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Abstract 

Molecular electronics is a flexible approach to studying nanoscale thermoelectricity and helping the 

discovery of new low-cost and environmentally friendly organic thermoelectric materials. This thesis 

introduces the theoretical tools used to support this process, starting in chapters 2 and 3, respectively. I 

have addressed the fundamental equations and techniques that support my work, such as the 

Schrodinger equation, density functional theory (DFT), and the SIESTA programme, which implements 

DFT and solves the underlying equations. I also explain single particle transport theory, which is based 

on the Hamiltonian and Green's functions, and provide some illustrations of how it may be employed. 

Chapter 4 is the first results chapter in this thesis, in which the three endohedral metallofullerenes 

(EMFs) Sc3N@C80, Sc3C2@C80 and Er3N@C80 are studied and compared with C60. I commenced my 

investigation by displaying the wave function plots of the molecules under investigation. I examined 

the charge transfer between metallic moieties and the cage employing three different methods: Mulliken 

population, Hirshfeld, and Voronoi. The charge transfer analyses were performed on a gold substrate 

and in the gas phase. The counterpoise approach was utilised to determine the most energy-favourable 

orientation for metallic moieties like Sc3N@C80, Sc3C2@C80 and Er3N@C80 to settle within the Ih-cage. 

I have shown how rotation angles  ʃȟ ȟɻ ÁÎÄ  about different axes play an important role in the 

conductance and Seebeck coefficient fluctuations. I investigated how the total energy varies with the 

angle of rotation, both in presence and absence of the gold substrate. There are an infinite number of 

inequivalent orientations of the metallic moieties comparative to their fullerene cage. Therefore, for 

each of the four axes, I considerd one mode of rotation in the gas phase and three modes of rotation on 

a substrate. I used DFT to determine the optimum distances between EMFs and the metallic electrodes.  

In chapter 5, I address the parameters that I investigated in Chapter 4 to enhance my simulations. Then 

I demonstrated how standard deviations in the Seebeck coefficient  „ of EMF-based junctions are 

associated to the geometric standard deviation „ and charge inhomogeneity „, exhibiting a fascinating 

structure-function relation. I compared EMF molecules to C60 and identified that „ȟ„ are the highest 
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for Sc3C2@C80, and the lowest for C60, whereas the other EMFs follow the order Sc3C2@C80 >Sc3N@C80 

> Er3N@C80 > C60.  

A significant value of „ indicates that a molecule could exhibit a wide range of Seebeck coefficients, 

and if the orientations corresponding to the large range can be isolated and controlled, the molecule has 

the potential to exhibit high-performance thermoelectricity. Large values of „ are associated with a 

broad Seebeck coefficient distribution, with both positive and negative signs. Ffor the EMFs explored 

here, this shows that they are bi-thermoelectric materials. Furthermore, molecules with high charge 

inhomogeneity reveal rare examples of high thermopower, suggesting that such molecules have the 

potential to produce high-performance thermoelectricity if these rare junction configurations can be 

isolated and controlled. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 



vi 

 

List of Figures 

Figure 1.1. a: C78   an example for fullerene and b: La@C82  an example for endohedralFullerenes.       3 

Figure 2.1. Illustrating the Counterpoise method to calculate the binding energy.(a)  represents the basis 

functions for a total system where atoms are shown in white, and the basis functions are in blue. (b) and 

(c) show the basis function for the individual monomers whereas (d) and (e) represent the counterpoise 

correction. Every single      molecule is evaluated with the same basis function as the total system in  

(a)                                                                                                                                                            22 

Figure 3.1. A mesoscopic scatterer linked to contacts with ballistic leads. ‘ and ‘  represent the 

chemical potential of the left and right contacts, respectively.                                                              29  

Figure 3.2. Tight-binding approximation of a one-dimensional periodic lattice with one site ‐ and 

coupling.                                                                                                                                              36  

Figure 3.3. The structure of Retarded Green's Function of an infinite one-dimensional lattice.The 

excitation at z = zǋcauses wave to propagate left and right with amplitudes ὃ  and ὃ   respectiv.     38 

Figure 3.4. Simple tight-binding model of a one dimensional scattered attached to one dimensional 

Leads.                                                                                                                                                     40 

Figure 3.5. Schematic representation of a semi-infinite generalized lead. States described by the 

Hamiltonian Ὄ  are connected via a generalized hopping matrix Ὄ . The direction ᾀ is defined to be 

parallel to the axis of the chain. One can assign for each slice a label ᾀ                                               44 

Figure 4.1. Endohedral metallofullerenes and fullerene studied Molecules. Schematic of the three 

endohedral metallofullerenes (EMFs), namely, a: Sc3C2@C80, b: Sc3N@C80, and c: Er3N@C80 and an 

empty cage d: C60.                                                                                                                                  57 

Figure 4.2 Wave function plots of Sc3C2@C80. Top panel: fully optimised geometry of Sc3C2@C80 EMF. 

Lower panel: HOMO, LUMO, HOMO-1, LUMO+1 of Sc3 C2@C80 molecule along with their energies 

.                                                                                                                                                               58 



vii  

 

Figure 4.3 Wave function plots of Sc3N@C80. Top panel: fully optimised geometry of Sc3N@C80 EMF. 

Lower panel: HOMO, LUMO, HOMO-1, LUMO+1 of Sc3N@C80 molecule along with their energies     

.                                                                                                                                                               59 

Figure 4.4 Wave function plots of Er3N@C80. Top panel: fully optimised geometry of Er3N@C80 EMF. 

Lower panel: HOMO, LUMO, HOMO-1, LUMO+1 of Er3 N@C80 molecule along with their energies59 

Figure 4.5 Wave function plots of C60. Top panel: fully optimised geometry C60 EMF. Lower panel: 

HOMO, LUMO, HOMO-1, LUMO+1 of C60 molecule along with their energies.                                60 

Figure 4.6. Illustration of the four rotation axes: ʃȟɮ ÁÒÅ ÈÏÒÉÚÏÎÔÁÌ ÁØÅÓȟ  ɻ and ɼ are vertical axes  

This Figure shows how the axes pass through the Ih-C80 cage + metallic moiety.                                 64 

Figure 4.7. Illustration of how the four rotation axes ʃȟɮȟ  ɻ and ɼ, pass through the metallic moiety.64 

 Figure 4.8. Distance variation between the metallic moiety and the gold substrate in four different 

rotation axes ʃȟɮȟɻ and ɼ of Sc3C2@C80.                                                                                             65 

 Figure 4.9. Distance variation between the metallic moiety and the gold substrate in four different 

rotation axes ʃȟɮȟɻ and ɼ of Sc3N@C80.                                                                                              66 

 Figure 4.10. Distance variation between the metallic moiety and the gold substrate in four different 

rotation axes ʃȟɮȟɻ and ɼ of Er3N@C80.                                                                                               67 

 Figure 4.11. Distance variation between the metallic moiety and the gold substrate in four different 

rotation axes ʃȟɮȟɻ and ɼ of Sc3C2@C80, and Sc3N@C80 .                                                                   68 

 Figure 4.12. (a): Horizontal rotation axis used to compute ɝʃ, (b): Horizontal rotation axis used to 

compute ɝɮȟ (c): Vertical rotation axis used to compute  ɝɻ, (Sc3C2@C80 shown here as an 

example).                                                                                                                                                69 

Figure 4.13. Top panel: The energy difference ɝʃ as a function of rotation angle ʃ of Sc3C2within the 

fixed Ih-C80 cage. Bottom panel: The energy differecne ɝɮȟɻ as a function of rotation angles ɮ ÁÎÄ ɻ 

(orange and green respectively), of Sc3C2 within the fixed Ih-C80 cage. The energy barriers ɝ%ʃ to 



viii  

 

rotation about ʃ (obtained from the difference between the maxima and minima of ɝʃ) are 

τππȟσππ ÁÎÄ ρσπ ÍÅ6 respectively, and the moieties Sc3C2 moieties Sc3C2 has preferred orientations 

of ʃ  πЈ, ρωπЈ and σφπЈ, corresponding to the minima of ɝʃȢ The energy barriers ɝ%ɮ  to rotation 

about ɮ are συπȟςυπ ÁÎÄ ρππ ÍÅ6 respectively, and therefore the moiety Sc3C2has preferred 

orientations of ɮ  πЈ, ρρπЈ, ρψπЈ, ςρπЈ, ςχπЈ and σφπЈ. The energy barriers to rotation about ɻ are 

σππȟρυπ ÁÎÄ φπ ÍÅ6 respectively, and therefore the moieties Sc3C2 has preferred orientations of ɻ  

πЈ, χυЈ, ρφπЈ, ςτπЈ and σςπЈ.                                                                                                            70 

Figure 4.14. Top panel: The energy difference ɝʃ as a function of rotation angle ʃ of Sc3N within the 

fixed Ih-C80 cage. Bottom panel: The energy differecne ɝɮȟɻ as a function of rotation angles ɮ ÁÎÄ ɻ 

(yellow and green respectively), of Sc3N within the fixed Ih-C80 cage. The energy barriers ɝ%ʃ to 

rotation about ʃ (obtained from the difference between the maxima and minima of ɝʃ) are 

τππȟσππ ÁÎÄ ρσπ ÍÅ6 respectively, and the moieties Sc3N moieties Sc3N has preferred orientations 

of ʃ  πЈ, ρωπЈ and σφπЈ, corresponding to the minima of ɝʃȢ The energy barriers ɝ%ɮ  to rotation 

about ɮ are συπȟςυπ ÁÎÄ ρππ ÍÅ6 respectively, and therefore the moiety Sc3Nhas preferred 

orientations of ɮ  ρπЈ, ωυЈ, ςππЈ, ςψπЈ and στπЈȢ The energy barriers to rotation about ɻ are 

σππȟρυπ ÁÎÄ φπ ÍÅ6 respectively, and therefore the moieties Sc3N has preferred orientations of ɻ  

πЈ, χυЈ, ρππЈ, ρυπЈ, ςππЈ ςυπЈȟσππЈ  and συπЈ.                                                                              71 

 Figure 4.15. Top panels: The energy difference ɝʃ as a function of rotation angle ʃ of Er3N within 

the fixed Ih-C80 cage. Bottom panels: The energy differecne ɝɮȟɻ as a function of rotation angles 

ɮ ÁÎÄ ɻ (yellow and green respectively), of Er3N within the fixed Ih-C80 cage. The energy barriers 

ɝ%ʃ to rotation about ʃ (obtained from the difference between the maxima and minima of ɝ—) are 

τππȟσππ ÁÎÄ ρσπ ÍÅ6 respectively, and the moieties Er3N  moieties Er3N  has preferred orientations 

of ʃ  πЈ, ρωπЈ and σφπЈ, corresponding to the minima of ɝ—Ȣ The energy barriers ɝ%ɮ  to rotation 

about ɮ are συπȟςυπ ÁÎÄ ρππ ÍÅ6 respectively, and therefore the moiety Er3N has preferred 

orientations of ɮ  πЈ, ρςπЈ, ςυπЈ and συπЈȢ The energy barriers to rotation about ɻ are 



ix 

 

σππȟρυπ ÁÎÄ φπ ÍÅ6 respectively, and therefore the moieties Er3N has preferred orientations of ɻ  

πЈ, ψπЈ, ρυπЈ, ςςυЈ, σςπЈand σφπЈ.                                                                                                    72 

Figure 4.16. Geometries of Sc3C2, Sc3N and Er3N metallic moieties (left to right).                             74 

Figure 4.17. Sc3C2@C80 on a gold surface (Top panel). Energy difference of Sc3C2@C80 /gold complex 

as a function of molecule-gold distance. The equilibrium distance corresponding to the energy minimum 

is found to be approximately ςȢυ B (Bottom panel).                                                                              78 

Figure 4.18. Sc3N@C80 on a gold surface (Top panel). Energy difference of Sc3N@C80 /gold complex 

as a function of molecule-gold distance. The equilibrium distance corresponding to the energy minimum 

is found to be approximately ςȢτ B (Bottom panel).                                                                              79 

Figure 4.19. C60 on a gold surface (Top panel). Energy difference of C60 /gold complex as a function of 

molecule-gold distance. The equilibrium distance corresponding to the energy minimum is found to be 

approximately ςȢτ B (Bottom panel).                                                                                                     80 

Figure 4.20. Illustration of the rotation axis — and the Au-EMF distance (ᾀ) of a: Sc3C2@C80, b: 

Sc3N@C80 and c: Er3 Er3N@C80 used to compute the results in Figures 4.21 and 4.22.                       81 

Figure 4.21. Rotational energy barriers of the three EMFs on a gold surface Sc3C2@C80, Sc3N@C80 and 

Er3N@C80, respectively computed at different distances Ú from the surface, for the rotation axis ʃ. The 

energy barriers to rotation are of the order 0.6, 0.3 and 0.1 eV at Ú = 2.5 B and tend to zero for large  

Ú (black lines). The green curves show the energy barriers to rotation for the three bare metallic moieties 

near a gold surface, at Ú = 2.5 B, in the absence of C80. Ú = 15.0 B, (black lines). The green curves show 

the energy barriers to rotation for the three bare metallic moieties near a gold surface, at Ú = 2.5 B, in 

the absence of C80 cage.                                                                                                                          83 

Figure 4.22. The energy difference ɝᾀ as a function of the distance z for different orientations of the 

metallic clusters inside the cage a, b and c correspond to Sc3C2@C80, Sc3N@C80, and Er3N@C80, 

respectively.                                                                                                                                           84 



x 

 

Figure 4.23. Illustration of the rotation axes and the Au-EMF distance (ᾀ), used to compute the results 

in Figure 4.24.                                                                                                                                        86 

 Figure 4.24. Rotational energy barriers of the three EMFs onto a gold surface Sc3C2@C80, Sc3N@C80, 

and Er3N@C80, respectively as a function of rotation and distance to the surface in four rotational axes 

ʃȟɮȟɻ ÁÎÄ ɼ. The energy barrier to rotation (ɼ-axes) is of the order of 0.25, 0.1 and 0.04 eV at ᾀ = 2.5 

B and tends to zero for large ᾀ (red lines ᾀ ρυȢπ B).                                                                          87 

Figure 5.1. An example of transmission coefficient curve of C60 cage. A smooth transmission curve 

versus energy with HOMO and LUMO resonances.                                                                              97 

 Figure 5.2. An example of transmission coefficient curve of Sc3N@C80 EMF. The transmission curve 

possesses an extra resonance close to LUMO, due to the encapsulated moiety Sc3N inside the cage.  97 

Figure 5.3. Sc3C2@C80 EMF between gold surfaces. The orientation of the Sc3C2@C80 molecule with 

respect to the gold leads corresponds to the defined angle (a) ʃ  0°, (b) ʃ  90°. (a and b): a view in 

which the rotation axis is perpendicular to the plane of the paper, (c): The horizontal rotation axis ɗ. 99 

Figure 5.4. Spin-polarised transmission coefficients Ὕ Ὁ , Ὕ Ὁ and ὝὉ , for 

the binding configuration of 60o orientation ɗ of Sc3C2@C80 and z = 2.5 Å. The three curves represent 

the spin-up, spin-down and the average of them: blue, red and black curves, respectively.               100     

Figure 5.5. Spin-polarised transmission coefficients, ὝὉ , for the 60 binding 

configurations of different orientations ɗ for Sc3 C2@C80, and ᾀ = 2.5 BȢ                                              101 

Figure 5.6. Spin-polarised transmission coefficients, ὝὉ , for the 60 binding 

configurations of different orientations ɗ for Sc3 N@C80, and ᾀ = 2.5 BȢ                                              101 

Figure 5.7. Sc3C2@C80 EMF between gold surfaces. The orientation of the Sc3C2@C80 molecule with 

respect to the gold leads corresponds to the defined angle (a) ʃ  0°, (b) ʃ  90°. (a and b): a view in 

which the rotation axis is perpendicular to the plane of the paper, (c): The horizontal rotation axis ɮ            

.                                                                                                                                                              102   



xi 

 

Figure 5.8. Spin-polarised transmission coefficients, 4% , for the 60 binding 

configurations of different orientations ū of Sc3C2@C80, and Ú = 2.5 B                                             103 

Figure 5.9. Spin-polarised transmission coefficients, 4% , for the 60 binding 

configurations of different orientations ū of SN@C80, and Ú = 2.5 B.                                                103 

Figure 5.10. Sc3C2@C80 between gold surfaces. a-b: The orientation of the Sc3C2@C80 molecule with 

respect to the gold leads. c: The vertical rotation axis ɻ.                                                                     104 

Figure 5.11. Spin-polarised transmission coefficients, ὝὉ , for the 60 binding 

configurations of different orientations Ŭ of Sc3C2@C80, and ᾀ = 2.5 Å.                                            105                                                    

 Figure 5.12. Spin-polarised transmission coefficients, ὝὉ , for the 60 binding 

configurations of different orientations Ŭ of Sc3N@C80, and ᾀ = 2.5 B.                                               105 

 Figure 5.13. Sc3C2@C80 between gold surfaces. a-b: The orientation of the Sc3C2@C80 molecule with 

respect to the gold leads. c: The vertical rotation axis .                                                                     106 

Figure 5.14. Spin-polarised transmission coefficients, ὝὉ , for the binding 

configurations of differnt orientations ɓ of Sc3C2@C80, and ᾀ = 2.5 B.                                              107 

Figure 5.15. Spin-polarised transmission coefficients, ὝὉ , for the binding 

configurations of differnt orientations ɓ of Sc3N@C80, and z = 2.5 Å.                                                 107 

Figure 5.16. Spin-nonepolarised transmission coefficients, ὝὉ , for 60 binding configurations and, in 

different orientations around ʃȟ ȟ  axes of C60, and ᾀ = 2.5 BȢ This results agrees with refrence.    108  

Figure 5.17. An example of Seebeck coefficient S versus electron energy of Sc3C2@C80 EMF.        110 

Figure 5.18. Seebeck coefficient S as a function of Fermi energy at 60 different orientations angles ʃ of 

Sc3C2@C80, for a tip-substrate distance of 2.5 Å.                                                                                111 



xii  

 

Figure 5.19. Seebeck coefficient S as a function of Fermi energy at 60 different orientations angles ɗ of 

Sc3N@C80. Ὓ versus Fermi energy at different orientation angles ʃ for a tip-substrate distance of   2.5 

Å.                                                                                                                                                           111                                                                                                                                                            

 Figure 5.20. Seebeck coefficients S as a function of Fermi energy at 60 different orientation angles ɮ 

of Sc3C2@C80, for a tip-substrate distance of 2.5 Å.                                                                            112 

Figure 5.21. Seebeck coefficients Ὓ as a function of Fermi energy at 60 different orientation angles ū 

of Sc3N@C80 for a tip-substrate distance of 2.5 Å.                                                                              113                                                                               

Figure 5.22. Seebeck coefficient S as a function of Fermi energy at 60 different orientation angles Ŭ of 

Sc3C2@C80, for a tip-substrate distance of 2.5 Å.                                                                                 114 

Figure 5.23. Seebeck coefficient S as a function of Fermi energy at 60 different orientation angles Ŭ of 

Sc3N@C80, for a tip-substrate distance of 2.5 Å.                                                                                 114 

Figure 5.24. Seebeck coefficient S as a function of Fermi energy at 60 different orientation angles ɼ of 

Sc3C2@C80 for a tip-substrate distance of 2.5 Å.                                                                                 115 

Figure 5.25. Seebeck coefficient S as a function of Fermi energy at 60 different orientation angles ɼ of 

Sc3N@C80 for a tip-substrate distance of 2.5 Å.                                                                                  116 

 Figure 5.26. Seebeck coefficient S as a function of Fermi energy at 60 different orientations around 

ʃȟ ȟ  axes of C60. Ὓ versus Fermi energy at different orientation angles for a tip-substrate distance of 

2.5 Å.                                                                                                                                                    117 

Figure 5.27. Theoretical histograms of conductance G against Seebeck coefficient S. Three ranges of 

Fermi energies (0.18 to -0.6), (0.18 to -0.38) and (0.0 to -0.5) eV considered for Sc3C2@C80, Sc3N@C80 

and C60, respectively.                                                                                                                            119 

Figure 5.28. Theoretical power factor histograms for Sc3N@C80 (red histogram), Sc3C2@C80 (green 

histogram), and C60 (grey histogram). The black lines show distributions obtained from a Kernel 

Density Estimation (KDE) in MATLAB.                                                                                             120 



xiii  

 

Figure 5.29. Power factor ὋὛ analysis. a) Experimental 1D histograms of power factor at first contact, 

built with the data in Figure 1 Appendix A. The inset zooms into the details of the main panel. b). 

Theoretical 1D histograms of power factor obtained from Figure 5.28 in section5.5.                        126 

Appendix A Figure 1. UV-Visible absorbance spectra (a) and Tauc plots (b) recorded in o-

dichlorobenzene solutions for Er3N@C80 (blue) and Sc3N@C80 (red). The direct, optical band gaps, 

taking into consideration a value for r=1/2 are: 2.54 eV for Er3N@C80 and 2.46 eV for Sc3N@C80. The 

values are calculated from a fitting on the linear regime of the Tauc plot.                                          144 

Appendix B  Figure 2. EPR spectra of the paramagnetic Sc3C2@C80 recorded at various temperatures 

(170-290 K). The 22 lines stemming from three equivalent scandium (I=7/2) nuclei demonstrate the 

unambiguous synthesis of the trimetallic carbide.                                                                               145 

Appendix C Figure 3. Conductance Ὃ, thermopower Ὓ and power factor ὋὛ and ȿὋὛȿὛ 1D histograms 

of the monomers of EMFs and C60. (a-d) Histograms built with all the data from the Ὅ-ὠ curves measured 

during the complete approach of the tip, from the noise level until close to the metallic contact. (e-h) 

Histograms built only with first-contact values, i.e., within πȢρ ÎÍ after junction formation. Insets in c-

d and g-h zoom into the details of the power factor data presented in the main panel. ȿὋὛȿὛ 1D 

histograms (d and h) are shown to highlight the asymmetry due to positive and negative thermopower 

values.                                                                                                                                                   146 

 

 

 

 

 

 

 

 

 

 



xiv 

 

List of Tables 

Table 2.1: Example of the number of radial basis functions per atom as used within the SIESTA for 

different degrees of precision.                                                                                                                21 

Table 4.1: Charge transfer analyses using Mulliken, Hirshfeld and Voronoi methods of Sc3C2@C80 

EMF, in gas phase.                                                                                                                                  62 

Table 4.2: Charge transfer analyses using Mulliken, Hirshfeld and Voronoi methods of Sc3N@C80 EMF, 

in gas phase.                                                                                                                                            62  

Table 4.3: Charge transfer analyses using Mulliken, Hirshfeld and Voronoi methods of Er3N@C80 EMF, 

in gas phase.                                                                                                                                            63 

Table 4.4: Standard deviations ů of the distance Ὠ, associated with rotations about the four axes, for the 

three EMFs Sc3C2@C80, Sc3N@C80 and Er3N@C80. In the latter case, Ôhe distance Ὠ is defined to be the 

smallest vertical distance between the top-most plane of the Au substrate and the closest Er atom.     68 

Table 4.5: Gas phase energy barriers ɝ%ʃȟɝ% ɮȟɝ% ɻ associated with rotations about ʃȟɮȟɻ of 

Sc3C2, Sc3N and Er3N within the fixed Ih-C80 cage, along with the preferred orientations angles for the 

three rotationaxes.                                                                                                                                   73 

 Table 4.6: Charge transfer immigration among three segments including metallic moiety, cage and Au 

substrate. Mulliken, Hirshfeld and Voronoi methods are used to analyse the cahrge transfer for 

Sc3C2@C80 EMF.                                                                                                                                     75 

Table 4.7: Charge transfer immigration among three segments including metallic moiety, cage and Au 

substrate. Mulliken, Hirshfeld and Voronoi methods are used to analyse the cahrge transfer for 

Sc3N@C80 EMF.                                                                                                                                      75 

Table 4.8: Charge transfer immigration among three segments including metallic moiety, cage and Au 

substrate. Mulliken, Hirshfeld and Voronoi methods are used to analyse the cahrge transfer for 

Er3N@C80EMF.                                                                                                                                       76 



xv 

 

 Table 4.9: Summarises the optimum distance (Å), and the binding energy (Å6), of two EMFs and C60 

cage.                                                                                                                                                        81 

 Table 5.1: Standard deviations ů of ὝὉ  in four different rotation axes ɗ, ū,  and ɓ, for two EMFs 

Sc3N@C80, Sc3C2@C80 and C60 fullerene. Energy ranges (0.18 to -0.6), (0.18 to -0.38) and (0.0 to -0.5) 

eV of Sc3N@C80, Sc3C2@C80 and C60 .                                                                                                 118 

 Table 5.2: Standard deviations ů of  Ὓ in four different rotation axes ɗ, ū,  and ɓ, for two EMFs 

Sc3N@C80, Sc3C2@C80 and C60 fullerene.                                                                                             118 

Table 5.3: Standard deviations of charge of Sc3C2@C80, Sc3N@C80, Er3N@C80 and C60. Charges are 

calculated using Mülliken, Hirshfeld and Voronoi methods.                                                                121 

 Table 5.4: Standard deviations of charge, conductance and Seebeck coefficient of Sc3C2@C80, 

Sc3N@C80, Er3N@C80 and C60. Charges are calculated using Mulliken, Hirshfeld and Voronoi 

methods.The values shown for the conductance are geometric standard deviations. Computation of a 

theoretical value for „ of Er3N@C80 was not possible, due to the presence of f electrons.                123  

 

 

 

 

 

 

 

 



xvi 

 

List of abbreviations 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

SIESTA 

DFT 

Spanish Initiative for Electronic Simulations with Thousands of Atoms 

Density Functional Theory 

DOS 

LDA 

Density of States 

Local Density Approximation 

GGA Generalized Gradient Approximation 

vdW 

CP 

Van der Waals 

Counterpoise Correction 

BSSE Basis Set Superposition Error Correction 

DZ Double-ɝ basis set 

DZP Double- ɝ polarized basis set 

LCAO Linear Combination of Atomic Orbital 

LCAOB Linear Combination of Atomic Orbital Basis 

STM- B 

MCBJ 

Scanning Tunnelling Microscopy Break Junctions 

Mechanically Controllable Break Junctions 

HOMO 

LUMO 

EMFs 

Highest Occupied Molecular Orbital 

Lowest Unoccupied Molecular Orbital 

Endohedral metallofullerenes 

T(E) Transmission coefficient 

Ὓ Seebeck coefficient 

G electrical conductivity 

P Power factor 

Ὃ 

 „ 

quantum of conductance 

standard deviation 



xvii  

 

List of Publications 

 

1. Laura Rincón-García, Charalambos Evangeli, Panagiotis Dallas, Turki Alotaibi , Alaa A. Al-Jobory, 

Gabino Rubio-Bollinger, Kyriakos Porfyrakis, Nicolás Agraït and Colin J. Lamber. Exploiting 

fluctuations in the search for high-thermoelectric-performance molecular junctions. Submitted.   

 

2. Wenqiang Cao, Alaa Al-Jobory, Qian-Chong Zhang, Jingyao Ye, Abdullah Alshehab, Kai Qu, Turki 

Alotaibi , Hang Chen, Junyang Liu, Zhong-Ning Chen, Colin J. Lambert and Wenjing Hong. Highly 

Insulative Alkane Rings with Destructive ů-Interference. Submitted.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xviii  

 

Table of Contents 

Acknowledgment                                                                                                                                 iii  

Abstract                                                                                                                                                iv 

List of Figurs                                                                                                                                        vi 

List of Tables                                                                                                                                      xiv 

List of abbreviation                                                                                                                            xvi 

List of Publications                                                                                                                           xvii  

Chapter 1                                                                                                                                                1 

1.1 Molecular electronics and Thermopower                                                                                        1 

1.2 Thesis Outline                                                                                                                                  3 

 Bibliography                                                                                                                                         5 

Chapter 2                                                                                                                                                9 

Density Function Theory                                                                                                                       9 

2.1 introduction                                                                                                                                      9 

2.2 The Schrödinger Equation and Variational Principle                                                                    10                                                         

2.3 The Hohenberg-Kohn Theorems                                                                                                   14 

2.4 The Kohn-Sham Theorems                                                                                                            16 

2.5 The Exchange-Correlation Functonals                                                                                          17 

   2.5.1 Local Density Approximation (LDA)                                                                                     18 

   2.5.2 Generalized Gradient Approximation (GGA)                                                                         19 

2.6 Pseudoptentials                                                                                                                              19 

2.7 Basis Sets                                                                                                                                       20 

2.8 Basis Set Superposition Error Correction (BSSE) and Counterpoise Correction (CP)                 22 



xix 

 

2.9 Conclusion                                                                                                                                     23 

Bibliography                                                                                                                                        24 

Chapter 3                                                                                                                                              28 

Single particle transport                                                                                                                       28 

3.1 Introduction                                                                                                                                   28 

3.2 The Landauer Formula                                                                                                                  29 

3.3 Thermoelectric Coefficients Ὓ                                                                                                       31 

3.4 Scattering Theory in One Dimension                                                                                            36 

   3.4.1 Perfect One-Dimensional lattice                                                                                              36 

   3.4.2  One-Dimensional Scattering                                                                                                   40 

3.5 Generalization of the Scattering Formalism                                                                                  43    

   3.5.1 Hamiltonian and Green's Function of the Leads                                                                      44 

3.6 Conclusion                                                                                                                                     52 

Bibliography                                                                                                                                        53 

Chapter 4                                                                                                                                              55 

Electronic structure investigation of endohedral metallofullerenes (EMFs)                                       55 

4.1 Introduction                                                                                                                                   56 

4.2 Studied Molecules                                                                                                                         57 

4.3 Frontier orbitals of the EMFs molecules and the C60                                                                    58 

   4.3.1 Frontier orbitals of Sc3C2@C80 EMF                                                                                       58 

   4.3.2 Frontier orbitals of Sc3N@C80 EMF                                                                                        59 

   4.3.3 Frontier orbitals of Er3N@C80 EMF                                                                                        59 

   4.3.4 Frontier orbitals of C60 EMF                                                                                                    60  



xx 

 

4.4 Charge transfer analyses                                                                                                                61 

   4.4.1 Charge transfer analyses of Sc3C2@C80 EMF in gas phase                                                     61 

   4.3.2 Charge transfer analyses of Sc3N@C80 EMF in gas phase                                                      62             

   4.3.3 Charge transfer analyses of Er3N@C80 EMF in gas phase                                                      63 

4.5 Axes and rotation modes of EMFs                                                                                                63 

4.6 Distance between the metallic moiety and the Au-substrate                                                         65 

   4.6.1 Distance between the metallic moiety and the Au-substrate of Sc3C2@C80                                           65 

   4.6.2 Distance between the metallic moiety and the Au-substrate of Sc3N@C8                               66 

   4.6.3 Distance between the metallic moiety and the Au-substrate of Er3N@C80                             66 

4.7 Gas phase energy barriers to rotation for the 3 moieties within a Ih-C80 cage                               69 

   4.7.1 Gas phase energy barriers to rotation for Sc3C2 within a Ih-C80 cage                                      69 

   4.7.2 Gas phase energy barriers to rotation for Sc3N within a Ih-C80 cage                                                             71 

   4.7.3 Gas phase energy barriers to rotation for Er3N within a Ih-C80 cage                                       72 

4.8 Charge transfer analyses of EMFs on an Au substrate                                                                  74 

   4.8.1 Charge transfer analyses of Sc3C2@C80 EMF                                                                         74 

   4.8.2 Charge transfer analyses of Sc3N@C80 EMF                                                                        75 

   4.8.3 Charge transfer analyses of Er3N@C80 EMF                                                                         76 

4.9 Binding energies of EMFs and C60 on a gold surface                                                                   76 

   4.9.1 Binding energies of Sc3C2@C80 EMF                                                                                     77 

   4.9.2 Binding energies of Sc3N@C80 EMF                                                                                      78                                                                 

   4.9.3 Binding energies of C60                                                                                                           80 

4.10 Energy barriers to rotation for endohedral fullerenes on a gold (111) surface                            81 

4.11 Conclusion                                                                                                                                   88                                                                                                                         



xxi 

 

Bibliography                                                                                                                                        90 

Chapter 5                                                                                                                                              92 

Exploiting fluctuations in the search for high thermoelectric performance molecular  

Junctions                                                                                                                                              92 

5.1 Motivation                                                                                                                                      92 

5.2 Introduaction                                                                                                                                  93 

5.3 Transmission coefficient ὝὉ                                                                                                       95 

5.4 Spin polarisation                                                                                                                            98 

   5.4.1 Spin-dependent transport calculations for different orientations (ɗ) about a a horizontal 

 rotation axis                                                                                                                                        98 

 5.4.2 Spin-dependent transport calculations for different orientations (ū) about a a horizontal  

rotation axis                                                                                                                                       102 

   5.4.3 Spin-dependent transport calculations in the vertical rotation axis (Ŭ)                                 104  

   5.4.4 Spin-dependent transport calculations in the vertical rotation axis (ɓ)                                 106                       

   5.4.5 Spin-independent transport calculations of C60                                                                     108                                     

5.5 Seebeck coefficient Ὓ                                                                                                                  109 

   5.5.1 Calculated thermopower as a function of orientation in horizontal rotation axis (ɗ)           110  

   5.5.2 Calculated thermopower as a function of orientation in horizontal rotation axis (ū)          112  

   5.5.3 Calculated thermopower as a function of orientation in the vertical  rotation axis (Ŭ)        113 

   5.5.4 Calculated thermopower as a function of orientation in the vertical  rotation axis (ɼ)        115 

  

   5.5.5 Calculated Seebeck coefficient of C60                                                                                   116                                                                         

5.6 Standard deviation ů of T(E) of EMFs and C60 in four different rotation axes                           117    



xxii  

 

5.7. Conductance Ὃ and thermopower Ὓ histograms of Sc3N@C80, Sc3C2@C80 EMFs  

and C60                                                                                                                                  119                                                                                                               

5.8  Power Factor                                                                                                                               120                                                                                                              

5.9  Charge inhomogeneity                                                                                                                121                                                                                                     

5.10  Theory versus experiment                                                                                                        122                                                                                               

5.11 Conclusion                                                                                                                                 127                                                                                                                      

Bibliography                                                                                                                                      128                                                                                                                         

Chapter 6                                                                                                                                           140                                                                                                                                

Conclusion and Future Work                                                                                                            140                                                                                                  

6.1 Conclusion                                                                                                                                   140                                                                                                                        

6.2 Future work                                                                                                                                 141                                                                                                                        

Bibliography                                                                                                                                      143                                                                                                                            

Appendices                                                                                                                                        144                                                                                                                              



1 

 

Chapter 1 

Molecular electronics and thermopower 

Molecular electronics is the study of molecules in order to build up electronic components or electronic 

devices [1]. Electrical components such as single-molecule [2] junctions, have the potential to deliver: 

memories [3], sensors [4], logic gates [5], and thermoelectric energy with ultralow energy needs and 

device areas less than 10 nm. These are also of interest due to their ability to probe room-temperature 

quantum properties at a molecular scale, including thermoelectricity and quantum interference [6].  

In 1974, the first molecular rectifier was proposed by Aviram and Ratner [7]. Since then, the field of 

single molecule electronics has stimulated the interest of many scientists. A vast number of molecules 

have been investigated by modifying their chemical structure, some of which act as fundamental 

electronic elementary devices, including conducting wires [8] rectifiers [9] and negative differential 

resistance devices, [10]. The use of specialised intermolecular interactions to create molecular devices 

is a significant challenge in molecular electronics. As a consequence, a thorough understanding of 

electron transport between nearby molecules is required. 

In this thesis, electrode molecule-electrode systems are examined primarily using theoretical 

methodologies. Experimental measurements of these systems have been made by experimental groups 

using two kinds of equipment: Scanning Tunneling Microscopy Break Junctions (STM-BJ) [11] and 

Mechanically Controllable Break Junctions (MCBJ) [12]. Lately, more scalable methods for connecting 

single molecules, such like graphene-based junctions and silicone-based junctions have been developed. 

However, structural issues in 2D hexagonal materials have been discussed for some years [13]and 

consequently their recruitment as electrodes is still in its initial stages. Therefore, for the time being, 

gold break junctions are the recommended contacting approach. Several strategies for regulating 

electron transport have been devised within such limits, including electrochemical gating [14] and 

mechanical gating [15]. 



2 

 

Recently, there has been significant progress in understanding the thermoelectrical characteristics of 

single-molecule junctions [16], stimulated in part by observations of high Seebeck coefficient of order 

161 µVK for PEDOT: PSS organic films [17]. It was recently found that the sign of endohedral 

metallofullerenes EMF and nanotubes may be altered by applying pressure, strain, and intermolecular 

interactions [18]. In endohedral fullerenes, the presence of transport resonances closer to the Fermi 

level, according to theoretical predictions, is a major factor to determine the thermoelectric performance 

of a molecular junction. The effect of transmission resonances was explored theoretically by Finch et 

al [19]. Fano resonance mostly around the Fermi level enhances thermopower and thermoelectric 

efficiency. Enhanced thermoelectric properties have also been predicted in the vicinity of interference-

induced transmission nodes [20]. Sc3N@C80 EMF, is known to have a relatively small energy gap [21] 

and to be particularly stable at room temperature and even at elevated temperatures [22]. The presence 

of a metallic moiety within the fullerene cage not only will provide new resonances, but also allowed 

tuning of the position of the resonance and hence the sign of the thermopower by mechanically 

compressing the junction according on the orientation of the molecule. 

Kroto, Curl, and Smalley [23] discovered fullerenes in 1985 and were awarded the 1996 Nobel Prize of 

Chemistry for their work. Fullerenes are closed-cage molecules composed entirely of carbon atoms. C60 

was the first example synthesised and is the most stable and common fullerene. The discovery of smaller 

and higher fullerenes, (see e.g. Figure 1.1a, C78) made up of 28 to hundreds of carbon atoms, extends 

the family of fullerenes. Other significant breakthroughs in carbon nanoscience have followed their 

discovery, including the discovery of carbon nanotubes and graphene. Fullerenes are made up of 

combined pentagons and hexagons., with C60 possessing 12 pentagons and 20 hexagons. However, 

regardless of the fact that it contains all-conjugated carbon atoms, C60 is not a particularly aromatic 

compound.  

The closed-cage form of fullerene molecules is suitable for encapsulating a diverse range of atoms, 

molecules, and clusters. These compounds are known as endohedral fullerenes, an example of which is 

shown in Figure 1.1b. In 1991, La@C82 was identified as the first endohedral fullerene [24]. From then 

on, a diverse variety of endohedral fullerenes have been synthesised, whose striking features, result 
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from the interaction between the encapsulated species and the cage [25,26]. Endohedral 

metallofullerenes (EMFs) are formed by encapsulating metal species, which interact with the 

surrounding cage and affect the electrical structure, leading to various of applications in materials 

science, photovoltaics, and medicine.  

 

 

 

 

 

 

 

Figure 1.1. a: C78   an example for fullerene and b: La@C82  an example for endohedral fullerenes. 

 

1.2 Thesis outline 

As an introduction to the theoretical methods used to describe electron transport in molecular-scale 

junctions, chapter 2, provides an outline of density functional theory (DFT). The Hohenberg-Kohn 

theorems and the Kohn-Sham theorems are described and the Exchange Correlation Functionals and 

correlation energies in the local density approximation and the generalized gradient approximation are 

explained. Finally, the SIESTA code is introduced, along with some fine details of the calculations, 

such as the use of pseudopotentials and finite basis sets. 

Chapter 3, discusses electron transport and the Landauer formula. It also, provides examples of the 

Greenôs functions for a Scattering Theory in simple one-dimensional discretized lattice and then moves 

on to calculating the scattering matrix of a ssytems connected to one-dimensional leads. In addition, it 

presents a generalized approach to transport calculations. 

In Chapter 4, the electronic structure of three endohedral metallofullerenes (EMFs), including 

Sc3N@C80, Sc3C2@C80, and Er3N@C80, in addition to an empty cage such as C60 were intensively 

b a
a 
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explored. I start by examining the wave functions of the studied molecules. Three different methods 

including Mulliken pobulation, Hirshfeld and Voronoi analyses, were employed to track down the 

charge transfer between metallic moieties and the cage. The charge transfer analyses were applied in 

the gas phase and on a gold substrate. The counterpoise method was used to determine the most probable 

orientation for metallic moieties inside the cage. The orientations of metallic moieties were also 

explored relative to 3 different rotation axes ʃȟɮ and ɼ in gas phases. A similar approach, was used on 

Au-substrate, where in 4 different rotation angles ʃȟɮȟɻ and ɼ are defined I also demonstrate how 

ʃȟ ȟɻ ÁÎÄ  axes pass through the metallic moieties and investigateing how the total energy varies 

with the angle of rotation, both in presence and absence of a gold substrate. For each of the 4 axes, I 

consider one mode of rotation in the gas phase and three modes of rotation on a substrate. 

In chapter 5, the electrical conductance and Seebeck coefficient of three endohedral metallofullerenes 

(EMFs) Sc3N@C80, Sc3C2@C80, and Er3N@C80, are thoroughly investigated and it is found that their 

standard deviations are correlated with the degree of structural variations and the degree of charge 

inhomogeneity on the fullerene cages.  

All EMFs studied are bi-thermoelectric systems, exhibiting both positive and negative Seebeck 

coefficients, in contrast to the empty C60. The distance Ὠ between the top-most plane of the Au substrate 

and the closest metallic atom fluctuates due to rotations on the surface and the degree of variation is 

characterised by the associated standard deviation „, which is a purely geometric quantity. Similarly, 

the degree of charge inhomogeneity on the fullerene cage can be characterised by a standard deviation 

„.  

In chapter 5, I also prove that standard deviations in the Seebeck coefficients „ of EMF-based junctions 

are correlated with the geometric quantity „ and the charge inhomogeneity „. I benchmark these 

molecules against C60 and find that all of „ȟ„ are the largest for Sc3C2@C80, all are the smallest for 

C60 and for the other EMFs. This means that external measurements of fluctuations in the Seebeck 

coefficient provide insight into the internal structure and charge distribution of endohedral 

metallofullerene. 
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Chapter 2 

Density Functional Theory 

This chapter introduces the density functional theory (DFT) formalism as well as the SIESTA DFT 

code, which is employed in all of the electronic structure computations in this thesis. The initial step in 

determining the molecule's electron transport characteristics is to use DFT to obtain a mean-field 

Hamiltonian. However, since the Hamiltonian only pertains to the isolated molecule, it must still be 

linked to semi-infinite leads, as described in the next chapter. 

 

2.1 Introduction 

It is necessary to have a reliable source of structural and electronic information in order to describe the 

behaviour of molecular electronic devices. In this chapter, I will give a brief summary of density 

functional theory (DFT) and the SIESTA (Spanish Initiative for Electronic Simulations with Thousands 

of Atoms) code [1], which I utilised extensively during my PhD studies as a theoretical tool for 

investigating both qualitatively and quantitatively the architectures of molecules, charge densities, and 

band structures. SIESTA is a collection of algorithms and a fully integrated software programme for 

performing DFT calculations on a large number of atoms (1000) in a matter of hours, days, or weeks. 

The fundamental principle of DFT is that every physical attribute of a complex system composed of 

several interacting particles can be represented as a function of the system's ground state density. The 

proof of the existence of such a functional was first presented by Hohenberg and Kohn [2] in 1964. 

However, the proof does not provide us any information on the shape of the functional. However, an 

ansatz proposed by Kohn and Sham [3] opened the door to applications for realistic physical systems. 

Since then, DFT has been a common tool in theoretical physics and molecular chemistry. This chapter 

will give an overview of the principles of DFT and all of its numerical applications. The literature is 

quite broad and deals with the subject with considerably more detail [4-7]. I will begin by outlining the 

several alternative approaches to the many body issue, and then I will demonstrate the Hartree-Fock 
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technique and the Hohenberg-Kohn theorems, followed by a demonstration of the Kohn-Sham ansatz. 

Next, I distil the most often used functional forms, which are critical in applied numerical analysis. I 

also focus on localised base sets, pseudo-atomic orbits defining the number space of the Hilbert 

computations in this thesis, and Basis Set Superposition Error Correction (BSSE) and Counterpoise 

Correction (CP). 

 

2.2 The Schrödinger Equation and Variational Principle  

The Schrödinger equation, which is time independent and non-relativistic, may be used to 

describe any non-relativistic multi particle system: 

( ὶᴆȟὶᴆȟȣȟὶᴆȟὙᴆȟὙᴆȟȣȟὙᴆ Ὁ ὶᴆȟὶᴆȟȣȟὶᴆȟὙᴆȟὙᴆȟȣȟὙᴆ                     (2.1)   

Where    is the wavefunction of the  Ὥ  state of the system and  Ὁ is the numerical value of the 

energy of the state represented by    represents the Hamiltonian operator of a system consisting of 

N-electrons and M-nuclei that explains the interaction of particles with each other. The Hamiltonian 

operator of such a system can be written as a sum of five terms given by [2, 3, 8-12]: 
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(2.2) 

 

Where Ὥ and Ὦ denote the N-electrons while ὲ and ὲǲ run over the M-nuclei in the system, ά  and ά  

are the mass of electron and nucleus respectively, Ὡ and ὤ are the electron and nuclear charge 

respectively. The position of the electrons and nuclei are denoted as ὶᴆ ÁÎÄ Ὑᴆ  respectively, and    is 

the Laplacian operator, in Cartesian coordinates is defined as 
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According to the illustration given by the equation (2.2), the terms, Ὕ is the kinetic energy of electrons, 

while Ὕ  is denoted as kinetic energy of nuclei in the system. Additionally, the last three terms describe 

the potential part of the Hamiltonian; the term Ὗ  represents the attractive electrostatic interaction 

between nuclei and electrons in the system. The electron-electron(Ὗ ) and nuclear-nuclear (Ὗ ) are 

the repulsive part of the potential respectively [1, 3, 4, 9, 11] 

 

The Born-Oppenheimer approximation, also known as the clamped nuclei approximation, may be used 

in the analysis because about 99.9% of the mass of an atom is contained in the nucleus; also, the nuclei 

in the system can be regarded fixed in comparison to the electrons. This implies, for example, that the 

hydrogen atom's mass concentration is shown by the fact that the nucleus weighs about 1800 times 

more than the electron. If the nuclei of the treated atoms are maintained stable, the resultant kinetic 

energy accumulates to zero, implying that they no longer contribute to the complete wave-function. 

As a consequence of the preceding assumption, the electron system's Hamiltonian expression decreases 

the Hamiltonian to a different figure; similarly, the electronic Hamiltonian ( , which in a fixed 

nuclear representation may well be given by [3, 4, 9, 11]: 
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Where; the Ὗ  is an obtained constant for the system. The Schrºdinger equation for óclamped-nucleiô 

is represented as: 

 

Where;   is dependent on the electron coordinates for the system, while the nuclear part enters only 

dimensionally and does not clearly appear in  . 

Total energy Ὁ  is given as the sum of  Ὁ  and the constant nuclear repulsion term for the system 

which is given as: 

 

Wave-function for a system is not an observable quantity, its modulus squared can be written in the 

form as: 

 

  

The above expression represents the fact that the probability that electrons 1, 2é, N are found in the 

volume elementsὨὶᴆ ὨὶᴆȣȢȢὨὶᴆ, this is because the electrons are indistinguishable, and this 

probability is unchangeable if the coordinates of any two of electrons (i and j) are swapped [15]: 

(
ᴐ
В ᶯ В В

ᴆ ᴆ
ὤὩ

В В
ᴆ ᴆᴆ

 В В
ᴆ ᴆ

              

    (2.3) 

(   Ὁ                (2.4) 

Ὁ Ὁ Ὗ               (2.5) 

ȿὶᴆȟὶᴆȟȣȟὶᴆȿὨὶᴆ ὨὶᴆȣὨὶᴆ               (2.6) 

ὶᴆȟὶᴆȟȣὶᴆȟὶᴆȟȣȟὶᴆ ὶᴆȟὶᴆȟȣὶᴆȟὶᴆȟȣȟὶᴆ           (2.7) 
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Because of the reason that electrons are fermions with spins of a half then the value of  must therefore 

be anti-symmetric with respect to the interchange of the spatial and the spin coordinates as well in any 

pair of electrons: 

 

A logical result of probability interpretation format of the wave-function is that the integral of equation 

2.6 over the full range of all variables gives an output of one. This mean, the probability of finding the 

N-electron at any position in a space must be exactly unity, 

  

A wave-function that meets the requirements for equation (2.9) is a normalized one. 

 

Since the Schrödinger wave-equation does not have an exact solution, several theories have been 

developed to fulfil this objective; this effort start with Hartree, Hartree-Fock and many others. A large 

number of these theories were based on a significant theoretical principle referred to as variational 

principle of the wave-function where this principle leads an analysts on how to look for solutions by 

using suitable trial wave-functions   [11]. The above principle is meaningful in the study of the 

ground state, but is not very fruitful in the study of excited states. When a system is in the state  , 

the expectation value of the energy is given by the expression:  

 

 

 

  

ὶᴆȟὶᴆȟȣὶᴆȟὶᴆȟȣȟὶᴆ ὶᴆȟὶᴆȟȣὶᴆȟὶᴆȟȣȟὶᴆ           (2.8) 

ȣ ȿὶᴆȟὶᴆȟȣȟὶᴆȿὨὶᴆ ὨὶᴆȣὨὶᴆ ρ 
    (2.9) 

 

ộὉ Ớ
᷿   

ᶻ ᴆ

᷿  ᶻ  ᴆ
       (2.10) 

ộὉ Ớ
᷿   

ᶻ ᴆ

᷿  ᶻ  ᴆ
         (2.11) 
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Variational principle that is given in the equation 2.10 implies that the energy computes as the 

expectation value of the Hamiltonian operator from any   that is an upper bound of the true ground-

state energy  . Suppose   is normalized as per the equation 2.9 while   then it equals to the 

ground state (  ). This indicates that entity Ὁ  is equal to the exact ground state energy Ὁ , 

additionally, we can reconfigure the equation 2.10 for the ground state as: 

 

  

From the normalized    we can clarify that Ὁ Ὁ  or Ὁ Ὁ . The best chose for Ὁ  is 

therefore the one in which Ὁ  is reduced [3]. 

 

2.3 The Hohenberg-Kohn Theorems 

P. Hohenberg and W. Kohn demonstrated in 1964 [2] that there is a relationship between the ground 

state energy and the density, ”ὶ ,of an interacting electron system. The Hohenberg-Kohn theorems 

are two simple but strong statements: 

a) The external potential, ὠ , is a density-specific functional ὶ. Given that ὠ  fixes the 

system's Hamiltonian, Ὄ, it is obvious that the complete many-body ground state is a unique 

functional of  ”ὶȢ 

 b)   The ground state, Ὁ  , is a ground state density  ”ὶȢ  

 

It is a straightforward matter of reduction ad absurdum to demonstrate the validity of the first theorem 

presented above. Assume we have two external potentials, ὠὩὼὸ and ὠὩὼὸ, that vary by a constant. 

Assume that the two external potentials provide the same ground-state density ”ὶȢ Each system's 

Hamiltonians are designated by   Ὄ  and  Ὄ   and, since they vary, they will have distinct ground-

state wavefunctions,    and  .  We have    since it is not a ground state of Ὄ , we have: 

ộὉ Ớ ᷿ (   
ᶻ Ὠὶᴆ         (2.12) 



15 

 

 

Similarly: 

The simplified assumption is that our ground states are non-degenerate. The problem has been  

formulated to incorporate degeneracies in the literature [10, 17]. We can rewrite equation 2.14: 

Also, equation 2.15: 

When we combine equations 2.14 and 2.15, we get the following contradiction:  

Ὁ Ὁ  Ὁ Ὁ  

Two or more potentials may vary by no more than a constant and can produce the same ground-state 

density, hence it is impossible for there to be two such potentials. 

The second theorem is just as easy to prove as the first. Consider the following equation for the system's 

total energy, Ὁ: 

The kinetic term,  Ὕ and internal interaction of the electrons,  Ὁ  , are, by definition, universal. 

Ὁ ộ ȿὌ ȿ Ớ  ộ ȿὌ ȿ Ớ         (2.13) 

Ὁ ộ ȿὌ ȿ Ớ  ộ ȿὌ ȿ Ớ      (2.14) 

 

ộ Ὄ  Ớ ộὌ  Ớộ Ὄ Ὄ  Ớ 

Ὁ Ὠ᷿ὶὠ ὶ ὠ ὶ  ɟo (r) 

      (2.15) 

ộ Ὄ  Ớ Ὁ Ὠ᷿ὶὠ ὶ ὠ ὶ ”έ ὶ        (2.16) 

Ὁ” Ὕ” Ὁ ” Ὠ᷿ὶὠ ” ὶ (2.17) 
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Consider a system with a ground-state density of  ” , an external potential of   ὠ   , and a wavefunction 

of    . According to the first theorem,  ” determines the Hamiltonian, therefore for any density and 

wavefunction, , other than the ground state, we get: 

 

This reduces the functional density of the ground, ”ȟ equation 2.18. As a result, if we know the 

functional:  Ὕ” Ὁ ”  , we can extract the ground-state of the system and compute all ground-

state attributes by minimising equation 2.18. 

 

2.4 The Kohn-Sham Theorems 

We have already shown that by acquiring the ground-state density, we can calculate the ground-state 

energy, and it is theoretically possible to compute the ground-state energy by getting the ground-state 

density. The precise form of the functional indicated in equation 2.18, however, is unknown. The kinetic 

term as well as the internal energy of the interacting particles cannot be represented as a function of 

density in general. The solution was introduced by Kohn and Sham in 1965 [3].   

The original Hamiltonian can be substituted, according to Kohn and Sham, with an effective 

Hamiltonian of non-interacting particles, with a real external potential having the same ground-state 

density as the original system. Because this is not a defined recipe, it is merely an ansatz, but a non-

interacting problem is far easier to resolve. Contrary to equation 2.18, the functional energy of the ansatz 

Kohn-Sham will have the formula: 

 

Ὁ  ộȿὌȿỚ  ộȿὌȿỚ Ὁ          (2.18) 

 

Ὁ ”  Ὕ ” Ὠ᷿ὶὠ ὶ”ὶ Ὁ ”  Ὁ ”            (2.19) 
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 Ὕ   is the non-interacting system's kinetic energy. The kinetic energy of the interacting system was 

employed in equation 2.18.  Ὕ the distinction is known as the exchange correlation functional, Ὁ  , 

equation 2.21. 

The Hartree functional, Ὁ  , represents the electron-electron interaction using the Hatree-Fock method 

and has the following form: 

This is a roughly Ὁ   version, as previously defined. Again,  Ὁ  refers to the difference. As a result, 

the exchange correlation functional, Ὁ  , represents the difference between the exact and approximation 

solutions to the kinetic energy term and the electron-electron interaction term. Its definition is as 

follows: 

In practice, the first three functionals of equation 2.19 are easily defined and account for the majority 

of the contribution to ground-state energy. In comparison, the exchange correlation functional makes a 

minor contribution. Despite decades of investigation, there is no exact remedy. The next part discusses 

several excellent approximations that have been developed. 

 

2.5 The Exchange Correlation Functionals 

Several modifications on the exchange and correlation energy have been published in the literature. The 

first successful form was the Local Density Approximation (LDA) [26, 27], That depends on the density 

only, and hence is functional locally. Then the next step was the Generalized Gradient Approximation 

(GGA) [17-20], Including the density derivative, it also includes neighbourhood information and is thus 

semi-local. 

         Ὁ ”  
ρ

ς

”ὶ”ὶ

ȿὶ ὶᴂȿ
 ὨὶὨὶᴂ          (2.20) 

         Ὁ ”  ᷿
ȿ ȿ

 ὨὶὨὶᴂ                                           (2.14)                       

 

Ὁ ”  Ὁ ” Ὁ ” Ὕ” Ὕ ”            (2.21) 
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One of the most commonly used approximations in density functional theory is LDA and GGA.LDA 

and GGA can't be considered the only possible functionals. Some of these functionals are tailored to fit 

specific needs of basis sets used in solving the Kohn-Sham equations, equation 2.12 and a large category 

is the so-called hybrid functionals (e.g. B3LYP [3], HSE [30] and Meta hybrid GGA [29, 31]), which 

combine the LDA and GGA forms. 

One of the most recent and universal features, the Van der Waals density functional (vdW-DF) [32], 

contains non-local terms and has proven to be very accurate in systems where dispersion forces are 

important [33, 34].  

Following sections will provide a brief introduction to the Local Density Approximation and the 

Generalized Gradient Approximation. 

 

2.5.1 Local Density Approximation (LDA) 

The exchange correlation functional in LDA simply depends on the local density. This approximation 

can be expected to produce satisfactory results for systems where the density is does not change too 

rapidly. 

In some ways, the LDA is the most basic representation of the exchange and correlation energy. It is a 

basic yet powerful functional, and it is known to be correct for graphene and carbon nanotubes, as well 

as where the electron density is not changing rapidly. For example, for atoms that have d and f-type 

orbits, a bigger inaccuracy is expected. But LDA has numerous drawbacks: the band gap in 

semiconductors and insulators is sometimes underestimated with a significant inaccuracy (alternative 

to 10 ï30%), for example. For instance. So, it is advisable to try to improve your functionality. 
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2.5.2 Generalized Gradient Approximation (GGA) 

When derivatives are included in the functional form of the exchange and correlation energies the GGA 

is obtained. In this condition there is no closed form for the functional exchange, so analytical solutions 

have to have been used to calculate the correspondence contributions. Just as in the case of the LDA 

there exist many parameterizations for the exchange and correlation energies in GG [17- 19, 35]. 

For the approximation of exchange-correlation energies in the DFT, LDA and GGA are two of the most 

widely utilized approximations. Several functionalities, beyond LDA and GGA, are also provided. In 

overall, the validity of these functions is not a sensible theory. Tests are performed on diverse materials 

to test functional properties for a wide range of systems and then statistical comparisons are performed 

to establish valid data. 

 

2.6 Pseudopotentials 

I have demonstrated how to transform a huge interacting problem into an effective non-interacting 

problem using the Kohn Sham formalism and an exchange-correlation functional. This greatly 

simplifies the situation from a physical point of view. When molecules with a significant number of 

atoms are involved, however, the calculation becomes too massive and computationally intensive to 

use. By introducing pseudopotentials, the number of core electrons in an atom can be reduced. 

Pseudopotentials were first introduced by Fermi in 1934 [19, 20] and since then methods have evolved 

from creating not so realistic empirical pseudopotentials [21, 22] to more realistic ab-initio 

pseudopotentials [22, 24]. 

Electrons, which are commonly found in the nucleus of an atom, can be classified into two types: core 

and valence. Core electrons are found within the nucleus while the valence electrons are located in 

partially filled atomic shells. As long as core electrons are restricted around the nucleus, the only 

valence electron states overlap when atoms are brought together. This makes it possible to remove the 

core electron and replace it with a pseudopotential that allows the valence electrons to still be screened 
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as if the core electrons are still present. This dramatically lowers the number of electrons in a system 

and reduces the time and stored properties of molecules that contain a significant number of electrons. 

 

2.7 Basis Sets 

Obviously, the Hamiltonian must be diagonalized to find the wavefunctions. This procedure includes 

inverting a big matrix. The Hamiltonian must be sparse with several zeros for effective calculations. 

SIESTA uses a Linear Atomic Orbital Combination (LCAO) basis set, which decays to zero after a 

certain specified cut-off radius, and is created from atom orbitals. As the overlap between basis 

functions is reduced, the former produces the required sparse form of the Hamiltonian, even if the latter 

allows even a slight basis set to produce similar properties with that of the studied system. The simplest 

form of the atomic basis set for an atom is called a single ‚ basis, which corresponds to a single basis 

function, ὲὰάὶ  per electron orbital. In this case each basis function consists of a product of one radial 

wavefunction,  ὲὰ and spherical harmonic ὣ : 

 

The radial part of the wavefunction is found by using the method proposed by Sankey [25], where the 

Schrodinger equation is solved for the atom placed inside a spherical box. It is under the constraint to 

vanish at a cut-off radius ὶ. This constraint produces an energy shift  Ὁ within the Schrödinger 

equation such that the eigen functions first node occurs at ὶ: 

 

ὲὰάὶ   ὲὰὶὣ  ȟ        (2.22) 

Ὠς

Ὠὶς
 
ὰὰ ρ

ςὶ
ὠ ὶ  ρ ὶ  ‐ὲὰ   Ὁ

ρ ὶ   
    (2.23) 
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For higher accuracy basis sets, multiple, additional radial wavefunctions can be included for each 

electron orbital. The additional radial wavefunctions,     for ρ , are calculated using a split-valence 

method. This involves defining a split valence cut off for each additional wavefunction, ὶ  , so it is 

split into two piecewise functions: a polynomial below the cut-off and the previous basis wavefunction 

above it: 

 

Further parameters are located at the point when such wavefunction and its derivative are supposed to 

be continuous. 

Further accuracy (multiple-‚ polarized) can be obtained by including wavefunctions with different 

angular momenta corresponding to orbitals which are unoccupied in the atom. This is done by solving 

Eq. 2.23 in an electric field such that the orbital is polarized or deformed due to the field (see [6] for 

details) so a different radial function is obtained. This is now combined with the appropriate angular 

dependent spherical harmonic which increases the size of the basis. Table 2.1 shows the number of 

basis orbitals for a selected number of atoms for single- ‚ , single- ‚ polarised, double- ‚ , double- ‚  

polarised.  

Table 2.1: Example of the number of radial basis functions per atom as used within the SIESTA for 

different degrees of precision.   

 

 ὲὰὶ  
ὶὰὥὲὰ ὦὲὰὶ

ς                     ὶ  ὶ    

 ὲὰ
Ὥρ                               ὶ  ὶ  ὶ

                  (2.24) 

Atom Valence 

configuration 

SZ SZP DZ DZP 

H 1ί 1 4 2 5 

C (2s2 2P2)  4 9 8 13 

S (3S2 3P4)  4 9 8 13 

Au (6S1 5d10) 6 9 12 15 
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2.8 Basis Set Superposition Error Correction (BSSE) and Counterpoise 

Correction (CP) 

Basis Set Superposition Error Correction (BSSE) is one of the fundamental factors that impact the 

precision of energy interactions calculations with incomplete bases. It is usually understood in addition 

to intermolecular interactions, particularly for systems that have weak intermolecular interactions. The 

SIESTA implementation of DFT, applied in this thesis, means that the BSSE starts employing the linear 

combination of the atomic orbital formalism, consisting of a final nuclei-focusing basis when atoms are 

close enough to overlap their basis functions. This may artificially reinforce the atomic connection and 

artificially shorten the atomic distances and so alter the overall system energy. 

In1970, Boys and Bernardi presented a method of reducing BSSE in molecular complexes made up of 

a so-called counterpoise-correction scheme [25, 26, 29] with two geometrical configurations. Consider 

two molecular systems A and B, separated by a distance R. The interactive energy can be expressed in 

[28] 

where ЎὉ   AB  is the overall energy of the supersystem,  Ὁ  and  Ὁ  are the energies of the  

isolated subsystems [32]. Figure 2.1 highlights the counterpoise correction for dimers ὃ and ὄ.  

 

 

 

 

 

 

 

ЎὉ Ὑ Ὁ Ὑ Ὁ Ὁ         (2.25) 

  

a b c                      d e 
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 Figure 2.1. Illustrating the Counterpoise method to calculate the binding energy. (a) represents the 

basis functions for a total system where atoms are shown in white, and the basis functions are in grey. 

(b) and (c) show the basis function for the individual monomers whereas (d) and (e) represent the 

counterpoise correction. Every single molecule is evaluated with the same basis function as the total 

system in (a) [30]. 

 

Figures 2.1 a, b and c represent the two isolated molecules with their individual and corresponding basis 

functions, while the shaded grey atoms in figure 2.1 d and e represent the ghost states (basis set functions 

having no electrons or protons). The Basis Set Superposition Error Correction (BSSE) is calculated by 

recalculating the binding energy  Ὁ  using the mixed basis sets obtained by introducing the ghost 

orbitals and then reducing the error from the uncorrected energy. 

 

where ὉȟὉ ÁÎÄ Ὁ are the total energy of (a), (d) and (e) systems in figure 2.1, respectively. 

In what follows, this an important concept that has been successfully implemented in many 

systems to give reliable and realistic energies [26, 35, 38]. 

2.9. Conclusion 

In conclusion, I have presented a summary of the DFT formalism and the SIESTA DFT code, which is 

used throughout this thesis to compute the electronic structure. The first step in identifying the electron 

transport properties of a molecule is to obtain a DFT mean-field Hamiltonian describing the isolated 

molecule. The next step is to connect the molecule, to semi-infinite leads, as will be explained in the 

next chapter. 

 

Ὁ Ὁ Ὁ Ὁ      (2.26) 
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Chapter 3 

Single Particle Transport 

Density functional theory, which may be used to determine the electrical structure of an isolated 

molecule, was discussed in chapter 2. Connecting this isolated molecule to semi-infinite leads and 

computing the transmission coefficient out across system are the next step. This is performed by using 

the Green's function scattering formalism, which I discuss in this chapter and which is employed 

throughout the thesis. The electric and thermoelectric characteristics of nanoscale systems sandwiched 

between a number of macroscopic sized metal electrodes are described using scattering theory and 

Green's function techniques. 

 

3.1 Introduction 

In this chapter, I  begin with a brief overview of the Landauer formula. Subsequently, I  introduce the 

simplest form of a retarded Green's function for a Scattering Theory in one-dimensional tight binding 

chain. After this, I break the periodicity of this lattice at a single connection and show that the Green's 

function is related directly to the transmission coefficient across the scattering region. The methods 

used on these simple systems will then be used to derive the transmission coefficient of mesoscopic 

conductors of arbitrarily complex geometry The method presented here assumes negligible interaction 

between carriers, the absence of inelastic processes, and zero temperature. 

 

3.2 The Landauer Formula 

The Landauer formula [1, 6] is used to describe electron transport in mesoscopic systems and is 

applicable to phase coherent systems, in the absence of inelastic scattering. It relates the conductance 

of a mesoscopic sample to the transmission properties of electrons passing through it. The method used 

to calculate the transmission properties will be discussed later in this chapter. 
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Figure 3.1. A mesoscopic scatterer linked to contacts with ballistic leads. ‘ and ‘  represent 

the chemical potential of the left and right contacts, respectively. 

 

 

A mesoscopic scattering region connected to contacts by ballistic leads. The chemical potential in the 

contacts is  ‘
ὒ
 and  ‘

Ὑ
 respectively. If an incident wave packet hits the scattering region from the left, 

it will be transmitted with probability Ὕ ὸὸᶻ and reflected with probability  Ὑ ὶὶᶻ . Charge 

conservation requires Ὕ  Ὑ  ρ. 

 

To begin, consider a mesoscopic scatter coupled to two contacts that operate as electron reservoirs 

through two ideal ballistic leads Figure 3.1. All inelastic relaxation processes are limited to the 

reservoirs [1]. The reservoirs have slightly different chemical potentials, ‘ὒ and ‘Ὑȟ such that ‘ὒ ‘Ὑ 

is small. Here we use the notation   ‘ὒ ‘Ὑ  Ὁ  Ὡὠ  π , which will drive electrons from the 

left to the right reservoir. Initially, I will discuss the solution for one open channel (i.e. where only one 

electron is allowed to travel in a given direction).  

The incident current passing through this system from the left to the write reservoir is: 
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Where Ὡ is the electronic charge, ὺ  in the group velocity and    is the density of states per unit lengthin 

the lead in the energy window defined by the chemical potentials of the contacts. 
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     (3.2) 

 

In one dimension, after including a factor of 2 for spin dependency, 
ЋÎ

ЋË

ρ

ʌ
  Substituting this Into 

Equation 3.2, we find that  
ЋÎ

ЋË

ρ

ὺᴐ
.  This simplifies Equation 3.1 to: 
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     (3.3) 

 

Where  ὠ  is the voltage generated by the chemical potential mismatch. From equation 3.3 it is clear 

that in the absence of a scattering region, the conductance of a quantum wire with one open channel is 

ςὩς

Ὤ
   , which is approximately   χχȢυ‘Ὓ  (or in other words, aresistance of ρςȢω Ὧ  ). This is an everyday 

quantity; it typically appears on the circuit boards of everyday electrical appliances.  If now we consider 

a scattering region, the current collected in the right contacts will be 

 

This is the well-known Landauer formula, relating the conductance, Ὃ  of a mesoscopic scatterer to the 

transmission probability,Ὕ  of the electrons traveling through it. It describes the linear response 

conductance, hence it only holds for small bias voltages ὠ  π . 

    

The Landauer formula has been generalized for the case of more than one open channel by Buttiker [3]. 

In this case the transmission coefficient is replaced by the sum of all the transmission amplitudes 

ɿ)
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ὠ
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describing electrons incoming from the left contactand arriving to the right contact. The Landauer 

formula  equation 3.3 for many open channelshence becomes: 

 

 

Where   ὸ is the transmission amplitude describing the scattering from the Ὦ  channel of the  

left lead to the  Ὥ  channel of the right lead. With the definition of the transmission amplitudes, one can  

similarly introduce the reflection amplitudes  ὶ which describe the scattering processes where 

theparticle is scattered from the  Ὦ   channel of the left lead to the Ὥ  channel of the same lead. 

Combining reflection and transmission amplitudes, one can define the Ὓ matrix, which connects the 

states coming from the left lead to the right lead and vice versa. 

 

Here ὶ and ὸ describe electrons coming of the left and Ôᴂ and Òᴂ describe electrons coming from the right. 

Equation 3.6 suggests that ὶȟὸȟὶǲ and ὸᴂ are matrices for more than one channel, and could be complex 

(in the presence of a magnetic field for example). On the other hand charge conservation demands the 

Ὓ matrix be unitary: SS+=I . The Ὓ matrix is a central object of scatteringtheory. It is useful not just in 

describing transport in the linear response regime, but also in other problems, such as adiabatic 

pumping. 

 

3.3 Thermoelectric coefficients ╢ 

Seebeck, Peltier and Thompson developed the relationship between heat, current, temperature and 

voltage at the turn of the 19th century [16]. The Seebeck effect explains the production of electrical 

current as a result of a temperature difference, while the Thompson and Peltier effects explain the 
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cooling or heating of a current-carrying conductor. A deeper mechanism can be imagined where the 

difference temperature is Ўכ and a theoretical drop in value Ўὠ occurs in the system that causes heat 

and charge fluctuations. For heat (א) and charge (Ὅ) currents under the linear base and temperature 

schematic, the common Landauer-Büttiker formulas can be generalised to determine the thermoelectric 

coefficients of a device with two terminals. The system is composed of a scattering region that has 

connections to two leads, which are themselves connected to a pair of electron reservoirs. These 

reservoirs are constructed using the chemical potentials  ‘ and  ‘ , temperatures כ and כ, and the 

Fermi distribution function [17]:   

Ὢ Ὁ ρ Ὡ כ        (3.7) 

 

It is possible to write the right moving charge current of an individual k-state emerging from the left 

reservoir on the basis of the number of electrons per unit length ὲ, Fermi distribution Ὢ, group velocity 

’ as well as the scattering regionôs transmission coefficient ὝὉ.  

 

  Ὅ ὲὩ’ ὉὯ  ὝὉὯ   ὪὉὯ                              (3.8) 

 

The overall charge from right moving states may therefore be found by summing up all positive k states 

and then integrating them into an integral form; 

 where ὲ  ρȾὒ for the electron density and ’
ᴐ
 . 
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Consequently, for the left moving states, we obtain: 
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Ὅ  
ςὩ

Ὤ
 ὝὉὪ Ὁ ὨὉ        (3.10) 

As a result, the entire right-moving current can be written as: 

 

Ὅ Ὅ Ὅ  
ςὩ

Ὤ
 ὝὉ ὪὉ Ὢ Ὁ  ὨὉ       (3.11) 

Equation 3.11 represents the Landauer-Bİttiker formula. An analogous derivation can be performed for 

the heat current (alternatively, energy current) of the identical system by beginning with the relation 

א Ὁὲ’  instead of Ὅ ὲὩ’. The outcome is comparable to the previous result, but includes two 

additional terms: 
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             (3.12) 

 

The thermoelectric coefficients ὒ and ὓ, in the absence of a magnetic field, are related by the Onsager 

relation:    

ὓ ὒ(3.13)                כ 

 

where כ is temperature. By rearranging these equations, the current relations can be expressed in terms 

of the measurable thermoelectric coefficients, electrical resistance Ὑ  ρȾὋ, thermopower  Ὓ

ЎὠЎכϳ  , Peltier coefficient ɩ, and the thermal constant Ὧ: 
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            (3.14) 

 

The thermopower Ὓ is defined as the potential drop due to a temperature difference in the absence of an 

electrical current: 
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          (3.15) 

 

The Peltier coefficient   is defined as the heat transferred purely due to the charge current in the absence 

of a temperature difference: 

 
ὗ

Ὅ
כ

ὓ

Ὃ
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         (3.16) 

 

Lastly, the thermal conductance Ὧ is defined as the heat current caused by a temperature drop in the 

absence of an electric current: 

Ὧ ὗ
Ўכ

ρ
ὛὋכ

Ὧ
 

 

   
(3.17) 

  

  

Obviously, the evaluation of Ὓ or   gives an idea of how well the device will act as a heat-driven current 

generator or a current driven cooling device. 

The thermoelectric figure of merit, ὤ[19 ,18] כ, can alternatively be defined in terms of these observable 

thermoelectric coefficients: 

 

ὤכ
ὛὋכ

Ὧ
   (3.18) 

In classical electronics, the ὤכ is calculated by computing the maximum induced temperature 

difference produced by an applied electrical current while Joule heating is present. Consider a current-

carrying conductor sandwiched between two heat baths כ and כ, as well as two electrical potentials 

ὠ and ὠ  
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The thermoelectric figure of merit is obtained by calculating the highest induced temperature 

differential in a conductor caused by an electrical current. By defining (ὗ) as the gain in heat from bath  

ὒ to Ὑ, then from equation 3.14 we obtain: 

ὗ   Ὅ Ὧῳכ 
 

  (3.19) 

This heat transfer will cause the left bath to cool and the right bath to heat, with a result that ῳכ 

increases. The amount of Joule heating can be expressed as ὗ ὙὍ, which is proportional to the 

electrical resistance and the square of the current. This Joule heating will also affect the temperature 

difference induced by the heat transfer, and therefore in the steady state case: 

 

  Ὅ Ὧῳכ
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(3.20) 

where, ὙȾς is the sum of two parallel resistances (internal and external resistance). After rearranging 

this, the temperature difference is 

ῳכ
ρ
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Ὑ Ὅ
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                                (3.21) 

 

 

This expression shows how the temperature difference depends on the current. To find the maximum 

temperature difference, the derivative of equation 3.21 with respect to the electric current is taken: 

Ўכ

Ὅ

  ὍὙ

Ὧ
π 

                    (3.22) 

 

Finally, by writing back  Ὅ ɩ ȾὙ and substituting equation 3.16 into equation 3.22, for the maximum 

of the temperature different we obtain: 

Ўכ
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A dimensionless number that can be used to describe a molecular device's 'efficiency'  

 

3.4 Scattering Theory in One Dimension 

 It is useful to calculate the scattering matrix for a simple one-dimensional system before presenting the 

extended methods. This will provide a detailed description of the approach used. Because Green's 

functions will be utilised in the derivation, I go over the form of the Greenôs function for a simple one-

dimensional discretized lattice  section 3.4.1 and then move on to calculating the scattering matrix of a 

one-dimensional scattered section 3.4.2. 

 

3.4.1 Perfect One-Dimensional Lattice 

In this section, I will discuss the form of the Greenôs function for a simple one dimensional lattice 

with on-site energies  and real hopping parameters ɾ as shown in Figure 3.2. 

 

 

 

 

 

Figure 3.2. Tight-binding approximation of a one-dimensional periodic lattice with one site energies 

Ⱡ▫ and coupling ♬. 
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The matrix form of the Hamiltonian can be simply written: 

 

Within the tight-binding approximation, the Schrödinger equation (Equation 3.26) can be expanded at 

a lattice site ᾀ in terms of the energy and wavefunction   (Equation 3.27). 

 

The wavefunction for this perfect lattice takes the form of a propagating Bloch state equation 3.28, 

normalized by its group velocity ὺ in order for it to carry unit current flux. When this is substituted 

into equation 3.27, it leads to the well-known one-dimensional dispersion relation equation 3.29. 
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Where we introduced the quantum number, Ὧ, commonly referred to as the wavenumber. The retarded 

Greens function Ὣᾀȟᾀǲ is closely related to the wavefunction and is in fact the solution to an equation 

very similar to that of the Schrödinger equation: 

 

 

Physically, the retarded Greens function,Ὣᾀȟᾀ , describes the response of a system at a point ᾀ due to 

a source at a point ᾀ. Intuitively, we expect such an excitation to give rise to two waves, traveling 

outwards from the point of excitation, with amplitudes ὃ  and ὃ  as shown in Figure 3.3 

 

 

 

 

 

 

 

Figure 3.3. The structure of Retarded Green's Function of an infinite one-dimensional lattice. The 

excitation at z = zǋcauses wave to propagate left and right with amplitudes ═  and ═   respectively. 

 

These waves can be expressed simply as: 

 

 

This solution satisfies equation 3.30 at every point but ᾀ  ᾀǲ. To overcome this, the Green's  

function must be continuous equation 3.32, so we equate the two at ᾀ  ᾀǲ 
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Substituting equation 3.33 into the Green's functions equation 3.31 yields: 

 

 

It is obvious that this can be stated as: 

 

Where: 

 

It is possible to find a more extended derivation in the literature [6- 8]. 
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3.4.2 One-Dimensional Scattering 

I  study two single-axis, half-infinite leads that are linked by a coupling element . Both leads have 

equal on-site potentials, Ůo, and hopping elements,  (see Figure 3.4). The analytical solutions for 

the transmission and reflection coefficients can be calculated easily. 

 

 

 

 

 

 

 

 

Figure 3.4. Simple tight-binding model of a one dimensional scattered attached to one dimensional 

leads. 

 

We need to define a Hamiltonian, which takes the form of an infinite matrix. 
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For real , the dispersion relation corresponding to the leads introduced above was given in equation 

3.29  and the group velocity was given in equation 3.38: 

 

                                          ὉὯ ‐ ςɾ ÃÏÓ Ë                                           (3.40) 

                                            ὺ 
ᴐ

                                                                 (3.41) 

 

In order to obtain the scattering amplitudes we need to calculate the Green's function of the system. The 

formal solution to equation 3.30 can be written as: 

 

Equation 3. 42 is singular if the energy Ὁ is equal to an eigenvalues of the Hamiltonian Ὄ. To 

circumvent this problem, it is practical to consider the limit: 

 

 

Here – is a positive number and ὋȟὋ  is the retarded (advanced) Green's function. In this thesis I 

will only use retarded Green's functions and hence choose the + sign.  The retarded Green's function 

for an infinite, one dimensional chain with the same parameters is defined in equation 3.37:  
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Where Ὦȟὰ are the labels of the sites in the chain. In order to obtain the Green's function of a semi-infinite 

lead we need to introduce the appropriate boundary conditions. In this case, the lattice is semi-infinite, 

so the chain must terminate at a given point,  Ὥ, so that all points for which Ὥ  Ὥ are missing. This is 

achieved by adding a wave function to the Green's function to mathematically represent this condition. 

The wavefunction in this case is: 

 

The Green's function     ὫὮȟὰ  Ὣȟ  ȟ  will have the following simple form at the  

Boundary  Ὦ  ὰ  Ὥ ρ: 

If we consider the case of decoupled leads,   π, the total Green's function of the system will 

simply be given by the decoupled Green's function: 

 

If we now switch on the interaction, then in order to obtain the Green's function of the coupled system 

Ὃ ,we need to use Dyson's equation, 
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Where the operator ὠ describing the interaction connecting the two leads will have the form: 

Substituted equation 3.47 and 3.49 into 3.48 to get the solution to the Dyson's equation: 

The only remaining step is to calculate the transmission, ὸ , and reflection, ὶ , amplitudes from the 

Green's function equation 3.50. This is done by making use of the FisherLee relation [4, 6] which 

relates the scattering amplitudes of a scattering problem to the Green's function of the problem. The 

Fisher-Lee relations in this case becomes: 

 

These amplitudes correspond to particles incident from the left. If one would consider particles 

coming from the right than similar expressions could be recovered for the transmission, ὸǲ , and 

reflection, ὶǲ, amplitudes. 

Since we are now in the possession of the full scattering matrix we can use the Landauer formula 

equation 3.4 to calculate the zero bias conductance. 

 

3.5 Generalization of the Scattering Formalism  

In this section, I show a generalized approach to transport calculations following the derivation of 

Lambert, presented in [2]. This is similar to the previous approach. First the surface Green's function of 

crystalline leads is computed, and the scattering amplitudes are recovered by means of a generalization 

of the Fisher-Lee relation. 
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3.5.1 Hamiltonian and Green's Function of the Leads 

We investigate a fundamental semi-infinite crystalline electrode of arbitrary complexity. Because the 

leads are crystalline, the structure of the Hamiltonian is a generalization of the one-dimensional 

electrode Hamiltonian in equation 3.7. Figure 3.5 shows the general system topology. Instead of site 

energies, we have Hamiltonians for each repeating layer of the bulk electrode, Ὄ  , and a coupling 

matrix to describe the hopping parameters between these layers, Ὄ .   

 

 

 

  

 

 

 

 

Figure 3.5. Schematic representation of a semi-infinite generalized lead. States described by the 

Hamiltonian Ὄ  are connected via a generalized hopping matrix Ὄ . The direction ᾀ is defined to be 

parallel to the axis of the chain. One can assign for each slice a label ᾀ. 

 

The Hamiltonian for such a system has the form: 
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Where Ὄ  and Ὄ  are generally complex matrices and the only limitation is that the full Hamiltonian, 

Ὄ , must be Hermitian. In this section, the initial objective is for the Greenôs function of this type of 

lead to be calculated for general Ὄ  and ὌȢ to calculate the Green's function one has to calculate the 

spectrum of the Hamiltonian by solving the Schrödinger equation of the lead. 

 

 

 

Here,   is the wave function describing layer ᾀ, where ᾀ is an integer measured in units of inter-layer 

distance. We assume the system is infinitely periodic in the ᾀ direction only, so the on-site 

wavefunction,  , can be represented in Bloch form; consisting of a product of a propagating plane 

wave and a wavefunction,    , which is perpendicular to the transport direction, ᾀ. layer Hamiltonian, 

Ὄ , has dimensions ὓ  ὓ  (or in other words consists of M site energies and their respective hopping 

elements), then the perpendicular wavefunction,    , will have ὓ degrees of freedom and take the form 

of a 1 × ὓ dimensional vector. So the wave function,  , takes the form: 

 

Where, ὲ is an arbitrary normalization parameter. Substituting this into the Schrödinger equation 

(Equation 3.55) , these yields: 

 

To dertmine the band structure for such a problem, one would select values of Ὧ and calculate the 

eigenvalues at that point, Ὁ Ὁ Ὧ, where ρȟςȟσȟȣȟὓ. Here, ὰ denotes the band index. For every Ὧ 

value, the eigenvalue problem will have ὓ solutions, and thus, ὓ energy values. By selecting multiple 

values for Ὧ, it is relatively simple to build up a band structure. In a scattering problem, the problem is 

tackled using the different approach. Instead of finding the eigenvalues at a given Ὧ, we find the values 

Ὄ Ὄ Ὄ Ὁ  (3.55) 

 ὲὩ    
    (3.56) 

Ὄ Ὡ Ὄ Ὡ Ὄ Ὁ  π     (3.57) 
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of Ὧ at a given Ὁ. In order to accomplish this, a root-finding might have been used, but this would have 

required an enormous numerical effort since the wave numbers are in general complex. However, we 

can write down an alternative eigenvalue problem in which energy is the result and wave numbers are 

the result by introducing the function: 

which is then combined with equation 3.57: 

Given a layer Hamiltonian, Ὄ , that has dimensions of M×M, equation 3.59 will produce ςὓ 

eigenvalues, Ὡ  and eigenvectors,    , with magnitude ὓ. These states can then be sorted into four 

categories based on whether they are propagating or decaying and whether they are left going or right 

going. A state is considered to be propagating when it has a real Ὧ value. Where the wave number has 

a positive imaginary part, it is defined as a left decaying state, whereas if the imaginary part is negative, 

it is defined as a right decaying state. The sorting of propagating states is based on the stateôs group 

velocity, which is given by: 

 

 

If the group velocity, ὺ  , of the state is positive than it is a right propagating state if it is negative 

than it is a left propagating state. 
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 Table 3.1: Sorting the eigenstates into left and right propagating or decaying states according to the 

wave number and group velocity. 

 

Category Left  Right 

Decaying ὍάὯ π 
ὍάὯ π 

Propagation ὍάὯ πȟὺ π 
ὍάὯ πȟὺ π 

 

Now, I will denote the Ὧ wave numbers which belong to the left propagating-decaying set of wave 

numbers by Ὧ and the right propagating decaying wave numbers will remain plainly Ὧ. Hence, ‰   

is a wave function associated to a right state and ‰  is associated to a left state. If Ὄ  is invertible, there 

must be exactly the same number, ὓ, of left and right going states. It is clear that if Ὄ  is singular, the 

matrix in equation 3.59 cannot be constructed, since it relies of the inversion of Ὄ . Furthermore, any 

one of several methods can be used to overcome this problem. The first [2, 8, 10] uses the decimation 

technique to create an effective, non-singular Ὄ . Another possibility is to populate a solitary H1 with 

small random numbers, introducing an explicit numerical mistake. The introduced numerical error 

could be as little as the numerical error introduced by decimation, making this approach reasonable. 

Another solution is to rewrite equation 3.59 without inverting Ὄ : 

 

 

However, solving this generalized Eigen-problem is more computationally expensive. Any of the 

aforementioned methods work reasonably in tackling the problem of a singular Ὄ  matrix, and so can 

the condition that there must be exactly the same number, ὓ, of left and right going states, whether Ὄ is 

singular or not [11-15].  
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The solutions to the eigenvalue equation 3.57 at a given wave number, Ὧ,will form an orthogonal basis 

set, however, the eigenstates,     ,obtained by solving the Eigen problem equation 3.61 at a given 

energy, Ὁ,will not generally form an orthogonal set of states. This is very significant, as we will have 

to calculate the Green's function non-orthogonally when constructing the Green's function. It is, 

therefore, necessary to introduce the duals to,   , and,    ,  in such a way that they obey: 

 

This yields the generalized completeness relation: 

We are in possession of the whole set of eigenstates at a given energy we can calculate the Green's 

function first for the infinite system and then, if suitable boundary conditions are satisfied, for the semi-

infinite leads at their surface. Since the Green's function satisfies the Schrödinger equation when ᾀ

ᾀᴂ, we can build up the Green's function from the mixture of the eigenstates    and   : 

 

Where the ὓ-component vectors   and   are to be determined. It is important to note the structural 

similarities between this equation and equation 3.31 and also that all the degrees of freedom in the 

transverse direction are contained in the vectors    and  . 

The big picture now is to obtain the vectors. As stated in section 3.4.1, equation 3.64 must be continuous 

at ᾀ ᾀᴂ and must satisfy Green's function equation (equation 3.30). The first condition is written as: 

               (3.62) 

        Ὅ  (3.63) 

Ὣᾀȟᾀ

ừ
Ử
Ừ

Ử
ứ   Ὡ   ȟ ᾀ ᾀ

  Ὡ   ȟ ᾀ ᾀ

 
(3.64) 
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and the second: 

Ὁ Ὄ    Ὄ  Ὡ  Ὄ  Ὡ  ὌὩ  ὌὩ  Ὅ 

 

Ὄ  Ὡ  Ὄ  Ὡ  Ὁ Ὄ ὌὩ ὌὩ    Ὅ 

 

We also know that from the Schrödinger equation. 

This yields to: 

Next, the dual vectors defined in equation 3.62 are used. The multiplication of equation 3.65 by    

yields: 

 

 

       (3.65) 

Ὁ Ὄ    ὌὩ  Ὄ  Ὡ  Ὅ 

 

 

 

Ὁ Ὄ ὌὩ ὌὩ   π 
      (3.66) 

Ὄ   Ὡ    Ὡ  Ὅ  (3.67) 
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and similarly multiplying by     gives: 

Using the continuity equation 3.65 and equations 3.68 and 3.69, the Green's function equation 

(equation 3.67) becomes: 

Hence, it follows that: 

This immediately gives us an expression for  : 

where  ’ is defined as: 

 

In equation 3.72, the wave number (Ὧ) denotes both left and moving states. The substitution of equation 

3.72 into equation 3.64 produces the Greenôs function of an infinite system: 

           (3.68) 

       
 (3.69) 

Ὄ   Ὡ     Ὡ      Ὅ 
(3.70) 

Ὄ   Ὡ     Ὡ  

       

     (3.71) 

   ’   (3.72) 

’ Ὄ   Ὡ     Ὡ    (3.73) 
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To obtain the Greenôs function for a semi-infinite lead, a wave function must be added to the Greenôs 

function so that the boundary conditions at the leadôs edge can be satisfied, similar to the one-

dimensional example. In this case, the boundary condition stipulates that the Greenôs function must 

disappear at a particular place ( ᾀ ᾀ). For this to be achieved, 

 

To the Green's function, equation 3.74, Ὣ  Ὣ . This yields the surface Green's function fora 

semi-infinite lead going left: 

 

 

and going right: 

 

All that remains is to obtain the Hamiltonian of the scattering region using DFT and combine this with 

the surface Green's functions via Dyson's equation, to obtain the total Green's function and transmission 

amplitude ὸ [16]. 

Ὣȟ

ừ
Ử
Ừ

Ử
ứ

  Ὡ   ’ ȟ ᾀ ᾀ

  Ὡ   ’ ȟ ᾀ ᾀ

 (3.74) 

  Ὡ      Ὡ  

ȟ

’  (3.75) 

Ὣ Ὅ   Ὡ       Ὡ   

ȟ

’    (3.76) 

 

Ὣ Ὅ   Ὡ       Ὡ   

ȟ

’      (3.77) 
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Ὃ  
Ὣ
ὒ
π

π Ὣ
Ὑ

 Ὄ        (3.78) 

  

ὸ     Ὃὸέὸὥὰὺ 
ὺὯ
ὺὰ
 Ὡ   

      (3.79) 

 

 

 

 

 

3.6 Conclusion 

In this chapter, I have discussed the Landauer formula for the electrical conductance Ὃ and 

thermoelectric coefficients, such as the Seebeck coefficient Ὓ.  This chapter also shows how to 

calculate the scattering matrix of a system linked to one-dimensional leads using the Green's 

function approach to scattering Theory. This was generalised to transport calculations in higher 

dimensions, which form a basis of the GOLLUM transport code and will be used in the following 

chapters. 
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Chapter 4 

 

Electronic structure investigation of endohedral metallofullerenes (EMFs) 

 

This work was a joint collaboration between the group of Prof. Nicolas Agrait (Departamento de Física 

de la Materia Condensada, Universidad Autónoma de Madrid, Spain), who conducted the experiments 

and the group of Prof. Kyriakos Porfyrakis (Department of Materials, University of Oxford), who 

synthesised the molecules. This work has been submitted as part of the following paper:  

 

ñExploiting fluctuations in the search for high-thermoelectric performance molecular junctionsò 

 

Laura Rincón-García, Charalambos Evangeli, Panagiotis Dallas, Turki Alotaibi, Alaa A. Al-Jobory, 

Gabino Rubio-Bollinger, Kyriakos Porfyrakis, Nicolas Agrait and Colin J. Lambert.  

In this chapter, the electronic structure of three endohedral metallofullerenes (EMFs), including 

Sc3N@C80, Sc3C2@C80, and Er3N@C80, in addition to an empty cage such as C60 are intensively 

explored. I start these investigations with wave function plots of the studied molecules. Three different 

methods including Mulliken, Hirshfeld [11] and Voronoi population analyses [12], were employed to 

track down the charge transfer between metallic moieties and the cage. The charge transfer analyses 

were carried out in the gas phase and on a gold substrate. To determine the most probable orientation 

for metallic moieties such as Sc3N, Er3N and Sc3C2 inside the cage, the counterpoise method was 

employed for their different rotation angles ʃȟɮ and ɼ (defined below) in the gas phase. A similar 

approch was used on a Au-substrate in which case, rotations about four different rotation axes ʃȟɮȟɻ 

and ɼ are explored.  
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I also investigate how ʃȟ ȟɻ ÁÎÄ  axes pass through the metallic moieties and how the total energy 

varies with the angle of rotation, both in the presence and absence of a gold substrate. There are an 

infinite number of inequivalent orientations of the metallic moieties relative to their fullerene cage. 

However, for each of the four axes, I consider one mode of rotation in the gas phase and three modes 

of rotation on a substrate. 

4.1 Introduction  

Since the discovery of fullerenes in 1985 [1] significant attention has been devoted to study the solid-

state properties of fullerenes and their derivatives, because they are a well-known class of n-type 

semiconductors, that are promising candidates for practical application in molecular electronics such as 

organic thin-film transistors and organic photovoltaic devices [2]. The encapsulation of one or more 

atoms into fullerenes leads to the formation of endohedral metallofullerenes (EMFs). Because of the 

influence of interaction between endohedral metal atoms and the fullerene cage, the electronic 

properties of EMFs are changed drastically from those of empty fullerenes [3]. Fullerene derivatives, 

like endohedral fullerenes, are now widely used in organic photovoltaics [4], catalysis [5], and 

biological and medicinal applications [6]. Fullerenes with over 60 carbon atoms are called higher 

fullerenes. In this thesis, I shall study the C80 fullerene cage which can encapsulate metallic moieties to 

form EMFs as shown in Figure 4.1.  

4.2 Studied Molecules  

Figure 4.1 shows four molecules, Sc3C2@C80   which has three scandium and 82 carbon atoms (a), 

Sc3N@C80   which has three scandium, one nitrogen and eighty carbon atoms (b), Er3N@C80 which has 

three erbium and eighty carbon atoms (c), C60 with sixty carbon atoms (d). The metallic moieties are 

called scandium carbide, scandium nitride and erbium nitride Sc3C2, Sc3N and Er3N respectively. The 

C60 is empty cage as shown in Figure 4.1d.    

Using the DFT code SIESTA, the optimum geometries of the isolated molecules were obtained by 

relaxing the molecules until all forces on the atoms were less than 0.05 eV/Å. A double-zeta plus 
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polarization orbital basis set, norm-conserving pseudopotentials were utilised, an energy cut-off of 200 

Rydbergs defined the real space grid and the local density approximation (LDA) was chosen to be the  

exchange correlation functional. I also computed results using GGA and found that the resulting 

transmission functions were comparable with those obtained using LDA [8-10]. 

 

 

 

 

 

 

 

    

 

  

Figure 4.1. Endohedral metallofullerenes and fullerene studied Molecules. Schematic of the three 

endohedral metallofullerenes (EMFs), namely, a: Sc3C2@C80, b: Sc3N@C80, and c: Er3N@C80 and an 

empty cage d: C60.  

 

4.3 Frontier orbitals of the EMFs molecules and the C60 

To obtain a better understanding of the electronic properties of these structures (see Figure 4.1), the 

methods introduced in chapter 2 have been employed. Thus, I will investigate the wave function plots 

of the EMFs molecules and C60. The highest occupied molecular orbitals (HOMO ), lowest unoccupied 

orbitals (LUMO ), HOMO+1  and LUM O+1 along with their energies are calculated. The blue and red 

colours correspond to the regions in space of positive and negative orbital amplitude. 

a 

 

b 

c d 



58 

 

 

 

 

4.3.1 Frontier orbitals of Sc3C2@C80 EMF  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Wave function plots of Sc3C2@C80. Top panel: fully optimised geometry of Sc3C2@C80 

EMF. Lower panel: HOMO, LUMO, HOMO-1, LUMO+1 of Sc3 C2@C80 molecule along with their 

energies. 

EF=-4.05 Ἥἤ 

HOMO  =-4.36 Ἥἤ 

HOMO -1=-3.95 Ἥἤ LUMO+1 =-2.97 Ἥἤ 

LUMO  =-3.89 Ἥἤ 



59 

 

4.3.2 Frontier orbitals of Sc3N@C80 EMF  

 

 

 

 

 

 

 

 

 

Figure 4.3. Wave function plots of Sc3N@C80. Top panel: fully optimised geometry of Sc3N@C80 

EMF. Lower panel: HOMO, LUMO, HOMO-1, LUMO+1 of Sc3N@C80 molecule along with their 

energies. 

4.3.2 Frontier orbitals of Er3N@C80 EMF 

 

 

 

 

 

 

 

 

EF=-3.58 Ἥἤ 

HOMO =-4.35 Ἥἤ 

HOMO -1=-4.39 Ἥἤ LUMO+1 =-2.55 Ἥἤ 

LUMO =-2.83 Ἥἤ 

EF=-3.91 Ἥἤ 

HOMO  =-3.94 Ἥἤ 

HOMO -1=-3.95 Ἥἤ LUMO+1 =-3.74 Ἥἤ 

LUMO  =-3.84 Ἥἤ 
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Figure 4.4. Wave function plots of Er3N@C80. Top panel: fully optimised geometry of Er3N@C80 

EMF. Lower panel: HOMO, LUMO, HOMO-1, LUMO+1 of Er3 N@C80 molecule along with their 

energies. 

 

4.3.4 Frontier orbitals of C60 cage 

 

 

 

 

 

 

 

 

 

Figure 4.5. Wave function plots of C60. Top panel: fully optimised geometry C60 EMF. Lower panel: 

HOMO, LUMO, HOMO-1, LUMO+1 of C60 molecule along with their energies. 

 

It is worth mentioning that for C60, the HOMO is five-fold degenerate, with states denoted HOMO, 

HOMO-1, HOMO-2, HOMO-3 and HOMO-4. The energy of the HOMO degenerate state is τȢψ Å6. 

In the LUMO level, there are three-fold degenerate states LUMO, LUMO+1 and LUMO+2 with an 

energy of σȢρσ Å6. My DFT predictions for these degenerate states are well supported by a published 

work [17]. I did not see any degeneracy for EMFs.  

The Frontier orbitals for EMFs did not depend on the orientation of the inner moiety inside the cage.  

 

 

EF=-4.13 Ἥἤ 

HOMO  =-4.80 Ἥἤ 

HOMO -1=-4.80 Ἥἤ LUMO+1 =-3.13 Ἥἤ 

LUMO =-3.13 Ἥἤ 
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4.4   Charge transfer analyses  

Net atomic charge is a common idea in all chemical sciences. It is difficult to imagine learning chemistry 

without discussing net atomic charges [14]. For example, experiments measuring the water moleculeôs 

dipole moment imply a negative net atomic charge on its oxygen atom and a positive net atomic charge 

on each of its two hydrogen atoms [15]. Net atomic charge also plays an important role in solid state 

physics, where oxygen atoms in solid oxides carry negative net atomic charges to enable oxygen ion 

transport [16]. There are many methods to calculate the charge transfer in Density Functional Theory.  

In this chapter, I am going to focus on three methods, that are implemented in SIESTA code, including 

Mulliken populations, Hershfield and Voronoi charge analyses.     

I will investigate the electrical properties of the 3 EMFs molecules first in the gas phase, then I will 

repeat the same calculations, but on an Au substrate. Electrons are expected to be transferred from the 

donor moiety (the metallic moetiy) to the acceptor (the cage). The three methods Mulliken, Hirshfeld 

and Voronoi) will be used to determine the charge transfer from the donor to the acceptor.    

    

4.4.1. Charge transfer analyses of Sc3C2@C80 EMF in gas phase 

Table 4.1 shows the charge transfer from the metallic moiety Sc3C2 to the Ih-C80 cage. Table 4.1 

illustrates that the metallic moiety Sc3C2 loses (+) in total 1.4 electrons. 1.146 is the net charge that has 

been gained (-) by the Ih-C80 cage, the difference of 0.254 electrons remains in the space between the 

metallic moiety Sc3C2 and Ih-C80 cage, as estimated by the Mulliken method. Hirshfeld and Voronoi 

charges follow a similar trend; the net charges are 1.146 and 1.067 electrons respectively.  

 It is worth mentioning that, the charge transferred from the metallic moetiy to the cage and the charge 

effected on the electrical conductance Ὃ and Seebeck coefficients Ὓ. 

 

 



62 

 

Table 4.1: Charge transfer analyses using Mulliken, Hirshfeld and Voronoi methods of Sc3C2@C80 

EMF, in gas phase.  

 

 

 

 

 

4.4.2 Charge transfer analyses of Sc3N@C80 EMF in gas phase 

Table 4.2 shows the amount of charge transfer from the metallic moiety Sc3N to the Ih-C80 cage. Table 

4.2 illustrates that the metallic moiety Sc3N loses (+)1.50 electrons. 1.36 is the net charge gained (-) by 

the Ih-C80 cage; the difference of 0.153 electrons resides in the space between the metallic moiety Sc3C2 

and Ih-C80, as estimated by the Mulliken method. The Hirshfeld and Voronoi methods follow a similar 

trend; the net charges are 1.36 and 1.27 electron respectively.  

 It is worth mentioning that, the charge transferred from the metallic moetiy to the cage and the charge 

effected on the electrical conductance Ὃ and Seebeck coefficients Ὓ. 

Table 4.2: Charge transfer analyses using Mulliken, Hirshfeld and Voronoi methods of Sc3N@C80 

EMF, in gas phase. 

Metallic 

Moiety 

Mulliken  charge Hirshfeld  charge Voronoi charge 

Moiety  Ih-C80 

cage 
Moiety  Ih-C80 

cage 
Moiety  Ih-C80 

cage 

 

Sc3N 

 

+1.504 

 

-1.369 

 

+1.369 

 

-0.938 

 

+1.272 

 

-0.792 

 

 

 

Metallic  

Moiety 

Mulliken  charge Hirshfeld  charge Voronoi charge 

Moiety  Ih-C80 

cage 
Moiety   Ih-C80 

cage 
Moiety   Ih-C80 

cage 

 

Sc3C2 

 

+1.400 

 

-1.146 

 

+1.146 

 

-0.730 

 

+1.067 

 

-0.618 
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4.4.3 Charge transfer analyses of Er3N@C80 EMF in gas phase 

Table 4.3 shows the amount of charge transfers from the metallic moiety Er3N to Ih-C80 cage. Table 4.3 

shows that the metallic moiety Er3N loses (+)1.962 electrons. 0.447 is the net charge gained (-) by the 

Ih-C80 cage. The difference of 1.515 electrons is located in the space between the metallic moiety Er3C2 

and Ih-C80 . 1.962 is the net Mulliken charge that has been gained by the Ih-C80 cage. Hirshfeld and 

Voronoi charges follow a net charge of 7.484 and 7.145 electrons respectively.  

 It is worth mentioning that, the charge transferred from the metallic moetiy to the cage and the DFT 

results for Er3N@C80 EMF are unreliable due to the fact that this EMF possesses f-electrons. Due to this 

reason I can not calculate the electrical conductance Ὃ and Seebeck coefficients Ὓ in my thesis.     

Table 4.3: Charge transfer analyses using Mulliken, Hirshfeld and Voronoi methods of Er3N@C80 

EMF, in gas phase.  

Metallic 

Moiety 

Mulliken  charge Hirshfeld  charge Voronoi charge 

Moiety  Ih-C80 

cage 
Moiety  Ih-C80 

cage 
Moiety  Ih-C80 

cage 

 

Er3N 

 

+1.962 

 

-0.447 

 

+7.484 

 

-6.145 

 

+7.145 

 

-5.823 

 

 

4.5 Axes and rotation modes of EMFs 

There are an infinite number of inequivalent orientations of the metallic moiety relative to the fullerene 

cage. In what follows, I consider a selection of rotations about high-symmetry axes. In the gas phase, I 

consider rotation of the metallic moiety relative to a fixed fullerene cage. For this rotational mode, 

rotations about the  and ɮ axes are equivalent, so in total I consider 3 distinct axes of rotation (imagine 

Figure 4.6 without an Au-substrate). On a substrate, Figure 4.6 shows four axes of rotation 

ʃȟɮȟɻ ÁÎÄ , I will discuss this later. 
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Figure 4.7 shows how these axes pass through the metallic moieties. For each of the four axes of 

rotation, I investigate how the total energy varies with angle of rotation, both in presence and absence 

of the gold substrate. For each of these four axes, I consider one mode of rotation in the gas phase and 

three modes of rotation on a substrate, I will discuss this later. 

Figure 4.6. Illustration of the four rotation axes: ʃȟɮ ÁÒÅ ÈÏÒÉÚÏÎÔÁÌ ÁØÅÓȟ  ɻ and ɼ are vertical axes.  

This Figure shows how the axes pass through the Ih-C80 cage + metallic moiety.  

Figure 4.7. Illustration of how the four rotation axes ʃȟɮȟ  ɻ and ɼ, pass through the metallic moiety. 

In what follows, the same symbol (e.g. —) is used to label both the rotation axis and the angle of rotation 

about the axis. 
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4.6 Distance between the metallic moiety and the Au-substrate  

In the gas phase, I consider rotation of the metallic moiety relative to a fixed fullerene cage. For this 

rotational mode, rotations about the  and   axes are equivalent, so in the gas phase, rotations about 3 

distinct axes are investigated. In the presence of the gold substrate, I consider three modes of rotation 

about each of the four axes: rotation of the bare metallic moiety (in the absence of the cage), rotation of 

the metallic moiety in the presence of a fixed cage, and rotation of both the metallic moiety and cage, 

such that their relative orientation is fixed.  

 

4.6.1 Distance between the metallic moiety and the Au-substrate of Sc3C2@C80 

Figure 4.8 illustrates how Ὠ varies during rotations about the four different rotation axes ʃȟɮȟɻ and ɼ,  

and shows that rotation about ʃ causes the largest distance variation (black curve), followed by rotation 

about ɮ (brown curve). In contrast, by symmetry, rotation about ɻ and ɼ causes no change in Ὠ ( dark 

green or red curves, respectively).   

 

 

 

 

 

 

 

Figure 4.8. Distance variation between the metallic moiety and the gold substrate in four different 

rotation axes ʃȟɮȟɻ and ɼ of Sc3C2@C80. 
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4.6.2 Distance between the metallic moiety and the Au-substrate of Sc3N@C80  

Figure 4.9 illustrates how Ὠ varies during rotations about the four different rotation axes ʃȟɮȟɻ and ɼ,  

and shows that rotation about ʃ cause the largest distance variation ( grey curve), followed by rotation 

about ɮ (orange curve). In contrast, by symmetry, rotation about ɻ and ɼ causes no change in Ὠ (light 

green or pink curves, respectively). 

 

 

 

 

 

 

Figure 4.9. Distance variation between the metallic moiety and the gold substrate in four different 

rotation axes ʃȟɮȟɻ and ɼ of Sc3N@C80.  

 

4.6.3 Distance between the metallic moiety and the Au-substrate of Er3N@C80 

Figure 4.10 illustrates how Ὠ varies during rotations about the four different rotation axes ʃȟɮȟɻ and 

ɼ,  and shows that rotation about ʃ cause the largest distance variation ( light blue curve), followed by 

rotation about ɮ (brown curve). In contrast, by symmetry, rotation about ɻ and ɼ causes no change in 

Ὠ (light yellow purpel curves, respectively). 
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Figure 4.10. Distance variation between the metallic moiety and the gold substrate in four different 

rotation axes ʃȟɮȟɻ and ɼ of Er3N@C80.  

 

One should notice that Sc3N@C80 and Er3N@C80 have identical results, due to the fact that the two 

moieties (Sc3N and Er3N), have the same number of atoms and shape (see Figure 4.16). For clarity, I 

shall compare Sc3C2@C80 against Sc3N@C80, as shown in Figure 4.11. This Figure shows that rotation 

about ʃ causes the largest distance variation (black and grey curves), followed by rotation about ɮ 

(brown and orange curves). In contrast, by symmetry, rotation about ɻ and ɼ causes no change in Ὠ 

(light and dark green or red and pink curves, respectively).  Furthermore, the distance variation Ὠ of 

Sc3N@C80 in general is higher than Sc3C2@C80 in the 4 axes. This is again due to the number of atom 

in Sc3N is less and the shape is more symmetric compared Sc3C2 as shown in Figure 4.16.   

To quantify this variation, Table 4.4 shows the standard deviation ů of the distance Ὠ, associated with 

rotations about the four axes. This shows that the standard deviations ů follow the order  „> „> 

„ „. 
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Figure 4.11. Distance variation between the metallic moiety and the gold substrate in four different 

rotation axes ʃȟɮȟɻ and ɼ of Sc3C2@C80, and Sc3N@C80. 

 

 

Table 4.4: Standard deviations ů of the distance Ὠ, associated with rotations about the four axes, for 

the three EMFs Sc3C2@C80, Sc3N@C80 and Er3N@C80. In the latter case, Ôhe distance Ὠ is defined to be 

the smallest vertical distance between the top-most plane of the Au substrate and the closest Er atom. 
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EMF Ᵽ Ɑ  Ɑ♪ Ɑ♫ 

Sc3C2@C80 1.47 1.09 0 0 

Sc3N@C80 1.43 0.95  0 0 

Er3N@C80 1.43 0.95  0 0 
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4.7 Gas phase energy barriers to rotation for the 3 moieties within a I h-C80 

cage 

In this section, the metallic moieties Sc3C2, Sc3N or Er3N are rotated about horizontal axes ʃ ÁÎÄ ɮ  and 

about a vertical axis ɻ using equation (4.1) as shown in Figure 4.12. Following equation (4.1), the angle-

dependent energy differences ɝʃ,  ɝɮ  and  ɝɻ are defined to be   

 

 

 

 

 

Figure 4.12. (a): Horizontal rotation axis used to compute ɝʃ, (b): Horizontal rotation axis used to 

compute ɝɮȟ (c): Vertical rotation axis used to compute  ɝɻ, (Sc3C2@C80 shown here as an 

example). 

 

4.7.1 Gas phase energy barriers to rotation for Sc3C2 within a I h-C80 cage 

Figure 4.13 shows the gas-phase energy differences ɝʃ of Sc3C2@C80 as a function of the rotation 

angle  ʃ of the Sc3C2 inside the cage. This shows that the energy barrier to rotation about this horizontal 

axis  is approximately τππ ÍÅ6,  and that the Sc3C2 within the fullerene cage have preferred 
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orientations ʃ of approximately πЈ,  ρωπЈ and σφπЈ. The energy barrier to rotation ɮ is συπ ÍÅ6 , and 

therefore the moiety Sc3C2 has preferred orientations of ɮ  πЈ, ρρπЈ, ρψπЈ, ςρπЈ, ςχπЈ and σφπЈȢ 

The energy barrier to rotation ɻ is σππ ÍÅ6ȟ and therefore the moiety Sc3C2 has preferred orientations 

of ɻ  πЈ, χυЈ, ρφπЈ, ςτπЈ and σςπЈ. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13. Top panel: The energy difference ɝʃ as a function of rotation angle ʃ of Sc3C2within 

the fixed Ih-C80 cage. Bottom panel: The energy differecne ɝɮȟɻ as a function of rotation angles 

ɮ ÁÎÄ ɻ (orange and green respectively), of Sc3C2 within the fixed Ih-C80 cage. The energy barriers 

ɝ%ʃ to rotation about ʃ (obtained from the difference between the maxima and minima of ɝ—) are 

τππȟσππ ÁÎÄ ρσπ ÍÅ6 respectively, and the moiety Sc3C2 has preferred orientations of ʃ  

πЈ, ρωπЈ and σφπЈ, corresponding to the minima of ɝ—Ȣ The energy barriers ɝ%ɮ  to rotation about 

ɮ are συπȟςυπ ÁÎÄ ρππ ÍÅ6 respectively, and therefore the moiety Sc3C2  has preferred orientations 

of ɮ  πЈ, ρρπЈ, ρψπЈ, ςρπЈ, ςχπЈ and σφπЈ. The energy barriers to rotation about ɻ are 
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σππȟρυπ ÁÎÄ φπ ÍÅ6 respectively, and therefore the moiety Sc3C2 has preferred orientations of ɻ  

πЈ, χυЈ, ρφπЈ, ςτπЈ and σςπЈȢ 

4.7.2 Gas phase energy barriers to rotation for Sc3N within a I h-C80 cage 

Figure 4.14 shows the gas-phase energy differences ɝʃ of Sc3N@C80 as a function of the rotation 

angle  ʃ of the Sc3N inside the cages. This shows that the energy barrier to rotation about this horizontal 

axis  is approximately σππ ÍÅ6,  and that the Sc3N within the fullerene cage have preferred orientations 

ʃ of approximately πЈ,  ρωπЈ and σφπЈ. The energy barrier to rotation ɮ is ςυπ ÍÅ6 , and therefore the 

moiety Sc3N have preferred orientations of ɮ  ρπЈ, ωυЈ, ςππЈ, ςψπЈ and στπЈȢ The energy barrier  

to rotation ɻ is σππ ÍÅ6ȟ and therefore the moiety Sc3N has preferred orientations of ɻ  

πЈ, χυЈ, ρππЈ, ρυπЈ, ςππЈ ςυπЈȟσππЈ  and συπЈ  

 

 

 

 

 

 

 

 

 

Figure 4.14. Top panel: The energy difference ɝʃ as a function of rotation angle ʃ of Sc3Nwithin 

the fixed Ih-C80 cage. Bottom panel: The energy differecne ɝɮȟɻ as a function of rotation angles 

ɮ ÁÎÄ ɻ (yellow and green respectively), of Sc3N within the fixed Ih-C80 cage. The energy barriers 
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ɝ%ʃ to rotation about ʃ (obtained from the difference between the maxima and minima of ɝ—) are 

τππȟσππ ÁÎÄ ρσπ ÍÅ6 respectively, and the moiety Sc3N has preferred orientations of ʃ  

πЈ, ρωπЈ and σφπЈ, corresponding to the minima of ɝ—Ȣ The energy barriers ɝ%ɮ  to rotation about 

ɮ are συπȟςυπ ÁÎÄ ρππ ÍÅ6 respectively, and therefore the moiety Sc3N has preferred orientations of 

ɮ  ρπЈ, ωυЈ, ςππЈ, ςψπЈ and στπЈȢ The energy barriers to rotation about ɻ are 

σππȟρυπ ÁÎÄ φπ ÍÅ6 respectively, and therefore the moieties Sc3N has preferred orientations of ɻ  

πЈ, χυЈ, ρππЈ, ρυπЈ, ςππЈ ςυπЈȟσππЈ  and συπЈ. 

4.7.3 Gas phase energy barriers to rotation for Er3N within a I h-C80 cage 

Figure 4.15 shows the gas-phase energy differences ɝʃ of Er3N@C80 as a function of the rotation 

angle  ʃ of the Er3N inside the cages. This shows that the energy barrier to rotation about this horizontal 

axis  is approximately ρσπ ÍÅ6,  and that the Er3N within the fullerene cage have preferred orientations 

ʃ of approximately πЈ,  ρωπЈ and σφπЈ. The energy barrier to rotation ɮ is ρππ ÍÅ6 , and therefore the 

moiety Er3N has preferred orientations of ɮ  πЈȟρςπЈȟςυπЈ ÁÎÄ συπЈȢ  The energy barrier to 

rotation ɻ is σππ ÍÅ6ȟ and therefore the moiety Er3N has preferred orientations of ɻ  πЈ, ψπЈ, ρυπЈ, 

ςςυЈ, σςπЈand σφπЈ 
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Figure 4.15. Top panels: The energy difference ɝʃ as a function of rotation angle ʃ of Er3N within 

the fixed Ih-C80 cage. Bottom panels: The energy differecne ɝɮȟɻ as a function of rotation angles 

ɮ ÁÎÄ ɻ (yellow and green respectively), of Er3N within the fixed Ih-C80 cage. The energy barriers 

ɝ%ʃ to rotation about ʃ (obtained from the difference between the maxima and minima of ɝ—) are 

τππȟσππ ÁÎÄ ρσπ ÍÅ6 respectively, and the moiety Er3N has preferred orientations of ʃ  

πЈ, ρωπЈ and σφπЈ, corresponding to the minima of ɝ—Ȣ The energy barriers ɝ%ɮ  to rotation about 

ɮ are συπȟςυπ ÁÎÄ ρππ ÍÅ6 respectively, and therefore the moiety Er3N has preferred orientations of 

ɮ  πЈ, ρςπЈ, ςυπЈ and συπЈȢ The energy barriers to rotation about ɻ are σππȟρυπ ÁÎÄ φπ ÍÅ6 

respectively, and therefore the moiety Er3N has preferred orientations of ɻ  πЈ, ψπЈ, ρυπЈ, 

ςςυЈ, σςπЈand σφπЈȢ 

Table 4.5: Gas phase energy barriers ɝ%ʃȟɝ% ɮȟɝ% ɻ associated with rotations about ʃȟɮȟɻ of 

Sc3C2, Sc3N and Er3N within the fixed Ih-C80 cage, along with the preferred orientations angles for the 

three rotation axesȢ   

 

Table 4.5 shows the energy barrier ɝ%ʃ for Er3N inside the C80 cage is of order ρσπ ÍÅ6, which 

means that the Er3N cluster rotates more easily than the scandium-based moieties, Sc3N and Sc3C2. 

Table 4.5 also shows that the barrier to rotation about a vertical axis ɝ%ɻ is even lower, at 

approximately φπ ÍÅ6.  
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Sc3C2@

C80 

400 πЈ, ρωπЈ and

 σφπЈ 

350 πЈ, ρρπЈ, ρψπЈ, 

ςρπЈ, ςχπЈ 

and σφπЈ 

300 πЈ, χυЈ, ρφπЈ, 

ςτπЈ and σςπЈ 

Sc3N@C

80 

300 πЈ, ρωπЈ and

 σφπЈ 

250 ρπЈ, ωυЈ, ςππЈ,

 ςψπЈ and στπЈ 
150 πЈ, χυЈ, ρππЈ, 

ρυπЈ, ςππЈ 

ςυπЈȟσππЈ  

and συπЈ 

Er3N@C

80 

130 πЈ, ρωπЈ and

 σφπЈ 

100 πЈ, ρςπЈ, ςυπЈ and

 συπЈ 
60 πЈ, ψπЈ, ρυπЈ, 

ςςυЈ, σςπЈand

 σφπЈ 
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Figure 4.16 shows a comparison between the Sc3C2, Sc3N and Er3N moieties.  This figure shows there 

are 5 atoms in Sc3C2 moiety and 4 atoms in Sc3N and Er3N moieties. It also shows that Sc3N and Er3N 

have an identical shape and are more symmetric than Sc3C2.   

 

Figure 4.16. Geometries of Sc3C2, Sc3N and Er3N metallic moieties (left to right). 

 

4.8 Charge transfer analyses of EMFs on an Au substrate 

In this section, I shall repeat the above calculations of the charge transfer, but on an Au substrate. In 

the gas phase analyses, the focus was on two parameters, the metallic moiety and the cage. In on a 

substrate, there are extra features associated with the presence of the substrate.   

 

4.8.1 Charge transfer analyses of Sc3C2@C80 EMF  

As mentioned above, the analyses here are built on the 3 factors, namely a metallic moiety, a cage and 

a substrate. Table 4.6 shows the amount of charge transfer from the metallic moiety Sc3C2 and a gold 

substrate to Ih-C80 cage. Table 4.6 shows that the metallic moiety Sc3C2 and substrate lose (+) in total 

1.635 electrons. 1.391 is the net charge that has been gained (-) by the Ih-C80 cage, the difference of 

0.244 electrons resides in the space between the metallic moiety Sc3C2 and Ih-C80 cage, as estimated by 

the Mulliken method. Hirshfeld and Voronoi charges follow similar trends; the net charges are 1.137 

and 1.112 electrons respectively.   
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Table 4.6: Charge transfer immigration among three segments including metallic moiety, cage and 

Au substrate. Mulliken, Hirshfeld and Voronoi methods are used to analyse the cahrge transfer for 

Sc3C2@C80 EMF. 

 

 

 

 

 

 

4.8.2 Charge transfer analyses of Sc3N@C80 EMF 

Table 4.7 shows the charge transfers from the metallic moiety Sc3N and a gold substrate to Ih-C80 cage. 

Table 4.7 illustrates that the metallic moiety Sc3N and substrate lose (+) in total 2.37 electrons. 1.96 is 

the net charge gained (-) by the Ih-C80 cage. The difference 0.41 remains in the space between the 

metallic moiety Sc3C2 and Ih-C80 , as estimated by the Mulliken method. Hirshfeld and Voronoi methods 

follow a net charge of 1.32 and 1.28 electron respectively.   

Table 4.7: Charge transfer immigration among three segments including metallic moiety, cage and 

Au substrate. Mulliken, Hirshfeld and Voronoi methods are used to analyse the cahrge transfer for 

Sc3N@C80 EMF. 
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4.8.3 Charge transfer analyses of Er3N@C80 EMF 

Table 4.8 shows the charge transfers from the metallic moiety Er3N and a gold substrate to Ih-C80 cage. 

Table 4.8 reveals that the metallic moiety Er3N and substrate lose (+) in total 1.87 electrons. 0.32 is the 

net charge gained (-) by the Ih-C80 cage. The difference 1.545 resides in the space between the metallic 

moiety Sc3C2 and Ih-C80 , as estimated by the Mulliken method. Hirshfeld and Voronoi methods follow 

a net charge of 7.34 and 7.05 electrons respectively.  However, the Er3N@C80 EMF is inaccurate owing 

to the presence of f-electrons; hence, I am unable to compute the electrical conductance Ὃ and Seebeck 

coefficients Ὓ in my thesis. 

Table 4.8: Charge transfer immigration among three segments including metallic moiety, cage and Au 

substrate. Mulliken, Hirshfeld and Voronoi methods are used to analyse the cahrge transfer for 

Er3N@C80 EMF. 

 

 

 

 

 

 

 

4.9 Binding energies of EMFs and C60 on a gold surface 

For calculating binding energies, the counterpoise method described in chapter 2, section 2.5 will be 

employed.  In this section, I calculate the optimum binding distance between the gold (111) surface and 

the EMFs/C60. I use DFT, combined with the counterpoise method, which removes basis set 

superposition errors (BSSE).  
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The ground state energy of the total system is calculated using SIESTA [7] and is denoted Ὁ . Here, 

the gold lead consists of 3 layers of 25 atoms. The EMFs and C60 molecules are defined as monomer A 

and the gold electrode as monomer B. The binding energy of each molecules is then calculated in a 

fixed basis, which is achieved through the use of ghost atoms in SIESTA. Hence, the energy of the 

isolated EMFs and C60 molecules in the presence of the fixed basis is defined as Ὁ  and for the isolated 

gold is Ὁ . The energy difference (ɝᾀ) between the isolated entities and their total energy when 

placed a distance ᾀ apart is then calculated using the following equation:  

 

 

 

5.9.1 Binding energies of Sc3C2@C80 EMF 

As shown by the Figure 4.17, the equilibrium distance for Sc3C2@C80, corresponding to the minimum 

energy difference, is found to be approximately ςȢυ B. with an energy value about 0.9 eV, using 

equation 4.2. 

%ÎÅÒÇÙ ÄÉÆÆÅÒÅÎÃÅ ɝᾀ Ὁ ᾀ Ὁ Ὁ   (4.2) 
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Figure 4.17. Sc3C2@C80 on a gold surface (Top panel). Energy difference of Sc3C2@C80 /gold complex 

as a function of molecule-gold distance. The equilibrium distance corresponding to the energy minimum 

is found to be approximately ςȢυ B (Bottom panel).  

 

5.9.2 Binding energies of the Sc3N@C80 EMF  

As shown by the Figure 4.18, the equilibrium distance for Sc3N@C80, corresponding to the minimum 

energy difference, is found to be approximately ςȢυ B, with an energy value about 0.45 eV. The 

equilibrium distance ςȢυ B, that theoretically calculated for the same EMF by [13].   
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Figure 4.18. Sc3N@C80 on a gold surface (Top panel). Energy difference of Sc3N@C80 /gold complex 

as a function of molecule-gold distance. The equilibrium distance corresponding to the energy minimum 

is found to be approximately ςȢυ B (Bottom panel).  
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5.9.3 Binding energies of C60 

As shown by the Figure 4.19, the equilibrium distance between the C60 cage and Au substrate, which 

is,  corresponding to the minimum energy difference, is found to be approximately ςȢυ B.  with an 

energy value of 0.9 eV.  

 

 

 

 

 

 

 

 

 

Figure 4.19. C60 on a gold surface (Top panel). Energy difference of C60 /gold complex as a function 

of molecule-gold distance. The equilibrium distance corresponding to the energy minimum is found to 

be approximately ςȢυ B (Bottom panel). 

The equilibrium distance and energy difference for two EMFs including Sc3C2@C80, Sc3N@C80 and an 

empty cage are shown in Table 4.9. This table shows that the energy difference of Sc3C2@C80 is double 

than that Sc3N@C80, whereas the equilibrium distance is approximately similar. It is worth mentioning 

that, the equilibrium distance and energy difference have been not calculated to Er3N@C80.  
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This is because the electrical conductance and Seebeck coefficients of Er3N@C80 EMF are unreliable 

due to the fact that this EMF possesses f-electrons.     

 

Table 4.9: Summarises the optimum distance (Å), and the binding energy (Å6), of two EMFs and C60 

cage. 

 

 

 

 

4.10 Energy barriers to rotation for endohedral fullerenes on a gold (111) 

surface 

Having discussed barriers to rotation in the gas phase, I now calculate the energy ɝʃ when the whole 

EMFs (cage plus metallic moiety) is rotated in the vicinity of a gold (111) surface, at various distances 

ᾀ relative to the surface. The rotation axis — is shown in Figure 4.20 along with the definition of the 

distance ᾀ of EMF the  relative to the Au surface for Sc3C2@C80, Sc3N@C80 and Er3N@C80 EMFs.   

Molecule ἌȢἏ Ἥἤ  Optimum distance  (Å) 

Sc3C2@C80 πȢωπ 2.5 

Sc3N@C80 πȢτυ 2.5 

Er3N@C80 ==  ==  

C60 ρȢρ 2.5 
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Figure 4.20. Illustration of the rotation axis — and the Au-EMF distance (ᾀ) of a: Sc3C2@C80, b: 

Sc3N@C80 and c: Er3 Er3N@C80 used to compute the results in Figures 4.21 and 4.22. 

 

For each of Sc3N@C80, Sc3C2@C80 and Er3N@C80 EMF, Figure 4.21 shows the energy ɝʃ obtained 

at different Au-EMF distances ᾀȟ starting from the optimum distance ᾀ = 2.5 B (see Figures 4.17 and 

4.18). At each distance ᾀȟ ɝʃ is computed for values of ʃ ranging from 0 to ς“. At the optimum value 

z, the three black curves show that Er3N@C80 possesses the smallest rotation barrier (ɝ%ʃ  0.1 eV), 

whereas Sc3C2@C80 and Sc3N@C80 possess energy barriers to rotation of ɝ%ʃ  0.6 eV and 0.3 eV, 

respectively. All those barriers decrease with increasing distance ᾀȟ until they vanish at large ᾀ (ᾀ =15.0 

B, which is approximately equivalent to the gas phase of the whole EMF). The three green curves in 

Figure 4.21 show the corresponding energies obtained by rotating the metallic moieties alone in the 

vicinity of a gold surface in the absence of the C80 cage, at z = 2.5 B  (see Figure 4.7). This shows that 

for bare Sc3C2 and Sc3N (i.e. in the absence of the cage, see Figure 4.7) the rotational energy barriers 

are slightly smaller and are negligible for the bare Er3N. 
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Figure 4.21. Rotational energy barriers of the three EMFs on a gold surface Sc3C2@C80, Sc3N@C80 and 

Er3N@C80, respectively computed at different distances ᾀ from the surface, for the rotation axis ʃ. The 

energy barriers to rotation are of the order 0.6, 0.3 and 0.1 eV at ᾀ = 2.5 B and tend to zero for large  
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