Owning Your Career Paths:Storytelling to Engage Women in Computer Science

Rubegni, Elisa (2022) Owning Your Career Paths:Storytelling to Engage Women in Computer Science. In: Gender in AI and Robotics. Springer. (In Press)

[img]
Text (RubegniEtAl_2022_Female_Experts_Chapter_SPRINGER_20211218_1_)
RubegniEtAl_2022_Female_Experts_Chapter_SPRINGER_20211218_1_.pdf - Accepted Version
Restricted to Repository staff only until 1 January 2050.

Download (1MB)

Abstract

Motivation & challenge: Computer Science suffers from a lack of diversity that gets perpetuated by the most dominant and visible role models. The community is doing itself a disservice by upholding techno-solutionism, short-term efficiency, and busyness as central values. Those models are created and consolidated over time through social and cultural interactions that increase the perpetration of gender stereotypes. Exposing people to diverse types of role models and stories can contribute to making them more aware of the complexity of reality and inspire them taking better informed decisions- making on their career paths. Likewise, showing different role models to stakeholders in society and industry can contribute to increase the workforce diversity in the profession of computing as well as to make a shift towards the consolidation of different role models. This, in turn, may contribute to strengthen resilience and adequacy for solving issues related to diversity, equality and inclusion in Computer Science and more importantly allowing women take the ownership of their career path. Goal: To encourage the dissemination, sharing and creation of stories that show diverse career pathways to address gender stereotypes created by dominant stories in Computer Science. We tackle this issue by developing a framework for storytelling around female scientists and professionals to show a diversity of possibilities for women in pursuing an academic career based on the ownership of their pathways. Method: We apply a qualitative approach to analyse stories collected using the auto-ethnography and use thematic analysis to unpack the components of what in these stories contribute to building the academic path in the field of Computer Science. Authors used their own professional histories and experiences as input. They highlighted the central values of their research visions and approaches to life and emphasised how they have helped to take decisions that shaped their professional paths. Results: We present a framework made of the nine macro-themes emerging from the autoethnography analysis and two dimensions that we pick from the literature (interactions and practices). The framework aims to be a reflecting storytelling tool that could support women in Computer Sciences to create their own paths. Specifically, the framework addresses issues related to communication, dissemination to the public, community engagement, education, and outreach to increase the diversity within Computer Science, AI and STEM in general. Impact: The framework can help building narratives to showcase the variety of values supported by Computer Science. These stories have the power of showing the diversity of people as well as highlighting the uniqueness of their research visions in contributing to transformation of our global society into a supportive, inclusive and equitable community. Our work aims to support practitioners who design outreach activities for increasing diversity and inclusion, and will help other stakeholders to reflect on their own reality, values and priorities. Additionally, the outcomes are useful for those who are working in improving the gender gap in Computer Science in academia and industry. Finally, they are meant for women who are willing to proceed into an academic career in this area by offering a spur for reflection and concrete actions that could support them in their path from PhD to professorship.

Item Type:
Contribution in Book/Report/Proceedings
ID Code:
172758
Deposited By:
Deposited On:
04 Nov 2022 12:00
Refereed?:
No
Published?:
In Press
Last Modified:
21 Nov 2022 17:46