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Abstract

Trajectory data are generated by tracking the position of objects that move through

space, for example using GPS technology. This thesis focuses on the statistical mod-

elling of thousands of trajectories to infer various oceanographic statistics of interest.

The motivating example used throughout the thesis is the Global Drifter Program

which provides over 25,000 trajectories of free-floating buoys known as drifters, the

motion of which track near-surface currents.

In the first piece of work we propose a novel multi-output probabilistic prediction

model. The motivation for this arises because drifter trajectories are often used by

practitioners to calibrate and estimate oceanic models which predict northward and

eastward velocities using two independent models. This independence assumption is

seldom realistic. As such, we extend an existing framework known as Natural Gradient

Boosting (NGBoost) to predict multivariate outputs. The model is applied to predict

a conditional distribution of drifter velocities.

We then develop a novel method to compute the most likely path taken by drifters

between arbitrary fixed locations in the ocean. We also provide an estimate of the

travel time associated with this path. Our method, which utilises Markov transition
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matrices, is purely data driven and requires no simulations of drifter trajectories, in

contrast to existing approaches.

Finally, we propose an alternative method of estimating travel times in a model-

free way. Specifically, we investigate how long it takes a collection of drifters to travel

to and from locations of interest. However, this direct approach, when applied naively,

results in estimates which can be biased, missing, and noisy. Hence we use transformed

multidimensional scaling to lessen these undesirable properties. We discuss the merits

and disadvantages of our two proposed methods for estimating travel times, and we

provide real-world studies to motivate and justify each methodological approach.
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Chapter 1

Introduction

Trajectory data arises from the tracking of objects (e.g. vehicles, animals, persons,

floating objects) as they move through space. The modelling and analysis of trajec-

tory data is extremely informative in many applications. The most common tracked

quantity is position via a satellite positioning system such as GPS. However, often

the device being tracked will also record other information which is of interest for ex-

ample: the instantaneous speed of a car, temperature at that location, or heart rate

of the individual being tracked. This thesis proposes novel statistical methodology to

utilise and model the position observations from trajectory data to gain new insights.

Modelling trajectory data is a challenging area in itself. The process which gener-

ates the trajectory is often driven by a spatial-temporal process which can be difficult

or impossible to model. In contrast, the common alternative data collection method

is to measure a quantity at single or multiple fixed spatial locations. These mea-

surements are typically easier to model individually, as only temporal differences are

observed, but the joint distribution over multiple locations can be challenging to char-
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acterise. The dichotomy between trajectories and fixed-point measurements is referred

to in the fluid dynamics community as the Lagrangian versus Eulerian approach.

Additionally, the nature of trajectory data introduces unique challenges. Some

common properties are:

• High errors on location observations. Typically the devices being tracked are

made on a restricted budget which sometimes means compromises need to be

made on data quality. Additionally, outliers in GPS locations can be caused by

inclement weather, interfering objects, and limited satellite coverage.

• Irregular sampling. Often the frequency of location observations are dependent

on satellite passes or are intentionally limited to preserve battery.

• Finite lifetime of trajectories. The trackers are usually battery operated, hence

are subject to a finite battery life.

These combined challenges mean that trajectory data are in general: highly non-

stationary, noisily observed, and irregularly and sparsely sampled—all of which in

both space and time—which motivates their careful and bespoke modelling, as will

be a common theme throughout this thesis.

1.1 The Global Drifter Program (GDP)

The linking component of the work in this thesis is the motivating application dataset:

The Global Drifter Program (GDP) [Lumpkin and Centurioni, 2020]. In this section,

we provide a brief background outlining the current state of the drifter data processing,
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models, and how they are used. Each chapter of this thesis aims to build statistical

methods and tools which can be used to utilise the dataset and infer interesting

quantities. As a brief summary: Chapter 2 aims to predict a distribution on the

drifter velocities given satellite observations such as wind and sea surface height;

Chapters 3 and 4 aim to answer the question “How long would it typically take for

an object to travel from point A to point B in the ocean?” As we introduce concepts

in this section we shall indicate to which chapters they are relevant.

The GDP is a very influential dataset and entirely free to access. There are over

1,100 associated publications using this dataset1. The applications of which include:

modelling sea surface temperature [Elipot et al., 2022, Kennedy et al., 2019], creating

global ocean current models [Bonjean and Lagerloef, 2002], identifying ocean pathways

[Drouin et al., 2022], search and rescue for the MH370 airline wreckage [Miron et al.,

2019], identifying ocean garbage patches [van Sebille et al., 2012, Maximenko et al.,

2012], and relating animal movements to currents [Bentivegna et al., 2007]. This

motivates the importance of the work in this thesis. Specifically, by creating and

improving general use tools, software, and statistical models for trajectory data, we

help oceanographers and environmental scientists more broadly utilise the dataset to

have impact in multiple domains.

The GDP is an initiative led by the National Oceanographic and Atmospheric

Administration (NOAA). The program tracks the movements and measurements ob-

tained by drifters. In Figure 1.1.1 we show a diagram of a drifter. This design has

remained almost constant throughout the lifetime of the GDP in an attempt to keep

1Source: https://www.aoml.noaa.gov/phod/gdp/bib/bibliography_chronological.php
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Figure 1.1.1: Diagram of a drifter.

the dataset homogeneous. The surface float contains the battery and various other

sensors, and is designed to stay at or near the surface so it can communicate with

satellites.

An important aspect to the drifter design is the drogue labelled in Figure 1.1.1. If

an arbitrary floating object was just to drift at the surface, without anything attached,

the currents which move that float would be a primarily a mix of three components:

• Surface drift. The surface currents in absence of wind.

• Stokes drift. Currents caused by wind waves.

• Direct wind forcing. Wind pushing directly on the object, causing it to move

with the direction of the wind.
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The main aim of the GDP is to understand and observe the surface drift as accurately

and widely as possible. This is where the drogue sock comes into effect. The drogue

sock, which is attached to the drifter by a tether, ranges from around 10m to 20m

depth such that it is centered at 15m. At these depths, Stokes drift and wind driven

currents have less of an effect. For a more detailed description of the design and

history of the GDP we refer the reader to Lumpkin et al. [2017].

As of July 2021, the GDP database consists of about 26, 000 drifters. Each drifter

is dropped from a ship, then it is left to freely float in the ocean. Over the life of

the drifter two key events may occur: first the drogue may detach and second the

drifter “dies”. The drogue falling off means the drifter is now just a float excluding

the drogue as shown in Figure 1.1.1. When this occurs the drifter motions will be

more influenced by wind and wave driven currents—but this data is still informative

and is recorded and studied in its own right. There is a sensor which indicates if the

drogue is still attached or not. After the drogue falls off we refer to the drifter as an

undrogued drifter. The drifter dying can be caused by various phenomena, the most

common categories being: washing ashore, stopping transmission due to the battery

dying, and being picked up by a ship [Lumpkin et al., 2012]. The average lifetime

of a drifter is about 410 days resulting in a total of 10.6 million days of observations

when combining all the drifters.

Up until around 2016, the locations of most drifters were recorded by a satellite

system called ARGOS. ARGOS typically has a standard deviation on location obser-

vations of around 500m with a larger standard deviation in the longitudinal direction

than the latitudinal. In modern day, all drifters are tracked by GPS which has an
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Figure 1.1.2: The time series of how many drifters are active at any given time. The

“All” line is the sum of the drogued and undrogued data.

error on the order of a few meters, making the positioning error negligible for most

applications, although outliers do still occur [Early and Sykulski, 2020]. Each drifter

is fit with a number of sensors, one of the most popular sensors being a thermometer

to measure sea surface temperature. Data recorded from the sensors are temporar-

ily stored, then also transmitted over the ARGOS system at the same time as the

location. Elipot et al. [2016] give a detailed comparison of ARGOS fixes to GPS.

In Figure 1.1.2, we show how many drifter observations are available at any point

in time since 1980. One thing to note from this plot is how much of the data comes

from undrogued drifters. Typically, around 50% of any of the data gathered is from

undrogued drifters. To give further insight as to what these numbers translate to in

terms of spatial coverage, we display maps in Figure 1.1.3 showing the active drifters

at a few snapshots in time. The combination of these two figures shows the growth
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Figure 1.1.3: The locations of all active drifters at different snapshots of time. Each

map shows the locations of all active drifters on the date listed. As per the legend,

blue circles are drogued drifters, and red pluses are undrogued drifters.
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and coverage of the GDP and how it has grown to a global scale.

Other Drifter-like Deployments. We note that the GDP is not the only source

of surface current observations, it is just one of the largest. Other notable mentions

include:

• SOFAR have a global array of thousands of drifters.

• ARGO floats [Lebedev et al., 2007] are designed to profile sea temperature

and salinity at depths of 1000m. These floats rise to the surface to transmit

data and remain at the surface for a number of days (◦10 days) before sinking

again, therefore their positions can be used as ocean surface observations in

these periods at the surface.

• Regional focused deployments over a short time frame: GLAD [Özgökmen,

2016] and LASER [D’Asaro et al., 2017] in the Gulf of Mexico, or LatMix

[Shcherbina et al., 2015] in the Sargasso Sea.

These deployments have a different design to the drifters tracked by the GDP, hence

they need to be treated differently when modelled. For further reading, see for example

Rio et al. [2014] for differences between ARGO and GDP drifter behaviour.

1.2 Movement Models for Drifter Trajectories

Ultimately, the sparsity of observations in both time and space limits the questions

which we can answer with raw drifter data alone. However, we can fit statistical
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models to make inferences based on the predictions and parameters. Here we give

insight on two models which will be used in future chapters.

First, in Section 1.2.1 we introduce the reader to the Eulerian and Lagrangian

specification of motion. In particular, this relationship leads to how we can use

Lagrangian observations (which the drifter data are) to fit Eulerian models, then in

turn how we can use these Eulerian models to simulate new synthetic Lagrangian

observations. In particular, we give insight on how these models are ultimately used

to aid decision making.

Secondly, by making the simplifying assumption that ocean currents are statisti-

cally stationary in time, we can make interesting observations directly from the data,

as we shall investigate in Chapters 3 and 4. For this purpose, in Section 1.2.2 we

therefore provide an introduction to discrete-time discrete-space Markov models for

the GDP.

1.2.1 Continuous Position Models

What we observe when a drifter moves is the position of a particle which is influenced

by some sort of fluid dynamics. Here we give a very brief introduction to a topic from

fluid dynamics, which is the relationship between Eulerian and Lagrangian observa-

tions. In particular, we outline how this relationship leads to the core concept of how

we can simulate new particles. Here we give all positions in R2 as the data we are

interested in modelling are two-dimensional in space. These concepts also extend to

work in higher dimensions, e.g., if the drifters could also sink to different depths.

On a practical note, when relating velocity and position in this chapter, we make an
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assumption that the space in which we are working in is not affected by the curvature

of the earth. For simplicity, references to locations will be referred to as easting and

northing pairs from a fixed origin at (0, 0). For example, (1, 3) would be 1 meter east

and 3 meters north of the origin. The easting-northing pairs will have an equivalent

representation in a longitude-latitude coordinate pair. Outside of this chapter, the

location data are in standard longitude-latitude pairs and velocities are in m/s. In

practice, when doing computations with these velocities we first take a local projection

from longitude-latitude (degrees) to easting-northing (km) then do the calculations

in the eastern-northing space and translate the new location of interest to longitude-

latitude space. Such tasks are easily implemented using packages such as proj [PROJ

contributors, 2022].

A Lagrangian specification is when we follow a particle as it moves around space.

We consider the position of a particle at time t, which starts at location r0 ∈ R2,

as r(t, r0) ∈ R2. A quantity which is of interest is the velocity, which is the time

derivative of the particle’s location:

v(t, r0) =
∂

∂t
r(t, r0). (1.2.1)

This velocity and position definition are in the Lagrangian specification of motion. In

other words, the position and velocity of the particle are both functions of the start

point and the current time. In practice, the start point r0 is chosen by the deployment

team on board the deploying ship and is sometimes selected to study specific regions

of interest or ensure a good spread of global coverage.

The alternative definition of motion is a Eulerian specification which is defined as
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the spatial-temporal function returning the velocity at position x ∈ R2 and time t:

u[x, t]. (1.2.2)

The relationship between the Lagrangian and Eulerian specifications is u[r(t, r0), t] =

v(t, r0), i.e., the Lagrangian velocity of trajectory at time t is the Eulerian velocity

at the position of the object at time t.

Estimating Lagrangian Velocity from the data. The velocity which a particle

moves at is often a sought after quantity. However, in practice drifters only record

and transmit their positions at irregular intervals. Furthermore, these location fixes

are error prone. Hence, we have noisy observations of r(t, r0) for a range of sampled

t and we want to infer the continuous function r for all t and the derivative of that

function with respect to t. This is a well studied problem; the approach which is

commonly used for the GDP is the Kriging method first introduced for drifter data

by Hansen and Poulain [1996]. Kriging (equivalently known as Gaussian Process

Regression) is an interpolation method which allows one to predict the value of a

function at an unsampled point in time using the temporally close sampled points.

These predictions are provided in the GDP dataset to provide positions and velocities

(with their associated estimated variance) at 00:00, 06:00, 12:00 and 18:00 to form

the 6-hourly product which we use throughout this thesis [Lumpkin and Centurioni,

2020].

In recent years, due to technological advancements, the positioning errors have

become smaller and the location readings are more frequent, warranting a more up

to date product. Elipot et al. [2016] provide an alternative interpolation method
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to Kriging. A weighted linear model with t-distributed errors is fit to the nearest

four points (two before and two after the time of interest). Due to higher sampling

frequencies in recent years, this product is provided hourly, allowing higher frequency

phenomena to be observed. In present day, a normal drifter provides a GPS location

fix occurring near the start of every hour, motivating the hourly resolution. However,

for the purposes of this thesis the 6-hourly data is sufficient, and has the advantage

of going back further in time to the GDP’s inception in 1979.

Both of these interpolation methods model the Lagrangian locations directly. The

Lagrangian velocity is provided by computing or estimating the derivative of the

interpolation function. We shall use this velocity estimate in Chapter 2 as the target

of our model.

Going from Lagrangian to Eulerian. One of the applications of the GDP is to

use these Lagrangian observations to create Eulerian velocity maps. In particular,

we aim to learn a function u(x, t) which explains the Lagrangian velocities. The

estimation of the spatial-temporal function u is often considered as a statistical chal-

lenge. That is we aim to minimize the difference between the Eulerian and Lagrangian

products

û = arg min
u

∑
i

d(u(xi, ti), v̂i),

where v̂i is the Lagrangian velocity estimate from drifters at point xi and time ti; and

d is a distance function; typically this is taken as mean squared error (MSE).

A common approach is to fit a model for the observed Lagrangian velocities in a

sliding window fashion. We take all drifters observed in a spatial longitude-latitude
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x◦ × x◦ box then fit parameters for that location. The collection of all of these mod-

els is then taken as the spatial model. As a straightforward example, we consider a

mean-flow model. We create a purely spatial mean flow map in Figure 1.2.1 by taking

the mean in each box. Such a map is often referred to as a pseudo-Eulerian [Lumpkin

et al., 2017] or quasi-Eulerian [Fratantoni, 2001] velocity field. The map resolves all

large-scale major oceanographic features, such as the Equatorial and Antarctic Cir-

cumpolar currents which are primarily longitudinally oriented (top panel). However,

this method assumes that currents are constant over time: this is not the case.

The use of a x◦×x◦ longitude-latitude box for spatial gridding is generally flawed.

We give a detailed discussion of the use of these gridding systems in Chapter 3 along

with an alternative option. In particular, one of the main flaws is that the area of

each grid becomes smaller as the absolute value of latitude increases.

To try to account for variations over time, we can consider the relationship of

drifter velocities to various sources of remote sensed information relating to wind and

sea surface height, such as those used in Rio et al. [2014], Mulet et al. [2021]. These

models are particularly interesting as they can be used to compare the different effects

of the variables on drogued and undrogued drifters [Lumpkin et al., 2013].

In Chapter 2 we propose a gradient boosting model which aims to relate remotely

sensed information to the velocity data obtained from drifters. We do this by using

covariate information relating to the main drivers of surface drift (sea surface height)

and wind-driven currents. Due to the non-parametric nature of the model, it could

also be used to test other covariates such as those related to Stokes drift.
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Figure 1.2.1: A plot of the mean current derived from all the driver observations.

The mean of the longitudinal or latitudinal velocities are taken in 5◦ × 5◦ bin. The

resolution is chosen for visual purposes.
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Going from Eulerian to Lagrangian Often the analysis of ocean currents starts

from a Eulerian product in the form of either a spatial-temporal model or a dataset

providing ocean velocity estimates over a grid of points in space and time. The

proposed impact of these models is that they can be used to track where objects or

masses of liquid end up. However, simply analysing the currents and flows on these

spatial-temporal maps will likely not produce actionable information.

For example, if we were trying to decide where to search for ocean plastics, how do

we use a Eulerian model to figure this out? One way to utilise the Eulerian model is

to produce thousands of synthetic Lagrangian particles and then observe where these

particles end up. By then analysing the distribution of where all these particles end

up, decisions can be made. We introduce how one can simulate these particles here.

A common way to use an ocean current product is to generate a new artificial

trajectory, where y(t) denotes the position of the trajectory at time t. The simplest

model to simulate such a trajectory is to solve the initial value problem:

y(t) = y0 ∇y(t) = u(y(t), t), (1.2.3)

where we want to find y(t+ h).

The integration in Equation (1.2.3) can be solved by a numerical integration

method, the simplest of which is using Euler’s method:

y(t+ h) = y(t) + hu(y(t), t). (1.2.4)

The ocean current products are generally provided as gridded products, hence u will

usually require interpolation both in time and space. A review of the analysis and the

usefulness of synthetic Lagrangian particles can be found in van Sebille et al. [2018].
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The view presented in this section only provides a brief review on this method of

analysing drifters. We note that this is just one of the many methods to model tra-

jectories. We refer the reader to LaCasce [2008] for a more complete overview, which

includes statistical methods to estimate diffusivity, and analysing multiple trajecto-

ries starting from similar points in space and time (see also Beron-Vera and LaCasce

[2016] and Oscroft et al. [2021] for more recent analyses).

1.2.2 Markov Chain

Another common model to analyse trajectories is to form a discrete-time discrete-

space Markov chain. Unlike the aforementioned continuous time movement models,

we do not directly estimate a measurement of velocity. The Markov chain models the

probability of being in position y given it was in position x one time epoch ago.

In summary, a discrete-time discrete-space (DTDS) Markov chain gives a density

on the movements of an object in a state space, s ∈ S, where S = {1, ..., N} is a

set of all N possible states. Let {xi}ti=1 be a stochastic process where xt ∈ S is the

state of the process at time t. The Markov property means that if we are interested

in predicting the future state (xt+1), we have the following property:

P (xt+1 = y|xt, . . . , x1) = P (xt+1 = y|xt).

In other words, the future state of the system is independent of the past states, given

we know the current state of the system.

The probability P (xt = i|xt−1 = j) is a function of only two variables (i, j ∈ S)

hence we can store the model in a so called transition matrix. The transition matrix
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is an N ×N matrix with entries:

Tij = P (xt = i|xt−1 = j).

An issue occurs as we are trying to model the motion of a continuous-time continuous-

space model by a discrete-time discrete-space model. Therefore, we must first create

functions to discretize space and time.

The space is often discretized as a l◦ × l◦ longitude-latitude grid system, where l

is a variable which must be specified in advance. The time is discretized by selecting

the number of days k and setting k days as the physical time difference between xt

and xt−1. Therefore, the resulting interpretation of the Markov chain is that: If the

process is in box i on day 0, the process will move to box j on day k with probability

Tij. The results which a Markov chain will infer are heavily influenced by both the

physical time difference k and the grid size l, as we shall show in Chapter 3.

Markov models have proven useful for various applications, likely due to how easy

they are to deploy and explain. One can store a model which summarizes the entire

ocean by storing only approximately 10MB of data. Some notable applications using

drifter data include: finding the destinations of ocean debris [van Sebille et al., 2012,

Maximenko et al., 2012], tracking debris from the MH370 airliner to aid search and

rescue [Miron et al., 2019], investigating the effect of ocean currents in plankton ge-

nomics [Laso-Jadart et al., 2021], identifying main pathways of ocean currents [Drouin

et al., 2022], and analyzing how well connected oceanic regions are [Froyland et al.,

2014]. This method is also used for the website http://plasticadrift.org/, which

is an excellent visual tool showing where an object floating on the surface of the ocean
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might travel to.

The Markov model approach presented here and which will be used in Chapter 3

assumes that the domain is stationary over time, which is seldom realistic. There are

time trends due to changes in ocean dynamics and seasonal effects. Approaches have

been proposed to account for this which generally involve taking windowed estimates

of the transition matrix (e.g., see van Sebille et al. [2012] for a seasonal example).

In the future work of this thesis, Section 5.1.3, we propose to use methodology from

the animal tracking literature to estimate transition rates using covariate information.

Such a method could be used to account for seasonal effects and even be fit to remotely

sensed observations.

1.3 Contributions of this Thesis

Chapter 2

In Chapter 2, we propose a method that can create a spatial-temporal model pre-

dicting Lagrangian ocean velocities using the same observational data sources as Rio

et al. [2014]. The model utilises a framework known as natural gradient boosting

which predicts a distribution rather than a single point. This methodology is pro-

vided in a very general context such that it can be used in other applications. The

software related to this chapter is provided as such.

One of the intended usages of the model would be to use the predictions as the

Eulerian velocity field u to then simulate new trajectories. The model predicts a con-

ditional distribution of the velocity estimates provided by the 6-hourly GDP product.
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We could use the conditional distribution provided by the predictions of the model

when simulating synthetic trajectories. As the model is specifically trained to repli-

cate drifter behaviour, the synthetic trajectories should be a close match with the

statistical properties of drifter trajectories.

This chapter is currently under review under the title Multivariate Probabilistic

Regression with Natural Gradient Boosting by Michael O’Malley, Adam M. Sykulski,

Rick Lumpkin and Alejandro Schuler. A preprint is available on arXiv [O’Malley

et al., 2021]. The related code to the paper is available as part of the open source

package https://github.com/stanfordmlgroup/ngboost. A sample usage of the

package can be seen in Section A.D.4.

Chapter 3

In Chapter 3, we develop a novel method for computing the most likely path taken

by drifters between two arbitrary points in the ocean. We also provide an estimate of

the travel time associated with this path. We show results of the method on various

location pairs, showing that it works on global scales.

Chapter 3 has been published in the Journal of Oceanic and Atmospheric Technol-

ogy: “Estimating the travel time and the most likely path from Lagrangian drifters”

O’Malley et al. [2021]. Additionally, an open source Python package is available for

accessible application at https://github.com/MikeOMa/DriftMLP. A demonstration

of the package is advertised on the NOAA website at https://www.aoml.noaa.gov/

phod/gdp/derived_pathways.php.

Additionally, we supplied data to the co-authors of the paper O’Malley et al.
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[2021] to aid a study titled “How marine currents and environment shape plankton

genomic differentiation: a mosaic view from Tara Oceans metagenomic data” by

Laso-Jadart, Romuald; O’Malley, Michael; Sykulski, Adam; Wincker, Patrick; Am-

broise, Christophe; Madoui, Mohammed-Amin. The paper is currently under revision

and available on bioRxiv at https://doi.org/10.1101/2021.04.29.441957. The

details of the supplied data are given in the Appendix of Chapter B.J.

Chapter 4

In Chapter 4, we provide an alternative approach to estimating how long it takes to

travel between two arbitrary points in the ocean. A direct approach is taken in that we

look for drifter trajectories which have travelled between the two points. This method

initially produces estimates which are prone to bias, noise, and missingness. We

propose the use of a distance matrix modelling approach known as multidimensional

scaling to reduce these effects. Results are shown on a simulated and real example.

This chapter is distinct from Chapters 2 and 3 in that it does not fit a model for

drifter motion, and thus provides a complementary analysis to the earlier chapters.

Chapter 4 is an original work to this thesis.
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Chapter 2

Multivariate Probabilistic

Regression with Natural Gradient

Boosting

2.1 Introduction

The standard regression problem is to predict the value of some continuous target

variable Y based on the values of an observed set of features X. Under mean squared

error loss, this is equivalent to estimating the conditional mean E[Y|X]. Often, how-

ever, the user is also interested in a measure of predictive uncertainty about that

prediction, or even the probability of observing any particular value of the target. In

other words, one seeks to estimate p(Y|X). This is called probabilistic regression.

Probabilistic regression has been approached in multiple ways; for example, deep

distribution regression [Li et al., 2021], quantile regression forests [Meinshausen and
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Ridgeway, 2006], and generalized additive models for Location, shape, scale [Rigby

et al., 2019]. All the listed methods focus on producing some form of outcome distri-

bution. Both Li et al. [2021] and Meinshausen and Ridgeway [2006] rely on binning

the output space, an approach which will work poorly in higher output dimensions.

Here we focus on a method closer to Rigby et al. [2019] where we prespecify a form for

the desired distribution, and then fit a model to predict the parameters which quantify

this distribution. Such a parametric approach allows one to specify a full multivariate

distribution while keeping the number of outputs which the learning algorithm needs

to predict relatively small. This is in contrast to deep distribution regression [Li et al.,

2021] for example, where the number of outputs which a learning algorithm needs to

predict becomes infeasibly large as the dimension of the target data Y grows.

A common approach for flexible probabilistic regression is to use a standard mul-

tivariate regression model to parameterize a probability distribution function. This

approach has been extensively used with neural networks [Williams, 1996, Sützle and

Hrycej, 2005, Rasp and Lerch, 2018]. Recently Duan et al. [2020] proposed an algo-

rithm called Natural Gradient Boosting (NGBoost) which uses a gradient boosting

based learning algorithm to fit each of the parameters in a distribution using an en-

semble of weak learners. A notable advantage of this approach is that it does not

require extensive tuning to attain state-of-the-art performance. As such, NGBoost

works out-of-the-box and is accessible without machine learning expertise.

Our contribution is to construct and test a similar method that works for multi-

variate probabilistic regression. The standard approach for multi-output regression

is to either fit each dimension entirely separately, or assume that the residual errors
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in both output dimensions are independent, allowing the practitioner to factor the

objective function. In reality, however, output dimensions are often highly correlated

if they can be predicted using the same input data. When the task requires a measure

of uncertainty, we must therefore model the joint uncertainty in the predictions.

As a simple illustrative example of where a joint uncertainty prediction is useful,

consider the two joint distributions of rainfall and temperature as in Figure 2.1.1.

Suppose these are the forecasts we have predicted and we are interested in the proba-

bility that it is going to rain at most 2mm, while the temperature does not go higher

than 12◦. Using the independent forecast we get a probability of 0.14; whereas using

the fit which allows correlations between output dimensions, we get a probability of

0.25 based on the joint forecast. The benefits of joint probabilistic regression are

clear: (1) the distribution allows one to make more accurate decisions based on both

outcomes, and (2) the correlation measure is often a quantity of interest in itself (e.g.,

in forecasting stock prices for portfolio selection).

The motivating application of this chapter is to predict two-dimensional velocity

outputs. Such outputs are commonplace in environmental applications such as ocean

currents [Maximenko et al., 2009, Sinha and Abernathey, 2021] and wind [Lei et al.,

2009]. In these approaches, a diagonal covariance matrix is often assumed; which

will seldom be the case in practice. In Section 2.4, we provide a real-world large

scale example of using our approach to predict the multivariate distribution of ocean

currents using remotely-sensed satellite data. Ocean current models are often used in

practice by decision makers for applications such as predicting the locations of debris,

plastics and oil spills. Therefore by modelling the joint two-dimensional stochasticisity
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Figure 2.1.1: An example distribution of log rainfall and temperature for a day which

we know will have rain. Both distributions are Gaussian and have the same mean

vector and marginal variances. On the right plot the correlation between the two

dimensions is set to -0.7, whereas on the left plot it is 0.
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of directional currents more accurately, this will in turn translate to better forecasts

and decisions being made, as well as better measures of associated uncertainty.

In summary, in this chapter we present an NGBoost algorithm that allows for mul-

tivariate probabilistic regression. Our key innovation is to place multivariate proba-

bilistic regression in the NGBoost framework, which allows us to model all parameters

of a joint distribution with flexible regression models. At the same time, we inherit

the ease-of-use and performance of the NGBoost framework. In particular, we demon-

strate the use of a multivariate Gaussian NGBoost parametrization in simulation and

in the use case described above. The results show that: (1) joint multivariate proba-

bilistic regression is more effective than naively assuming independence between the

outcomes, and (2) our multivariate NGBoost approach outperforms a state-of-the-art

neural network approach. Our code is freely available as part of the NGBoost Python

package.

2.1.1 Notation

Let the input space be denoted X = Rd and the output space be denoted Y = RP .

The aim of this chapter is to learn a conditional distribution from the training dataset

D = {Xi,Yi|1 ≤ i ≤ N Xi ∈ X ,Yi ∈ Y}. Let p(Y|θ) be a probability density of

the observations Y ∈ Y parameterized by θ ∈ RM , where M is the dimension of the

parameters. In this work we aim to learn a mapping such that the parameter vector

varies for each data-point, i.e., a function f : X → RM , inducing the distribution

function of Y, p (Y|θ = f(X)). For convenience we shall henceforth adopt a shorter

notation: p (Y|θ = f(X)) = p (Y|X).
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2.2 Approach

Rather than attempting to produce a single point estimate for the response (E[Y|X])

in this paper we aim to learn a distribution of Y conditional on X. When fitting

the conditional distribution we propose the use of the Natural Gradient Boosting

(NGBoost) framework [Duan et al., 2020]. NGBoost is a method for conditional

distribution regression. The approach is based on combining the well-proven approach

of boosting [Friedman, 2001] with Natural Gradients [Amari, 1998] in place of ordinary

gradients. In 2.2.1, we give a brief introduction to both of these concepts before

introducing NGBoost in 2.2.1. Finally, we introduce and motivate the use of the

Multivariate Gaussian Distribution in section 2.2.3.

2.2.1 Preliminaries

Gradient Boosting

In the classical setting as described in Friedman [2001] gradient boosting is an al-

gorithm which aims to learn a function X → R in a non-parametric fashion, which

minimizes some loss function L. Typically, this loss function is the mean squared

error loss. The extension to the higher dimensional case is relatively straightforward,

we aim to learn a function mapping from X to RM , which minimizes a loss function

L : (Y × RM) → R. In the typical setting we would have M = P and the output

would be the expectation of Y. Note that in the following formulation we re-obtain

the classical gradient descent setting by taking M = 1. We aim to fit an additive
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model of the following form:

f(X) =
B∑
b=1

βbh(X, ab) (2.2.1)

where βb ∈ R is the additive weight. The function h(X, ab) is known as a base learner,

weak learner or basis functions with parameters ab. The output of h is M dimensional.

In practice this can be any model however decision trees are the usual choice and also

what we use here.

Gradient boosting aims to find parameters βb and ab which minimize the loss:

{βb, ab}Bb=1 = arg min
ab,βb b∈{1,...,B}

N∑
i=1

L

(
B∑
b=1

βbh(Xi, ab).Yi

)
. (2.2.2)

However such an optimization problem is typically very difficult so instead a greedy

stage-wise heuristic is used which is based on functional gradient descent [Friedman,

2001]. We start with a flat estimate for the ensemble f (0) = 0 and fit βb, ab sequen-

tially, defining f (b)(X) = f (b−1)(X)− βbh(X, ab).

This sequential fitting is done by doing gradient descent in the function space. We

aim to take a step, in the direction of steepest descent under the constraint that the

direction in which we go can be predicted by h. We define the functional gradient as

g(b)m (Xi) =

[
∂L(yi, f(Xi))

∂f(Xi)m

]
f(Xi)=f (b−1)(Xi)

m ∈ {1, . . . ,M}.

The next iteration of the model starts by finding the parameters a which minimize

the mean squared error between the fitted base learner and the functional gradients:

ab = arg min
a

N∑
i=1

M∑
m=1

(
g(b)m (Xi)− h(Xi, a)m

)2
. (2.2.3)

Then βb is found via a line search, minimizing the following:

βb = arg min
β

N∑
i=1

L

(
b−1∑
k=1

βkh(Xi, ak)− βh(Xi, ab),Yi

)
. (2.2.4)
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This is found the same way as in Duan et al. [2020] by starting with β = 1, then

successively halving β until the objective in (2.2.4) is seen to increase. We then stop

the halving and take the value which was seen before the increase.

Base Learner We use a decision tree as the base learner as this is by far the most

popular for gradient boosting in general. We use the implementation in the python

package scikit-learn [Pedregosa et al., 2011], however any other base learner could

easily be used. The decision tree partitions the input dataset based on the values of

the features X then predicts a constant mean within each partition, we refer to these

partitions as leafs. We refer to the depth of a leaf as the number of splits which led

to that leaf.

We control 3 hyper-parameters to control fitting. The maximum depth of the tree,

the maximum number of leafs, and the minimum amount of data points required in

each split. The fitting algorithm grows in a best leaf manner. It picks the leaf which

results in the best error reduction at that time. The algorithm will not allow a split

if the maximum number of leafs has been reached, the depth of the new leaf will be

higher than the max depth, or if the number of data-points in one of the leafs after

splitting will be lower than the minimum specified.

As we need a base learner which predicts a value in RM , we fit M independent de-

cision trees, each tree being one of the entries in the vector-valued output. In practice

this allows us to factorize the objective 2.2.3 and therefore just do M independent fits

of a univariate base learner. We concatenate the relevant parameters for each tree to

form what we refer to as ab in the previous text.
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Early Stopping

In gradient boosting the number of base learners B in 2.2.1, has a large impact on

how complicated the model can be. Generally having too large of an B will lead to

overfitting, and too small of an B will lead to underfitting. The greedy nature of how

we fit a gradient boosting model introduces a computationally efficient way to pick

this value M . The strategy is known as early stopping. We randomly partition the

training data D into a training set and validation set. Each Xi,Yi pair will appear

in only one of the training and validation sets.

When finding the parameters for the function βb and ab we only use the training

set. Then in each boosting iteration, after finding the parameters we evaluate and

record the loss function on the validation set given the current model. The validation

set is an unseen dataset, hence when the loss starts to increase on the validation set

we can interpret this as the generalization abilities of the model getting worse. This

is where we introduce a patience parameter k. Suppose we see the loss at iteration

Bmin is lower than Bmin + 1, . . . , Bmin + k, then we simply stop the algorithm and

revert the function estimate back to the state at Bmin iterations and this becomes

the final model. Alternatively, one can fix Bmin and then retrain the boosting model

from scratch without early stopping and using the entire dataset (validation and train

combined) to fit the model.
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Natural Gradients

Suppose L : RM → R, one way to intuitively explain the gradient of L is by the

solution to:

∇L(θ) ∝ lim
ψ→0

arg min
||ε||<ψ

, L(θ + ε). (2.2.5)

for ψ ∈ R, ε ∈ RM and θ ∈ RM . It is the direction of steepest descent in a in-

finitesimally small neighbourhood of the current point. However, when optimizing a

distribution this constraint ||ε|| < ψ often does not make sense. For example should

the difference between two Gaussian distributions with equal variance and with means

1 and 2 be 1? These two distribution would be almost identical if they both had a

variance of 10000 but would be extremely different if they had a variance of 0.1.

Instead, a so called natural gradient [Amari, 1998, Martens, 2020] is a sensible

representation where we replace the Euclidean distance in 2.2.5 with an alternative

way to measure how distant two points in the parameter space. In this chapter we

use the KL divergence. We denote the so called natural gradient as ∇̃L, and it takes

the following form:

∇̃L(θ) ∝ lim
ψ→0

arg min
||KL(θ,θ+ε)||<ψ

L(θ + ε). (2.2.6)

Where KL(θ,θ + ε) denotes the KL divergence between the distribution with pa-

rameters θ and the distribution resulting from using parameters θ + ε. This has a

straightforward solution which is just to multiplying the ordinary gradient by the

inverse fisher information ∇̃L(θ) = I(θ)−1∇L(θ) [Amari, 1998].

For demonstration on how this relatively simple adaptation can help, we give a

simple example below with a Gaussian distribution. We simulate 1000 points from
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a N (µ = 0, σ2 = 16) distribution, then we run a gradient descent algorithm to find

the maximum likelihood estimate for both the mean and variance parameters. We

re-parameterize σ = exp(a), then optimize a as it is unconstrained. A step size of 0.1

is used. We show the results in Figure 2.2.1.

With the ordinary gradient the variance parameter quickly goes around the value

4.2 which is roughly the root mean squared error (RMSE) between the samples and

the value 2. Then the mean parameter estimate very slowly moves to 0, the standard

deviation estimate follows the RMSE. With natural gradient descent the variance

estimate learns at a much slower rate, eventually going higher than the RMSE then

converges to the sample RMSE. Even for this simple example after 300 iterations

ordinary gradient descent has not learned a good estimate of the true mean or variance

whereas natural gradient descent did so in around 50 iterations.

2.2.2 Natural Gradient boosting

NGBoost [Duan et al., 2020] is a boosting algorithm developed to fit conditional

distributions. The natural gradient is used in place of the ordinary gradient and the

algorithm fits a gradient boosting model where the objective is a Scoring rule. In place

of the typical task of learning a single value (or vector in the multi-output setting)

for the expectation of the response, we instead learn a function from the features X

which output the parameters for a probability distribution function. We then assess

the goodness of fit of these parameters with a scoring rule rather than the MSE.

The first task required for natural gradient boosting is to pick the type of dis-

tribution which will be used to predict Y, p(Y|θ). For example if it is continuous
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Figure 2.2.1: Gradient Descent using the ordinary gradient and the natural gradient

with a stepsize of 0.1. The objective is taken to be the log-liklihood for 500 samples

from a N (0, 4) starting from µ = 2, σ = 4. The RMSE is plotted on the variance

plot at the current mean estimate. Natural gradient descent converged after 100

iterations so the x axis has a smaller range.
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and univariate (P = 1) we can choose a Gaussian distribution, or alternatively if

we believe it has heavier tails we could specify a t distribution. In Section 2.2.3 we

introduce the multivariate Gaussian distribution which will be used in this Chapter.

When using gradient boosting we use the output of the function approximation

f as the parameters for the pre-specified probability distribution in RM which will

typically have M > P (P being the dimension of Y). For example in the univariate

Gaussian case we have M = 2, a parameter for the mean and variance and P = 1.

To assess the goodness of fit we use a class of loss functions known as scoring rules

[Gneiting and Raftery, 2007]. A scoring rule is a function S : RM × Y → R which

measures the accuracy of a predicted distribution. The log-likelihood is an example

of such a rule which is what we use here as S. Similar to above ∇̃S is used to refer

to the natural gradient of S. The only difference from gradient boosting described in

Section 2.2.1 is that we use the natural gradient in place of the ordinary gradient as

in 2.2.3.

In summary, after the natural gradient boosting algorithm which is summarized

in algorithm 1, we obtain the following conditional distribution:

p (Y|θ(X)) ,

where

θ(X) = θ(0) −
B∑
b=1

ηβbh(X, ab). (2.2.7)

We initialize θ(0) as the maximum likelihood estimate to all the training data Y, hence

it does not depend on X. Note we also use a learning rate parameter η > 0 which

is typically chosen to be lower than 1. A low value for η is often found to provide
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superior results at the cost of requiring a higher value for B, resulting in the model

fitting more slowly. In the algorithm, we refer to θ
(b)
i as the parameter estimate for

Xi at stage b. Note we do not include early stopping in the algorithm as written here

but we do use it in the application of the algorithm.

Algorithm 1 NGBoost for probabilistic prediction.

Data: Dataset D = {Xi,Yi}Ni=1.

Input: Boosting iterations B, Learning rate η, Probability distribution with param-

eter θ, Scoring rule S, Base learner h.

Output: Scalings and base learner parameters {βb, ab}Bb=1 .

θ
(0)
i ← arg minθ

∑N
i=1 S(θ,Yi) {initialize to marginal for all i}

for b← 1, . . . , B do

for i← 1, . . . , N do

for m← 1, . . . ,M do

g
(b)
m (Xi)← ∇̃S

(
θ
(b−1)
i ,Yi

)
m

end

end

ab = arg mina

∑N
i=1

∑M
m=1

(
g
(b)
m (Xi)− h(Xi, a)m

)2
.

βb ← arg minβ
∑N

i=1 S
(
θ
(b−1)
i − βh(Xi, ab),Yi

)
for i← 1, . . . , N do

θ
(b)
i ← θ

(b−1)
i − η (βbh(Xi, ab))

end

end
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2.2.3 A Multivariate Extension

The original NGBoost paper Duan et al. [2020] briefly noted that NGBoost could be

used to jointly model multivariate outcomes, but did not provide details. Here we show

how NGBoost extends to multivariate outcomes and provide a detailed investigation

of one useful parametrization, namely the multivariate Gaussian.

In univariate NGBoost (P = 1, Y ∈ R), the predicted distribution is parametrized

with p(Y |{θm = fm(X)}) where Y is a univariate outcome. For example, Y |X may be

assumed to follow a univariate Gaussian distribution where µ and log σ are taken to

be the parameter vector θ (i.e., the output of NGBoost is θ(X) = (µ(X), log σ(X))).

Therefore to model a multivariate outcome, all that is necessary is to specify a para-

metric distribution that has multivariate support, as we shall now show.

Multivariate Gaussian NGBoost The multivariate Gaussian is a commonly used

distribution and a natural choice for many applications. The distribution is a general-

ization of the univariate Gaussian distribution. The generalization allows us to define

a joint distribution on a vector valued function. If we could predict this distribution

then we can then investigate the conditional correlations between output dimensions.

In particular the suitability comes from the widespread approach of MSE being

used for optimization metrics for various areas including oceanography on the predic-

tion of currents. The standard Gaussian distribution’s log likelihood is proportional

to MSE when the variance is fixed. Furthermore, ocean currents are often reported in

standard axes - longitudinal and latitudinal, but in practice these two coordinates are

highly correlated, motivating the choice to model the correlation between these axes.
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This is within the scope of the multivariate Gaussian distribution hence our choice.

The rest of this chapter is focused on the development and evaluation of a prob-

abilistic regression algorithm using the multivariate Gaussian. Other multivariate

distributions are also trivially accommodated by our framework as long as the natu-

ral gradient can be calculated with respect to some parametrization in RM . We leave

the development and testing of alternatives to future work.

The multivariate Gaussian distribution is commonly written in the moment pa-

rameterization as

Yi ∼ N (µ,Σ) ,

where Σ is the covariance matrix (a P × P positive definite matrix), and µ is the

mean vector (a P × 1 column vector). Note that we only consider positive definite

matrices for Σ to ensure the inverse exists. We write the probability density function

as

p(Yi|µ,Σ) =
|Σ|− 1

2

(2π)
P
2

exp

[
−(Yi − µ)TΣ−1(Yi − µ)

2

]
. (2.2.8)

We fit the parameters of this distribution conditional on the corresponding train-

ing data Xi such that p(Yi|Xi) = p(Yi|µ(Xi),Σ(Xi)). To perform unconstrained

gradient based optimization for any distribution, we must have a parameterization

for the multivariate Gaussian distribution where all parameters lie on the real line.

The mean vector µ already satisfies this. However, the covariance matrix does not; it

lies in the space of positive definite matrices. We shall model the inverse covariance

matrix which is also constrained to be positive definite. We leverage the fact that ev-

ery positive definite matrix can be factorized using the Cholesky decomposition with
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positive entries on the diagonals [Banerjee and Roy, 2014].

We opt to use an upper triangular representation of the square root of the inverse

covariance matrix Σ−1 = L>L, as used by Williams [1996], where the diagonal is

transformed using an exponential to force the diagonal to be positive. As an example,

in the two-dimensional case we have

L =

exp(a11) a12

0 exp(a22)

 , (2.2.9)

which yields the inverse covariance matrix

Σ−1 =

 exp(2a11) exp(a11)a12

exp(a11)a12 a212 + exp(2a22)

 .
This parameterization for Σ−1 ensures that the resulting covariance matrix Σ =

(L>L)−1 is positive definite for all aij ∈ R. Hence, we can fit the multivariate Gaussian

in an unconstrained fashion using the parameter vector θ = (µ1, µ2, a11, a22, a12) as

the output in the two-dimensional case. Note that the number of parameters grows

quadratically with the dimension of the data. Specifically, the relation between M ,

the dimension of θ ∈ RM , and P , the dimension of Yi, is

M =
P 2 + 3P

2
. (2.2.10)

For NGBoost using the log-likelihood scoring rule, we require both the gradient and

the Fisher Information. The gradient calculations are given in Williams [1996], and

the derivations for the Fisher information are given in Appendix A.B. We have used

these derivations to add the multivariate Gaussian distribution to the open-source

Python package NGBoost as part of this work. Note that the natural gradient is par-

ticularly advantageous for multivariate problems such as these. This is because, for
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example, there are multiple equivalent parameterizations for the multivariate Gaus-

sian distribution [Sützle and Hrycej, 2005, Salimbeni et al., 2018, Malagò and Pistone,

2015], but the choice of parameterization has been shown to be less important when

using natural gradients than with classical gradients (see, e.g. Salimbeni et al. [2018]).

2.3 Simulation

We now demonstrate the effectiveness of our multivariate Gaussian NGBoost algo-

rithm in simulation. Specifically, we show that (a) it outperforms a naive baseline

where the target components are modeled independently, (b) it outperforms a state-

of-the art neural network approach, and (c) the natural gradient is a key component

in the effective training of distributional boosting models in the multivariate setting.

We simulate the data similarly to Williams [1996]. The nature of the simulation

tests each algorithm’s ability to uncover nonlinearities in each of the distributional

parameter’s relationship with the input. Specifically, we use a one-dimensional input

and two-dimensional output, allowing us to illustrate the fundamental benefits of our

approach in even the simplest multivariate extension. The data are simulated as

follows:

Xi
IID∼ Uniform(0, π) i ∈ {1, . . . , N}

Yi|Xi ∼ N

( µ1(Xi)

µ2(Xi)

 ,
 σ2

1(Xi) σ1(Xi)σ2(Xi)ρ(Xi)

σ1(Xi)σ2(Xi)ρ(Xi) σ2
2(Xi)


)
,
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with the following functions:

µ1(x) = sin(2.5x) sin(1.5x) + x,

µ2(x) = cos(3.5x) cos(0.5x)− x2,

σ2
1(x) = 0.01 + 0.25[1− sin(2.5x)]2, (2.3.1)

σ2
2(x) = 0.01 + 0.25[1− cos(3.5x)]2,

ρ(x) = sin(2.5x) cos(0.5x).

Simulated data alongside the true parameters are shown in Figure 2.3.1.

We compare multiple methods, all of which predict a multivariate Gaussian. For all

boosting models we use decision trees with a max depth of 3. We allow the maximum

number of leafs for that depth (8) and allow a leaf to have one data point in it. This

depth is sufficient as the underlying functions are univariate. Even a depth 1 decision

tree would likely be good enough to learn these univariate function. Specifically, we

consider five different comparison methods:

• NGB: The method proposed in this chapter: Natural gradient boosting to fit

a multivariate Gaussian distribution.

• Indep NGB: Independent natural gradient boosting where a univariate Gaus-

sian model is fitted for the two dimensions separately, i.e., Yi,1 ∼ N(µ1, σ2),

Yi,2 ∼ N(µ2, σ2). Early stopping allows the number of trees used to predict

each dimension to differ.

• skGB: scikit-learn’s [Pedregosa et al., 2011] implementation of gradient boost-

ing (skGB) is used as a point prediction approach. To turn the skGB predictions
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Figure 2.3.1: Simulated data from Equation (2.3.1). A sample of 100 points is shown in

A). We plot each parameter in plots B) to F). The true parameters of the distribution

are shown in blue, the NGBoost fit is shown in orange, and the neural network fit

with one hidden layer (100 neurons in the hidden layer) is shown in red. Both model

fits are trained on N = 5000 training points.
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into a multivariate Gaussian, we estimate a constant diagonal covariance ma-

trix based on the residuals of the training data. For metric computation we

assume that each Yi follows a multivariate Gaussian with mean from a model

fit for each dimension, and constant covariance matrix. Similar to Indep NGB

we allow a different number of trees for each dimension.

• GB: A multi-parameter gradient boosting algorithm, where the only change

from NGB is that the gradients are not multiplied by I(θ)−1.

• NN: The neural network approach from [Williams, 1996]. We fit the multi-

variate Gaussian using tensorflow [Abadi et al., 2016]. More details about the

model and the grid search carried out on the network structure are explained in

the supplementary information.

Experimental Evaluation To prevent overfitting, we employ early stopping for

all methods on the held-out validation set, where we use a patience of 50 for all

methods. For all boosting approaches we use the estimators up to the best iteration

that was found, and for neural networks we restore the weights back to the best epoch.

The base learner for all boosting approaches are run using the default parameters

specified in Section 2.2.1. For eachN considered in the experiment, the neural network

structure with the best log-likelihood metric averaged over all replications is chosen

from the grid search. Note that we do not retrain the models after selecting the early

stopping epochs/number of learners. We found that doing so gave a large advantage

to the boosting based approaches. A learning rate of 0.01 is used for all methods, for

NN we use the Adam optimizer [Kingma and Ba, 2015].
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We train the the model used the experiment withN ∈ {500, 1000, 3000, 5000, 8000, 10000}

with 50 replications for each value of N . For each simulation, N values were simu-

lated as the training dataset. In addition to the N values a further 300 values were

simulated as the validation set for early stopping, and another 1000 values were used

as the test set. We then use the KL divergence from the true distribution at the test-

set locations as the main comparison metric, however we report an extended table of

results in Table A.D.1.

The per-model results on the test data points are shown in Table 2.3.1. The average

Kullback-Leibler (KL) divergence from the predicted distribution to true distribution

is used as a metric. The results show that the NGB method is best for all N despite

not being tuned in any way besides early stopping. The KL divergence metric gets

close to zero as N grows, showing that the predictions from NGB seems to converging

to the true underlying distribution as N increases. NN performs worse than NGB

with higher KL divergence for all values of N . The KL divergence metric for Indep

NGB seems to be converging to a non-zero quantity as N increases, likely because the

target distribution in Equation (2.3.1) cannot be captured by a multivariate normal

with a diagonal covariance matrix. skGB has large KL divergences which get worse

as N increases, likely because of the homogeneous variance fit. We note that GB

performs significantly worse than NGB showing that the natural gradient is necessary

to fit the multivariate Gaussian effectively with boosting. Further metrics can be seen

in the supplementary information, in particular they show GB fits the mean µ very

poorly, which is then compensated for by a large covariance estimate, explaining the

large KL divergence.
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N NGB Indep NGB skGB GB NN

500 0.564±0.016 1.633±0.043 17.194±0.301 126.227±2.579 1.285±0.547

1000 0.257±0.004 1.150±0.020 17.963±0.270 114.113±1.622 0.320±0.018

3000 0.106±0.002 0.884±0.015 19.609±0.248 97.682±1.397 0.149±0.004

5000 0.081±0.008 0.878±0.015 20.308±0.169 90.101±1.291 0.128±0.005

8000 0.053±0.004 0.866±0.013 20.614±0.170 79.006±1.168 0.103±0.004

10000 0.043±0.001 0.831±0.010 20.554±0.150 74.799±1.191 0.130±0.004

Table 2.3.1: Average KL divergence in the test set (to 3 decimal places) from the

predicted distribution to the true distribution as the number of training data points

N varies. Standard error estimated from 50 replications reported after ± to 3 decimal

places. Lower values are better, the result with the lowest mean is emboldened in each

row. An extended table showing additional metrics is shown in the supplementary

information.

The modification we made from the simulation in Williams [1996] is that we added

x and −x2 terms to µ1(x) and µ2(x) respectively in Equation (2.3.1). This modifi-

cation is to highlight where our method excels. We also ran the original simulation

without the modification, where the results are given in the supplementary informa-

tion. As a summary, we note the major differences: (1) the gaps between NGB, GB

and NN are smaller, and (2) the NN method does best for N ∈ {500, 1000, 3000},

NGB does best for N ∈ {5000, 8000, 10000}.
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2.4 Ocean Drifters Application

The motivating application of this chapter is to predict two-dimensional oceanographic

velocities from satellite data on a large spatial scale. Typically, this is done through

physics-inspired parametric models fitted with least-squares or similar metrics, treat-

ing the directional errors as independent [Mulet et al., 2021].

2.4.1 Data

Here we introduce the datasets used which shall define Yi ∈ R2, Xi ∈ R9. The data

for all sources is available from 1992 to 2019 inclusive. All data sources are publicly

available.

For the model output Yi, we seek to predict two-dimensional oceanic near-surface

velocities as functions of global remotely-sensed climate data. The dataset used to

train, validate and test our model comes from the Global Drifter Program, which

contains transmitted locations of freely drifting buoys as they drift in the ocean and

measure near-surface ocean flow. The quality controlled 6-hourly product is used

[Lumpkin and Centurioni, 2020] to construct the velocity observations. We drop

observations which have a high location noise estimate, and we apply a low-pass filter

the velocities at 1.5 times the inertial period (a timescale determined by the Coriolis

effect), following previous similar works [Laurindo et al., 2017]. We only use data

from buoys which still have a drogue (sea anchor) attached and thus more accurately

follow ocean near-surface flow. We use the inferred two-dimensional velocities of these

drifting buoys as our outputs Yi.
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The longitude-latitude locations of these observations and the time of year (per-

centage of 365) are used as three of the nine features in Xi to account for spatial

and seasonal effects. For the remaining six features in Xi, we use two-dimensional

longitude-latitude measurements of geostrophic velocity (ms−1), surface wind stress

(Pa) and wind speed (ms−1). These variables are used as they jointly capture geophys-

ical effects known as geostrophic currents, Ekman currents, and wind forcing, which

are known to drive oceanic near-surface velocities. We obtain geostrophic velocity

and wind measurements from data products Thematic Assembly Centers [2020a] and

Thematic Assembly Centers [2020b] respectively, the data products are interpolated

to the longitude-latitude locations of interest. We further preprocess the data as

explained in Appendix A.A.

To allow us to run multiple model fits, we subset the data to only include data

points which are spatially located in the North Atlantic Ocean as defined by IHO

marine regions Flanders Marine Institute [2018] and between 83◦W and 40◦W longi-

tude. We use a temporal gridding of the buoy data of one day. This results in 414697

observations for each input and output variable in the combined data set used for

training, validating and testing our probabilistic regression model.

2.4.2 Metrics

We cannot use KL divergence as in the simulation of Section 2.3 because the true

distribution of these data is unknown. Therefore we use a series of performance

metrics that diagnose model fit listed here.

Negative Log-Likelihood (NLL): All methods are effectively minimizing the
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negative log-likelihood; therefore we use negative log-likelihood as one of our metrics:

1/N
∑
i

log p(Yi|Xi).

RMSE: To compare the point prediction performance of the models we also report

an average root mean squared error (RMSE):[
1/(NP )

N∑
i=1

P∑
j=1

(Yi,j − Ŷi,j)
2

]1/2
, where Ŷi = E[Y|Xi].

Region Coverage and Area: As this chapter focuses on a measure of probabilis-

tic prediction, we also report metrics related to the prediction region. The prediction

region is the multivariate generalization of the one-dimensional prediction interval.

The two related summaries of interest are: (1) the percentage of Yi covered by the

α% prediction region, and (2) the area of the prediction region.

A α% prediction region can be defined for the multivariate Gaussian distribution

as the set of values Y which satisfy the following inequality:

(Y − µ)Σ−1(Y − µ)> ≤ χ2
P,α, (2.4.1)

where χ2
P,α is the quantile function of the χ2 distribution with P degrees of freedom

evaluated at α%. This prediction region forms a hyper-ellipse which has an area given

by

(2π)P/2

PΓ(P
2

)
(χ2

P,α)P/2|Σ|1/2. (2.4.2)

We report the percentage of data points which satisfy Equation (2.4.1), and we report

the average area of the prediction region over all points in the test set.
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Metric NGB Indep NGB skGB GB NN

NLL 7.73±0.02 7.74±0.02 8.17±0.02 8.79 ± 0.01 7.81±0.02

RMSE cm s−1 14.53±0.14 14.45±0.12 14.31±0.13 24.14±0.36 16.63 ± 0.19

90% PR cov 0.87±0.00 0.87±0.00 0.89±0.00 0.94±0.00 0.89±0.00

90% PR area cm2 s−2 2482 ± 51 2568±41 2714±8 8070±22 3670±75

Table 2.4.1: Average test set metrics defined in Section 2.4.2. Standard error esti-

mated from 10 replications reported after ±. PR stands for prediction region. Cover-

age has been shortened to cov. All numbers rounded to 2 decimal places, aside from

the 90% PR Area row which is rounded to the nearest integer. Lower values are better

for NLL and RMSE, best value is emboldened in both rows.

2.4.3 Results

We compare the same five models considered in Section 2.3. To compare the models

we randomly split the dataset, keeping each individual buoy record within the same

set. We put 10% of records into the test set, 9% of the records into the validation

set, and 81% into the training set. The model is fitted to the training set with access

to the validation set for early stopping, and then the metrics from Section 2.4.2 are

evaluated on the test set. This procedure is repeated 10 times and the results are

shown in Table 2.4.1.

We note that in practice, selecting the number of boosting iterations then training

the tree-based models with the training set and validation set would likely result in

better performance. However, we found this approach worked poorly for the neural
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network so, we do not retrain in an attempt to keep the comparison fair, that is that

all models are trained using 81% of the data and early stopping uses the 9%. The

metrics are reported on the remaining 10%.

For this example we also use a grid search for all of the boosting approaches, in

addition to the neural network approach. We found that with the default parameters

used in the simulation1 the boosting methods generally did not ever early stop. They

would reach the maximum we set of 1000 estimators. This behavior suggests that the

base learner may not be flexible enough. For each boosting method, a grid search

is carried out over number of leafs, and minimum data in leafs, as outlined in the

supplementary material. The max-depth is fixed at 15. The best hyper-parameters

from the grid search for each method are selected by evaluating the test-set negative

log-likelihood. As in the simulation we use a patience of 50 for early stopping.

The aggregated results of the model fits are shown in Table 2.4.1. NGB and

Indep NGB perform very similarly in terms of NLL, RMSE and 90% PR coverage in

this example. However, NGB provides a smaller 90% PR area, which is expected as

correlation will reduce |Σ| in Equation (2.4.2). To highlight the differences further,

we show the spatial differences in negative log-likelihood between these two methods

in Figure 2.4.1B). In Figures 2.4.1C) and D) we show the averaged held out spatial

predictions for ρ and µ from the NGB model. The results shown in B) and C) suggest

that using a combination of these approaches may be suitable to this application. For

example, we could use the NGB model in geographic areas with high anticipated

1Default parameters being a max depth of 3, minimum samples per split 2 and minimum samples

per leaf 1
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correlation; otherwise we can use Indep NGB as it will likely do better.

In Table 2.4.1 we see that the NN and GB approaches do poorly overall. Both

methods have large root mean-squared error, which is compensated for by a larger

prediction region on average, as can be concluded from the large average PR area.

This behavior agrees with the univariate example given in Figure 4 of the original

NGBoost paper [Duan et al., 2020], and the behavior of GB in the simulation of

Section 2.3.

One of the novelties of this work is that we model the dependence between the two

output dimensions. Any region where ρ is close to zero in Figure 2.4.1C) likely means

that this additional modeling of the dependence will not make a large difference to

the predictions. In contrast, any region where the absolute value of ρ is large implies

that the multivariate NGB predictions will be significantly different. In particular

multivariate NGB predicts large values of |ρ| around the South Equatorial and Gulf

Stream currents.

In Figure 2.4.2 we show a sample trajectory on the Gulf Stream alongside the pre-

dicted means and 70% prediction region from both indepedent NGB and multivariate

NGB. In Figure 2.4.2A) the main factor to note is that the elliptical prediction re-

gions take various orientations over the trajectory, most of which have the major axis

aligned with the flow. In contrast the predictions from independent NGB in Figure

2.4.2B) show the ellipses’ major axes are always either aligned with the longitudinal

or latitudinal axis, as must be the case. This difference is particularly evident around

longitudes 78◦W to 74◦W where independent NGB’s predictions show a larger minor

axis in the ellipses in comparison to multivariate NGBoost predictions. This is likely
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the key reason why multivariate NGB does better on average around the Gulf Stream

as seen in Figure 2.4.1B).

2.5 Conclusions

This chapter has demonstrated the accuracy of our NGBoost method when focusing

on bivariate outcomes with a multivariate Gaussian distribution. The derivations of

the natural gradient and implementation in NGBoost are supplied for any dimension-

ality, but empirical proof of performance in higher dimensions is left to future work.

Due to the quadratic relationship between P and the number of parameters used

to parameterize the multivariate Gaussian, the complexity of the learning algorithm

greatly increases with larger values of P . Investigating a reduced rank form of the

covariance matrix may be of interest for higher P to reduce the number of parameters

that need to be learned. We also leave the development and testing of alternative

multivariate distributions to future work. The modular nature of our implementation

makes it easy for users to experiment and add their own multivariate distributions as

long as they can supply the relevant gradient and Riemannian metric functions.

The difference between multivariate NGBoost (NGB) and independent NGBoost

(Indep NGB) was overall relatively small in our real-world application across the entire

spatial domain studied, but NGB showed significant improvements around major

currents such as the Gulf Stream where directional currents (that are not aligned with

the x/y axis) are most prominent. This improvement was corroborated in simulations

where NGB performed relatively much better than Indep NGB overall. Generally, one
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should anticipate NGB to excel in cases with high correlation between the outcomes,

whereas a method assuming independence should suffice when that assumption is

warranted. Deep learning approaches are warranted in cases where a neural network

naturally handles the input space such as images, speech or text.

Although this approach is shown to work sensibly and captures correlation be-

tween the longitudinal and latitudinal directions, the model which we have fit is not

incredibly interpretable. The final model allowed trees with depth up to 15, ideally

we could use a much simpler model such as depth 1 or 2 decision trees. In the future

work of this thesis, Section 5.1.1, we propose a varying coefficient model which takes

into account the relationship between the covariates. We believe in this case a much

more intuitive and explainable model could be learned.

Final Remarks In this chapter we have proposed a technique for performing multi-

variate probabilistic regression with natural gradient boosting. We have implemented

software in the NGBoost Python package which makes joint probabilistic regression

easy to do with just a few lines of code and little to no tuning. Our simulation and case

study show that multivariate NGBoost meets or exceeds the performance of existing

methods for multivariate probabilistic regression.
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Figure 2.4.1: Summaries of test set results within 2◦×2◦ latitude-longitude bins for the

North Atlantic Ocean application. A) shows the spatial distribution of the negative

log-likelihood for NGB, B) shows the difference between the negative log-likelihood

spatially between NGB and Indep NGB; negative values (blue) implying NGB is

better than Indep NGB (with vice versa in red). C) shows the average prediction of

ρ where ρ = Σ0,1/
√

Σ0,0Σ1,1 is extracted from the predicted covariance matrix in the

held out set from NGB. D) shows the mean currents estimated by NGB. All major

ocean features are captured by the model [Lumpkin and Johnson, 2013]
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Figure 2.4.2: Plots showing the predictions from both multivariate and independent

NGB for the first 12 days of drifter ID 54386 starting from the 23rd of September

2005. Predictions are plotted every 2 days for visualization purposes. The model used

for prediction did not see this trajectory when trained. The faded blue line shows the

trajectory of the drifter with a point plotted every day. The 70% prediction region

is the boundary from Equation (2.4.1). The lines and confidence regions are scaled

from m/s to be km/day. Conversion to easting-northing computed using a Transverse

Mercator with central longitude-latitude at (−78◦, 28◦).
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Chapter 3

Most Likely Path

3.1 Introduction

The Lagrangian study of transport and mixing in the ocean is of fundamental interest

to ocean modellers [van Sebille et al., 2018, 2009, LaCasce, 2008]. In particular, the

analysis of data obtained from Lagrangian drifting objects greatly contribute to our

knowledge of ocean circulation, e.g. through analysing the accuracy of numerical and

stochastic models [Huntley et al., 2011, Sykulski et al., 2016], or the use of drifter

data to better understand various pathways and where to search for marine debris

[Miron et al., 2019, van Sebille et al., 2012, McAdam and van Sebille, 2018].

Meehl [1982] used shipdrift data to create a surface velocity data set on a 5◦ × 5◦

grid. These velocities were used to simulate the Lagrangian drift of floating objects

in Wakata and Sugimori [1990]. More recent works focus on using drifting buoys to

derive Lagrangian models to discover areas where floating debris tends to end up [van

Sebille, 2014, van Sebille et al., 2012, Maximenko et al., 2012]. Advances in technology
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have resulted in much better data quality, which now permits the use of more detailed

methodology. The newer models provide densities of where debris ends up on grid

scales as small as 0.5◦ × 0.5◦.

A tool which predicts travel times is of practical use in many fields. For example

in ecological studies of marine species, genetic measurements are taken at various

locations in the ocean [Watson, 2018]. Euclidean distance is often used as a measure

of separability and isolation-by-distance [Becking et al., 2006, Ellingsen and Gray,

2002] to find correlations with diversity metrics or genetic differentiation between

communities or populations of organisms. Due to various currents and land barriers,

we expect Euclidean distance to often be a poor measure of how ‘distant’ or dissimilar

communities or populations sampled in two locations are. The method proposed

in this work would use the estimated travel times to supply a matrix containing a

Lagrangian distance measure between all pairs of locations. This matrix can then be

contrasted with a pairwise genetic distance matrix between these locations and will

yield new insights. In many instances the Lagrangian distance matrix will be more

correlated with genetic relatedness than a Euclidean distance matrix. This observation

was already made in the Mediterranean Sea when studying plankton [Berline et al.,

2014], and off the coast of California for a species of sea snail [White et al., 2010].

Both of the works by Berline et al. [2014] and White et al. [2010] rely on simulating

trajectories from detailed ocean current data sets to estimate the Lagrangian distance.

Such approaches do not scale globally and rely on simulated trajectories from currents

rather than real observations.

In Figure 3.1.1, we show seven locations plotted on a map with ocean currents.

55



We use these locations as a proof-of-concept example throughout this chapter. The

exact coordinates are given in Table 3.5.1. The aim is to introduce and motivate a

method which provides an estimate as to how long it would take to drift between any

two of these locations. For example, the travel time from location 2 to location 3 in

the South Atlantic Ocean should be smaller than the return journey due to the Brazil

current. We choose to include locations in both the North and South Atlantic as we

wish to demonstrate that the method successfully finds pathways linking points which

are extremely far apart.
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Figure 3.1.1: Locations of interest from Table 3.5.1. Annual mean values of the near-

surface currents derived from drifter velocities [Laurindo et al., 2017] are plotted.

Arrows drawn on a 3◦ × 3◦ grid to show current direction.

3.1.1 Comparison with Related Works

In this section we give a brief overview of techniques that have used the Global Drifter

Program to achieve a similar or related task. The work by Rypina et al. [2017] proposes
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a statistical approach for obtaining travel times. A source area is defined such that

at least 100 drifters pass through the source area. The method focuses on obtaining

a spatial probability map and a mean travel time for every 1◦ × 1◦ bin outside of

the source area. This method successfully combines many trajectories, however for

multiple locations one would have to decide on a varying grid box for each location of

interest. Such a grid box must be manually chosen by the practitioner meaning that

the method does not scale well with multiple locations. Rypina et al. [2017] also focus

on estimating a mean travel time, where our method provides a travel time associated

with the most likely path, and is hence more akin to estimating a mode or median

travel time.

The method by van Sebille et al. [2011], which proposes the use of Monte Carlo

Super Trajectories (MCST), could naturally be used to estimate travel times. This

method simulates new trajectories as sequences of unique grid indices along with

corresponding travel time estimates for each part of that journey. The method is

purely data driven i.e. they only use real trajectories to fit the model. The travel

time and pathway we supply here should be similar to the most likely MCST to

occur between the two points. The advantage of our methodology is that we do not

base the analysis on a simulation, such that the results from the method described in

Section 3.3 are not subject to any randomness due to simulation.

Various other works have made attempts to compute Lagrangian based distances.

For example, Berline et al. [2014] used numerically simulated trajectories to estimate

Mean Connection Times within the Mediterranean Sea. Smith et al. [2018] used

MCST to estimate various statistics of how seagrass fragments could drift from the
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South East coast of Australia to Chile. Specifically, Smith et al. [2018] simulated 10

million MCST starting from the SE coast of Australia and only 264 (0.00264%) of the

simulated trajectories were found to travel roughly to the Chilean coast.

The approach by Jönsson and Watson [2016] uses simulated drifter data to con-

struct connectivity matrices between locations in the ocean. As the matrix is sparse,

Dijkstra’s algorithm is used to connect arbitrarily distant locations in the ocean to

measure Lagrangian distance. Although this method may at first glance bare simi-

larities with our method (specifically in the use of Dijkstra’s algorithm), there are in

fact many differences. First of all, the method uses simulated trajectories whereas we

use real drifter trajectories. Secondly, Dijkstra’s algorithm is performed by Jönsson

and Watson [2016] on the connectivity matrix (which finds minimum connection times

between locations), whereas our approach uses Dijkstra’s algorithm on the transition

matrix which describes a probabilistic framework for drifter movement. We found the

latter approach to perform much better with real data. Finally, we cannot directly

implement the approach described in Jönsson and Watson [2016] as only connectivity

values higher than one year are used by the algorithm. For real data such a step

would result in a very sparse connectivity matrix making the method infeasible. An

initial analysis we conducted using similar methodology achieved poor results.

There are a variety of works which use Markov transition matrices for different

aims to this work. Ser-Giacomi et al. [2015b] and Miron et al. [2019] look at probable

paths, where both of these works find a path going between two points in a certain

number of days using a dynamic program. Froyland et al. [2014] and Miron et al.

[2017] study ocean dynamics by analysing eigenvalues of the transition matrix. Other
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methods in the literature include characterizing dispersion and mixing [Ser-Giacomi

et al., 2015a], identification coherent regions [Froyland et al., 2007, Ser-Giacomi et al.,

2015a], forward integration of tracers [van Sebille et al., 2012, Maximenko et al., 2012],

and guiding drifter deployments [Lumpkin et al., 2016]. We differ from these works

as we ultimately aim to find travel times, as well as pathways, between multiple fixed

locations.

Our proposed algorithm for computing travel times and pathways will also use

the aforementioned Markov transition matrix approach. Our key novelty is that we

build on this conceptual approach by implementing and demonstrating the benefits of

using the (H3) spatial indexing system for discretization, and by supplying uncertainty

quantification guidelines by applying grid rotations and data bootstrapping. The steps

outlined in Algorithm 2 are individually known across disparate literature, however,

this is the first work to our knowledge that effectively combines these steps to solve the

problem of interest. We provide numerous examples to show how our methodology

robustly outperforms state-of-the-art alternative approaches. In addition, we supply

freely-available software in the form of a Python package, of which all parameters in

the model can easily be customized to suit the needs of the practitioner.

In summary, the novel contributions of this work are: a) the combination of the

steps in Section 3.3 to form a computationally-efficient algorithm which applies di-

rectly to transition matrices to find most likely paths and travel times simultane-

ously, b) computation of uncertainty from discretization error and data sampling

(Section 3.4), and c) the demonstration of the method showing it successfully obtains

robust measures of connectivity between both very distant and closely located points
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(Section 3.5). The key outcome is that we obtain oceanographic travel times and

most likely paths requiring no simulated trajectories.

We believe our method is preferable to Rypina et al. [2017] as we do not require

custom treatment to different source areas. Jönsson and Watson [2016] requires the

simulation of many very long and expensive to compute trajectories which obtain

spurious results on real data. Using MCST’s as in Smith et al. [2018] relies on simu-

lation. The estimation of a full pairwise travel time matrix of the locations in Table

3.5.1 requires 42 travel time estimations. With MCSTs this would likely require the

simulation of millions of trajectories and manual analysis of each location pair. Our

method, in contrast, can produce such a travel time matrix in a matter of seconds

given that the transition matrix needs to be estimated just once a priori. In a similar

manner, global travel time maps can be made in a matter of minutes, such as those

that we will be showing in Section 3.5.

3.2 Background and Notation

3.2.1 Global Drifter Program

The Global Drifter Program (GDP) is a database managed by the National Oceano-

graphic and Atmospheric Administraction (NOAA) [Lumpkin and Centurioni, 2020,

Lumpkin and Pazos, 2007]. This data set contains over 20,000 free-floating buoys

temporally spanning from February 15, 1979 through to the current day. These buoys

are referred to as drifters. The drifter design comprises of a sub-surface float and a

drogue sock. Often this drogue sock detaches. We refer to the drifters which have
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lost their drogue sock as non-drogued drifters, and drogued for those which still have

the drogue attached.

Here we use the drifter data recorded up to July, 2020. We use data which has

been recorded from drogued drifters only. This results in a total of 23461 drifters

being used, where the spatial distribution of observations is shown in Figure 3.2.1.

Only using drogued drifters is not a restriction, it would be straightforward to simply

use the data from non-drogued drifters if a practitioner was interested in a species

or object which experiences a high wind forcing, or a combination of both if it is

believed that the species followed a mixture of near surface and wind-forced currents.

The dataset is quality controlled and interpolated to six hourly intervals using the

methodology from Hansen and Poulain [1996]. These interpolated values do contain

some noise due to both satellite error and interpolation, however, the magnitude of

this noise is negligible in comparison to the size of grid we use in Section 3.3. Hence,

we ignore this noise and treat the interpolated values as observations. For the same

reason we note that the interpolation method used is not important here, instead of

the six hourly product we could use the hourly product produced by methodology

proposed by Elipot et al. [2016], or drifter data smoothed by splines as proposed by

Early and Sykulski [2020].

The value of using the Global Drifter Program is we obtain a true model-free

representation of the ocean. All phenomena which act on the drifters are accounted

for in the data set. The other common approach is to first obtain an estimate of the

underlying velocity field, then simulate thousands of trajectories using the velocity

field. While this simulation approach is often satisfactory in some applications, the

61



models generally do not agree completely with the actual observations.

Spatial distribution of 6 hourly observations
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Figure 3.2.1: Number of observations from the Global Drifter Program in each 1◦×1◦

longitude-latitude box.

3.2.2 Notation

Here we use x◦, y◦ to be a geographic coordinate corresponding to latitude and longi-

tude respectively. We refer to the longitude-latitude grid system using the notation

x◦× y◦, which means each grid box goes x◦ along the longitude axis and y◦ along the

latitude axis. We use bold font for any data which is in longitude-latitude pairs; i.e

r = (rlon, rlat), and non-bold text for either a grid index or a single number. We use

S to denote the set of all possible grid indices. A full table of notation is given in

Appendix B.B.

3.2.3 Capturing Drifter Motion

We define the drifter’s probability density function as

P (r1, t|r0, t0)

62



where the drifter started at r0 ∈ R2 at time t0 and moved to position r1 ∈ R2 at

time t, where r0 and r1 are longitude-latitude pairs. In the absence of a model, this

probability density cannot be estimated continuously from data alone. Therefore, we

follow previous works which spatially discretize the problem [Maximenko et al., 2012,

van Sebille et al., 2011, Miron et al., 2019, Rypina et al., 2017, Lumpkin et al., 2016].

Instead of considering r0 ∈ R2, we consider r0 ∈ S where S is some set of states which

correspond to a polygon in space; we will define how these are formed in Section 3.3.2.

Often these states are simply 1◦×1◦ degree boxes (e.g. as used in Figure 3.2.1). As in

Maximenko et al. [2012], we assume that the process driving the drifter’s movement

is temporally stationary. That is:

P (r1, t+ k|r0, t0 + k) = P (r1, t|r0, t0), r0, r1 ∈ S,

for any constant time increment k, i.e. the probability of going from r0 to r1 depends

only on the time increment. The probability does not depend on the start or finish

time.

Furthermore, given that we are using data which is observed at regular and discrete

times, we shall only consider discrete values of time. Let s = {s0, s1, s2, . . . , sn} be a

sequence of locations equally spaced in time where each entry si can take the value of

anything within S. For time 0 ≤ i ≤ n − 1 define the probability p(si+1 = q|si = k)

as the probability that the position at time i + 1 is q given that the state at time i

was k where q, k ∈ S.

In some cases a location fix is missing from the dataset, usually due to a lack of

location fixes or drifter malfunction. When this occurs we split the trajectory into
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two at the point missing data occurs. For all practical purposes we then treat these

as two independent trajectories.

A Lagrangian decorrelation time causes the drifter to ‘forget’ its history [LaCasce,

2008]. We aim to choose a constant time difference which is globally higher than the

Lagrangian decorrelation time. The reasoning behind using this time is that if we

consider a sequence of observations, which are at least the Lagrangian decorrelation

time apart then the following Markov property is satisfied:

p(si+1 = qi+1|si = qi, si−1 = qi−1, · · · , s0 = q0)

=p(si+1 = qi+1|si = qi), (3.2.1)

where qi is just some fixed state and si is the random process. In other words, the

Markov property states that probability of transition to state si+1 is independent of

all the past states at times i − 1 and earlier, given the state at time i is known. In

this case the physical time difference between si+1 and si is a constant. This constant

time difference being larger than the chosen Lagrangian decorrelation time validates

the use of the Markov assumption.

For the rest of this chapter we assume that the time between discrete time obser-

vations is equal to TL. We call this quantity the Lagrangian cut off time. Setting TL

higher than the decorrelation time allows us to use the Markov property from Equa-

tion (3.2.1) freely. In so doing, alongside the simplification of discretizing locations,

this allows the problem to be treated as a discrete time Markov chain. Here we fix

TL = 5 days as this matches previous similar works [Maximenko et al., 2012, Miron

et al., 2019]. The estimated decorrelation time for the majority of the surface of the
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Ocean is likely to be lower than 5 days (e.g. see Zhurbas and Oh [2004] for the Pacific

and Lumpkin et al. [2002] for regions in the Atlantic). In Section B.F we conduct a

sensitivity analysis to show our results are not overly sensitive to the choice of TL as

long as TL > 2 days.

Ideally, we could use different values of TL for different regions, however, using the

discrete-time discrete-space models in this chapter, require an equal spacing between

points. Choosing TL = 5 is conservative for all areas of the ocean. We conduct a

sensitivity analysis around this in Appendix B.F.

3.3 Method for Computing the Most Likely Path

and Travel Time

Maximenko et al. [2012] and van Sebille et al. [2012] focus on the use of a transition

matrix estimated from drifters to discover points where drifters are likely to end up.

In this section we build on such an approach by providing a method to take such a

matrix and provide an ocean pathway and travel time.

In Section 3.3.1, we explain in detail how the transition matrix is formed. As

a grid system is needed to form the discretization of data we introduce our chosen

system in Section 3.3.2. Then in Section 3.3.3, we describe how we estimate the most

likely path of a drifter to have taken. Finally, in Section 3.3.4 we explain how we turn

the most likely path and transition matrix into an estimate of travel time. We give a

summary of how this articulates in the pseudo-code in Algorithm 2.
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3.3.1 Transition Matrix

The location of a drifter at any given time is a continuous vector in R2, the longitude

and latitude of the point. We define an injective map which maps this continuous

process onto a discrete set of states which are indexed by integers in S. We define

the map as follows:

f : R2 → S. (3.3.1)

We aim to make a Markov transition matrix T of size nstates rows and columns, where

Ts,q denotes, the probability of moving from s to q in one time step. Similarly to

the approach of Maximenko et al. [2012], we form our transition matrix using a gap

method. In each drifter trajectory we only consider observations as a pair of points

TL days apart. When using this method for other applications we advise using TL to

be higher than the decorrelation time of velocity to justify the Markov assumption.

Consider a trajectory as a sequence of positions yj = {yi,j}nj

i=1 where j is the jth

out of N trajectories, nj is the number of location observations in the trajectory, and

yi,j ∈ R2 are the longitude-latitude positions. First, we map each trajectory into

observed discrete states. We will denote these states as follows,

gi,j = f(yi,j). (3.3.2)

For each s, p ∈ S we estimate the relevant entry of our transition matrix T through

using the following empirical estimate:

Ts,p =

∑N
j=1

∑nj−4TL
i=1 I[gi+4TL,j = p]I(gi,j = s)∑N
j=1

∑nj−4TL
i=1 I[gi,j = s]

, (3.3.3)
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Where I is the indicator function, such that it takes the value 1 if the statement inside

it is true, and zero otherwise. Note that we take gaps of 4TL as observations are every

6 hours in the GDP application and TL is in days. The estimation of the transition

matrix, using the discretization of trajectories in Equation (3.3.2), in combination

with Equation (3.3.3), is commonly referred to as Ulam’s approach [Ulam, 1960]. We

expect that states in S which are not spatially close will have non-zero entries such

that the matrix T will be very sparse, but this is not a problem for the methodology

to work over large distances as we shall see.

3.3.2 Spatial Indexing

Clearly the resulting transition matrix described in Section 3.3.1 strongly depends

on the choice of grid function in Equation (3.3.1). Most previous works [van Sebille

et al., 2012, Maximenko et al., 2012, Rypina et al., 2017, McAdam and van Sebille,

2018, Miron et al., 2019] use longitude-latitude based square grids where all grid boxes

typically vary between 0.5◦×0.5◦ and 1◦×1◦. A 1◦×1◦ grid cell around the equatorial

region will be approximately equal area to a 111.2km×111.2km square box. However,

if we take such a grid above 60◦ latitude, e.g. the Norwegian sea, the grid cell will be

approximately equal area to a 55.6km× 111.2km square box.

There are a few other choices which we argue are more suitable for tracking moving

data on the surface of the Earth. Typically three types of grids exist for tessellating

the globe: triangles, squares, or a mixture of hexagons and pentagons. Here we

choose to use hexagons and pentagons as they have the desirable property that every

neighbouring shape shares precisely two vertices and an edge. This is different to say a
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square grid where only side-by-side neighbours share two vertices and an edge, whereas

diagonal neighbours share only a vertex. This equivalence of neighbors property for

hexagons and pentagons is clearly desirable for the tracking of objects as this will

result in a smoother transition matrix.

Figure 3.3.1: A small area around the Strait of Gibraltar which is tessellated using the

H3 spatial index. We show resolutions 1, 2 and 3 in red, blue and black respectively.

Black is the resolution used in this work.

We specifically use the grid system called H3 by UBER [UBER, 2019]. This

system divides the globe such that any longitude and latitude coordinate is mapped

to a unique hexagon or pentagon. This shape will have a unique geohash which we

can use to keep track of grid index. The benefit of using such a spatial indexing

system is that attention is paid to ensuring that each hexagon is approximately equal

area. We use the resolution 3 index where each hexagon has an average area of

12, 392km2. A square box of size 111.32km × 111.32km has roughly the same area
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as this which is very similar to the size of a 1◦ × 1◦ grid cell near the equator. An

example of an area tessellated by H3 is shown in Figure 3.3.1. Other potential systems

which could be used include S2 by Google which is a square system, or simply using a

longitude-latitude system as various other works do. We show some example pathways

using different grid systems and resolutions in the Supplementary Information Figure

B.H.1. The longitude-latitude system results in pathways that unrealistically follow

long block-wise vertical or horizontal straight line motions, in contrast to the more

realistic and meandering pathways produced by the hexagonal-pentagonal H3 grid

system.

3.3.3 Most Likely Path

For our analysis, the first step is to define a most likely path. A path is simply a

sequence of states such that the first element is the origin and the last element is the

destination. We also require that each state in the path is unique.

Definition 3.3.1 (Path). We define the space of possible paths Po,d, between the

origin o ∈ S and destination d ∈ S, as the following:

Po,d = {p = (p1 = o, p2, p2, . . . , pn−1, pn = d) : n ∈ N, pi ∈ S,

i 6= j ⇒ pi 6= pj}.

With a cardinality operator |p| = n which denotes the length of the path.
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Given the transition matrix T we define the probability of such a path:

P (p) =

|p|−1∏
i=1

P (si+1 = pi+1|si = pi) =

|p|−1∏
i=1

Tpi,pi+1
. (3.3.4)

Definition 3.3.2 (Most likely path). Consider any path p ∈ Po,d. By the most likely

path p̂ we mean the path which maximizes the probability of observing that path.

p̂ = arg max
p∈Po,d

{P (p)} = arg max
p∈Po,d


|p|−1∏
i=1

Tpi,pi+1

 . (3.3.5)

Optimising Equation (3.3.5) appears intractable at first glance. However, this can

easily be solved with shortest path algorithms such as Dijkstra’s algorithm [Dijkstra,

1959]. We give precise details on how to find this pathway in Appendix B.C.

3.3.4 Obtaining a travel time estimate

The most likely path is often a quantity of interest in itself, however we can also

obtain a travel time estimate of this path. The method should be fast and efficient as

it should be able to run for large sets of locations quickly. We achieve this by giving

a formula to estimate the travel time based directly on the transition matrix.

Consider the path, p = {p1, . . . , pn}, from which we aim to estimate the expected

travel time. The key consideration this section addresses is: the path is a sequence of

unique states, whereas when simulating from a discrete time Markov chain, the chain

has a probability of remaining within the same state for multiple time steps. We

therefore aim to obtain an estimate of how long the Markov chain takes, on average,

to jump between pi and pi+1, and then aggregate this over the path to form a travel

time estimate.
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We assume that the only possibility is that the drifter follows the path we are

interested in. So pi must be followed by pi+1. Now we use t to index the time of the

Markov chain and suppose st = pi. In this case we do not require that i = t as we

allow repeated states in the random process st. We are then interested in the random

variable k where t + k is the first time that the process transitions from pi to pi+1.

Note that the only possibility for states {st+l}k−1l=1 is that they are all pi, otherwise

the object would not be following the path of interest. Therefore, we obtain the

distribution of k as follows (proof in Appendix B.E):

P (st+k = pi+1, {st+l = pi}k−1l=1 |st = pi,p})

=
Tpi,pi+1

T k−1pi,pi

(Tpi,pi + Tpi,pi+1
)k
. (3.3.6)

Note that if we set a =
Tpi,pi

Tpi,pi + Tpi,pi+1

in Equation (3.3.6) we get:

P (st+k = pi+1|st = pi,p) = ak−1(1− a), (3.3.7)

which is the probability distribution function of a geometric distribution with success

probability 1− a. We denote the random variable for the travel time between pi and

pi+1 as ki. As the geometric distribution corresponds to the time until a failure, we

are interested in taking one time increment longer than this as we require ki to be

the time that we move from pi to pi+1 i.e. the time of the failure. Therefore the

distribution of ki exactly follows ki − 1 ∼ Geom(1− a). Also, note that ki is in units

of the chosen Lagrangian cutoff time TL.

To get the expectation of the total Lagrangian travel time we consider the sum of
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all the individual parts of the travel times k =
∑|p|−1

i=1 ki, such that we obtain:

E[k] =

|p|−1∑
i=1

E[ki] =

|p|−1∑
i=1

(
Tpi,pi
Tpi,pi+1

+ 1

)
, (3.3.8)

where we have used that the expectation of the negative binomial is E[x ∼ NB(1, a)] =

a
1−a .

We could attempt to obtain a simple variance estimate for the estimate E[k|p] and

var [k|p] easily with classical statistics. However, we would only be able to account

for variability within the estimates of the entries T , as we would have to assume p is

known. In our case we are interested in the time of p̂, which is itself an estimate as

it depends on T . Obtaining any analytical uncertainty in the estimation of the most

likely path would be intractable due to the complexity of the shortest path algorithm.

Therefore, we propose to address the issue of uncertainty in E[k|p] and p̂ due to

data randomness in Section 3.4.2 using the non-parametric bootstrap. To finish this

section, we provide the pseudo-code for our approach in Algorithm 2.

One aspect to note which makes the pathways very difficult to check is that the

most likely path’s travel time is not necessarily the most likely travel time. It could

be the case that there are many alternative, almost as likely pathways all which have

a different travel time. Therefore, the travel time of these alternative pathways may

have a higher contribution to the total travel time distribution than the most likely

path. This is intractable to validate unless we just simulate many pathways and travel

times. We do some brief comparisons to the real observed modal travel times in 4.5.1.
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Algorithm 2 Pseudo-code which summarizes how Section 3.3 is used to turn drifter

data and a spatial index function into most likely paths and travel time estimates.

Input: Drifter data set y, a set of locations x, Lagrangian cutoff time TL

Map all the drifter locations y to their grids gj,i = f(yj,i) using the map from Equa-

tion (3.3.1). Map all the locations of interest to their grids gxi = f(xi).

Form transition matrix T using Equation (3.3.3). for each unique pair o and d in

{gxi}xi∈x do

Find and store the most likely path p̂o,d by optimizing Equation (3.3.5). Using

this path, find and store the expected travel time E[k̂o,d|p = p̂o,d] using Equa-

tion (3.3.8).

end

Result: Travel times E[k̂o,d|p = p̂o,d] for every pair of locations in x and a corre-

sponding path p̂o,d given as a sequence of grid indices in S.
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3.4 Stability and Uncertainty

3.4.1 Random Rotation

A key consideration is that the final results of the algorithmic approach may strongly

rely on the precise grid system f chosen in Equation (3.3.1). To address the uncer-

tainty due to the discretization we propose to randomly sample a new grid system

then run the algorithm for the new grid system. In a simple 2d square grid one could

simply sample a new grid system by sampling two numbers between 0 and the length

of a side of the square, then shifting the square by these sampled amounts in the x

and y direction. In global complicated grid systems such as the one we consider here

proposing uniform random shifting is not trivial.

Rather than trying to reconfigure the grid system, instead we suggest a more uni-

versal alternative. We suggest randomly rotating the longitude-latitude locations of

all the relevant data using random rotations. Such a strategy will work for any spa-

tial grid system as it just involves a prepossessing step of transforming all longitude-

latitude coordinates1. Note that for each rotation we are required to re-assign the

points to the grid and re-estimate the transition matrix. These are the two most

computationally expensive procedures of the method. To generate the random rota-

tions we use the method suggested by Shoemake [1992]. In summary, it amounts to

generating 4 random numbers on a unit 4 dimensional hypersphere as the quaternion

1Conditional on the grid system having a reasonable minimum area. This method rotates the poles

to a random point, which would give spurious results in a longitude-latitude grid. Thus providing

another reason why the H3 system is more suitable.
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representation of the 3 dimensional rotation, which can equivalently be represented

as a rotation matrix M . Then we apply this rotation to the Cartesian representation

of longitude and latitude.

To obtain travel times which remove bias effects from discretization, we sample

nrot rotation matrices M (i). We then run Algorithm 2, however as a prepossessing

step we rotate all locations of the drifter trajectories and locations of interest. For

each rotation matrix this will result in a set of travel times d̂(i). The sample mean

of these rotations will be more stable than the vanilla method. The sample standard

deviation will inform us about uncertainty in travel times due to discretization.

3.4.2 Bootstrap

If we required a rough estimate of uncertainty we could consider that p̂, the most

likely path, is fixed and then estimate Var [k̂]. However, this would be a poor estimate

because such an estimate would assume that: (1) the transition matrix entries follow

a certain distribution, and (2) the path p̂ is the true most likely path. In reality

neither of these are true, they will both just be estimates. The transition matrix

elements are estimated from limited data and the shortest path strongly depends on

the estimated transition matrix, e.g. a small change in the transition matrix could

result in a significantly different path. Therefore, we obtain estimates of uncertainty

by bootstrapping [Efron, 1993].

Bootstrapping is a method to automate various inferential calculations by resam-

pling. Here the main goal is to estimate uncertainty around θ̂ = E[k̂]. The bootstrap

involves first resampling from the original drifters to obtain a new data set. We call
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y∗ = {y∗j}j=1,...N a bootstrap sample, where y∗j is a drifter trajectory which has been

sampled with replacement from the original N drifters. Then we use y∗ as the input

dataset to Algorithm 2.

We do this resampling B times to obtain B estimates of θ̂ = E[k̂], we denote these

bootstrap estimates as {θ̂(b)}Bb=1. We then estimate our final bootstrapped mean and

standard deviation estimates as the following:

sd2boot =


∑B

b=1

(
θ̂(b) − θ̂(.)

)2
B − 1

 ,
where θ̂(.) =

B∑
b=1

θ̂(b)/B. (3.4.1)

In addition to the uncertainty measure in travel time that both the bootstrap and

rotation methodology provide, these methods also supply a collection of sample most

likely paths. These paths can be used to investigate various phenomena, such as why

the uncertainty is high. We can plot the paths for a fixed origin-destination pair and

may see for example that many paths follow one current where another collection of

paths follow a different current. We give numerous examples of this in Sections 3.5.2

and 3.5.3.

3.5 Application

We use the locations given in Table 3.5.1 for the demonstration of the method de-

scribed in this chapter. These locations were chosen for multiple reasons; (1) they were

placed on or near ocean currents, such as the South Atlantic current, the Equatorial

current and the Gulf Stream; the magnitudes of which can be seen in Figure 3.1.1,
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Longitude Latitude

1 9.0 -25.5

2 -25.0 -5.0

3 -45.0 -40.0

4 -69.0 39.0

5 -42.5 41.5

6 -42.0 27.5

7 -93.2 24.8

Table 3.5.1: Table of station locations

and (2) stations were placed in both the North and South Atlantic to show how the

method can find pathways which are not trivially connected. First we go over an

application of the vanilla method from Section 3.3, then we provide brief results us-

ing the adaptations using bootstrap and rotations from Section 3.4 in Section 3.5.2

and Section 3.5.3 respectively. We supply a link to a Python package and code used

to create these results in Appendix B.A. Prior to our analysis we take a practical

step to improve the reliability of the method. We find the states corresponding to

−79.7◦, 9.07◦, −80.73◦, 8.66◦ (two points on the Panama land mass), −5.6◦, 36◦ and

−5.61◦, 35.88◦ (two points on the Strait of Gibraltar), then remove the corresponding

rows and columns from T . If this step is not taken the method often uses path-

ways crossing the Panama land mass, resulting in impossibly short connections to the

Pacific Ocean. The reasoning for removing the points on the Strait of Gibraltar is
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data-driven, further details are in the supplementary information, particularly how

one can adapt the method to specify travel times into and out of the Mediterranean

Sea.

Figure 3.5.1 shows the pathways between a representative sample of the stations.

First we note what features are observed in the most likely path. The Gulf Stream

is used on almost every path trying to access locations 4, 5 or 6 in Figure 3.5.1.

Observe in Figure 3.5.1 c) when going from location 3 to 5 that the method chooses

to enter the Gulf of Mexico and then uses the Gulf Stream to access location 5, even

though the actual geodesic distance of this path is long. Other examples which use

the Gulf Stream include d) and h). Generally, any of the paths leaving location 1 and

attempting to travel northwest use the Benguela Current, for example Figure 3.5.1

a), i) and g).

The travel times obtained between the sample stations in Figure 3.5.1 show in-

teresting results regarding the lack of symmetry when reversing the direction of the

path between two stations. When going from location 2 to location 4 we estimate

a long most likely path in terms of physical distance. However, the resulting travel

time of this path (0.7 years) is smaller than the travel time of the more direct path

from location 4 to location 2 (4.8 years) - which is much shorter in distance. This

is because the path going from location 2 to location 4 follows strong currents such

as the North Equatorial current and the Gulf Stream. Another interesting result is

that going from 3 to 5 and vice versa are relatively close in terms of travel time even

though 3 to 5 uses the Gulf Stream but the return does not. In the most likely path

from 3 to 5, up until around −16◦ latitude the travel time is 5.2 years, which we
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expect as the pathway seems to be going against the Brazil current. After this point

the rest of the path takes the remaining 3 years despite the remainder being over half

the actual physical distance of the pathway. We expect this short time is due to the

method finding a pathway along the North Brazil current, followed by the Caribbean

current, followed by the Gulf Stream.
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a)

1 -> 2: 2.1 Years 
 2 -> 1 : 3.2 Years

1

2

3

b)

1 -> 3: 4.6 Years 
 3 -> 1 : 2.7 Years

1

2

3

c)

3 -> 5: 8.2 Years 
 5 -> 3 : 7.6 Years

1

2

3

4 5
67

d)

6 -> 7: 2.7 Years 
 7 -> 6 : 3.2 Years

2

4 5
67

e)

4 -> 6: 3.3 Years 
 6 -> 4 : 5.6 Years

2

4 5
67

f)

3 -> 6: 7.6 Years 
 6 -> 3 : 5.3 Years

1

2

3

4 5
67

g)

1 -> 7: 3.3 Years 
 7 -> 1 : 8.8 Years

1

2

3

4 5
67

h)

2 -> 4: 0.7 Years 
 4 -> 2 : 4.8 Years

1

2

3

4 5
67

i)

1 -> 6: 4.2 Years 
 6 -> 1 : 10.8 Years

1

2

3

4 5
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Figure 3.5.1: Example pathways found from the method. Sequences of blue hexagons

are going from the lower number to the higher number. Sequences of red hexagons

are going from the higher number to the lower number. Numbered locations are as in

Table 3.5.1. The expected travel time of the most likely path is given in the title of

each plot. Similar plots can be provided for every location pair using the online code,

however these are not presented here owing to page length considerations.
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a)

Travel times to star from the rest of the globe

b)

Travel times from star to the rest of the globe

c)

Travel times to star from the rest of the globe

d)

Travel times from star to the rest of the globe
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Figure 3.5.2: Travel times of the most likely path originating from the red stars and

going to or from (indicated by the title) the centroid of a 2.5◦ × 2.5◦ square grid

system. Figure setup and locations taken to match Figure 2 of Jönsson and Watson

[2016].
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3.5.1 Global Travel Times

Figure 3.5.2 shows the travel time distribution to and from two fixed locations, taken

to match the studied locations of Jönsson and Watson [2016], to the entire globe.

We note that the travel time map is less smooth than the one shown in Jönsson

and Watson [2016]. The black and purple areas however (up to 5 years travel time)

are similar to those found in Jönsson and Watson [2016], showing agreement over

short spatial scales. When it comes to larger distances we generally find the maps

are markedly different. For example the yellow patch in the north east Pacific in

Figure 3.5.2c is not seen in Jönsson and Watson [2016]. Such discrepancies can be

attributed to many reasons such as: (1) they reflect the difference in methods, where

we use a transition matrix approach, and Jönsson and Watson [2016] use a connectivity

matrix; (2) Jönsson and Watson [2016] aim to find the shortest path in time, whereas

we aim to find the expected time of the most likely path; and (3) the results shown

here are derived from real data, whereas Jönsson and Watson [2016] use simulated

trajectories.

We show an example in Figure 3.5.3 which explains the lack of spatial smoothness

in Figure 3.5.2, where we show two pathways both originating from a fixed point

and ending at two distinct points only 1◦ latitude apart. The points are on either

side of the discontinuity in the north-east Pacific seen in Figure 3.5.2c. The path-

ways become visibly different after they have both reached the south Pacific. Such

a phenomenon results in the lack of spatial smoothness of travel time distributions.

This demonstrates that the travel times do not necessarily obey the triangle inequal-
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ity. If smoothness is desired we show an alternative approach in the supplementary

information, where instead a minimum travel time is the objective, which is then

more analogous to the Jönsson and Watson [2016] approach. We argue however that

the expected travel time of the most likely path, rather than the minimum travel

time, is a more relevant metric for estimating connectivity and Lagrangian distance

in applications measuring spatial dependence between points in the ocean.

Path from SE africa to 
 ( 132 , 25 ) blue, 
( 131 , 25 ) green.

Figure 3.5.3: The most likely path from two points in the North Pacific to the south-

east coast of Africa. The green and blue pathways are almost identical as they cross

the south Atlantic. The pathways differ greatly however as they cross the Pacific,

even though the two starting points in the north Pacific are only 1 degree apart. The

path going from −131◦, 25◦ has an expected travel time of 21.2 years, the path going

from −132◦, 25◦ has an expected travel time of 11.4 years.

3.5.2 Bootstrap

To show the value of the bootstrap we show the results for one particular pair of

stations, the pathway going from location 1 to location 3 and back. The pathways

which result from the bootstrap are shown in the bottom panel of Figure 3.5.4. The
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darker lines on the figure imply that that this transition is used more often. We see

that for most of the journey the darker lines closely follow the original path. The

bootstrap discovers some slightly different paths, for example around −20◦ Longitude

the path going from 3 to 1 occasionally seems to find that going further south is a

more likely path. Also, around the beginning of the path going from 1 to 3, we see

that the most likely path taken most frequently by the bootstrap samples often does

not follow the most likely path from the full data.

2 4 6
Travel Time (Years)

0

20
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t

Bootstrap Times: 3 - > 1
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Bootstrap Times: 1 - > 3
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30°S 30°S
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Figure 3.5.4: Two bootstrap distributions of travel times are shown in the top row

resulting from 200 bootstrap samples. The vertical line is the travel time if the full

data is used to estimate the path and time. The corresponding bootstrapped paths

are shown in the bottom figure. Blue lines and hexagons are for going from 1 to 3,

red lines and hexagons are for going from 3 to 1. The lines connect the centroids of

the spatial index of the bootstrapped paths. Darker lines mean that path is taken

more often. The light hexagons are the pathway taken if the full data is used with no

resampling i.e. the pathway shown in Figure 3.5.1.

The main goal of the bootstrap is that we obtain an estimate of the standard

errors. In this case we get standard error estimates using Equation (3.4.1) of 0.5
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years for going from 3 to 1 and 0.6 years for going from 1 to 3. In general, we found

that the standard error was lower when the path follows the direction of flow. The

top row of plots in Figure 3.5.4 appears to show that there is a slight bias between

the bootstrap mean and the vanilla method travel time. We believe this is due to the

variance within the paths. The mean estimated from the bootstrap samples are close

to the estimates from the rotation method we will shortly present in Figure 3.5.6. The

rotation mean estimates are within 0.4 years of the bootstrap means in both cases

shown here.

3.5.3 Rotation

If we consider two points in the same H3 Index, for example location 1 (9◦,−25.5◦)

and a new point 9◦,−26.2◦ (as shown in Figure 3.5.5), then using the original grid

system the method will simply produce a travel time of 0. To solve this problem,

we consider using 100 rotations as explained in Section 3.4.1. For each rotation we

estimate the travel time both back and forth. In 22 of the rotations the two points

ended up in the same hexagon, hence resulting in a zero travel time. We plot the

distribution of the other 78 travel times in the bottom row of Figure 3.5.5. The mean

of all the entries including the zeros is 20.5 days for going from the new point to

location 1, and 22.2 days for going from location 1 to the new point.

The second benefit of performing rotations is to make estimates less dependent on

the grid system. We use the same 100 rotations as with the previous example, and

compute the most likely path and the mean travel times. In Figure 3.5.6 we plot the

pathways with the mean and standard deviation of the travel times resulting from

85



7°E 8°E 9°E 10°E 11°E

27°S 27°S

26°S 26°S

25°S 25°S

0 20 40
Travel time (days)

0

10

20

30

Co
un

t

red -> blue

0 20 40
Travel time (days)

0

10

20

blue -> red

Figure 3.5.5: Plot of location 1 from Table 3.5.1 and the point 9◦,−26.2◦, which is

0.7◦ south of location 1. The relevant H3 hexagon is plotted over the points. In the

bottom row we plot the histogram and density estimate of the travel times in each

direction from applying 100 rotations. The 22 zeros for when the two locations are in

the same hexagon are not included in the histogram.

these 100 rotations. The travel times and paths shown in this figure are comparable

to those given in Figure 3.5.1. In most of the pathways we see that the darkest, most

popular paths match up with the pathways in Figure 3.5.1.

One of the more interesting results from this analysis is the path going from 2 to

1 in Figure 3.5.6 a). Most of the paths go up closer to the Equator, then use the

Equatorial Counter current, followed by the Guinea and Gulf of Guinea currents as in

the original vanilla application of the methodology. A small number of the rotations

result in pathways that end up crossing the South Atlantic, to the south of location

2, then follows the South Atlantic current over to location 1.

In general, the travel times from the rotation and original method can be signifi-
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cantly different, which supports the need for this rotation methodology. If we compare

Figure 3.5.1 and Figure 3.5.6, most of the distances stay close to what they were in

the original results using no rotations. We see that going from 6 to 4 drops from 5.6

years in Figure 3.5.1e) to 3.8 years in Figure 3.5.6e) and 4 to 6 increases from 3.3

years to 5.4 years. This causes the ordering of the distances to change as 6 to 4 is now

the shorter travel time. We believe the case in e) is mainly due to 4 being located

just north west of the stronger currents of the Gulf Stream, which makes it sensitive

to the grid system. However, the high standard errors in Figure 3.5.6 suggest we are

uncertain about this travel time.

3.6 Discussion and Conclusion

In contrast to van Sebille [2014], our methodology as presented does not take into

account seasonality. We have a few ideas for how seasonality could be incorporated

in future work. An obvious adaptation, if the aim was to obtain a short travel time

which is expected to lie in a small 3 month window, is to just estimate T using drifter

observations which are in that time window. Alternatively, we could use TL to be a

certain jump such as a gap of two months, then we estimate 6 transition matrices say

T (k), where the entries T
(k)
i,j are probabilities of going from the previous time period

at state i to state j at the current time. Such a set up could still be solved using

our shortest path algorithm. We justify our approach in the same way as Maximenko

et al. [2012]: we aim to provide a global view and a simple general concept explaining

the pattern of potential pathways and travel times. The base method can then be
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adapted by practitioners to account for local spatial or temporal considerations.

More results demonstrating the robustness of our method, and motivation of pa-

rameter choices, can be found in the supplementary information. A key finding we

discuss here, is that we found the size of the grid system affects the estimated travel

times significantly, regardless of whether the lat-lon or the H3 grid system is used.

Therefore we do not recommend comparing travel times obtained from two different

grid sizes. Generally the results are correlated in an order comparison sense, however,

their magnitudes change. Typically a smaller grid system results in shorter travel

times. Due to this we would only advise the results to be used in relative comparison

to each other, for example by saying that the travel time from a to b is twice that than

from b to c, where both times are obtained with the same grid system. The choice

to show resolution 3 in this chapter was found to perform robustly (balancing the

error from discretisation and data sparsity), and follows grid sizes that approximately

match previous works where 1◦ × 1◦ grids are used, but this can be changed easily in

the online package.

More detailed grid systems could also greatly benefit the Markov transition matrix

approach in general. For example, in Section B.H.5 we discuss how the method can

take pathways across land-masses and ocean barriers if a grid covers both sides. A

very useful adaptation would be to make a grid system that never crosses a land mass.

This would stop artificial leakage which we had to deal with by removing links in the

transition matrix. If we could also allow the grid cells to adaptively resize based on

the ocean currents this could result in more realistic results which take into account

currents which act as barriers.
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The use of the bootstrap and rotations are relatively easy methods to implement,

each of which provides effective estimates of uncertainty from data uncertainty and

discretisation respectively. However, combining these procedures into one requires

careful consideration. If we wanted to run nrot rotations and B bootstraps for each

rotation, we still require a method to combine these estimates of travel times. We

could treat every rotation equivalently, so say that our bootstrap sample in Equa-

tion (3.4.1) is all nrot×B samples to obtain an estimate of uncertainty in travel time

due to the combination of grid discretization and data randomness. Additionally,

we could decompose the uncertainty and provide a standard error for just the data

randomness by estimating a standard error for each rotation using just the B samples

in each rotation, and then taking the average of all nrot standard error estimates.

Our choice of the Lagrangian decorrelation time of 5 days may be too low in some

instances. Previous works have found correlations in the velocity data lasting longer

than 5 days in certain regions [Lumpkin et al., 2002, Zhurbas and Oh, 2004, Elipot

et al., 2010]. This may suggest that using a larger value for TL may be needed to justify

the Markov assumption. The tradeoff however is resolution, where shorter timescales

allow pathways and distances to be computed with more detail. Our methodology is

designed flexibly such that the practitioner can pick the most appropriate timescale

for the spatial region and application of interest.

In general some unexpected features of the method do occur such as the discon-

tinuity discussed in Section 3.5.1. We expect there would be less of a discontinuity

if these times were computed with the rotation methodology, however we argue that

the discontinuities with travel times of most likely pathways should always exist. If
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smoothness of travel times was a major requirement, then one could consider the

shortest path in travel time rather than the most likely path. We briefly show this

adaptation in the supplementary information. We expect the results would require

more careful checking in such an approach, as the shortest path would be more likely

to use any glitches in the grid system such as if there was a connection over Panama.

To summarize, in this chapter we have created a novel method to estimate La-

grangian pathways and travel times between oceanic locations, thus offering a new,

fast and intuitive tool to improve our knowledge of the dynamics of marine organisms

and oceanic transport and global circulation.
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Figure 3.5.6: This figure layout is the same as in Figure 3.5.1, except here we plot

paths resulting from 100 random rotations. Each line connects the centroid of each

hexagon within the path. Note that the hexagons now come from rotated grid systems,

so the centroids could be at any location hence the smooth continuous looking lines.

The lines are plotted with transparency, when multiple lines overlap these lines will

look darker. Standard deviations of the travel times of the 100 paths are reported in

the title of each figure.
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Chapter 4

Multidimensional Scaling for

Travel Time Matrix Completion

4.1 Introduction

The motivation and aims of this chapter overlap with those of Chapter 3, hence we

refer the reader to Section 3.1 for further background. As a brief summary, we aim to

take S locations of interest in the ocean ps ∈ R2, s ∈ {1, . . . , S} which we will refer to

as stations, and produce a measure of travel time between any pair of stations. The

travel time will be derived from a large set of trajectories {yj}Nj=1 where yj = {yi,j}nj

i=1.

Unlike the approach in Chapter 3, the method introduced in this chapter does not

focus on obtaining a candidate pathway, only a travel time.

In the previous approach introduced in Chapter 3, we assumed a model for the

motion of drifters, and then extracted a quantity which we use as a travel time estimate

from the estimated model. In practical terms this works very well: it is fast, global
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and provides sensible results with no hand tuning required. However, the method also

has weaknesses including:

• The Markov model assumption is required to make the problem tractable; it is

not necessarily realistic.

• The results are heavily dependent on the discretization step. For example, the

travel times are seen to change significantly when a finer resolution for spatial

discretization is used.

This chapter proposes a more direct approach. We aim to obtain an estimate of

the travel time between two points by using the observed travel times from individual

drifters that have visited both points. Specifically, we estimate how long it takes a

trajectory to travel within a radius of the two locations of interest.

In contrast to the most likely path approach in Chapter 3, we rely on a model-free

approach, and we make no assumptions about how the trajectories are generated.

The approach in this chapter provides a much more tangible travel time estimate, as

we can say the estimates which we provide can be directly estimated from trajectory

data. Furthermore, the estimate provided in this chapter is a symmetric matrix,

whereas the method proposed in Chapter 3 is typically not symmetric. However, the

method introduced in this chapter does not scale globally, which is why we provide

both chapters as separate contributions to the broad problem of interest. We will

further discuss the advantages and disadvantages of the two approaches in Section

4.6.2.
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4.1.1 Brief summary of the approach

Multidimensional Scaling (MDS) [Torgerson, 1952, Kruskal, 1964, Cox, 2001, Borg,

2005] is a family of models to analyse a set of pairwise distances or dissimilarities

between a set of objects. MDS aims to reconstruct a representation of these objects

in a latent space where the distances in the latent space closely matches the original

pairwise dissimilarities. A common illustrative example of MDS is to take flight times

between cities to recreate a spatial map of where the cities are located, using only

these flight times. However, the flights example would usually have complete data. A

similar application to the problem we have here is wireless sensor localization [Biswas

et al., 2006]. Wireless sensors receive signals which the strength of can be recorded.

However, signals are only received from stations which are close or neighbouring. MDS

may then be used to create an embedding of these sensor locations, which can then

estimate signal strength between all stations [Drineas et al., 2006, Shang and Ruml,

2004], even those which are distant.

The second example related to wireless sensors is more similar to the problem at

hand, where the measure of dissimilarity is travel time. We have finite drifters which

travel for a finite amount of time, hence there will be pairs of locations which have

no observed travel times. We aim to use MDS to complete these travel times.

The approach we take has two distinct stages. The first is to obtain an estimate of

travel time. Unlike the aforementioned examples, there is no one clear metric which

we can record as a dissimilarity. We have thousands of trajectories of finite length

from which we aim to estimate a set of pairwise travel times directly. We aim to
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extract the most likely travel time, the approach for this is outlined in Section 4.2.

Secondly, the algorithm we propose yields travel times which can be either: miss-

ing, biased (due to a practical step taken), and have unwanted error due to finite

sampling. In Section 4.3, we introduce a multidimensional scaling model to account

for these issues.

In Section 4.4, we then implement both steps of the algorithm to a simulated

example where we have an idea of what the results should be. We also investigate the

sensitivity of the method to how much data is missing. In Section 4.5, we apply the

method directly to the Global Drifter Program using a set of locations of interest in

the North Atlantic. Finally, we discuss the results and propose various areas of future

research in Section 4.6.

4.2 Travel Time Estimation

To simplify the remainder of the chapter, we outline the processing of the dataset.

The first step undertaken on the trajectories is to check which stations each trajectory

goes to, then record the travel times from and to these stations; this step is explained

in Section 4.2.1. Then we extract a single travel time estimate for each station pair.

We choose to extract an estimate of the mode of the travel time distribution, the

method for this is explained in Section 4.2.2. Finally, in Section 4.2.3 we describe

how the former steps are used to create the symmetric pairwise travel time matrix D.
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4.2.1 Extracting times

One of the first questions we need to answer is what is a travel time. For a road or

train network this is usually a straightforward question to answer. The operators of

the vehicles move between nodes on a known graph and generally try to take a direct

path. In the ocean we don’t have an obvious graph, drifters often loop back to a

similar location, and are extremely unlikely to visit any specific point. To simplify

this problem we focus on the time of the most direct path any drifter takes to travel

from station i to station j.

We record travel times based on which stations a trajectory visits. The problem

is that the chance of a trajectory visiting the exact point of the station is extremely

unlikely. Instead, we consider an r km radius around the station. If the trajectory

is seen within this r km radius of the station, we say it has visited the station, and

once the drifter exits that radius we say it has exited the station.

We consider a single trajectory {yi}ni=1; we assume that the trajectory is regularly

sampled so the physical time difference between yi and yi+1 is taken to be a unit of

time.

The algorithm to extract distances is straightforward, we iterate through the tra-

jectory and check which stations the trajectory has visited. For each station, we

record two times: the arrival time and the departure time. The arrival time is the

first time which we see the trajectory visit the station. The departure time is the last

time we class the trajectory as visiting the station, before visiting another station. If

the trajectory leaves the station but then returns immediately and then leaves again,
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Station Arrival Time Departure Time

0 2019-12-17 06:00:00 2019-12-18 18:00:00

1 2020-01-12 06:00:00 2020-01-14 18:00:00

5 2020-03-19 00:00:00 2020-03-19 12:00:00

Table 4.2.1: Station sequence for drifter id 68055200 and the corresponding arrival

times and the time which the drifter exited the 100km radius. the trajectory can be

seen in Figure 4.2.1. Although not clearly seen, the drifter briefly enters the radius of

Station 5.
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Figure 4.2.1: Trajectory of drifter id 68055200 in the North Atlantic Ocean. The

trajectory starts in the south west, at the orange star in the plot and ends at the red

star. Considered stations plotted as ‘+’. A circle with radius 100km drawn around

each station.

97



we would take the time which it leaves for the second time as the departure time.

When applied to the trajectory shown in Figure 4.2.1 this process results in a table

such as the one shown in Table 4.2.1.

After creating this table, extracting the travel times from station i to station j is

straightforward. We take the arrival time at station j minus the departure time from

station i. This results in a travel time for a subset of the stations. We iterate over

each station i visited in the trajectory, where for each station i we iterate over future

stations j and record the time. As an example, in Table 4.2.1 we would record a time

for 0 to 1, 0 to 5, and 1 to 5.

If the same station is visited by a trajectory on two occasions, this will usually

result in the above algorithm recording two travel times for some of the from-to station

pairs. In these cases, we only record the shortest for any given from-to station pair

for that trajectory.

When we apply this algorithm to all N trajectories for each station pair i, j ∈

{1, . . . , S} we obtain a list of travel times M ij = {M ij
k }
|M ij |
k=1 . We note that for some

station pairs no travel times will be observed. This could be for various reasons such as

stations being situated extremely far apart, the area being poorly sampled by drifters,

or the stations being situated either side of a boundary current. In these cases, we

will set |Mij| = 0, i.e., no travel time observations. We also force |M ii| = 0 as the

travel time from a station to itself should be zero.
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4.2.2 Positive Kernel Density estimation

The next step is to turn each collection of travel times M ij from all the trajectories

into a single estimate of travel time between station i and j. There are many options

which may be taken, the most straightforward of which is to take a summary statistic,

e.g., minimum, mean, median, mode. In the application we expect the travel time

estimates to have a large number of outliers and potentially multiple modes in the

travel time distribution caused by multiple ocean current pathways connecting sta-

tions. Considering these features of the distributions we aim to estimate the location

of the most prominent mode of the distribution of travel times, and use this as our

single travel time estimate between station i and j.

For ease of notation, in this section we consider a univariate dataset x = {xi}ni=1

where xi ∼IID X where X is a random variable with unknown distribution. In

practical terms this dataset x is the travel time list M ij. We aim to form an estimate

of the density function of X using the data x, then extract a mode from this density

estimate. This mode will be taken as the travel time. Extracting the mode is a

trivial task in the univariate setting where the function is known, it can be done via

evaluating the density on a fine grid of points then taking the argument giving the

highest density. The rest of this section focuses on the density estimation aspect of

the problem.

We choose to use kernel density estimation.

Definition 4.2.1. A Kernel density estimate is any estimate for a probability density
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function f defined as follows [Bowman, 1984]:

f̂(x) =
1

n

n∑
i=1

K (x, xi, h) . (4.2.1)

Where K is referred to as a kernel function, and h is referred to as the bandwidth

parameter.

A Kernel Density Estimate (KDE) is a non-parametric estimate of the probability

density function. The estimate heavily depends on the chosen form of the kernel K

and bandwidth parameter h. For this chapter we shall use the Gaussian kernel:

K(x, xi, h) =
1√
2πh

exp

[
(x− xi)2

2h2

]
, x ∈ R. (4.2.2)

The application here applies to strictly positive data, hence the resulting density

estimate should not have mass below zero. The approach we take is as in Wand et al.

[1991]: we transform the data into a space g : (0,∞) → (−∞,∞), then do a typical

kernel density estimate in this transformed space. Then we transform the density

estimate back into the original space. We note that this is not the only possible

approach for this non-negative kernel density estimation problem. Other approaches

exist such as truncating the distribution below zero then re-normalizing the density

to integrate to one [Gasser and Müller, 1979], or reflecting mass below zero back onto

the positive domain [Schuster, 1985].

Here we provide a derivation of the formula given by Wand et al. [1991] to get

a kernel density estimate in the original space. We start with a density function for

a transformed random variable Y = g(X) denoted as fY (y). Denote the cumulative

density function

FY (y) =

∫ y

−∞
fY (y)dy.
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Now for any monotonically increasing function g we have that

P (X ≤ x) = P (Y ≤ g(x))

FX(x) = FY (g(x)),

then if we differentiate both sides w.r.t. x we obtain the change of variable formula:

d

dx
FX(x) =

d

dx
FY (g(x))

fX(x) = g′(x)fY (g(x)). (4.2.3)

Now consider a kernel density estimate f̂Y (y) as the density estimate from the

transformed data yi = g(xi). We can apply Equation (4.2.3) to back transform the

data obtaining the result from Wand et al. [1991]:

f̂X(x) =
1

n

n∑
i=1

g′(x)K(g(x), g(xi), h). (4.2.4)

We use the Gaussian kernel with the log transform g(x) = log(x), with derivative

g′(x) = 1
x
. We therefore obtain the component within the sum using:

g′(x)K(g(x), g(xi), h) =
1√

2πxh
exp

[
(log(x)− log(xi))

2

2h2

]
. (4.2.5)

We note that Equation (4.2.5) is similar in form to the log-Gaussian distribution.

This combination is what we use to obtain strictly positive kernel density estimates.

Bandwidth Estimation

Kernel density estimates are largely dependent on the bandwidth parameter h from

Equation (4.2.1). A naive option would be to select the bandwidth in the log space;

hence carrying out the bandwidth selection to select the optimal f̂Y (y), then use that
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estimated bandwidth parameter to infer the density f̂X(x). Scott’s rule [Scott, 1992]

is commonly used and selects a bandwidth according to:

h = (4/3)1/5σn−1/5,

where σ is the sample standard deviation of the data we are fitting a KDE to. This

rule is the default option for many software packages. However, Scott’s rule is derived

by assuming the underlying distribution is Gaussian. Moreover, such an approach

would optimize the fit in the log-space, not the original constrained space.

We have no prior expectation for what distribution the data comes from in the

drifter application. The family of distributions is likely a mixture, with the number

of components being related to the number of prominent pathways in the ocean.

Deriving rules of thumb in the same way as Scott’s rule would require us to make

an assumption on the underlying distribution. Hence, we choose a more data driven

approach to bandwidth selection in place of a rule of thumb.

We choose to select the bandwidth based on cross validation. One option is to

optimize the held-out log-likelihood using leave one out cross validation. The left out

log-likelihood function is defined as:

n∑
j=1

log f̂h,−j(xj), (4.2.6)

where f̂h,−j is the kernel density estimate in the original data space excluding the

kernel centered on xj using bandwidth h. The above estimate is inconsistent [Bowman,

1984], and favours very large bandwidths when outliers are present. Hence, we choose

to use an alternative discussed in Bowman [1984], Rudemo [1982]; this approach is

often referred to as unbiased cross validation or least-squares cross validation in KDE
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software packages. The estimate is:

l∗LOO(h) =

∫ ∞
−∞

f̂ 2
h(x)dx− 2

n

n∑
j=1

f̂h,−j(xj), (4.2.7)

where f̂h is the kernel density estimate using all of the data and bandwidth h. We

minimize Equation (4.2.7) to select the bandwidth.

Is the strictly positive adaptation necessary?

In this application, we are using the kernel density estimation for mode extraction.

So now we investigate the ability of the method to extract modes if we model the

distribution in an unconstrained space, in comparison to modelling the distribution

in the log transformed space.

As an extreme example, we consider a mixture of two gamma distributions, the

density for which is below:

fX(x) = 0.4
1

Γ(4.5)0.54.5
x3.5 exp

(−x
0.5

)
+ 0.6

1

Γ(15)
x14 exp(−x). (4.2.8)

The density of this distribution is shown in Figure 4.2.2a). We simulate datasets of

size 10, 30 and 100 from this distribution. This choice of sample size is representative

of the samples which we shall encounter in Section 4.5.

We then estimate the KDE using a traditional estimate with a Gaussian Kernel

labelled as “kde” in the plot, then “log kde” uses the transformed KDE. For each

dataset, we select the bandwidth to maximize the cross validation function l∗LOO from

Equation (4.2.7). We plot the resulting density estimates in Figure 4.2.2. We can

see that the Gaussian KDE places mass below zero resulting in the first mode being

underestimated. In all three cases for the Gaussian KDE shown the second mode
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would be selected as the most prominent one. Whereas the strictly positive KDE

correctly puts more mass on the first mode in every case shown. A similar observation

was made by Charpentier and Flachaire [2015] on UK income distributions, where

the constrained KDE is less sensitive to bandwidth choice when picking modes of

distributions in comparison to the unconstrained KDE.

To make this argument more robust, we simulate 100 datasets from the distribu-

tion for each candidate n. We fit a kernel density estimate selecting the bandwidth

according to l∗LOO for each dataset. First, in Figure 4.2.3, we plot point-wise 90%

intervals and the median.

For the same kernel density estimates we plot the modes in Figure 4.2.4, here the

contrast is very clear; the log Gaussian KDE almost always gets closer to the mode

around 5. Whereas the unconstrained KDE selects the less prominent mode around

15 in almost half of the simulations. In addition, the log Gaussian KDE selects the

smaller mode less often as n increases. The unconstrained KDE does not noticeably

get better between n = 30 and n = 100.

In addition, as shown in Figures 4.2.3 a) and b) and Figure 4.2.2 b) and c), the

log Gaussian KDE often places too much mass in the upper tail, resulting in an

under-estimate of the second mode. Suggesting that if the second mode was more

prominent log Gaussian KDE may miss that and pick the first mode. In general

for the application at hand the underestimation of the mode at the higher value is

less of an issue as typically practitioners apply minimum travel times for the reasons

explained in Jönsson and Watson [2016].

As a practical note, there is a chance that the mode of this kernel density estimate
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Figure 4.2.2: Plots of the kernel density estimation and target density. a) shows the

probability density of each component from Equation (4.2.8). The density labelled

mixture in a) is the one we wish to estimate. b), c) and d) show kernel density

estimates where we estimate the bandwidth with least squares cross validation. “log

kde” uses the kernel specified in Equation (4.2.5), “kde” uses the Gaussian kernel.
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Figure 4.2.3: This plot of pointwise 90% intervals of kernel density estimates over

100 simulations of sample size n from the mixture distribution (true density shown

in black). 95% and 5% quantiles plotted as blue dotted lines, 50% quantile plotted

as the solid blue line. The top row uses the kernel from Equation (4.2.5), the bottom

row is using the Gaussian kernel i.e., it is not constrained to only have mass above

zero.
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Figure 4.2.4: Histogram of the mode for the same 100 kernel density estimates used

in Figure 4.2.3. We extract the mode of the KDE for each simulation, then plot the

count in the histogram. True density plotted for reference.
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falls lower than the minimum of the data. In these cases, the mode will be taken as

the minimum of the data. We only carry out the above procedure if n > 5, in all

other cases we record the travel time as missing. The reasoning for this is because the

estimates seen in the application with only a very small number of samples (n ≤ 5)

are often a result of very indirect pathways. We found that the method we will shortly

introduce to estimate missing travel times (via matrix completion) is better than the

mode estimates in these cases.

4.2.3 Creating a symmetric travel times matrix

After doing the process mentioned in Section 4.2.1, many of the station pairs had

very few observations. 11 out of 42 directed pairs had less than 5 observations.

It’s likely that the points with few observations will result in unreliable estimates of

travel time. So we decided to work with symmetric matrices where the travel time

will be interpreted as the travel time in the most likely direction. Working with

non-symmetric matrices is an area of future research, potentially using methods from

Chapter 20 of Borg [2005]. We also considered just concatenating the travel times from

i to j and j to i then estimating a modal based on this new data. However, assuming

the travel times for the reverse of the journey come from the same distribution as the

travel time for the journey is not realistic in most cases.

We briefly outline the steps on how the symmetric travel time matrix D is formed.

First we run the algorithm described in Section 4.2.1, producing the observed travel

times between each i, j pair for M ij. We then take each M ij as the vector x as

described in Section 4.2.2 choose the bandwidth to minimize l∗LOO from Equation
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(4.2.7) and form a density estimate for the travel times fX(x). We then evaluate

fX(x) on a regular grid of 1000 points starting from the minimum of the data and up

to the maximum of the data. We store the value of x ∈ R which maximizes f̂X(x)

as entry Tij. In the case that n = |M ij| ≤ 5 the mode is not estimated, the entry is

treated as missing.

For the completion method which will be introduced in Section 4.3 we require a

symmetric matrix, we denote the symmetric matrix as D with entries δij to follow

notation from Borg [2005]. We form a symmetric matrix according to the following

rules:

1. If |Mij| > |Mji| set δij = δji = Tij

2. If |Mij| < |Mji| set δij = δji = Tji.

3. If |Mij| = |Mji| δij = δji = minimum(Tji, Tij).

4. If both Tij and Tji are missing then δij and δji are treated as missing.

The rules are such that the more popular direction is chosen (more trajectories are

seen), and if there is a tie then the lower of the two times is chosen.

4.3 Distance Matrix Completion

Using the method described in Section 4.2, we obtain a symmetric travel time matrix

where we may have observations missing. In this section first we introduce classical

multidimensional scaling (MDS). Then we introduce a broader more flexible class of
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MDS known as metric MDS which can handle missing data. We then introduce an ex-

tension of metric MDS which introduces a monotonic transform to the dissimilarities.

This monotonic transformation is what we use to correct the additive bias introduced

by the radius r.

We use the following notation: let D be a symmetric S × S dissimilarity matrix,

with entries δij in the ith row and the jth column. To match the notation in Borg

[2005] we denote the multidimensional embedding as X which is an S × p matrix

where p is the dimension of the embedding and S is the number of objects. We use xi

to refer to the ith row of X, and we also refer to xi as the embedding point for object

i.

In Sections 4.3.1 and 4.3.2 we give a background on MDS and the optimisation

framework used. We then introduce a monotonic transformation known as I-Splines

in Section 4.3.3. Finally, in Section 4.3.4 we introduce Procrustes analysis which is

used to measure the similarity of two MDS embeddings.

4.3.1 Multidimensional Scaling

Multidimensional scaling (MDS) is a model generally used for visualization purposes.

MDS takes a set of dissimilarities or similarities; then aims to provide an embedding

for each object, where similar objects are close within this embedding. Mathematically

we aim to find a set of points X = {xi}Si=1 where xi ∈ Rp. We abuse notation and

use xi to refer to a row of the matrix X which is an S × p matrix. The points xi

are referred to as the MDS embedding points and in a good embedding the pairwise

distance between point xi and xj closely resembles an observed distance δij. We
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measure distance with the L2 norm, for yi ∈ Rp:

||y|| =
(

p∑
i=1

y2i

)1/2

.

The dimension of xi, p, is what is known as the embedding dimension. Typically,

we want p to be as low as possible to keep interpretability and stop the model from

being too flexible. However, we want it to be high enough to accurately represent the

data. Generally, being able to plot the MDS solution is desired which restricts us to

p = {1, 2, 3}. In this chapter we only consider p = 2 however we keep the definition

general.

In our application the S objects are stations in the ocean and our dissimilarities

are the travel times outlined in Section 4.4. We have missing travel times which we

aim to fill in using MDS. We now introduce three topics in MDS, the first being

classical MDS as it is often what is thought of as the default MDS method. We point

out why classical MDS does not work for our problem, then we introduce Metric and

Transformed MDS which are more suited to the missing data problem.

Classic Multidimensional Scaling

The original and one of the most numerically efficient MDS algorithms is known as

classical MDS as proposed in Torgerson [1952]. Suppose D(2) is the S × S squared

distance matrix with entries d2ij where dij = ||xi − xj||. In matrix notation D(2) can

be written as:

D(2) = α1> + 1α> − 2XX>, (4.3.1)
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where α is an S × 1 vector with entries ||xi||2 and 1 is an S × 1 vector of ones. We

now assume that X is unknown and we wish to re-obtain X directly from D(2) where

we would use the observed dissimilarities as D(2). The following process is classical

MDS.

For the derivation of classical MDS we need to introduce the centering matrix:

J = IS −
1

S
11>,

where IS is the S × S identity matrix. Suppose we have an arbitrary S × k, k ∈ N

matrix Y. The matrix Ỹ = JY has entries:

Ỹij = Yij −
1

S

S∑
s=1

Ysj.

So, each element of Ỹ is the original element minus the sample mean of the data in

that column. The centering matrix has the properties that J1 = 0, 1>J = 0 and

J> = J

In order to solve for X we pre and post-multiply both sides of Equation (4.3.1) by

the centering matrix resulting in:

JD(2)J = −2JXX>J. (4.3.2)

We assume that X has each column mean equal to zero. So we have that JX = X,

thus allowing simplification of Equation (4.3.2):

XX> = −1

2
JD(2)J. (4.3.3)

This assumption that X has column means equal to zero is not a restriction as we

will show in Section 4.3.4. This can be undone after the process through a rigid shift.
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We can then obtain X through a matrix square root, e.g., an eigendecomposition.

Set

−1

2
JD(2)J = QΛQ>,

where Q is the matrix with each column being the eigenvectors of the matrix on the

LHS, and Λ is a diagonal matrix with the eigenvalues on the diagonal. We have that

the eigenvalues on the diagonal are decreasing (the largest eigenvalue is in Λ1,1). As

we want a p dimensional MDS embedding we set the matrix Λ+ as a diagonal matrix

p × p with the square root of the first p positive eigenvalues and Q+ as the S × p

matrix containing the corresponding eigenvectors as columns. Then the coordinate

matrix X = Q+Λ+ is the classical MDS embedding.

To assume that there is this true embedding which generated D(2) in Equation

(4.3.1) is seldom realistic. If it is realistic then Λ will only contain p positive eigenval-

ues. In the cases where it is not realistic Λ will likely have more positive eigenvalues.

When only taking the first p positive eigenvalues we minimize the objective function

[Wang, 2012]:
S∑
i=1

S∑
j=i+1

(
d2ij − ||xi − xj||2

)
, (4.3.4)

with the constraint that the embedding is in Rp.

We do not use classical MDS as it is not flexible enough, namely: (1) We need

to make considerable adaptations to deal with missing data. Often this is done by

first estimating the missing distances through a naive method such as a shortest path

algorithm, then computing the embedding coordinates. (2) We wish to model the

additive effect introduced by the radius, making such an adaptation is more difficult
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in this framework. We instead choose a more general MDS approach metric MDS.

Metric MDS

A more flexible approach is to consider MDS as a optimisation problem [Torgerson,

1952]. The aim is to finding a configuration X that minimizes an objective function we

specify. We denote the pairwise distances between the embedding as dij = ||xi−xj||.

Commonly with MDS the goal is to minimize stress as in Kruskal [1964]1:

σ(X) =
∑
i<j

wij(dij − δij)2, (4.3.5)

where wij is used as a weighting term, typically always set to 1 and
∑

i<j is shorthand

for
∑S

i=1

∑S
j=i+1. We find the optimal embedding through minimization of the stress

X̂ = arg min
X

σ(X).

We optimize the above with a gradient descent approach, which is outlined in Section

4.3.2. We note that the objective in Equation 4.3.5 is different in form to the function

which classical MDS minimizes shown in Equation 4.3.2.

A common usage of the weights wij is to specify them to deal with missing data

[Borg, 2005]. We set the weights as follows to deal with missing data:

wij =


0 if δij is missing

1 Otherwise

(4.3.6)

which will remove the dependence of Equation (4.3.5) on the missing data. After

fitting MDS we can then estimate the missing δij using distances inferred from the

embedding as the distances between point i and j.

1Originally referred to raw stess in Kruskal [1964], we just define this metric as stress for brevity.
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Transformed MDS

For the application we form the estimate of the distance matrix with the method

described in Section 4.5. We only measure the travel times after leaving a radius r

then entering a radius r of the two stations. This radius introduces a negative bias

into the travel times. Here we propose the use of transforming the dissimilarities to

correct the bias.

A solution to this is to introduce a monotonic function m which has a strictly

positive intercept m(0) which estimates the bias. We apply the transformation to

the δij and then fit MDS to the transformed quantity. For example, we could use a

linear transformation m(x) = b0 + b1x constrained such that b0 > 0, b1 > 0. We set

d̂ij = m(δij) then we alter the stress function to use these transformed d̂ij in place of

the δij. Equation (4.3.5) becomes

σ(X,b) =
∑
i<j

wij(dij − d̂ij)2, (4.3.7)

where b = {b0, b1, ...} contains the parameters related to the monotonic function m.

Now the optimization problem has an extra variable

arg min
X,b

σ(X,b).

The algorithm we use to find the optimal X and b is described in Section 4.3.2.

In Section 4.4 and Section 4.5, we consider various forms of monotonic function

m(x). We refer to the types of MDS with respect to the form of the function m(x).

The titles of commonly used MDS transforms are given in Table 4.3.1. Absolute, is

the standard MDS model with no transformation. The spline transformation basis

functions Ik(x) used for Spline MDS will be introduced in Section 4.3.3.
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Absolute m(x) = x

Ratio m(x) = b0x

Interval m(x) = b0 + b1x

Spline m(x) = b0 +
∑K

k=1 bkIk(x)

Table 4.3.1: Titles for metric MDS configurations based on the monotonic transform

used as in Borg [2005]. Ik is a monotonic basis function. b0, {bk} are parameters to be

estimated or specified in the MDS procedure. Typically, we constrain b0 ≥ 0, bk ≥ 0

to constrain m(x) to be a monotonically increasing function.

Travel Time Estimate If we had two stations with the circles of radius r we use

to obtain travel times touching, we would likely obtain a travel time very close to 0.

Therefore m(0) would solely be an estimate of how long it takes an object to travel

over the two radii r. ||xi − xj|| is an estimate of d̂ij = m(δij) as the model is fit to

make these quantities match. Hence, we take the inverse m−1(||xi − xj||) to estimate

δij. Applying this reasoning the MDS estimate of the unbiased travel time is the sum

of the estimate of δij and the bias introduced by the radius:

m−1(||xi − xj||) +m(0). (4.3.8)

This is the quantity which we recommend to be used from the model when supplying

an estimate of travel time between locations i and j. This formula also highlights the

relationship between m and the radius r. As we increase r in the formation of the

dataset the model should learn that m(0) is larger.
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4.3.2 Optimization of Metric MDS

Once we have specified an MDS model the next challenge is to find the parameters

which minimize the stress function. We denote the parameters for the monotonic

function as b. When referring to the parameters for the MDS configuration we use the

notation Xf as a vector of length Sp, the subscript f denotes that we have flattened the

coordinates into a vector, which can be trivially reversed. As a shorthand notation

we refer to the stress resulting from the unflattened configuration as σ(Xf ,b). As

previously mentioned above the goal is to solve the optimization problem

X̂, b̂ = arg min
X,b

σ(X,b),

where stress is defined as in Equation (4.3.7).

We obtain the gradients
∂

∂Xf

σ(Xf ,b) and
∂

∂b
σ(Xf ,b) using auto-differentiation

implemented in the Python package jax [Bradbury et al., 2018]. The use of auto-

differentiation makes future extensions to the model easily to implement (e.g. chang-

ing the equation for stress σ or monotonic transform m).

Trivial Solution One of the challenges in optimizing transformed MDS with flexible

monotonic transforms is that we have a trivial solution: picking a set of parameters

b such that m(δij) = 0 ∀i, j and setting xi = xj will result in σ(X,b) = 0.

This trivial undesired solution is typically avoided by standardizing the trans-

formed distances at each step of the optimization algorithm such that the following

is satisfied: ∑
i<j

I(wij > 0)d̂2ij = s,
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for some s which is fixed before the optimization. The optimization algorithm outlined

in [Borg, 2005, p. 204] set this value to be:

∑
i<j

I(wij > 0)d̂2ij =
S(S − 1)

2
,

causing the mean transformed dissimilarity to be 1 if there is no missing data. Here

we set it such that the mean squared transformed dissimilarity matches the original

dissimilarities δij. That is we set

∑
i<j

I(wij > 0)d̂2ij =
∑
i<j

I(wij > 0)δ2ij. (4.3.9)

This choice of s is such that in absolute MDS (m(x) = x, d̂ij = δij) the standardization

has no effect.

In addition to the above change in standardization from the framework described

in Borg [2005], we also decided to change the quantity which we normalize (the l.h.s.

of Equation (4.3.9)). We exclude the intercept of the monotonic transform (m(0))

from the standardisation. We standardize d̂ij such that

∑
i<j

I(wij > 0)(d̂2ij −m(0)) =
∑
i<j

I(wij > 0)δ2ij. (4.3.10)

The reasoning for this is because we want

m−1(d̂ij)−m(0)

to be an estimate of δij, and we want m(0) to be an estimate of the bias which is not

contained within δij. By excluding m(0) from the standardization we attempt to keep

the m(0) in the same units at δij. We also retain that the standardization avoids the

trivial solution m(x) = 0 and it has no effect on Absolute MDS as m(0) = 0 in that

case.
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From a practical point of view, using a model which avoids the trivial solu-

tion is preferable. For example, using m(x) = b + x, b > 0 rather than m(x) =

b0 + b1x b0, b1 > 0, the former would be preferable as we are not required to rescale

the transformed dissimilarities. Proposing such an adaptation for more flexible trans-

formations like the one that will be introduced in Section 4.3.3 is difficult. Hence, the

optimization framework here is designed to work with a monotonic transformation

which can cause the trivial solution. By using the same optimization framework for

all models we keep the comparisons fair.

We follow a similar procedure to the one described by [Borg, 2005, p. 204]. How-

ever, instead of using a method known as majorization [de Leeuw, 2005] to optimise

X we opt to use a gradient based algorithm BFGS. We acknowledge that using ma-

jorization in place of BFGS would likely converge faster. We choose to use BFGS

because, as with auto-differentiation, no model specific derivations are required.

The optimization is carried out as follows:

1. Initiate the configuration X[0] either randomly or via a simple MDS procedure.

For example

X[0] = arg min
X

∑
i<j

(
δij − ||xi − xj||22

)
.

Initiate k = 0.

2. Optimize parameters for the transform m(x). Set

b[k+1] = arg min
b

σ
(
X[k],b

)
.

3. Predict transformed dissimilarities. Using the function m(x) and the fitted
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b[k+1]. Temporarily store

d̂∗ij = m (δij)

for all i, j. Rescale to obtain d̂ij:

d̂ij =
s

sd̂
(d̂∗ij −m(0)) +m(0), (4.3.11)

where

sd̂ =
∑
i<j

I(wij > 0)(d̂∗ij −m(0))2 and s =
∑
i<j

I(wij > 0)δ2ij.

Use these standardised d̂ij in computations for σ.

4. Update X[k+1].

(a) First compute the gradient g[k] =
∂

∂Xf

σ(X
[k]
f ,b

[k+1]) using auto differenti-

ation.

(b) Update the BFGS hessian estimate H based on X[k],X[k−1],g[k]g[k−1].

(c) Solve for g′

H(g′) = g.

(d) Line Search. Select ρ:

ρ = arg min
ρ

σ(X[k] + ρg′,b[k+1]), (4.3.12)

We approximate this optimization as a grid search over ρ ∈ [0.001, 0.01, 0.1, 1, 10].

(e) Set X[k+1] = X[k] + ρg′.

5. Check convergence conditions. If:

|σ(X[k+1],b[k+1])− σ(X[k],b[k])| < ε,
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stop the algorithm, otherwise set k = k + 1 return to step 2.

Due to the presence of local minima, we fit each MDS model a number of times

using different initial configurations. For one of the initial configurations we use

Absolute MDS where the initial solution is chosen at random. The points in the

remaining initial configurations are generated independently according to:

xi,j ∼IID Uniform(0, u) for i ∈ {1, ...S}, j ∈ 1, ..., p.

For each initial configuration, we fit the MDS model then we only keep the model

which results in the lowest stress evaluation. The results are not sensitive to u as long

as the resulting pairwise distances of the initialization are roughly on same order of

magnitude as the average dissimilarity:(∑
i<j

I(wij > 0)δij

)
/
∑
i<j

I(wij > 0).

It is not discussed further in this work, but this step of starting from various points

is essential, as MDS is known to have many local minima [Borg, 2005].

4.3.3 Monotonic Regression

One of the transforms we consider for MDS is a semi-parametric estimate for m

in MDS, where the main requirement is that the function is monotonic. The goal

of monotonic regression is to estimate a strictly increasing function on an interval

[L,U ]. We use monotonic spline regression to achieve this. The method takes a

basis expansion of x ∈ R such that the resulting regression function is f(x) = b0 +∑K
k=1 bkIk(x), where each component of the sum bkIk(x) is a monotonically increasing
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function. To achieve this monotonicity constraint, we construct basis functions Ik(x)

which are monotonically increasing by definition, and constrain bk > 0 ∀k. Here we

give a brief summary of how these basis functions are defined by Ramsay [1982].

The idea behind how we form the I-spline basis expansion is we take a non-negative

basis function of degree d, then integrate that basis function. The integration of

this nonnegative function results in a degree d + 1 function which is monotonically

increasing. Here we use B-splines as the nonnegative function.

Prior to setting up a B-spline of degree d, we must specify a knot vector t. This

requires defining k interior knot points. Often these knots are either equally spaced

between L and U , or placed at equally spaced quantiles of the data. In this work, we

always specify the internal knots at equally spaced quantiles. We set the knot vector

to be

t = {L, . . . , L︸ ︷︷ ︸
length d

, t0, . . . , tk, U, . . . , U︸ ︷︷ ︸
length d

}.

Let Bi,d denote the B-spline basis function of degree d. B-spline basis functions of

degree 0, are defined in the following way

Bi,0 =


1, if ti ≤ x < ti+1

0, otherwise

 .

Bi,0 results in a piecewise 0 degree polynomial, x taking the value 1 between one pair

of knots. Higher order B-spline basis functions d are defined recursively as follows:

Bi,d(x) =
x− ti
ti+d − ti

Bi,d−1(x) +
ti+d+1 − x
ti+d+1 − ti+1

Bi+1,d−1(x).

Under this definition, B-splines are scaled to satisfy
∑
Bi,d(x) = 1. For monotonic

regression, a preferable scaling would be to have a basis function Mi,d such that
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∫
Mi,d(x)dx = 1, ∀i. The most common variant of such a spline is known as the M -

splines which are a set of scaled B-splines. It can be shown that
∫
Bi,d(x)dx = d

ti+d−ti ,

leading to a transformation to M-splines:

Mi,d(x) =
ti+d − ti

d
Bi,d(x).

To form the degree d I-spline we simply integrate the M -spline of degree d − 1

from L to the point being evaluated at x.

Ii,d(x) =

∫ x

L

Mi,d−1(x). (4.3.13)

Ramsay [1988] gives a convenient formula to compute this using a weighted sum of

M splines of degree d.

The reasoning behind choosing to integrate M -splines over B-splines is the in-

terpretability of coefficients. The value of each I-spline basis function will have a

maximum of 1 rather than the fairly arbitrary value integrating a B-spline would

result in. An example of the M -, B- and I-spline basis functions are shown in Figure

4.3.1.

This is not the only approach in monotonic regression. Other potential approaches

for monotonic regression we could consider are:

• Consider the function f(x) =
∑K

j=1 βjBj(x), where Bj(x) are B-splines, Wood

[2017] shows that if βj form a non-decreasing sequence, then f ′(x) ≥ 0. Thus,

setting βj = γ1 +
∑j

i=2 exp(γi) results in f ′(x) > 0, with γi unconstrained. We

expect the fitting time and the results of this would be similar to the I-spline

approach.
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• Convex C splines which integrate I-splines to form basis functions that are both

increasing and convex, resulting in a monotonic and convex function.

• The approach described in Ramsay [1998]. This involves modelling an uncon-

strained function w, say with B-splines or Gaussian process regression. Call Dm

the operation of taking the derivative of order m for m > 0 and the integral

Dmf(x) =
∫ x
L
f(s)ds for m = −1. The function

f(x) = β0 + β1D
−1{exp(D−1w(x))}

is shown to be a monotonic function under certain conditions on the function

w. These conditions are not that restricting and are easy to enforce.

0.0 0.2 0.4 0.6 0.8 1.0

0

1

B-spline degree 2

0.0 0.2 0.4 0.6 0.8 1.0

0

10

M-spline degree 2

0.0 0.2 0.4 0.6 0.8 1.0

0

1

I-spline degree 3

Figure 4.3.1: Example of the three types of basis functions explained in Section 4.3.3.

Internal knots displayed as black lines defined at 0.3, 0.5, 0.6.
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4.3.4 Procrustes Analysis

One of the core steps in MDS is when we calculate the distance between embedding

points xi ∈ Rp ∀i as dij = ||xi − xj||. One of the issues with MDS is that there are

infinitely many equivalent solutions as the inferred distances will remain the same

under rigid shifts, rotations and reflections. Let c ∈ Rp be an arbitrary constant

vector. Let A ∈ Rp×p be a p × p matrix with the property that ||A|| = 1. An

example of such a matrix would be a rotation or reflection matrix. If we consider

yi = Axi + c ∀i we get that

||yi − yj|| = ||xi − xj||.

Thus, there are infinitely many equivalent MDS embeddings, making comparisons

between two solutions nontrivial.

We address this issue using Procrustes analysis. Suppose we have two solutions or

coordinates for the objects X with rows {xi}Si=1 and Y with rows {yi}Si=1. We aim to

find a rigid shift vector c, rotation and reflection matrix A ∈ Rp×p with norm 1 and

scaling scalar ρ ∈ R such that

d(X,Y) =
n∑
i=1

||ρAxi + c− yi|| (4.3.14)

is minimized. Note that the scaling scalar does change the distances inferred, however

this is useful as it allows us to compare two embeddings with difference scales.

Now we state the results which we use and are in Chapter 5.2 Cox [2001]. To

obtain the rotation and reflection matrix, we take the singular value decomposition:

YTX = UΛV.
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Setting A = VUT gives the minimizer of d(X,Y). The optimal scaling is

ρ = tr(XAYT )/tr(XXT )

and the rigid shift b = ȳ − ρAT x̄, where x̄ = 1
n

∑n
i=1 xi and similarly ȳ = 1

n

∑n
i=1 yi.

In the following sections, we use these optimal values to report the Procrustes

distance d(X,Y). However, we also use the rotated configurations as a plotting tool.

4.4 Simulation

The aim of this section is to generate a test bed for the algorithm where we know the

ground truth. First, we introduce the simulation setup that we will be using. Second,

we analyse the travel times from this simulation to empirically justify why transformed

MDS is necessary in Section 4.4.1. We show sample MDS model fits on this simulation

in Section 4.4.2. Finally, we investigate the sensitivity to these simulation parameters

in Section 4.4.3 by changing the parameters and refitting MDS. Finally, we recap on

our findings in Section 4.4.4.

We create a map and place the stations. We specify the size of a grid having the

x−axis ranging between xmin and xmax, and y−axis ranging from ymin to ymax. We

pick a sensible radius, r, we then place nstations stations over the grid by randomly

sampling n points si ∈ R2, at least 3r away from each other using Euclidean distance.

This placement is carried out by randomly sampling a point, then checking if it

satisfies the 3r constraint. If the constraint is satisfied then it is placed, otherwise a

new point is generated until we have nstations points.

To simulate the trajectories, we generate velocities from an Autoregressive (AR)
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order 1 process. This is motivated by the common assumption that the background ve-

locities of drifter motions approximately follow an Ornstein-Uhlenbeck process [Sykul-

ski et al., 2016], after ignoring oscillatory effects. The discrete time version of this

is the AR(1) process. We simulate the trajectories at integer timesteps using the

following relationship:

yt = yt−1 + vt t ∈ {i ∈ N : 1 ≤ i ≤ Tmax
dt
} (4.4.1)

where yt, vt ∈ R2 and vt is simulated as a bivariate AR process: vt = φvt−1 +

√
dtεt, where εt ∼ N(0, I2), φ ∈ (−1, 1), such that we have assumed independence

and isotropy between the lat-lon components. The term dt specifies the true time

increment between observations and Tmax is the time-length of the simulation. To

initialise we sample y1 from a 2d uniform distribution over the grid of interest, and

set v1 = [0, 0]. We generate ntraj trajectories as above and use this as the dataset to

apply the algorithm to. All travel time are reported in units of the number of discrete

time steps t ∈ {0, 1, . . . , Tmax

dt
} for this section.

As a summary of the setup explained above, we provide a brief summary of the

variables which define the simulation in Table 4.4.1. Throughout the section, we

fix xmin, ymin, xmax, ymax to −5,−5, 5, 5 respectively. Initially, we set the simulation

parameters ntraj = 10000, φ = 0.3, Tmax = 10, nstations = 7, r = 1, dt = 0.1. These

parameters are chosen as they result in a dense travel time matrix. We note that this

configuration does not result in a dataset similar to the application, as instead we

have deliberately simulated to observe more direct travel times between stations, to

check the method scales as it should. Specifically, each station pair has an average
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Figure 4.4.1: Station locations and three sample trajectories for the simulation de-

scribed in Section 4.4. A radius of 1 is drawn around each station to show when the

trajectory visits that station.

of 220.0 observations in the resulting simulation, whereas in the real data application

the average count is 21.2.

4.4.1 Why Transformed MDS

Here we make the case of why transformed MDS is necessary. The first and easier

point to motivate transformed MDS is that the intercept term is necessary. When

calculating the travel times from station i to station j we observe when the object

leaves a radius of r of station i then enters a radius r of station j. We argue that

by having an intercept in the m(x) function we allow the algorithm to model this

directly.

The less obvious point to motivate is why we wish to consider nonlinear trans-

forms. As the velocities are stationary, the optimal 2d embedding would be to recreate
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ntraj The number of trajectories.

φ The AR Coefficient.

Tmax The maximum time hence selecting how long the trajectories are.

dt The time increment between observations.

nstations The number of stations.

r The radius around the stations.

xmin, ymin, xmax, ymax The edges of the domain we are interested in.

Table 4.4.1: Decision variables for the simulation.

the original station locations from the pairwise travel times. We show the relationship

of pairwise station distances resulting from the simulation and the raw travel times

in Figure 4.4.2. It appears that a linear regression where a square root transform is

applied to the estimated travel times has the best fit. However, we have no a priori

reasoning to use this transformation. This is why we consider I-spline regression,

as the regression may automatically learn such a transformation. We can then use

the I-spline transformation to justify the choice of parametric transformation (e.g.,

square root) if the two functions look similar.

4.4.2 Dense Matrix Results

Here we use the dense travel time matrix which has no missing observations. We set

wij = 1 ∀i, j i 6= j as there is no missing data. We consider four different MDS models.

When fitting interval MDS we consider both a linear transform m(x) = b0 +b1x and a

square-root transform m(x) = b0 + b1
√
x. For ease of reference, we shorten the names
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Figure 4.4.2: The estimated travel times from mode extraction on the x-axis and the

pairwise euclidean distance between stations on the y-axis. The trajectory and station

simulation setup is described in Section 4.4.

of each method list to the following four:

• Spline: I-Spline MDS

• Interval: Interval MDS (Linear transform)

• S-Interval: Interval MDS (Square root transform)

• Absolute: Absolute MDS m(x) = x

When fitting Spline MDS, a decision needs to be made about the number of internal

knots and the degree of the spline. We fix the degree of the spline to 4, then focus

on choosing the number of knots. To decide on the number of knots, we fitted an

MDS model with 0 to 8 internal knots, then selected the number of internal knots

which resulted in the MDS model having the lowest Procrustes distance to the station

locations. This resulted in 1 internal knot placed at the median.
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We fit an MDS model for each model type. We start the optimization from 20

different initializations, setting u = 20 as the maximum of the uniform distribution.

We show the MDS solution for each of these configurations in Figure 4.4.3. Generally,

every model does similarly. If we compare the Procrustes distance to the original

station locations, S-Interval does the best as shown in Table 4.4.2. Absolute has the

worst fit, which suggests that modelling the bias improves the fit as expected.

The transformation plots shown in the bottom plot of Figure 4.4.3 may appear

very different at first glance, but the main difference is the intercepts, as they are

excluded from the standardization. This scaling makes the comparison of S-Interval

and Spline visually difficult. When we scale the monotonic functions differently (not

shown), the transforms from Spline MDS and S-Interval MDS look very similar within

the range of the data.

Model Name Average Proscrustes m(0)

S-Interval 0.21 3.28

Spline 0.22 19.12

Interval 0.25 24.03

Absolute 0.33 0

Table 4.4.2: Average Proscrustes distance from each model for the fits shown in Figure

4.4.3. We also show the estimates of m(0)

We note that the value of m(0) for Spline MDS and Interval MDS is higher than

S-Interval. The estimate is high for Interval MDS because the linear model is not as

good of a fit, and we can tell this because the ability for Interval MDS to recreate
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the station locations is slightly worse than S-Interval and Spline MDS in Table 4.4.2.

The high estimate from Spline MDS is due to its lack of extrapolation ability. The

I-Spline component of the model predicts 0 below the minimum of the δij data, so

below the minimum of the data we predict a constant. If we instead extrapolated in

a more natural way such as to preserve the gradient of the monotonic function at the

minimum of the data, we would get a more sensible estimate. We carried out a naive

linear extrapolation to the Spline MDS function which resulted in an estimate of m(0)

as 10.07, which is still higher than the estimate from the S-Interval MDS model but

getting closer.

4.4.3 Sensitivity to parameters

We now run a sensitivity analysis to ntraj, r, nstations and φ using the four MDS

models. dt = 0.1 and Tmax = 10 are left fixed. We test an equally spaced grid of 10

points for each parameter, the minima and maxima of this grid are listed in Table

4.4.3. To measure the sensitivity, we fix the other three simulation parameters at the

default values which are shown in the Table 4.4.3, then vary the parameter of interest.

For each simulation parameter set, we obtain 5 realisations.We randomly generate the

station locations each time.

The default starting point shown in Table 4.4.3 was chosen such that the parame-

ters result in roughly 15% sparsity in the symmetric matrix. 15% sparsity is close to

the data sparsity we have in the applied example. Through some trial and error, we

found the default combination shown in Table 4.4.3 achieves around 15% sparsity on

average.
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We record the average Procrustes distance between the stations and the inferred

configuration to assess the goodness of fit of the configurations. Let x̃i denote the

optimally transformed point to match the set of station locations si, the metric we

measure is the average Procrustes distance defined as follows:

P =
1

S

S∑
i=1

||x̃i − si||.

P = 0 implies the embedding matches the station locations exactly, where we normal-

ize by S to allow us to compare the metric when varying the number of stations. For

the remainder of this section, we will refer to this metric as the score of an embedding.

As previously mentioned, the MDS optimization procedure typically has many

local minima. As an attempt to avoid these local minima, we fit each MDS model

using 20 different initializations and retain the fit which has the minimum stress

σ(X,b) at the optimal value. We fix the number of internal knots for Spline MDS as

1 as that was the best for the dense matrix results.

Parameter Minimum of range Maximum of range Default

ntraj 1000 6000 1500

r 0.3 1.3 1

φ -0.9 0.9 0.3

nstations 4 13 7

Table 4.4.3: Default parameters and the ranges used for the sensitivity analysis.

The results of the sensitivity analysis are displayed in Figure 4.4.4. We can see

that generally Spline, S-Interval, and Interval all follow the same trend in contrast to
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Absolute MDS. Absolute MDS tends to do better than the other models when the

sparsity is relatively high (at least 15%). Whereas, the models with transformations

tend to do better at low sparsity.

To investigate the performance of each model as we alter sparsity, we reuse the

sensitivity simulation results. Over all 200 (40 parameter sets, 5 replications for each

set) simulated datasets, we extract the sparsity and the score for each model. It is

reasonable to expect that increasing sparsity will generally result in a higher score

(i.e., worse fit), hence we fit an I-Spline monotonic regression for each model and

plot this fit in Figure 4.4.5. We also provide a rolling window estimate to show the

relationship is close to monotonic even when modelled without the constraint. It can

be seen that at around 14% sparsity it becomes better to use Absolute MDS than

S-Interval or Interval MDS. Around 16% sparsity it becomes better to use Absolute

MDS than Spline MDS. For lower than 13% sparsity generally S-Interval and Spline

MDS do very similarly and better than Interval MDS.

4.4.4 Summary of Simulation Findings

In this simulation section, we first proposed a framework to simulate the trajectories

in. We then applied the methodology introduced in Sections 4.2 to extract a travel

times matrix, which potentially has sparsity. Then we use the methodology from 4.3

to recreate the original station locations seeing only the travel times. We now give a

brief summary of the main findings discovered from the simulation.

• In Section 4.4.1 we gave empirical evidence of why we consider nonlinear trans-
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formations. In particular, we showed that the relationship between the modal

travel times and the distance between physical station locations is nonlinear.

• In Section 4.4.2 we found that when using a dense travel time matrix, trans-

formed MDS does better than Absolute MDS. We found that using nonlinear

transforms are beneficial.

• In Section 4.4.3, we varied the parameters of the simulation to introduce sparsity

in a realistic way. We found that when sparsity gets higher than around about

14% absolute MDS does better than transformed MDS for the examples consid-

ered. When sparsity is lower than 14% the transformed MDS model generally

does better than the Absolute MDS model.

We use these findings to justify decisions made in the application to the real dataset

in the next section.
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Figure 4.4.3: The embedding from 4 MDS configurations using a dense travel time

matrix. The transformation functions are plotted in the bottom panel.
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Figure 4.4.4: Sensitivity to each parameter for the ranges specified in Table 4.4.3.

Each point on the line is the mean of 5 replications.
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Figure 4.4.5: I-Spline and rolling window estimates to predict the score defined in

section 4.4.3 given sparsity of the input dissimilarity matrix. In the I-Spline model

we restrict the x-axis to highlight where Absolute MDS starts to do better. The

partially transparent points are the scores from the Spline MDS model. The I-Spline

models are fit with a mean absolute error objective and 20 internal knots. The rolling

window estimate uses a median to summarize and has a window with 30 data points.

The objective of I-Spline regression and summary method of the rolling window were

chosen to be to lessen the influence of outliers.
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4.5 Application

The application considered here is to estimate the dissimilarities between sampling

points of the Tara Oceans Expedition [Pesant et al., 2015]. We call these sampling

points the stations. We focus on an area in the North Atlantic Ocean. This area has

8 Tara stations and the locations of these are shown in Figure 4.2.1. The currents are

shown in Figure 4.5.1. The strongest current seen is the Gulf Stream, which stations

0, 1 are on and 2 and 3 are close to.

We choose to use r = 100km as the radius. This radius was chosen by trial and

error looking at what values for the radius resulted around 10% sparsity. This radius

choice resulted in 3 missing travel times which translates to 10.7% sparsity in the

travel times. This target sparsity is informed by the simulation results presented in

Section 4.4.3 as this is around the point where the results are better using transformed

MDS.

A sample of kernel density estimates which are used to obtain δij are shown in

Figure 4.5.2. We observe that generally these density estimates decay to zero den-

sity slowly, often outside the maximum of the data, however this seems to be a good

feature. For example, in the plots from station 1 to station 3 and station 4 to sta-

tion 5, we see relatively large outliers around 170 and 300 respectively. In theory,

this could happen for any station pair and the heavy tailed nature of the density

estimates accounts for this. In this application, all we use is the modes of these distri-

butions, however we discuss a potential follow-on work on better modelling of these

distributions in Section 4.6.2.
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Figure 4.5.1: The stations plotted on a near surface mean current map supplied

by Laurindo et al. [2017]. The locations are shown in Figure 4.2.1 with a sample

trajectory also.

For Spline MDS again we need to choose the degree and number of knots. We

choose to use degree 4 I-Splines as they result in a smooth function. We control the

complexity by choosing the number of internal knots. We fit I-Spline MDS for a range

of number of internal knots from 1 to 8 and inspect the transform for each fit. The

figure is not included, but all transforms take a very similar shape, suggesting the

results are not very sensitive to this parameter. We choose to take 4 internal knots

as it is the last value where the line has no visible wiggles; it looks almost identical

to the function using 3 internal knots.

We choose to represent the travel times in days for MDS. To choose the initial-

izations for MDS we set the maximum of the uniform distribution to 20. Similar to

the simulation we generate 20 different initializations and retain the fit which has the

minimum stress after optimization.
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Figure 4.5.2: Positive constrained KDE fits to the travel times data originating from

stations 0, 1 and 4. The numbers on the top of a KDE plot indicates the origin and des-

tination station, alongside how many drifters we observed for this origin-destination

pair. We plot the travel time data as red ticks on each plot. The mode of the KDE is

indicated in orange. The 5 pairs with the highest number of observations are shown

in each row. Plots on the right are provided to display where these connections are

going to. Darker lines indicate more observations, lighter for fewer observations.
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To match the output configuration to the stations, we conducted a Procrustes

analysis on the MDS solution to rotate them to the longitudes and latitudes numbers

of the original stations as the target. We note that a more accurate Procrustes

analysis could be carried out by minimising geodetic distance between the embedding

points and the stations rather than Euclidean distance, however we are only using

the rotation as a visual tool hence it would not be worth the extra complexity. The

rotated solutions of each model are shown in Figure 4.5.3.

The transformation functions m(x) for Spline, Interval and S-Interval MDS are

all very similar; resulting in very similar looking configurations. There is a slightly

higher agreement between S-Interval and Spline MDS; likely meaning that S-Interval

is the best parametric model to use as Spline MDS learns a similar shape. The main

difference between the models are the estimates for m(0). Spline MDS and Interval

MDS estimate m(0) around 40 days whereas S-Interval estimates m(0) around 10

days. As the results are relatively similar, we just analyze the Spline MDS fit.

Unlike the simulation example in this case the MDS embeddings do not appear in

locations close to their original locations. For example, station 0 is distant from the

original location. This is expected due to the currents. The MDS procedure correctly

shrinks the distance in places where strong currents are present, such as going from

0 to 1, 2 and 3; all of these stations are located on or near the Gulf Stream current

shown in Figure 4.5.1. These are placed considerably closer in the embedding than

in the original station locations. Whereas stations 4, 5, 6 and 7 remain spread out as

the currents are not as strong.

In Figure 4.5.4 a) we show the Spline MDS inferred travel times from Equation
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Figure 4.5.3: Results from each of the MDS models in 2 dimensions. The fitted model

for m(x) is shown for each model on the bottom plots. the blue ‘+’ points are the

embedding distances inferred from Spline MDS, excluding points which are missing

in the original matrix.
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(4.3.8) and the original travel times. Overall, Spline MDS recreates the original

distances very well. This is why we do not consider going to p = 3 or higher. The

extra complexity would not be worth the loss of interpretability. There is one outlier

which is a travel time estimate between 3 and 6. The original estimate of δ3,6 was

235.5 days which resulted from 9 drifter trajectories, so it was likely unreliable. The

travel time δ3,7 was 169.8. We expect that the travel time between stations 3 and 7

would be longer than the travel time between stations 3 and 6. The original D did

not have this feature; the estimates distances from MDS do. Hence, MDS effectively

smoothed out this outlier between stations 3 and 6.

4.5.1 Comparison with Most Likely Paths

We now analyze the completed Spline MDS’s travel times with comparison to the

most likely path travel times from Chapter 3. In this application, the three missing

distances were between (2,3); (2,4) and (2,5). The estimates we obtain with Equation

(4.3.8) using Spline MDS are 34.82, 40.75 and 67.7 days for each pair respectively. We

show these results in Figure 4.5.4b) and c). Although positively correlated, the two

methods from each chapter provide travel times of a very different scale, particularly

at larger travel times.

The Most Likely Path (MLP) methodology has travel times as high as 1962 days;

whereas Spline MDS has a maximum estimate of 201 days. There are numerous

possible reasons for this. First, if we consider the shorter travel times we estimated

in this work (< 75 days) and compare them to the MLP travel times, the scales are

comparable; the difference in scales gets considerably worse with longer travel times.
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This could be due to censorship in the data. Drifters live on average 410 days hence,

a journey with a larger travel time is less likely to be observed. We are restricted

to observing shorter trajectories. This censorship will have the effect of making the

estimates of the modal travel time smaller. The MLP methodology should not be

effected by this as it works with 5 day snap shots of drifter trajectories.

Second, these two travel times are fundamentally estimating different phenomena

so we do not expect them to match. In Chapter 3, we take the most likely path

fix, then estimate the expected travel time of that pathway given that the object

follows the path. Here, we consider the mode of the travel time distribution of all

observed drifters. They are very similar concepts, however, they are not the exact

same solution.

Finally, the scale of the MLP travel times is largely dependant on the resolution

of the discretization as shown in the supplementary information for Chapter 4. A

broader scale has the effect of smoothing out currents in space. In this case, we

used the resolution 3 grid system which has hexagons around the same size as a

100km× 100km square which likely has the effect of smoothing out currents like the

gulf stream. Using a finer scale (resolution 4) means the travel times are often smaller.

This can be observed from the supplementary results presented with Chapter 3 by

inspecting Figure B.H.1 in isolation, or by comparing Figures B.H.3 and 3.5.6. These

figures show that using resolution 3 estimates are as much as 3× as large as resolution

4 estimates. Only minor smoothing occurs with the MDS distances as we consider

the radius around the stations.

One point of note is the outlierness of observations which were treated as missing in

145



MDS. In particular, station pairs 2 to 3, 2 to 4 and 2 to 5 which are labelled in Figure

4.5.4 c). The estimates from Spline MDS in all three of these cases are extremely low,

whereas the most likely path methodology puts these times much higher. Potential

reasons for this disagreement are discussed in Section 4.6.2, the main point being that

the Gulf Stream acts as a barrier.
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Figure 4.5.4: Plots comparing results. a) Compares the data contained in D to the

travel time estimates produced by Spline MDS from Equation 4.3.8. b) Compares

the data in D to the expected travel times from the Most Likely Path methodology

from Chapter 3. c) Compares the Spline MDS travel time estimates to the Most

Likely Path methodology, the points which were missing in D are shown in orange

and labelled. The best fit lines shown in red are fit to all plotted points by linear

regression with a Huber loss function.
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4.6 Discussion and Future Work

4.6.1 Summary of Findings

In this chapter, we have proposed a framework to first extract the modal travel time

and then model the travel times using MDS to fill in missing values and smooth

outliers. We also proposed an estimate to correct bias in the modal travel times

using MDS. We analyzed the model fits and sensitivity to sparsity on a simulated

example in Section 4.4 using four variants of the model (Spline, Interval, S-Interval

and Absolute). We then fit the same four models to trajectories from the Global

Drifter Program in Section 4.5 and compared with the work from Chapter 3.

In both the application and the simulation, Spline MDS predicted a transformation

similar to S-Interval MDS transformation. We also found that in the simulation

experiment that S-Interval typically did better by comparing the results with the true

station locations. Therefore, in application, using S-Interval MDS may be preferable

as it has fewer parameters than Spline MDS and typically gives very similar results.

However, Spline MDS is useful as an exploratory tool as it helps justify the choice of

the square-root transform used in S-Interval. In the simulation, we found that there

was a benefit of using Spline MDS over Absolute MDS up until the sparsity in D is

around 16% sparsity in the travel times matrix.

In Section 4.5.1, we compared the results which we obtained in this chapter to the

results from Chapter 3. In particular, we found that there seemed to be a positive

correlation in travel times found between the two methods. However, the scales of the

observations were typically higher with the MLP methodology from Chapter 3, and
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we gave potential explanations for this difference in scales. We also noted that the

MDS based method fails to account for the Gulf Stream which acts as a boundary

current, whereas the MLP methodology gives high travel times for stations which are

located on either side of the boundary current. We suggest a potential fix for this in

the MDS method as future work in Section 4.6.2.

4.6.2 Future Work

There are many ways in which the work in this chapter could be improved. This work

was an initial study and an introduction to how one can apply the MDS framework

to trajectory data. Here we discuss extensions to the models which could be carried

out to increase the inferential capabilities of the method.

One could remove the point where a mode estimate is taken. Specifically, rather

than having dissimilarities δij one could directly use the observed travel times stored

in M ij. A stress function could be used in a similar fashion to repeated observation

MDS, where multiple observations exist for each object. For an MSE-like stress for

absolute MDS, the objective would take the form:

∑
i<j

|M ij |∑
k=1

(M ij
k − ||xi − xj||)2.

This naturally gives a higher weight to pairs with more observations as such pairs

make a larger contribution to the objective. We emphasise that this would not be

a difficult adaptation, it was excluded for a number of reasons: (1) it makes result

interpretation more difficult as we do not observe a single δij, (2) the question of

which form of stress to use becomes more important as we need to give less weight to
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outliers, e.g., do we use an MSE-like stress as above or a robust alternative.

The monotonic models assumed that the bias introduced by the radius was con-

stant for all stations. The plot in Figure 4.5.1 clearly shows that the current is not

the same around all stations. We could relax this assumption by modelling the bias

as a varying effect, for example, by changing the model such that

d̂ij = b0,i + b0,j + b1δij,

where b0,i and b0,j are estimates of the bias introduced by the radius around stations

i and j respectively. This would add an extra S − 1 parameters to the model which

may not be desirable, hence, we could instead consider fitting these bias terms as a

function of the velocity field surround the station such as

b0,i = b0,0 + b0,1|vi|,

where |vi| would be an estimate of the average magnitude of ocean current velocity in

the neighbourhood of station i. Such a model would only add one extra parameter.

The magnitude of the ocean current velocities could be easily extracted from a product

such as the climatology derived from the GDP [Laurindo et al., 2017] used to create

Figure 4.5.1.

As we only considered embeddings in R2 in this work, an improvement could be

seen by constraining the two-dimensional (2d) embedding to be somewhat sensible.

Rather than using multidimensional scaling to create the embedding points in an ar-

bitrary frame of reference, one could use a 2d function to transform longitude and

latitude. Such models have previously been used to model non-stationary spatial
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dependence [Sampson and Guttorp, 1992, Richards and Wadsworth, 2021]. By con-

straining this 2d function, one could ensure the end results are in a similar rotation to

the original station locations. We would expect the model to stretch out areas with

weaker currents and shrink areas which have stronger currents.

On a separate line of work, the pathways that drifters take between these stations

themselves are often of interest. We could instead only focus on a single pair of

stations and model the travel times shown in Section 4.5.2 directly using a mixture

distribution, and then identifying how many mixture components in the distribution

exist. It would be of even greater interest to cluster the trajectories directly. These

models could be used to answer many interesting questions in a direct way such as:

• How many clusters exist?

• What does the central trajectory of each cluster look like?

• Is the travel time over these clusters significantly different?

• Do drogued and undrogued drifters tend to take different pathways?

The development of such a method could facilitate the creation of a tool where a

practitioner could input two locations and a visualisation answering all these questions

directly from the data. This would complement and generalize regional analyses in the

literature such as the pathways studied in Drouin et al. [2022] in the North Atlantic.

Travel time near boundary currents

The ability of our method to accurately fill in missing distances can be very poor. One

issue present in the application is the relatively short distance for pairs (2, 3); (2, 4);
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and (2, 5) in comparison to the MLP methodology. In Figure 4.5.2 we see that 2 and

3 are relatively close in all four configurations. The actual travel time between these

two sites should be very large as they are situated on different sides of the Gulf Stream

which acts as an oceanographic barrier. The MDS models place these stations close

as there is a relatively short travel time from both stations 1 and 0 to both stations

2 and 3. Here we discuss two reasons for this downfall: a) We do not account for

the non-missing at random nature of these travel times and b) The model produces

a distance matrix. We now discuss both of these issues in more detail.

The application to complete the distance matrices here assumes that the missing

distances are missing at random. However, there is a causal link between the number

of observations and the travel time. Observations with a large travel time are less

likely to be seen, hence these missing distances inform us that travel time is large.

Addressing this issue by modelling the not missing at random nature of the data in

the methodology may result in a more sensible distance completion between stations

2 and 3.

The method introduced here relies on ultimately creating an S × S travel time

matrix with entries tij. One of the oversights in this chapter is the question of if the

travel time matrix should be a Euclidean distance matrix (which MDS produces).

That is that the following properties hold for all i, j, k ∈ {1, . . . , S} :

1. The matrix is symmetric tij = tji.

2. The triangle inequality holds tij ≤ tik + tkj.

3. The off-diagonals are all positive i 6= j ⇒ tij ≥ 0.
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4. The diagonals are zero i = j ⇒ tij = 0.

We now go through each of the four properties and argue for or against each property

being realistic in practical applications.

The goal of this chapter was to build a matrix which could be used as a measure

of oceanographic separation, which in turn could be used to e.g. investigate the

correlations between genetic species at various sampling stations. This application

to genetic species typically uses a symmetric matrix, hence, we aim to produce a

symmetric matrix containing the more likely path of the two directions. Therefore,

the first property holding seems reasonable. The third and fourth property are clearly

desirable in practice as a travel time should not be zero if the two locations are not

the same, and the travel time from something to itself should be zero.

The point which is not as realistic is if the resulting matrix should satisfy the

triangle inequality. To see this, we make the argument using stations 1, 2 and 3

in the application. If we want station 1 to be close to both stations 2 and 3 say

t1,2 = t1,3 = 0.5 years. However, we want 2 and 3 to be distant as they are on either

side of the barrier say t2,3 = x where x is some large number, then we must have that

t2,3 ≤ t2,1 + t1,3 ⇒ x ≤ 1, therefore with the triangle inequality satisfied we put a

relatively low upper-bound on this travel time.

A potential solution to this would be to reformulate the model to account for

anomalies which would automatically detect barriers (e.g., land or a strong current).

The distances would take the form tij = t̂ij + âij Where the matrix containing t̂ij is

estimated from the MDS solution proposed in this chapter, resulting in the matrix
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being a Euclidean distance matrix. âij estimates an anomaly component. When

fitting the model we would heavily penalise non-zero âij in the optimization. The

matrix containing âij would only be constrained to be symmetric with a zero diagonal

and positive elements. A non-zero component in the âij matrix would signify an

anomaly where the triangle inequality is not met; suggesting a barrier of some sort is

present.

Under this reformulation it would also be natural to account for the missingness of

observations. This could be done by changing the MDS objective function from stress

to a likelihood based objective. Then we could propose that a missing observation in

the matrix is due to censorship in how long the drifters live. Such an MDS objective

would mean stations which have a missing travel time are placed at large distances

from one another in the embedding.
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Chapter 5

Conclusions

This thesis has developed and tested models which have been proposed to answer

challenging questions using the Global Drifter Program data. The main issue which we

aimed to make progress on in Chapter 2 is to show that modelling the joint distribution

of northward and eastward velocities can lead to a sensible and informative model.

We have also provided methodology showing that implementation is feasible and

generalisable. Chapters 3 and 4 then provide methods to answer the question how

long does it take to get from point A to point B, where A and B are any two points

on the surface of the Ocean.

In Chapter 2, we expanded an existing framework known as NGBoost to allow

for the prediction of multivariate outcomes using boosting. We drew comparisons

between the algorithm when it uses the natural gradient and the ordinary gradient,

from this we concluded that the natural gradient was crucial to the NGBoost fit and

efficiency. Additionally, we compared with the alternative neural network approach

which was proposed by Williams [1996] and found that NGBoost performed better in
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most cases considered.

As emphasised in the introduction of Chapter 2, the benefits of probabilistic re-

gression generally come from the decision making aspect. The model output from

Chapter 2 has many potential uses which could be independent works in themselves.

The prediction provides a measurement of the likelihood of an observation. This could

be used to identify outliers by finding observations with a low likelihood under the

prediction.

In the application considered, further investigation of these outliers could be used

to identify faults or changes in either the drifters or the remotely-sensed datasets.

For example, in the mid-2000s there was a problem with the drogue sensors which

resulted in drifter observations being recorded as drogued for much longer than they

should have been. The work by Lumpkin et al. [2013] proposed an automatic drogue

detection method to fix this. The method, which is essentially a model comparison

between an undrogued model, where the effect of wind on the observed velocity is

higher, and a drogued model. Similarly to Lumpkin et al. [2013], the predictions from

Chapter 2 could be used to identify the point at which the motions are most likely to

start following undrogued behavior.

In Chapter 3, we propose an algorithm based on the established Markov Chain

model to find the most likely path between two points in the ocean. We then proposed

the use of rotations and bootstrap to obtain the discretization error and estimation

error. We have shown example pathways for a set of real locations and found that the

results match previous studies based on less generalisable methodology. Our method

has since been used to identify the role that marine currents have in plankton genomic
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differentiation [Laso-Jadart et al., 2021].

In Chapter 4, we proposed a more direct approach to the most likely path prob-

lem using density estimation and multidimensional scaling (MDS). In particular, we

focused on the ability of MDS to fill in missing distances. We found that this worked

well on a simulated example, however when using real data the model needs to be

further adapted. Namely, in the real data example, the MDS model recreated the

observed distances well, however, the estimates for the missing distances seemed to

be somewhat spurious.

Although it may initially seems like 10.6 million drifter days provides sufficiently

enough points, there are in fact ample sampling gaps in both space and time to prevent

learning a spatial-temporal model directly. In Chapter 2, we worked around this by

using external covariate information which explains some of the spatial and temporal

variations. In Chapter 3 we justified the stationary-in-time assumption as “we aim to

provide a global view and a simple general concept explaining the pattern of potential

pathways and travel times;” this statement also holds for the work in Chapter 4. In

Section 5.1.3 we shall propose a future area of research which would allow the Markov

models to vary in time.

This thesis has also resulted in software contributions. The work from Chapter

2 has been added to the NGBoost open-source Python package to make the fitting

of similar models a matter of a few lines of code. The most likely path work from

Chapter 3 is available for future use through the package DriftMLP. We include a de-

fault transition matrix which is a product of the Global Drifter Program data, so one

can compute pathways without even downloading the trajectory data. These software
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contributions make it straightforward for one to utilise the methods for future appli-

cations. Moreover, as all of the software is readily available on GitHub, this facilitates

the rapid development of new similar methodologies within the same framework.

5.1 Future Work

5.1.1 Gradient Boosting Varying Coefficient Model

One of the areas of future work is to make the model presented in Chapter 2 more

interpretable. Non-parametric or machine learning models are often too flexible which

allow them to fit the data well, but we lose interpretability of the model. A promising

area of future work would be to specify a parametric linear model for the same ap-

plication as in Chapter 2, but allow the coefficients of the parametric model to vary

non-parametrically. Thus, obtaining an interpretable flexible model which remains

explainable.

Related to this idea, Mulet et al. [2021] aimed to estimate a mean dynamic to-

pography product at higher resolution than existing satellite data can provide. This is

done by removing the effects of wind-driven and temporally varying sea surface height

from the velocity observations of drifting objects. In the study, the Global Drifter

Program is used as one of the datasets. Most of the effects within this model are

written as a physics-inspired equation which relates the observed drifter velocities to

the covariates. The parameters of the equations are then assumed to vary according

to auxiliary variables. Mulet et al. [2021] fit these spatially varying covariates by

gridding domain of the auxiliary variables, then fitting a model within each grid cell.
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A promising avenue of future research would be to improve on the gridding step

by instead using varying coefficient models. A varying coefficient model is a model

where the prediction η takes the following form [Hastie and Tibshirani, 1993]:

η = β0 +

p∑
i=1

Xiβi(Ri), (5.1.1)

where Xi ∈ R are the covariates and Ri ∈ Rdi are the auxillary variables which the

varying coefficient βi : Rdi → R changes over. Wang and Hastie [2014] use gradient

boosted trees to fit the varying coefficient models βi. One of the main benefits of doing

so in place of gridding is that we may then consider a higher dimensional function for

the varying coefficients.

As an example of one of the physics-inspired equations, we consider the effect of

wind stress. In Mulet et al. [2021] the effect due wind stress fit is specified in complex

notation:1

uw = β exp(iθ)τ , (5.1.2)

where β and θ quantify the magnitude and angle respectively, of the combination

of Ekman and Stokes currents, and τ is the wind stress as the surface in complex

notation. Both θ and β are assumed to be functions of mixed layer depth and latitude

(which are both known). The model is fit independently in 5 metre× 1◦latitude bins

to account for non-stationary behaviour.

Varying coefficient models require the model be linear, hence we must simplify

1We omit an exponent of τ in Equation (5.1.2). The exponent is known hence reintroducing it

would be a simple transform to the data τ .
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Equation (5.1.2). By expanding exp(iθ) and converting to array notation we obtain: ux

uy

 = β

 τx cos(θ)− τy sin(θ)

τx sin θ + τy cos(θ)

 = β cos(θ)

 τx

τy

+ β sin(θ)

 −τy
τx

 . (5.1.3)

This effect can now be written as part of a linear equation by considering the equivalent

parameterization: α1 = β cos(θ) α2 = β sin(θ).

As an initial model the data used would be a subset of those used in Mulet et al.

[2021]:

• gx, gy the longitudinal and latitudinal geostrophic velocity anomalies.

• τx, τy the longitudinal and latitudinal wind stress at the surface.

• wx, wy the longitudinal and latitudinal wind speed.

• Mixed Layer Depth, the product supplied by Guinehut et al. [2012].

The proposed approach inspired by Mulet et al. [2021] and Equation 5.1.3 is to fit the
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following multi-output varying coefficient model:

Y =β0 (Longitude,Latitude) + gx

gy

�β1 (Longitude,Mixed Layer Depth) +

 τx

τy

β2 (Latitude,Mixed Layer Depth) +

 −τy
τx

β3 (Latitude,Mixed Layer Depth) +

 wx

wy

β4 (Longitude,Latitude) +

ε, (5.1.4)

where � is the element wise product, β0,β1 are functions R2 → R2, β2, β3, β4 are

functions R2 → R. ε ∼ N (0,Σ) and Σ is a covariance matrix. Σ could be fit as a

conditional variance to allow it to vary spatially using an adaptation of the work in

Chapter 2.

We note that the unknowns in Equation (5.1.4) are primarily made up of two

dimensional functions which may motivate the use of a more explainable model over

gradient boosting. Figure 3 in Mulet et al. [2021] shows their model fits for β2 and β3

which appear smooth over the domain. This may mean using a model with smoothness

constraints for all βi may produce a better fit. Considering this, instead of using

gradient boosting, one could use a two-dimensional basis function such as splines

[Wood, 2017], a Gaussian process approach [Dambon et al., 2021, Heaton et al., 2019,
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Nychka et al., 2015], or Voronoi tessellations [Zhang et al., 2014].

5.1.2 The Most Likely Path Uncertain Weights

From the work in Chapter 3, the proposed most likely path methodology did not

consider that the transition probabilities are estimates of an unknown transition ma-

trix. A straightforward improvement would be to consider that these quantities are

estimates while estimating the most likely path. The aim would be that the new

method will discourage the use of connections which have been estimated from few

drifter observations.

Gao [2011] proposes a solution to the most likely path with uncertain weights

problem. The proposed solution is to replace the weights in the network with a α%

quantile of the network weight estimate. By using a high quantile, the algorithm will

penalise the use of weights with high uncertainty. We could estimate these quantiles

using the bootstrapped networks.

5.1.3 Continuous Time Discrete Space Markov Models

To date, we do not know of a work analysing ocean trajectories using alternative

forms of discrete-space Markov Chains to the Discrete-Time Discrete-Space (DTDS)

model we used in Chapter 3. In particular, one of the undesired properties is that

in the most likely paths shown in Chapter 3, often two subsequent hexagons on the

path do not share an edge. The paths regularly feature large jumps in space.

A desirable property would be that a neighbor in a pathway shares an edge.
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A straightforward solution to this would be to instead model the motion using a

Continuous-Time Discrete-Space (CTDS) Markov model. A potential pathway from

the CTDS model would be a sequence of neighbouring hexagons, causing the pathway

to appear visually smooth with no jumps in space.

The application would be relatively straightforward, for example similar CTDS

models have already been applied in the animal tracking literature [Hanks et al., 2015].

This could solve many known problems with the discrete-time discrete space model

such as the choice of physical time to discretize time. Additionally, the covariate

extensions proposed in Hanks et al. [2015] could be used to model the movements

using the same data sources used in Chapter 2. This would allow the transition rates

of the CTDS model to vary over time and capture effects such as seasonality.

163



Appendix A

Chapter 2 - Appendix

A.A Drifter Data Processing

Name unit Resolution (spatial, temporal)

Drifter Speed u-v component cm s−1 irregular, 6 hourly

Wind Speed u-v component m s−1 0.25 degrees, hourly

Surface wind stress u-v component Pa 0.25 degrees, hourly

Geostrophic Velocity Anomaly u-v component m s−1 0.25 degrees, daily

Position location-longitude degrees irregular, 6 hourly

day of year days 6 hourly

Table A.A.1: Summary of data used in the application. Drifter speed is used to define

the 2 dimensional response Y. The rest of the variables listed defined the 9 features

used for X.

For reproducibility, we give instructions on how the application dataset used in
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Section 2.4 is created. In its raw form, the drifter dataset is irregularly sampled

in time, however the product used here is processed to be supplied on a 6-hourly

scale Lumpkin and Centurioni [2020] and includes location uncertainties. A high

uncertainty would be caused by a large gap in the sampling of the raw data or a large

satellite positioning error. In our study, we dropped all drifter observations with a

positional error higher than 0.5◦ in either the longitude or latitudinal coordinates.

The six features we used relate to wind stress, geostrophic velocity, and wind

speed, and are all available on longitude-latitude grids, with spatial and temporal

resolution specified in Table A.A.1; we refer to these as gridded products. Prior to

using these products to predict the drifter observations, we spatially interpolated1

the gridded products to the drifter locations. To interpolate the gridded products,

an inverse distance weighting interpolation was used. We only used the values at the

n = 4 corners which define the spatial box containing the longitude-latitude location

of the drifter location of interest, where the following estimate is used:

∑n
i=1wigi∑n
i=1wi

, (A.A.1)

where gi is the gridded value for the ith corner (e.g., a 0.5 m s−1 east-west geostrophic

velocity at 30◦ longitude, 25◦ latitude), wi is the inverse of the Haversine distance2

between the drifter’s longitude-latitude and the longitude-latitude location of the

gridded value gi.

If two or more of the grid corners which are being interpolated from did not have

a value recorded in the gridded product (e.g., if two corners were on a coastline in the

1The temporal resolutions already match.
2The Haversine distance is the greater circle distance between two longitude-latitude pairs.
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case of wind stress and geostrophic velocity), we did not interpolate and treated that

point as missing. If only one corner was missing, we use n = 3 in Equation (A.A.1),

omitting the missing point.

We low-pass filtered the drifter velocities, wind speed, and wind stress series to

remove effects caused by inertial oscillations and tides; this process is similar to previ-

ous works [Laurindo et al., 2017]. A critical frequency of 1.5 times the inertial period

(inertial period is a function of latitude) was used. Due to there being some missing

or previously dropped data due to pre-processing steps, some time series have gaps

in time larger than 6 hours. In such cases, we split that time series into individ-

ual continuous segments. We applied a fifth-order Butterworth lowpass filter to each

continuous segment. If any of these segments were shorter than 18 observations (4.5

days), the whole segment was treated as missing in the dataset. The Butterworth fil-

ter was applied in a rolling fashion to account for the changing fashion of the inertial

period which defines the critical frequency.

The geostrophic data are available on a daily scale, therefore we decimated all data

to daily, only keeping observations at 00:00. No further preprocessing was carried out

on the geostrophic velocities (after interpolation) as inertial and tidal motions are not

present in the geostrophic velocity product.

Finally, to remove poorly sampled regions from the dataset, we partitioned the

domain into 1◦ × 1◦ longitude-latitude non-overlapping grid boxes. We counted the

number of daily observations contained in each box, if this count was lower than 25,

then the observations within that box were dropped from the dataset. A link to

download the processed data can be found at https://doi.org/10.5281/zenodo.
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5644972.

We only considered complete collections for Xi, Yi; if any of the data were

recorded as missing in the process explained above, that daily observation was dropped

from the dataset. Prior to fitting the models, we scaled the training data Xi to be

in the range [0, 1] for all variables, this step was taken to make the neural network

fitting more stable.

A.B Multivariate Normal Natural Gradient Deriva-

tions

To fit the NGBoost model, we require three elements, the log-likelihood, the derivative

of the log-likelihood, and the Fisher information matrix. We use the parametrization

for the multivariate Gaussian given in Section 2.2.3.

We shall derive results for the general case where P is the dimension of the data

Y ∈ RP . We use Yi ∈ R, i ∈ {1, . . . , P} to denote the value of the ith dimension of

Y in this section, a similar notation is used for µ and µi. The probability density

function can be written as:

p(Y|µ,Σ) = (2π)−
P
2 |Σ|−1/2 exp

[
−1

2
(Y − µ)Σ−1(Y − µ)

]
. (A.B.1)

As mentioned in Section 2, the optimization of µ is relatively straightforward as it

lives entirely on the real line unconstrained. Σ is an N ×N positive definite matrix,

which is a difficult constraint. Therefore, optimizing this directly is a challenge.

Instead, if we consider the Cholesky decomposition of Σ−1 = L>L where L is an
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upper triangular matrix, we only require that the diagonal be positive to ensure that

Σ is positive definite. We choose to model the inverse of Σ as in Williams [1996].

Therefore, we form an unconstrained representation for L, where we denote aij as

the element in the ith row and jth column as follows:

aij =



exp(νij) If i = j

νij If i < j

0 Otherwise

where i, j ∈ {1, . . . , P}.

Hence, we can fit L by doing gradient based optimization on {νij ∈ R : 1 ≤ i ≤

j ≤ P} as all values live on the real line. As an example, for P = 2 we can fit a

multivariate Gaussian using unconstrained optimization through the parameter vector

θ = (µ1, µ2, ν11, ν12, ν22) ∈ RM .

As in Williams [1996], we simplify the parameters to:

zi = µi − Yi i ∈ {1, . . . , P}

ηi = (Lz)i =

p∑
j=i

aijzj i ∈ {1, . . . , P}.

where we have denoted z as the column vector of zi ∈ R. Throughout the follow-

ing derivations we will interchangeably use {Σ,L, aij,µ, z, zi, ηi} without noting that

these parameters have a mapping between them (e.g. a11 = exp(ν11)).

Noting that log |Σ| = log |L>L|−1 = −2 log |L| = −2 log
(∏P

i=1 aii

)
, the negative

168



log-likelihood may be simplified as follows:

− log p(Y|θ = (µ,ν)) = −P
2

log(2π) +
1

2
× log |Σ|+ 1

2
(Y − µ)Σ−1(Y − µ)

= c−
P∑
i=1

log aii +
1

2
z>L>Lz

=
P∑
i=1

{
1

2
η2i − νii

}
+ c,

where c is a constant independent of µ and νij. For shorter notation, we will write

l = − log p(Y|θ = (µ,ν)).

The first derivatives are stated in Williams [1996] and we also state them here for

reference:

dl

dµi
=

i∑
j=1

ηjaji i ∈ {1, . . . , P} (A.B.2)

dl

dνii
= ηiziaii − 1 i ∈ {1, . . . , P} (A.B.3)

dl

dνij
= ηizj 1 ≤ i < j ≤ P. (A.B.4)

The final element we need for NGBoost to work is the M ×M Fisher information

matrix. We derive the Fisher Information from the following:

Iij = E
[

d2l

dθidθj

]
, i, j ∈ {1, . . . ,M}.

Note that Iij is a symmetric matrix, such that Iij = Iji. For convenience, we

denote the entries of the matrix with the subscripts of the parameter symbols, e.g.

Iµi,νkq . We use the letters i, j, k, q ∈ {1, . . . , P} ⊂ N to index the variables. The

following two expectations are frequently used: E[zizj] = Σij and E[zi] = 0.

The derivatives of ηj with respect to the other parameters are repeatedly used, so
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we give them here:

dηk
dµi

=


0 if k > i

aki if k ≤ i

i, k ∈ {1, . . . , P}

dηi
dνkq

=
d

dνkq

n∑
j=i

aijzj 1 ≤ i ≤ p, 1 ≤ k ≤ q ≤ P

=



0 if i 6= k

zq else if q > k

aiizi else if q = k

.

We start with the Fisher information for µi, µj, using the existing derivation of

dl
dµk

in Equation (A.B.2):

d2l

dµidµk
=

d

dµi

k∑
j=1

ηjajk i, k ∈ {1, . . . , P}

=
k∑
j=1

ajiajk

=
[
L>L

]
ik
.

We therefore have that:

Iµi,µj = Σij i, j ∈ {1, . . . , P}. (A.B.5)

Next we consider the mean differentiated with respect to νkq again starting from
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Equation (A.B.2):

d2l

dµidνkq
=

d

dνkq

i∑
j=1

ηjaji i ∈ {1, . . . , P}, 1 ≤ k ≤ q ≤ P

=
k∑
j=1

[
ηj

d

dνkq
aji + aji

d

dνkq
ηj

]
.

As the expectation of both terms inside the sum is zero for every valid combination

of i, k, q, we conclude that:

Iµi,νkq = 0 i ∈ {1, . . . , P}, 1 ≤ k ≤ q ≤ P. (A.B.6)

Finally, the last elements we require for the Fisher information matrix are the entries

for νij, νkq. First, we consider diagonals (i = j) w.r.t. all νkq with k ≤ q. We start by

using Equation (A.B.3) for dl
dνii

:

d2l

dνiidνkq
=

d

dνkq
ηiziaii i ∈ {1, . . . , P}, 1 ≤ k ≤ q ≤ P

= aiizi
d

dνkq
ηi + ηizi

d

dνkq
aii

=



aiizizq if k = i and k < q

a2iizizi if i = k = q

0 if i 6= k

+


zi
∑P

j=i aijzjaii if i = k = q

0 Otherwise.
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Taking the expectation we get:

Iνii,νkq =



aiiΣiq if k = i and q > k

a2iiΣii + aii
∑P

j=i aijΣij if i = k = q

0 if i 6= k.

, i ∈ {1, . . . , P}, 1 ≤ k ≤ q ≤ P

(A.B.7)

Finally, we derive the Fisher information for the off diagonals with respect to the off

diagonals (i < j and k < q). We start from the expression for dl
vij

in Equation (A.B.4):

d2l

dνkqdνij
=

d

dνkq
ηizj 1 ≤ i < j ≤ P, 1 ≤ k < q ≤ P

= zj
d

dνkq
ηi

=


zjzq if k = i

0 if i 6= k.

Hence,

Iνij ,νkq =


Σjq If k = i

0 if k 6= i.

1 ≤ i < j ≤ P, 1 ≤ k < q ≤ P. (A.B.8)

Equations (A.B.5), (A.B.6), (A.B.7), (A.B.8) give the full specification of the Fisher

Information.
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A.C Practical Adjustment for Singular Inverse Co-

variance Matrices

A small adjustment is made to L to improve numerical stability in the implementation.

In particular, if the diagonal entries of L from Equation (2.2.9) (exp(νii)) get close

to zero the resulting matrix Σ−1 has a determinant close to zero, causing numerical

problems to occur when inverting Σ−1. The fix we propose for this is to add a small

perturbation of 10−6 to the diagonal elements of L. For most datasets, once the model

is fitted, the predicted value for the diagonal elements will be much larger than 10−6

so this slight adjustment has a negligible effect on the predictions.

This practical adjustment will become an issue in cases where the determinant of

the covariance matrix is very large. As an extreme example, suppose the predicted

covariance without the adaptation is Σ = I2 × 1012 where I2 is the identity matrix.

The practical adjustment results in a marginal variance four times larger in this case,

which is clearly not negligible. Problems like this can typically be mitigated by scaling

the output data Y (e.g., using a min-max scaling strategy).

A.D Supplementary Information

This supplementary information provides the following:

1. Extra details on the setup of the probabilistic neural network.

2. Details of the grid search which we used for both the application and simulation.
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3. Extra details on the timings of all the methods.

4. Extended simulation results, where for the simulations we show the metrics

introduced for the application. We also show the unmodified simulation as it

was presented in Williams [1996].

5. A sample code snippet using the package.

A.D.1 Probabilistic Neural Networks

In this chapter, an existing neural network approach (referred to as NN) is used to

fit conditional multivariate Gaussian distributions. The method fits a neural network

taking inputs X ∈ X where the output layer has M units, which are used as θ in

the probability density function parameterization in Section 2.2.3 [Williams, 1996,

Sützle and Hrycej, 2005]. The loss function used when optimizing the neural network

parameters is the negative log-likelihood.

Instead of fitting M independent models as in Section 2.2.2, when using proba-

bilistic neural networks we fit one model which has M outputs, one for each parameter

of the probability density function. Throughout the chapter, a fully connected neural

network structure is used such as the one in Figure A.D.1. We describe the structure

search in Section A.D.2.

Note that, unlike NGBoost, the natural gradient is not used in the optimization

of the probabilistic neural networks to account for the geometry of the distribution

space.
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Figure A.D.1: Neural Network structure with one hidden layer with L neurons and a

2 dimensional output.
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A.D.2 Machine Learning Model Details

We cease the model fit when the validation score has not improved for 50 iterations.

For the neural network approach, an iteration is one epoch which is a full pass of

the training dataset. For boosting approaches, an iteration is the growth of one base

learner f (m) as explained in Section 2.2. If early stopping does not occur, we specify

a maximum of 1000 iterations, however in our results this was only reached in the

application section when using the GB method. The validation score used is the same

as the scoring rule or loss for the method, i.e., root mean squared error for skGB,

negative log-likelihood for all other methods.

Boosting Grid Search In our reported results, the boosting methods (NGB, GB,

skGB, and Indep NGB) all used the same base learner, an sklearn decision tree,

resulting in a direct mapping between hyper-parameters. Hence, we carried out the

same grid search for these four models. We conducted a grid search over the following

sets:

• Max depth in {8, 15, 31, 64}.

• Minimum data in leaf in {1, 15, 32}.

which resulted in 12 hyper-parameter sets for each method, and all other parameters

were left at the default other than the learning rate. We did not tune the learning

rate, we used a learning rate of 0.01 for the simulation and 0.1 for the application. The

larger learning rate was chosen for the application to allow us to conduct replicated

fits in a reasonable amount of time.
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Neural Network grid search We carried out the following grid search for the

neural network architecture in both the simulation example and application in Sec-

tions 2.3 and 2.4. We considered the following structures for the hidden layers in the

grid search:

• A 20 unit layer

• A 50 unit layer

• A 100 unit layer (best for simulation when N ∈ {1000, 3000, 5000, 10000})

• A 20 unit layer followed by another 20 unit layer

• A 50 unit layer followed by another 20 unit layer. (best for simulation when

N ∈ {500, 8000})

• 100 units followed by another 20 unit layer (best for the application).

After each layer, we applied a RELU activation on each node aside from the output

nodes. A fixed batch batch size of 256 was used. For the simulation, a learning

rate of 0.01 worked well for the Adam optimizer. In the application, we added an

extra parameter into the grid search, a learning rate of 0.001 and 0.01. Adam’s

other parameters were left as the defaults in tensorflow. For the application, the best

learning rate and structure pair was 0.001 and a 100 unit layer followed by a 20 unit

layer respectively.

Timings & Computation All model fits were run on an internal computing cluster

using only CPUs. We note that computational time was not a key consideration in
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Figure A.D.2: Wall Times per model fit over the 50 replications of Section 2.3. Box

plot drawn in the standard way (boxes being a 50% inter-quartile range, with lines

drawn at median and at the minimum or maximum excluding “outliers”). NN model

fits were given access to 10 threads, all other methods ran on a single thread. The

plotting times are for a single model fit. It does not show the times relating to the

grid search carried out for the NN method.

this work. If it was of key importance, using a more efficient base learner for all

boosting based approaches would be advisable for large N , such as LightGBM [Ke

et al., 2017] or XGBoost [Chen and Guestrin, 2016].

Simulation We show the wall times for the simulation which we ran for Section

2.3 in Figure A.D.2. Generally, NGB and GB are the slowest and skGB is fastest.

Application We did not explicitly time each model fit in the application, hence we

only give rough estimates based on the total running time for the best selected models

from the grid search. The neural networks were given access to 15 CPU threads. All

other methods were limited to 1 CPU thread, the difference between wall time and
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CPU time was negligible for all boosting approaches, hence we only report the wall

time for those here. The estimated fitting times are shown below (reported as total

time for the 10 random replications divided by 10):

• NGB: 1.45 hours

• GB: 6 hours

• skGB: 1.3 hours

• NN: 0.7 hours wall time, 2.1 hours CPU time.

The GB method was the slowest method. This is because early stopping did not occur,

meaning the algorithm would run for the full 1000 boosting iterations. In contrast, for

NGB, early stopping usually occurred around 250 boosting iterations, which reduced

the run time.

We reiterate that these times are rough estimates. Both the simulation and the

application were run on a cluster with various nodes with shared resources which the

model fitting would be assigned to. For the timings shown in the list above, the NN

approach was fit on a node with a 2.6GHz AMD Opteron Processor 6238 and the

NGB, GB and skGB models were fit on a 2.30GHz Intel Xeon CPU E5-2699 v3.

A.D.3 Extended Simulation Results

We now report the metrics introduced in Section 2.4 for the simulation study in Section

2.3. These were omitted from the main manuscript due to page length considerations.

These are shown in Table A.D.1. We can see that the RMSE metric is very poor for
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the GB method, which explains the poor NLL and KL divergence metrics for GB.

With all methods, NLL and KL divergence show similar patterns, however, if we used

the NLL metric it would choose NN for lower values of N over NGB.

We give the results for the unaltered simulation setup of Williams [1996] in Table

A.D.2. As noted in the main body of the chapter, we see that NN does best for

N ∈ {500, 1000, 3000} and NGB does best for N ∈ {5000, 8000, 10000} according

to the KL divergence from the truth metric. Moreover, we note GB does not do as

poorly as in Table A.D.1. We believe this is because the mean is fit better as can be

seen in the RMSE metric. Otherwise, the general patterns seen in both Tables A.D.1

and A.D.2 are very similar.

A.D.4 Sample Code Snippet

To emphasize how straightforward it is to use the model we show a minimal code

snippet below to show how the package can be used:

1 # pandas is used to read the data

2 import pandas as pd

3

4 # NGBoost is the package for prediction

5 import ngboost

6

7 data = pd.read_hdf("path to dataset")

8

9 # Split into covariates X:

10 coordinates = data[["lon", "lat"]]

11 # and response Y:

12 velocities = data[['u', 'v']]

13

14 # Initiate the model and specify the response is 2 dimensional

15 # n_estimators should be larger in practice.

16 multivariate_model = ngboost.NGBoost(
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17 Dist=ngboost.distns.MultivariateNormal(2),

18 n_estimators=10

19 )

20 #Fit the ensemble

21 multivariate_model.fit(X=coordinates, Y=velocities)

22

23 # Obtain the predicted distribution at the coordinates

24 predicted_distributions = multivariate_model.pred_dist(coordinates)

25

26 # The predicted mean and covarince arrays respectively:

27 predicted_distributions.loc # Shape N x 2

28 predicted_distributions.cov # Shape N x 2 x 2
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NGB Indep NGB skGB GB NN
Metric N

KL div

500 0.56 ± 0.02 1.63 ± 0.04 17.19 ± 0.30 126.23 ± 2.58 1.28 ± 0.55
1000 0.26 ± 0.00 1.15 ± 0.02 17.96 ± 0.27 114.11 ± 1.62 0.32 ± 0.02
3000 0.11 ± 0.00 0.88 ± 0.01 19.61 ± 0.25 97.68 ± 1.40 0.15 ± 0.00
5000 0.08 ± 0.01 0.88 ± 0.01 20.31 ± 0.17 90.10 ± 1.29 0.13 ± 0.01
8000 0.05 ± 0.00 0.87 ± 0.01 20.61 ± 0.17 79.01 ± 1.17 0.10 ± 0.00
10000 0.04 ± 0.00 0.83 ± 0.01 20.55 ± 0.15 74.80 ± 1.19 0.13 ± 0.00

NLL

500 1.35 ± 0.02 1.27 ± 0.01 2.05 ± 0.01 2.49 ± 0.01 1.05 ± 0.02
1000 1.02 ± 0.01 1.10 ± 0.01 1.92 ± 0.01 2.25 ± 0.01 0.89 ± 0.01
3000 0.84 ± 0.01 1.02 ± 0.01 1.90 ± 0.01 2.01 ± 0.01 0.83 ± 0.01
5000 0.79 ± 0.01 0.98 ± 0.01 1.87 ± 0.01 1.89 ± 0.01 0.81 ± 0.01
8000 0.78 ± 0.01 0.97 ± 0.01 1.87 ± 0.01 1.80 ± 0.01 0.80 ± 0.01
10000 0.77 ± 0.01 0.97 ± 0.01 1.88 ± 0.01 1.75 ± 0.01 0.82 ± 0.01

RMSE

500 0.66 ± 0.00 0.65 ± 0.00 0.65 ± 0.00 1.91 ± 0.01 0.65 ± 0.00
1000 0.63 ± 0.00 0.63 ± 0.00 0.63 ± 0.00 1.85 ± 0.01 0.62 ± 0.00
3000 0.63 ± 0.00 0.62 ± 0.00 0.63 ± 0.00 1.76 ± 0.01 0.62 ± 0.00
5000 0.62 ± 0.00 0.62 ± 0.00 0.62 ± 0.00 1.70 ± 0.01 0.62 ± 0.00
8000 0.62 ± 0.00 0.62 ± 0.00 0.62 ± 0.00 1.65 ± 0.01 0.62 ± 0.00
10000 0.62 ± 0.00 0.62 ± 0.00 0.62 ± 0.00 1.64 ± 0.01 0.62 ± 0.00

90% PR area

500 1.90 ± 0.02 2.59 ± 0.03 4.27 ± 0.05 8.57 ± 0.10 3.02 ± 0.07
1000 1.97 ± 0.01 2.52 ± 0.02 4.54 ± 0.04 7.74 ± 0.07 2.64 ± 0.02
3000 2.22 ± 0.01 2.60 ± 0.01 4.96 ± 0.03 7.21 ± 0.06 2.58 ± 0.02
5000 2.30 ± 0.01 2.65 ± 0.01 5.09 ± 0.02 6.89 ± 0.05 2.61 ± 0.03
8000 2.36 ± 0.01 2.69 ± 0.01 5.14 ± 0.02 6.49 ± 0.05 2.65 ± 0.03
10000 2.38 ± 0.01 2.69 ± 0.01 5.19 ± 0.02 6.37 ± 0.05 2.63 ± 0.03

90% PR cov

500 0.76 ± 0.00 0.83 ± 0.00 0.81 ± 0.00 0.84 ± 0.00 0.88 ± 0.00
1000 0.80 ± 0.00 0.85 ± 0.00 0.83 ± 0.00 0.86 ± 0.00 0.89 ± 0.00
3000 0.85 ± 0.00 0.86 ± 0.00 0.85 ± 0.00 0.88 ± 0.00 0.89 ± 0.00
5000 0.87 ± 0.00 0.87 ± 0.00 0.86 ± 0.00 0.89 ± 0.00 0.90 ± 0.00
8000 0.87 ± 0.00 0.88 ± 0.00 0.87 ± 0.00 0.90 ± 0.00 0.90 ± 0.00
10000 0.88 ± 0.00 0.88 ± 0.00 0.86 ± 0.00 0.90 ± 0.00 0.90 ± 0.00

Table A.D.1: Metrics used in Section 2.4, on the simulation run in Section 2.3. We
also include the KL divergence from Table 2.3.1 for comparison (with one less decimal
point shown here to allow the table to fit on the page). The average over the 50
replications is reported. Standard error estimates reported after ±.
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NGB Indep NGB skGB GB NN
Metric N

KL div

500 0.96 ± 0.03 2.27 ± 0.06 19.84 ± 0.39 2.16 ± 0.06 0.40 ± 0.04
1000 0.46 ± 0.01 1.44 ± 0.03 20.08 ± 0.29 1.28 ± 0.03 0.26 ± 0.04
3000 0.18 ± 0.01 1.06 ± 0.02 20.43 ± 0.19 0.75 ± 0.01 0.13 ± 0.02
5000 0.11 ± 0.00 0.96 ± 0.02 20.65 ± 0.20 0.65 ± 0.01 0.13 ± 0.02
8000 0.07 ± 0.00 0.91 ± 0.01 20.75 ± 0.17 0.55 ± 0.01 0.11 ± 0.02
10000 0.06 ± 0.00 0.92 ± 0.02 21.10 ± 0.18 0.54 ± 0.01 0.13 ± 0.02

NLL

500 1.24 ± 0.01 1.25 ± 0.01 1.96 ± 0.01 1.27 ± 0.01 0.93 ± 0.02
1000 1.03 ± 0.01 1.12 ± 0.01 1.91 ± 0.01 1.12 ± 0.01 0.86 ± 0.01
3000 0.86 ± 0.01 1.02 ± 0.01 1.88 ± 0.01 0.98 ± 0.01 0.82 ± 0.01
5000 0.82 ± 0.01 1.00 ± 0.01 1.86 ± 0.01 0.94 ± 0.01 0.81 ± 0.01
8000 0.78 ± 0.01 0.97 ± 0.01 1.86 ± 0.01 0.90 ± 0.01 0.80 ± 0.01
10000 0.78 ± 0.01 0.97 ± 0.01 1.86 ± 0.01 0.90 ± 0.01 0.81 ± 0.01

RMSE

500 0.64 ± 0.00 0.64 ± 0.00 0.63 ± 0.00 0.63 ± 0.00 0.64 ± 0.00
1000 0.63 ± 0.00 0.63 ± 0.00 0.63 ± 0.00 0.62 ± 0.00 0.63 ± 0.00
3000 0.62 ± 0.00 0.62 ± 0.00 0.62 ± 0.00 0.62 ± 0.00 0.62 ± 0.00
5000 0.61 ± 0.00 0.61 ± 0.00 0.61 ± 0.00 0.61 ± 0.00 0.62 ± 0.00
8000 0.62 ± 0.00 0.62 ± 0.00 0.62 ± 0.00 0.61 ± 0.00 0.62 ± 0.00
10000 0.62 ± 0.00 0.62 ± 0.00 0.62 ± 0.00 0.62 ± 0.00 0.62 ± 0.00

90% PR area

500 2.03 ± 0.02 2.61 ± 0.03 4.68 ± 0.06 2.72 ± 0.03 2.79 ± 0.05
1000 2.11 ± 0.02 2.53 ± 0.02 4.86 ± 0.05 2.65 ± 0.02 2.79 ± 0.04
3000 2.31 ± 0.01 2.65 ± 0.01 5.10 ± 0.03 2.69 ± 0.01 2.71 ± 0.03
5000 2.35 ± 0.01 2.67 ± 0.01 5.14 ± 0.02 2.70 ± 0.01 2.69 ± 0.02
8000 2.41 ± 0.01 2.70 ± 0.01 5.20 ± 0.02 2.71 ± 0.01 2.73 ± 0.03
10000 2.42 ± 0.01 2.72 ± 0.01 5.24 ± 0.02 2.72 ± 0.01 2.70 ± 0.03

90% PR cov

500 0.78 ± 0.00 0.83 ± 0.00 0.84 ± 0.00 0.84 ± 0.00 0.88 ± 0.00
1000 0.81 ± 0.00 0.84 ± 0.00 0.85 ± 0.00 0.85 ± 0.00 0.89 ± 0.00
3000 0.86 ± 0.00 0.87 ± 0.00 0.86 ± 0.00 0.88 ± 0.00 0.89 ± 0.00
5000 0.86 ± 0.00 0.87 ± 0.00 0.87 ± 0.00 0.88 ± 0.00 0.90 ± 0.00
8000 0.88 ± 0.00 0.88 ± 0.00 0.87 ± 0.00 0.89 ± 0.00 0.90 ± 0.00
10000 0.87 ± 0.00 0.88 ± 0.00 0.87 ± 0.00 0.89 ± 0.00 0.90 ± 0.00

Table A.D.2: Same as Table A.D.1 except we use the same simulation as Williams
[1996], i.e. without adding the +x and −x2 terms of Equation (2.3.1). Note that the
difference between NGB and GB or NN is not as large as in the original table. All
values rounded to two decimal places.
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Appendix B

Chapter 3 - Appendix

B.A Data Availability

The drifter data were provided by the Global Drifter Program [Lumpkin and Centu-

rioni, 2020]. The currents used for visualisation purposes in Figure 3.1.1 are V3.05 of

the dataset supplied on the Global Drifter Program website [Laurindo et al., 2017].

Code to reproduce all figures related to the method is available at https://

github.com/MikeOMa/MLTravelTimesFigures which depends on the Python pack-

age implementing all of the above methods in this chapter at https://github.com/

MikeOMa/DriftMLP. The package takes roughly 3 minutes total to go from raw data to

a pairwise travel time matrix for the locations shown in Table 3.5.1 using Algorithm 2.
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P (x|y) denotes the probabilities of event(s) x given that y
occurs.

E[x] The expectation of x.
f(s) The discretization function i.e. H3.
I(x) Indicator function giving 1 if x is true and 0 other-

wise.
arg maxx∈S An operator which gives the input value, which

maximizes the function q, restricted to the set S.
T , Ti,j T denotes transition matrix, with entries Ti,j. i, j ∈

S, denoting the probability of moving from state i
to j in TL days.

x◦ × y◦ refers to a longitude-latitude grid system, x degrees
in the longitudinal direction, y degrees in the lati-
tudinal direction.

TL Lagrangian cut off time.
S The set of all possible spatial indices.
Po,d The set of all possible paths going from o to d.
p = {pi}ni=1 A pathway of length n. Indicates a sequence

p1, p2, . . . , pn. All pi ∈ S.
k The expected travel time of a path p.

p̂, k̂ Hat notation implies we are considering the most
likely path and travel time of that path respectively.

st used to index the state of the Markov chain after t
steps.

Table B.B.1: Table of mathematical notation.

B.B Table of Notation

We include a table of mathematical notation for reader reference in Table B.B.1.
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B.C Finding the shortest path

To solve the optimization of Equation (3.3.5), we can equivalently consider the log of

P (p):

logP (p) =
n−1∑
i=0

log Tpi,pi+1
.

Then we use the fact that:

p̂ = arg max
p∈Po,d

{logP (p)} = arg min
p∈Po,d

{− logP (p})

= arg min
p∈Po,d

{
−

n−1∑
i=0

log Tpi,pi+1

}
. (B.C.1)

Now in this form this can be solved using the vast literature on shortest path algo-

rithms.

B.D Shortest Path Algorithms

Shortest path algorithms [Gallo and Pallottino, 1988, Dijkstra, 1959], such as Dijksta’s

algorithm, are popular algorithms which find the so called shortest path within a

graph. In our case the graph is formed such that the vertices or nodes uniquely

correspond to a grid system index, i.e. a row/column in the transition matrix T . If

there is a non-zero probability in Ti,j we add an edge denoted ei,j, where the weight

on this edge is denoted w(ei,j) = − log(Ti,j) between the vertex i and going to the

vertex j. Note that Ti,j is not necessarily the same as Tj,i, hence we have a directed

graph. Given a start vertex o and an end vertex d, shortest path algorithms will find
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the path P = {v1 . . . , vn} such that P minimizes the following

n−1∑
i=1

w(evi,vi+1
),

hence it solves the problem in Equation (B.C.1). The algorithm used is exact, hence

if no path is found then no path exists given the current network.

B.E Derivation of Equation (3.3.6)

The derivation uses the Markov property, the conditional probability definition, and

the fact that P (x ∈ {a, b}) = P (x = a) + P (x = b).

P (st+k = pi+1, {st+l = pi}k−1l=1 |st = pi,p})

= P (st+k = pi+1|st+k−1 = pi, st+k ∈ {pi, pi+1})

×
k−1∏
l=1

P (st+l = pi|st+l−1 = pi, st+l ∈ {pi, pi+1})

=
P (st+k = pi+1|st+k−1 = pi)

P (st+k ∈ {pi, pi+1}|st+k−1 = pi)

×
k−1∏
l=1

P (st+l = pi|st+l−1 = pi)

P (st+l ∈ {pi, pi+1}|st+l−1 = pi)

=
P (st+k = pi+1|st+k−1 = pi)

P (st+1 ∈ {pi, pi+1}|st = pi)k

×
k−1∏
l=1

P (st+l = pi|st+l−1 = pi)

=
Tpi,pi+1

T k−1pi,pi

(Tpi,pi + Tpi,pi+1
)k

where the first equality follows from the explanation given in Section 3.3.4.
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B.F Brief Sensitivity Analysis to cut off time

The main tuning parameter which we have fixed in this chapter is the Lagrangian cut

off time used when estimating the transition matrix T . The method is not especially

sensitive to this choice as we shall now demonstrate. To show the sensitivity we ran

an experiment where for a grid of values for TL we estimated a pairwise travel time

matrix for the locations in Table 3.5.1, then we estimated the Spearman correlation

coefficient between the non-diagonal entries of each matrix to the corresponding entry

of the travel time matrix generated from TL = 5. Results are shown in Figure B.F.1.

The experiment shows that the distances change but overall the matrices are very

strongly correlated, particularly for TL > 2. For comparison the average correlation

value between the the pairwise travel time matrix TL and the travel time matrices

generated from the 100 rotations used in Section 3.5.3 is 0.8. A similar analysis, con-

sidering sensitivity to grid sizes is given in the online supplementary information.
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Figure B.F.1: Spearman Correlation coefficient between the non-diagonal elements of

the travel time matrix generated by TL = 5 and the matrices generated by the values

of TL on the x-axis.

B.G Supplementary Information

B.H Grid Size Sensitively

We ran an experiment using a resolution 3 and resolution 4 H3 grid and three

different sized longitude-latitude grids. The resolution 4 grid breaks down each res-

olution 3 cell into roughly seven polygons (in the manner seen in Figure 3.3.1 of the

main text), resulting in an average area of 1, 770km2, hence a much finer grid. The

transition probabilities from the smaller grid sizes generally have higher uncertainty,

due to less data which then results in even more variable pathways. In Figure B.H.1,

we can see that the variance across grid sizes is far larger than the difference in results

from changing TL.

One of the more concerning features of a longitude-latitude grid system is that

the pathways tend to choose transitions either directly east, west, north or south
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Figure B.H.1: Paths and travel times between location 1 and 3 in Table 3.5.1 of

the main text. Results given for Tl = 2, 5, 10 days and with various grid systems.

Grid systems are the same within a column, indicated by the title of that column.

Lagrangian cut-off times are altered by row.

and rarely do diagonal transitions. This is particularly visible with the larger 1.5

degree grid size. In contrast, for the H3 grids we do not see this sort of pattern, and

trajectories are more naturally resembling meandering pathways. This is a key benefit

of the H3 grid system, in addition to the more constant cell sizes it produces across

the globe.
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B.H.1 Comparison to Smith (2018)

Smith et al. [2018] studied long-distance dispersal events through a number of meth-

ods. An example of pathways are given in Figure 2 of Smith et al. [2018], about how

an object could drift from the south-east coast of Australia over to the south-west

coast of Brazil. The two pathways given are from simulated particles under the HY-

brid Coordinate Ocean Model (HYCOM) [Chassignet et al., 2007] and using Monte

Carlo Super Trajectories [van Sebille et al., 2011], which we qualitatively compare to

our Most Likely Path method here. Figure B.H.2 provides the results which the most

likely path method found using 60 rotations. We show results from both resolution 3

and resolution 4 in the figure.

The pathways shown in Figure B.H.2 look very similar to those of the route of

simulated HYCOM particles. The travel times reported in Figure B.H.2 are also

comparable, where the minimum time reported in Smith et al. [2018] is 2.4 years using

MCSTs. The resolution 3 travel time results in a close match, which is expected as

the grid size is similar to what Monte Carlo Super Trajectories are created with.

B.H.2 Bootstrap and Rotation Pathways

In Figure 3.5.6 we showed example pathways for rotations in resolution 3 of the H3

grid system. Here we show the same results in three different flavors.

• A similar plot using resolution 4 of the H3 grid system in Figure B.H.3 with 60

rotations.

• A bootstrap version in Figure B.H.4 with 100 bootstrap samples.
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Figure B.H.2: 60 Pathways of particles going from the south-east coast of Australia

to the south-west coast of Brazil. Both resolution 3 and resolution 4 H3 grid results

shown. Pathway axis and grid lines set to match Figure 2 of Smith et al. [2018].

• A bootstrap version using resolution 4 in Figure B.H.5 with 100 bootstrap sam-

ples.

Due to computational restrictions with the resolution 4 networks we use 60 rota-

tions instead of the 100 used in the main document for resolution 3.

We see that there is less variance in the pathways due to rotations in resolution 4

compared to resolution 3, however the variability in the pathways from the bootstrap

is considerably larger. This is due to the classic bias-variance trade-off in statistical

estimation. The results are less biased at resolution 4 due to less discretization, but
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Figure B.H.3: This figure is similar to Figure 3.5.6 of the main text, however here we

only use 60 rotations and use resolution 4 of the H3 grid system. Each line connects

the centroid of each hexagon within the path.
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Figure B.H.4: This figure is similar to Figure 3.5.6 of the main text. Here we only

use 100 bootstrap samples instead of rotations and use resolution 3 of the H3 grid

system. Each line connects the centroid of each hexagon within the path. Note all

paths are in the same non-rotated grid system here.
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Figure B.H.5: This figure is similar to Figure 3.5.6 of the main text. Here we only

use 100 bootstrap samples instead of rotations and use resolution 4 of the H3 grid

system. Each line connects the centroid of each hexagon within the path. Note all

paths are in the same non-rotated grid system here.
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the variance of the transition matrix entries increases due to less data being available

to estimate transition probabilities. In the main body we present resolution 3 as

this seems to balance this trade-off well in the global dataset, however in regional

studies with high data density (such as data from numerous recent clustered drifter

deployments), we imagine that resolution 4 might optimally balance this trade-off and

reduce uncertainty in these regional studies.

B.H.3 Shortest Travel Time Map

We recreate the travel time map shown in Figure 3.5.2 of the main document, how-

ever this time we use the expected travel time as the objective of the shortest path

algorithm. The new objective we use to find the optimal path and travel time is:

p̂ = arg min
p∈P

n−1∑
i=0

(
Tpi,pi
Tpi,pi+1

+ 1

)
, (B.H.1)

which is the minimum of Equation (9) in the main text. We show the result of this

in Figure B.H.6. As we are now directly looking for a minimum, this map is more

directly comparable to the results shown in Figure 2 in Jönsson and Watson [2016].

The map shown in Figure B.H.6 is smoother than the results of Jönsson and Watson

[2016].

The travel times from this map may be preferable to the most likely travel times

map; for example if distances which obey the triangle inequality are desired. These

are not used as part of the main text as we believe the expected travel time of the

most likely path is a more suitable measure for most applications. Essentially, if there

was a ‘true’ and non-Gaussian travel time distribution, the minimum travel time is
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an estimate of the minimum of that distribution, whereas the travel time of the most

likely path is more akin to a mode. This explains, in part, the larger travel times we

obtain in Figure 3.5.2 of the main document, versus what we see here in Figure B.H.6

and in Figure 2 of Jönsson and Watson [2016].

B.H.4 Grid Size and Lagrangian cut off time sensitivity

To investigate the relationship between the assumed decorrelation time (TL), and the

grid size, we show an extended version of the sensitivity analysis shown in Section

B.F. Under each resolution we estimate the travel time matrix for a grid of values

for TL. Then we estimate the Spearman and Pearson correlation (of the off-diagonal

entries) to the travel times created at TL = 5 for that grid system. The results are

shown in Figure B.H.7. We show the same correlation metric between each pair of

grid systems in Figure B.H.8. We see the correlation values are at worst 0.68 which

would still be interpreted as a moderate to strong positive correlation.

We also show the mean and variance of the travel times in each matrix produced

under the five grid systems and a grid of values for TL in Figure B.H.9. It can clearly

be seen that the smaller grid systems (H3 resolution 4 and 0.5◦×0.5◦) are less robust

to changes in value of TL. The mean and standard deviation show a downward trend

as we increase the value of TL. This shows the added robustness of resolution 3 and

motivates this choice in the main body of the chapter for this dataset (the Global

Drifter Program). We recommend repeating such sensitivity analyses for use with

different datasets, especially if applied to simulated trajectories or regional studies.
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Figure B.H.6: Similar to Figure 3.5.2 of the main text, however rather than the travel

time of the most likely path, this shows the shortest expected travel time.
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Figure B.H.7: A repeat of the experiment shown in Figure B.F.1 of the main text,

however we show the results under both Spearman and Pearson correlations and under

5 different grid systems.
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Figure B.H.8: The pairwise Spearman correlation value between the 42 travel time

estimates produced by each grid system. We fix TL = 5 days.
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Figure B.H.9: The mean and standard deviation of the 42 travel time estimates used

throughout the chapter. We show the mean and variance of these 42 travel time

estimates in years for each combination of the 5 grid systems and 28 decorrelation

times (0.5, 1, 1.5,..., 14 days).

201



B.H.5 Artificial connections

When running the analysis for the rotations of Section 3.5.3, if we do not take the

preprocessing step of removing the two points on the Strait of Gibraltar, we find

that some rotations allow this connection. In 71 of the 100 rotations we were unable

to obtain a travel time estimate from the Atlantic into the Mediterranean and in

95 we were unable to find a travel time estimate from the Mediterranean to the

Atlantic. When we do not do a rotation we are able to obtain an estimate into the

Mediterranean, this is due to the way the grid aligns as shown in Figure 3.3.1. Even if

only one of the 100 rotations are unable to provide an estimate it would be advisable

to not use the estimate from this method. Therefore, using the vanilla method on its

own to estimate travel times into the Mediterranean is not a good option.

Overall, the method provided depends on the availability of drifter data making a

connection at some point. Connections such as going across the Strait of Gibraltar are

in practice highly unlikely; any pathway which crosses it is due to a grid covering both

the east and west of the Strait of Gibraltar. One potential way to adapt the method

to approximate travel times across the Strait is, either adding artificial simulated

trajectories as in van Sebille et al. [2012], or simply add a very small probability to

the transition matrix crossing from the west to the east of the Strait of Gibraltar

(and vice versa). For example, take two locations, one west and one east of the Strait

of Gibraltar, say these correspond to states w and e respectively. If we wanted the

crossing time to be 100 days into the Mediterranean sea, set Te,w such that 19×Te,w =

Te,e, the transition matrix will no longer be valid as the e row no longer sums to one
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but the method will still work as intended, giving a 100 day crossing time from state

e to w. Such an adaptation would require the removal of the state which covers the

Strait of Gibraltar to force the algorithm to take the artificial 100 day crossing.

This example where the method detects the Mediterranean Sea’s artificial connec-

tion is an interesting bonus feature of the rotation methodology, however, it is not as

easily applicable to the Panama land mass problem. In the case of Panama, we will

still obtain a travel time estimate from the Gulf of Mexico to the Pacific if a grid cell

can cover both sides, but the times which are permitted to skip over the Panama land

mass will be much shorter. An automatic detection could be achieved by looking at

a large sample of rotations then running a test for multi modality. If it finds that

there are two modes which are very far apart then this would be a sign that the

method is finding some shortcut which is only present under some rotations. If such

a method worked to detect the Panama land mass, we could then use it to search for

more subtle surface transport barriers. In general it is preferable to preprocess the

transition matrix T such that rows/columns corresponding to unwanted links such at

the Panama Canal and the Strait of Gibraltar are simply removed, as we performed

in our analysis. Visual detection of pathways will generally solve any issues.

B.I DriftMLP package documentation

As previously mentioned as part of this project we also developed a Python package

named DriftMLP (Drift Most Likely Path). The package version is currently v1.2. The

documentation for the package with examples can be found at https://driftmlp.
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readthedocs.io/.

B.J Data Supplied for Laso-Jadart et al [2021]

The original goal and aims of this project was to supply a measure of Lagrangian

separation between arbitrary locations in the ocean. In particular, we were interested

in the Tara Oceans stations.

For a description of the final supplied product we quote the relevant paragraph

from Laso-Jadart et al. [2021]: We extracted the data for both drogued and undrogued

drifters (i.e. drifters that lost their sock) to maximize the information used by the

method. No drifters have ever been observed to get out of the Mediterranean Sea

through the Strait of Gibraltar, therefore to avoid missing data, we arbitrarily added

100 years to the travel times of pathways out of the Mediterranean Sea over the

Strait of Gibraltar and added 1 year to the pathways going into the Mediterranean

Sea, based on previous models on surface water. We used 450 rotations within the

method to reduce the reliance of travel times on the grid system used. Two travel

times are obtained by the method for each pair of stations: back and forth, resulting

in an asymmetric travel time matrix between all possible station pairings. For our

analyses, we retained only the minimum of these two travel times in the matrix, as

this then accounts for the direction of currents between stations.
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R. Lumpkin, T. Özgökmen, and L. Centurioni. Advances in the application of surface

drifters. Annual Review of Marine Science, 9:59–81, 2017.
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