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Abstract 

Unambiguous characterization of carbohydrate products remains a challenging endeavour. The 

current state-of-the-art techniques are NMR-based approaches, which require large amounts of 

purified sample and are challenging to annotate. Recently, a strategy has been developed 

combining gas-phase ion-mobility spectrometry with tandem mass spectrometry to separate 

and characterize isomeric product ions. Crucially, this can provide information about the 

stereochemistry that MS alone is often “blind” to because certain monosaccharides have the 

same m/z (i.e. they are isomeric) and are therefore indistinguishable. Given the amount of data 

this approach produces, there is a need for a method to rapidly annotate the produced data. The 

initial strategy involves developing a method that can discern the number of peaks within an 

IMS spectrum, where it has been shown that product ions derived from α-glucosides produced 

similar features (2 peaks) whereas β-glucosides only produced a single peak. It was reported 

that an IMS signal can be approximated as a sum of spectral line shapes (such as Gaussian, 

Lorentzian or Voigt). Current results show that the approximation method allows analysis of 

the signal in terms of peaks description. Using this approach, we built a feature matrix from 

IMS data for different diglucosides, which was then used to train a machine learning classifier 

able to distinguish between α- and β-glucosides. The performance of the classifier proved that 

automated classification of glucosides by their bonding type is achievable. 
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1. Introduction 

Carbohydrates and their analogues represent one of the largest groups of biomolecules 

found within nature. Methods have been developed capable of providing structural 

information of proteins [1] or nucleotides [2] in an autonomous, robust and efficient manner 

in a various area of applications. However, due to the complexity of carbohydrates structure 

and lack of technology providing sufficiently informative data, carbohydrate sequencing is 

still an open research question. In this study, it is shown that the latest findings related to 

ion mobility spectrometry have a great potential to make contribution to the carbohydrates 

sequencing challenge. The first section introduces the background knowledge necessary to 

comprehend the study, research questions and objectives.  

1.1 Background 

This subsection provides information regarding general knowledge on carbohydrates and 

experiments used to generate data throughout the project – mass spectrometry (MS), 

tandem mass spectrometry (MSMS) and ion mobility mass spectrometry (IMS).  

1.1.1 Carbohydrates overview 

Carbohydrates are ubiquitous biological polymers that are important in a broad range of 

biological processes. On the whole, carbohydrates exist in a wide variety of sizes, from 

simple monosaccharides, through oligosaccharides (typically less than 20 building blocks), 

to polysaccharides (even more than 20 basic units). Glycans (a compound consisting of a 

large number of monosaccharides linked glycosidically [3]) can be described by its 

composition, connectivity, and configuration (Fig. 1.). Monosaccharide can also differ by 

the number of atoms that they contain: triose (3), tetrose (4), pentose (5), hexose (6), 

heptose (7), etc. Carbon atoms are numbered starting from 1 along the backbone. Simple 

linear monosaccharides with unbranched skeleton have one hydroxyl group (OH) and one 

carbonyl group (O=H) attached to one of the carbon atoms. When the carbonyl group is 

attached to the carbon atom at position one (aldehyde), the monosaccharide is defined as 

aldose. It might be the case that the carbonyl group is attached between two carbons 

(ketose) and the monosaccharide of this type is a ketose – usually they have the carbonyl 

group at position 2. Following this pattern, one can define more classifications of 

monosaccharides resulting in names such as ‘aldohexose’, ‘ketoriose’, etc.  
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Many simple monosaccharide building blocks often differ by the stereochemistry at a single 

position, as it is in the case of glucose and galactose. A pair of carbohydrates, which possess 

this characteristic, are defined as stereoisomers. The connectivity of glycans is defined by 

the point of attachment of their building blocks. Each monosaccharide hydroxyl group can 

be a potential location of connection to the next monosaccharide. It must be stressed out, 

that carbohydrates, unlike proteins or lipids, can be considered nonlinear on account of this 

attribute. It means that they are more like branched structures with diverse regiochemistry 

rather than linearly connected elements. Furthermore, two monosaccharides can be 

connected in two different configurations– α- or β-linkage, which is a further 

stereochemical difference. Potentially, glycans can also be attached to other biopolymers, 

such as lipids, proteins or other organic molecules, in the process of glycosylation. In this 

process, at least three (the most abundant) classes of glycans can be produced: N-linked 

glycans [4], O-linked glycans [5], phosphoglycans [6]. Moreover, glycans can vary by their 

charge. They can be extremely negatively charged (e.g. glycosaminoglycans) or neutral. 

 

 

 

 

 

 

 

 

Figure 1. Structural characteristics of glycans. a) Composition is defined by a single building 

block, which can differ in a position of single carbon atom. b) Hydroxyl group, which is the 

connection point between building blocks defines the connectivity of a glycan. c) Each connection 

between monosaccharide, i.e. glycosidic bond, occur in two different configurations - α- or β-

configuration. 



7 
 

All of the stated characteristics make carbohydrates potentially highly information-rich 

molecules, i.e. a carbohydrate can be defined by a high number of complex features, not 

only quantitative but also spatial. Despite the fact that the current technologies allow 

extracting a variety of data describing glycans, a manual annotation is still a challenging 

task, particularly defining all glycan characteristics at once. Current approaches [literature] 

relies on tandem mass spectrometry data (MS) (Fig. 2.b.), which provides information on 

mass/charge (m/z) and abundance of ions of a given sugar, which can be characterised by 

a reference to standard depending on an analysed compound. Since MS provides a 

numerous number of signals strongly correlated with the composition of a glycan, it is hard 

to retrieve the part of signal defining a possible stereochemistry of a compound. Therefore, 

MS is found to be inefficient (nevertheless, potentially useful) in distinguishing between α-

linkage and β-linkage, thus the connectivity. However, a recently introduced approach 

which combines MS and ion mobility spectrometry (IMS) [7] has been reported to have a 

great potential to solve this problem. IMS discriminates ions based on their mobility which 

is inversely proportional to the rotationally averaged collision cross section area (CCS)-to-

charge ratio, an intrinsic property of an ion’s structure. [8] This data has been showed to 

contain information on the stereochemistry of glycosidic bonds between monosaccharide 

building blocks, which is the main motivation of the study. More information on MS and 

IMS will be provided in the following subsections.  

Figure 2. A) Two examples of disaccharides with different 

types of glycosidic bonds: 1. maltose -     α-linkage, cellobiose – β-linkage. Despite the fact that 

their connectivity and composition is identical, they are still stereoisomers due to the different 

bonding type. B) Example of mass spectrometry data, which is a traditional approach to 

carbohydrate sequencing. Since it provides information only of the mass aspect of a given test 

sample, it produces an extremely similar output for stereoisomers, e.g. maltose and cellobiose. 
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1.1.2. Mass spectrometry 

Mass spectrometry (MS) is one of the most popularized and the most universal analytical 

technics. It is used in a wide area of fields (both academic and commercial), e.g. 

pharmaceutical, clinical, environmental, geological or biotechnical. The major advantage 

of MS is its sensitivity, i.e. the small changes in an analysed compound produce a 

significant difference in the produced spectrum, which makes the small difference 

detectable. Moreover, MS is considered to be relatively rapid. Furthermore, the fact that it 

might be coupled with other techniques such as liquid chromatography (LC-IMS) [9], ion 

mobility spectrometry (IMMS) [10] or MS itself – tandem mass spectrometry [11]. It also 

possesses an an ability of dealing with mixtures (in some cases).  

MS is used to define a composition of a given sample. There are many types of mass 

spectrometers, however, all of them can be generalized to the following steps: 

1. Ionization of analyte into the gas-phase – the sample is vaporized by a heater and 

bombarded by high-energy electrons. Some of the electrons in the atoms of the sample 

are knocked out, which produces positively charged ions. The ions are accelerated so 

that they all have the same kinetic energy. Then, they are deflected by a magnetic field 

according to their masses. Ions with lower masses are deflected more and the ions with 

higher masses are deflected less. There are soft ionization techniques like ESI and 

MALDI, which allow the entire molecule to enter the gas phase with no dissociation 

and hard ionization such as EI, which dissociate the analyte during ionization.  

2. Separation based on m/z and sorting of the ions – done by the mass analyser (e.g. a 

ToF, quadrupole and quadrupole ion traps - quadrupole can be very useful as they can 

be used as a mass filter only letting fragments with a particular m/z). 

3. Detection of the presence of ions by a detector and abundance of ions within a packet.   

4. The electronics calculate the m/z and abundance of the detected packet. Mass-to-charge 

ratio is proportional to the deflection of an ion. The abundance of a packet is the number 

of ions with particular m/z divided by the overall number of ions within a packet. The 

data is plotted and displayed to the user as intensity of ions vs m/z (e.g. Figure 2. B)). 
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Figure 3. Domon-Costello nomenclature [12] for common fragments generated by dissociation 

techniques. This kind of dissociation might be achieved using tandem mass spectrometry. The 

fragmentation showed in the further subsections (Figure 4)  is derived from this nomenclature. 

Combined with presumed knowledge of on the analysed compound, MS profiles of 

carbohydrates can show their composition. Tandem mass spectrometry (MS/MS) is 

particularly useful to dissociate glycans into smaller fragments that can reveal structural 

motifs directly. Glycans dissociate either across the glycosidic bond (forming B-, Z-, C-, 

and Y-ions) or across the monosaccharide ring (A- and X-ions) (Fig. 3). This kind of 

experiment reveals broad sequence and composition information, but it does not directly 

hold any information on stereochemical assignment of the monosaccharide building block. 

If only disaccharides (or basically glycans of relatively small size) were taken into 

consideration that would be somehow possible to classify them by their linkage. A 

spectrum could be compared to a reference molecule of a known linkage fragmented under 

the same conditions – this would leave a spectral ‘fingerprint’ of stereochemistry of the 

linkage. However, spectral matching will fail with larger compounds. Only three 

monomeric units: mannose, galactose and glucose can produce 144 possible disaccharides 

– in the case of trisaccharides this will lead to significantly larger number, counted in 10’s 

of thousands. This fact makes the spectral matching inefficient, which will be discussed in 

the next chapters. However, the conclusion is that identifying linkage type using MS is 

achievable, but only for small molecules.  In contrast, the quality of features obtained from 

IMS data is not depended on the molecule size.  
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     1.1.3. Ion mobility spectrometry 

Ion mobility spectrometry (IMS) is an atmospheric pressure technique for trace analysis of 

gas-phase analytes. During the last decade IMS has come of age as an analytical method 

with over 50000 stand‐alone ion mobility spectrometers currently employed throughout the 

world [7]. The technique has a great potential to be coupled with MS due to the fact it 

reveals the stereochemistry of a compound, which provides orthogonal information to MS 

data - thus it is introduced in the study. Traditional ‘drift‐time’ ion mobility spectrometry 

(IMS) measures the time that it takes an ion to migrate through a buffer gas in the presence 

of a low electric field. The primary condition of this low electric field is that the thermal 

energy supplied from the collisions of the buffer gas is greater than the energy the ions 

obtain from the electric field. Thus, the ions have energies similar to that of the buffer gas 

and diffusion processes are dominant. Ion mobility under low‐field conditions can be 

thought of as ‘directed diffusion.’ Under these low‐field conditions, the velocity of the ion 

is directly proportional to the electric field. This proportionality constant is called the ion 

mobility constant and is related to the ion’s collision cross-section (CCS), which allows 

distinguishing structural features of ions in gas phase [8].  CCS can be obtained using 

Mason-Schamps equation [13] and it defined as the area around a particle in which the 

centre of another particle must be in order for a collision to occur. Literally speaking, this 

measure be compared to a resistance – the bigger CCS a molecule has, the drift time is 

lower, like it was harder for it to get through the gas. 

 

Figure 4. A general example of IMS mechanism. Ions with different mobilities have different drift 

times, which can be recorded by the detector. 
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1.1.4. Traveling wave ion mobility spectrometry 

Traveling wave ion mobility spectrometry (TWIMS) [14] uses a non-uniform drift field. In 

this a sequence of symmetric potential waves continually propagating through a tube 

propels ions along with velocity different species transit the tube in unequal times. As the 

waves pass along the device, ions can ‘surf’ on the wave front for a period of time before 

being overtaken by the wave. Ions are separated as they travel through the device as higher 

mobility ions undergo less ‘roll over’ events on the waves than the lower mobility ions. 

TWIMS generally allows mobility separation of a similar resolution to occur in a shorter 

device than DTIMS, resulting in an instrument with a smaller footprint.  Whilst ion motion 

in a TWIMS is relatively complex, the resulting IMS separation can be calibrated to allow 

the easy, quick measurement of CCS for all of the ions present.  

 

Figure 5. Ion propelling through a drift tube. 

1.2. Motivation of the study 

The experiment of extracting necessary data was conducted outside of the study [15, 16, 

17]. A series of reducing glucoside standards (Glcα/β1-2/3/4/6Glc) 1−8 and different 

reducing sugars (Glca1-1aGlc and Glca1-1bGlc) 9-10, which differ only in the regio- and 

stereochemistry of the glycosidic bond, were analysed with a series of experiments that 

combined tandem mass spectrometry and traveling wave ion mobility separation (Fig. 2.a. 

and Fig. 2a.). The instrumentation used in the experiment was SYNAPT G2-S Mass 

spectrometer (Waters, Manchester, UK). The synapt G2S is based on used nESI ionization 

[18], quadrupole mass selection (mass analyser) and dissociation-IMS-ToF [19]. Thus, as 

a generalisation one can define it as tandem mass spectrometry coupled with travelling ion 

mobility spectrometry. 
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Figure 6. A diagram showing the outline of SYNAPT G2-S.  

 

MS data might have extremely similar features for two epimers (Fig 4.a.), therefore it is 

relatively hard to distinguish those using MS data on its own. However, one can observe an 

interesting pattern occurring in IM spectrometry data produced by previously separated ions. 

The provided example of 12 diglucosides indicates that α-glucose terminating precursor 

usually produces more than one peak in comparison with its β-glucose analogue. This pattern 

slightly differs for reducing naturally occurring sugars (Glcα1-4GlcNAc and Glcβ1-4GlcNAc) 

at Y ion.  However, in pattern recognition there are usually biases in the pattern and they are 

considered as outliers. How those inconsistencies are treated will be discussed in the further 

sections. In the study, Glcβ1-1βGlc and Glcα1-1βGlc will be omitted. The fingerprint left in 

IMS data by those molecules is effectively a mixture of the two linkages in a single molecule 
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– those are co-fragmented and non-separable. Literally, this means that IMS contains mixed 

spectra of potentially two different glycosidic linkages. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. a) An example of diglucosides regioisomers, which MS data is identical. b) IMS data of 

12 sugars indicating that IMS holds a footprint of stereochemistry of the glycosidic linkage.  

Observing the occurring pattern, one can conclude that the information on the number of peaks 

in IM spectrometry might allow creating a sufficiently informative dataset for developing a 

statistical method to classification. The aim of this work is to build a machine learning classifier 

able to distinguish any provided diglucoside by its bonding type. It has to be mentioned that 

IMS will provide information on stereochemistry for any group of glycans, not only 

diglucosides as reported in this study. However, it is also important to stress that this current 
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approach is only applicable for lithiated disaccharides – it has an extremely low intensity for 

sodiated disaccharides, which makes it hard to analyse them. In the case of different class of 

glycans the data will be different - the peaks will have different characteristics. They might be 

more separated or more overlapped, the peaks will differ in height. Nevertheless, the observed 

pattern will occur, which gives an idea to capture and describe it using analytical methods. 

1.4. Thesis outline 

The thesis is divided into following sections: 

2. Literature overview – analysis and comparison of existing approaches to automated 

carbohydrates classification.  

3. Research questions – after studying the current literature the research questions are 

formulated. 

4. Methodology – a concept of extracting information from IMS data and using it for 

glycosidic bond classification is studied in this section. More particularly, the main 

ideas behind it are threshold selection, signal approximation by parameter optimisation, 

feature selection from the optimised parameters, training and evaluating a machine 

learning classifier.  

5. Results – the results of the curve fitting, feature extraction and classification are 

provided, i.e. plots of fitted functions, feature matrix, accuracy and AUC curve. The 

results are discussed. 

6. Conclusion – the research objectives are reviewed and matched with the research 

outcomes. Moreover, the potential possibilities of extending the model are defined. 

7. Appendix – plots of all IMS signal function approximations. 
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2.  Literature overview 

Relatively few attempts have been made in order to automate the process of carbohydrate 

sequencing. One particular challenge is classification of the stereochemistry of the glycosidic 

linkage. Most of the introduced approaches only have an ability to successfully classify 

composition (i.e. classify monosaccharides defining the building blocks) of the carbohydrates, 

providing little to no information on connectivity. In this section the existing endeavours to 

automated glycans classification will be introduced, analysed and compared. The first three 

subsections describe algorithms capable of classifying all of the possible glycans. The fourth 

subsection compiles the approaches, which aim to label a specific subgroup of carbohydrates. 

The conclusions made as the summary of the section along with the assumptions defined in the 

introduction will allow formulating the research questions. 

2.1. Catalogue based approaches 

The first methods [20-22] of glycans classification used a predefined database of MS spectra. 

Those techniques rely on a simple search made on the database. Given an unknown MS 

spectrum, the algorithm explores the whole storage space and compares the input with each 

entry. The one with the highest score, which can be a simple distance metric (such as Euclidean 

distance between each point in the spectra), is considered to be the result. Preferably, the 

algorithm output is a list of scores of a fixed number of potential candidates with the highest 

results. Those approaches have been found to be efficient and robust since they reach up to 

100% accuracy in terms of the composition of the glycans. However, the need of the previously 

defined library of glycans is the main limitation of these methods. The number of possibilities 

is generally too high to experimentally capture all of them and store in a database. Also, 

similarities between reference MS spectra might lead to an increased number of false positives 

in the classification. There were multiple attempts made to create a glycans database: Glycan 

Mass Spectral DataBase [23], EuroCarbDB [24] and many others. However, none of them tries 

to describe all of the existing carbohydrates and they rather specialize in a certain group. This 

fact makes the sequencing of undefined samples impossible since it is not known, which 

database should be chosen as the reference in matching. Moreover, as a consequence of the 

usage of MS data these techniques are unable to classify the type of glycosidic linkages 

between the building blocks, but only the composition. It would be possible to incorporate IMS 

data to this type of technique in order to attempt to classify bonding type. However, due to the 

limitation resulting from the requirement of a database, this approach is still considered to be 

inefficient since it needs a significant human effort to be made. In conclusion, there is a need 
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to create an automated method, which brings IMS and MS data together, and do not use any 

reference system – the sequencing should be performed de novo.  

2.2. Brute force approaches 

An exhaustive comparison of a given experimental mass spectrum to all theoretical structures 

is considered to be a possible brute force approach, e.g. STAT [25]. In greater detail, the 

algorithm generates all of the possible structures of glycans de novo as it is running and 

compares each of them with the input spectrum. This kind of approach has a significant 

limitation since it is computationally inconvenient to generate a large number of candidate 

spectra due to the potential complexity of glycans structure. Hence, the user is prompt to enter 

a series of likely information to be contained in the sample, such as monosaccharides presented 

in the sample or precursor ion. Without prompting the user to input the data the searching time 

might be potentially high and/or it might require significant computational sources. 

Unfortunately, the need of the user input puts an end to the idea of the full automation in this 

problem, since it makes the approach only partially automated. This drawback certainly limits 

the technique’s applications, where a rapid annotation of newly approached molecules is 

crucial. For example, in a possible scenario of testing a substance on a production line on the 

go (rather than testing it by statistical sampling) and without the knowledge of the potential 

glycans contained the algorithm would not carry its task.  

It has to be stressed out that the method might be efficient, but that would be only for relatively 

small glycans due to the short simulation time of potential candidates. Above all, the algorithm 

is not able to correctly characterise glycosidic linkage due to MS data limitation. In this study 

is considered to be main drawback of this approach.    

2.3. De novo sequencing approaches 

In summary to the previously stated methods, one can conclude that there is a need to create a 

de novo sequencing platform, i.e. an approach, which does not rely on previously stored (or 

simulated) data and classify newly approached samples without comparing them with any 

database. This kind of approaches have been successfully implemented, however, with 

particular limitations described in this subsection and addressed in this research project. 

GlycoDeNovo [26] is a fully automated algorithm, which creates a topology of a glycan given 

its tandem mass spectrum. GlycoDeNovo builds an interpretation-graph from each glycan 

tandem mass spectrum by identifying all potential glycosidic fragments (sequence ions) that 
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can be interpreted as a combination of a monosaccharide (root) and one or more previously 

interpreted peaks (branches) which lead to the assignment of the precursor peak. The algorithm 

has been proved to be highly efficient in terms of composition classification of glycans. It has 

achieved a nearly perfect accuracy, oscillating around 95%, which is considered to be distinctly 

robust performance. Nevertheless, the performance of the algorithm in classifying bonding type 

is much less than 50% on average, which potentially means that it assigns the glycosidic 

linkage type in random manner. This phenomenon might have a theoretical proof in the 

statement that MS/MS data is often ‘blind’ to information on the bonding type. It needs to be 

mentioned that this approach performs well for relatively large oligosaccharides – in testing 

phase a saccharide consisting of 11 building blocks was used. The authors do not imply that 

the model should be limited by the larger molecules. 

GLYCH [27] is an algorithm for glycan characterisation using MS/MS data. The approach 

consists of three steps. First, the potential bond linkages between monosaccharaides are 

identified. This is achieved by analysing the appearance pattern of cross-ring ions. GLYCH is 

the first algorithm mentioned in the work, which address this problem by separating it and 

providing it an individual methodology. The next step is to use a dynamic programming [28] 

algorithm to define the most probable composition of a glycan given its mass spectrum. Finally, 

oligosaccharide structures are re-evaluated, taking into account the double fragmentation ions. 

The proper evaluation of the algorithm is missing in the study since the experiment involves 

only 6 different oligosaccharides. Furthermore, the algorithm strongly prefers linear glycans 

rather than the ones with branching structure. For the test group of glycans, GLYCH has 

successfully annotated both composition and linkages. In conclusion, the algorithm 

outperforms all of the previously stated solutions. However, in terms of linkage type 

classification, the performance limited to a certain subgroup of glycans – linear 

oligosaccharides. It needs to be stressed that this approach perform well for relatively large 

oligosaccharides – in testing phase a hexasachharide was used and the authors do not imply 

that the model should be limited by the larger molecules.  

LODES [29] is another technique of glycans sequencing using tandem mass spectrometry. This 

technique can successfully classify linkages between building blocks. However, it is suited 

only for relatively small glycans (trisaccharides are evaluated).  

One can conclude that there is a need to build a classifier able to distinguish linkage type of 

glycans without a limitation on their size and with an ability to classify them by their linkage. 
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Clearly, the first steps are to prove that IMS data can be a starting point of the idea of a full 

automation in glycan classification. Concluding, in this work the focus will be made on 

regiochemistry of glycans rather than their composition.  

2.4. Classifying a subgroup of glycans  

While the previously indicated approaches aimed to classify any given glycan, in this 

subsection the focus is made on classifying a specific predefined subgroup of carbohydrates. 

Since the pattern introduced in the first section was observed only for specific diglucosides, it 

might be important to bring closer the other research works which objective is to annotate a 

subset of glycans.  

Discrimination of disease phenotypes in complex biological samples, such a serum using MS 

continues to be an active area of research. As an example [30], analysis of single N-linked 

glycans can lead to discriminate disease phenotypes associated with esophageal 

adenocarcinoma [31]. In the mentioned work, the samples of glycans were extracted from sera 

of healthy controls and patients diagnosed with that Barrett's Esophagus (BE), high grade 

dysplasia (HGD), and esophageal adenocarcinoma (EAC). Then, the samples were analysed 

with MALDI-IMS-MS. The goal of the research was to train a statistical model, which is able 

to identify a specific N-glycans in the serum responsible for stated diseases. The results of the 

algorithm are considered to be highly robust since they reached 100% accuracy for the training 

set and the model correctly classified 23 out of 26 patients in the prediction set.  

In conclusion, there are potential applications of classifying only a certain subgroup of glycans, 

when these glycans can be connected with a specific phenomenon to be classified. This has 

been mentioned because in the study only a subgroup is classified (however, the technique 

might is applicable for variety of glycans as stated in the introduction).  

2.5 Conclusion 

All of the stated approaches (apart from LODES, which misses an ability to classify larger 

glycans) are missing an ability of classifying the bonding type between building blocks of 

oligosaccharides – connectivity. Hence, the main goal of the study is to develop an approach, 

which utilise IMS data and focus on classifying the linkage type. This should be possible 

because of the characteristic of IMS spectra described in the introduction section.  
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3. Research objectives and formal requirements 

Per the conclusion of the previous sections, one can form the following research objectives, 

which are studied in the next sections. 

Research objective 1. Perform feature extraction on the reducing diglucoside standards 

(Glcα/β1-2/3/4/6Glc) and two other reducing sugars (Glcα1-4GlcNAc and Glcβ1-

4GlcNAc) by building a dataset giving information on the number of peaks in IM 

spectrometry data. 

Research objective 2. Train a machine learning classifier able to distinguish a glycosidic 

bondage type amongst reducing diglucoside standards (Glcα/β1-2/3/4/6Glc) and two 

other reducing sugars (Glcα1-4GlcNAc and Glcβ1-4GlcNAc). Moreover, evaluate the 

performance of the classifier.  

Furthermore, formal requirements of the implemented model/software are defined. 

I. The user effort of using the classifier should be minimised, i.e. ideally, the system 

shall be fully autonomous – the user should only provide a raw data input and receive 

a prediction. 

II. The system must be robust, i.e. it cannot fail when approaching newly discovered 

types of samples. It is not specified that it shall classify them, but it should be able to 

discard them. 

III. The model should be self-explainable, i.e. its parameters shall have an 

understandable meaning and constraints should be also comprehensible. This will lead 

to increase the extensibility of the system, as it will be easily interpretable. 
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4. Methodology 

In this section, a possible approach to feature extraction from IM spectrometry data is 

presented. IMS signal can be approximated using a sum of spectral line shapes like Gaussian, 

Lorentzian or Voigt. In this work, a Gaussian function is selected to be a model of the signal 

(Fig, 4). For the purpose of this research problem, there is no important distinction between the 

chosen model out of those three. The Gaussian function is the simplest and the most popular 

among the three stated functions. Most importantly, its parameters will allow extracting the 

information necessary to perform the further classification. More specifically, the aim is to gain 

knowledge about the difference between the heights of peaks in the signal. This will allow 

analysing the pattern explained in the introduction section, i.e. α -diglucosides produce a double 

peak and β-diglucosides produce a single peak when it comes to their IMS spectra.  

4.1. Model 

The first step of the feature extraction phase is to fit a sum of two Gaussian functions, each 

corresponding to one component, i.e. a peak in the signal. To understand how fitting this curve 

translates into the feature extraction process, there is a need to describe the assumed model and 

its parameters. Normally, a Gaussian function (Eq. 2.) describes a probability distribution, so 

its scaling factor is set in the way that all values of the function sum up to one, which is a basic 

law of probability.   

𝑓(𝑥) =
1

𝜎 ∗ √2 ∗ 𝜋
∗ 𝑒

−(𝑥−𝜇)2

(2𝜎2)  

However, for IMS signal approximation purpose (rather than estimating probability 

distribution), the values are not summing to one since the domain of the signal might be any 

random interval in the real numbers space. Hence, the scaling factor of the usual Gaussian 

function is replaced by a parameter ℎ, which defines the height of a peak. The 𝜇 parameter, 

which is originally the mean of a distribution is replaced by 𝑥0, which states the centre of a 

peak. This replacement has only a symbolic meaning since the parameter has the same 

definition in case of the Gaussian distribution. Finally, the 𝜎 parameter, formerly defining a 

standard deviation of a distribution, is changed to 𝑤, which is half-width of a peak. A half-

width of a peak defines a width of the peak in the middle of its height. Summarizing, the 

following function 𝑓𝑔 (Eq. 1) defines a single component in IMS signal.  

𝑓𝑔(𝑥; ℎ, 𝑥𝑜 , 𝑤) = ℎ ∗ 2
−(𝑥−𝑥𝑜)2

𝑤2  

However, the signal might consist of more than one component. Specifically, studying this 

phenomenon is the goal of the research, i.e. distinguishing between a single peaked signal and 

double peaked signal. For this purpose, a mixture model 𝐹𝑔 is introduced. In statistics and signal 

approximation, a mixture model is defined as a sum of any number of different functions. In 

this case, the model 𝐹𝑔 can be described as a sum of two previously defined Gaussian functions 

𝑓𝑔 with parameters ℎ𝑖 , 𝑥𝑜𝑖
, 𝑤𝑖, where 𝑖 is the number of a component.  
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𝐹𝑔(𝑥; ℎ1, 𝑥𝑜1
, 𝑤1, ℎ2, 𝑥𝑜2

, 𝑤2) = 𝑓𝑔(𝑥; ℎ1, 𝑥𝑜1
, 𝑤1) + 𝑓𝑔(𝑥, ℎ2, 𝑥𝑜2

, 𝑤2) 

Summarising, the defined model has six parameters ℎ1, 𝜎1, 𝑤1, ℎ2, 𝜎2, 𝑤2. To extract the 

previously stated information from IMS signal, the ℎ1, ℎ2 parameters need to be approximated 

to correctly describe the height of a single component. More particularly, a difference between 

these two parameters can capture the previously stated phenomenon, i.e. if the differences are 

significantly high one can say that there’s a single peak in IMS data or if the difference is low, 

it is assumed that there are two peaks in the signal.  

 

Figure. 8. An example plots of a Gaussian function with manually set parameters. The first 

plot shows a curve with one component, i.e. ℎ2 = 0. The second curve is an example of ℎ2 

being a positive number. 

4.2. Threshold selection 

One of the signal characteristics is that it consists of the true signal produced by a specific 

physical phenomenon and the noise. In the case of the peak interpretation process, the noise 

component can be a cause of detection of unwanted peaks. Besides from a significantly lower 

height than true peaks, the random fluctuations produced by the noise component can visually 

resemble the peak-shapes. Therefore, a minimum intensity considered in curve fitting problem 

must be found (Fig. 5) before performing the curve fitting. This is achieved by a heuristic 

process, which relies on the standard deviation of intensity. For each spectrum 𝑖 a threshold 

(Eq. 3) is calculated separately using the following equation. 

𝜏𝑖 = 𝜎𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑖
∗ 𝑘 

The method was optimised experimentally and the 𝑘 parameter was decided to be set to 0.2. 

As previously stated, this is a heuristic process without any explainable meaning and the value 

of the constant was set basing on observations made during the exploration the analysed 

samples. The calculation of 𝜏 allows rescaling the data in a way that the data points are shifted 

in the direction of the x-axis by its value.  
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Figure. 9. An example of thresholds (red dotted lines) calculated for x, y and z ions of 

Kojibiose. The zoomed spaces show how the minimal fluctuations in the data reassemble the 

actual peaks, which is the reason why they have to be removed or omitted in the further 

analysis.  

It must be mentioned that this approach cannot be considered robust and reliable. This is due 

to the fact that the 𝑘 parameter has not been fully explored and it was set manually. It is not a 

fact that the 𝑘 parameter set to 0.2 will define the threshold correctly for newly approached 

samples. Prospectively, the automated optimisation of 𝑘 parameter or another method of 

threshold detection needs to be introduced. Alternatively, setting the 𝑘 parameter will be left 

to the final user of the proposed methodology. However, this would be considered as a great 

drawback of the introduced technique, since the goal is to implement a robust, autonomous 

method, which does not rely on the user input.  

4.3. Least-squares  

One of the possible approaches to curve fitting problem is the least-squares approach [32]. The 

least-squares involves solving an optimization problem. In particular, its goal is to optimise 

parameters of a given function so the function recreates the shape of a given set of points as 

closely as possible. This is done by solving a minimization problem for an expression defining 

an overall difference between any discrete point of the signal and its equivalent in the 

continuous space of the function values, i.e. least squares. To introduce this technique for the 

research problem, a least-squares expression for the Gaussian mixture model is defined (Eq. 

5.).  

𝑆𝑆𝑅(𝜙, 𝑥) = ∑ ||𝑦𝑖 − 𝐹𝑔(𝜙, 𝑥𝑖)||
2

𝑛

𝑖=1
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Where 𝜙, 𝑥, 𝑛, 𝑦𝑖 are defined as a vector of parameters ( ℎ1, 𝜎1, 𝑤1, ℎ2, 𝜎2, 𝑤2.), CCS of IMS 

data, number of points, the intensity of 𝑖 − 𝑡ℎ point respectively. As previously stated, in order 

to find parameters of the 𝐹𝑔 function, which would produce the best fit to 𝑥 and 𝑦 datapoints, 

the 𝑆𝑆𝑅 expression must be minimised (Fig. 5) with respect to the parameter vector 𝜙. More 

precisely, the value of this vector must be set in a way that the 𝑆𝑆𝑅 is as close to zero as it is 

possible. This might be achieved in the following way: 

   I.  Parameters are initialised in order to give the algorithm an initial guess and a starting 

position in the parameters space. 

I. Partial derivative with respect to each parameter is calculated for this point. This step 

might be described as the search for the direction in the parameter space. A partial 

derivative calculated with respected to a given parameter holds information about the 

steepest ascent of the function in the direction of the axis defined by this parameter. 

With this knowledge, a gradient vector is built, i.e. a vector holding all of the possible 

partial derivatives. Technically, this vector shows a direction of the steepest ascent of 

the function, i.e. the direction in which the function increases its values the most 

rapidly. 

II. Basing on the learning step (which defines how much parameters values can be changed 

in a single iteration) the initially set ‘position’, i.e. value of the parameters, is changed. 

The choice of the learning step depends of the minimization technique used, which will 

be explained in the further section. 

III. The algorithm terminates when specific convergence criteria are met. Those might vary 

depending on the chosen algorithm and will be introduced in the further section.  

 

 

 

 

 

 

 

 

Figure. 10. An example of minimising 𝑆𝑆𝑅 function with respect to one parameter 𝑤. The 

parameter is set to an initial value and then changed gradually along with the decrease of 

𝑆𝑅𝑅. It has to be mentioned that in the research problem, a multidimensional space is 

considered. Since it is visually impossible to plot the parameter space, showing 2-D case is 

reasonable example, which enables a proper understanding of the minimisation process. 
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Since the number of observations 𝑘 is greater than the number of parameters and the defined 

model is nonlinear, the problem is considered being nonlinear. This is the reason why the 

outline of the algorithm has an iterative flow i.e. the solution is being find in the number of 

steps rather than a single computation. It must be mentioned that this approach main 

disadvantage is that it might be stopping on a local minimum of 𝑆𝑆𝑅. Possibly, the solution 

might be found very quickly but it can be a solution, which SSR is very distant from the 

potentially smallest SSR. In this case, the algorithm will stop, as it does not distinguish a local 

and a global maximum Therefore a proper parameter initialisation might significantly increase 

the efficiency of this technique. Furthermore, a proper ‘guess’ of initial parameters might 

significantly speed up the algorithm since the local (or global) minimum will be simply reached 

faster. There are several possible techniques to minimise SSR, i.e. ‘move the ball’ towards the 

optimal solution. In this work, the Levenberg-Marquardt algorithm is employed to solve this 

problem.  

4.4. Minimisation using Levenberg-Marquardt algorithm 

The Levenberg-Marquardt (LM) [33] can be described as a combination of two widely used 

minimization methods: the gradient descent [34] and the Gauss-Newton method [35]. Broadly 

speaking, the algorithm acts more like the gradient descent when the current solution is far 

from the optimal value and like the Gauss-Newton method when the solution is close to its 

optimal value. Therefore, in order to get in-depth understanding of the LM algorithm, it is 

reasonable to define those two algorithms first. It has to be mentioned that the LM algorithm 

was chosen in this study for particular reasons. Since the analysis is performed on a very limited 

number of samples, there is a need to make the most out of them. Inaccurate peak fitting method 

would result in losing a relatively significant amount of information. The algorithms have been 

experimentally compared resulting in the choice of LM algorithm. The gradient descent and 

Gauss-Newton method were proved to incorrectly fit the curve in even 50% cases. However, 

the LM method is closely related to the other algorithms, so they will be introduced in the 

further subsections. 

4.4.1 Gradient descent 

The gradient descent is the simplest and the most common technique in minimisation problems. 

It updates parameter values in the ‘downhill’ direction with a predefined learning step, i.e. the 

parameter η. The learning step has to be set manually and it does not change during the search 

for an optimal solution. The gradient descent can be expressed as the following equation 

𝜙𝑛+1 = 𝜙𝑛 + η∇𝑓𝑛
  

Where ∇𝑓𝑛
is the gradient vector in the point 𝑛. The main drawback of this approach is the choice 

of the learning step. If the learning step is too small the convergence of the algorithm might be 

achieved relatively slow. In case of too high learning step the optimal solution might be missed 

by the algorithm.  
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4.4.2. Gauss-Newton method 

The Gauss-Newton method is another method for minimizing a sum of squares objective 

function. It presumes that the objective function is approximately quadratic in the parameters 

near the optimal solution. As previously mentioned, in each iteration step the parameter vector 

𝜙 is replaced by a solution 𝜙 + 𝛿. For a small |𝛿| ∨, a local Taylor series expansion leads to 

the linear approximation 

𝐹𝑔(𝜙 + 𝛿) ≈ 𝐹𝑔(𝜙) + 𝐽𝛿, 

Where 𝐽 is the Jacobian matrix of 𝐹𝑔(𝜙), i.e. a matrix holding scalar values defining all possible 

first-order partial derivatives of this function. As previously stated, the algorithm operates 

iteratively. At each step, it is required to find 𝛿 that minimised the following quantity. 

|𝑦 − 𝐹𝑔(𝜙 + 𝛿)| ≈ |𝑦 − 𝐹𝑔(𝜙) − 𝐽𝛿| = 𝑆𝑆𝑅 − 𝐽𝛿 ∨ 

The minimum is obtained when 𝐽𝛿 − 𝑆𝑆𝑅 is orthogonal to the column space of 𝐽, which leads 

to 𝐽𝑇(𝐽𝛿 − 𝑆𝑆𝑅) = 0. Hence, 𝛿 is a solution of the normal equations [36]: 

𝐽𝑇𝐽𝛿 = 𝐽𝑇𝑆𝑆𝑅 

Where 𝐽𝑇𝐽 is the Hessian matrix, i.e. a matrix holding all possible second-order partial 

derivatives. The iteration step derived from the normal equations is defined as follows: 

𝜙 + 𝛿 = (𝜙𝐽𝑇𝐽)−1𝐽𝑇𝑆𝑆𝑅 

4.4.3. Levenberg-Marquardt algorithm  

In comparison to the Gauss-Newton method the Levenberg-Marquardt algorithm solves a 

slightly different of normal equations, i.e. augmented normal equations: 

𝑁𝛿 = 𝐽𝑇𝑆𝑆𝑅 

Where all of the non-diagonal elements of N are the same as corresponding elements of 𝐽𝑇𝐽 

and the diagonal elements are defined as 𝑁𝑖𝑖 = 𝜇 + [𝐽𝑇𝐽]𝑖𝑖, 𝜇 > 0. The process of adjusting the 

diagonal of N is called damping and 𝜇 is called a damping term. If damping leads to a reduction 

in 𝑆𝑆𝑅, one iteration step is completed and the damping term is decreased. Otherwise, the 

damping term is increased and the augmented normal equations are solved again until 𝑆𝑆𝑅 is 

decreased and one iteration step is done. This explains why the LM method can be considered 

as a combination of the gradient descent and the Gauss-Newton algorithm – for a small 

damping term the algorithm will behave more like the gradient descent and for a large damping 

term, it will be more like the Gauss-Newton algorithm.  
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4.5. Initial parameter estimation 

To accurately initialise the parameters for each IMS spectrum, the data needs to be normalised. 

Parameters such as height ℎ and width 𝑤 have the same initial values for each spectrum, hence, 

the range of values of variables 𝑥 and 𝑦 shall be identical all samples. Normalisation to range 

(0,1) is chosen in this work (Eq. 6). 

𝑥 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
 ;  𝑦 =

𝑦−𝑦𝑚𝑖𝑛

𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛
 

With pre-processed data, one can start initialising parameters. In order to initialise ℎ and 𝑥𝑜 

parameter, an initial peak detection method needs to be introduced. It must be stressed out that 

the introduced method will not be accurate and can be used only for initialisation rather the 

feature extraction in general. The approach relies on the second derivative 𝑓′′(𝑥) and its 

characteristics, which implies that the local minima of 𝑓′′(𝑥) reflects local maxima of an 

underlying function and its inflection points (Figure X). In case of IMS data, the peaks are 

usually strongly overlapping. The first derivative would not detect such peaks since 

mathematically they are very similar to the concept of inflection points. Thus, the second 

derivative is calculated for each spectrum and then its local minima are found by comparing 

each point to its neighbours.  

 

 

 

 

 

 

 

 

 

Figure 11. The plot shows how the second derivative 𝑓′′ (green) can be used to obtain a local 

maxima and inflection point of a function 𝑓 (blue). As might be noticed an unwanted peak has 

been detected in point of the inflection point probably resulting from the noise. 

The derivatives (Fig. 5) are calculated in a discrete domain, hence finite differencing technique 

is employed (Eq. 7). The second derivative is derived by taking the derivative of the first 

derivative using the same method.  

𝑓′(𝑥) =
𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
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Figure. 12. An example of how a derivative can be calculated using discrete points rather 

than continuous. In continuous domain ℎ tends to be an infinitesimal number, i.e. the number 

infinitely close to zero. However, since it is impossible to derive an infinitely small number on 

a machine ℎ is simply a distance between two neighbouring points. 

It was observed that this technique produces the number of peaks significantly higher than the 

ground truth implies, therefore a set of correct peaks must be chosen from the whole initial set. 

One can conclude that this phenomenon occurs due to the fact that random noise in the signal 

can produce inflection points ‘placed on the peaks’ (Figure X). The introduced thresholding 

method does not remove this kind of noise from the signal, thus there is a need to filter the 

undesired peaks. The feature selection process will be described in the next subsection. The 

remaining parameter w is set using empirical observations rather than calculations and it takes 

the value of 0.1. 

In addition to the initialisation, there is also a need to put constraints on the parameters in order 

to achieve the best fit. More particularly, both of height parameters are set to have a minimum 

value equal to the initial value. The 𝑥𝑜 parameters are constrained to be placed in a distance of 

0.01on the x-axis in both ways. The width parameter shall be always greater than zero. The 

constraints were defined by experimental observations and it is not certain if they will give a 

foundation to a fully robust solution, but it will be proved that they allow a successful 

automation of the process.  

Taking all into consideration, the set of rules for the parameters initialisation (on the left) and 

constraints (on the right) are defined as follows: 

ℎ = ℎ𝑖𝑛𝑖𝑡 

𝑤 = 0.01 

𝑥𝑜 = 𝑥𝑖𝑛𝑖𝑡 

ℎ > ℎ𝑖𝑛𝑖𝑡 

𝑤 > 0 

𝑥𝑜 ∈ (𝑥𝑖𝑛𝑖𝑡 − 0.01, 𝑥𝑖𝑛𝑖𝑡 + 0.01) 
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4.6. Feature extraction algorithm 

As previously mentioned, in order to find true peak positions a proper filtration of the initially 

found peaks needs to be performed. Thus, a simple iterative method is proposed to pick the 

correct initial values of 𝑥 and ℎ. Set 𝑍 containing the result of permutation of the initially found 

peaks is created, i.e. a set of 2-tuples such as (ℎ𝑖 , ℎ𝑗), where 𝑖 ≠ 𝑗. More precisely, the set Z 

contains all of the possible pairs generated from the set of initially found peaks and a pair 

cannot contain instances of the same peak. Then, the previously described fitting algorithm is 

applied for each candidate peaks. SSR is calculated for each fit and the tuple of candidate peaks 

with the lowest score is chosen. Summarising, the algorithm is defined as follows: 

1. The initial search for peaks is performed using the second derivative method.  

2. Set 𝑍 is generated for the initially detected peaks.  

3. The curve fitting algorithm is used for each pair in set Z. 

4. The pair (ℎ1, ℎ2)  with the lowest SSR is chosen. 

The tuple (ℎ1, ℎ2) contains valuable information about the difference between heights of the 

peaks. The overall goal of the feature extraction phase was to gain this particular information 

from the data. Hence, a difference |ℎ1 − ℎ2| is calculated to finally form a feature matrix used 

in the further diglucosides classification. A structure of the matrix can be visualised as the 

following table. It can be visually and structurally compared with Figure 2. since it holds the 

same information but in the numerical form. Each cell of the table corresponds to a distance 

between peaks of a given diglucoside and ion separated in the mass spectrometry phase. With 

this data, one can attempt to build a machine learning model able to distinguish between α- and 

β -diglucosides, which is the overall goal of the study.  

 

 

  

 

 

  

 

 

Table 1. Structure of the feature matrix extracted from the IMS signals of reducing 

diglucosides. 
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4.7. Classification using Gaussian naïve Bayes classifier 

There are plenty of different classifiers used in machine learning and statistics, e.g. support 

vector machines, deep neural networks, linear classifiers or decision trees. Due to the 

uncomplicated nature of data, i.e. a relatively low number of dimensions (three, each dimension 

corresponding to one ion) and small number of samples, there is no need to employ highly 

advanced techniques in the study. 

The problem of classifying samples given a training set with predefined labels is considered to 

be supervised learning. It builds a model that is able to make predictions given evidence. When 

the model is trained it might take any input of the same type (dimensions and data type of each 

variable) and decide which of predefined labels should be assigned to this sample. 

In order to classify the given series of diglucosides by their bondage type, a Gaussian naïve 

Bayes classifier [37] is employed. The model is based on Bayes’ theorem and makes a ‘naïve’ 

assumption of the variables being independent. It means that a single variable does not have 

any impact on the other variables in the dataset. It involves calculating prior and posterior 

probabilities. The prior probability is defined as follows: 

𝑃(𝑐) =
𝑁𝐶

𝑁
 

where 𝑁𝑐 is the number of samples of a given class and 𝑁 is the number of samples. The 

posterior probability is defined as: 

𝑃(𝑥|𝑐) = 𝑃(𝑥1|𝑐) ∗ 𝑃(𝑥2|𝑐) ∗ … ∗ 𝑃(𝑥𝑛|𝑐) 

In case of usual naïve Bayes classifier, one deals with discrete data. However, the feature matrix 

obtained in the feature extraction phase contains only continuous variables. 𝑃(𝑥𝑖|𝑐) for 

continuous features is defined as: 

𝑃(𝑥𝑖|𝑐) =
1

√2 ∗ 𝜋 ∗ 𝜎𝑐
2

∗ 𝑒

−(𝑥𝑖−𝜇𝑥𝑖
,𝑐)

2

2∗𝜎𝑥𝑖,𝑐
2

 

Where 𝜎𝑥𝑖,𝑐
2  and 𝜇𝑥𝑖,𝑐

2  are the standard deviation and the mean of 𝑥𝑖 feature within 𝑐 class. 

Finally, the probability of a class 𝑐 defining a newly approached sample 𝑥 is given as follows: 

𝑃(𝑐𝑖|𝑥) =
𝑃(𝑥|𝑐𝑖) ∗ 𝑃(𝑐𝑖)

∑ 𝑃(𝑥|𝑐𝑗) ∗ 𝑃(𝑐𝑗)𝑗

 

In the classification problem, the probability is calculated for each class and the class with the 

highest probability is considered to be the predicted result. Precisely, a probability of a given 

IMS spectra of being α-glucoside and β-glucoside are calculated. The higher probability is 

considered to be the result. It is possible to take a different approach in choosing the predicted 

class, which is introduced in the result section.  
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5. Results 

In this section, the results of the feature extraction and classification are presented. More 

specifically, a table of fits is shown (Figure 6.), the extracted features are displayed (Table 2.), 

the evaluation routine is described, the AUC-ROC curve is plotted (Figure 7) and the accuracy 

of the model is calculated. The results are described and analysed.  

5.1 Example fits 

First, the example fits are presented (Figure 6). As it might be observed, the fitting algorithm 

performs satisfactorily in several scenarios. The Y ion of nigerose is an example of clearly 

separated peaks, which technically should be the less difficult to describe by a function. The 

fitted function curves are also separated creating a specific ‘valley’ between them, as should 

be expected. The B ion extracted from nigerose and the Y ion of laminaribiose show the second 

possible case of IMS signal structure. The peaks are highly overlapped and there is no clear 

gap between them, which is considered to be the hardest type of IMS data to be approximated 

by a function. Nonetheless, the algorithm performed decently even in this case. It created an 

inflection point in the place of the second peak, which is a perfect mapping of the actual IMS 

signal. The C ion derived from Laminaribiose is an example of the single peaked signal. One 

possible difficulty in fitting the curve to this type of data might be creating two very similar 

peaks, which heights are roughly the half of the maximum point. Potentially, sum of those 

functions would recreate the true shape of the signal but properties of each component would 

not be consistent with the actual components. The fitting algorithm performed well in this case. 

Only one component tends to describe the whole signal and the second component is 

minimized so technically it can be treated as it would not exist. The Y ion derived from Glcα1-

4GlcNAC is an example of distanced peaks, where a strong ‘valley’ is formed between them. 

The algorithm also performs well in this situation. Generally speaking, the algorithm performed 

well in all of the situations introduced in the study. It could be easily modified to more advanced 

scenarios, where we deal with larger number of peaks by simply increasing the number of 

components of Gaussian functions and extending a tuple of initially defined peaks. In the case 

the number of components is known, these quantities can stay fixed. However, if they are not, 

there is a need to specify the maximum number of components, which might be found in the 

spectrum. Then, another exhaustive search could be performed. The main disadvantage of this 

approach is its complexity. In the case when the number of peaks is known the complexity is 

𝑂(𝑁) (linear) and when the number of peaks is not known and two brute force searches are 
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performed, it is increased to 𝑂(𝑁2) (quadratic). Since in the study the number of peaks is low 

and known, this approach has been employed. The main idea behind the study is to prove that 

automated classification of linkages of diglucosides (so other lihiated disaccharides) is 

achievable. As long as the desired effect of parameterizing the signal is obtained and the pattern 

is recognized, the feature extraction process is considered to be successful. However, in the 

case of more complex glycans it would be reasonable to employ more advanced and rapid 

methods [38]. The curve fitting problem for MS/IMS spectra has been an open research 

question and improving the current state-of-the-art approaches is considered to be a problem 

outside of this study. 

 

Fig. 13. The table of example fits performed in the study. The table contains all possible 

scenarios for two peaks: highly overlapped peaks as in the case of Laminibriose – Y ion, 

clearly separated but still close peaks – Glcα1-4GlcNAC – C, and clearly distinctive, distant 

peaks as in the case of Glcα1-4GlcNAC – Y. All the approximations obtained in the 

experiment can be found in the appendix. 
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5.2. Feature matrix 

The following feature matrix has been built by comparing heights of components of the 

approximated functions. The feature matrix faithfully reflects the pattern for α- and β-

diglucosides, which is a consequence of correctly parameterized curves, as showed in the 

previous subsection. As deduced in the introduction section, one outlier has been produced – 

Y ion for Glcβ1-4GlcNAC. It has to be stressed that outliers are something, which is usually 

expected in data analysis. Nevertheless, the value is replaced by a mean of the feature to avoid 

skewing the classification results. In such a limited space even one outlying point might make 

a significant difference in the classification.   

 

 

 

 

 

 

 

Table 2. Features extracted from IMS data, which are used to classify diglucosides by a 

bonding type. As might be observed, the values of alpha samples are usually smaller 

compared to the beta samples. This pattern allows classifying the diglucosides. The 

classification is performed by training a Naïve-Bayes classifier with the matrix as explained 

in the methodology section. 

5.3. K-fold validation 

In order to conduct this experiment with only 10 samples, the abbreviation of k-fold cross 

validation is employed. The k-fold validation testing is used when the number of samples is 

limited. In machine learning the usual testing approach involves splitting the dataset into two 

groups – a training set, which is used to construct a model and test set, which is used for the 

evaluation purposes. However, in this study, the number of samples is relatively small so casual 

splitting would produce too few samples for the training purposes since it would provide not 
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enough information to capture the pattern observed in the data. The k-fold validation procedure 

is defined as follows: 

1. Choose one sample from the dataset as a test sample. The remaining seven samples 

are considered to be the training set.  

2. Perform a training phase, i.e. calculate prior and posterior probabilities, using the 

training set. 

3. Make a prediction for the test sample. 

4. Repeat the first three steps until all of the samples are used as a test set once. 

 

5.4. Accuracy 

In order to evaluate the k-fold validation procedure a performance metric must be employed. 

For purpose of this study, accuracy is chosen. This basic metric is defined as follows: 

𝐴 =
𝑃

𝑁
 

Where 𝑃 is the number of correctly classified samples and 𝑁 is the count of classification 

attempts. 

The accuracy obtained in the experiment, when two classes were treated as equally important 

equals 0.7, which means that the classifier made three mistakes in 8 trials. However, if it is 

decided to drop y ion from the feature space, the accuracy increases to 0.9 and the mistake is 

made only for Cellobiose – a sample, which was not accurately parameterized by the fitting 

algorithm for C and Y ions. Furthermore, if the c ion is dropped the accuracy is increased to 1, 

which means that all of the samples in the k-validation procedure were classified successfully. 

The increased accuracy leads to the conclusion that ion is the most important feature in the 

built dataset, i.e. it brings the most information to the classification outcome.  

Nevertheless, it is hard to accurately approximate the performance of the classification due to 

the limited number of samples of each class. However, this fact is considered to be an initial 

limitation of the research problem, since the number of given saccharides standards abundant 

in nature is limited. It has to be stressed out that the dataset could be extended to different 

carbohydrates than diglucosides. The pattern, which allows classification, does not occur only 

for this certain type of sugars as stated in the introduction. 
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5.5. AUC-ROC curve 

As previously stated, in the classification routine each of the class is treated as equally 

important. However, this is not always the case. It might be possible to place emphasis on only 

one class. For example, one might want to specifically classify only alpha- over beta-

diglucosides and vice versa. In this case, a classification threshold needs to be defined. When 

two classes are considered to be of equal weight the threshold is set to 0.5. In other words, the 

class with higher probability is considered to be the result. However, when the preference is 

put on one of the classes the threshold for this class should be higher. For example, when it is 

chosen to classify alpha linkages the threshold might be set to 0.7. This indicates that the model 

classify alpha-diglucosides only when there is 70% probability that given sample represents 

this class.  

In order to evaluate the model for different thresholds AUC-ROC curve is analysed. The AUC-

ROC curve shows how the true-positive rate and false positive rate changes when the threshold 

of classification is changed. It provides information on the performance of the model in the 

whole space of the threshold parameter. From the obtained AUC-ROC curve it might be 

deduced that the classification algorithm would perform well for different thresholds. However, 

a number of samples decrease an evaluation power of this metric. This is due to the fact that it 

takes a slightly discretized form and does not cover more possibilities in the TPR and FPR.  

 

Fig. 14. AUC-ROC curve obtained in the diglucosides classification experiment. The 

rectangular shape implies a limited number of samples in the dataset.  
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6. Conclusions 

In this section the research objectives and formal requirements of the approach are revisited. 

All of the findings related to the implemented algorithm are summarized and confronted with 

the biochemical knowledge on glycans and experiments, which provided data for the analysis.  

6.1. Research objectives 

In summary to the description of curve fitting approach in the results section, the algorithm 

performed well in all of the testing scenarios. However, it has a high complexity and it is not 

known how it deals with more complex samples. From the theoretical point of view, the 

algorithm should be able to fit a gaussian component for each true positive in the initial 

detection, i.e. using the second derivative method. This means that it can be assumed that it 

will perform well with more signals with higher number of modes – even extremely overlapped 

peaks will produce an inflection point in the signal, which will be initially detected and will 

allow correct approximation – this is a brute force approach so given solution space containing 

solutions must converge. However, this would require a further hyperparameter tuning, which 

is not considered to be the desired. As previously mentioned, it would be beneficial to employ 

more rapid and non-parametrised techniques for larger molecules, when the focus needs to be 

made on the fast annotation, which does not assume priori configuration of the algorithm. 

The current approach provides a feature matrix suitable only for signal consisting from two 

components. It could be extended to more complex cases. For example, for three mode signal 

the features can be defined as:  

(𝑥ℎ1−ℎ2
, 𝑥ℎ2−ℎ3

, 𝑥ℎ3−ℎ1
, 𝑥ℎ1−ℎ2

1 , 𝑥ℎ2−ℎ3

1 , 𝑥ℎ3−ℎ1

1 , … , 𝑥ℎ1−ℎ2

𝑛 , 𝑥ℎ2−ℎ3

𝑛 , 𝑥ℎ3−ℎ1

𝑛 ) 

Where 𝑥1, 𝑥2, … , 𝑥𝑛 are ions, which are derived in the MSMS fragmentation and analysed by 

IMS. The difference |ℎ𝑗 − ℎ𝑖| represents all possible combinations between peaks in term of 

the difference in their heights. 

However, it has to be reminded as this technique will be useful only in classifying not co-

fragmented. As mentioned in the introduction section the glycans containing isomers connected 

with each other by more than one glycosidic linkage might be problematic for this technique. 

However, if glycans with monomeric building blocks with no co-fragmented glycosidic 

linkages were assumed, it might be possible to extend the technique. The output of such a 

classifier will have multiple components, where each correspond to one linkage in the glycan. 

This kind of problem is considered to be multi-label classification []. In terms of extending the 

feature extraction phase for glycans different than diglucosides, the B, Y, Z ions need to be 

specified. In the case of this research, a knowledge about B, Y, Z ions were presumed, and 

those ions have been chosen from all the available IMS spectra. The necessity of specifying 

those ions is considered to be a disadvantage of this technique – unless the target group is only 

one standard of glycans (a group built from the same building blocks). 

The classifier exploited the bias in data, i.e. the pattern of one peak for b-glucosides and two 

peaks for a-glucosides. It is hard to justify this phenomenon since it was not theoretically 
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explained. One interesting conclusion is that B ion was the most important in the classification. 

Practically, this means that the difference between a-glucosides and b-glucosides were the most 

significant within this feature, i.e. double-peaked signals produced a small difference between 

the peaks and single-peaked signals produced a high difference between the peaks. However, 

since this phenomenon has not been described yet, it should be assumed that this kind of 

overfitting is not desirable. Newly approached samples could differ in ion B signal intensities 

in comparison to the analysed samples, which will fail the classification.  

6.2. Formal requirements  

The classifier does not require any user input in terms of the training phase and prediction 

phase. The user provides a raw input spectrum of a diglucoside and receives a glycoside linkage 

classification with probability of belonging to each class provided.  

The system might fail when approaching an unknow sample. As previously stated, masses of 

B, Y, Z ions are presumed and newly approached sample with a different mass of those ions 

will be not successfully recognized. In order to classify a sample built from a different 

monosaccharides than glucose, the classifier needs to be retrained using data from that group. 

The classifier will not classify a newly approached sample as unknow either. Classifying a 

sample as unrecognized is defined as open set classification and can be considered in the further 

work.  

The model used for approximation is considered to be easily understandable. Its parameters 

correspond to visually observable characteristics of the curve such as height or width. The 

Gaussian-Naïve classifier is also considered to be interpretable since it can justify its choices 

by providing prior and posterior probabilities.  

6.3. Future work 

The main outcome of the project is exploiting bias observed in IMS data for diglucosides and 

showing that it might lead to automated sequencing of glycans in terms of the glycosidic 

linkage type. The de novo sequencing approaches introduced in the literature overview were 

missing this ability. They are able to provide a sequential structure of glycans by determining 

their composition (GlycoDeNovo, GLYCH) or glycosidic linkages for smaller ions (LODES). 

Those approaches are fully autonomous and nonparameterized, so they overcome the 

drawbacks of the approach introduced in the study. 

It might be concluded that extending similar techniques by IMS data, so adding a single 

dimension to the input, might solve the defined problems. Developing a de novo sequencing 

method, which utilizes tandem MS data complemented by orthogonal information provided by 

IMS, will be certainly a huge breakthrough in a field of glycomics.  
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7. Appendix 

Figure 15. Curve fitting results 


