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Abstract—Semantic segmentation of remotely sensed urban scene images is required in a wide 

range of practical applications, such as land cover mapping, urban change detection, 

environmental protection, and economic assessment. Driven by rapid developments in deep 

learning technologies, the convolutional neural network (CNN) has dominated semantic 

segmentation for many years. CNN adopts hierarchical feature representation, demonstrating 

strong capabilities for local information extraction. However, the local property of the convolution 

layer limits the network from capturing the global context. Recently, as a hot topic in the domain 

of computer vision, Transformer has demonstrated its great potential in global information 

modelling, boosting many vision-related tasks such as image classification, object detection, and 

particularly semantic segmentation. In this paper, we propose a Transformer-based decoder and 

construct an UNet-like Transformer (UNetFormer) for real-time urban scene segmentation. For 

efficient segmentation, the UNetFormer selects the lightweight ResNet18 as the encoder and 

develops an efficient global-local attention mechanism to model both global and local information 

in the decoder. Extensive experiments reveal that our method not only runs faster but also 

produces higher accuracy compared with state-of-the-art lightweight models. Specifically, the 

proposed UNetFormer achieved 67.8% and 52.4% mIoU on the UAVid and LoveDA datasets, 

respectively, while the inference speed can achieve up to 322.4 FPS with a 512512 input on a 

single NVIDIA GTX 3090 GPU. In further exploration, the proposed Transformer-based decoder 

combined with a Swin Transformer encoder also achieves the state-of-the-art result (91.3% F1 

and 84.1% mIoU) on the Vaihingen dataset. The source code will be freely available at 

https://github.com/WangLibo1995/GeoSeg. 

Index Terms—Semantic Segmentation, Remote Sensing, Vision Transformer, Hybrid Structure, 

Global-local Context, Urban Scene. 
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1. Introduction 

Driven by advances in sensor technology, fine-resolution remotely sensed urban scene images 

have been captured increasingly across the globe, with abundant spatial details and rich potential 

semantic contents. Urban scene images have been subjected extensively to semantic segmentation, 

the task of pixel-level segmentation and classification, leading to various urban-related 

applications, including land cover mapping (Li et al., 2022b; Maggiori et al., 2016; Marcos et al., 

2018), change detection (Xing et al., 2018; Yin et al., 2018), environmental protection (Samie et 

al., 2020), road and building extraction (Griffiths and Boehm, 2019; Shamsolmoali et al., 2020; 

Vakalopoulou et al., 2015) and many other practical applications (Picoli et al., 2018; Shen et al., 

2019). Recently, a growing wave of deep learning technology (LeCun et al., 2015), in particular 

the convolutional neural network (CNN), has dominated the task of semantic segmentation (Chen 

et al., 2014; Chen et al., 2018b; Long et al., 2015; Ronneberger et al., 2015; Zhao et al., 2017a). 

Compared with traditional machine learning methods for segmentation, such as the support vector 

machine (SVM) (Guo et al., 2018), random forest (Pal, 2005) and conditional random field (CRF) 

(Krähenbühl and Koltun, 2011), CNN-based methods are capable of capturing more fine-grained 

local context information, which underpins its huge capabilities in feature representation and 

pattern recognition (Zhang et al., 2020a; Zhang et al., 2020b). 

Despite the above advantages, the convolution operation with a fixed receptive view is 

designed to extract local patterns and lacks the ability to model global contextual information or 

long-range dependencies in its nature. As for semantic segmentation, per-pixel classification is 

often ambiguous if only local information is modelled, while the semantic content of each pixel 
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becomes more accurate with the help of global contextual information (Yang et al., 2021a) (Li et 

al., 2021c). The global and local contextual information is illustrated in Fig. 1. Although the self-

attention mechanism alleviates the above issue (Vaswani et al., 2017) (Wang et al., 2018), they 

normally require significant computational time and memory to capture the global context, thus, 

reducing their efficiency and restricting their potential for real-time urban applications. 

 

Fig. 1 Illustration of the global and local contextual information. The local contextual information 

is modelled by convolutions (yellow). The global contextual information is modelled by long-

range window-wise dependencies (red). 

In this paper, we aim to achieve precise urban scene segmentation while ensuring the efficiency 

of the network simultaneously. Inspired by the recent breakthrough of Transformers in computer 

vision, we propose a UNet-like Transformer (UNetFormer) to address such a challenge. The 

UNetFormer innovatively adopts a hybrid architecture consisting of a CNN-based encoder and a 

specifically designed Transformer-based decoder. Specifically, we adopt the ResNet18 as the 

encoder and design a global-local Transformer block (GLTB) to construct the decoder. Unlike the 



5 

conventional self-attention block in the standard Transformer, the proposed GLTB develops an 

efficient global-local attention mechanism with an attentional global branch and a convolutional 

local branch to capture both global and local contexts for visual perception, as illustrated in Fig. 

2. In the global branch, the window-based multi-head self-attention and cross-shaped window 

context interaction module are introduced to capture global contexts with low complexity (Liu et 

al., 2021). In the global branch, convolutional layers are applied to extract the local context. 

Finally, to effectively fuse the spatial details and context information as well as further refine the 

feature maps, a feature refinement head (FRH) is proposed and attached at the end of the network. 

The trade-off between accuracy and efficiency as well as effective feature refinement allows the 

proposed method to exceed the state-of-the-art lightweight networks for efficient segmentation of 

remotely sensed urban scene images, demonstrated by four public datasets: the UAVid (Lyu et al., 

2020), ISPRS Vaihingen and Potsdam datasets, as well as the LoveDA (Wang et al., 2021a). 

The remainder of this paper is organized as follows. In Section 2, we review the related work 

on CNN-based and Transformer-based urban scene segmentation and global context modelling. 

In Section 3, we present the structure of our UNetFormer and introduce the proposed GLTB and 

FRH. In Section 4, we conduct an ablation study to demonstrate the effectiveness of GLTB and 

FRH as well as the novel hybrid structure and compare the results with a set of state-of-the-art 

models applied to the four datasets. In Section 5, we provide a comprehensive discussion. Section 

6 is a summary and conclusion. 
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Fig. 2 Illustration of (a) the standard Transformer block and (b) the global-local Transformer block. 

2. Related work 

2.1 CNN-based semantic segmentation methods 

The fully convolutional network (FCN) (Long et al., 2015) is the first effective CNN structure 

to address semantic segmentation problems in an end-to-end manner. Since then, CNN-based 

methods have dominated the semantic segmentation task in the remote sensing field (Kemker et 

al., 2018; Kotaridis and Lazaridou, 2021; Ma et al., 2019; Tong et al., 2020; Zhao and Du, 2016; 

Zhu et al., 2017). However, the over-simplified decoder of FCN leads to a coarse-resolution 

segmentation, limiting the fidelity and accuracy. 

To address this problem, an encoder-decoder network, i.e., the UNet, was proposed for 

semantic segmentation, with two symmetric paths named the contracting path and the expanding 

path (Ronneberger et al., 2015). The contracting path extracts hierarchical features by gradually 

downsampling the spatial resolution of the feature maps, while the expanding path learns more 
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contextual information by progressively restoring the spatial resolution. Subsequently, the 

encoder-decoder framework has become the standard structure of remote sensing image 

segmentation networks (Badrinarayanan et al., 2017; Chen et al., 2018a) (Sun et al., 2019). Based 

on encoder-decoder structure, (Diakogiannis et al., 2020; Yue et al., 2019; Zhou et al., 2018) 

designed different skip connections to capture more abundant context, while (Liu et al., 2018; 

Zhao et al., 2017b) (Shen et al., 2019) developed various decoders to retain semantic information. 

The encoder-decoder CNN-based methods, although have achieved encouraging performance, 

encounter bottlenecks in urban scene interpretation (Sherrah, 2016) (Marmanis et al., 2018; 

Nogueira et al., 2019). To be specific, CNN-based segmentation networks with limited receptive 

fields can only extract local semantic features and lack the capability to model the global 

information from the whole image. However, within fine-resolution remotely sensed urban scene 

images, complicated patterns and human-made objects occur frequently (Kampffmeyer et al., 

2016; Marcos et al., 2018) (Audebert et al., 2018). It is difficult to identify these complex objects 

if only relying on the local infromation. 

2.2 Global contextual information modelling 

To liberate the network from the local pattern focus of CNNs, many attempts have been 

conducted to modelling global contextual information, while the most popular way is 

incorporating attention mechanisms into networks. For example, Wang et al. modified the dot-

product self-attention mechanism and applied it to computer vision domains (Wang et al., 2018). 

Fu et al. appended two types of attention modules on top of a dilated FCN to adaptively integrate 

local features with their global dependencies (Fu et al., 2019). Huang et al. proposed a criss-cross 
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attention block to aggregate informative global features (Huang et al., 2020). Yuan et al. 

developed an object context block to explore object-based global relations (Yuan et al., 2020). 

Attention mechanisms also improve the performance of remote sensing image segmentation 

networks. Yang et al. proposed an attention-fused network to fuse high-level and low-level 

semantic features and obtain state-of-the-art results in the semantic segmentation of fine-

resolution remote sensing images (Yang et al., 2021b). Li et al. integrated lightweight spatial and 

channel attention modules to refine semantic features adaptively for high-resolution remotely 

sensed image segmentation (Li et al., 2020a). Ding et al. designed a local attention block with an 

embedding module to capture richer contextual information (Ding et al., 2021). Li et al. developed 

a linear attention mechanism to reduce the computational complexity while improving 

performance (Li et al., 2021a). However, the above attention modules restrict the global feature 

representation due to over-reliance on convolutional operations. Furthermore, a single attention 

module cannot model the global information at multi-level semantic features in the decoder. 

2.3 Transformer-based semantic segmentation methods 

Recently, several attempts were made to apply the Transformer for global information 

extraction (Vaswani et al., 2017). Different from the CNN structure, the Transformer translates 

2D image-based tasks into 1D sequence-based tasks. Due to the powerful sequence-to-sequence 

modelling ability, the Transformer demonstrates superior characterization of extracting global 

context than the above-mentioned attention-alone models and obtains state-of-the-art results on 

fundamental vision tasks, such as image classification (Dosovitskiy et al., 2020), object detection 

(Zhu et al., 2020) and semantic segmentation (Zheng et al., 2021). Driven by this, many 
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researchers in the remote sensing field have applied the Transformer for remote sensing image 

scene classification (Bazi et al., 2021; Deng et al., 2021), hyperspectral image classification 

(Hong et al., 2021) (He et al., 2021; Zhong et al., 2021), object detection (Li et al., 2022a), change 

detection (Chen et al., 2021a), building and road extraction (Chen et al., 2021c) (Sun et al., 2022), 

and especially semantic segmentation (Li et al., 2020b) (Gao et al., 2021) (Zhang et al., 2022). 

Most of the existing Transformers for semantic segmentation still follow the encoder-decoder 

framework. According to different encoder-decoder combinations, they can be divided into two 

categories. The first is constructed by a Transformer-based encoder and a Transformer-based 

decoder, namely the pure Transformer structure. Typical models include the Segmenter (Strudel 

et al., 2021), SegFormer (Xie et al., 2021) and SwinUNet (Cao et al., 2021). The second adopts a 

hybrid structure, which is composed of a Transformer-based encoder and a CNN-based decoder. 

Transformer-based semantic segmentation methods commonly follow the second structure. For 

example, the TransUNet employed the hybrid vision Transformer (Dosovitskiy et al., 2020) as the 

encoder for stronger feature extraction and obtains state-of-the-art results in medical image 

segmentation (Chen et al., 2021b). The DC-Swin introduced Swin Transformer (Liu et al., 2021) 

as the encoder and designs a densely connected convolutional decoder for fine-resolution remote 

sensing image segmentation, surpassing the CNN-based methods by a large gap (Wang et al., 

2022). (Panboonyuen et al., 2021) also selected the Swin Transformer as the encoder and utilizes 

various CNN-based decoders, such as UNet (Ronneberger et al., 2015), FPN (Kirillov et al., 2019) 

and PSP (Zhao et al., 2017a), for semantic segmentation of remotely sensed images, obtaining 

advanced accuracy (Panboonyuen et al., 2021). 
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Despite the above advantages, the computational complexity of the Transformer-based encoder 

is much higher than the CNN-based encoder due to its square-complexity self-attention 

mechanism (Vaswani et al., 2017), which seriously affects its potential and feasibility for urban-

related real-time applications. Thus, to fully harness the global context extraction ability of 

Transformers without resulting in high computational complexity, in this paper, we present a 

UNet-like Transformer with a CNN-based encoder and a Transformer-based decoder for efficient 

semantic segmentation of remotely sensed urban scene images. Specifically, for our UNetFormer, 

we select the lightweight backbone, i.e. ResNet18, as the encoder and develop an efficient global-

local attention mechanism to construct Transformer blocks in the decoder. The proposed efficient 

global-local attention mechanism adopts a dual-branch structure, i.e. a global branch and a local 

branch. Such a structure allows the attention block to capture both global and local contexts, 

thereby surpassing the single-branch efficient attention mechanisms in Transformers that only 

capture global contexts (Liu et al., 2021; Zhang and Yang, 2021). 

3. Methodology 

As illustrated in Fig. 3, the proposed UNetFormer is constructed using a CNN-based encoder 

and a Transformer-based decoder. A detailed description of each component is given in the 

following sections. 
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Fig. 3. An overview of the UNetFormer. 

3.1 CNN-based encoder 

As the ResNet18 (He et al., 2016) has demonstrated effectiveness and efficiency 

simultaneously in a wide range of real-time semantic segmentation tasks, we select the pre-trained 

ResNet18 as the encoder here to extract multi-scale semantic features with significantly low 

computational cost. ResNet18 consists of four-stage Resblocks, with each stage down-sampling 

the feature map with a scale factor of 2. In the proposed UNetFormer, the feature maps generated 
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by each stage are fused with the corresponding feature maps of the decoder by a 11 convolution 

with the channel dimension in 64, i.e., the skip connection. Specifically, the semantic features 

produced by the Resblocks are aggregated with the features generated by the GLTB of the decoder 

using a weighted sum operation. The weighted sum operation weights the two features selectively 

based on their contributions to segmentation accuracy, thereby learning more generalized fusion 

features (Tan et al., 2020). The formulation of the weighted sum operation can be denoted as: 

𝐅𝐅𝐅𝐅 = α ∙ 𝐑𝐑𝐅𝐅 + (1 − α) ∙ 𝐆𝐆𝐆𝐆𝐅𝐅 (1) 

where 𝐅𝐅𝐅𝐅 represents the fused feature, 𝐑𝐑𝐅𝐅 denotes the feature produced by the Resblocks, and 

𝐆𝐆𝐆𝐆𝐅𝐅 indicates the feature generated by the global-local Transformer block. 

3.2 Transformer-based decoder 

Complicated human-made objects occur frequently in fine-resolution remotely sensed urban 

images, which makes it difficult to achieve precise real-time segmentation without global 

semantic information. To capture the global context, mainstream solutions focus on attaching a 

single attention block at the end of the network (Wang et al., 2018) or introducing Transformers 

as the encoder (Chen et al., 2021b). The former cannot capture multi-scale global features, 

whereas the latter significantly increases the complexity of the network and loses spatial details. 

In contrast, in the proposed UNetFormer, we utilize three global-local Transformer blocks and a 

feature refinement head to build a lightweight Transformer-based decoder, as shown in Fig. 3. 

With such a hierarchical and lightweight design, the decoder is capable of capturing both global 

and local contexts at multiple scales while maintaining high efficiency. 
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3.2.1 Global-local Transformer block (GLTB) 

The global-local Transformer block consists of the global-local attention, multilayer perceptron, 

two batch normalization layers and two additional operations, as shown in Fig. 1 (b). 

Global-local attention: Although the global context is crucial for semantic segmentation of 

complex urban scenes, local information is still essential to preserve rich spatial details. In this 

regard, the proposed global-local attention constructs two parallel branches to extract the global 

and local contexts, respectively, as shown in Fig. 4 (a). 

As a relatively shallow structure, the local branch employs two parallel convolutional layers 

with kernel sizes of 3 and 1 to extract the local context. Two batch normalization operations are 

then attached before the final sum operation. 

The global branch deploys the window-based multi-head self-attention to capture global 

context. As illustrated in Fig 4. (b), we first use a standard 11 convolution to expand the channel 

dimension of the input 2D feature map ∈ ℝ𝐵𝐵×𝐶𝐶×𝐻𝐻×𝑊𝑊 to three times. Then, we apply the window 

partition operation to split the 1D sequence ∈ ℝ�3×𝐵𝐵×𝐻𝐻
𝑤𝑤×𝑊𝑊

𝑤𝑤×ℎ�×(𝑤𝑤×𝑤𝑤)×𝐶𝐶
ℎ into the query (Q), key 

(K) and value (V) vectors. The channel dimension C is set to 64. The window size w and the 

number of heads h are both set to 8. The details of the window-based multi-head self-attention 

can refer to Swin Transformer (Liu et al., 2021). 
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Fig. 4. Illustration of the efficient global-local attention. 

Performing self-attention in a non-overlapping local window, although being efficient, can 
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destroy the spatial consistency of urban scenes due to the lack of interactions across windows. 

The Swin Transformer introduces an extra shifted Transformer block to mine the relationship 

between local windows. Although the ability to capture cross-window relations increases, the 

computation significantly surges accordingly. In this paper, we propose a cross-shaped window 

context interaction module to capture the cross-window relations with high computational 

efficiency. As illustrated in Fig. 4 (c), the cross-shaped window context interaction module fuses 

the two feature maps produced by a horizontal average pooling layer and a vertical average 

pooling layer, thereby capturing the global context. Specifically, the horizontal average pool layer 

establishes the horizontal relationship between Windows, such as 𝑊𝑊𝑊𝑊𝑊𝑊1 = 𝐻𝐻(𝑊𝑊𝑊𝑊𝑊𝑊2). For any 

point P1
(𝑚𝑚,𝑛𝑛) in Window 1, its dependency with P2

(𝑚𝑚+𝑤𝑤,𝑛𝑛) in Window 2 can be modelled as: 

 P1
(𝑚𝑚,𝑛𝑛) =

∑ P1
(𝑚𝑚+𝑖𝑖,𝑛𝑛)𝑤𝑤−𝑚𝑚−1

𝑖𝑖=0 +∑ P2
(𝑚𝑚+𝑤𝑤−𝑗𝑗,𝑛𝑛)𝑚𝑚

𝑗𝑗=0

𝑤𝑤
 (2) 

 P1
(𝑚𝑚+𝑖𝑖,𝑛𝑛) = 𝐷𝐷𝑖𝑖 �P1

(𝑚𝑚,𝑛𝑛)� (3) 

 P2
(𝑚𝑚+𝑤𝑤−𝑗𝑗,𝑛𝑛) = 𝐷𝐷𝑗𝑗 �P2

(𝑚𝑚+𝑤𝑤,𝑛𝑛)� (4) 

 P1
(𝑚𝑚,𝑛𝑛) =

∑ 𝐷𝐷𝑖𝑖 �P1
(𝑚𝑚,𝑛𝑛)�𝑤𝑤−𝑚𝑚−1

𝑖𝑖=0 + ∑ 𝐷𝐷𝑗𝑗 �P2
(𝑚𝑚+𝑤𝑤,𝑛𝑛)�𝑚𝑚

𝑗𝑗=0

𝑤𝑤
 (5) 

Where w is the window size. D denotes the self-attention computation, which can model 

dependencies of pixel pairs in a local window. Thus, for any other point P1
(𝑚𝑚+𝑖𝑖,𝑛𝑛) in the red path 

of Window 1, its dependency with P1
(𝑚𝑚,𝑛𝑛)  can be modelled by Eq.(3). For any other point 

P2
(𝑚𝑚+𝑤𝑤−𝑗𝑗,𝑛𝑛) in the green path of Window 2, its dependency with P2

(𝑚𝑚+𝑤𝑤,𝑛𝑛) can be modelled by 

Eq.(4). Eq.(2) can be rewritten as Eq.(5), i.e. the dependency between P1
(𝑚𝑚,𝑛𝑛) and P2

(𝑚𝑚+𝑤𝑤,𝑛𝑛) is 

modelled. Based on this cross-window pixel-wise dependency, the horizontal relationship 

between Windows 1 and 2 can be established. Similarly, the vertical relationship between Window 
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1 and 3 can be established in the same way, i.e. 𝑊𝑊𝑊𝑊𝑊𝑊1 = 𝑉𝑉(𝑊𝑊𝑊𝑊𝑊𝑊3), and for Window 4, 𝑊𝑊𝑊𝑊𝑊𝑊1 =

𝑉𝑉(𝐻𝐻(𝑊𝑊𝑊𝑊𝑊𝑊4)) + 𝐻𝐻(𝑉𝑉(𝑊𝑊𝑊𝑊𝑊𝑊4)) . Generalized to an MM input (M denotes the number of 

windows), by connecting more intermedia windows like Window 2 and Window 3, the long-range 

dependency between any two windows can be modelled. Thus, the cross-shaped window context 

interaction module can model the window-wise long-range dependencies, thereby capturing the 

global context. 

Besides, the global context in the global branch is further aggregated with the local context in 

the local branch to produce the global-local context. Finally, we employ a depth-wise convolution, 

a batch normalization operation and a standard 11 convolution to characterize the fine-grained 

global-local context. 

3.2.2 Feature refinement head (FRH) 

The shallow feature produced by the first Resblock preserves rich spatial details of urban scenes, 

but lacks semantic content, while the deep global-local feature provides precise semantic 

information, but with a coarse spatial resolution. Hence, a direct sum operation on these two 

features, although fast, can reduce segmentation accuracy (Poudel et al., 2018; Poudel et al., 2019; 

Yu et al., 2018). In this paper, we develop a feature refinement head to shrink the semantic gap 

between the two features for further accuracy improvement. 

As can be seen in Fig. 5, we perform a weighted sum operation on the two features first to take 

full advantage of the precise semantic information and spatial details. The fused feature is then 

selected as the input of the FRH, as shown in Fig. 3. Second, we construct two paths to strengthen 

the channel-wise and spatial-wise feature representation. Specifically, the channel path employs 
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a global average pooling layer to generate a channel-wise attentional map 𝑪𝑪 ∈ ℝ1×1×𝑐𝑐, where c 

denotes the channel dimension. The reduce & expand operation contains two 11 convolutional 

layers, which first reduces the channel dimension c by a factor of 4 and then expands it to the 

original. The spatial path utilizes a depth-wise convolution to produce a spatial-wise attentional 

map 𝑺𝑺 ∈ ℝℎ×𝑤𝑤×1 , where h and w represent the spatial resolution of the feature map. The 

attentional features generated by the two paths are further fused using a sum operation. Finally, a 

post-processing 11 convolutional layer and an upsampling operation are applied to produce the 

final segmentation map. Notably, a residual connection is introduced to prevent network 

degradation. 

 

Fig. 5. The feature refinement head.  
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3.3 Loss function 

In the training phase, we employ not only the primary feature refinement head but also build 

an extra auxiliary head to optimize the global-local Transformer blocks, as shown in Fig. 3. This 

multi-head segmentation architecture has been demonstrated to be effective in previous research 

(Yu et al., 2020; Zhu et al., 2019). Based on the multi-head design, we apply a principal loss and 

an auxiliary loss to train the entire network. The principal loss ℒ𝑝𝑝 is a combination of a dice loss 

ℒ𝑑𝑑𝑖𝑖𝑐𝑐𝑑𝑑 and a cross-entropy loss ℒ𝑐𝑐𝑑𝑑, which can be formulated as: 

ℒ𝑐𝑐𝑑𝑑 = −
1
𝑁𝑁
� � 𝑦𝑦𝑘𝑘

(𝑛𝑛)log𝑦𝑦�𝑘𝑘
(𝑛𝑛)

𝐾𝐾

𝑘𝑘=1

𝑁𝑁

𝑛𝑛=1
 (6) 

ℒ𝑑𝑑𝑖𝑖𝑐𝑐𝑑𝑑 = 1 −
2
𝑁𝑁
� �

𝑦𝑦�𝑘𝑘
(𝑛𝑛)𝑦𝑦𝑘𝑘

(𝑛𝑛)

𝑦𝑦�𝑘𝑘
(𝑛𝑛) + 𝑦𝑦𝑘𝑘

(𝑛𝑛)

𝐾𝐾

𝑘𝑘=1

𝑁𝑁

𝑛𝑛=1
 (7) 

ℒ𝑝𝑝 = ℒ𝑐𝑐𝑑𝑑 + ℒ𝑑𝑑𝑖𝑖𝑐𝑐𝑑𝑑  (8) 

where N and K denote the number of samples and the number of categories, respectively. 𝑦𝑦(𝑛𝑛) 

and 𝑦𝑦�(𝑛𝑛)  represent the one-hot encoding of the true semantic labels and the corresponding 

softmax output of the network, n ∈ [1,⋯ , N]. 𝑦𝑦�𝑘𝑘
(𝑊𝑊) is the confidence of sample n belonging to the 

category k. We select the cross-entropy loss as the auxiliary loss ℒ𝑎𝑎𝑎𝑎𝑎𝑎 and deploy it on the auxiliary 

head. The auxiliary head takes the fused feature of the three global-local Transformer blocks as 

the input and constructs a 33 convolution layer with batch normalization and ReLU, a 11 

convolution layer and an upsampling operation to generate the output. For a better combination 

with the principle loss, the auxiliary is further multiplied by a factor α. Thus, the overall loss ℒ 

can be formulated as: 
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ℒ = ℒ𝑝𝑝 + α × ℒ𝑎𝑎𝑎𝑎𝑎𝑎 (9) 

where α is set to 0.4 by default. 

4. EXPERIMENTS  

4.1 Experimental settings 

4.1.1 Datasets 

UAVid: As a fine-resolution Unmanned Aerial Vehicle (UAV) semantic segmentation dataset, 

the UAVid dataset focuses on urban street scenes with two spatial resolutions (38402160 and 

40962160) and eight classes (Lyu et al., 2020). Segmentation of UAVid is challenging due to 

the fine spatial resolution of images, heterogeneous spatial variation, vague categories and 

generally complex scenes. To be specific, there are 42 sequences with a total of 420 images in the 

dataset, where 200 images are used for training, 70 images for validation and the officially 

provided 150 images for testing. In our experiments, each image was padded and cropped into 

eight 10241024 px patches. 

Vaihingen: The Vaihingen dataset consists of 33 very fine spatial resolution TOP image tiles 

at an average size of 24942064 pixels. Each TOP image tile has three multispectral bands (near 

infrared, red, green) as well as a digital surface model (DSM) and normalized digital surface 

model (NDSM) with a 9 cm ground sampling distance (GSD). The dataset involves five 

foreground classes (impervious surface, building, low vegetation, tree, car) and one background 

class (clutter). In our experiments, only the TOP image tiles were used without the DSM and 

NDSM. And we utilized ID: 2, 4, 6, 8, 10, 12, 14, 16, 20, 22, 24, 27, 29, 31, 33, 35, 38 for testing, 
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ID: 30 for validation, and the remaining 15 images for training. The image tiles were cropped into 

10241024 px patches. 

Potsdam: The Potsdam dataset contains 38 very fine spatial resolution TOP image tiles (GSD 

5 cm) at a size of 60006000 pixels and involves the same category information as the Vaihingen 

dataset. Four multispectral bands (red, green, blue, and near infrared), as well as the DSM and 

NDSM, are provided in the dataset. We utilized ID: 2_13, 2_14, 3_13, 3_14, 4_13, 4_14, 4_15, 

5_13, 5_14, 5_15, 6_13, 6_14, 6_15, 7_13 for testing, ID: 2_10 for validation, and the remaining 

22 images (except image 7_10 with error annotations) for training. Similarly, only three bands 

(red, green, blue) were utilized and the original image tiles were cropped into 10241024 px 

patches in the experiments. 

LoveDA: The LoveDA dataset contains 5987 fine-resolution optical remote sensing images 

(GSD 0.3 m) at a size of 10241024 pixels and includes 7 landcover categories, i.e. building, 

road, water, barren, forest, agriculture and background (Wang et al., 2021a). Specifically, 2522 

images are used for training, 1669 images for validation and the officially provided 1796 images 

for testing. The dataset encompasses two scenes (urban and rural) which are collected from three 

cities (Nanjing, Changzhou and Wuhan) in China. Therefore, considerable challenges are brought 

due to the multi-scale objects, complex background and inconsistent class distributions. 

4.1.2 Implementation Details 

All models in the experiments were implemented with the PyTorch framework on a single 

NVIDIA GTX 3090 GPU. For fast convergence, we deployed the AdamW optimizer to train all 

models in the experiments. The base learning rate was set to 6e-4. The cosine strategy was 
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employed to adjust the learning rate.  

For the UAVid dataset, random vertical flip, random horizontal flip and random brightness were 

used to the input in the size of 10241024 for data augmentation in the training period, while the 

training epoch was set as 40 and the batch size was 8. In the test procedure, the test-time 

augmentation (TTA) strategies like vertical flip and horizontal flip were used. 

For the Vaihinge, Potsdam and LoveDA datasets, the images were randomly cropped into 

512512 patches. For training, the augmentation techniques like random scale ([0.5, 0.75, 1.0, 

1.25, 1.5]), random vertical flip, random horizontal flip and random rotate were adopted during 

the training process, while the training epoch was set as 100 and the batch size was 16. During 

the test phase, multi-scale and random flip augmentations were used. 

4.1.3 Evaluation metrics 

The evaluation metrics used in our experiments included two major categories. The first one 

was to evaluate the accuracy of the network including the overall accuracy (OA), mean F1 score 

(F1) and mean intersection over union (mIoU). The second one was to evaluate the scale of the 

network, including the floating point operation count (Flops) to evaluate the complexity, the 

frames per second (FPS) to evaluate the speed, the memory footprint (MB) and the number of 

model parameters (M) to evaluate the memory requirement. 

4.1.4 Models for comparison 

We selected a comprehensive set of benchmark methods for quantitative comparison including  

(i) CNN-based lightweight networks developed for efficient semantic segmentation: 
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context aggregation network (CANet) (Yang et al., 2021a), bilateral segmentation 

network (BiSeNet) (Yu et al., 2018), ShelfNet (Zhuang et al., 2019), SwiftNet (Oršić 

and Šegvić, 2021), Fast-SCNN (Poudel et al., 2019), DABNet (Li et al., 2019), ERFNet 

(Romera et al., 2017) and ABCNet (Li et al., 2021c). 

(ii) CNN-based attentional networks: dual attention network (DANet) (Fu et al., 2019), 

fast attention network (FANet) (Hu et al., 2020), local attention network (LANet) (Ding 

et al., 2021), criss-cross network (CCNet) (Huang et al., 2020), multi-stage attention 

residual UNet (MAResU-Net) (Li et al., 2021a) and multi-attention network (MANet) 

(Li et al., 2021b), 

(iii) CNN-based networks for semantic segmentation of remote sensing images: DST_5 

(Sherrah, 2016), V-FuseNet (Audebert et al., 2018), CASIA2 (Liu et al., 2018), DLR_9 

(Marmanis et al., 2018), RoteEqNet (Marcos et al., 2018), UFMG_4 (Nogueira et al., 

2019), HUSTW5 (Sun et al., 2019), TreeUNet (Yue et al., 2019), ResUNet-a 

(Diakogiannis et al., 2020), S-RA-FCN (Mou et al., 2020), DDCM-Net (Liu et al., 

2020), EaNet (Zheng et al., 2020a), HMANet (Niu et al., 2021) and AFNet (Yang et 

al., 2021b), 

(iv) hybrid Transformer-based networks with a Transformer-based encoder and a CNN-

based decoder: TransUNet (Chen et al., 2021b), SwinUperNet (Liu et al., 2021), DC-

Swin (Wang et al., 2022), STranFuse (Gao et al., 2021), SwinB-CNN+BD (Zhang et 

al., 2022), SwinTF-FPN (Panboonyuen et al., 2021), BANet (Wang et al., 2021b), 

CoaT (Xu et al., 2021), BoTNet (Srinivas et al., 2021) and ResT (Zhang and Yang, 
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2021), 

(v) fully Transformer-based networks with a Transformer-based encoder and a 

Transformer-based decoder: SwinUNet (Cao et al., 2021), SegFormer (Xie et al., 2021) 

and Segmenter (Strudel et al., 2021). 

4.2 Ablation study 

4.2.1 Each component of UNetFormer 

To evaluate the performance of each component of the proposed UNetFormer separately, we 

conducted a series of ablation experiments on the UAVid, Vaihingen and Potsdam datasets. For a 

fair comparison, the test time augmentation strategies and auxiliary loss were not used in all 

ablation studies. The results are illustrated in TABLE 1. 

TABLE 1. Ablation study of each component of the UNetFormer. 

Dataset Method mIoU 

UAVid 

Baseline 65.4 

Baseline+GLTB-SUM 67.8 

Baseline+GLTB 68.8 

Baseline+GLTB+FRH 70.0 

Vaihingen 

Baseline 77.1 

Baseline+GLTB-SUM 79.4 

Baseline+GLTB 80.6 

Baseline+GLTB+FRH 81.6 

Potsdam 

Baseline 82.5 

Baseline+GLTB-SUM 83.8 

Baseline+GLTB 84.9 

Baseline+GLTB+FRH 85.5 

 

Baseline: The baseline was constructed by the U-Net with a ResNet18 backbone, which only 
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models the local contextual information in the decoder. 

The global-local Transformer block (GLTB): Three global-local Transformer blocks were 

incorporated into the baseline to build the Baseline+GLTB. Meanwhile, to illustrate the 

contribution of the cross-shaped window context interaction module in the GLTB, we remove it 

and apply a direct sum operation on the window context and local context, thereby constructing 

a simple variant Baseline+GLTB-SUM. As shown in TABLE 1, the deployment of GLTB 

provides a significant increase of mIoU by 3.4% on the UAVid validation set, where the 

contribution of the cross-shaped window context interaction module to increase accuracy is 1.0%. 

Meanwhile, Baseline+GLTB achieves an increase of greater than 2.4% in mIoU on the Vaihingen 

and Potsdam test sets, where the increase provided by the cross-shaped window context 

interaction module is 1.2% and 1.1%, respectively. To sum up, the results not only demonstrate 

the effectiveness of GLTB but also indicate the necessity of applying the cross-shaped window 

context interaction module. 

The feature refinement module (FRH): We inserted the feature refinement head into 

Baseline+GLTB to generate the entire UNetFormer (indicated as Baseline+GLTB+FRH). As 

shown in TABLE 1, with the employment of FRH, the mIoU is boosted by 1.0% at least, 

demonstrating the validity of the proposed feature refinement module. 

4.2.2 Efficient global-local attention 

To demonstrate the advantages of the proposed efficient global-local attention, we replaced 

it with other advanced attention mechanisms to reconstruct the variants of UNetformer for 

ablation studies. Benefiting from the dual-branch structure and the captured global-local context, 
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the deployment of our global-local attention achieves the highest mIoU (70.0%) on the UAVid 

validation set, as listed in TABLE 2. Besides, the proposed global-local attention also 

demonstrates superiority in terms of complexity, memory requirement, parameters and inference 

speed. Especially, our method is more accurate and faster than the efficient attention mechanisms 

in Transformers, i.e. the shifted window attention and the efficient multi-head self-attention. 

TABLE 2. Ablation studies of different attention mechanisms on the UAVid dataset. We 

report the speed with an input size of 10241024 on a single NVIDIA GTX 3090 GPU. The 

best values in the column are in bold. 

Attention mechanism Complexity(G) Memory(MB) Parameters(M) Speed(FPS) mIoU 

Dual attention (Fu et al., 2019) 68.9 2416.4 12.6 53.8 67.3 

Criss-cross attention (Huang et al., 2020) 67.2 1318.4 12.4 79.9 68.3 

Linear attention (Li et al., 2021b) 67.8 1339.5 12.5 91.5 69.0 

Patch attention (Ding et al., 2021) 66.8 1320.5 12.3 95.7 68.9 

Efficient multi-head self-attention (Zhang and Yang, 2021) 67.5 2444.2 12.5 63.6 67.9 

Shifted window attention (Liu et al., 2021) 72.7 1652.0 13.1 67.0 68.5 

Efficient global-local attention (ours) 46.9 1003.8 11.7 115.6 70.0 

4.2.3 Network stability 

To evaluate the network stability, we trained the UNetFormer with different input sizes, 

including square inputs like 512512, 10241024 and 20482048 as well as rectangular inputs 

like 5121024 and 10242048. From the experimental results in TABLE 3, the UNetFormer 

demonstrates stability when performing different input sizes, while the deviation of the mIoU is 

less than 0.7%. The middle input size of 10241024 obtains the best mIoU on the UAVid 

validation set. Furthermore, the square inputs yield relatively higher scores than the rectangular 

inputs, and too large input size like 20482048 can reduce the IoU of very small object “human”. 
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TABLE 3 Ablation studies of different input sizes on the UAVid dataset. 

Input size Clutter Building Road Tree Vegetation MovingCar StaticCar Human mIoU 

512512 63.1 90.7 76.4 77.4 68.1 70.3 65.9 46.2 69.8 

5121024 61.9 91.0 74.9 76.9 69.1 70.4 65.6 44.3 69.3 

10241024 63.6 91.2 76.4 77.7 68.2 71.6 66.1 44.8 70.0 

10242048 63.0 91.2 76.2 77.5 68.7 69.8 65.2 44.6 69.5 

20482048 63.4 91.2 76.0 77.9 70.1 70.4 65.7 42.5 69.7 

4.2.4 Encoder choice 

Current Transformer-based segmentation networks commonly apply the Transformer as the 

encoder. This choice, although has been justified for accurate semantic information, reduces the 

execution speed of the network significantly, which is not suitable for real-time applications. To 

demonstrate it, we replace our ResNet18 encoder with lightweight Transformers, i.e. ViT-Tiny 

(Dosovitskiy et al., 2020), Swin-Tiny (Liu et al., 2021) and CoaT-Mini (Xu et al., 2021), for 

ablation studies (TABLE 4). The results reveal that introducing lightweight Transformers as the 

encoder provides a limited improvement of accuracy (within 0.6% in mIoU) but reduces the 

inference speed of the UNetFormer seriously. Thus, for real-time urban scene segmentation, the 

application of a lightweight CNN-based encoder like ResNet18 is the currently best scheme. 

TABLE 4 Ablation studies of different encoders on the UAVid dataset. The complexity and 

speed are measured by a 1024×1024 input on a single NVIDIA GTX 3090 GPU. 

Method Encoder Complexity(G) Parameters(M) Speed(FPS) mIoU 

UNetFormer 

ViT-Tiny (Dosovitskiy et al., 2020) 35.31 8.6 30.2 69.1 

Swin-Tiny (Liu et al., 2021) 104.4 28.0 28.8 70.6 

CoaT-Mini (Xu et al., 2021) 159.7 10.6 10.6 70.5 

ResNet18 46.9 11.7 115.6 70.0 
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4.2.5 Encoder-decoder combination 

To illustrate the superiority of our hybrid structure for efficient semantic segmentation, we 

selected the UNet, SwinUNet and TransUNet for ablation experiments on the UAVid dataset. 

Since the SwinUNet requires huge GPU memory, the input size was all set as 512512 for 

training. The results from TABLE 5 reveal that the proposed UNetFormer exceeds the compared 

networks significantly in terms of complexity and speed while providing a competitive accuracy 

on the UAVid validation set. Specifically, in comparison with the UNet constructed by the pure 

CNN structure, the UNetFormer achieves an increase of 4.3% in mIoU. Compared to the pure 

Transformer network SwinUNet, the UNetFormer saves 80% of the computational complexity. 

Although the TransUNet constructed by a Transformer-based encoder and a CNN-based decoder 

surpasses ours by 0.5% in mIoU, it is 7 times slower and has much more parameters due to its 

heavy and complicated Transformer-based encoder. For real-time urban application scenarios, the 

high execution speed and lightweight model volume are much more important than the slight 

accuracy reduction. Thus, in comparison with other combinations, the advantage of our hybrid 

structure, i.e. CNN-based encoder and Transformer-based decoder, is significant. 

TABLE 5 Ablation studies of different encoder-decoder combinations on the UAVid dataset. 

The complexity and speed are measured by a 512×512 input on a single NVIDIA GTX 3090 

GPU. 

Method Backbone Encoder Decoder Complexity(G) Memory(MB) Parameters(M) Speed(FPS) mIoU 

UNet (Ronneberger et al., 2015) - CNN CNN 184.6 1622.0 31.0 50.9 65.5 

SwinUNet (Cao et al., 2021) Swin-Tiny Transformer Transformer 237.4 2001.5 41.4 46.9 68.3 

TransUNet (Chen et al., 2021b) ViT-R50 Transformer CNN 233.7 1245.7 90.7 43.2 70.3 

UNetFormer ResNet18 CNN Transformer 11.7 250.9 11.7 322.4 69.8 
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4.3 Experiment results 

4.3.1 Comparison of network efficiency 

Complexity and speed are critical for evaluating a network, especially in real-time urban 

applications. We compared our UNetFormer with efficient segmentation networks based on the 

mIoU, GPU memory footprint, complexity, parameters and speed on the official UAVid test set. 

The comparison results are listed in Table 6. In comparison with the fastest and most shallow 

model Fast-SCNN, the proposed UNetFormer outperforms it by a large margin of 21.0% in mIoU. 

In comparison with the state-of-the-art CNN-based models of the same volume, our UNetFormer 

achieves a competitive inference speed of 115.6 FPS, while surpassing other networks by more 

than 4.0% in mIoU. Notably, our method exceeds the advanced hybrid Transformer network CoaT 

by 2.0% in mIoU while being 10 times faster. Meanwhile, the proposed method outperforms the 

pure Transformer network Segmenter by 9.1% in mIoU while being 7 times faster. The 

outstanding trade-off between accuracy and speed demonstrates the efficiency of our hybrid 

structure and the effectiveness of the proposed GLTB and FRH. 

TABLE 6. Quantitative comparison results on the UAVid test set with state-of-the-art 

lightweight networks. The complexity and speed are measured by a 1024×1024 input on a 

single NVIDIA GTX 3090 GPU. 

Method Backbone Memory(MB) Parameters(M) Complexity(G) Speed mIoU 

Fast-SCNN (Poudel et al., 2019) - 619.4 1.1 3.4 222.7 45.9 

Segmenter (Strudel et al., 2021) ViT-Tiny 828.6 6.7 26.8 14.7 58.7 

BiSeNet (Yu et al., 2018) ResNet18 970.6 12.9 51.8 121.9 61.5 

DANet (Fu et al., 2019) ResNet18 611.1 12.6 39.6 189.4 60.6 

FANet (Hu et al., 2020) ResNet18 971.9 13.6 86.8 94.9 - 
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ShelfNet (Zhuang et al., 2019) ResNet18 579.0 14.6 46.7 141.4 47.0 

SwiftNet (Oršić and Šegvić, 2021) ResNet18 835.8 11.8 51.6 138.7 61.1 

MANet (Li et al., 2021b) ResNet18 1169.2 12.0 51.7 75.6 62.6 

ABCNet (Li et al., 2021c) ResNet18 1105.1 14.0 62.9 102.2 63.8 

SegFormer (Xie et al., 2021) MiT-B1 933.2 13.7 63.3 31.3 66.0 

BoTNet (Srinivas et al., 2021) ResNet18 710.5 17.6 49.9 135.0 63.2 

CoaT (Xu et al., 2021) CoaT-Mini 3133.8 11.1 104.8 10.6 65.8 

UNetFormer ResNet18 1003.7 11.7 46.9 115.6 67.8 

4.3.2 Results on the UAVid dataset 

UAVid is a large-scale urban scene segmentation dataset, where the images are captured by 

unmanned aerial vehicles in different cities and under different lighting conditions. Thus, it is 

challenging to obtain high scores on this dataset. We trained several advanced efficient 

segmentation networks and provide a detailed comparison of results on the official UAVid test set. 

As illustrated in Table 7, our method yields the best mIoU (67.8%) while maintaining the 

advantages in the per-class IoU. Specifically, the proposed UNetFormer not only exceeds the 

efficient CNN-based network ABCNet by 4.0% in mIoU but also outperforms the recent hybrid 

Transformer-based networks BANet and BoTNet by 3.2% and 4.6%, respectively. Particularly, 

the “human” class is hard to handle since it is an extremely small object. Nonetheless, the IoU of 

this class achieved by our UNetFormer is at least 8.6% higher than for other methods. Furthermore, 

the segmentation results from the UAVid validation set (Fig. 6) and the visualization results from 

the UAVid test set (Fig. 7) also demonstrate the effectiveness of our UNetFormer. 

TABLE 7. Quantitative comparison of results on the UAVid test set with state-of-the-art 

lightweight models. The best values in the column are in bold. 

Method Backbone Clutter Building Road Tree Vegetation MovingCar StaticCar Human mIoU 

MSD (Lyu et al., 2020) - 57.0 79.8 74.0 74.5 55.9 62.9 32.1 19.7 57.0 
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CANet (Yang et al., 2021a) - 66.0 86.6 62.1 79.3 78.1 47.8 68.3 19.9 63.5 

DANet (Fu et al., 2019) ResNet18 64.9 85.9 77.9 78.3 61.5 59.6 47.4 9.1 60.6 

SwiftNet (Oršić and Šegvić, 2021) ResNet18 64.1 85.3 61.5 78.3 76.4 51.1 62.1 15.7 61.1 

BiSeNet (Yu et al., 2018) ResNet18 64.7 85.7 61.1 78.3 77.3 48.6 63.4 17.5 61.5 

MANet (Li et al., 2021b) ResNet18 64.5 85.4 77.8 77.0 60.3 67.2 53.6 14.9 62.6 

ABCNet (Li et al., 2021c) ResNet18 67.4 86.4 81.2 79.9 63.1 69.8 48.4 13.9 63.8 

Segmenter (Strudel et al., 2021) ViT-Tiny 64.2 84.4 79.8 76.1 57.6 59.2 34.5 14.2 58.7 

SegFormer (Xie et al., 2021) MiT-B1 66.6 86.3 80.1 79.6 62.3 72.5 52.5 28.5 66.0 

BANet (Wang et al., 2021b) ResT-Lite 66.7 85.4 80.7 78.9 62.1 69.3 52.8 21.0 64.6 

BoTNet (Srinivas et al., 2021) ResNet18 64.5 84.9 78.6 77.4 60.5 65.8 51.9 22.4 63.2 

CoaT (Xu et al., 2021) CoaT-Mini 69.0 88.5 80.0 79.3 62.0 70.0 59.1 18.9 65.8 

UNetFormer ResNet18 68.4 87.4 81.5 80.2 63.5 73.6 56.4 31.0 67.8 

 

 

Fig. 6. Segmentation results from the UAVid validation set. The first column represents the input 
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RGB images. The second column denotes the ground reference. The third column shows the 

segmentation maps produced by our method. 

 

Fig. 7. Enlarged visualization of results from the UAVid test set. The first column represents the 

input RGB images. The second column denotes the segmentation results of the baseline. The third 

column shows the segmentation maps of our method. 

4.3.3 Results on the Vaihingen and Potsdam dataset 

The ISPRS Vaihingen and Potsdam are two widely-used datasets for segmentation tasks. 

Numerically high accuracies have been achieved by the specially designed models on these two 
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datasets. In this section, we demonstrate that our UNetFormer can not only surpass lightweight 

models but also obtain competitive scores in comparison with leading networks. 

As illustrated in Table 8, the proposed UNetFormer delivers the best F1, OA and mIoU on the 

Vaihingen test set, outperforming other CNN-based and Transformer-based lightweight networks 

by a significant margin. It is worth noting that our method yields an 88.5% F1 score on the “car” 

class, exceeding other networks by more than 1.7%. Moreover, the prediction results of ID 2 and 

22 are shown in Fig. 8, while the enlarged visualization of results is illustrated in Fig. 9 (Top), 

which also demonstrates the effectiveness of our method. 

TABLE 8. Quantitative comparison results on the Vaihingen test set with state-of-the-art 

lightweight networks. The best values in the column are in bold. 

Method Backbone Imp.surf. Building Lowveg. Tree Car MeanF1 OA mIoU 

DABNet (Li et al., 2019) - 87.8 88.8 74.3 84.9 60.2 79.2 84.3 70.2 

ERFNet (Romera et al., 2017) - 88.5 90.2 76.4 85.8 53.6 78.9 85.8 69.1 

BiSeNet (Yu et al., 2018) ResNet18 89.1 91.3 80.9 86.9 73.1 84.3 87.1 75.8 

PSPNet (Zhao et al., 2017a) ResNet18 89.0 93.2 81.5 87.7 43.9 79.0 87.7 68.6 

DANet (Fu et al., 2019) ResNet18 90.0 93.9 82.2 87.3 44.5 79.6 88.2 69.4 

FANet (Hu et al., 2020) ResNet18 90.7 93.8 82.6 88.6 71.6 85.4 88.9 75.6 

EaNet (Zheng et al., 2020a) ResNet18 91.7 94.5 83.1 89.2 80.0 87.7 89.7 78.7 

ShelfNet (Zhuang et al., 2019) ResNet18 91.8 94.6 83.8 89.3 77.9 87.5 89.8 78.3 

MAResU-Net (Li et al., 2021a) ResNet18 92.0 95.0 83.7 89.3 78.3 87.7 90.1 78.6 

SwiftNet (Oršić and Šegvić, 2021) ResNet18 92.2 94.8 84.1 89.3 81.2 88.3 90.2 79.6 

ABCNet (Li et al., 2021c) ResNet18 92.7 95.2 84.5 89.7 85.3 89.5 90.7 81.3 

BoTNet (Srinivas et al., 2021) ResNet18 89.9 92.1 81.8 88.7 71.3 84.8 88.0 74.3 

BANet (Wang et al., 2021b) ResT-Lite 92.2 95.2 83.8 89.9 86.8 89.6 90.5 81.4 

Segmenter (Strudel et al., 2021) ViT-Tiny 89.8 93.0 81.2 88.9 67.6 84.1 88.1 73.6 

UNetFormer ResNet18 92.7 95.3 84.9 90.6 88.5 90.4 91.0 82.7 

 

For a comprehensive evaluation, we further conducted experiments on the Postdam dataset. 
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As shown in Table 10, our UNetFormer achieves a 92.8% mean F1 score and an 86.8% mIoU on 

the Potsdam test set. The results of the UNetFormer not only exceed the excellent convolutional 

lightweight network ABCNet (Li et al., 2021c) but also outperform recent Transformer-based 

lightweight networks, such as Segmenter (Strudel et al., 2021) and BANet (Wang et al., 2021b). 

We also provide segmentation results for ID 3_14 and 2_13 (Fig. 9) and an enlarged visualization 

of the results (Fig. 10 Bottom) to show the preferential performance of our network. 

TABLE 9 Quantitative comparison results on the Potsdam test set with state-of-the-art 

lightweight networks. The best values in the column are in bold. 

Method Backbone Imp.surf. Building Lowveg. Tree Car MeanF1 OA mIoU 

ERFNet (Romera et al., 2017) - 88.7 93.0 81.1 75.8 90.5 85.8 84.5 76.2 

DABNet (Li et al., 2019) - 89.9 93.2 83.6 82.3 92.6 88.3 86.7 79.6 

BiSeNet (Yu et al., 2018) ResNet18 90.2 94.6 85.5 86.2 92.7 89.8 88.2 81.7 

EaNet (Zheng et al., 2020a) ResNet18 92.0 95.7 84.3 85.7 95.1 90.6 88.7 83.4 

MAResU-Net (Li et al., 2021a) ResNet18 91.4 95.6 85.8 86.6 93.3 90.5 89.0 83.9 

DANet (Fu et al., 2019) ResNet18 91.0 95.6 86.1 87.6 84.3 88.9 89.1 80.3 

SwiftNet (Oršić and Šegvić, 2021) ResNet18 91.8 95.9 85.7 86.8 94.5 91.0 89.3 83.8 

FANet (Hu et al., 2020) ResNet18 92.0 96.1 86.0 87.8 94.5 91.3 89.8 84.2 

ShelfNet (Zhuang et al., 2019) ResNet18 92.5 95.8 86.6 87.1 94.6 91.3 89.9 84.4 

ABCNet (Li et al., 2021c) ResNet18 93.5 96.9 87.9 89.1 95.8 92.7 91.3 86.5 

Segmenter (Strudel et al., 2021) ViT-Tiny 91.5 95.3 85.4 85.0 88.5 89.2 88.7 80.7 

BANet (Wang et al., 2021b) ResT-Lite 93.3 96.7 87.4 89.1 96.0 92.5 91.0 86.3 

SwinUperNet (Liu et al., 2021) Swin-Tiny 93.2 96.4 87.6 88.6 95.4 92.2 90.9 85.8 

UNetFormer ResNet18 93.6 97.2 87.7 88.9 96.5 92.8 91.3 86.8 
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Fig. 8. Visualization results of ID 2 and 22 from the Vaihingen test set. The first column denotes 

the input RGB images. The second column represents the ground truth. The third column shows 

the segmentation results of the proposed UNetFormer. 
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Fig. 9. Visualization results of ID 3_14 and 2_13 from the Potsdam test set. The first column 

denotes the input RGB images. The second column represents the ground truth. The third column 

shows the segmentation results of the proposed UNetFormer. 
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Fig. 10. Enlarged visualization of results from the Vaihingen (top) and Potsdam (bottom) test set. 
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4.3.4 Results on the LoveDA dataset 

We undertook experiments on the LoveDA dataset to further evaluate the performance of the 

UNetFormer. Benefiting from the captured global-local context, the UNetFormer can handle both 

urban and rural scenes well in the LoveDA dataset. The comparison results are listed in TABLE 

10. Remarkably, the UNetFormer obtains the highest mIoU (52.4%) with the least complexity 

and the fastest speed. Visualized comparisons are exhibited in Fig. 11. 

TABLE 10. Quantitative comparison results on the LoveDA test set with other networks. The 

complexity and speed are measured by a 1024×1024 input on a single NVIDIA GTX 3090 

GPU. The best values in the column are in bold. 

Method Backbone Background Building Road Water. Barren Forest Agriculture mIoU Complexity Speed 

PSPNet (Zhao et al., 2017a) ResNet50 44.4 52.1 53.5 76.5 9.7 44.1 57.9 48.3 105.7 52.2 

DeepLabV3+ (Chen et al., 2018a) ResNet50 43.0 50.9 52.0 74.4 10.4 44.2 58.5 47.6 95.8 53.7 

SemanticFPN (Kirillov et al., 2019) ResNet50 42.9 51.5 53.4 74.7 11.2 44.6 58.7 48.2 103.3 52.7 

FarSeg (Zheng et al., 2020b) ResNet50 43.1 51.5 53.9 76.6 9.8 43.3 58.9 48.2 - 47.8 

FactSeg (Ma et al., 2021) ResNet50 42.6 53.6 52.8 76.9 16.2 42.9 57.5 48.9 - 46.7 

BANet (Wang et al., 2021b) ResT-Lite 43.7 51.5 51.1 76.9 16.6 44.9 62.5 49.6 52.6 11.5 

TransUNet (Chen et al., 2021b) ViT-R50 43.0 56.1 53.7 78.0 9.3 44.9 56.9 48.9 803.4 13.4 

Segmenter (Strudel et al., 2021) ViT-Tiny 38.0 50.7 48.7 77.4 13.3 43.5 58.2 47.1 26.8 14.7 

SwinUperNet (Liu et al., 2021) Swin-Tiny 43.3 54.3 54.3 78.7 14.9 45.3 59.6 50.0 349.1 19.5 

DC-Swin (Wang et al., 2022) Swin-Tiny 41.3 54.5 56.2 78.1 14.5 47.2 62.4 50.6 183.8 23.6 

UNetFormer ResNet18 44.7 58.8 54.9 79.6 20.1 46.0 62.5 52.4 46.9 115.3 



38 

 

Fig. 11. Visualization comparisons on the LoveDA validation set. 
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5. Discussion 

5.1 Global-local context 

The advantage of the dual-branch structure of the proposed efficient global-local attention is 

that it can extract sufficient global contextual information while preserving fine-grained local 

information. To demonstrate this, we visualise the feature maps from the efficient global-local 

attention in Fig. 12. As can be seen, the local context extracted by the local branch preserves the 

abundant local features but lacks spatial consistency, while the global context captured by the 

global branch has a more consistent character but lacks locality. Meanwhile, for the global branch, 

performing the self-attention operation within a local window also causes jagged edges in the 

window context. We address this issue by employing a cross-shaped window context interaction 

module for context aggregation. By this means, the interaction between windows is enhanced, 

thereby resolving the jaggedness issue. Notably, the extracted global-local context with both 

locality and spatial consistency is visibly superior to the single global context or local context. 

Fig. 12. Visualization of the local context, window context, global context and global-local 

context in the proposed efficient global-local attention. 
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5.2 Model efficiency 

The proposed UNetFormer adopts a hybrid structure with a CNN-based encoder and a 

Transformer-based decoder to achieve real-time performance. This hybrid design demonstrates 

superiority compared to other encoder-decoder combinations (TABLE 5). Moreover, the efficient 

global-local attention module utilizes the cross-shaped window context interaction module to 

replace the shift window attention for capturing cross-window relationships, which further 

increases the efficiency (TABLE 2). The superior trade-off between accuracy and efficiency 

brings advantages, such as the potential for the proposed UNetFormer to process real-time UAV 

images for environmental perception and monitoring in urban areas. 

5.3 Transformer-based encoder 

As shown in TABLEs 4 and 5, Transformers make strong encoders but greatly reduce the 

speed. Although Transformer-based encoders are not suitable for real-time applications, 

demonstrate advantages in pursuing high precision. Thus, we construct a fully Transformer-based 

network (FT-UNetFormer) to further explore the potential of the proposed Transformer-based 

decoder. To compare with state-of-the-art models at a similar level, we replace the lightweight 

ResNet18 encoder with he Swin Transformer (Swin-Base) (Liu et al., 2021). As listed in TABLE 

11, the FT-UNetFormer yields the state-of-the-art results (91.3% F1 score and 84.1% mIoU) on 

the Vaihingen test set and outperforms other networks by at least 0.3% in F1 score. For the 

Potsdam dataset, our method also achieves competitive results (TABLE 12). These results further 

demonstrate the effectiveness of the proposed Transformer-based decoder and its potential in a 

fully Transformer structure. 
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TABLE 11. Quantitative comparison results on the Vaihingen test set with the state-of-the-art 

networks. 

TABLE 12 Quantitative comparison results on the Potsdam test set with state-of-the-art 

networks. 

Method Backbone Imp.surf. Building Low. veg. Tree Car MeanF1 OA mIoU 

DST_5 (Sherrah, 2016) FCN 92.5 96.4 86.7 88.0 94.7 91.7 90.3 - 

V-FuseNet (Audebert et al., 2018) FuseNet 92.7 96.3 87.3 88.5 95.4 92.0 90.6 - 

SWJ_2 ResNet101 94.4 97.4 87.8 87.6 94.7 92.4 91.7 - 

AMA_1 - 93.4 96.8 87.7 88.8 96.0 92.5 91.2 - 

UFMG_4 (Nogueira et al., 2019) - 90.8 95.6 84.4 84.3 92.4 89.5 87.9 - 

S-RA-FCN (Mou et al., 2020) VGG16 91.3 94.7 86.8 83.5 94.5 90.2 88.6 82.4 

HUSTW4 (Sun et al., 2019) ResegNets 93.6 97.6 88.5 88.8 94.6 92.6 91.6 - 

TreeUNet (Yue et al., 2019) - 93.1 97.3 86.8 87.1 95.8 92.0 90.7 - 

ResUNet-a (Diakogiannis et al., 2020) - 93.5 97.2 88.2 89.2 96.4 92.9 91.5 - 

Method Backbone Imp.surf. Building Lowveg. Tree Car MeanF1 OA mIoU 

CASIA2 (Liu et al., 2018) ResNet101 93.2 96.0 84.7 89.9 86.7 90.1 91.1 - 

V-FuseNet (Audebert et al., 2018) FuseNet 91.0 94.4 84.5 89.9 86.3 89.2 90.0 - 

DLR_9 (Marmanis et al., 2018) SegNet+VGG+FCN 92.4 95.2 83.9 89.9 81.2 88.5 90.3 - 

RoteEqNet (Marcos et al., 2018) - 89.5 94.8 77.5 86.5 72.6 84.2 87.5 - 

UFMG_4 (Nogueira et al., 2019) - 91.1 94.5 82.9 88.0 81.3 87.7 89.4 - 

HUSTW5 (Sun et al., 2019) SegNet 93.3 96.1 86.4 90.8 74.6 88.2 91.6 - 

TreeUNet (Yue et al., 2019) - 92.5 94.9 83.6 89.6 85.9 89.3 90.4 - 

EaNet (Zheng et al., 2020a) ResNet101 93.4 96.2 85.6 90.5 88.3 90.8 91.2 - 

DDCM-Net (Liu et al., 2020) ResNet50 92.7 95.3 83.3 89.4 88.3 89.8 90.4 - 

MANet (Li et al., 2021b) ResNe50 93.0 95.5 84.6 90.0 88.9 90.4 91.0 82.7 

AFNet (Yang et al., 2021b) ResNet50+18 93.1 96.5 85.8 90.6 88.8 91.0 91.7 - 

HMANet (Niu et al., 2021) ResNet101 93.5 95.9 85.4 90.4 89.6 91.0 91.4 83.5 

STransFuse (Gao et al., 2021) - 88.3 91.46 79.0 85.5 77.1 78.7 86.1 66.7 

BoTNet (Srinivas et al., 2021) ResNet50 92.2 95.3 83.9 90.0 85.5 89.4 90.5 81.1 

SwinUperNet (Liu et al., 2021) Swin-Small 92.8 95.6 85.1 90.6 85.1 89.8 91.0 81.8 

SwinB-CNN+BD (Zhang et al., 2022) Swin-Base 95.3 86.9 83.6 92.2 89.6 89.5 90.4 - 

DC-Swin (Wang et al., 2022) Swin-Small 93.6 96.2 85.8 90.4 87.6 90.7 91.6 83.2 

FT-UNetFormer Swin-Base 93.5 96.0 85.6 90.8 90.4 91.3 91.6 84.1 
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DDCM-Net (Liu et al., 2020) ResNet50 92.9 96.9 87.7 89.4 94.9 92.3 90.8 - 

LANet (Ding et al., 2021) ResNet50 93.1 97.2 87.3 88.0 94.2 92.0 90.8 - 

AFNet (Yang et al., 2021b) ResNet50+18 94.1 97.6 88.7 89.7 97.1 93.4 92.1 - 

HMANet (Niu et al., 2021) ResNet101 93.9 97.6 88.7 89.1 96.8 93.2 92.2 87.3 

STransFuse (Gao et al., 2021) - 89.8 93.9 82.9 83.6 88.5 82.1 86.7 71.5 

SwinB-CNN+BD (Zhang et al., 2022) Swin-Base 92.2 95.3 83.6 89.2 86.9 89.4 90.4 - 

SwinTF-FPN (Panboonyuen et al., 2021) Swin-Small 93.3 96.8 87.8 88.8 95.0 92.3 91.1 85.9 

ResT (Zhang and Yang, 2021) ResT-Base 92.7 96.1 87.5 88.6 94.8 91.9 90.6 85.2 

FT-UNetFormer Swin-Base 93.9 97.2 88.8 89.8 96.6 93.3 92.0 87.5 

 

6. Conclusion 

In this paper, we proposed a novel Transformer-based decoder and constructed a UNet-like 

Transformer (UNetFormer) for efficient semantic segmentation of remotely sensed urban scene 

images. Since global and local contexts are both crucial for urban scene segmentation, we 

designed a global-local Transformer block (GLTB) to construct the decoder and developed a 

feature refinement head (FRH) to optimize the extracted global-local context. For efficient 

segmentation, the proposed Transformer-based decoder was combined with a lightweight CNN-

based encoder. A comprehensive set of benchmark experiments and ablation studies on the ISPRS 

Vaihingen and Potsdam datasets and the UAVid dataset as well as the LoveDA dataset 

demonstrated the effectiveness and efficiency of the proposed method for real-time urban 

applications. Furthermore, the proposed Transformer-based decoder also works well in a fully 

Transformer structure and obtains state-of-the-art performance on the Vaihingen dataset. In future 

research, we will continue to explore the potential and feasibility of the Transformer for geospatial 

vision tasks. 
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