots of Er3N@C80. Top panel: fully optimised geometry of Er3N@C80 

EMF. Lower panel: HOMO, LUMO, HOMO-1, LUMO+1 of Er3 N@C80 molecule along with their 

energies. 

 

4.3.4 Frontier orbitals of C60 cage 

 

 

 

 

 

 

 

 

 

Figure 4.5. Wave function plots of C60. Top panel: fully optimised geometry C60 EMF. Lower panel: 

HOMO, LUMO, HOMO-1, LUMO+1 of C60 molecule along with their energies. 

 

It is worth mentioning that for C60, the HOMO is five-fold degenerate, with states denoted HOMO, 

HOMO-1, HOMO-2, HOMO-3 and HOMO-4. The energy of the HOMO degenerate state is −4.8 eV. 

In the LUMO level, there are three-fold degenerate states LUMO, LUMO+1 and LUMO+2 with an 

energy of −3.13 eV. My DFT predictions for these degenerate states are well supported by a published 

work [17]. I did not see any degeneracy for EMFs.  

The Frontier orbitals for EMFs did not depend on the orientation of the inner moiety inside the cage.  

 

 

EF=-4.13 𝐞𝐕 

HOMO =-4.80 𝐞𝐕 

HOMO-1=-4.80 𝐞𝐕 LUMO+1=-3.13 𝐞𝐕 

LUMO=-3.13 𝐞𝐕 
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4.4   Charge transfer analyses  

Net atomic charge is a common idea in all chemical sciences. It is difficult to imagine learning chemistry 

without discussing net atomic charges [14]. For example, experiments measuring the water molecule’s 

dipole moment imply a negative net atomic charge on its oxygen atom and a positive net atomic charge 

on each of its two hydrogen atoms [15]. Net atomic charge also plays an important role in solid state 

physics, where oxygen atoms in solid oxides carry negative net atomic charges to enable oxygen ion 

transport [16]. There are many methods to calculate the charge transfer in Density Functional Theory.  

In this chapter, I am going to focus on three methods, that are implemented in SIESTA code, including 

Mulliken populations, Hershfield and Voronoi charge analyses.     

I will investigate the electrical properties of the 3 EMFs molecules first in the gas phase, then I will 

repeat the same calculations, but on an Au substrate. Electrons are expected to be transferred from the 

donor moiety (the metallic moetiy) to the acceptor (the cage). The three methods Mulliken, Hirshfeld 

and Voronoi) will be used to determine the charge transfer from the donor to the acceptor.    

    

4.4.1. Charge transfer analyses of Sc3C2@C80 EMF in gas phase 

Table 4.1 shows the charge transfer from the metallic moiety Sc3C2 to the Ih-C80 cage. Table 4.1 

illustrates that the metallic moiety Sc3C2 loses (+) in total 1.4 electrons. 1.146 is the net charge that has 

been gained (-) by the Ih-C80 cage, the difference of 0.254 electrons remains in the space between the 

metallic moiety Sc3C2 and Ih-C80 cage, as estimated by the Mulliken method. Hirshfeld and Voronoi 

charges follow a similar trend; the net charges are 1.146 and 1.067 electrons respectively.  

 It is worth mentioning that, the charge transferred from the metallic moetiy to the cage and the charge 

effected on the electrical conductance 𝐺 and Seebeck coefficients 𝑆. 
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Table 4.1: Charge transfer analyses using Mulliken, Hirshfeld and Voronoi methods of Sc3C2@C80 

EMF, in gas phase.  

 

 

 

 

 

4.4.2 Charge transfer analyses of Sc3N@C80 EMF in gas phase 

Table 4.2 shows the amount of charge transfer from the metallic moiety Sc3N to the Ih-C80 cage. Table 

4.2 illustrates that the metallic moiety Sc3N loses (+)1.50 electrons. 1.36 is the net charge gained (-) by 

the Ih-C80 cage; the difference of 0.153 electrons resides in the space between the metallic moiety Sc3C2 

and Ih-C80, as estimated by the Mulliken method. The Hirshfeld and Voronoi methods follow a similar 

trend; the net charges are 1.36 and 1.27 electron respectively.  

 It is worth mentioning that, the charge transferred from the metallic moetiy to the cage and the charge 

effected on the electrical conductance 𝐺 and Seebeck coefficients 𝑆. 

Table 4.2: Charge transfer analyses using Mulliken, Hirshfeld and Voronoi methods of Sc3N@C80 

EMF, in gas phase. 

Metallic 

Moiety 

Mulliken charge Hirshfeld charge Voronoi charge 

Moiety  Ih-C80 

cage 
Moiety  Ih-C80 

cage 
Moiety  Ih-C80 

cage 

 

Sc3N 

 

+1.504 

 

-1.369 

 

+1.369 

 

-0.938 

 

+1.272 

 

-0.792 

 

 

 

Metallic 

Moiety 

Mulliken charge Hirshfeld charge Voronoi charge 

Moiety  Ih-C80 

cage 
Moiety   Ih-C80 

cage 
Moiety   Ih-C80 

cage 

 

Sc3C2 

 

+1.400 

 

-1.146 

 

+1.146 

 

-0.730 

 

+1.067 

 

-0.618 
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4.4.3 Charge transfer analyses of Er3N@C80 EMF in gas phase 

Table 4.3 shows the amount of charge transfers from the metallic moiety Er3N to Ih-C80 cage. Table 4.3 

shows that the metallic moiety Er3N loses (+)1.962 electrons. 0.447 is the net charge gained (-) by the 

Ih-C80 cage. The difference of 1.515 electrons is located in the space between the metallic moiety Er3C2 

and Ih-C80 . 1.962 is the net Mulliken charge that has been gained by the Ih-C80 cage. Hirshfeld and 

Voronoi charges follow a net charge of 7.484 and 7.145 electrons respectively.  

 It is worth mentioning that, the charge transferred from the metallic moetiy to the cage and the DFT 

results for Er3N@C80 EMF are unreliable due to the fact that this EMF possesses f-electrons. Due to this 

reason I can not calculate the electrical conductance 𝐺 and Seebeck coefficients 𝑆 in my thesis.     

Table 4.3: Charge transfer analyses using Mulliken, Hirshfeld and Voronoi methods of Er3N@C80 

EMF, in gas phase.  

Metallic 

Moiety 

Mulliken charge Hirshfeld charge Voronoi charge 

Moiety  Ih-C80 

cage 
Moiety  Ih-C80 

cage 
Moiety  Ih-C80 

cage 

 

Er3N 

 

+1.962 

 

-0.447 

 

+7.484 

 

-6.145 

 

+7.145 

 

-5.823 

 

 

4.5 Axes and rotation modes of EMFs 

There are an infinite number of inequivalent orientations of the metallic moiety relative to the fullerene 

cage. In what follows, I consider a selection of rotations about high-symmetry axes. In the gas phase, I 

consider rotation of the metallic moiety relative to a fixed fullerene cage. For this rotational mode, 

rotations about the 𝛽 and Φ axes are equivalent, so in total I consider 3 distinct axes of rotation (imagine 

Figure 4.6 without an Au-substrate). On a substrate, Figure 4.6 shows four axes of rotation 

θ,Φ, α and 𝛽, I will discuss this later. 
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Figure 4.7 shows how these axes pass through the metallic moieties. For each of the four axes of 

rotation, I investigate how the total energy varies with angle of rotation, both in presence and absence 

of the gold substrate. For each of these four axes, I consider one mode of rotation in the gas phase and 

three modes of rotation on a substrate, I will discuss this later. 

Figure 4.6. Illustration of the four rotation axes: θ,Φ are horizontal axes,  α and β are vertical axes.  

This Figure shows how the axes pass through the Ih-C80 cage + metallic moiety.  

Figure 4.7. Illustration of how the four rotation axes θ,Φ,  α and β, pass through the metallic moiety. 

In what follows, the same symbol (e.g. 𝜃) is used to label both the rotation axis and the angle of rotation 

about the axis. 
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4.6 Distance between the metallic moiety and the Au-substrate  

In the gas phase, I consider rotation of the metallic moiety relative to a fixed fullerene cage. For this 

rotational mode, rotations about the 𝛽 and 𝛷 axes are equivalent, so in the gas phase, rotations about 3 

distinct axes are investigated. In the presence of the gold substrate, I consider three modes of rotation 

about each of the four axes: rotation of the bare metallic moiety (in the absence of the cage), rotation of 

the metallic moiety in the presence of a fixed cage, and rotation of both the metallic moiety and cage, 

such that their relative orientation is fixed.  

 

4.6.1 Distance between the metallic moiety and the Au-substrate of Sc3C2@C80 

Figure 4.8 illustrates how 𝑑 varies during rotations about the four different rotation axes θ,Φ, α and β,  

and shows that rotation about θ causes the largest distance variation (black curve), followed by rotation 

about Φ (brown curve). In contrast, by symmetry, rotation about α and β causes no change in 𝑑 ( dark 

green or red curves, respectively).   

 

 

 

 

 

 

 

Figure 4.8. Distance variation between the metallic moiety and the gold substrate in four different 

rotation axes θ,Φ, α and β of Sc3C2@C80. 
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4.6.2 Distance between the metallic moiety and the Au-substrate of Sc3N@C80  

Figure 4.9 illustrates how 𝑑 varies during rotations about the four different rotation axes θ,Φ, α and β,  

and shows that rotation about θ cause the largest distance variation ( grey curve), followed by rotation 

about Φ (orange curve). In contrast, by symmetry, rotation about α and β causes no change in 𝑑 (light 

green or pink curves, respectively). 

 

 

 

 

 

 

Figure 4.9. Distance variation between the metallic moiety and the gold substrate in four different 

rotation axes θ,Φ, α and β of Sc3N@C80.  

 

4.6.3 Distance between the metallic moiety and the Au-substrate of Er3N@C80 

Figure 4.10 illustrates how 𝑑 varies during rotations about the four different rotation axes θ,Φ, α and 

β,  and shows that rotation about θ cause the largest distance variation ( light blue curve), followed by 

rotation about Φ (brown curve). In contrast, by symmetry, rotation about α and β causes no change in 

𝑑 (light yellow purpel curves, respectively). 
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Figure 4.10. Distance variation between the metallic moiety and the gold substrate in four different 

rotation axes θ,Φ, α and β of Er3N@C80.  

 

One should notice that Sc3N@C80 and Er3N@C80 have identical results, due to the fact that the two 

moieties (Sc3N and Er3N), have the same number of atoms and shape (see Figure 4.16). For clarity, I 

shall compare Sc3C2@C80 against Sc3N@C80, as shown in Figure 4.11. This Figure shows that rotation 

about θ causes the largest distance variation (black and grey curves), followed by rotation about Φ 

(brown and orange curves). In contrast, by symmetry, rotation about α and β causes no change in 𝑑 

(light and dark green or red and pink curves, respectively).  Furthermore, the distance variation 𝑑 of 

Sc3N@C80 in general is higher than Sc3C2@C80 in the 4 axes. This is again due to the number of atom 

in Sc3N is less and the shape is more symmetric compared Sc3C2 as shown in Figure 4.16.   

To quantify this variation, Table 4.4 shows the standard deviation σ of the distance 𝑑, associated with 

rotations about the four axes. This shows that the standard deviations σ follow the order  𝜎𝜃> 𝜎Φ> 

𝜎𝛼 = 𝜎𝛽. 
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Figure 4.11. Distance variation between the metallic moiety and the gold substrate in four different 

rotation axes θ,Φ, α and β of Sc3C2@C80, and Sc3N@C80. 

 

 

Table 4.4: Standard deviations σ of the distance 𝑑, associated with rotations about the four axes, for 

the three EMFs Sc3C2@C80, Sc3N@C80 and Er3N@C80. In the latter case, the distance 𝑑 is defined to be 

the smallest vertical distance between the top-most plane of the Au substrate and the closest Er atom. 

 

 

 

 𝛔𝐝 (Å)   

EMF 𝛔𝜽 𝝈𝚽 𝝈𝜶 𝝈𝜷 

Sc3C2@C80 1.47 1.09 0 0 

Sc3N@C80 1.43 0.95  0 0 

Er3N@C80 1.43 0.95  0 0 
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4.7 Gas phase energy barriers to rotation for the 3 moieties within a Ih-C80 

cage 

In this section, the metallic moieties Sc3C2, Sc3N or Er3N are rotated about horizontal axes θ and Φ  and 

about a vertical axis α using equation (4.1) as shown in Figure 4.12. Following equation (4.1), the angle-

dependent energy differences Δ(θ),  Δ(Φ) and  Δ(α) are defined to be   

 

 

 

 

 

Figure 4.12. (a): Horizontal rotation axis used to compute Δ(θ), (b): Horizontal rotation axis used to 

compute Δ(Φ), (c): Vertical rotation axis used to compute  Δ(α), (Sc3C2@C80 shown here as an 

example). 

 

4.7.1 Gas phase energy barriers to rotation for Sc3C2 within a Ih-C80 cage 

Figure 4.13 shows the gas-phase energy differences Δ(θ) of Sc3C2@C80 as a function of the rotation 

angle  θ of the Sc3C2 inside the cage. This shows that the energy barrier to rotation about this horizontal 

axis  is approximately 400 meV,  and that the Sc3C2 within the fullerene cage have preferred 
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orientations θ of approximately 0°,  190° and 360°. The energy barrier to rotation Φ is 350 meV , and 

therefore the moiety Sc3C2 has preferred orientations of Φ ≈ (0°, 110°, 180°, 210°, 270° and 360°). 

The energy barrier to rotation α is 300 meV, and therefore the moiety Sc3C2 has preferred orientations 

of α ≈ (0°, 75°, 160°, 240° and 320°). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13. Top panel: The energy difference Δ(θ) as a function of rotation angle θ of Sc3C2within 

the fixed Ih-C80 cage. Bottom panel: The energy differecne Δ(Φ, α) as a function of rotation angles 

Φ and α (orange and green respectively), of Sc3C2 within the fixed Ih-C80 cage. The energy barriers 

ΔE(θ) to rotation about θ (obtained from the difference between the maxima and minima of Δ(𝜃)) are 

400, 300 and 130 meV respectively, and the moiety Sc3C2 has preferred orientations of θ ≈ 

0°, 190° and 360°, corresponding to the minima of Δ(𝜃). The energy barriers ΔE(Φ) to rotation about 

Φ are 350, 250 and 100 meV respectively, and therefore the moiety Sc3C2  has preferred orientations 

of Φ ≈ (0°, 110°, 180°, 210°, 270° and 360°). The energy barriers to rotation about α are 
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300, 150 and 60 meV respectively, and therefore the moiety Sc3C2 has preferred orientations of α ≈ 

(0°, 75°, 160°, 240° and 320°). 

4.7.2 Gas phase energy barriers to rotation for Sc3N within a Ih-C80 cage 

Figure 4.14 shows the gas-phase energy differences Δ(θ) of Sc3N@C80 as a function of the rotation 

angle  θ of the Sc3N inside the cages. This shows that the energy barrier to rotation about this horizontal 

axis  is approximately 300 meV,  and that the Sc3N within the fullerene cage have preferred orientations 

θ of approximately 0°,  190° and 360°. The energy barrier to rotation Φ is 250 meV , and therefore the 

moiety Sc3N have preferred orientations of Φ ≈ (10°, 95°, 200°, 280° and 340°). The energy barrier  

to rotation α is 300 meV, and therefore the moiety Sc3N has preferred orientations of α ≈ 

(0°, 75°, 100°, 150°, 200° 250°, 300°  and 350°)  

 

 

 

 

 

 

 

 

 

Figure 4.14. Top panel: The energy difference Δ(θ) as a function of rotation angle θ of Sc3Nwithin 

the fixed Ih-C80 cage. Bottom panel: The energy differecne Δ(Φ, α) as a function of rotation angles 

Φ and α (yellow and green respectively), of Sc3N within the fixed Ih-C80 cage. The energy barriers 
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ΔE(θ) to rotation about θ (obtained from the difference between the maxima and minima of Δ(𝜃)) are 

400, 300 and 130 meV respectively, and the moiety Sc3N has preferred orientations of θ ≈ 

0°, 190° and 360°, corresponding to the minima of Δ(𝜃). The energy barriers ΔE(Φ) to rotation about 

Φ are 350, 250 and 100 meV respectively, and therefore the moiety Sc3N has preferred orientations of 

Φ ≈ (10°, 95°, 200°, 280° and 340°). The energy barriers to rotation about α are 

300, 150 and 60 meV respectively, and therefore the moieties Sc3N has preferred orientations of α ≈ 

(0°, 75°, 100°, 150°, 200° 250°, 300°  and 350°). 

4.7.3 Gas phase energy barriers to rotation for Er3N within a Ih-C80 cage 

Figure 4.15 shows the gas-phase energy differences Δ(θ) of Er3N@C80 as a function of the rotation 

angle  θ of the Er3N inside the cages. This shows that the energy barrier to rotation about this horizontal 

axis  is approximately 130 meV,  and that the Er3N within the fullerene cage have preferred orientations 

θ of approximately 0°,  190° and 360°. The energy barrier to rotation Φ is 100 meV , and therefore the 

moiety Er3N has preferred orientations of Φ ≈ (0°, 120°, 250° and 350°).  The energy barrier to 

rotation α is 300 meV, and therefore the moiety Er3N has preferred orientations of α ≈ (0°, 80°, 150°, 

225°, 320°and 360° 
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Figure 4.15. Top panels: The energy difference Δ(θ) as a function of rotation angle θ of Er3N within 

the fixed Ih-C80 cage. Bottom panels: The energy differecne Δ(Φ, α) as a function of rotation angles 

Φ and α (yellow and green respectively), of Er3N within the fixed Ih-C80 cage. The energy barriers 

ΔE(θ) to rotation about θ (obtained from the difference between the maxima and minima of Δ(𝜃)) are 

400, 300 and 130 meV respectively, and the moiety Er3N has preferred orientations of θ ≈ 

0°, 190° and 360°, corresponding to the minima of Δ(𝜃). The energy barriers ΔE(Φ) to rotation about 

Φ are 350, 250 and 100 meV respectively, and therefore the moiety Er3N has preferred orientations of 

Φ ≈ (0°, 120°, 250° and 350°). The energy barriers to rotation about α are 300, 150 and 60 meV 

respectively, and therefore the moiety Er3N has preferred orientations of α ≈ (0°, 80°, 150°, 

225°, 320°and 360°). 

Table 4.5: Gas phase energy barriers ΔE(θ), ΔE( Φ), ΔE( α) associated with rotations about θ,Φ, α of 

Sc3C2, Sc3N and Er3N within the fixed Ih-C80 cage, along with the preferred orientations angles for the 

three rotation axes.   

 

Table 4.5 shows the energy barrier ΔE(θ) for Er3N inside the C80 cage is of order 130 meV, which 

means that the Er3N cluster rotates more easily than the scandium-based moieties, Sc3N and Sc3C2. 

Table 4.5 also shows that the barrier to rotation about a vertical axis ΔE(α) is even lower, at 

approximately 60 meV.  
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Figure 4.16 shows a comparison between the Sc3C2, Sc3N and Er3N moieties.  This figure shows there 

are 5 atoms in Sc3C2 moiety and 4 atoms in Sc3N and Er3N moieties. It also shows that Sc3N and Er3N 

have an identical shape and are more symmetric than Sc3C2.   

 

Figure 4.16. Geometries of Sc3C2, Sc3N and Er3N metallic moieties (left to right). 

 

4.8 Charge transfer analyses of EMFs on an Au substrate 

In this section, I shall repeat the above calculations of the charge transfer, but on an Au substrate. In 

the gas phase analyses, the focus was on two parameters, the metallic moiety and the cage. In on a 

substrate, there are extra features associated with the presence of the substrate.   

 

4.8.1 Charge transfer analyses of Sc3C2@C80 EMF 

As mentioned above, the analyses here are built on the 3 factors, namely a metallic moiety, a cage and 

a substrate. Table 4.6 shows the amount of charge transfer from the metallic moiety Sc3C2 and a gold 

substrate to Ih-C80 cage. Table 4.6 shows that the metallic moiety Sc3C2 and substrate lose (+) in total 

1.635 electrons. 1.391 is the net charge that has been gained (-) by the Ih-C80 cage, the difference of 

0.244 electrons resides in the space between the metallic moiety Sc3C2 and Ih-C80 cage, as estimated by 

the Mulliken method. Hirshfeld and Voronoi charges follow similar trends; the net charges are 1.137 

and 1.112 electrons respectively.   
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Table 4.6: Charge transfer immigration among three segments including metallic moiety, cage and 

Au substrate. Mulliken, Hirshfeld and Voronoi methods are used to analyse the cahrge transfer for 

Sc3C2@C80 EMF. 

 

 

 

 

 

 

4.8.2 Charge transfer analyses of Sc3N@C80 EMF 

Table 4.7 shows the charge transfers from the metallic moiety Sc3N and a gold substrate to Ih-C80 cage. 

Table 4.7 illustrates that the metallic moiety Sc3N and substrate lose (+) in total 2.37 electrons. 1.96 is 

the net charge gained (-) by the Ih-C80 cage. The difference 0.41 remains in the space between the 

metallic moiety Sc3C2 and Ih-C80 , as estimated by the Mulliken method. Hirshfeld and Voronoi methods 

follow a net charge of 1.32 and 1.28 electron respectively.   

Table 4.7: Charge transfer immigration among three segments including metallic moiety, cage and 

Au substrate. Mulliken, Hirshfeld and Voronoi methods are used to analyse the cahrge transfer for 

Sc3N@C80 EMF. 
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4.8.3 Charge transfer analyses of Er3N@C80 EMF 

Table 4.8 shows the charge transfers from the metallic moiety Er3N and a gold substrate to Ih-C80 cage. 

Table 4.8 reveals that the metallic moiety Er3N and substrate lose (+) in total 1.87 electrons. 0.32 is the 

net charge gained (-) by the Ih-C80 cage. The difference 1.545 resides in the space between the metallic 

moiety Sc3C2 and Ih-C80 , as estimated by the Mulliken method. Hirshfeld and Voronoi methods follow 

a net charge of 7.34 and 7.05 electrons respectively.  However, the Er3N@C80 EMF is inaccurate owing 

to the presence of f-electrons; hence, I am unable to compute the electrical conductance 𝐺 and Seebeck 

coefficients 𝑆 in my thesis. 

Table 4.8: Charge transfer immigration among three segments including metallic moiety, cage and Au 

substrate. Mulliken, Hirshfeld and Voronoi methods are used to analyse the cahrge transfer for 

Er3N@C80 EMF. 

 

 

 

 

 

 

 

4.9 Binding energies of EMFs and C60 on a gold surface 

For calculating binding energies, the counterpoise method described in chapter 2, section 2.5 will be 

employed.  In this section, I calculate the optimum binding distance between the gold (111) surface and 

the EMFs/C60. I use DFT, combined with the counterpoise method, which removes basis set 

superposition errors (BSSE).  
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The ground state energy of the total system is calculated using SIESTA [7] and is denoted 𝐸𝐴𝐵
𝐴𝐵. Here, 

the gold lead consists of 3 layers of 25 atoms. The EMFs and C60 molecules are defined as monomer A 

and the gold electrode as monomer B. The binding energy of each molecules is then calculated in a 

fixed basis, which is achieved through the use of ghost atoms in SIESTA. Hence, the energy of the 

isolated EMFs and C60 molecules in the presence of the fixed basis is defined as 𝐸𝐴
𝐴𝐵 and for the isolated 

gold is 𝐸𝐵
𝐴𝐵. The energy difference (Δ(𝑧)) between the isolated entities and their total energy when 

placed a distance 𝑧 apart is then calculated using the following equation:  

 

 

 

5.9.1 Binding energies of Sc3C2@C80 EMF 

As shown by the Figure 4.17, the equilibrium distance for Sc3C2@C80, corresponding to the minimum 

energy difference, is found to be approximately 2.5 Å. with an energy value about 0.9 eV, using 

equation 4.2. 

Energy difference = Δ(𝑧) = 𝐸𝐴𝐵
𝐴𝐵(𝑧) − 𝐸𝐴

𝐴𝐵 − 𝐸𝐵
𝐴𝐵  (4.2) 
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Figure 4.17. Sc3C2@C80 on a gold surface (Top panel). Energy difference of Sc3C2@C80 /gold complex 

as a function of molecule-gold distance. The equilibrium distance corresponding to the energy minimum 

is found to be approximately 2.5 Å (Bottom panel).  

 

5.9.2 Binding energies of the Sc3N@C80 EMF 

As shown by the Figure 4.18, the equilibrium distance for Sc3N@C80, corresponding to the minimum 

energy difference, is found to be approximately 2.5 Å, with an energy value about 0.45 eV. The 

equilibrium distance 2.5 Å, that theoretically calculated for the same EMF by [13].   
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Figure 4.18. Sc3N@C80 on a gold surface (Top panel). Energy difference of Sc3N@C80 /gold complex 

as a function of molecule-gold distance. The equilibrium distance corresponding to the energy minimum 

is found to be approximately 2.5 Å (Bottom panel).  
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5.9.3 Binding energies of C60 

As shown by the Figure 4.19, the equilibrium distance between the C60 cage and Au substrate, which 

is,  corresponding to the minimum energy difference, is found to be approximately 2.5 Å.  with an 

energy value of 0.9 eV.  

 

 

 

 

 

 

 

 

 

Figure 4.19. C60 on a gold surface (Top panel). Energy difference of C60 /gold complex as a function 

of molecule-gold distance. The equilibrium distance corresponding to the energy minimum is found to 

be approximately 2.5 Å (Bottom panel). 

The equilibrium distance and energy difference for two EMFs including Sc3C2@C80, Sc3N@C80 and an 

empty cage are shown in Table 4.9. This table shows that the energy difference of Sc3C2@C80 is double 

than that Sc3N@C80, whereas the equilibrium distance is approximately similar. It is worth mentioning 

that, the equilibrium distance and energy difference have been not calculated to Er3N@C80.  



81 

 

This is because the electrical conductance and Seebeck coefficients of Er3N@C80 EMF are unreliable 

due to the fact that this EMF possesses f-electrons.     

 

Table 4.9: Summarises the optimum distance (Å), and the binding energy (eV), of two EMFs and C60 

cage. 

 

 

 

 

4.10 Energy barriers to rotation for endohedral fullerenes on a gold (111) 

surface 

Having discussed barriers to rotation in the gas phase, I now calculate the energy Δ(θ) when the whole 

EMFs (cage plus metallic moiety) is rotated in the vicinity of a gold (111) surface, at various distances 

𝑧 relative to the surface. The rotation axis 𝜃 is shown in Figure 4.20 along with the definition of the 

distance 𝑧 of EMF the  relative to the Au surface for Sc3C2@C80, Sc3N@C80 and Er3N@C80 EMFs.   

Molecule 𝐁.𝐄 (𝐞𝐕)  Optimum distance  (Å) 

Sc3C2@C80 0.90 2.5 

Sc3N@C80 0.45 2.5 

Er3N@C80 == == 

C60 1.1 2.5 
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Figure 4.20. Illustration of the rotation axis 𝜃 and the Au-EMF distance (𝑧) of a: Sc3C2@C80, b: 

Sc3N@C80 and c: Er3 Er3N@C80 used to compute the results in Figures 4.21 and 4.22. 

 

For each of Sc3N@C80, Sc3C2@C80 and Er3N@C80 EMF, Figure 4.21 shows the energy Δ(θ) obtained 

at different Au-EMF distances 𝑧, starting from the optimum distance 𝑧 = 2.5 Å (see Figures 4.17 and 

4.18). At each distance 𝑧, Δ(θ) is computed for values of θ ranging from 0 to 2𝜋. At the optimum value 

z, the three black curves show that Er3N@C80 possesses the smallest rotation barrier (ΔE(θ) = 0.1 eV), 

whereas Sc3C2@C80 and Sc3N@C80 possess energy barriers to rotation of ΔE(θ) = 0.6 eV and 0.3 eV, 

respectively. All those barriers decrease with increasing distance 𝑧, until they vanish at large 𝑧 (𝑧 =15.0 

Å, which is approximately equivalent to the gas phase of the whole EMF). The three green curves in 

Figure 4.21 show the corresponding energies obtained by rotating the metallic moieties alone in the 

vicinity of a gold surface in the absence of the C80 cage, at z = 2.5 Å  (see Figure 4.7). This shows that 

for bare Sc3C2 and Sc3N (i.e. in the absence of the cage, see Figure 4.7) the rotational energy barriers 

are slightly smaller and are negligible for the bare Er3N. 
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Figure 4.21. Rotational energy barriers of the three EMFs on a gold surface Sc3C2@C80, Sc3N@C80 and 

Er3N@C80, respectively computed at different distances 𝑧 from the surface, for the rotation axis θ. The 

energy barriers to rotation are of the order 0.6, 0.3 and 0.1 eV at 𝑧 = 2.5 Å and tend to zero for large  

Å 

Å 

Å 

Å Å Å 

𝚫
( 𝛉
,𝐳
) (
𝐞
𝐕
) 

𝚫
( 𝛉
,𝐳
) (
𝐞
𝐕
)

Å 
Å 

Å Å Å 
Å 

𝚫
( 𝛉
,𝐳
) (
𝐞
𝐕
) 

𝚫
( 𝛉
,𝐳
) (
𝐞
𝐕
)

Å 

Å Å Å 

Å 

Å 

𝚫
( 𝛉
,𝐳
) (
𝐞
𝐕
) 

𝚫
( 𝛉
,𝐳
) (
𝐞
𝐕
)

𝛉 

𝛉



84 

 

𝑧 (black lines). The green curves show the energy barriers to rotation for the three bare metallic moieties 

near a gold surface, at 𝑧 = 2.5 Å, in the absence of C80. 𝑧 = 15.0 Å, (black lines). The green curves show 

the energy barriers to rotation for the three bare metallic moieties near a gold surface, at 𝑧 = 2.5 Å, in 

the absence of C80 cage.  

 

 It is worth mentioning that, in the above calculations, the whole EMF or just the bare metallic cluster 

were rotated in the vicinity of a gold substrate. As a separate check on the energy barriers, I now keep 

the cage at a fixed orientation and compute the energy Δ(θ, z) versus 𝑧 for rotation angles θ of the 

metallic cluster inside the cage, which correspond to the energy minima of Table 4.5. 

 For Sc3C2 moiety, (Figure 4.22a) the four different angles used are  θ =  0°, 90°, 180°, 270°. While for 

Sc3N moiety (Figure 4.22b), the three different angles are θ = 0°, 90°, 180°. The differences between 

the energy minima of these plots match the results of the middle panel of Figure 4.21. These results 

show that Sc3C2 possesses the highest barrier, in agreement with the top panel of Figure 4.21. On the 

other hand,  For Er3N, (Figure 4.22c) three different angles are used θ =  0°, 90°, 180°. This shows that 

the energy barrier is relatively small and in agreement with the bottom panel of Figure 4.21.  
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Figure 4.22. The energy difference Δ(𝑧) as a function of the distance z for different orientations of the 

metallic clusters inside the cage a, b and c correspond to Sc3C2@C80, Sc3N@C80, and Er3N@C80, 

respectively. 
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For a clearer picture, I now repeat the calculations shown in Figure 4.21 using the different rotation 

axes θ, Φ, 𝛼 and β on the Au substrate as shown in Figure 4.23 as an example. I calculate the energies 

Δ(θ), Δ(Φ), Δ(𝛼), Δ(β) when the whole EMF (cage plus metallic moiety) is rotated in the vicinity of a 

gold (111) surface.  

 

 

 

 

 

 

 

Figure 4.23. Illustration of the rotation axes and the Au-EMF distance (𝑧), used to compute the results 

in Figure 4.24.   

 

Figure 4.24 shows the binding energy is rather sensitive to rotation about the θ and Φ axes and are 

relatively insensitive to rotation about axes α and β. Consequently, the energy barriers to rotation follow 

the order ΔE(𝜃) >  ΔE(𝛷) >  ΔE(𝛼) >  ΔE(𝛽). This ordering illustrates a rather intuitive structure-

function relation, because it is correlated with the standard deviations σ of Table 4.4, which follow the 

order  𝜎𝜃> 𝜎Φ> 𝜎𝛼 = 𝜎𝛽. This shows that large variations in the distance between the metal 

atom and the substrate lead to large variations in the binding energy and larger energy 

barriers to rotation, whereas the negligible variations in the distance associated with the 𝛼 

and 𝛽 axes lead to much smaller energy barriers. 
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Figure 4.24. Rotational energy barriers of the three EMFs onto a gold surface Sc3C2@C80, Sc3N@C80, 

and Er3N@C80, respectively as a function of rotation and distance to the surface in four rotational axes 

θ,Φ, α and β. The energy barrier to rotation (β-axes) is of the order of 0.25, 0.1 and 0.04 eV at 𝑧 = 2.5 

Å and tends to zero for large 𝑧 (red lines 𝑧 = 15.0 Å). 
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4.11 Conclusion 

In summary, I studied the frontier orbital for the three EMFs and C60 molecules and find the degeneracy 

for the C60 cage is fivefold in the HOMO energy levels and threefold in the LUMO. I analysed the 

charge transfer trends of the three EMFs molecules in the gas-phase and on a gold substrate using 

Mulliken, Hirshfeld and Voronoi population analyses. 

In the next step, I employed the DFT to examine the binding energies of these junctions under various 

rotation axes. There are an infinite number of different ways that the metallic parts of the fullerene cages 

can be oriented. I investigate how the total energy varies with angle of rotation, both in presence and 

absence of the gold substrate. I study the gas-phase energy differences Δ(θ) of Sc3C2@C80, Sc3N@C80 

and Er3N@C80 EMFs as a function of the rotation angle  θ,Φ, α of the Sc3C2, Sc3N and Er3N inside 

the cages. It is clear, that the energy barriers follow the order θ >  Φ >  𝛼 for Sc3C2@C80, 

Sc3N@C80 and Er3N@C80 EMFs. Similarly, the energy barriers follow the order Sc3C2@C80 > 

Sc3N@C80 > Er3N@C80, the metallic moiety is rotated in respect to a fixed fullerene cage. For this 

rotational mode, rotations about the 𝛽 and 𝛷 axes are equivalent, so in the gas phase, rotations about 3 

distinct axes are investigated. In the presence of the gold substrate, I consider three modes of rotation. 

Rotation of the metallic moiety in the presence of a fixed cage, and rotation of both the metallic moiety 

and cage, such that their relative orientation is fixed. This means that in total, on a substrate, 12 distinct 

cases are considered (4 axes x 3 modes of rotation). The energy barriers to rotation about the above 

axes were computed, to obtain the preferred angles of rotation, which minimise the total energy. Thus, 

the energy barriers to rotation follow the order ΔE(𝜃) >  ΔE(𝛷) >  ΔE(𝛼) >  ΔE(𝛽). This ordering 

illustrates a rather intuitive structure-function relation, because it is correlated with the standard 

deviations σ, this shows that large variations in the distance between the metal atom and the 

substrate lead to large variations in the binding energy and larger energy barriers to rotation, 

whereas the negligible variations in the distance associated with the 𝛼 and 𝛽 axes lead to much 

smaller energy barriers. As shown in figure 4.21 these results show that Sc3C2 possesses the highest 

barrier.   
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All the studied parameters in this chapter have a significant effect on the electric and thermoelectric 

properties of the endohedral metallofullerenes and fullerene as I will show in the next chapter.    
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Chapter 5 

Exploiting fluctuations in the search for high-thermoelectric-performance 

molecular junctions 

 

This work was a joint collaboration between the group of Prof. Nicolas Agrait (Departamento de Física 

de la Materia Condensada, Universidad Autónoma de Madrid, Spain), who conducted the experiments 

and the group of Prof. Kyriakos Porfyrakis (Department of Materials, University of Oxford), who 

synthesised the molecules.  

 

 

 

5.1 Motivation 

For the purpose of creating single-molecule junctions, which can convert a temperature difference 

Δ𝒯 into a voltage Δ𝑉 via the Seebeck effect, it is of interest to screen molecules for their potential to 

deliver high values of the Seebeck coefficient 𝑆 = −Δ𝑉/Δ𝒯. When single molecules are placed 

between two electrodes to form single-molecule junctions, it is standard practice to make thousands of 

measurements of their Seebeck coefficients, because their values fluctuate due to random binding 

configurations of the molecule within the junction and variations in the electrode Fermi energy 𝐸𝐹 

relative to energies of frontier orbitals. Usually, one is interested in the most-probable values of 𝑆, which 

are obtained from the peaks in their histograms. Here we demonstrate that additional insight into 

molecular-scale structure-function relationships can be obtained by examining the widths and extreme 

values of such histograms. Using a combination of experimental scanning-tunnelling-microscopy-based 

transport measurements and density-functional-theory-based transport calculations, we study the 

electrical conductance and Seebeck coefficient of three endohedral metallofullerenes (EMFs) 
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Sc3N@C80, Sc3C2@C80, and Er3N@C80, which based on their structures, are selected to exhibit different 

degrees of charge inhomogeneity and geometrical disorder within a junction. When placed on a flat 

gold surface, the distance 𝑑 between the top-most plane of the Au substrate and the closest metallic 

atom inside the EMFs fluctuates due to rotations of the encapsulated moiety on the surface and the 

degree of variation is characterised by the associated standard deviation 𝜎, which is a purely geometric 

quantity. Similarly, the degree of charge inhomogeneity on the fullerene cage can be characterised by 

a standard deviation 𝜎𝑞 associated with charge inhomogeneity. Here we report an interesting structure-

function relationship by demonstrating that standard deviations in the Seebeck coefficient 𝜎𝑆 of EMF-

based junctions are correlated with the geometric quantity 𝜎 and the charge inhomogeneity 𝜎𝑞. We 

benchmark these molecules against C60 and demonstrate that both 𝜎𝑞 , 𝜎𝑆 are the largest for Sc3C2@C80, 

both are the smallest for C60 and for the other EMFs, they follow the order Sc3C2@C80 >Sc3N@C80 > 

Er3N@C80 > C60. A large value of 𝜎𝑆 is a sign that a molecule can exhibit a wide range of Seebeck 

coefficients and if orientations corresponding to high values can be selected and controlled, then the 

molecule has the potential to exhibit high-performance thermoelectricity. For the EMFs studied here, 

large values of 𝜎𝑆 are associated with distributions of Seebeck coefficients containing both positive and 

negative signs, which reveals that all these EMFs are bi-thermoelectric materials. 

 

5.2 Introduction 

Recently there has been much progress in understanding the thermoelectrical properties of single-

molecule junctions [1-4]. stimulated in part by reports of high Seebeck coefficients of order 161 μVK−1 

[5] In this regard, thermoelectricity in fullerenes and nanotubes has led to the observation that the sign 

of the Seebeck coefficient in fullerenes and nanotubes can be switched by pressure, strain and inter-

molecular interactions [6-10]. 

During recent years, the search for non-toxic and easily processable thermoelectric materials has led 

several groups to explore the potential of molecular-scale devices for converting waste heat into 

electricity [11-48]. This is achieved via the Seebeck effect, which converts a temperature difference Δ𝒯 
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into a voltage Δ𝑉 = −𝑆Δ𝒯, where the constant of proportionality is the Seebeck coefficient 𝑆. Measured 

values of 𝑆 are currently too low to create an economically viable technology and therefore there is a 

need to develop strategies for rapidly assessing the ability of a given molecule to deliver high values of 

𝑆. In the 1980s, studies of sample-to-sample variations in electrical conductance 𝐺 of mesoscopic, 

phase-coherent solids led to remarkable discoveries such as universal conductance fluctuations (UCFs), 

in which the standard deviation 𝜎𝐺  in the conductance is 𝜎𝐺 = 𝑎𝐺0, where 𝐺0 =
2𝑒2

ℎ
≈ 77 μS is the 

quantum of conductance [49-51]. In this expression, 𝑎 is a number of order unity, which is independent 

of the average value of 𝐺, and depends only on the presence of an applied magnetic field or spin-orbit 

scattering. Since that time, the field of single-molecule electronics has been established, in which the 

electrical conductor is a single molecule located between electrodes separated by a few nanometres. 

However, even though many experiments have confirmed that transport through single molecules is 

phase coherent [52-61], even at room temperature, information contained in fluctuations has been 

largely ignored. Here, our aim is to demonstrate that studies of fluctuations in single-molecule transport 

properties are of particular interest in the search for molecules with high thermoelectrical performance, 

because rare examples of junctions exhibiting extreme values of Seebeck coefficients are a proof of 

principle that such junctions can exhibit high thermopowers.  

To demonstrate that fluctuations can be used to search for molecules with potential for high 

thermoelectric performance, I report a combined experimental and theoretical study of a family of 

endohedral metallofullerenes (EMFs), specifically chosen to exhibit large fluctuations. EMFs are 

chosen because they can form single-molecule junctions without the need for anchor groups, which in 

the literature, are often used to bind molecules to electrodes. Such anchor groups would restrict the 

number of binding configurations within a junction and reduce fluctuations, whereas in this study, I 

would like to explore the full phase space of molecular configurations within a junction. 

EMFs represent a fascinating class of nanomaterials, whose optical [62], electrochemical [63] or 

magnetic [64] properties are controlled by the type of metal atom(s) encapsulated by the fullerene cage. 

For example, erbium containing EMFs possess a characteristic 1520 nm emission associated with the 

erbium ion, which is of fundamental importance for telecommunication applications and the fabrication 
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of erbium doped amplifiers [65]. Moreover, there is a broad spectrum of scandium-containing 

metallofullerenes, including the paramagnetic Sc@C82 and Sc3C2@C80, which can find applications as 

spin probes and quantum information processing components [66]. Τhe latter exhibits a unique diamond 

shaped EPR, with respect to the three equivalent scandium atoms (Appendix B see Figure 2).  For the 

purpose of probing fluctuations in transport properties, these molecules are attractive, because they not 

only bind to electrodes with a range of different orientations, but also by making different choices for 

the encapsulated moiety, they can possess highly inhomogeneous charge distributions (for example as 

in the case of Sc3C2@C80) or possess a relatively homogeneous charge distribution (as for C60). 

Therefore, a study of their transport properties is expected to reveal how charge distributions and 

geometry are correlated with fluctuations in their Seebeck coefficients and their ability to exhibit high 

values of 𝑆. 

To investigate correlations between Seebeck coefficient, geometry and charge inhomogeneity, our aim 

is to compare transport properties of Sc3N@C80 and C60 [21], with those of two other trimetallic EMFs, 

namely, the paramagnetic Sc3C2@C80 (Appendix B see Figure 2) and a rare-earth-based EMF, 

Er3N@C80. Like Sc3N@C80, these EMFs are formed with the fullerene cage Ih-C80, composed of 80 C 

atoms organised in an icosahedral structure (Ih symmetry also shared by C60) (see Figure 4.1) [65-68] 

and their cages possess sizeable charge inhomogeneity. My main result is that the standard deviations 

of Seebeck coefficients of these four molecules are strongly correlated with standard deviations in the 

charge distributions on their fullerene cages, thereby establishing a structure-function relationship 

between Seebeck fluctuations and charge inhomogeneity. Furthermore, molecules with high charge 

inhomogeneity exhibit rare examples of high thermopower, which means that if these rare junction 

configurations could be isolated and controlled, then such molecules have the potential to deliver high-

performance thermoelectricity. 

5.3 Transmission coefficient 𝑻(𝑬) 

In this section, I employ the GOLLUM code to determine the electrical transport properties of 

endohedral metallofullerenes EMFs and C60 from SIESTA's divergence evolved mean-field DFT 

Hamiltonian, for more detail see chapter 2 section 2.6. As a mention in chapter 4 due of the presence of 
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f-electrons, the transmission coefficient 𝑇(𝐸) and Seebeck coefficients 𝑠 of Er3N@C80 are not 

calculated (less reliable). Gollum code is based on stationary transport theory which is used to evaluate 

transmission coefficients 𝑇(𝐸) for electrons at energy 𝐸. The Landauer formula calculates the zero-bias 

electrical conductance 𝐺 

where 𝐺0 = (
2𝑒2

ℎ
) is the quantum of conductance and 𝑓(𝐸, 𝑇) is the Fermi distribution function defined 

as 𝑓(𝐸, 𝑇)= [𝑒
(𝐸−𝐸𝐹)

𝑘𝐵𝑇 + 1]

−1

 with 𝑘𝐵  is Boltzmann constant. 

Figure 5.1, shows an example of transmission coefficient curve as a function energy for C60 cage. The 

physical meaning of the transmission coefficient is the probability of an electron to pass form the left 

electrode to the right electrode through the molecule at a certain energy.  

Figure 5.1, also illustrates the HOMO and LUMO gap with a smooth curve and this is due to the fact 

that C60  is an empty cage. However, the case is different when there is an encapsulated moiety inside 

the cage to form endohedral metallofullerenes (EMFs), such as Er3N@C80 and Sc3N@C80. The 

encapsulated moiety causes an extra feature in the transmission curve, for instance resonances as shown 

in Figure 5.2. Furthermore, if the encapsulated moiety is metallic in whole or contains metallic atoms 

then a spin polarisation calculation is required. I provide more detail about the spin polarisation in the 

next section.  

 

 

𝐺 = 𝐺0 ∫ 𝑑𝐸

∞

−∞

𝑇(𝐸)(
𝜕𝑓(𝐸, 𝑇)

𝜕𝐸
) (5.1) 
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Figure 5.1. An example of transmission coefficient curve of C60 cage. A smooth transmission curve 

versus energy with HOMO and LUMO resonances.  

 

 

 

 

 

 

 

 

 

Figure 5.2. An example of transmission coefficient curve of Sc3N@C80 EMF. The transmission curve 

possesses an extra resonance close to LUMO, due to the encapsulated moiety Sc3N inside the cage.  

LUMO resonance 
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5.4 Spin polarisation  

An active topic of nanotechnology research is concerned with the use of electron spin for storage and 

processing. Some recent spintronic devices are composed of inorganic materials, and the use of organic 

materials in spintronics is already a major topic in science and engineering fields [70,71]. Gohler et al. 

reported spin-selective electron transmission through double-stranded DNA (dsDNA) monolayers at 

room temperature [72]. They reported that spin polarisation goes up with dsDNA length and showed 

efficient spin filtered [73]. Charge transfer was investigated using double-stranded DNA oligomers 

linked to two electrodes by Xie et al [74]. They realized that dsDNA molecules will function as very 

effective spin filters. The Green's function approach was utilised in a theoretical physics research to 

evaluate spin polarisation and spin-dependent electron conductance on the helical symmetry, length, 

and environment-induced dephasing factors of dsDNA. Next section, I will explore spin-dependent 

transport calculations for different rotation angels θ,Φ, 𝛼 𝑎𝑛𝑑  β of Sc3C2@C80, Sc3N@C80 

respectively. 

As it mentioned above, since the studied EMFs have metallic moieties with unpaired spins, taking into 

account spin polarisation is essential, otherwise the simulations would be incorrect. In chapter 4, I 

explored number of parameters that have an effect on the electronic and thermoelectric properties. In 

section 4.5, I discussed the effect of axes and rotation, where I considered 4 distinct axes of rotation 

(see Figure 4.6), including θ, Φ, α and 𝛽.  

 

5.4.1 Spin-dependent transport calculations for different rotation angles (𝛉) about a 

horizontal axis  

Here, I am going to investigate the effect of the 4 rotation axes θ,Φ, α and 𝛽, on the transmission 

coefficient and Seebeck coefficient for both Sc3C2@C80 and Sc3N@C80 EMFs.  I will first begin with 

an example that illustrates the effect of the spin polarisation (spin-up and spin-down), how I apply this 

effect in my simulations.   
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Figure 5.3 shows the definition of the orientation angle of the Sc3C2@C80 molecule from θ = 0⁰ to 90⁰. 

Figure 5.4 shows an example of the spin-dependent transmission coefficients T(E) for the optimum 

geometry (60⁰) shown in Figure 5.3. These reveal that the calculated transmission for spin-up (𝑇𝑢𝑝(𝐸)) 

and spin-down (𝑇𝑑𝑜𝑤𝑛(𝐸))  show that the resonance is split as expected due to the charge transfer from 

the metallic moiety to the cage, which positions the resonance close to the Fermi energy. The total 

transmission is then given by   
𝑇𝑢𝑝(𝐸)+𝑇𝑑𝑜𝑤𝑛(𝐸)

2
 as shown in Figure 5.4. 

 

 

 

Figure 5.3. Sc3C2@C80 EMF between gold surfaces. The orientation of the Sc3C2@C80 molecule with 

respect to the gold leads corresponds to the defined angle (a) θ = 0°, (b) θ = 90°. (a and b): a view in 

which the rotation axis is perpendicular to the plane of the paper, (c): The horizontal rotation axis θ. 
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Figure 5.4. Spin-polarised transmission coefficients 𝑇𝑢𝑝(𝐸), 𝑇𝑑𝑜𝑤𝑛(𝐸) and 𝑇(𝐸) =
𝑇𝑢𝑝(𝐸)+𝑇𝑑𝑜𝑤𝑛(𝐸)

2
, 

for the binding configuration of 60o orientation θ of Sc3C2@C80 and z = 2.5 Å. The three curves 

represent the spin-up, spin-down and the average of them: blue, red and black curves, respectively.  

  

Since, the extra resonance due to the metallic moiety is closer to the LUMO resonance (see Figure 5.4), 

and for clarity, only the effective area (the extra resonance and LUMO resonance, black-dashed box) is 

going to be shown in the coming Figures.   

Figure 5.5 shows the average transmission coefficients for different orientations of Sc3C2@C80 (see 

Figure 5.3). Similarly, Figure 5.6 shows the average transmission coefficients for 60 different 

orientations of Sc3N@C80. By comparing Figures 5.5 and 5.6, one can notice the fluctuations in the 

Sc3C2@C80 transmission curves are larger than those of the Sc3N@C80 curves. I attribute the difference 

in the fluctuations of Sc3C2@C80 and Sc3N@C80 to the shape of the metallic moieties. In other words, 

the shap of Sc3N moiety  is more symmetric/uniform (see Figure 4.16), than Sc3C2 and this is why the 

fluctuation is smaller in case Sc3N@C80 on this rotation axis (θ).     
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Figure 5.5. Spin-polarised transmission coefficients, 𝑇(𝐸) =
𝑇𝑢𝑝(𝐸)+𝑇𝑑𝑜𝑤𝑛(𝐸)

2
, for the 60 binding 

configurations of different orientations θ for Sc3C2@C80, and 𝑧 = 2.5 Å.   
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Figure 5.6. Spin-polarised transmission coefficients, 𝑇(𝐸) =
𝑇𝑢𝑝(𝐸)+𝑇𝑑𝑜𝑤𝑛(𝐸)

2
, for the 60 binding 

configurations of different orientations θ for Sc3N@C80, and 𝑧 = 2.5 Å. 

 

5.4.2 Spin-dependent transport calculations for different orientations (𝜱) about a 

horizontal rotation axis  

In this section, I repeat the calculations described in section 5.3.1, but using the horizontal rotation axis 

(𝛷), as shown in Figure 5.7. As expected the fluctuations in the transmission coefficients are smaller 

when the EMF rotates about the 𝛷 axis, because the variation in the distance (see Table 4.4), between 

the metallic part Sc3C2/ Sc3N and the cage C80 is smaller compared to rotation in 𝜃 axis as shown in 

Figures 5.8, 5.9.  

The variation in the distance has been discussed thoroughly in chapter (see section 4.6, Figures 4.8, 4.9, 

4.10 and Table 4.4). Here, one can easily notice the effect of this parameter on the transmission 

coefficient.      

 

 

 

 

   

 

 

Figure 5.7. Sc3C2@C80 EMF between gold surfaces. The orientation of the Sc3C2@C80 molecule with 

respect to the gold leads corresponds to the defined angle (a) θ = 0°, (b) θ = 90°. (a and b): a view in 

which the rotation axis is perpendicular to the plane of the paper, (c): The horizontal rotation axis Φ. 
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Figure 5.8. Spin-polarised transmission coefficients, 𝑇(𝐸) =
𝑇𝑢𝑝(𝐸)+𝑇𝑑𝑜𝑤𝑛(𝐸)

2
, for the 60 binding 

configurations of different orientations Φ of Sc3C2@C80, and 𝑧 = 2.5 Å.    
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Figure 5.9. Spin-polarised transmission coefficients, 𝑇(𝐸) =
𝑇𝑢𝑝(𝐸)+𝑇𝑑𝑜𝑤𝑛(𝐸)

2
, for the 60 binding 

configurations of different orientations Φ of Sc3N@C80, and 𝑧 = 2.5 Å.    

 

5.4.3. Spin-dependent transport calculations in the vertical rotation axis (𝜶)  

In this section, I repeat the calculations described in section 5.3.1, using rotation angles about the 

vertical rotation axis (𝛼), as shown in Figure 5.10. As expected, compared to the rotations about the 𝜃 

axis, Figures 5.11 and 5.12 show that the fluctuations in the transmission coefficients are smaller when 

the EMF rotates about this vertical axis, because the rotation causes a smaller variation in the distance 

(see Table 4.4, chapter 4), between the metallic part Sc3C2/Sc3N and the cage C80. Since the rotation in 

this axis (𝛼), has small effect on the transmission coefficient curves, Figures 5.22 and 5.23 show that 

the Seebeck coefficient S does not show strong fluctuations (see section 5.5.3). 

 

 

 

 

 

  

 

Figure 5.10. Sc3C2@C80 between gold surfaces. a-b: The orientation of the Sc3C2@C80 molecule with 

respect to the gold leads. c: The vertical rotation axis α.  
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Figure 5.11. Spin-polarised transmission coefficients, 𝑇(𝐸) =
𝑇𝑢𝑝(𝐸)+𝑇𝑑𝑜𝑤𝑛(𝐸)

2
, for the 60 binding 

configurations of different orientations α of Sc3C2@C80, and 𝑧 = 2.5 Å.    
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Figure 5.12. Spin-polarised transmission coefficients, 𝑇(𝐸) =
𝑇𝑢𝑝(𝐸)+𝑇𝑑𝑜𝑤𝑛(𝐸)

2
, for the 60 binding 

configurations of different orientations α of Sc3N@C80, and 𝑧 = 2.5 Å.    

 

5.4.4 Spin-dependent transport calculations in the vertical rotation axis (𝜷) 

In this section, the same calculations described in section 5.3.1 have been repeated, using the vertical 

rotation axis (𝛽), as shown in Figure 5.13. As expected, the difference in the transmission coefficients 

is the smallest when the EMF rotates in vertical axis, and this is due to the fact that the distance between 

the metallic part Sc3C2/Sc3N and the cage C80 is kept the same. Figures 5.14 and 5.15 show small effect 

in the transmission curves while rotating in vertical axis (𝛽), unlike in the horizontal axes 𝜃 and 𝛷. 

Since the rotation in this axis (𝛽) has the smallest effect on the transmission coefficient curves one 

would expect the Seebeck coefficient 𝑆 to be approximately similar for all rotation angles. I will discuss 

the effect of rotation axes on 𝑆 in more detail in section 5.5 

 

 

 

 

 

 

 

 

Figure 5.13. Sc3C2@C80 EMF between gold surfaces. (a-b): The orientation of the Sc3C2@C80 molecule 

with respect to the gold leads. (c): The vertical rotation axis β.   
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Figure 5.14. Spin-polarised transmission coefficients, 𝑇(𝐸) =
𝑇𝑢𝑝(𝐸)+𝑇𝑑𝑜𝑤𝑛(𝐸)

2
, for the binding 

configurations of differnt orientations β of Sc3C2@C80, and 𝑧 = 2.5 Å. 

   

 

 

 

 

 

 

 

 

 

Figure 5.15. Spin-polarised transmission coefficients, 𝑇(𝐸) =
𝑇𝑢𝑝(𝐸)+𝑇𝑑𝑜𝑤𝑛(𝐸)

2
, for the binding 

configurations of differnt orientations β of Sc3N@C80, and z = 2.5 Å.  
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5.4.5. Spin-independent transport calculations of C60  

In this section, I repeat the same calculations described in section 5.3.1, however, for an empty cage 

C60. Since C60 has no metallic atoms there is no need for spin-dependent calculations. As expected, the 

transmission coefficients are almost independent of the rotation angle about a vertical or horizontal axis, 

because the distance between the carbon atoms of the cage and Au-electrodes are almost unchanged by 

such rotations.  Figure 5.16 shows no significant effect in the transmission curves while rotating about 

vertical or horizontal axis. Since the rotation has a negligible effect on the transmission coefficient 

curves one would expect the Seebeck coefficient 𝑆 to be approximately similar for all rotation angles I 

will discuss later.  

 

 

 

  

 

 

 

 

Figure 5.16. Spin-nonepolarised transmission coefficients, 𝑇(𝐸), for 60 binding configurations and, in 

different orientations around θ,𝛷, 𝛽  axes of C60, and 𝑧 = 2.5 Å. This results agrees with refrence[69].   
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5.5 Seebeck coefficient 𝑺 

In the above simulations, I have discussed the effect of the rotation in four axes including 

θ,Φ (horizontal axes),  α and β (vertical axes), on the transmission coefficient. I have also discussed 

the effect of varying the distance between the metallic moiety and the gold substrate on the transmission 

coefficient for Sc3C2@C80, Sc3N@C80 EMFs and C60.     

In this section, the thermoelectric properties of the EMFs and C60 molecules are determined after 

calculating their electronic transmission coefficients T(E). 

To calculate the thermopower of these molecular junctions, it is useful to introduce the non-normalised 

probability distribution 𝑃(𝐸) defined by 

where 𝑓(𝐸) is the Fermi-Dirac function and 𝑇(𝐸) is the transmission coefficients and whose moments 

𝐿𝑖 are denoted as follows 

where 𝐸𝐹 is the Fermi energy. The Seebeck coefficient, 𝑆, is then given by  

where 𝑒 is the electronic charge. 

 

and we can rewrite equation 5.3 as follows             

                                                                                                                                                      

Equation 5.5 describes the linear response regime and is consistent with the Onsager reciprocal 

relations. This equation is equivalent to the analysis that has been utilised the spin-averaged 

𝑃(𝐸) = −𝑇(𝐸)
𝑑𝑓(𝐸)

𝑑𝐸
                       (5.2) 

𝐿𝑖 = ∫𝑑𝐸𝑃(𝐸)(𝐸 − 𝐸𝐹)
𝑖                        (5.3) 

𝑆(𝑇) = −
1

𝑒𝑇

𝐿1
𝐿0

                        (5.4) 

Se(T) =
−1

eT

1

L12,↑
0 + L12,↓

0 ∑ L12,σ
1

σ
                        (5.5) 
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transmission coefficient 𝑇(𝐸) =
𝑇𝑢𝑝(𝐸)+𝑇𝑑𝑜𝑤𝑛(𝐸)

2
. Figure 5.17 illustrates an example of a Seebeck 

coefficient 𝑆 versus electron energy of Sc3C2@C80. I will apply this method to evaluate the Seebeck 

coefficient 𝑆 for different rotation axes θ, Φ, 𝛼 𝑎𝑛𝑑  β of Sc3C2@C80, Sc3N@C80 and C60, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17. An example of Seebeck coefficient S versus electron energy of Sc3C2@C80 EMF. 

 

 

5.5.1 Calculated thermopower as a function of orientation in the horizontal rotation axis 

(𝛉) 

Figures 5.18 and 5.19 show the average Seebeck coefficient 𝑆 evaluated at room temperature for 

different orientation angles of θ for Sc3C2@C80 and Sc3N@C80. 
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Figure 5.18. Seebeck coefficient S as a function of Fermi energy at 60 different orientations angles θ 

of Sc3C2@C80, for a tip-substrate distance of 2.5 Å. 

 

 

 

 

 

 

Figure 5.19. Seebeck coefficient S as a function of Fermi energy at 60 different orientations angles θ 

of Sc3N@C80.  𝑆 versus Fermi energy at different orientation angles θ for a tip-substrate distance of 2.5 

Å. 
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5.5.2 Calculated thermopower as a function of orientation in the horizontal rotation axis 

(𝚽)  

Figures 5.20 and 5.21 show the average Seebeck coefficient 𝑆 evaluated at room temperature for 

different orientation angles of Φ for Sc3C2@C80 and Sc3N@C80. 

 

 

 

 

 

 

Figure 5.20. Seebeck coefficients S as a function of Fermi energy at 60 different orientation angles Φ 

of Sc3C2@C80, for a tip-substrate distance of 2.5 Å. 
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Figure 5.21. Seebeck coefficients 𝑆 as a function of Fermi energy at 60 different orientation angles Φ 

of Sc3N@C80 for a tip-substrate distance of 2.5 Å.  

 

 

5.5.3 Calculated thermopower as a function of orientation in the vertical rotation axis (𝛂) 

Figures 5.22 and 5.23 show the average Seebeck coefficient 𝑆 evaluated at room temperature for 

different orientation angles of α for Sc3C2@C80 and Sc3N@C80. 
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Figure 5.22. Seebeck coefficient S as a function of Fermi energy at 60 different orientation angles α of 

Sc3C2@C80, for a tip-substrate distance of 2.5 Å. 
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Figure 5.23. Seebeck coefficient S as a function of Fermi energy at 60 different orientation angles α of 

Sc3N@C80, for a tip-substrate distance of 2.5 Å. 

5.5.4 Calculated Seebeck coefficient as a function of orientation in the vertical rotation 

axis (𝛃)  

Figures 5.24 and 5.25 show the average Seebeck coefficient 𝑆 evaluated at room temperature for 

different orientation angles of β for Sc3C2@C80 and Sc3N@C80. 

 

 

 

 

 

 

 

 

 

 

Figure 5.24. Seebeck coefficient S as a function of Fermi energy at 60 different orientation angles β of 

Sc3C2@C80 for a tip-substrate distance of 2.5 Å. 
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Figure 5.25. Seebeck coefficient S as a function of Fermi energy at 60 different orientation angles β of 

Sc3N@C80 for a tip-substrate distance of 2.5 Å. 

From the Seebeck coefficient Figures 5.18-5.25 above, one could conclude that the thermopower 

fluctuation follows the order of 𝑆𝜃> 𝑆Φ> 𝑆𝛼> 𝑆𝛽. The thermopower fluctuation agrees well with the 

conductance fluctuation order, 𝐺𝜃> 𝐺Φ> 𝐺𝛼> 𝐺𝛽.  

 

5.5.5.  Calculated Seebeck coefficient of C60  

In this section, since the rotation has a negligible effect on the transmission coefficient, one would 

expect the Seebeck coefficient 𝑆 to be approximately similar for all rotation angles (see Figure 5.26). It 

is worth mentioning, due to the absence of the extra resonance caused by the metallic moiety (C60 is an 

empty cage), that the Seebeck coefficient S does not switch sign under rotation and is negative as shown 

in dashed-black square of Figure 5.26.      
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Figure 5.26. Seebeck coefficient S as a function of Fermi energy at 60 different orientations around 

θ,𝛷, 𝛽  axes of C60. 𝑆 versus Fermi energy at different orientation angles for a tip-substrate distance of 

2.5 Å.   

 

5.6. Standard deviation σ of 𝑻(𝑬) of EMFs and C60 in four different rotation axes 

To calculate the standard deviations σ. I use equation 5.6 below for four different rotation axes θ, Φ, 𝛼 

and β, for two EMFs Sc3N@C80 and, Sc3C2@C80 and the C60 fullerene. The standard deviation σ of the 

four axes follows 𝜎𝜃> 𝜎Φ> 𝜎𝛼> 𝜎𝛽 for Sc3N@C80 and Sc3C2@C80. This order is clearly shown in the 

transmission coefficient Figures 5.4-5.26, whereas σ of the vertical and horizontal rotation axes are 

approximately equal (𝜎𝜃≈ 𝜎𝛼) for C60. 
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𝜎 = √
1

𝑛−1
∑ (𝑥𝑖 − �̅�)

2𝑛
𝑖=1                     (5.6) 

where �̅� is the mean 

�̅� =
1

𝑛
∑𝑥𝑖

𝑛

𝑖=1

 

Similarly, Table 5.2, contains the standard deviations σ of the Seebeck coefficient 𝑆 for four different 

rotation axes θ, Φ, 𝛼 and β, for two EMFs Sc3N@C80, Sc3C2@C80 and C60 fullerene. The standard 

deviation σ of the four axes follows 𝜎𝜃> 𝜎Φ> 𝜎𝛼> 𝜎𝛽 for Sc3N@C80 and Sc3C2@C80. This order is 

clearly shown in the Seebeck coefficient plots (Figures 5.3-5.24), whereas for C60, σ of the vertical and 

horizontal rotation axes are approximately equal (𝜎𝜃 ≈ 𝜎𝛼). 

 

Table 5.1: Standard deviations σ of G/Go in four different rotation axes θ, Φ, 𝛼 and β, for two EMFs 

Sc3N@C80, Sc3C2@C80 and C60 fullerene. Energy ranges (0.18 to -0.6), (0.18 to -0.38) and (0.0 to -0.5) 

eV of Sc3N@C80, Sc3C2@C80 and C60. 

 

Table 5.2: Standard deviations σ of  𝑆 in four different rotation axes θ, Φ, 𝛼 and β, for two EMFs 

Sc3N@C80, Sc3C2@C80 and C60 fullerene. 

 

 

 

 G/Go  

Molecule 𝛔𝜽 𝝈𝚽 𝝈𝜶 𝝈𝜷 Order 

Sc3N@C80 1.374e-01 1.086e-01 1.045e-01 2.411e-02 𝜎𝜃> 𝜎Φ> 𝜎𝛼> 𝜎𝛽 

Sc3C2@C80 2.028e-01 1.887e-01 1.406e-01 3.158e-02 𝜎𝜃> 𝜎Φ> 𝜎𝛼> 𝜎𝛽 

C60 7.256e-02 == 4.873e-02 == 𝜎𝜃≈ 𝜎𝛼  



119 

 

 

5.7. Conductance 𝑮 and thermopower 𝑺 histograms of Sc3N@C80, Sc3C2@C80 EMFs and 

C60  

In this section, I construct theoretical histograms of conductance G and Seebeck coefficient S by  

sampling the above results for 𝑆(𝐸𝐹) over Fermi energies within a range of 0.18 to -0.6 eV, centred on 

the metallic resonanc  (next to the LUMO resonance) DFT-predicted (see the black-dashed rectangle in 

Figure 5.5) for Sc3C2@C80. Similarly for Sc3N@C80 the Fermi energies within a range of 0.18 to -0.38 

eV, centred on the matallic resonance DFT-predicted (see the black-dashed rectangle in Figure 5.6). 

For C60 there is no metallic resonance, however, the Fermi energies within a range of 0.0 to -0.5 eV 

have been considered (the black-dashed rectangle in Figure 5.16).In Figure 5.27 the theoretical 

histograms of conductance G against Seebeck coefficient S are shown. These calculations were taken 

in a range of Fermi energies of 0.18 to -0.6, 0.18 to -0.38 and 0.0 to -0.5 eV for Sc3C2@C80, Sc3N@C80 

and C60, respectively. Figure 5.27 clearly shows that the Seebeck coefficient of Sc3C2@C80  is larger 

than that of Sc3N@C80.  

Figure 5.27. Theoretical histograms of conductance G against Seebeck coefficient S. Three ranges of 

Fermi energies (0.18 to -0.6), (0.18 to -0.38) and (0.0 to -0.5) eV considered for Sc3C2@C80, Sc3N@C80 

and C60, respectively.   

 

 

 𝑺 (µ𝐕/𝐊)  

Molecule 𝝈𝜽 𝝈𝚽 𝝈𝜶 𝝈𝜷 Order 

Sc3N@C80 4.48e+01 1.83e+01 2.19e+01 4.55 𝜎𝜃> 𝜎Φ> 𝜎𝛼> 𝜎𝛽 

Sc3C2@C80 3.99e+01 2.83e+01 1.89e+01 1.23e+01 𝜎𝜃> 𝜎Φ> 𝜎𝛼> 𝜎𝛽 

C60 2.77 == 2.77 == 𝜎𝜃≈ 𝜎𝛼 
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5.8. Power Factor  

In this section, the power factor is calculated for Sc3C2@C80, Sc3N@C80 and C60 within the same Fermi 

energy ranges for the four rotation axes and histograms generated. Since the conductance and Seebeck 

coefficient are calculated for a range of rotation angles for both Sc3C2@C80 and Sc3N@C80 , the power 

factor is calculated for the same angles. The black-curves in Figure 5.28 shows distributions obtained 

from a fit uing the Kernel Density Estimation (KDE) in MATLAB. 
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Figure 5.28. Theoretical power factor histograms for Sc3N@C80 (red histogram), Sc3C2@C80 (green 

histogram), and C60 (grey histogram). The black lines show distributions obtained from a Kernel 

Density Estimation (KDE) in MATLAB.  

5.9. Charge inhomogeneity   

To characterize the charge inhomogeneity of each fullerene cage, I now compute the standard deviations 

of their charge distributions. If the charge on atom 𝑖 is |𝑒|𝑛𝑖, then the standard deviation 𝜎𝑞 in the charge 

is defined by 

 

                       𝜎𝑞
2 =< (𝑛𝑖−< 𝑛𝑖 >)

2 >                                               (5.7) 

where angular brackets denote an average over all atoms on the cage. 

 

Using the DFT SIESTA code, I calculate the number of electrons 𝑛𝑖 on each cage atom 𝑖 in the gas 

phase for Sc3C2@C80, Sc3N@C80, Er3N@C80 and C60 by three methods: Mülliken, Voronoi and 

Hirshfeld. It worth pointing out that Voronoi and Hirshfeld charges are more reliable than Mülliken 

charges, especially for large basis sets.  

Table 5.3 shows the number of electrons on the fullerene cage for Sc3C2@C80, Sc3N@C80, Er3N@C80 

and C60 in gas phase (as isolated molecule). The number of electrons on the cage atoms vary from one 

molecule to another, depending on the number of atoms in the metallic moiety and the nature of these 

atoms.  

 

Table 5.3: Standard deviations of charge of Sc3C2@C80, Sc3N@C80, Er3N@C80 and C60. Charges are 

calculated using Mülliken, Hirshfeld and Voronoi methods.  
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5.10. Theory versus experiment 

In this section, I shall compare discuss the theoretical simulations and STM measurements from Madrid 

in more depth. Note, most of the theoretical simulations were investigated in the previous chapter. 

To understand the origin of the differences in Seebeck fluctuations (see Figures 5.18- 5.26), I examined 

the binding energies of these junctions under various rotations. The basic theoretical principles of the 

method can be found in the textbook [75] and basic concepts [76]. There are an infinite number of 

inequivalent orientations of the metallic moieties relative to their fullerene cage. Here, I consider a 

selection of rotations about high-symmetry axes as illustrated by Figures 4.6 and 4.7 in chapter 4.  

In the gas phase, I consider rotation of the metallic moiety relative to a fixed fullerene cage. For this 

rotational mode, rotations about the 𝛽 and 𝛷 axes are equivalent, so in the gas phase, rotations about 3 

distinct axes are investigated. In the presence of the gold substrate, I consider three modes of rotation 

about each of the four axes: rotation of the bare metallic moiety (in the absence of the cage), rotation of 

the metallic moiety in the presence of a fixed cage, and rotation of both the metallic moiety and cage, 

such that their relative orientation is fixed. This means that in total, on a substrate, 12 distinct cases are 

considered (4 axes x 3 modes of rotation). For simplicity of notation, in what follows, the same symbol 

(e.g. θ) is used to label both the rotation axis and the angle of rotation about the axis. 

To quantify geometrical variations under rotation, it is convenient to define the distance 𝑑 to be the 

smallest vertical distance between the top-most plane of the Au-substrate and the closest metal atom of 

the encapsulated moiety. Figure 4.11 shows the variation of 𝑑 with rotations about the above axes, while 

Table 5.4 (colums 2 and 3) shows the standard deviations σ𝜃 , σΦ in 𝑑 under rotations about the axes 

𝜃,𝛷. By symmetry 𝜎𝛼 = 𝜎𝛽 = 0 and therefore these follow the order  𝜎𝜃> 𝜎Φ > 𝜎𝛼 , 𝜎𝛽. Furthermore, 

 Charge inhomogeneity (no. of electrons) 

Molecule 𝝈𝐌𝐮𝐥𝐥𝐢𝐤𝐞𝐧  𝝈𝐇𝐢𝐫𝐬𝐡𝐟𝐞𝐥𝐝 𝝈𝐕𝐨𝐫𝐨𝐧𝐨𝐢 

Sc3C2@C80 0.0154 0.0113 0.0133 
Sc3N@C80 0.0163 0.0109 0.0119 
Er3N@C80    0.00378 0.00259 0.00268 

C60 1.3e-04 5.7e-04 8.5e-04 
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the values of both 𝜎𝜃 and 𝜎Φ associated with Sc3C2@C80 are higher than those associated with 

Sc3N@C80 and Er3N@C80 (for more detail see Table 4.4 in chapter 4).  

To quantify the charge inhomogeneities associated with these molecules, I also computed the standard 

deviations 𝜎𝑞 of the charge distributions on their cages, using two different definitions of charge 

(Hirshfeld and Voronoi) [77, 78]. These are presented in Table 5.4 (columns 4 and 5) and reveal that 

Sc3C2@C80 and Sc3N@C80 possess relatively high values of 𝜎𝑞, followed by Er3N@C80. In contrast the 

charge distribution of C60 is relatively uniform. Comparison between the experimental values for 𝜎𝑆 in 

the sixth column and the theoretical values for 𝜎𝑆 in the right-most column (obtained as described 

below), shows that standard deviations in the Seebeck coefficients are strongly correlated with the 

structural and charge standard deviations σ𝜃, 𝜎Φ and 𝜎𝑞.   

Table 5.4 is a key result of my study and reveals the origin of the differences in Seebeck fluctuations 

between the four studied molecules. Interestingly, the experimental and theoretical values of 𝜎𝑠 for C60 

shown in Table 5.4 are comparable with those found for thiol-terminated oligophenylenes reported in 

ref [79], which varied from 2.1 to 3.2 as the number of phenyl rings was increased from 1 to 3. They 

are higher than those found for thiol-terminated alkyl chains, which were found to be 0.3±1 and almost 

independent of length[80]. Studies[81-84]have also shown that increasing the applied temperature 

difference can lead to additional fluctuations in the thermovoltage. 

Table 5.4: Standard deviations of charge, conductance and Seebeck coefficient of Sc3C2@C80, 

Sc3N@C80, Er3N@C80 and C60. Charges are calculated using Mulliken, Hirshfeld and Voronoi methods. 

The values shown for the conductance are geometric standard deviations. Computation of a theoretical 

value for 𝜎𝑆 of Er3N@C80 was not possible, due to the presence of f-electrons. 
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As a first step in the calculations leading to Table 5.4, energy barriers to rotation about the above axes 

were computed, to obtain the preferred angles of rotation, which minimise the total energy. 𝜎𝑆 was then 

obtained by computing Seebeck coefficients using an ensemble of angles and a distribution of Fermi 

energies 𝐸𝐹, as described in sections 5.4.1 to 5.5.5. 

Table 4.5, shows the computed gas-phase energy barriers ΔE(θ), ΔE(𝛷), ΔE(α) associated with 

rotations about θ,Φ, α of Sc3C2, Sc3N and Sc3N within the fixed Ih-C80 cage, along with the preferred 

orientation angles for the three rotation axes (see section 4.7 of chapter 4). This reveals that for all three 

axes, Sc3C2@C80 possesses the highest energy barriers to rotation, followed by Sc3N@C80, with 

Er3N@C80 possessing the lowest barriers. These correlate closely with their values of 𝜎𝑞
2 and 

furthermore, the highest energy barrier associated with Sc3C2@C80 correlates with the high value of the 

standard deviation in 𝑑. 

Table 4.5, also shows that for all EMFs, in the gas phase, the energy barriers to rotation follow the order 

ΔE(𝜃) >  ΔE(𝛷) >  ΔE(𝛼). Figure (4.22) shows that on a gold surface, the binding energies are also 

higher for the θ and Φ axes and follow the order ΔE(𝜃) >  ΔE(Φ) >  ΔE(α) >  ΔE(β). Furthermore 

the barriers are higher for Sc3C2@C80 and lower for Er3N@C80. On a gold substrate, the energy barriers 

significantly increase to approximately 0.6 eV for Sc3C2@C80, which means that the configurational 

degrees of freedom of the endofullerene relative to the electrode exhibit a small number of preferred 

orientations corresponding to minima in the total energy of the endofullerene/electrode complex as 

shown in Figure (4.22) (for more detail see section 4.10 of chapter 4). The energy barrier for Sc3N@C80 

is 0.3 eV and the lowest barrier of 0.1 eV is obtained for Er3N@C80 (see Figure 4.21).    

 

 Charge inhomogeneity 

(no. of electrons) 

Conductance 

(G/Go) 

Seebeck 

(µV/K) 

Molecule 𝝈𝐌𝐮𝐥𝐥𝐢𝐤𝐞𝐧  𝝈𝐇𝐢𝐫𝐬𝐡𝐟𝐞𝐥𝐝 𝝈𝐕𝐨𝐫𝐨𝐧𝐨𝐢  

 

𝝈𝑮 𝐄𝐱𝐩. 𝝈𝑮 𝐓𝐡𝐞𝐨. 𝝈𝑺 𝐄𝐱𝐩. 𝝈𝑺 𝐓𝐡𝐞𝐨. 

Sc3C2@C80 0.0154 0.0113 0.0133  2.00 4.56 19.2 36.0 

Sc3N@C80 0.0163 0.0109 0.0119  2.34 5.58 17.6 29.4 

Er3N@C80 0.00378 0.00259 0.00268  2.00 === 7.7 == 

C60 1.3e-04 5.7e-04 8.5e-04  1.86 2.23 6.8 2.44 
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To obtain the theoretical values of 𝜎𝑆 in Table 5.4 from the above distribution of orientations, I used a 

combination of the quantum transport code GOLLUM [85] and the density functional theory (DFT) 

code SIESTA [86] to calculate the transmission coefficient 𝑇(𝐸) for electrons of energy 𝐸 passing 

through the EMFs, when contacted to gold electrodes (a detailed description can be found in section 

4.10). The energy dependence of transmissions curves for Sc3C2@C80, Sc3N@C80 and C60, and their 

Seebeck coefficients for all minimum-energy orientations, are shown in Figures 5.4 to 5.26. Since the 

curves are rather smooth on the scale of 𝑘𝐵𝑇 at room temperature, their electrical conductance 𝐺 is 

approximated by 𝐺 ≈ 𝑇(𝐸𝐹)𝐺0, where 𝐺0 is the quantum of conductance, and 𝑆(𝐸𝐹) ≈

−𝑆0 (
𝑑𝑙𝑛𝑇(𝐸)

𝑑𝐸
)
𝐸=𝐸𝐹

[75] In the latter equation, if 𝐸 is measured in units of electron volts, then 𝑆0 = 𝛼𝑇, 

which at 𝑇 = 300 K, takes the value  𝑆0 = 7.3 μV/K.  Figures 5.4 to 5.26 clearly show that rotations 

about the θ axis cause much more severe fluctuations in the transmission functions than rotations about 

the other axes.  By sampling the transmission curves over a range of Fermi energies and preferred 

orientations (as described in section 4.10), I obtain the theoretical 2D histograms shown in Figure 5.27, 

from which the theoretical values of 𝜎𝑆 in Table 5.4 were obtained. In general, depending on the value 

of 𝐸𝐹, the Seebeck coefficient can achieve high values when the distance 𝑑 between the metallic moiety 

and the Au substrate is large (e.g., for θ = 90°, in Figure 5.3), whereas 𝑆 tends to be lower when 𝑑 is 

small (e.g., for  θ = 0°, in Figure 5.3).  

The high values of 𝜎𝑆 and the bi-thermoelectric response of these EMF junctions confirm our initial 

intuition that charge inhomogeneity leads to larger variability in the transport properties, compared with 

pristine C60. This interesting behaviour is also observed in Ref. [87], where Gd@C82 and Ce@C82 and 

the empty C82 were reported to present mainly negative Seebeck coefficients, with occasional positive 

values that were attributed possibly to meta-stable configurations of the junctions. The values reported 

for the Seebeck coefficient show an enhancement in the endohedral fullerenes with respect to the C82. 

Compared to our investigated EMFs, the main difference with the systems studied in Ref. [87]is the 

total number of metal atoms inside the fullerene cage, which in the case of Ref [87] is just one atom 

placed out of centre. Of particular interest for quantifying the thermoelectric performance of molecular 

junctions is the power factor 𝐺𝑆2. Figure 6 shows a comparison between the experimental and 
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theoretical power factor distributions.  These possess comparable shapes and, in both cases, reveal that 

rare values corresponding to particular configurations of the junctions can lead to very high-power 

factors. 

Figure 5.29 also shows that the high conductance and Seebeck coefficient values measured for the 

carbide EMF translate into quite high values of power factor 𝐺𝑆2, with the highest power factor values 

of Sc3C2@C80 significantly exceeding those of C60, both in value and probability.  

Figure 5.29. Power factor 𝑮𝑺𝟐 analysis. a) Experimental 1D histograms of power factor at 

first contact, built with the data in Figure 1 Appendix A. The inset zooms into the details of 

the main panel. b). Theoretical 1D histograms of power factor obtained from Figure 5.28 in 

section 5.5. 

Lee et al [87] noted that their EMF-based junctions possessed a high single molecule power factor of 

16.2 fW K−2 for Gd@C82, which corresponds to around 4 × 10 μW K−2 m−1 for a thin-film device 

consisting of a monolayer of Gd@C82, which at the time of publication was the largest power factor 

obtained for a single molecule device. From the first-contact data in Figure 3(e,d) Appendix C, we find 

even higher values up to 50 fW K−2 for Sc3N@C80 and Sc3C2@C80 junctions, and even two examples 

of values up to 70-80 fW K−2 (for these two EMFs). Statistically, we find larger values for the carbide 

compound (Sc3C2@C80 junctions). Furthermore, considering all the measured conductance and Seebeck 

coefficient values (see Figure 3 Appendix C), the power factor can be statistically increased when the  
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junction becomes slightly compressed, because under compression, 𝐺 increases and 𝑆 becomes more 

negative. 

5.10. Conclusion 

In this chapter, through a combination of DFT-based transport calculations and experimental STM-

based transport measurements carried out in Madrid, I studied the electrical conductance and Seebeck 

coefficient of three endohedral metallofullerenes (EMFs) Sc3N@C80, Sc3C2@C80, and Er3N@C80, and 

found that their standard deviations are correlated with the degree of structural variations and the degree 

of charge inhomogeneity on the fullerene cages. All EMFs studied are bi-thermoelectric systems, 

exhibiting both positive and negative Seebeck coefficients, in contrast to the empty C60.  

When placed on a flat gold surface, the distance 𝑑 between the top-most plane of the Au substrate and 

the closest metallic atom fluctuates due to rotations on the surface and the degree of variation is 

characterised by the associated standard deviation 𝜎, which is a purely geometric quantity. Similarly, 

the degree of charge inhomogeneity on the fullerene cage can be characterised by a standard deviation 

𝜎𝑞. I found that standard deviations in the Seebeck coefficients 𝜎𝑆 of EMF-based junctions are 

correlated with the geometric quantity 𝜎 and the charge inhomogeneity 𝜎𝑞. I benchmarked these 

molecules against C60 and found that all of 𝜎𝑞 , 𝜎𝑆 are the largest for Sc3C2@C80, all are the smallest for 

C60 and for the other EMFs, they follow the order Sc3C2@C80 >Sc3N@C80 > Er3N@C80 > C60. This 

means that external measurements of fluctuations in the Seebeck coefficient provide insight into the 

internal structure and charge distribution of endohedral metallofullerenes. 

This points the way to designs of molecular switches and bi-thermoelectric materials, because 

molecules with large values of 𝜎𝑞 possess large values of 𝜎𝑆; the former is a sign that a molecule can 

switch between orientation-dependent electrical conductances, whereas the latter indicates that a 

molecule can exhibit a wide range of Seebeck coefficients with both positive and negative signs. If the 

orientation and Fermi energy of such molecules can be controlled, then high thermoelectric performance 

is possible.  On the other hand, if the aim is to minimise fluctuations, then our study suggests that 

molecules with low values of 𝜎 and 𝜎𝑞 should be selected 
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Chapter 6 

 

Conclusion and Future Work 

 

6.1 Conclusion 

In conclusion, I have discussed the essential equations and tools that underpin my work, including the 

Schrödinger equation, density functional theory (DFT), and the SIESTA programme, which implements 

DFT and solves these equations. I have also discussed single particle transport theory, which is based 

on the Hamiltonian and Green's functions, and provided some examples of how it might be used. These 

ideas are discussed in chapters 2 and 3, respectively.  

In chapter 4, my aim was to study the three endohedral metallofullerenes (EMFs) Sc3N@C80, 

Sc3C2@C80 and Er3N@C80 and compare them with C60. I began my explorations by presenting the wave 

function plots of the studied molecules. I chose three different methods including Mulliken population, 

Hirshfeld and Voronoi, then I investigated the charge transfer immigration between metallic moieties 

and the cage. The charge transfer analyses were applied in the gas phase and on a gold substrate. I used 

the counterpoise method to evaluate the most energy favourable orientation of metallic moieties such 

as Sc3N, Er3N and Sc3C2 to settle inside the Ih-cage.  

I have demonstrated how θ, 𝛷, α and 𝛽 axes play an important role in the conductance and Seebeck 

coefficient fluctuations. I also  investigated how the total energy varies with the angle of rotation, both 

in presence and absence of the gold substrate. There are an infinite number of inequivalent orientations 

of the metallic moieties comparative to their fullerene cage. Moreover, for each of the four axes, I 

considerd one mode of rotation in the gas phase and three modes of rotation on a substrate. I used DFT 

to determine the optimum distances between EMFs and the metallic electrodes.  

In Chapter 5, I employed the parameters that I explored in chapter 4, and exploited them to support my 

simulations. Then I demonstrated, that standard deviations in the Seebeck coefficient 𝜎𝑆 of EMF-based 

junctions are related to the geometric quantity 𝜎 and charge inhomogeneity 𝜎𝑞, which is an interesting 
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structure-function relationship. I examined EMF molecules to C60 and demonstrate that both 𝜎𝑞 , 𝜎𝑆 are 

the largest for Sc3C2@C80, and both are the smallest for C60 while, the other EMFs, they follow the order 

Sc3C2@C80 >Sc3N@C80 > Er3N@C80 > C60.  

A high value of 𝜎𝑆 is a sign that a molecule can exhibit a wide range of Seebeck coefficients and if 

orientations corresponding to large range can be handpicked and controlled, then the molecule has the 

potential to exhibit high-performance thermoelectricity. Large values of 𝜎𝑆  are related to distributions 

of Seebeck coefficients with both positive and negative signs for the EMFs investigated here, indicating 

that all of these EMFs are bi-thermoelectric materials. Further to that, molecules with high charge 

inhomogeneity exhibit rare examples of high thermopower, which means that if these rare junction 

configurations could be isolated and controlled, then such molecules have the potential to deliver high-

performance thermoelectricity. 

 

6.2 Future work 

In this thesis, I have focused on investigating the electrical conductance 𝐺 and the Seebeck coefficient 

𝑆 of three EMFs and C60.  My goal is to support  the aim of producing single-molecule junctions that 

can convert a temperature differential Δ𝑇 into a voltage Δ𝑉 through the Seebeck effect, It is significant 

to examine molecules for their producing high values of the Seebeck coefficient 𝑆 = −
Δ𝑉

Δ𝒯
. When single 

molecules are sandwiched between two electrodes to build single-molecule junctions, it is standard 

practice to make thousands of measurements of their Seebeck coefficients, because their values 

fluctuate due to random binding configurations of the molecule within the junction and variations in the 

electrode Fermi energy 𝐸𝐹 relative to energies of frontier orbitals. 

 For the future work, it would be interesting to include a single atom inside a cage and explore where it 

settles inside the cavity (rattling) and what effect that has on G and S. It would also be of interest to use 

established methods of computing phonon transport [1,2] to predict the effect of encapsulated atoms on 

thermal conductance.  For a single atom, a small cage such as C60 might fit better than large cage C80 
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and therefore all these parameters need to be investigated. Another avenue for future exploration is to 

use different electrodes, for instance graphene [3,4], platinum or palladium [5] and examine their effect 

on fluctuation in  G and S  Recently, quantum interfernce effects in superconducting nano-junctions 

[6,7] have been shown to combine with intra-molecular quantum interference effect to yield unique 

interference phenomena [8] and it would be of interest to examine how these are modified in junctions 

formed from endohedral fullerenes. 
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Appendices 

 

Appendix A: Spectroscopic characterization and band gap calculation. 

In Figure 1 we present the UV-Visible spectra (Figure 1a) for the two TNTs that were recorded in 

Madrid in o-dichlorobenzene solutions. The direct optical band gaps of the two trimetallic nitride 

endohedral metallofullerenes were calculated from the Tauc plots that can be seen in Figure 1b. Τhe 

energy of the transition, in eV, is plotted against (αhν)1/r. For a direct allowed transition, we consider a 

value of r=1/2. Consequently, the band gaps are calculated to be 2.466 eV for Sc3N@C80 and 2.54 eV 

for Er3N@C80 from the fitting of the Tauc plot. 

 

Figure 1. UV-Visible absorbance spectra (a) and Tauc plots (b) recorded in o-dichlorobenzene solutions 

for Er3N@C80 (blue) and Sc3N@C80 (red). The direct, optical band gaps, taking into consideration a 

value for r=1/2 are: 2.54 eV for Er3N@C80 and 2.46 eV for Sc3N@C80. The values are calculated from 

a fitting on the linear regime of the Tauc plot.  
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Appendix B: EPR spectra: 

 

MALDI-TOF data are providing invaluable information for the formation of endohedral 

metallofullerenes species, however, they do not provide with a definite proof on the structure of the 

buckyball and the species incarcerated within. To that end, we recorded the EPR spectra and they 

demonstrated the unique diamond shape with 22 lines that arises from three equivalent scandium nuclei. 

The spectra for the temperature range 170—290 K can be seen in Figure 2. 

Figure 2. EPR spectra of the paramagnetic Sc3C2@C80 recorded at various temperatures (170-290 K). 

The 22 lines stemming from three equivalent scandium (I=7/2) nuclei demonstrate the unambiguous 

synthesis of the trimetallic carbide.  
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Appendix C:  𝑮, 𝑺, and 𝑮𝑺𝟐 1D histograms for single-molecule junctions: 

 

Figure 3. Conductance 𝐺, thermopower 𝑆 and power factor 𝐺𝑆2 and |𝐺𝑆|𝑆 1D histograms of the 

monomers of EMFs and C60. (a-d) Histograms built with all the data from the 𝐼-𝑉 curves measured 

during the complete approach of the tip, from the noise level until close to the metallic contact. (e-h) 

Histograms built only with first-contact values, i.e., within 0.1 nm after junction formation. Insets in c-

d and g-h zoom into the details of the power factor data presented in the main panel. |𝐺𝑆|𝑆 1D 

histograms (d and h) are shown to highlight the asymmetry due to positive and negative thermopower 

values. 

 

 


