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Abstract— Precise prediction on brain age is urgently needed by 

many biomedical areas including mental rehabilitation prognosis 

as well as various medicine or treatment trials. People began to 

realize that contrasting physical (real) age and predicted brain age 

can help to highlight brain issues and evaluate if patients’ brains 

are healthy or not. Such age prediction is often challenging for sin-

gle model-based prediction, while the conditions of brains vary 

drastically over age. In this work, we present an age-adaptive en-

semble model that is based on the combination of four different 

machine learning algorithms, including a support vector machine 

(SVR), a convolutional neural network (CNN) model, and the pop-

ular GoogLeNet and ResNet deep networks. The ensemble model 

proposed here is nonlinearly adaptive, where age is taken as a key 

factor in the nonlinear combination of various single-algorithm-

based independent models. In our age-adaptive ensemble method, 

the weights of each model are learned automatically as nonlinear 

functions over age instead of fixed values, while brain age estima-

tion is based on such an age-adaptive integration of various single 

models. The quality of the model is quantified by the mean abso-

lute errors (MAE) and spearman correlation between the pre-

dicted age and the actual age, with the least MAE and the highest 

Spearman correlation representing the highest accuracy in age 

prediction. By testing on the Predictive Analysis Challenge 2019 

(PAC 2019) dataset, our novel ensemble model has achieved a 

MAE down to 3.19, which is a significantly increased accuracy in 

this brain age competition. If deployed in the real world, our novel 

ensemble model having an improved accuracy could potentially 

help doctors to identify the risk of brain diseases more accurately 

and quickly, thus helping pharmaceutical companies develop 

drugs or treatments precisely, and potential offer a new powerful 

tool for researchers in the field of brain science. 

 

Index Terms—Brain Age, Biomarks, Ensemble Deep Learning, 

Mental Healthcare, Rehabilitation. 

I. Introduction 

The increasing aging population presents many acute chal-

lenges globally in the 21st century, with a profound impact on 

all aspects of life. Amongst them, brain function decline and 

neurodegenerative diseases in the aging population result in se-

rious economic, medical, and societal issues to our society [1-
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2]. In life science and biomedical domain, methods of predict-

ing and assessing the risk of age-related neurodegeneration in 

the elderly and related treatments to reduce and reverse the pro-

cess are one of the fundamental research topics [3]. Although 

brain aging is a natural process, there are individual differences 

in the changes of brain volume, cortical thickness, and white 

matter microstructure [4-6]. In addition, the degree of deviation 

in brain aging trajectory for a particular person from the average 

trajectory of healthy brain aging has been shown to reflect the 

individual's future risk of developing neurodegenerative dis-

eases [7-8]. Therefore, building models based on the character-

istic patterns of brain aging within neuroimaging data and de-

tecting the aging trajectories of individual brains offer a new 

perspective for studying brain aging differences [3].  

The accurate prediction of brain age has not only critical sci-

entific significance but also extensive clinical value [9]. Re-

search has shown that along with the increased difference be-

tween the predicted brain age and the biological age, the risk of 

mortality or physical problems increases, together with the in-

creased likelihood of early death [10]. Brain age estimation can 

diagnose patients with Alzheimer's disease [67-68], psychiatric 

disorders [69], physical problems [70] and traumatic brain in-

juries [71] according to accelerated brain age. This method can 

also predict the conversion from mild cognitive impairment to 

Alzheimer's disease in the future [72]. This approach can not 

only diagnose disease, but also provides the basis for good liv-

ing habits; for example, Steffener et al. [8] proved that high ed-

ucation and physical exercise can help make brain activity and 

keep young. Luders et al. [7] reported that the brains of people 

who meditate regularly are more active than those of normal 

people of the same age. Also, the work Erus et al. [73] sug-

gested that accelerated cognitive development is an important 

factor leading to accelerated brain development in young sub-

jects. Cheng et al.[74] used a two-satge 3D convolutional net-

work for brain age estimation. He et al. [75] utilized a global-

local vision transformer to achieve a good accuracy on brain 

age estimation. Peng et al. [76] exploited a simple lightweight 

fully convolutional network to address the challenges on the 
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brain age estimation. These single-method models have demon-

strated their merits on this challenging topic.  

Predicting brain age can also play a meaningful role in med-

ical development, with clinical trials being an important part of 

clinical science [12-13]. At present, many pharmaceutical com-

panies across the world are committed to the research of medi-

cine for the treatment of age-related diseases. However, the ef-

fect of these medications will not be obvious in the short term. 

Even experienced doctors cannot judge whether the drugs have 

played a role, so the curative effect may take several years to 

follow up. This problem makes it difficult for pharmaceutical 

companies to collect medical data, which restricts the research 

and development of aging diseases medicine [13]. Neverthe-

less, brain age estimation provides an alternative direction to 

address the problem in observing the effects of drugs, by the 

changes of predicted human brain age [13]. In recent years, 

deep learning has been the main approach for the estimation of 

brain age, as it can capture subtle changes in the brain through 

hierarchical feature representations in an end-to-end way [3]. 

Existing research has shown that the difference between pre-

dicted brain age and the participant’s actual age is small for 

healthy people [3],[7],[10]. The development of deep learning 

in brain age estimation enables pharmaceutical companies to 

conduct follow-up investigations from the beginning of patients 

taking drugs, so as to know the effect of drugs in time and ac-

quire patients' data at fast pace. 

The process of brain condition detection by brain age estima-

tion has basically two steps. Initially, we need to develop a 

model that can determine the biological age of a healthy person 

with this state of the brain based on brain neuroimaging data 

[3]. This model can be determined by training deep learning 

models on healthy samples. Subsequently, we would compare 

the predicted age and real age. If a sample’s predicted brain age 

is older than his real age, it represents poor brain health. It is 

worth noting that the training data must be collected from 

healthy people, because the age predicted by the model would 

show the age of a person generated from healthy people under 

similar brain conditions. For example, if the training data con-

tains samples with diseases, the predicted age will not represent 

the age that the patient should be at in this brain condition, con-

sequently, the comparison between the predicted age and the 

true age is meaningless. 

A frequently used method for brain age estimation is making 

a classification or regression for brain images [1],[14]. There 

exist several machine learning methods for this purpose. Previ-

ously, Huang et al. [42] applied CNNs in brain age estimation, 

and notably, Cole et al. [43] implemented a 3D CNN, which is 

trained on T1-weighted MRI, to predict brain age and achieved 

promising results. Our initial motivation is to identify which of 

the various models for predicting brain age works best, and find 

the most suitable model for each age stage. Further, we aim to 

establish a novel ensemble model by combining different inde-

pendent models together, and benchmark with single independ-

ent model on brain age prediction.  

The major innovation of this work relates to a novel non-lin-

ear age-adaptive ensemble model (nl-AAE), which is consid-

ered as a nonlinear function in the combination of multiple in-

dependent models. The age-adaptive ensemble model, with the 

advantages of multiple independent models, can be fully 

learned over the characteristics of the brain of each age group, 

thus achieving high accuracy of the predictions. Here, we have 

considered four different independent models, including a 

GoogLeNet, a ResNet, an SVR, and a self-designed CNN 

model. The nonlinear age-adaptive learning encoded in our en-

semble model utilizes the changed weights of the constituent 

models based on the age of the sample. The combined model is 

adaptable to age changes nonlinearly and learns the brain char-

acteristics over different ages. 

We have tested our nl-AAE models using the PAC 2019 

competition dataset, and benchmarked our models with four 

constituent algorithms. Such integrated model has great poten-

tial to provide a highly accurate measure of brain health for clin-

ical trials of neuroprotective therapies, screening groups of peo-

ple at-risk of poorer cognitive aging, and provide mechanistic 

insights into the downstream consequences of different aging-

related diseases. Figure 1 shows the contributions of our AAE 

model, it has higher accuracy in predicting brain age compared 

to other classical methods, which can make it has better perfor-

mance in Alzheimer’s detection, traumatic brain injury detec-

tion, Schizophrenia detection, medicine testing and so on. 

The remainder of the paper is organized as follows. Section 

II reviews the existing relevant work. Section III gives a pre-

liminary overview on existing models. Section IV presents our 

proposed nonlinear age-adaptive ensemble model. Section V 

shows the experimental results. Finally, Section VI concludes 

the whole paper. 

II. RELATED WORK 

Previously, brain age prediction is conducted using feature 

extraction with brain MRIs followed by a classification or re-

gression analysis. However, useful information might be lost 

since the manually engineered features are not likely to explic-

itly describe the relevant information on brain age. To be spe-

cific, pre-processing the image subjectively requires additional 

assumptions at the various stages during the pre-processing 

pipeline. However, these assumptions can hardly be satisfied, 

which can result in a model error [17-18]. Besides, extracting 

features manually is a time-consuming task. In practice, deci-

sions should be made within a few minutes to avoid the delay 

of treatment in the application. The above issues are the main 

 
Figure 1 The contributions of our AAE model 
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reasons why brain age prediction was not widely adopted.  

The emergence of deep learning models provides a possibil-

ity to address those issues. Convolutional neural networks, 

which are widely adopted in image classification tasks, have 

shown great potential in visual feature extraction. The astonish-

ing learning ability and automated decision-making pipeline of 

CNN models make it a perfect alternative for brain age estima-

tion that can improve the efficiency for medical consultation, 

clinical diagnosis as well as treatment decision making [2], [19-

20]. At present, deep learning not only has successfully devel-

oped in the field of diagnosing schizophrenia [21], ADHD [22], 

autism [23], and Alzheimer's disease [24], but also helps to 

identify new biomarkers [25] and formulating new hypotheses 

[26].  

Although deep learning has achieved success in biomedical 

fields, there are still several remaining challenges in terms of 

technology and practical applications [3], [27-29]. For example, 

deep neural networks require large sample sizes for fitting mod-

els, while neuroimaging datasets often have relatively smaller 

capacities [30-31]. The data scarcity has restricted the ability to 

learn image features effectively, and the problem of overfitting 

can also appear. Compared with 2D neuroimaging data, 3D im-

ages require larger GPU memory, which means that successful 

models in 2D data are not necessarily feasible in 3D scenes 

(e.g., ImageNet classification [32-33]). Besides, further im-

proving the model accuracy is a long-term objective in deep 

learning research. Literature shows that deep learning models 

fail to achieve the best result for certain tasks [34-35].  Another 

open question is how to choose the suitable complexity of the 

model. The no free lunch theorem suggests that task specified 

design is necessary for to achieve better result. 

 Ensemble modeling provides a solution in choosing the best 

predictive model in machine learning. An ensemble model 

combines the prediction from several models to make the final 

prediction, by which the overall performance of the model is 

increased [36]. Several strategies of combining the prediction 

from individual models were proposed, such as averaging, vot-

ing, to improve performance. As early as 1785, Marquis de 

Condorcet argued that if the probability of each independent 

voter being correct is above 0.5, then the addition of more vot-

ers increases the probability of the majority vote being correct 

[37], which is a strong evidence to show that ensemble models 

have better performance than individual models.  

III. PRELIMINARIES ON BRAIN AGE ESTIMATION 

A. Dataset 

 The dataset we used here is based on [3], including 2641 

healthy individuals’ brain sMRIs and information of samples 

such as their age and gender. The sample age ranged from 16 to 

90 years old, the average age of samples is 35.8 years old, and 

the standard deviation of age is 16.2 years. Of the participants, 

53% are females, and 47% are males. The average age of fe-

males is 37 years old, and the standard deviation of females’ 

age is 17.2 years. The average age of males is 34.6 years old, 

and the standard deviation of males' age is 14.9 years. The age 

distribution of the data is shown in Figure 2. Here we remark 

that the dataset has an unbalanced distribution, with fewer data 

samples in the aged population and more data samples toward 

younger population. Cole et al. [43] shows the details of the 

samples. 

B. Data features 

In our project, we use two different kinds of data as input for 

the models. One is Gray Matter and White Matter Maps, the 

other is Surface-Based Processing of Gray Matter. 

The Gray Matter and White Matter Maps were distributed by 

the PAC organization. The pre-processing of nonlinear 

registration for the brain sMRIs used MNI152 space. Then, 

these images were segmented using DARTEL and SPM12 as 

different tissues, such as Gray Matter and White Matter so that 

each tissue has a map and the map was smoothed by using a 4-

mm kernel. For more details, please refer to [43]. This kind of 

data is used for the input of self-defined CNN, ResNet and 

GoogLenet in our project. 

As for Surface-Based Processing of Gray Matter, we extract 

the vertex-wise measurements of cortical thickness and surface 

area based on the sMRIs by using FreeSurfer 6.0 [45]. As such. 

a vertex-wise feature of seven subcortical nuclei thickness and 

surface was also extracted by the ENIGMA-shape protocol [46-

47]. After these data-pre-processings, we get nearly 650,000 

gray matter measurements per individual. This processing 

method was used by Baptiste Couvy-Duchesne et al. [48], and 

they proved that these processed data have a max association 

with age. This kind of data is used for the input of SVR in our 

project. 

C. Basic Independent Models 

Recent progress on deep neural networks [51-53] has greatly 

enlightened the applications of medical biometrics [54-56] for 

  
a) Age distribution 

 
b) Age over sex variance 

Figure 2 Age and sex distribution of the MRI brain dataset 
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health diagnosis, particularly toward understanding how neu-

rons in brain function [57] and dysfunction [58]. In this work, 

we aim to exploit deep learning techniques with ensemble ap-

proaches for our brain age estimation task.  

Before we describe the architecture of the ensemble model, 

we first introduce the basic blocks of our proposed model. Ac-

cording to previous research, each of the models has remarkable 

performance in estimating brain age [3, 42-43].  

1) Convolutional Neural Networks: The CNN we have built  

was implemented using Keras with TensorFlow as backend. 

For the first 5 consecutive blocks, each of them consists of 

a 3×3×3 3D convolution layer, a Batch Norm layer, an ELU 

activation and a Max Pooling layer. As for the 6th block, it 

contains a dropout layer and the 7th block contains a fully 

connected layer. The input data is a 3D volume image of 

121×145×121 pixels, and the convolutional part of this 

model reduces this image to 128 feature maps of size 4×5×4. 

The finally fully connected layer reduces the feature maps 

down to the numbers that stand for predicted ages.  

We train this model on two channels by using the 

concatenation of gray matter and white matter. The loss 

function is MAE, and the optimization machine is Adam. 

The learning rate is 0.001, the decay is 10−4, β1 is 0.9 and 

β2 is 0.999.  

2) GoogLeNet (Inception V1): This structure is used for brain 

age estimation in [44]. It is composed of a stem network, 

two inception modules, a max-pooling layer, five inception 

modules (note that two of them are connected to an auxiliary 

regression each), a max-pooling layer, two inception 

modules, an average pooling layer, a dropout layer, and a 

fully connected layer. Compared to Google’s Inception V1, 

it changes the softmax layer to a fully connected layer as the 

final layer so that this task becomes a regression task but not 

a classification task. The convolutional filter in this model 

consists of an input layer, a convolutional layer, a batch 

normalization layer, a ReLU activation and an output layer. 

The stem network consists of an input layer, a convolutional 

filter, a max-pooling layer, two convolutional filters, a max-

pooling layer and an output layer. In the inception modules, 

there is an input layer, seven convolutional filters, a max-

pooling layer, a concatenation layer and an output layer. The 

auxiliary regression, which is used for mitigating the 

vanishing gradient problem, is composed of an input layer, 

an average pooling layer, a convolutional filter, a fully 

connected layer, a ReLU layer, a dropout layer, a fully 

connected layer and an output layer.  

The input data of this model is 3D maps of gray matter 

density with 121×145×121 pixels, and the output is the 

predicted age. The loss function is MAE, and we use Adam 

as the model's optimization machine, the learning rate is 

0.0001 and the batch size is 8. 

3) ResNet: The parameters of the ResNet we built are similar 

to the above CNNs built by ourselves. The difference is that 

the ResNet includes residual blocks, while our self-built 

CNNs do not have these blocks. The ResNet consists of 5 

residual blocks, each followed by a max pooling layer of 

kernel size 3×3×3 and stride 2×2×2, and one fully connected 

block. The residual block is a combination of layers which 

are repeated twice inside. This combination consists a 3D 

convolutional layer with stride 1×1×1 and kernel size 

3×3×3, a batch renormalization layer, and an ELU 

activation function. It also adds the signal feeding into the 

residual block to the output of a layer close to the end of the 

block. The fully connected block is a multilayer perceptron 

which has one hidden layer. The input layer has 

128×4×5×4=10240 neurons, there are 256 neurons that use 

an ELU activation function in the hidden layer (FC 1), and 

there is a single neuron in the output layer. A dropout layer, 

whose keep rate is 0.8, is employed following the hidden 

layer. And finally the output layer (FC 2) performs a linear 

regression on the hidden layer features.  

We use 3D maps of gray matter density as input data, and 

MAE as loss function. The model is optimized using Adam 

with a learning rate of 0.001. We set the decay is  10−4, β1 

is 0.9 and β2 is 0.999.  

4) SVR: SVM is a classical machine learning model which 

construct a set of hyperplanes that separate the feature 

space. It was first used for the binary classification task, and 

then it was updated to the regression version called SVR, 

which can solve the regression tasks. In this work, we use 

SVR with a radial basis function kernel, the input data is 

Surface-Based Processing of Gray Matter, which has nearly 

650,000 gray matter measurements per individual, and the 

output is the sample's predicted age. The implementation we 

used is package scikit-learn in Python. The number of 

epochs we set is over 300 to keep the models with the 

highest accuracy. 

With the above four models, we will investigate these models 

over different age groups and establish an ensemble model 

based on these independent models. 

IV. PROPOSED AGE-ADAPTIVE ENSEMBLE MODEL 

A. Fundamentals of Ensemble Learning 

Ensemble learning completes learning tasks by constructing 

and combining multiple learners. It is also referred to as a multi-

classifier system or committee-based learning. The general 

structure of an ensemble learning model is to generate a group 

of individual learners first, and then combine them with a cer-

tain fusion strategy. In general, the generalization performance 

of ensemble learning is better than the individual learners [59-

60]. 

There are six common types of ensemble learning models: 

Bayes optimal classifier, Boosting, Bootstrap aggregating (bag-

ging), Bayesian model averaging (BMA), Bayesian model com-

bination (BMC), and Stacking. 

Bayes optimal classifier is based on Bayesian decision the-

ory. It is an ensemble of all the hypotheses in the hypothesis 

space [61]. Until now, it is still a popular supervisor learning 

for the problem of classification.  

 Boosting is an algorithm that can boost weak learners to 

strong ones [62]. It first trains a base learner from the initial 

training set, and then adjust the distribution of training samples 

according to the performance of the base learner, so that the 

misclassified samples will receive more attention in the follow-

up. This process is repeated until the number of base learners 

reaches the pre-specified value.  

Bagging is the most famous representative of parallel type 

ensemble learning. Its principle is based on bootstrap sampling 
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[63]. For a subset with capacity of m is constructed with sam-

pling with replacement. For an ensample model with T base 

learners, T subsets are generated to train each of the learners. 

The prediction is then made by fuse the results from base learn-

ers. Random Forest is one of the most famous extended variants 

of Bagging. 

BMA, BMC and Stacking represent different model combin-

ing strategies. BMA [64] uses the weighted average method to 

combine the models where the weight of each model is equal to 

the posterior probability of the model. BMC [65] is an algorith-

mic correction to BMA. Instead of sampling each model in the 

ensemble individually, it samples from the space of possible en-

sembles. 

Stacking first trains the initial learner from the initial data set, 

and then generates a new data set for training the secondary 

learner. In this new data set, the output of the primary learner is 

used as the sample input feature, and the initial sample's label 

is still used as the sample label. In general, the secondary 

learner always uses the logistic regression model [66]. Stacking 

is usually provide better robustness than BMA and BMC, since 

BMA and BMC are sensitive to model approximation errors. 

B. Proposed Nonlinear Age-Adaptive Ensemble Model 

Through extensive experimentations, we found that the 

performance of all the models is influenced by the true age of 

samples (see part V). This indicates that some models are 

suitable for predicting young samples, and some models are 

suitable for older samples. In order to improve the prediction 

accuracy, we built a model named nonlinear age-adaptive 

ensemble model. Different from the stacking strategy, our 

ensemble model can adjust weights of inside independent 

models according to the ground truth label. 

The proposed framework is shown in Fig.3. First, we used 

different independent models as the initial learners. In our work, 

we employed four models: SVR, ResNet, GoogLeNet, and our 

own CNN. We used them to predict brain age, recorded the 

prediction results of these independent models, and then used 

these results as input values for the ensemble model. 

Thereafter, we divided the sample into many groups by age, 

and in each group, there is an ensemble model which is 

combined by the independent models.     

                                   = i iM H                                     (1) 

Here, M represents the prediction result of the ensemble model 

in a determined age group, iH means the prediction result of 

the i-th independent model in this age group, and i  is the 

weight of the i-th independent model in this age group with

i =1. 

Our model adopts a novel method to decide the weights of 

independent models. In each age group, we set a loss function, 

its equation is shown below: 

                      
1

( ) ( ) ( )
2

TJ H Y H Y                     (2) 

H is an m×n-dimensional matrix, m is the number of samples, 

n is the number of independent models,   is an n×1-dimen-

sional vector, which is 
1 2( , ,..., )T

n   , i  means the weight 

of the i-th independent model, Y is a m×1-dimensional vector, 

which is  1 2( , ,..., )ny y y , and iy  is the i-th sample’s real age. 

In this work, we tested two optimizers in minimizing the loss 

function. The gradient descent updates the weights by moving 

towards the steepest direction: 

( )TH H Y                             (3)  

where  is learning rate.  

The ordinary least squares can also accomplish this task, it 

can be described as below: 

LIST I. List of pseudocode on our brain age estimation 

 

 
Figure 3 The schematic view of our nonlinear age-adaptive ensemble method on brain age estimation. 
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1=( )T TH H H Y 

                             (4) 

It is worth noting that the results from these two methods are 

the same after experiments.  

For each age group, we then obtain a series of suitable 

weights for independent models, so that the model is able to 

adaptively combine the results from base models for different 

age groups. Formally, the age-adaptive model can be expressed 

as: 

                        ( ) ( , )A AA age
F x H x p


                    (5) 

Here, “age” represents the set of different age ranges, x is input 

data, A  is the value of   at age A, and Ap  is the parame-

ters of independent models at age A. 

The process of predicting the brain age of the sample is as 

follows. First, each independent model predicts the brain age of 

the sample, we record them as 1 2, ,..., )nH H H（ . Once done,  

we calculate the average of all predicted ages and call it aveH , 

1 2( ... )ave nH mean H H H    . Next, we check which 

age group aveH  belongs to. For each age group 𝐺𝑖 ∈
(𝐺1, 𝐺2, … , 𝐺𝑛) , there is an ensemble model  𝑀𝑖 ∈
(𝑀1, 𝑀2, … ,𝑀𝑛)  that combines the results of base models 

adaptively. In particular, if ave iH G , then we select iM  as 

the final ensemble model, and use it to predict the age of the 

sample. Figure 3 shows the estimation process of our ensemble 

model, and List I gives the list of the pseudocode of our method.  

V. EXPERIMENTAL RESULTS 

A. Experimental Results 

The test method used is based on a 5-fold-cross-validation 

strategy, with the mean MAE and Spearman correlation 

between the predicted age and the actual age of them as final 

results. 

The details of MAE for each model in a 5-fold-cross-

validation are shown in Table I. Min means the minimum MAE,  

Max represents the maximum,  and Mean is the average of 5 

results in 5-fold-cross-validation while Std relates to the stand-

ard deviation of results, which represents the degree of disper-

sion of the results of the model. For the Std, Table I shows that 

the 6-layer CNN has the greatest value of 0.22, followed by 

SVR with 0.21. For the ResNet architecture, Std value is 0.08, 

which is the minimum of all models. OE and MedianE have the 

same value of 0.13, nl-AAE-2 and nl-AAE-c are 0.12, Goog-

LeNet and nl-AAE-6 are 0.11, and MeanE is 0.1. These results 

suggest the results of 6-layer-CNN have the largest degree of 

dispersion. In contrast, the results of ResNet have the smallest 

degree of dispersion, which means the predictions of ResNet 

are more stable. 

 Our test results are shown in Figure 4 and Table II. In Table 

I, we first present the results of 4 independent models: SVR, 6-

layer self-built CNN, ResNet and GoogLeNet. The achieved 

mean errors in term of years are 5.15, 4.33, 3.99 and 3.88 years 

in age, and the Spearman correlation between predicted age and 

real age are 0.83, 0.89, 0.88 and 0.89, respectively. We then 

combine the prediction of base learners together using the me-

dian and mean of their predictions.  The result shows that the 

median based ensemble model has a larger mean error than the 

mean value based ensemble model. The possible reason is that 

a median-based ensemble model actually only chooses one 

model each time, and ignores other models that are not the me-

dian outputs. 

Following these preliminary tests, we investigate the nonlin-

ear age-adaptive model. First, we used only one linearly ap-

proximated ensemble model to be applied to the data sample of 

all ages. In other words, we first test the performance of ensem-

ble model without age-adaptive. Compared with naive fusing 

strategies, the model performance is marginally improved with 

a MAE of 3.52 years, and the Spearman correlation of 0.91 (OE 

in Table II).  

In our second experiment, we divided the prediction results 

of four independent models into two groups. The first group 

contains the samples over 40 years old while the other group 

contains the samples under 40 years old. We separately trained 

the models on two sets of data, and used the results of 4 base 

models as the input feature of secondary learner. By establish-

ing two ensemble models for different groups and combining 

them into a non-linear ensemble model, a lower MAE with 3.45 

years is achieved, but its Spearman correlation also drops to 

0.89 (nl-AAE-2 in Table II).  

Next, we divided the prediction results into six parts accord-

ing to the actual age of the samples, which were 10-20 years 

old, 20-30 years old, 30-40 years old, 40-50 years old, 50-60 

years old, and 60-90 years old, then we applied the same 

method to build the non-linear ensemble model (nl-AAE-6 in 

Table II). This time, the ensemble model’s average MAE is 3.39 

years, and its Spearman correlation improves to 0.95. 

Finally, we divided the data more finely, taking all the same 

age sample as a group, but due to the small amount of data, we 

can only use a simplified method, that is, for samples from 17 

to 30 years old, we treated each age as a group. However, the 

size of data decreases as age increases.  Therefore, for the 30 to 

60-year-old samples, we took every 5 years old samples as a 

group. Likewise, we group the 60 to 70-year-old samples and 

the 70 to 90-year-old samples. We refer this finely split model 

as a “continuous” (or year-wise) model, namely nl-AAE-c in 

Table II. The ensemble model trained on this division provides 

the best performance with a MAE of 3.19 years and a Spearman 

correlation of 0.95.  

Here, we present a comparison of our model with previous 

researchers’ models which are also tested on the PAC 2019 da-

taset. Couvy-Duchesne et al. [44] built an ensemble model com-

Table I The details of MAE for each model in 5-fold-cross-validation 

 ResNet 6-layer CNN GoogLeNet SVR MeanE MedianE OE nl-AAE-2 nl-AAE-6 nl-AAE-c 

Min 3.87 4.02 3.75 4.84 3.46 3.59 3.40 3.28 3.21 2.98 

Max 4.11 4.54 4.00 5.34 3.71 3.92 3.69 3.65 3.55 3.35 

Mean 3.99 4.33 3.88 5.15 3.57 3.72 3.52 3.42 3.39 3.19 

Std 0.08 0.22 0.11 0.21 0.10 0.13 0.13 0.12 0.11 0.12 
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bined by 7 different algorithms, and its performance is attrac-

tive with a MAE of 3.33 years. Da Costa et al. [49] developed 

an ensemble of shallow machine learning methods (e.g., Sup-

port Vector Regression and Decision Tree-based regressors) 

with a MAE of 3.75 years. Soch [50] thought that distributional 

transformation (DT) can map the predicted values to the varia-

ble’s distribution in the training data, which would improve de-

coding accuracy, and finally his model’s performance is good 

with a MAE of 4.58 and spearman correlation between pre-

dicted age and the actual age of 0.93. These research results are 

attractive. By summarizing the experience of the previous re-

searchers, we have developed the AAE method resulting in a 

marginal improvement compared to the previous research re-

sults.  

The brain age gap represents the difference between pre-

dicted age and chronological age. Figure 5 shows the brain age 

gap as functions of the chronological age using 7 different ma-

chine-learning methods. The slope of the line in Figure 5 indi-

cates how much the prediction accuracy of the model is affected 

by increasing the age. As such, the prediction accuracy of AAE 

has the lowest influence by aging, and the prediction accuracy 

of SVR is most affected by aging.  

The above experiment provides the following inspirations: 1) 

deep neural networks are in-general better than SVR; 2) all en-

semble models have lower errors than discrete models; 3) our 

age-adaptive models have better performance than non-adap-

tive ensemble models; 4) finer the age-based division, lower the 

error can be achieved by the nl-AAE-c model. 

B. Investigation on Age-Sensitivity per Models 

The age-sensitivity shows the trend of MAE for each model 

according to the age. Therefore, in this section, we investigate 

the age-sensitivity of the models we built previously. Figure 6 

shows the results suggesting that all the models are good at pre-

dicting young people but not old people where the MAE in-

creases with the age of the sample. As for independent models, 

GoogLeNet and ResNet are more sensitive for age, their MAE 

has a significant increase in the age of 20 to 30, but SVR does 

not change drastically as a whole. Besides, GoogLeNet has the 

best performance for middle-aged people, and the MAE of all 

models has a significant change when the sample age is 70 years 

old.  

The age-sensitivity of nonlinear age-adaptive ensemble 

model is similar to that of the independent models but more sta-

ble. Obviously, as the sample age increases, the MAE becomes 

larger and the model's performance gets worse and worse. 

When the samples’ age is 50 to 60, the model’s performance is 

the worst, with MAE exceeding 5. For a machine learning per-

spective, this is due to the lack of older samples that resulted in 

an insufficient training of the model. From a medical perspec-

tive, we believe that this is due to the fact that the differences 

between the brains of different people will become larger as age 

grows, which in turn will increase the difficulty of prediction. 

On the other hand, brain differences between young people are 

not that big. Therefore, when training the model in the future, 

we can increase the proportion of young people's data to im-

prove the accuracy of the model. 

 
Figure 4 Performance of each individual model 

 

Table II Results of all the models. 

 Model 
Average  

MAE (years) 

Spearman  

correlation 

Single 

Model 

SVR [45] 5.15 0.83 

6-layer CNN [44] 4.33 0.89 

ResNet [43] 3.99 0.88 

GoogLeNet [45] 3.88 0.89 

Ensemble 

Method 

MedianE [45] 3.72 0.9 

MeanE [45] 3.57 0.91 

OE [43] 3.52 0.91 

Our nl-AAE-2 3.45 0.89 

Our nl-AAE-6 3.39 0.95 

Our nl-AAE-c 3.19 0.95 

Other 

researchers’  

methods 

 

Seven algorithms 

combined 

ensemble model [45] 

3.33 – 

Ensemble of shallow 

machine learning 

methods [50] 

3.75 – 

Distributional 

Transformation [51] 
4.58 0.93 

 

 
Figure 5 The brain age gap and MAE as functions of the chrono-

logical age using 7 different machine-learning methods, the hori-

zontal black line represents 0 brain age gap. 
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C. Learning the Model Weights 

Figure 7 shows the change of each independent model’s 

weights in the AAE according to the age. Through this figure, 

we can know the different importance of each independent 

model in the AAE at different ages. 

The SVR’s weights are relatively average for a sample be-

tween 25 and 70 years old. But for young samples from 10 to 

25 years old, SVR does not perform well, which shows that 

SVR is not suitable for predicting the age of young people. 

The CNN model plays an important role in the prediction 

results when the sample age ranges from 20 to 50 years old. 

CNN receives a high weight in the prediction of the data of 

young samples, while for the data of old samples, CNN has less 

contribution to the ensembled result. 

GoogLeNet model is important in the AAE among elder 

groups. Although it has average weights in the 20-40 age 

groups, its prediction significantly determines the results of the 

ensemble models in the elder groups, especially for middle-

aged. This shows that the function of GoogLeNet is powerful, 

and it is suitable to predict the age of middle-aged and elderly 

samples. 

ResNet model has basically maintained high weights for 

samples aged 10-35 years old, which shows that it is suitable 

for predicting the age of young samples. In the data of middle-

aged and elderly people aged 35 to 70, it has average perfor-

mance therefore it does not have a large weight. But for data 

over 70 years old, it has a good performance, which means that 

ResNet is suitable for inferring the age of people over 70 years 

old. 

VI. DISCUSSION 

A. Discussion of AI models 

In this work, we have proposed a nonlinear age-adaptive en-

semble (nl-AAE) model for brain age estimation with better re-

sults than other benchmark models. The most important contri-

bution of this work is the age adaptive fusing strategy which 

significantly improves the performance of the ensemble model. 

To the best of our knowledge, no previous literatures docu-

mented this strategy. The characteristic of AAE is that it not 

only combines the advantages of multiple models, but the 

weights of independent models also change with age. This 

makes the AAE become a dynamic model, where the prediction 

results are more accurate given BrainAge projection is sensitive 

to age change.  

Although our model yields state-of-art prediction results, 

there are still several issues that can be improved in future 

works. First, more advanced models can be introduced as initial 

models. For example, as for GoogLeNet, we used the Inception 

V1 version, now it has already had Inception V4 versions. 

Second, MAE is generally used to evaluate the performance 

of the model. However, MAE is affected by age distribution and 

the number of objects in the training set, so MAE of different 

data sets cannot be directly compared. The lower the physiolog-

ical age of the general object, the smaller the brain difference 

and the smaller the MAE value of the same age individuals. Ac-

tually for adolescents, the MAE value of the monomodular pre-

diction model is 1 to 2 years, and that of the multimodal predic-

tion model is about 1 year. However, for individuals of all ages 

or middle-aged and old age, the MAE value of the prediction 

model can only reach 4-5 years in general. Meanwhile, the 

larger the overall age span of the object is, the larger the evalu-

ation index MAE will be. Therefore, the comparison between 

models can be made with various factors. 

Third, we can try more ensemble methods, and compare their 

performance for brain age estimation in our future work. The 

approach we have used in this work is to re-weight the results 

of multiple independent models by integration and utilizing a 

nonlinear function which can have many types. For example, 

one can select only the best performing independent models as 

the ensemble model for each age group. In addition, we can also 

change the method of re-weighting. Using a multiple layer per-

ceptron to combine the results of independent models is an in-

teresting idea, although its training speed may be a little slower, 

its prediction accuracy is worth investigating. 

Fourth, the gender is always an important variable in many 

experiments, based on the subtle differences between men's and 

women's brains. Therefore, the gender may be a key factor in 

improving model prediction accuracy. In our future work, we 

will investigate the influence of gender on brain age estimation 

and consider gender as a factor in our experiments. 
Brain age prediction is a burgeoning research field that is de-

veloping rapidly. Brain age prediction models based on neu-

roimaging and their applications are increasing day by day. A 

 
Figure 6 Age-Sensitivity of models 

 
Figure 7 Individual models’ weights in nl-AAE-c. 
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growing number of researchers are using brain age analysis to 

explore brain aging in the course of health and disease, and 

many new and promising avenues of research are emerging. 

From the perspective of image modes, various image modes 

have their advantages and disadvantages, and the fusion of in-

formation from multiple modes is more likely to further im-

prove the performance of the model. In addition, with the im-

provement of the architecture of the convolutional neural net-

work and the appearance of the image data set of big data, we 

believe that the performance of the future model is likely to be 

further improved. The key to future model development is to 

continuously improve the accuracy of the model while improv-

ing the generalization ability of the model for new data. The 

ultimate goal of this field is to build a brain age model based on 

large image sets that completes that can be applied to provide 

accurate personalized cloud diagnosis services. 

B. Discussion of medical findings 

From our research, we also have some interesting findings 

from medical perspectives. First, we found that the performance 

of constituent models decreased with the age of the sample, 

which implies that young people have their brains in similar 

conditions. In addition, we have found that with an increase of 

age, the risk of people suffering from brain diseases increases, 

too. The differences between the brains are getting larger, and 

the accuracy of the model's prediction begins to decline. 

However, these results may be influenced by biological reasons, 

sample size or problems with the model, or a combination of 

both, so in the future, we still need to find a fairer way to prove 

these findings. 

From the results of our experiments, we believe that changes 

in the brain can be divided into 4 stages, namely 0-30 years old, 

30-50 years old, 50-70 years old and 70-80 years old. The 

criterion for classification is whether there is a significant 

change in the model's performance in predicting age. From 

Figure 5, we notice that during the period of 0-30 years old, the 

human brain undergoes a significant process of change. 

Speaking at a meeting of the Academy of Medical Sciences in 

Oxford in the UK, researchers explained that our brains slowly 

transition to adulthood, which is finally reached in our 30s. 

After the age of 30, the brain’s working memory capacity 

begins to slowly decline [40], which is in agreement with our 

research findings. At the age of 30 to 50, the brain changes little, 

but there will be a significant change around the age of 50. 

Research in the British Medical Journal [41] also shows that in 

a group of people who were first tested on various mental 

abilities when they were 45–49 years old, reasoning skills 

declined by 3.6 percent over 10 years. At the age of 50-70, the 

brain does not change much, but after the age of 70, the brain 

will have the last significant change. Peter Jones’s research also 

shows that the overall volume of the brain begins to shrink 

when we’re in our 30s or 40s, with the rate of shrinkage 

increasing around age 60-70 [40], the results of our experiments 

can also be evidence of it. 

Exercise, reading, meditation and other similar behaviors are 

good methods to prevent brain disease [7-8]. People who 

exercise, meditate regularly, and those with higher education 

levels have lower predicted brain age than their peers, which 

shows that their brains are more active and the risk of brain 

diseases is lower. A study reported in  [38] analyzed samples 

over the age of 50 and found that people who do not exercise or 

who exercise little have their brains about 5-10 years older than 

those who exercise regularly. Another recent research found 

that stem cells in the brain’s hypothalamus likely control how 

fast aging occurs in the body [39]. Specifically, the number of 

hypothalamic neural stem cells naturally declines over the life 

of the animal, and this decline accelerates aging. Researchers 

injected hypothalamic stem cells into the brains of normal old 

and middle-aged mice, whose stem cells had been destroyed, 

the measures of aging were slowed or reversed. This is an 

exciting discovery, which will be an important step in slowing 

down aging and treating brain diseases. The brain age 

prediction model in this article is sensitive to changes in the 

brain, and we believe it can be a useful tool for detecting 

medicine performance. 

VII. CONCLUSION 

In this paper, we proposed a nonlinear age-adaptive ensemble 

method for brain age estimation from MRI images. From our 

experiments, we clearly show that ensemble models can in gen-

eral achieve lower errors than discrete models, and our nonlin-

ear age-adaptive ensemble models are consistently better than 

age-agnostic ensemble models. Among discrete models, Goog-

LeNet basically has a good performance on data of all age 

groups, especially for middle-aged and old samples. With the 

significantly increased accuracy on brain age estimation, our 

nonlinear age-adaptive ensemble models can potentially help 

doctors to identify the risk of brain diseases more accurately 

and efficiently, help pharmaceutical companies develop drugs 

or treatments more precisely, and provide a powerful tool for 

researchers in the field of brain science. 
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