
Who are the best snooker players and what sets them 
apart from the rest? 

 

 

James Adam Patel Collingwood 

 

A thesis presented for the degree of 

Doctor of Philosophy 

 

 

 

 

Department of Management Science 

Lancaster University 

United Kingdom 

December 2021 
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James Adam Patel Collingwood 

Abstract 

Sports analysis is a growing area of research, but snooker has received limited 

attention, with no systematic analysis of the results or progression of snooker 

matches previously carried out. 

The first part of this research considers four different methods of quantifying the 

relative ability of professional snooker players.  Models based on frames won 

and world ranking points earned are developed alongside two pairwise 

comparison models using formulations devised by Bradley-Terry and Elo.  The 

predictive ability of the resultant player ratings is evaluated, with detailed 

analysis of the results produced to assess the relative strengths and limitations 

of the models.  A recent change in the design of the World Championship 

qualifying rounds is modelled to determine the likely impact on players at 

different levels of the professional game. 

The second part of this research evaluates different measures of player 

performance.  Post-match video analysis is used to record every shot played 

during 734 frames within 46 matches in two top-level professional tournaments.  

The statistics currently produced contain elements of subjectivity, which limits 

their reliability and availability.  Alternative, objective measures are constructed 

which are shown to reflect the dynamic nature of the game more effectively and 

could theoretically be generated from the automated scoring system. 

Finally, a Monte Carlo simulation model of a snooker frame is developed based 

on the probability that a ball is potted on different shots, depending on the stage 

of the frame and the length of the player’s current visit.  Simulated frames are 

shown to accurately reflect the progression of observed frames and examples 

are provided to show how the model could be used to evaluate the impact of 

alternative choices of shot.  Scaling factors are introduced to demonstrate how 

different levels of player ability could be represented and what effect this has 

on the progression of a frame.
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1 Introduction 

 

I played various sports when I was at school, but snooker was the one which 

gave me the most enjoyment and is the one which I have stuck with throughout 

my life.  It is the analytical nature of the game which appeals to me.  On each 

shot the player weighs up the merits of different options, balancing the potential 

gain from executing a shot successfully against the likely cost of not achieving 

the intended outcome.  Having committed to a choice of shot the player then 

needs to execute it to the best of their ability.  Whatever the outcome, perhaps 

the biggest challenge comes in processing, evaluating and absorbing the 

consequences of the shot before the next one is played.  All sports share this 

to an extent, but it is particularly noticeable in snooker due to the pace that it is 

played at and the indirect way in which the two players interact. 

At university I found that a large proportion of my fellow players were also 

studying mathematics and related subjects.  The type of analytical thinking 

nurtured by these disciplines would appear to be well suited to aspiring snooker 

players.  At a time when there has been a surge in interest in applying analysis 

to inform decisions in a whole range of sports (popularised most notably by 

Lewis in Moneyball, 2004), it is therefore disappointing that snooker is yet to 

attract the same amount of attention.  Snooker is a sport which should lend itself 

well to such analysis, with the two players taking turns to visit the table, making 

it easier to assess the outcome of each shot and the interaction between 

successive shots.  Despite this, in Wright’s review of the contribution made by 
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Operational Research over 50 years in sport (Wright, 2009), snooker was only 

mentioned in passing and little has changed in the subsequent decade. 

The main aim of this research is therefore to shine a light on the rich potential 

which snooker offers to an analyst; and the type of insights that such analysis 

may provide to interested parties within the sport.  It barely touches the surface 

of what could be done but hopefully serves as a starting point to inspire others 

to consider ways in which data and analysis can be used more effectively within 

the sport. 
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1.1 Thesis Outline 

The ultimate aim driving this research is to understand what differentiates the 

best snooker players from the rest.  Can we identify key measures of 

performance which explain how matches are won and lost?  How do the relative 

strengths of the players affect the progression of a snooker match (made up of 

a pre-determined number of frames) and how likely is it that a player will win the 

current frame from a given position? 

A core element of this is determining who are the best players in the world and 

quantifying the relative difference in ability between players.  How likely is it that 

one player will beat another, and how does this change as the match 

progresses? 

The three objectives of this research are: 

1. To compare and evaluate different methods of quantifying the relative ability 

of professional snooker players. 

2. To identify and evaluate ways of measuring different aspects of a player’s 

performance during a match. 

3. To develop a model of a snooker frame which can be used to estimate the 

probability of either player winning as the frame progresses and how this is 

affected by the choice of shot at key moments. 

1.1.1 Quantifying the relative ability of professional players 

The first part of this thesis considers different methods for rating and ranking 

professional snooker players.  The official World Rankings provide one means 

of rating a player’s performances based on the amount of prize money they 

have won; a player’s win percentage offers another.  Unlike these aggregate 
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measures, mathematical models can also account for the strength of opposition 

faced.  A further consideration relates to the time period that is used to measure 

a player’s performance.  The official World Rankings assign the same weight to 

all prize money won within the last two years.  Restricting the ratings to a single 

year may reflect a player’s current form more accurately.      

Establishing a robust method for quantifying the relative ability of players 

enables us to produce a reliable expectation about how likely it is that each 

player will win the next frame / the next match.  Aside from providing an insight 

into how reliable the official World Ranking of players appears to be, this could 

also form the basis for further analysis exploring different aspects of 

professional snooker. 

1.1.2 Measuring the performance of players within a match 

The second part of this thesis considers measures used to assess each player’s 

performance during a match and seeks to establish which of these convey the 

most meaningful information about how the match was won and lost.   

Existing statistics are limited to some basic information about how many points 

each player has scored and how effectively they have executed different shots.  

More sophisticated measures are considered which reflect the dynamic nature 

of the game; each shot played has a consequence for the next shot and this 

also needs to be captured in any assessment of a player’s performance. 

1.1.3 Modelling the progression of a frame 

The third part of this research uses Monte Carlo simulation to model the 

progression of a single frame based on the probability of potting a ball on each 

shot as the frame develops.  The model is designed to estimate the probability 
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of each player winning the frame depending on the current score and number 

of balls remaining, which in turn provides a basis for evaluating the likely 

outcomes from selecting one shot or another. 

The default version of the model is based on two top-level professionals of equal 

ability, but further adaptations are used to understand how the progression and 

outcome of a frame varies:   

• Depending on the typical level of play of the two players (e.g. whether both 

are top-ranking or middle-ranking professionals) 

• Depending on the relative strengths of the two players; their break-building 

and tactical prowess. 

This creates a framework for linking the first two elements of this research, 

looking at how differences in the performance of two players affects the 

progression of a frame and how the top players consequently achieve better 

results than the rest. 

1.1.4 Chapter Summaries 

The remainder of this chapter provides background to the research carried out.   

• Section 1.2 summarises key elements of the game of snooker, including a 

description of the game (§1.2.1), the Professional Snooker Tour under which 

all professional snooker matches are played (§1.2.2) and the World Ranking 

system used to rank professional snooker players (§1.2.3).   

• Section 1.3 summarises the data available, which covers the results of all 

professional matches played (§1.3.1) and the world ranking of players 

leading into each tournament (§1.3.2).  A limited amount of information is 
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available from the automated scoring systems used during all professional 

and some amateur tournaments (§1.3.3), while statistics from some high-

profile events are also available (§1.3.4).  Post-match video analysis has 

also been used to record data from over 30,000 shots played during 46 top-

level professional matches (§1.3.5). 

• Section 1.4 reviews existing literature relating to snooker (§1.4.1) as well as 

wider research covering the rating and ranking of competitors within sports 

(§1.4.2), the development of sports performance measures (§1.4.3) and 

models representing the progression of sporting contests (§1.4.4). 

Chapters 2-4 present three papers which have been submitted to academic 

journals as part of this research. 

• Chapter 2 - Evaluating the effectiveness of different player rating systems in 

predicting the results of professional snooker matches.  Published in the 

European Journal of Operational Research (Collingwood et al., 2022). 

• Chapter 3 – The analysis and development of performance measures in 

snooker.  Originally submitted to the International Journal of Performance 

Analysis in Sport in June 2020 (Collingwood et al., 2020). 

• Chapter 4 – Simulating the progression of a snooker frame.  Originally 

submitted to the European Journal of Operational Research in February 

2021 (Collingwood et al. 2021). 

Chapters 5 then summarises the main findings of this research and its 

contribution in respect of the application of Operational Research analysis to 

snooker and sport in general.  Potential extensions of this research are also 

discussed.    



7 
 

1.2 Snooker – The Basics 

The following section is intended to summarise all aspects of snooker which are 

referred to in this thesis.  Core elements of the game itself are described in 

Section 1.2.1, such as the points values of the balls used and the order in which 

they are potted.  The structure of the professional game is summarised, with 

snooker matches organised under a single Professional Tour (§1.2.2).  The 

amount of prize money won in designated ranking events determines a player’s 

official World Ranking, which reflects their status within the game (§1.2.3).     

1.2.1 Description of the Game 

Snooker is a cue-sport played on a table measuring 12 feet by 6 feet with 

pockets in each corner and in the middle of the longest sides, as shown in Fig 

1.1. 

 

Source: From Billiards, snooker, pool and darts by Clayworth, 2013 

(https://teara.govt.nz/en/diagram/38477/table-layouts-snooker). Copyright 2013 by Te 

Ara – The Encyclopedia of New Zealand 

Figure 1.1: Top-down view of a snooker table   

https://teara.govt.nz/en/diagram/38477/table-layouts-snooker
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Players take turns to use a cue to hit the white cue ball towards object balls, 

which when potted in a pocket earn the player a set number of points.  The 

object balls comprise of 15 reds (each worth 1 point) and 6 colours (yellow = 2, 

green = 3, brown = 4, blue = 5, pink = 6 and black = 7).  The reds are initially 

racked together in a triangle between the pink and black at one end of the table.  

Each colour has its own spot on the table where it begins the frame and is 

returned to after it is potted.  The blue is in the middle of the table, while the 

yellow, green and brown (known collectively as the baulk colours) are located 

at the opposite end of the table to the pack of reds.   

For each shot a player can either attempt to pot an object ball or play safe with 

the aim of preventing their opponent from potting a ball on their next turn.  If a 

ball is potted then that player continues with their next shot, otherwise play 

switches to their opponent.   

On each new visit to the table, a player must first aim to hit (and ideally pot) one 

of the reds, which can be played in any order and are not replaced once potted.  

After potting a red, the player nominates one of the colours and has a single 

shot at it, with the colour replaced on its spot if it is successfully potted.  This 

sequence of red, colour, red, colour continues until there are no reds left on the 

table.  At this point the colours are potted (without replacement) in ascending 

order of value.   

Throughout this thesis, any visit where a player legally pots at least one ball is 

referred to as a scoring visit.  The total number of points scored during a scoring 

visit is referred to as a break.  The “maximum” break under normal conditions 

is 147 (15 reds, each followed by the black, and then all 6 colours).                



9 
 

A single frame of snooker is won by the player who scores the most points - 

primarily through potting balls, although penalty points are also awarded the 

opposing player commits a foul shot (e.g. if the wrong ball is potted or the cue 

ball hits another ball before the object ball).  A frame ends when the final black 

is potted, although most frames are conceded once the difference in points 

between the two players becomes too great for one player to win.  A match is 

won by the first player to win a pre-determined number of frames.   

Players need to be conscious of the number of points remaining on the table 

(i.e. the maximum number of points which could be scored from the remaining 

balls, assuming that the black is potted after each red).  If one player trails by 

more than this amount, then they are said to “require snookers”.  More precisely, 

they need to try and create a situation from which their opponent will give away 

penalty points.  The best way to achieve this is to snooker their opponent, so 

that they are unable to hit the object ball directly (i.e. there is another ball in a 

direct line between the cue ball and the object ball).  Everton (2014) is 

recommended for a more detailed description of the game. 

1.2.2 The Professional Game 

The World Professional Billiards and Snooker Association (WPBSA) is the 

governing body for the sport.  Among other things, the WPBSA is responsible 

for setting and communicating the official rules of the game (WPBSA, 2019).       

The Professional Tour is run by World Snooker, with over 20 tournaments 

played each season.  The season typically starts in June and runs through to 

the World Championship, which is scheduled to finish on the first Bank Holiday 

Monday in May.     
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Each season there are nominally 128 places on the Professional Tour and the 

Tour is open to male and female players.  During the 2020/21 season all 

professional players were male but for subsequent seasons it has been 

announced that Tour cards will be awarded to the two highest ranked players 

on the Women’s Tour, currently Reanne Evans and Ng On Yee.   

The UK has traditionally been the ‘home’ of the sport, but it is also growing in 

popularity in China and the Far East and in some parts of Europe.  During the 

2020/21 season, the majority of players were from the UK (82), with China 

providing 23 players.  Other countries represented included Australia, Brazil, 

Germany, Iran, Morocco and Thailand.   

There are various ways to qualify for the Professional Tour, typically by winning 

an international qualifying competition or through a high ranking on an amateur 

tour.  At the end of the season a “Qualifying School” is held, with the strongest 

performers from a series of competitions earning the final spots on the Tour.  

Any player qualifying through these routes is awarded a new 2-year Tour card.      

Most tournaments held on the Professional Tour are open to all current 

professionals, with results counting towards the World Rankings.  Players are 

not obliged to participate in every event and amateur players are invited to take 

the place of any professional who chooses not to enter. 

There are also a small number of non-ranking events which the leading players 

are invited to participate in.  The highest profile of these is the Masters, which 

is contested by the 16 highest-ranked players and is televised by the British 

Broadcasting Corporation (BBC) in January of each year.    
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Alternative league-based formats are sometimes used, but during the seasons 

analysed all ranking events were straight knock-out competitions.  The standard 

format is for all 128 players to start from the same round, with the 16 highest-

ranked players seeded to avoid each other until the latter stages (i.e. the top 

two seeds are in separate halves of the draw; the top four seeds are in separate 

quarters etc.).   

The World Championship is the most notable exception to this design with the 

16 highest-ranked players automatically progressing to the final stages, to be 

joined by 16 qualifiers.  The structure of the qualifying rounds for the World 

Championship is discussed in more detail in Section 2.5.    

Towards the end of the season, participation in a series of ranking events is 

restricted to the players who have earned the most prize money during the 

season so far.  These events are the World Grand Prix (32 players), the Player 

Championship (16 players) and the Tour Championship (8 players). 

A full list of ranking events played during the 2016/17, 2017/18 and 2018/19 

seasons is provided in Appendix I.  Around half were held in the UK, with each 

tournament taking place over the course of 1 or 2 weeks.  China, India and 

mainland Europe all hosted tournaments, although it was generally only the final 

stages (i.e. the “Last 32” onwards) which were played in these countries with 

the first two “qualifying rounds” played in the UK at an earlier date.      

The length of each match varies between tournaments – and often within a 

tournament.  Matches are usually referred to as the “Best of 𝑵” frames, with the 

contest ending when one player has an unassailable lead – i.e. is the first player 
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to win 𝒏 frames, where 𝒏 =
(𝑵+1)

2
.  The early rounds of a tournament are 

typically the “Best of 7”, “Best of 9” or “Best of 11” with all frames played during 

a single session.  The final match of each tournament is usually either the “Best 

of 17” or “Best of 19” and is played over two sessions.  Matches played during 

the World Championship are longer; with the early rounds the “Best of 19” and 

finishing with a “Best of 35” frames final played over 4 sessions.          

1.2.3 World Rankings 

The official snooker World Rankings are based on the amount of prize money 

earned by current professionals in ranking events over the previous 2 years.  

Players earn prize money depending on how far they progress through a 

tournament; from £0 for first match losers, up to £500,000 for the winner of the 

2019 World Championship.  Amateur players can receive prize money for any 

tournament they enter but are not assigned a World Ranking.   

The prize fund for each tournament varies depending on the amount received 

from sponsorship and the sale of television rights.  During the 2018/19 season, 

the World Championship had a total prize fund of £2,231,000 compared with 

just £100,000 for the Paul Hunter Classic.  As a result, the value of each match 

varies considerably in terms of its influence on a player ranking.  Winning the 

final of the 2019 World Championship earned Judd Trump £300,000 (the 

difference between the prize for the winner and the prize for the runner-up); 

while winning the final of the 2018 Paul Hunter Classic earned Kyren Wilson 

just £10,000 – the same amount as a player winning a match in the first 

qualifying round of the World Championship that year.    
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In principle the World Rankings are updated on a rolling basis following the 

completion of each tournament, although there are around 10 key updates (cut-

off points) each season which determine the seedings for subsequent 

tournaments.   

At the end of each season, the 64 highest-ranked players automatically retain 

their place on the Professional Tour for the following season.  New entrants are 

awarded a place on the Tour for 2 years, so roughly half of those finishing 

outside the Top 64 will be half-way through this period and will continue for 

another season, while the other half will lose their place. 

It is possible (and fairly common) for a player to lose their place only to 

immediately earn it back again through the Qualifying School.  In these cases, 

any prize money they earned over the previous two seasons is not counted 

towards their World Rankings.  All “newly qualified” professionals therefore start 

with 0 ranking points, regardless of their previous experience.   
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1.3 Data 

The data which has been used in this research comes from a variety of sources.  

Data relating to the results of matches (§1.3.1) and the World Rankings (§1.3.2) 

are widely available.  A limited amount of information is published from the 

automated scoring systems used in the professional game (§1.3.3) and from 

statistical analysis produced during televised matches (§1.3.4).  Much of the 

analysis in this thesis has been based on a separate collection of data carried 

out by the author using post-match video analysis (§1.3.5).  

1.3.1 Match Results 

The results of all professional snooker matches are available online, with 

Snooker.org and CueTracker.net the sites used to collate the information used 

in this study.  These sources have been used to capture the results of all frames 

and matches played in ranking events from the 2005/06 season right through 

to the current date, with most of the analysis in this thesis based on those played 

between the 2013/14 and 2018/19 seasons (e.g. Årdalen, 2019a and Florax, 

2019a).  For each tournament, CueTracker.net also records the number of 

points scored in every frame by each player (not used in this research) and the 

sequence in which the frames were won (e.g. Florax, 2019b). 

1.3.2 World Rankings 

Historical information relating to the World Ranking of players is more patchy 

and less reliable.  CueTracker.net presents the ranking position and prize 

money earned by players at the start and end of each season (e.g. Florax, 

2019c), while Snooker.org lists the seedings of players at each cut-off point 

during the season (e.g. Årdalen, 2019b).  These have been used to determine 
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the prize money ranking of each player at every cut-off point in 2016/17, 

2017/18 and 2018/19. 

Note that this may differ from a player’s ranking at the time a match was actually 

played – e.g. where there is a gap between the qualifying rounds and final 

stages of a tournament.  This approach was easier to corroborate against the 

available information and enabled a single ranking to be specified for each 

player across the whole of the tournament.  

1.3.3 Automated Scoring Systems 

An automated scoring system is used by the World Snooker Tour at all 

professional events.  After every shot, the official scorer (who might also be the 

match referee) will enter how many points were scored.  This automatically 

updates the score displayed at the venue, while the feed (for professional 

events) is also used to update World Snooker’s live scoring service (World 

Snooker Tour, n.d.) as well as being sent to bookmakers for use on their 

websites.  For commercial reasons the outputs from this are not publicly 

available and this research has had no access to information from this source. 

Some amateur tournaments also use this technology and the outputs from two 

such events are available online. 

• The World Snooker Federation (WSF) Open is one of the highest-profile 

international amateur events played annually.  The winner of the event is 

awarded a place on the professional tour for the following season.  

Scoresheets from the 2020 WSF Open are published online (World 

Professional Billiards and Snooker Association, 2020a) and have been 

analysed within this research. 
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• The World Seniors Snooker Championship is contested by players over the 

age of 40 – excluding professionals ranked inside the top 64.  The 2020 

event was played at the Crucible Theatre and scoresheets are also available 

online (World Professional Billiards and Snooker Association, 2020b).  An 

example of the data available from this source is provided in Appendix II. 

Scoring apps are also available for players to record their own matches. 

1.3.4 Performance Measures 

Real-time statistics are produced for televised matches.  These are sometimes 

referred to by the commentators during a match and displayed on screen, but 

they are not systematically collated or disseminated after the match.  The only 

data that have been made available publicly are from matches played in The 

Masters and the final stages of the World Championship.  These were produced 

for the BBC by Alston Elliot and were released via their twitter account (no 

longer available).  From this source, statistics were extracted from 146 matches 

played over 7 tournaments (the 2016, 2017, 2018 and 2019 Masters and 2017, 

2018 and 2019 World Championships). 

The main figures produced are a combination of scoring statistics (Frames Won, 

Total Points Scored, Balls Potted and Highest Break) and success rates for 

different types of shot (Pot, Long Pot, Rest Pot and Safety).  These are analysed 

in detail in Chapter 3, with Table 3.1 containing the official statistics produced 

for the 2018 World Championship final.  

Scoring apps have been developed to produce additional statistics.  In 

particular, the creators of mysnookerstats (MSS) have produced a rating for 

players based on the proportion of pots which are followed by another (Guest, 
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2010).  This is discussed in Chapter 4, with Table 4.1 showing how the MSS 

Rating is believed to equate to the overall playing standard.  The equivalent of 

their MSS Rating is described as a player’s scoring power within this research 

as it is effectively a measure of a player’s break-building prowess and the 

number of points they score from each opportunity.      

1.3.5 Post-Match Video Analysis 

In addition to the publicly available information, I also used post-match video 

analysis to generate shot-by-shot data from all 31 matches played during the 

2018 World Snooker Championship finals; and a further 15 matches played 

during the 2019 Masters.  In total this comprised of 32,601 shots played over 

734 frames of snooker.  A list of matches analysed is provided in Appendix III. 

The information collected included the player taking the shot, the type of shot 

played (typically a pot or a safety shot) and the outcome of the shot – whether 

any balls were potted along with any points scored or penalty points conceded.   

Additional data were captured for a subset of matches to replicate the success 

rates produced for the official statistics.  These included whether the rest was 

used to play the shot and an assessment of whether an attempted pot could be 

considered ‘long’.  A subjective assessment of whether a safety shot was 

executed successfully was also made for shots played during the 16 matches 

contested during the 1st round of the 2018 World Championship. 

Any notable features of the shot, perhaps relating to the difficulty of the shot 

(e.g. if the player was intending for the cue ball to make contact with another 

ball after striking the object ball - known as a cannon - in order to develop or 
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gain position on the next ball), or any unusual outcomes (e.g. 2 reds potted in 

the same shot) were also recorded within notes relating to each shot. 

From these data it was possible to derive information about the status of the 

frame at the start of each shot: the number of points currently scored by each 

player, the number of balls (and points) remaining on the table, whether the 

player was starting a new visit (along with the number of shots since the last 

pot) or continuing an existing visit (along with the number of shots played and 

points scored during the visit). 

A sample of the information recorded and how it was used to generate match 

statistics is provided in Appendix IV.   
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1.4 Literature Review 

The following section first looks at existing academic research relating to 

snooker (§1.4.1).  The following sub-sections then consider research which has 

been carried out in other sports in relation to rating and ranking players (§1.4.2), 

measuring sports performance (§1.4.3) and modelling sporting contests 

(§1.4.4).   

1.4.1 Snooker 

A search for academic literature relating to snooker produces relatively few 

results.  Only a couple of papers analyse the results of professional matches 

and these only consider a limited number of matches from the World 

Championship.  The mathematics relating to a shot and the implication this has 

for shot choice is another area with rich potential which has only briefly been 

explored by a couple of authors.  Technical and psychological aspects of the 

sport are of interest to players and coaches and have been the focus of some 

academic research.  

Expected Results 

There are just two academic papers focusing specifically on the results of 

snooker matches.  Clarke et al. (2009) analysed results from the World Snooker 

Championship between 2004-2007 to assess how well the criteria of fairness, 

balance and efficiency were met by the design of the tournament.  Norman 

(2015) considered the winners of the World Championship from 1977-2014 in 

discussing the fairness of the tournament design in light of changes introduced 

to the Professional Tour from 2010/11.   
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Neither paper formally considered the relative ability of individual players in their 

analysis, with Clarke et al. basing their expected results on their finding that 

across all matches analysed the higher-ranked player won 60.9% of matches 

played, equating to 53.1% of frames.  Neither the round the match was played 

in nor the difference in the seeding of the two players were found to be 

significant in determining the likely winner.   

It should be noted that in these years, a player’s seeding was determined by 

their world ranking at the start of the season and took no account of matches 

played since then.  While the seedings were broadly representative of one 

player’s ability relative to another, they would not reflect any recent 

improvements in performance and could not be considered a precise estimate 

of each player’s current ability. 

Under the assumption that frames are independent from one another, Clarke et 

al. used the binomial formulation to estimate the probability of a player winning 

the match, 𝑷, based on their chances of winning a single frame, 𝒑, and the 

number of frames required to win the frame, 𝒏: 

𝑷 = ∑ (
2𝒏 − 1

𝑖
)

2𝒏−1

𝑖=𝒏

𝒑𝑖(1 − 𝒑)2𝒏−1−𝑖                    (1) 

They compared the actual distribution of 253 match scores against the expected 

distribution based on the higher-ranked player in each match having a 

probability of 0.531 of winning a frame.  A chi-squared test indicated a 

significant difference between the two distributions; with a larger number of very 

one-sided matches than would be expected.  They speculated that lower-
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ranked players may have given up hope of winning the match too quickly if they 

fell behind. 

They were using a very simplistic model of a snooker match though by utilising 

a single probability to predict the frames won by the higher-ranked player.  This 

ignores the presence of any variation in ability between players, which if it exists 

(as is likely) would lead to their model under-estimating the occurrence of more 

extreme results. 

Haigh (2009) showed that by setting 𝒑 = 0.5 +  𝝐, where 𝝐 represents a small 

advantage for one player, an application of Stirling’s formula can be used to 

approximate equation (1) to show that the stronger player’s advantage extends 

to 2𝝐 √𝒏 𝜋⁄  for a match of length 𝒏.  Further analysis shows that this tends to 

overestimate the player’s advantage but is reasonably accurate for 𝝐 ≤ 0.05, 

with an error of < 0.01 for 𝒏 < 13.  

A chart showing the probability of players of different relative abilities winning a 

match of varying length is shown in Appendix V, with estimates calculated from 

equation (1). 

Shot Choice 

The mathematics relating to a shot and potential implications for shot choice 

have been analysed.  Key factors in determining the difficulty of a pot are: 

• the distance between the cue ball and object ball, 

• the distance between the object ball and the pocket,  
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• the angle formed by the path of the cue ball and the path of the object ball 

in order for the object ball to fall into the centre of the pocket (or alternatively, 

the angle between the path the cue ball would take to hit the object ball in 

its centre (“full ball”) and the path it would need to take to hit the object ball 

into the centre of the pocket),  

• the angle at which the object ball will enter the pocket (or alternatively, the 

effective width of the pocket perpendicular to the path of the object ball 

required for it to fall into the centre of the pocket).  

Eastaway and Haigh (2011) calculated the margin for error for different shots; 

looking at how far from the correct angle the object ball could be struck before 

the pot would be missed.  They concluded that the most difficult pots were those 

where there were relatively large distances between the cue ball, object ball 

and pocket, with the object ball needing to be hit at a very fine angle towards a 

narrow pocket.  Attempting to pot the black off its spot with the cue ball starting 

on either the yellow or green spots is about as challenging as it gets.   

Percy (1994) demonstrated how Bayesian methods of predictive inference 

could be applied to snooker in to develop optimal strategies for choosing 

between different pots; albeit acknowledging the difficulties in obtaining enough 

data to enable a posterior distribution to be generated.  The gain or loss 

associated with each shot in his model was also limited to the points value of 

the object ball; further work would be required to factor in additional gains (or 

losses) from the player (or their opponent) potting a ball on subsequent shots.  
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Technical and Psychological Analysis 

Beyond this, academic research relating to snooker has tended to focus on 

more technical, technological or psychological aspects of the sport. 

A systematic approach to training was devised by Chung et al. (2014), based 

on assessing and improving a player’s level of skill relating to five key elements 

of the game.  Tests were proposed to evaluate a player’s control of power, 

judgement of angles, generation of top / back spin, control of side spin and cue 

alignment.   

A feasibility study on using visualisation to capture and present data obtained 

through video analysis of a player’s practice sessions was produced by Höferlin 

et al. (2010), initially focussing on capturing any unwanted spin applied to the 

cue ball as the shot is played.   

The visual-perceptual and cognitive abilities of different levels of player have 

been tested with expert players showing greater capacity for evaluating the 

situation and a greater depth of forward planning in their shot selection 

(Abernethy et al., 1994).  The stressors and coping strategies of elite players 

have also been explored (Welsh et al., 2018). 

1.4.2 Rating and Ranking Players 

This section provides an overview of methods for rating and ranking players and 

how they are used within sport.  Two commonly used methods for exploiting 

data based on paired comparisons of competitors and are summarised, along 

with methods for comparing the predictive ability of models. 
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Overview 

Various approaches are taken to produce a numerical rating for the ability or 

performance of different competitors or teams within a sport.  Any such rating 

system can then be used to produce an ordered ranking of the participants.  

Accumulative systems award points according to the result achieved in each 

event, which incentivises competitors to take part in as many events as they 

can.  Where the points on offer varies this also incentivises organisers and 

sponsors to provide additional backing for their event to maintain / increase its 

prestige and attract the top players. 

Adjustive systems update each competitor’s rating based on how far the actual 

result deviated from the result that would be expected given the difference in 

ratings between the competitors. 

Aside from official ranking systems, analysts have developed a range of 

methods to rate players and teams based on the results of matches, some of 

which are described by Langville and Meyer (2012) who looked at how they 

have been used to rate and rank teams, individuals and products in a variety of 

contexts.  

Elo 

The Elo model is one of the most well-known and most used type of adjustive 

system, initially devised in the 1960s by Arpad Elo to determine the rating of 

Chess players relative to one another (Elo, 2008).  This utilised a simple method 

for generating a new rating for a player (𝑅𝑛) based on their old rating (𝑅𝑜) and 

the difference between the actual result (𝑊) and the expected result (𝑊𝑒): 
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𝑅𝑛 =  𝑅𝑜 + 𝐾(𝑊 −  𝑊𝑒) 

Where 𝐾 is the weight assigned to that particular result (Elo, 2008, p25).   

Stefani (2011) reported that in some systems such as Women’s football, 𝐾 

varies according to the type of match being played.  A friendly match would 

therefore be assigned a lower weight than a World Cup match.  In other systems 

such as Chess, 𝐾 varies according to the player’s level of experience.  The 

rating of a more experienced player is expected to reflect their ability more 

accurately, so a lower weight is applied when updating their ratings.  A higher 

weight is applied to the results of less experienced players on the basis that 

their previous rating may be less representative of their true ability, with their 

level of performance more likely to change over time.    

Expected results are based on the difference between the ratings of each player 

(𝑑) and are commonly expressed as 𝑃(𝑑): 

𝑃(𝑑) =  Φ (
𝑑

𝜎 √2
) 

Elo initially assumed that each player’s performance was normally distributed, 

although he also discussed the feasibility of basing the system on the logistic 

distribution instead. 

The standard deviation of the player’s performance is usually set at 200, with 

Elo selecting this value as it ensured that the spread of ratings generated by his 

system would be similar that of the system it replaced.  In this sense it is 

designed to reflect the spread of players at a similar level of ability, rather than 
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necessarily reflecting how an individual’s performance is likely to vary.  Under 

Elo’s system, 𝜎 is fixed, with the same estimate used for all players.  As such, 

its effect is cancelled out when determining the probability of one player 

defeating another. 

Glickman (1999) has since implemented a variation on Elo’s method which 

allows for different assumptions about a player’s ratings deviation.  Players 

competing less frequently would be assumed to have a higher ratings deviation, 

reflecting that there is less information available on which to base their rating.  

Subsequent adjustments to their rating would also be slightly larger than for 

players who had played more frequently. 

Glickman (2016) suggested using a ratings deviation of 350 for an unrated 

player, down to a minimum of 30 for players who compete more regularly.  A 

95% confidence interval for a player with rating 𝑟 and ratings deviation 𝑅𝐷 can 

be computed as: (𝑟 − 1.96𝑅𝐷, 𝑟 + 1.96𝑅𝐷).  The confidence interval for an 

unrated player with a rating of 1500 is therefore (814, 2186), while for a regular 

competitor with 𝑅𝐷 = 30 it would be (1441, 1559). 

The ratings deviation is an attempt to model the uncertainty in a player’s true 

ability based on the frequency with which they have competed, rather than 

being directly related to variation in their actual performances.  Glickman (2013) 

proposed a modification to his system which included an additional parameter 

to represent the volatility of a player’s performance.      
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Bradley-Terry 

Agresti (2013) described the logit form of a paired comparison model first 

proposed by Bradley and Terry (1952).  This states that log
𝜋𝑎𝑏

𝜋𝑏𝑎
=  𝛽𝑎 − 𝛽𝑏 

where 𝜋𝑎𝑏 is the probability that 𝑎 (with a rating of 𝛽𝑎) ‘prefers’ (i.e. beats) 𝑏 

(with a rating of 𝛽𝑏). 

For all pairs of competitors, the model is based on the number of previously 

observed occasions where 𝑎 was preferred to 𝑏, denoted 𝑛𝑎𝑏 and the number 

of occasions where 𝑏 was preferred to 𝑎, denoted 𝑛𝑏𝑎.  Assuming that 

outcomes of contests are independent of one another then for each pair of 

players, 𝑛𝑎𝑏 has a binomial distribution with 𝑛 =  𝑛𝑎𝑏 + 𝑛𝑏𝑎 and 𝑝 =  𝜋𝑎𝑏.  

A logit model can be fitted using maximum likelihood estimation to produce 

ratings for each player. 

One additional constraint is required to specify the rating of one individual (e.g. 

𝛽1 = 0).  The ratings of all other players are then derived relative to this. 

The standard version of the Bradley-Terry model assigns the same weight to all 

historical contests, regardless of whether they took place at the beginning or 

the end of the period analysed.  McHale and Morton (2011) proposed using an 

exponential decay function to weight results so that more recent results would 

have a stronger influence over a player’s rating and found that using a half-life 

of 240 days improved the predictive ability of their model for rating tennis 

players.  
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Comparing Models 

A standard way to compare the reliability of models used to rank players is to 

assess their ability to predict the outcomes of matches played.  The simplest 

measure is a model’s Prediction Accuracy (i.e. what proportion of subsequent 

matches were won by the higher-rated player).   

This merely looks at a model’s ability to identify the higher-rated player, so 

scoring rules, which evaluate the probability assigned to each possible 

outcome, are generally favoured instead (Gneiting & Raftery, 2007).  These 

typically penalise a model more heavily if they confidently predict an outcome 

which fails to materialise.     

Additional measures of the level of Calibration and Discrimination exhibited 

by a model are designed to identify any biases in the models created (Kovalchik, 

2016) and are described in more detail in Chapter 2.  Kovalchik based her 

calibration ratio on expected and actual wins for the tennis player with the higher 

World Ranking, but I have preferred to focus on the higher rated player 

according to the model being analysed. 

The Bradley-Terry models in her analysis were poorly calibrated, achieving a 

much higher log-loss score than the other models.  Inspection of her code 

reveals that the Bradley-Terry ratings produced actually represent the 

probability of one player winning a single game against another.  These would 

need to be scaled up to provide an estimate of one player winning a match 

against the other – as described by McHale and Morton (2011) in their original 

formulation of the model.   



29 
 

1.4.3 Measurement of Sports Performance 

This section considers research relating to measures of sports performance.  

Statistics relating to sports performance serve different purposes and can be 

categorised into different types of measure.  To be considered an appropriate 

performance indicator a statistic should possess key measurable qualities.  

Performance indicators should also reflect the dynamic nature of the contest 

they are reporting on.     

Types of Measures 

There are various aspects of a sporting contest which we may wish to analyse 

to help understand how the match has progressed and how a particular result 

has arisen.  Scoring measures present basic information about key events 

during the match, such as the number of goals scored, or games / sets / frames 

won.  Quality measures capture more detailed aspects of a player’s or team’s 

performance such as passing accuracy or strike rate.  These may capture 

technical skills, tactical decisions or biomechanical factors (Hughes and 

Bartlett, 2002).   

Qualities of Performance Measures 

In developing appropriate measures of performance, O’Donoghue (2015) 

describes the qualities which a performance indicator should possess.   

Validity refers to the relevance and importance of the aspect of performance the 

indicator is measuring.  The scale of measurement should be known and 

recognisable and it should be possible to interpret each indicator through 

evaluation against a ‘gold standard’.  This could be the outcome of the match 

or a recognised benchmark for success based on data from a comparable peer 
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group or past performances of the teams / individuals studied.  A complete set 

of indicators should ideally cover all aspects of performance.   

Objectivity means that the values taken by an indicator should be independent 

of a given observer’s opinion.  Human judgement may be required when 

categorising the data collected but the indicator should be clearly defined to 

ensure that observers produce consistent records.  The reliability of each 

indicator should be tested by checking levels of inter-operator consistency.   

Dynamic Interactions 

In game sports such as snooker, the outcome of a match is not determined 

purely by the individual performance of each player.  Lames and McGarry 

(2007) argued that such contests are characterised by a dynamic interaction 

between the competitors and that the approach used to analyse performance 

should take this into account.  Performance fluctuates both during and between 

matches, making performance traits (and therefore the indicators themselves) 

inherently unstable.  Individual performance measures should therefore be 

interpreted with caution.  

Similarly, O’Donoghue (2009) showed that outcomes and styles of play in tennis 

are influenced by both the quality and type of opponent faced, and that different 

players are influenced by the same opponent types in different ways. 

Lames and McGarry (2007) highlighted the merits of depicting game sports as 

Markov processes, using an example from a Volleyball match to show how a 

transition matrix summarising the progression of points within a match could be 

used to help identify key areas where one team dominated.  Sensitivity analysis 
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can also be carried out to understand how improvements in one area of 

performance might affect the overall result. 

Examples of Performance Analysis in Sport 

In Moneyball, Lewis (2004) described how baseball teams were starting to use 

statistical analysis to change the way that they evaluated players, challenging 

preconceptions widely held within the game.  Recruitment strategies and match 

tactics were tailored accordingly, bringing success to teams who were quick to 

adopt these and take advantages of inefficiencies in existing practices. 

Moneyball introduced sports performance analysis to a wider audience, 

although the analysis it described had been developed over many years.  The 

Society for American Baseball Research (SABR) was founded in 1971, leading 

to the emergence of “Sabremetricians” who have become increasingly 

influential in informing the way that baseball teams operate (Schell, 2011).  A 

wide range of official statistics are now publicly available, which are updated as 

games progress.  Raw data from matches have also been collated and are able 

to download, allowing a wider pool of analysts to mine the data and enabling 

the continual evolution of baseball analysis (SABR, n.d.). 

In the UK, analytical teams are now embedded into many professional football 

teams, with a vast amount of data now available for them to mine.  Opta Sports 

provide data to a number of clubs (Arastey, 2018) and to aid consistency of data 

collected across the world they have developed and published a set of ‘Event 

Definitions’ to formally define the statistics produced (StatsPerform, n.d.).  The 

Numbers Game (Anderson and Sally, 2014) and Football Hackers (Biermann, 
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2019) describe how the increased availability of data has changed the way that 

analysis of football is carried out.      

One of the challenges in analysing football matches is that is a relatively low 

number of goals are scored.  Brechot and Flepp (2020) explained how there is 

a tendency to place too much weight on analysis of goals scored when 

evaluating the performance of a team given the high degree of randomness 

associated with this.  A measure of expected goals is preferred, derived by 

quantifying the scoring chances created by a team over the course of a game.  

This captures a larger amount of a team’s performance, increasing the 

robustness of the analysis produced. 

This more systematic, “Moneyball” style, approach has also been applied to the 

evaluation of individual football players, considering the different types of skills 

which are required in different positions of the pitch (Hughes et al, 2011).    

A key innovation in golf has been the development of ShotLink, an advanced 

ball-tracking system which provides detailed information about every shot 

played.  Arastey (2020) described how the system has evolved over time to 

provide insights which benefit players, coaches and viewers.  Broadie (2012) 

used the data from this system to devise an approach for quantifying the 

success of every shot played in terms of the number of Strokes Gained 

compared with the performance of an average PGA Tour player.  This yielded 

a more robust method for comparing the relative ability of each player in 

different aspects of the game (putting, long tee shots, approach shots etc.). 
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1.4.4 Modelling Sporting Contests 

Sporting contests can be viewed as complex systems in which competitors 

interact.  A common modelling approach that is used in this research is Monte 

Carlo simulation and its previous use in sporting settings is reviewed.  

Alternative approaches are also discussed which use more deterministic 

methods to identify optimal solutions to specific problems. 

Monte Carlo Simulation 

Monte Carlo methods are often used to simulate complex systems, allowing for 

greater depth of study than would be available through deterministic 

mathematics alone.  Eckhardt (1987) described how Stan Ulam and John van 

Neumann first developed the idea of using computer sampling techniques to 

explore the behaviour of neutron chain reactions in fission devices, predicting 

the explosive power of the weapons being designed.  The term ‘Monte-Carlo’ 

was applied to this approach, reflecting similarities with games played at the 

famous Monte Carlo casino which was frequently visited by Ulam’s uncle. 

Monte Carlo analysis is commonly used to simulate the results of sporting 

contests; typically to model the outcome of a larger tournament with the purpose 

of evaluating expected results (Koning et al., 2003), different tournament 

designs (Scarf et al., 2009) or scoring rules (Scarf et al., 2019).    

There are fewer examples of Monte Carlo simulation being used to model the 

constituent parts of a sporting contest.  Freeze (1974) described an early model 

of baseball matches by simulating the outcome of individual pitches based on 

the ability of the batter and pitcher, along additional factors such as the fielding 

team’s defensive rating and the batting team’s running ability.  Freeze used the 
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model to assess the extent to which variations in a team’s batting order affected 

the expected outcome of a match. 

Swartz et al. (2009) used Monte Carlo simulation to model runs scored in a one-

day cricket match; using characteristics of the batsman and bowler, as well as 

factors such as the number of balls bowled and the number of wickets lost, to 

simulate the outcome of each delivery.  They posed a range of questions 

relating to team selection and batting order which could be addressed using the 

model.  

Broadie and Ko (2009) used simulation to model the outcomes of golf shots 

based on parameters relating to both the golfer and course layout.  They were 

particularly interested in isolating the effect of changing one skill parameter (e.g. 

driving distance) while holding others constant.   

Alternative Approaches 

Deterministic approaches are sometimes preferred, with simplifying 

assumptions enabling an exact solution to be produced.  Markov models can 

be used to reflect the transitions from one moment in a contest to another based 

on the likely outcome of the next event.  Markov models developed for tennis 

typically assume that points played on serve are independent and identically 

distributed throughout the match.  Spanias and Knottenbelt (2013) described 

how this approach can be used to produce a point-level model for predicting the 

outcomes of tennis matches.     

Dynamic programming has been used to determine optimal scoring rates in 

cricket (Clarke, 1988).  The core of the problem is that the higher the rate that 

a team tries to score at, the more likely they are to lose a wicket.  Using 
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assumptions about the relationship between run-rate and probability of 

dismissal, it is possible to identify the target run-rate which would result in the 

largest expected total given the number of balls and wickets remaining.  

Clarke’s formulation did not account for the characteristics of individual batsmen 

or bowlers, although he noted that these could be included.  
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2 Evaluating the Effectiveness of Different Player 

Rating Systems in Predicting the Results of 

Professional Snooker Matches 

 

The first objective of this research is to evaluate different methods for 

quantifying the relative ability of professional snooker players.   

The official World Rankings are based on the amount of prize money won by 

players over the previous two years.  An alternative means of quantifying a 

player’s performance is to calculate the percentage of frames won over the 

same period.  Bradley-Terry and Elo models have also been developed to 

capture additional factors such as the strength of opponents faced. 

In this chapter, the four different approaches to measuring the ability of 

professional snooker players are evaluated.  Section 2.1 summarises relevant 

existing literature while Section 2.2 sets out the potential methods for rating 

snooker players which are then tested for their ability to predict future 

performances.  Model predictions are evaluated in Section 2.3, with results 

compared using the measures described by Kovalchik (2016) to consider both 

the accuracy and any bias within the predictions. 

As this type of analysis has not been applied to snooker results before, relatively 

simple versions of each model have been selected.  This allows for a 

comparison of the effects of different factors which are likely to influence the 

outcomes of matches.  Section 2.4 looks in more detail at the predictions 

produced by different models to understand how they differ from one another, 

highlighting limitations of each approach and potential areas for development.   
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(1) With limited information relating to ‘new’ players, the resultant predictions 

for matches involving such players are less certain – particularly for the 

World Ranking model, which is likely to under-estimate their potential.   

(2) The Bradley-Terry model accounts for the strength of opposition faced 

when assessing a player’s performance, so we would expect this to 

generate stronger predictions than the Win Percentage model.   

(3) Current form is likely to affect player performance.  The Elo model is 

designed to be the most sensitive to changes in a player’s form, while 

models based on 1 year and 2 years of results and are also compared. 

Variations in the qualifying rounds for the World Championship are discussed 

in Section 2.5, with the 2-year Win Percentage model used to assess the likely 

impact of changes on players at different levels of the World Rankings.  Note 

that this section is separate from the published version of the paper 

(Collingwood et al., 2022) but provides an example of how ratings systems 

could be used to inform decision-making.    

Concluding remarks relating to the development of these models are presented 

in Section 2.6. 
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2.1 Introduction 

The application of analysis in sporting contexts is a popular and growing field of 

research and Wright (2009) reviewed the specific contribution of Operational 

Research to sport over a period of 50 years.  One sport that has received 

relatively little attention so far is snooker, despite it offering up plenty of 

opportunities for analysis. 

Whether the focus of analysis has been directly on forecasting the results of 

matches, or more on the study of tactics or strategy, or on operational matters 

such as scheduling or tournament design, a key starting point is to determine a 

baseline expectation for what will happen during a sporting contest.  In a contest 

between two players we are therefore interested in measuring the relative ability 

of the participants and the resultant expectation that one player will defeat the 

other. 

2.1.1 Snooker 

A description of the game is provided in Section 1.2.1. 

There are relatively few academic papers focusing specifically on the results of 

snooker matches.  Clarke et al. (2009) analysed results from the World Snooker 

Championship between 2004-2007 to assess how well the criteria of fairness, 

balance and efficiency were met by the design of the tournament.  Norman 

(2015) also considered the winners of the World Championship from 1977-2014 

in discussing the fairness of the tournament design in light of changes 

introduced to the Professional Tour from 2010/11.   
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Neither paper formally considered the relative ability of individual players in their 

analysis, with Clarke et al. basing their expected results on their finding that 

across all matches analysed the higher-ranked player won 60.9% of matches 

played, equating to 53.1% of frames.  This ignores the variation in ability 

between players and would therefore under-estimate the occurrence of more 

extreme results. 

A method for modelling the ability of individual players should generate more 

accurate predictions.  This could also provide the basis for more detailed 

analysis of how matches and tournaments are expected to progress and how 

changes to the structure of individual tournaments - or the Professional Tour as 

a whole - might affect different players. 

2.1.2 Rating & Ranking Players 

Various approaches are taken to produce a numerical rating for the ability or 

performance of different competitors or teams within a sport.  Any such rating 

system can then be used to produce an ordered ranking of the participants.  

Stefani (2011) produced a comprehensive study of the official rating systems 

used within 159 sports and noted that objective rating systems broadly fell into 

two categories. 

Accumulative systems award points according to the result achieved in each 

event, which incentivises competitors to take part in as many events as they 

can.  Where the points on offer varies this also incentivises organisers and 

sponsors to provide additional backing for their event to maintain / increase its 

prestige and attract the top players.  Out of the 99 sports in Stefani’s study with 

a published rating system, 84 used some form of accumulative system.  
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Snooker is included in Stefani’s list of accumulative systems and its official 

World Rankings are now based on the amount of prize money won by 128 

professional players in designated ranking events over the past two years. 

Accumulative systems can be effective predictors of future success (Stefani, 

1998) but there are a couple of features of the Snooker World Rankings which 

are likely to limit their effectiveness in this respect:    

• Results from all ranking events are counted towards the rankings, so players 

who miss some events (whether through choice, injury or other factors) may 

be ranked lower than their true ability.  Similarly, players joining the 

Professional Tour start with 0 ranking points, so it isn’t until after 2 years that 

their ranking is on the same basis as more experienced players.  

• There is no account taken of the margin of victory or the strength of 

opposition faced, and the prize money earned for winning a match varies 

considerably across tournaments and between different rounds of the same 

tournament.   

Adjustive systems update each competitor’s rating based on how far the actual 

result deviated from the result that would be expected given the difference in 

ratings between the competitors.  Stefani (2011) noted that most of the sports 

using an adjustive system required the competitors to interact in order to control 

an object, which could be a ball (e.g. Rugby Union and Netball) or a playing 

piece (e.g. Chess and Go).  It therefore makes sense for the impact of a result 

on a participant’s rating to account for the strength of opposition they were 

facing. 
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The Elo model is one of the most well-known and most used type of adjustive 

system, which could be used to rate snooker players.  It was devised in the 

1960s by Arpad Elo who developed the system using data from historical 

matches to determine the rating of Chess players relative to one another (Elo, 

2008).  This utilised a simple method for generating a new rating for a player 

(𝑅𝑛) based on their old rating (𝑅𝑜) and the difference between the actual result 

(𝑊) and the expected result (𝑊𝑒): 

𝑅𝑛 =  𝑅𝑜 + 𝐾(𝑊 −  𝑊𝑒) 

Where 𝐾 is the weight assigned to that particular match (Elo, 2008, p25). 

Expected results are based on the difference between the ratings of each player 

(𝑑) and are commonly expressed as 𝑃(𝑑): 

𝑃(𝑑) =  Φ (
𝑑

𝜎 √2
) 

Elo initially assumed that each player’s performance was normally distributed, 

with a standard deviation of 𝜎.  He also discussed the feasibility of basing the 

system on the logistic distribution instead, and this is the system now used by 

the United States Chess Federation:   

𝑃(𝑑) =  1 (1 + 10−𝑑 2𝜎⁄ )⁄  

The standard deviation of a player’s performance is usually set (in common with 

Elo’s original system) at 200 (Stefani, 2011, p13).   
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Vaziri et al (2018) noted that the sequence of matches played influenced the 

Elo ratings.  In their study - ranking teams following a round-robin competition - 

this was an undesirable feature of the model.  In most applications though the 

Elo model is used to estimate the current rating of a player or team, in which 

case reflecting the sequence of matches played is highly desirable. 

Aside from official ranking systems, analysts have developed a range of 

methods to rate players and teams based on the results of matches, some of 

which are described by Langville and Meyer (2012) who looked at how they 

have been used to rate and rank teams, individuals and products in a variety of 

contexts. 

O’Brien and Gleeson (2021) used a form of Markov model based on Google’s 

PageRank algorithm to produce all-time rankings for snooker players.  Although 

this type of model does account for the quality of opposition faced, it still 

nevertheless seems to be biased towards players who have contested more 

matches.  John Higgins (with a win record of 70% from 1,301 matches) is 

therefore ranked ahead of Ronnie O’Sullivan (75% wins from 1,133 matches).    

One type of model that could be applied to rating snooker players is known as 

a Bradley-Terry model, after the authors who first described the logit form of a 

paired comparison model (Bradley and Terry, 1952).   

As described in Agresti (2013), the Bradley-Terry model states that log
𝜋𝑎𝑏

𝜋𝑏𝑎
=

 𝛽𝑎 − 𝛽𝑏  where 𝜋𝑎𝑏 is the probability that 𝑎 (with a rating of 𝛽𝑎) ‘prefers’ (i.e. 

beats) 𝑏 (with a rating of 𝛽𝑏). 
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Assuming that outcomes of contests are independent of one another then a 

logit model can be fitted using maximum likelihood estimation to produce ratings 

for each player. 

McHale and Morton (2011) used a Bradley-Terry model to forecast the results 

of tennis matches based on the probability of winning games within a match.  

They developed their model to allow for player strengths varying over time, 

using an exponential decay function to give greater weight to recent matches.   

Rather than a logit model, Baker and McHale (2014 and 2017) based their 

paired comparison models for tennis players on the beta distribution and 

estimated strength parameters at different times for each player, interpolating 

between these using barycentric rational interpolants. 

An alternative approach is to assess performance against a range of metrics in 

order to come up with an overall rating for a player or team.  Dixon and Coles 

(1997) produced separate attack and defence parameters for English football 

teams in order to predict the results of matches.  Broadie (2012) produced a 

ranking of golfers based on the number of strokes gained across three different 

aspects of their play (Long game, Short game and Putting).       

There is a limited amount of information available which covers all professional 

snooker players.  Within matches, statistics relating to Pot Success and Safety 

Success are produced for broadcasters – but only for televised matches - and 

even then, they are not systematically retained after the event.  It is therefore 

not yet possible to formally develop a model on this basis for all players. 
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The proportions of matches and frames players have won are presented on the 

website Cuetracker.net (Florax, n.d.) and Win Percentages are sometimes 

referred to during TV coverage of tournaments, although they aren’t currently 

used to rank players or link past performance to expected future performance.  

Barrow et al (2013) described how the winning percentage of a player can, 

however, be used to generate a simple rating of players.   

Based on this literature review I have selected four different methods which may 

be suitable for rating the performance of professional snooker players: 

(1) The amount of prize money won by players, as reflected in the official 

World Rankings 

(2) The Win Percentages of each player 

(3) A Bradley-Terry model 

(4) An Elo model 

 

2.1.3 Comparing methods 

A simple way of assessing different rating models is to compare their 

Prediction Accuracy (i.e. what proportion of subsequent matches were won 

by the higher-rated player).  Stefani (2011) noted that a well-structured 

predictive system should be able to out-perform a random prediction by around 

17%.  Snooker matches are either won or lost, so a random prediction would 

be correct on 50% of occasions and a well-structured model should therefore 

achieve a success rate of 67% or higher. 
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This merely looks at a model’s ability to identify the higher-rated player.  We 

also need to look in more detail at the probabilities assigned to different 

outcomes.  We would expect relatively few upsets where the model has 

identified a strong favourite for each match, but where there is less to choose 

between two players, we would expect the results to be more unpredictable.     

Additional measures set out by Kovalchik (2016) are designed to identify any 

biases in the models created.  The Log-loss score is designed to penalise 

incorrect predictions made with high probability, while the Calibration measure 

compares the number of expected and actual wins for the higher-rated player 

and a higher Discrimination factor would indicate that model predictions are 

more certain in matches where the higher-rated player prevailed.  The formulae 

for these measures, as well as the Prediction Accuracy, are set out in Table 2.1. 

Table 2.1: Descriptions of the measures used to assess the accuracy and 

reliability of model predictions and the formulae used to create them.   

Measure Description Formula 

Prediction 
Accuracy 

Proportion of matches won by the 
higher-rated player 

∑ 𝑦𝑖𝑖

𝑁
 

Log-loss 
score 

A scoring rule which applies a 
higher penalty the more incorrect 

the forecast 
− 

∑ [𝑦𝑖 ln(𝑝𝑖) + (1 − 𝑦𝑖) ln(1 − 𝑝𝑖)]𝑖

𝑁
 

Calibration 
Ratio of expected wins over actual 

wins for the higher-rated player 

∑ 𝑝𝑖𝑖

∑ 𝑦𝑖𝑖

 

Discrimination 

A measure of the model’s ability to 
discriminate between results by 

comparing mean predictions where 
the higher-rated player won / lost 

the match 

∑ 𝑝𝑖𝑦𝑖𝑖  

∑ 𝑦𝑖𝑖

− 
∑ 𝑝𝑖(1 − 𝑦𝑖)𝑖  

∑ (1 − 𝑦𝑖)𝑖

 

𝑁 denotes the number of matches played; 𝑦𝑖 = 1 if the higher-rated player won the 

match and 𝑦𝑖 = 0 if the higher-rated player lost the match; and 𝑝𝑖 is the modelled 

probability that the higher-rated player will win. 
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2.2 Data and Models 

Information about the results of professional matches played are readily 

available from a variety of sources.  The websites Snooker.org and 

CueTracker.net both record results of snooker matches and have been used to 

collate the information used in this analysis (e.g. Årdalen, 2019a and Florax, 

2019a).   

Historical information relating to the World Ranking of players is more patchy 

and less reliable.  CueTracker.net presents the ranking position and prize 

money earned by players at the start and end of each season (Florax, 2019c), 

while Snooker.org lists the seedings of players at each cut-off point (Årdalen, 

2019b).  These have been used to identify the prize money ranking of each 

player at every cut-off point in 2016/17, 2017/18 and 2018/19.      

My analysis has used these data to estimate the probability of one player 

winning a frame against another based on their relative rating according to four 

different types of model.  Where required, model parameters are determined 

using results from the 2016/17 season.  Predictions are then generated for the 

2017/18 and 2018/19 seasons and analysed in Section 3. 

2.2.1 World Rankings 

The first model (WR) is based on the relative ability of each player according to 

the official World Rankings.  The probability of one player winning a frame 

against another is estimated using the difference in the amount of ranking points 

(i.e. prize money) earned by the two players in the previous 2 years leading up 

to the event.  The log of ranking points was taken as the distribution of prize 

money is heavily skewed towards the highest-ranked players. 
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The logit model generated is that the probability of Player 𝑖 defeating Player 𝑗 

in a single frame is given by: 

 𝑃(𝐹)𝑖𝑗 =  
𝑒𝑥𝑝[(ln(𝑅𝑃𝑖) − ln(𝑅𝑃𝑗)) × 𝐶]

1+ 𝑒𝑥𝑝[(ln(𝑅𝑃𝑖) − ln(𝑅𝑃𝑗)) × 𝐶]
   

where 𝑅𝑃𝑖 is the number of ranking points earned by Player 𝑖 and 𝑅𝑃𝑗 is the 

number of ranking points earned by Player 𝑗.  The model was fitted using results 

from the 2016/17 season to determine an appropriate value for 𝐶 of 0.1657. 

 

2.2.2 Win Percentages 

The second approach utilises logistic regression models based on the 

difference in the overall percentage of frames won by each of the two players.  

Two separate models were created using this approach; Win%_1, which uses 

a player’s results over the last year, and Win%_2, which is based on a player’s 

results over the last two years.  The 2-year model was designed to mirror the 

way that the World Rankings are updated, while the 1-year model was 

considered as potentially a truer reflection of current form.   

Logit models for the probability of Player 𝑖 defeating Player 𝑗 in a single frame 

were developed: 

𝑃(𝐹)𝑖𝑗 =  
𝑒𝑥𝑝 [(𝑊𝑃𝑖 − 𝑊𝑃𝑗) × 𝐶]

1+ 𝑒𝑥𝑝 [(𝑊𝑃𝑖 − 𝑊𝑃𝑗) × 𝐶]
   

where 𝑊𝑃𝑖 is the current Win Percentage of Player 𝑖 and 𝑊𝑃𝑗 is the current 

Win Percentage of Player 𝑗.  The model was fitted using results from the 

2016/17 season to give values for 𝐶 of 3.685 for the 1-year model, and 3.764 

for the 2-year model. 
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2.2.3 Bradley-Terry 

The Bradley-Terry models take as an input the total number of frames won by 

every individual against each of the other players they faced in the given period.  

As with the Win Percentage model, two separate models were created using 

this approach; the first based on the results over the previous year (BT_1) and 

the second on results from the last two years (BT_2).   

The BradleyTerry2 package in R (Turner & Firth, 2012) was used to carry out 

the maximum likelihood estimation and produce relative ratings for each player 

at each cut-off point.  The probability of Player 𝑖 winning a frame against Player 

𝑗 is subsequently: 

  𝑃(𝐹)𝑖𝑗 =  
𝑒𝑥𝑝(𝐵𝑇𝑖)

𝑒𝑥𝑝(𝐵𝑇𝑖) +  𝑒𝑥𝑝(𝐵𝑇𝑗)
 

where 𝐵𝑇𝑖 is the current Bradley-Terry rating for Player 𝑖 and 𝐵𝑇𝑗 is the current 

Bradley-Terry rating for Player 𝑗.   Note that no additional model parameters are 

required so no training data is used. 

 

2.2.4 Elo 

The Win Percentage and Bradley-Terry models place an equal weight on all 

results which inform them, so are essentially designed to rate a player’s 

aggregate performance across the whole period.  Comparing results from the 

1-year and 2-year models is a first look at the merits of basing a model on more 

recent form, and other variations could be created which weight recent results 

more heavily than past results.  The Elo model does this automatically. 
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The Elo model I developed uses results from the 2005/06 season through to the 

current date, with players given an initial rating of 500.  The logistic formulation 

of the Elo model is used here, with the log parameter set at 500 and a weight 

of 10 given to the most recent set of results.  This means that ratings typically 

range from around 1,000 for the top player to 100 for the lowest rated players.  

Results from matches played during the 2016/17 season were used to assess 

the suitability of the weighting factor, with similar log-loss scores achieved for a 

range of values.  

The probability of Player 𝑖 winning a frame against Player 𝑗 is therefore: 

𝑃(𝐹)𝑖𝑗 =  
1

1 + 10(𝐸𝑙𝑜𝑗− 𝐸𝑙𝑜𝑖) 1000⁄
 

where 𝐸𝑙𝑜𝑖 is the current Elo rating of Player 𝑖 and 𝐸𝑙𝑜𝑗 is the current Elo rating 

of Player 𝑗.  

The formula used to generate a new rating for Player 𝑖 (𝑅𝑖𝑁) based on their 

old rating (𝑅𝑖𝑂) is: 

𝑅𝑖𝑁 =  𝑅𝑖𝑂 + 10[𝐹𝑖𝑗 − 𝑃(𝐹)𝑖𝑗  ×  (𝐹𝑖𝑗 +  𝐹𝑗𝑖)] 

where 𝐹𝑖𝑗  was the actual number of frames won by Player 𝑖 against Player 𝑗 

and 𝐹𝑗𝑖 was the actual number of frames won by Player 𝑗 against Player 𝑖. 

2.2.5 Modelling unrated players 

One key decision to make for each model is how to account for players who 

have a limited number of past performances to base a rating on.  The 
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approaches I took are set out below and the impact on the results is discussed 

in more detail in Section 2.4.1. 

In the World Ranking model, unrated players are professionals who have yet 

to win any prize money, and any amateur player (even if they have previously 

won prize money).  I could have modelled them as having won £0 (and let 

ln(£0) = 0) but this was found to under-estimate their ability too severely.  

They have instead been modelled as having won £250, which is lower than the 

smallest amount earned by a professional over the period studied (£500) so 

maintains their effective position in the rankings.   

For the Win Percentage and Bradley-Terry models, an individual rating is not 

calculated for players who have contested fewer than 10 matches over the 

relevant period.  Basing a rating on too few performances could lead to an 

unrealistic assessment, while waiting too long fails to use valuable information 

about a player’s performance.  Setting a criterion of 10 matches was found to 

strike a reasonable balance between the two.  For players who had contested 

fewer than 10 matches, a nominal rating was produced based on their 

aggregated results (i.e. ∑ 𝑤𝑖  ∑ 𝑛𝑖⁄  where 𝑤𝑖 is the number of frames won and 

𝑛𝑖 the number of frames played by player 𝑖).   

Matches played during the season 2016/17 which involved players who had 

contested fewer than 10 matches over the relevant period were excluded when 

deriving the parameters for the World Ranking and Win Percentage models. 

In the Elo model, new players are given an initial rating of 200 (amateurs) or 

300 (professionals) – which in previous years were found to broadly reflect the 
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ability of such players.  Subsequent results are then used to update this initial 

rating for each player.  Note that within an official rating system an individual 

Elo rating for a player would typically not be produced until they have played a 

requisite number of matches - the main objective being to accurately rate a 

player’s past performance rather than to predict future results. 

  

2.2.6 Updating and applying the models 

The World Rankings are updated on a rolling basis throughout the year, with 

prize money from the latest tournament replacing any money won by players in 

the equivalent event from two seasons ago.  There are around 10 official cut-

off points during the season when the latest rankings are used to determine the 

qualification and seedings for subsequent events.  I have based the World 

Ranking model on the prize money counting towards the official rankings at the 

relevant cut-off for each event.  Similarly, The Win%, BT and Elo models are all 

updated according to the same cut-off points to allow for a direct comparison 

with the World Rankings.  Taking any of these models forward I would choose 

to update the ratings more regularly as each event is completed, but for this 

analysis I have preferred to follow a consistent approach for each model. 

In all cases I modelled the probability of a player winning a single frame and 

derived the probability that the player will win the match using a sequence of 

independent Bernoulli trials (as described by Haigh (2009)).  This is the most 

effective way of accounting for the variation in the length of matches played 

across the season, which range from a single frame in the Snooker Shoot-Out 

to the “Best of 35 frames” in the World Championship final.  Modelling frames 
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rather than matches also greatly expands the pool of results informing the 

analysis. 

The assumption of independence is unlikely to be strictly accurate, however it 

is not likely to affect the results significantly.  For the 2017/18 and 2018/19 

seasons there was a very strong correlation (0.98) between the overall 

proportion of frames won by each player and the overall proportion of matches 

that they went on to win (Fig. 2.1).  This suggests that it is reasonable to model 

the outcomes of matches as a sequence of independent frames.   

 

Figure 2.1: Proportion of matches won by professional players in 2017/18 and 

2018/19 plotted against the proportion of frames won. 
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2.3 Results 

This section considers the main outputs from the models, looking at 1) how 

players are ranked under each model at the end of the 2018/19 season, 2) the 

accuracy of the models in predicting the winners of matches during the 2017/18 

and 2018/19 seasons, and 3) any evident bias in the predictions.  

2.3.1 Player Rankings 

Table 2.2 shows how the top players were ranked by each of the methods at 

the end of the 2018/19 season. 

Table 2.2: The top 16 players in the official rankings at the end of the 2018/19 

season and how they were ranked by each of the models. 

 World 
Ranking 

(WR) 

Win Percentage Bradley-Terry 

Elo Win%_1 Win%_2 BT_1 BT_2 

Ronnie O'Sullivan 1 1 1 1 1 2 

Judd Trump 2 2 2 2 2 3 

Mark Williams 3 13 3 10 3 16 

Neil Robertson 4 3 4 3 5 1 

John Higgins 5 22 5 11 4 6 

Mark Selby 6 8 8 7 7 13 

Mark Allen 7 9 10 5 8 8 

Kyren Wilson 8 4 7 8 9 7 

Barry Hawkins 9 7 13 9 12 5 

Ding Junhui 10 17 11 19 11 17 

Jack Lisowski 11 6 12 6 10 14 

David Gilbert 12 19 23 13 21 9 

Stuart Bingham 13 5 6 4 6 4 

Shaun Murphy 14 41 21 37 18 21 

Luca Brecel 15 11 20 20 22 20 

Stephen Maguire 16 27 17 18 15 25 
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• There is a fair amount of consistency between the different models, with 

Ronnie O’Sullivan, Judd Trump and Neil Robertson ranked within the top 5 

of each list.  

• Mark Williams won 3 ranking events in 2017/18, including the 2018 World 

Championship, ensuring that he retains a high placing in the 2-year ranking 

lists.  His performances in 2018/19 were not as strong though and so he is 

ranked lower on the 1-year ranking lists and Elo model.  

• Similarly, John Higgins is ranked lower on the 1-year lists, although by 

reaching the 2019 World Championship final he retained a high placing in 

the official world rankings.  This latter performance is reflected positively in 

the Elo ratings, which is the most sensitive to recent form. 

• Conversely, Jack Lisowski and Barry Hawkins feature higher in the 1-year 

ranking lists following stronger performances during the 2018/19 season.  

• Stuart Bingham was suspended during the middle of the 2017/18 season so 

missed out on ranking points from a number of events and slipped down the 

official rankings as a result.  Missing events does not affect a player’s rating 

in any of the other models, so he is ranked much higher by these. 

Table 2.3 presents the probability that the #1 rated player under each model at 

the end of the 2018/19 season will win a frame against players of different ranks.  

There is a fair amount of similarity between the different methods, although the 

Bradley-Terry and Elo models both favour the top-rated player more heavily in 

matches against lower-ranked players than either the World Ranking or Win 

Percentage models. 
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Table 2.3: The probability of the #1 rated player under each model at the end of 

the 2018/19 season defeating opponents of different ranks in a single frame.       

Opponent WR Win%_1 Win%_2 BT_1 BT_2 Elo 

# 2 50% 51% 53% 53% 55% 53% 

# 16 55% 57% 58% 64% 64% 63% 

# 64 61% 63% 65% 72% 72% 72% 

# 100 66% 71% 72% 79% 79% 79% 

 

Two ranking lists can be compared by computing the mean absolute difference 

in ranking position for each player: ∑
|𝑅𝑛1− 𝑅𝑛2|

𝑁𝑛 ,  where 𝑅𝑛 is the rank of player 

𝑛 under the two models being compared.  The more similar the lists, the lower 

the value computed.  Table 2.4 provides an indication of the level of similarity 

in the ranking of players under each model by comparing player ranks at the 

end of the 2018/19 season. 

Table 2.4: The mean absolute difference in the ranking of players at the end of 

the 2018/19 season between each pair of models. 

Model WR Win%_1 Win%_2 BT_1 BT_2 

Win%_1 13     

Win%_2 10 7    

BT_1 14 5 9   

BT_2 11 8 4 8  

Elo 12 6 8 6 7 

 

The largest differences are between the World Rankings and each of the other 

methods.  This is likely to be because the design of the official World Rankings 

differs from the other lists in that the number of ranking points awarded varies 

from match to match depending on the tournament, while the other methods 
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weight each frame equally.  The 2-year versions of the Win Percentage and 

Bradley-Terry models are a slightly closer match given that the World Rankings 

are also based on 2 years of performances.     

The smallest differences are between the 2-year versions of the Win 

Percentage and Bradley-Terry models, followed by the 1-year versions.  These 

sets of models are closely related, with the Bradley-Terry models additionally 

allowing for the strength of opposition.  The Elo model is more closely related 

to the 1-year models in the way that it reflects current form. 

2.3.2 Prediction Accuracy 

This analysis considers a total of 4,493 matches which took place in ranking 

events played during the 2017/18 and 2018/19 seasons.  [NB – This excludes 

any qualifying rounds not involving professional players.]  To allow a full 

comparison between methods 72 matches are not included where one or more 

of the methods couldn’t separate the two players, typically because the match 

took place early in the season when both players were unrated.  This left 4,421 

matches where I was able to compare the performance of each of the models. 

Table 2.5 shows the proportion of matches won by the higher-ranked player 

under each model for matches played during the 2017/18 and 2018/19 seasons, 

along with the Log-loss scores achieved by each model.   
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Table 2.5: The prediction accuracy and log-loss scores for the predictions made 

by each of the models for 4,421 matches played during the 2017/18 and 2018/19 

seasons. 

 
Matches predicted correctly Log-loss Score 

Model # Proportion Matches Frames 

Win%_2 3.041 68.8% 0.592 0.669 

BT_2 3,040 68.8% 0.599 0.670 

Elo 3,039 68.7% 0.593 0.669 

WR 3,025 68.4% 0.630 0.678 

BT_1 3,009 68.1% 0.610 0.672 

Win%_1 2,996 67.8% 0.597 0.670 

 

There is very little difference between the ability of the models to predict the 

winner of each match, although the models based on 2 years of results 

performed slightly better than those based on a single year.  Indeed, in the 

majority of cases (3,611; 82%) all of the models predicted the same winner, with 

an accuracy of 72%.  The three most accurate models (Win%_2, BT_2 & Elo) 

predicted the same winner for 91% of matches. 

The results are consistent with Stefani’s rule of thumb that a well-structured 

predictive system should achieve a prediction accuracy of 67%.  Longer 

matches are more predictable as they favour the higher-rated player.  For the 

World Championship, where matches are the “Best of 19” or longer, the 2-year 

Win Percentage model had the highest prediction accuracy (77.2%) and the 

best Log-loss score (0.495). 

Prediction accuracy is a relatively blunt tool for measuring the effectiveness of 

models as it just requires the model to predict the correct winner; the strength 
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of the prediction is not assessed.  The Log-loss score considers the expected 

probability given to each event and penalises a model more heavily if it 

confidently predicts a result which fails to take place.  Note that the log-loss 

scores for a single frame are much higher than for the whole match as these 

outcomes are more uncertain and therefore harder to predict.    

The Log-loss score is essentially the average of the log likelihoods across all 

matches played.  The overall scores achieved by two models can therefore be 

compared by analysing the differences in the log likelihoods obtained.  The 

results of paired t-tests are presented to assess the significance of any 

differences.  The distribution of the differences in log likelihoods is typically not 

normal, however the relatively large sample sizes provide some mitigation for 

this and bootstrapping yields very similar results.    

• These show that there is no evidence of a difference between the log-loss 

scores achieved by the 2-year Win Percentage model and the Elo model: 

t(4420) = 0.32, p = 0.752.   

• There is evidence of a significant difference in the scores achieved by 

models rating players over two seasons rather than a single season, both 

for the Win Percentage model: t(4420) = 2.59, p = 0.010 and the Bradley-

Terry model: t(4420) = 3.40, p = 0.001.  

• There is evidence of a significant difference in the scores achieved by the 

Win Percentage models compared with the Bradley-Terry models, both for 

the 1-year models: t(4420) = 4.53, p < 0.001 and 2-year models t(4420) = 

3.39, p = 0.001. 
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2.3.3 Measures of modelling bias 

Table 2.6 shows that the higher the probability of one player beating another, 

the more likely the models were to be correct.  However, in matches where a 

strong favourite had been identified there were more upsets than anticipated.  

As suggested by the high Log-loss score, the predictions of the World Ranking 

model were particularly suspect in this case – 625 players were expected to win 

their match with a probability of over 90%, but only 79% were successful. 

Table 2.6: The prediction accuracy of each model, with matches grouped 

according to the probability of winning calculated for the higher-rated player. 

Probability of 
winning match  

WR Win%_1 Win%_2 BT_1 BT_2 Elo 

0.90 or higher 79% 89% 89% 86% 86% 90% 

0.80 – 0.90 78% 80% 81% 77% 79% 80% 

0.70 – 0.80 72% 75% 74% 71% 72% 70% 

0.60 – 0.70 67% 66% 67% 61% 62% 63% 

0.50 – 0.60 58% 52% 55% 53% 54% 55% 

All 68.4% 67.8% 68.8% 68.1% 68.8% 68.7% 

 

The Bradley-Terry models identified far more matches where the higher-rated 

player was given more than a 90% chance of winning (643 for the 1-year model; 

602 for the 2-year model) than the Win Percentage models (305 for the 1-year 

model and 324 for the 2-year model).    

The calibration of a model is the ratio of expected wins to actual wins for the 

higher-rated player, with values above 1 indicating that the model over-

predicted the results of the higher-rated player.  This was the case for all of the 

models developed, albeit not significant at the 95% confidence level for the 
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World Ranking or Win Percentage models.  The 2-year Win Percentage model 

achieved the score closest to 1 (3,062 / 3,041 = 1.01). 

The discrimination of a model compares the mean of predictions made where 

the higher-rated player won against those where the higher-rated player lost 

(higher scores are better).  The 1-year Bradley-Terry model showed the 

strongest discrimination (75.2% – 68.0% = 7.27%).  It was closely followed by 

the 2-year Bradley-Terry and Elo models, with the World Ranking model 

showing the least amount of discrimination in its predictions.      

Table 2.7: Calibration scores (with 95% confidence intervals) and discrimination 

of each model, with models ordered by calibration score for matches predicted. 

 
Calibration Scores 

 with 95% Confidence Intervals 
 

Model Matches Frames Discrimination 

Win%_2 1.01   (0.97, 1.04) 0.99   (0.98, 1.01) 6.61% 

Win%_1 1.02   (0.99, 1.06) 1.00   (0.99, 1.02) 6.73% 

WR 1.03   (0.99, 1.06) 1.01   (1.00, 1.02) 5.19% 

Elo 1.04* (1.01, 1.08) 1.02* (1.00, 1.03) 7.11% 

BT_2 1.05* (1.02, 1.09) 1.03* (1.01, 1.04) 7.26% 

BT_1 1.07* (1.03, 1.11) 1.04* (1.02, 1.05) 7.27% 

* Significantly different from 1.00 at the 95% confidence level 

Overall, the 2-year Win Percentage model produced predictions that were of 

comparable quality to the Elo and 2-year Bradley-Terry models.  The 

discrimination of these latter models was stronger, but they tended to over-

estimate the results of the higher-rated players, so in cases where the higher-

rated player lost the log-loss was larger.  
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2.4 Further Analysis 

To further understand these results I identified three areas where there are 

differences between the models: (1) the modelling of new players, (2) whether 

they take into account the strength of opposition, and (3) whether they take into 

account recent form of the players.  Understanding the strengths and limitations 

of each approach should provide insights into why there are differences in the 

quality of predictions produced and how they might be improved.   

To do this I looked at how well the models are calibrated for particular subsets 

of matches, along with the log-loss scores.  Note that calibration scores 

produced in this section relate to the groups of players / matches in question, 

rather than reflecting predictions for the higher-rated player in each match as in 

previous calculations.  Calibration scores are also produced for the number of 

frames won as this provides a larger pool of results to analyse. 

2.4.1 Modelling ‘new’ players  

It is a challenge for any model to predict the outcomes of matches where one 

or more participant is relatively unknown, and these models do so with varying 

degrees of success.  The Calibration scores for competitors who have 

contested fewer than 20 matches in the previous 2 years (Table 2.8) indicate 

that there are some biases inherent in each of the models, suggesting room for 

improvement.  [Matches contested between players who had both played fewer 

than 20 matches in the last 2 years were excluded from the analysis.] 
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Table 2.8: Log-loss scores and Calibration scores for each model relating to 

predictions made for players who had contested fewer than 20 matches over the 

previous 2 years – where their opponent had played more than 20 matches (814 

matches analysed).  Models ordered by ascending log-loss score. 

 Log-loss score Calibration Scores, with 95% Confidence 
Intervals 

Model Matches Frames Matches 

Elo 0.514 0.98   (0.93, 1.03) 0.89   (0.78, 1.03) 

Win%_1 0.533 1.01   (0.96, 1.05) 0.94   (0.81, 1.08) 

Win%_2 0.534 0.97   (0.93, 1.02) 0.86* (0.74, 0.99) 

BT_1 0.554 0.92* (0.88, 0.97) 0.79* (0.68, 0.91) 

BT_2 0.560 0.89* (0.85, 0.94) 0.73* (0.63, 0.84) 

WR 0.573 0.88* (0.84, 0.92) 0.67* (0.58, 0.77) 

* Significantly different from 1.00 at the 95% confidence level 

The models tended to under-estimate the performance of players who have 

contested fewer than 20 matches over the previous 2 years, particularly in 

relation to the number of matches they win.  As anticipated, the World Ranking 

model is especially weak in this respect, significantly under-estimating the 

number of frames and matches that these players will win.   

The Elo model achieved the lowest Log-loss score with some evidence of a 

significant difference from both the 1-year Win Percentage model: t(813) = 2.33, 

p = 0.020 and 2-year Win Percentage model: t(813) = 2.18, p = 0.029, while its 

Calibration scores were not significantly different from 1.00 at the 95% level.  

The Elo model benefits from using a larger pool of historical results, so matches 

played more than 2 years ago can still influence a player’s rating.  The approach 

I have taken also means that I do not need to wait until a player has contested 
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a minimum number of matches before updating their rating based on their actual 

performances.   

An additional approach used in most Elo rating systems is to apply a larger 

weight when updating the rating of less experienced players until their 

performance level stabilises (Stefani, 2011).  A smaller weight is then used for 

more experienced players as their underlying level of performance is not 

expected to change significantly.  There may therefore be scope for improving 

the Elo model so that it converges faster towards a player’s ‘true’ rating; either 

by increasing the weight used, and / or by switching their rating after (e.g.) 10 

matches to one which is purely based on their performances to date. 

The Win Percentage models achieved lower Log-loss scores than the Bradley-

Terry models with evidence of a significant difference for both the 1-year 

models: t(813) = 3.01, p = 0.003 and 2-year models: t(813) = 4.24, p < 0.001.  

They all under-estimated the number of matches won by players who have 

contested fewer than 20 matches in the last two years.     

Further analysis indicates that the calibration of these models may improve if 

players were given individual ratings after 5 matches rather than 10.  This has 

the effect of reducing the pool of ‘unrated’ players, thus separating out weaker 

amateur players (who rarely compete on the professional tour) from new 

professionals and stronger amateurs who have the opportunity build up their 

experience more rapidly.  Alternatively (or in addition to this), until a player has 

met the criterion for matches played it should also be possible to produce a 

more informed provisional rating, for example based on a player’s record in 

amateur competitions. 
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2.4.2 Strength of Opposition 

One anticipated limitation of the Win Percentage model is that the ratings for 

each player don’t take into account the strength of opposition faced.  Winning 

50% of frames against the top ranked player is clearly a more impressive result 

than winning 50% of frames against the lowest ranked player; but both are 

treated equally by the model.  The Bradley-Terry model takes as inputs the 

results against each individual so does effectively account for the strength of 

each player faced. 

To assess how much of an effect this may have on the ratings I looked at the 

weighted average win percentage of the opponents faced by each professional 

player in matches which feed into the ratings at every cut-off point.  To help 

identify potential biases I then calculated the average strength of opponent 

faced by players at different levels of the world rankings (Fig. 2.2).  The y-axis 

is rescaled to show the difference from 50%, which represents ‘average’ 

opposition. 

The players at the top of the rankings tend to have played against stronger-

than-average opposition as they progress further in tournaments and face other 

in-form players.  Some players - notably the #1 ranked player at the end of the 

2018/19 season, Ronnie O’Sullivan - will also skip some of the lower profile 

events and concentrate on events featuring other top ranked players. 
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Figure 2.2: Relative strength of opposition faced over the past 2 years (difference 

from a 50% Win Percentage) by each player at different levels of the World 

Rankings (averaged over 20 cut-off points of the World Rankings during the 

2017/18 and 2018/19 seasons). 

Players a bit lower down the rankings tended to face weaker-than-average 

opposition, consistent with winning matches at the start of tournaments against 

lower-ranked players but losing the majority of matches they play against 

higher-ranked opponents. 

Players in the lower half of the rankings will generally encounter strong 

opposition in the early stages of tournaments, so the strength of opponent they 

faced tended to be slightly stronger-than-average. 

To investigate whether this affected the accuracy of the predictions made I 

considered the matches contested by players at different levels of the World 

Rankings.  By not accounting for the strength of opposition faced we would 

expect the 2-year Win Percentage model to under-estimate the performance of 
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Top 16 players against those further down the rankings.  We would also expect 

the model to over-estimate the performance of players ranked 17-64 when 

facing lower-ranked professionals.  In theory the 2-year Bradley-Terry model 

should tend to produce more accurate predictions in these cases. 

Table 2.9 compares the Log-loss scores and Calibration scores (expected / 

actual wins) associated with the predictions made by the 2-year Win Percentage 

and Bradley-Terry models for this subset of matches. 

As anticipated, the Win-Percentage model did under-estimate the 

performances of the Top 16 when they faced players ranked 17-64, with the 

number of frames won significantly higher than predicted.  The Bradley-Terry 

model did not exhibit any such bias and its log-loss score was slightly lower for 

this group (although not significantly so: t(650) = 0.88, p = 0.380).  In 90% of 

these cases the Top 16 player had faced stronger opposition than their 

opponent had over the last 2 years and taking this into account appears to 

improve the relative ratings of these players. 

The findings are not so clear with respect to matches involving players ranked 

65 and above.  Against Top 16 players the Win Percentage model was well-

calibrated, but the Bradley-Terry model over-estimated the performances of the 

higher-ranked player and its log-loss score was higher as a result, with some 

evidence of a significant difference: t(550) = 2.25, p = 0.025.  
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Table 2.9: Log-loss scores and Calibration scores for each model relating to predictions made for matches contested by players from 

different levels of the World Rankings). 

 

Higher-
ranked 
wins 

Log-loss Score Calibration Scores, with 95% Confidence Intervals 

 Matches Matches Frames 

 Win%_2 BT_2 Win%_2 BT_2 Win%_2 BT_2 

Top 16  v  17-64 

(651 matches) 
69% 0.604 0.598 

0.92 

(0.84, 1.01) 

1.02 

(0.93, 1.12) 

0.94* 

(0.90, 0.97) 

0.99 

(0.96, 1.03) 

Top 16  v  65+ 

(551 matches) 
80% 0.482 0.500 

1.02 

(0.92, 1.11) 

1.08 

(0.98, 1.18) 

1.00 

(0.96, 1.04) 

1.05* 

(1.01, 1.10) 

17-64    v  65+ 

(1,562 matches) 
70% 0.583 0.592 

1.02 

(0.96, 1.08) 

1.03 

(0.97, 1.09) 

1.01 

(0.98, 1.03) 

1.02 

(0.99, 1.04) 

* Significantly different from 1.00 at the 95% confidence level 
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Both models tended to over-estimate the performance of the higher-ranked 

player in matches between players ranked 17-64 and those ranked 65+.  In 

most of these cases the player ranked 17-64 had faced weaker opposition over 

the last 2 years and the Bradley-Terry model gave them a slightly lower chance 

of winning as a result.  However, in around a quarter of cases the player ranked 

17-64 had faced stronger opposition and so the Bradley-Terry model gave them 

a higher chance of winning.  Overall, there was evidence of a significant 

difference in the log-loss scores: t(1561) = 2.96, p = 0.003.   

Note that these findings are unchanged if the analysis is restricted to matches 

where both players had contested at least 20 matches over the last 2 years.     

2.4.3 Current Form 

The Win Percentage and Bradley-Terry models weight results equally, 

regardless of whether they took place at the start or the end of the period being 

modelled.  Similarly, the World Rankings essentially weight the last 2 years 

equally.  The overall results indicate that the Win Percentage and Bradley-Terry 

models were improved by using two years of performances to rate a player, 

rather than one.  At the same time, we might expect to see some instances 

where a player’s form had improved (or dipped) to such an extent that the 2-

year models do not accurately reflect their current rating relative to other 

players. 

Fig. 2.3 shows that there are fairly notable differences between the 1-year and 

2-year Win Percentages of some players at the end of 2018/19.  21.8% of 

players had a 1-year Win Percentage that was ± 2.5% different from their 2-
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year Win Percentage, indicating that their performance over the last season had 

been around ± 5% different from the previous season.   

 

Figure 2.3: Difference between the latest 1-year and 2-year Win Percentage for 

professional players (Win%_1 – Win%_2), ordered by their official world ranking 

at the end of the 2018/19 season.  

The mean absolute difference is very similar for the 64 highest-ranked players 

(± 1.7%) as for lower ranked players (± 1.8%), as is the median absolute 

difference (± 1.4% and ± 1.5%). 

To assess the impact of this I looked at specific matches where the 1-year Win 

Percentage for one player was notably different (± 3%) from their 2-year Win 

Percentage.  In these cases, we might expect the 2-year models to produce 

less accurate predictions.  Matches where both players were “in-form” or “off-

form” were excluded from the analysis.
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Table 2.10: Log-loss and Calibration scores for predicted results involving players with a difference of ±3% in their 1-year and 2-year 

Win Percentages (“Off Form” = 2-year Win% is higher, “In Form” = 1-year Win% is higher) 

 In-Form Players – 398 Matches Off-Form Players – 695 Matches 

 Log-loss Calibration Log-loss Calibration 

Model Matches Matches Frames Matches Matches Frames 

Win%_2 0.619 
0.93 

(0.80, 1.07) 

0.96 

(0.91, 1.01) 
0.593 

1.05 

(0.94, 1.17) 

1.02  

(0.98, 1.06) 

Win%_1 0.620 
1.09 

(0.94, 1.25) 

1.04 

(0.99, 1.10) 
0.607 

  0.86* 

(0.77, 0.96) 

  0.93* 

(0.89, 0.97) 

Elo 0.636 
1.02 

(0.89, 1.18) 

1.01 

(0.96, 1.06) 
0.605 

0.91 

(0.81, 1.02) 

  0.95* 

(0.91, 0.99) 

BT_2 0.636 
0.92 

(0.80, 1.07) 

0.96 

(0.91, 1.01) 
0.598 

1.02 

(0.91, 1.14) 

1.01 

(0.97, 1.05) 

BT_1 0.647 
1.10 

(0.96, 1.27) 

1.05 

(1.00, 1.11) 
0.634 

  0.81* 

(0.72, 0.90) 

  0.90* 

(0.86, 0.93) 

WR 0.668 
0.90 

(0.78, 1.04) 

0.95 

(0.90, 1.00) 
0.637 

1.08 

(0.96, 1.21) 

1.04 

(0.99, 1.08) 

* Significantly different from 1.00 at the 95% confidence level
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Table 2.10 compares the Log-loss scores and Calibration scores (expected / 

actual wins) associated with the predictions made by each of the models for 

these groups of players. 

Although there was a slight tendency for the 2-year Win Percentage and 

Bradley-Terry models to under-estimate players who have stronger recent form, 

this was not significant at the 95% level and the models appear to be reasonably 

well-calibrated.  Conversely, the 1-year Win Percentage and Bradley-Terry 

models tended to over-estimate the performances of players with stronger 

recent form – although this was again not significant at the 95% level.  The Win 

Percentage models achieved the lowest log-loss scores, with no evidence of a 

difference between the scores achieved by the 1-year and 2-year models: t(397) 

= 0.08, p = 0.939.   

The predictions made by the 1-year models did, however, significantly under-

estimate the performances of players who had shown weaker form over the last 

year.  There was evidence of a significant difference between the log-loss 

scores achieved by the Bradley-Terry models: t(694) = 2.91, p = 0.004, although 

there was no evidence of a significant difference between the log-loss scores 

achieved by the Win Percentage models: t(694) = 1.71, p = 0.088.  This provides 

some support for the overall finding that incorporating an additional year of data 

generally appears to have improved the models. 

It is also interesting to compare the performance of the Elo model in these cases 

– where the log-loss scores are higher than, but not significantly different from 

the 2-year Win Percentage model.  In-Form players: t(397) = 1.46, p = 0.144; 

Off-Form players: t(694) = 1.32, p = 0.187.  The calibration results indicate that 
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although the Elo model appears to be less biased in cases where a player’s 

recent form has been good, it did also under-estimate the performance of 

players who had shown weaker form over the last year.  This again suggests 

that a recent improvement in form has a stronger influence over future 

performance than a recent dip in results.   
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2.5 Modelling the World Championship Qualifying Rounds 

Analysis of tournament structures has previously been carried out by McGarry 

and Schutz (1997) who evaluated the efficacy of different designs of knock-out 

and round-robin competitions.  Scarf et al. (2009) looked specifically at the 

UEFA Champions League, considering different metrics for assessing the 

suitability of each design.  

With a reliable method for rating individual snooker players we can develop 

expectations for how likely it is that one player will defeat another.  We can also 

generalise the approach to give an expectation of a player at one position in the 

World Rankings defeating a player at another position.  This is useful if we wish 

to model the progression of a tournament but do not know precisely which 

players will be drawn against one another.  In this way we can assess how any 

changes to the design of tournaments are likely to affect different players.   

A change introduced during the 2020 season was a modification to the structure 

of the qualifying rounds for the World Championship.  This section presents 

analysis estimating the impact on players at different levels of the professional 

game; both in terms of their chances of qualifying for the final stages and in the 

amount of prize money they could expect to earn from the event. 

2.5.1 Structure of Qualifying Rounds 

Most professional snooker tournaments are “flat” knock-out events for 128 

players, with each player starting in the same round.  The World Championship 

is the notable exception to this, with the 16 highest seeded players automatically 

guaranteed places in the final stages.  They are joined by 16 players who have 

progressed through qualifying rounds played over the previous couple of weeks. 
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The structure of these qualifying rounds (as shown in Table 2.11) changed in 

2020 so that the highest-ranked players entering qualifying (those seeded 17-

32) only need to win two matches to qualify for the Crucible as opposed to three 

matches in 2019.  The intention was to reward stronger performers over the last 

two seasons.   

The previous structure had been in place for five years.  Prior to this, the 

qualifying process was designed so that the top seeds would just have to win a 

single match to qualify. 

Table 2.11: The structure of the World Championship qualifying rounds for 2020, 

and how this compares with the formats previously used.   

 
2020 2015 - 2019 Previous Format1 

Pre-
qualifying 

n/a n/a 

Members of WPBSA2 
compete against 

lowest-ranked 
professionals 

 
128 entrants in qualifying 

80 entrants in 
qualifying 

Qualifying 
Round 1 

(QR1) 

Players seeded 81-112  

v  

Players seeded 113-144 

Players seeded 17-80  

v  

Players seeded 81-144 

Players seeded 65-80  

v  

Players seeded 81-96 

Qualifying 
Round 2 

(QR2) 

QR1 winners  

v  

Players seeded 49-80 

QR1 winners  

v  

QR1 winners 

QR1 winners  

v  

Players seeded 49-64 

Qualifying 
Round 3 

(QR3) 

QR2 winners  

v 

Players seeded 17-48 

QR2 winners  

v  

QR2 winners 

QR2 winners  

v  

Players seeded 33-48  

Qualifying 
Round 4 

QR3 winners  

v 

QR3 winners 

n/a 

QR3 winners  

v  

Players seeded 17-32 

16 qualifiers join the 16 highest seeded players in the final stages 

1 Note that a variation of this format was used in 2014, with players seeded 17-32 again 
just having to play one match. 

2 World Professional Billiards and Snooker Association 
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The draws for the later rounds are dictated by the seedings, so the 17th seed 

(the highest-ranked player in the qualifying rounds) is scheduled to play the 80th 

ranked player in the penultimate round, and the 48th ranked player in the final 

round (assuming each of these players progress through earlier rounds), while 

the 18th seed will be scheduled to play the 79th and 47th ranked players, etc. 

2.5.2 Historical Results 

In analysing the changes to the tournament format, the primarily interest is in 

the impact on qualification for the final stages. 

Based on results from 2004-2007, Clarke et al. (2009) noted that the higher-

rated player won 60.9% of matches completed (excluding the 1st qualifying 

round).  Indeed, over the whole period studied in which players seeded 17-32 

had to win a single match (against lower-ranked opposition), they were 

successful in qualifying for the final stages on 63% of occasions (Figure 2.4) – 

meaning that an average of 10 top seeds qualified for the final stages. 

The change to the format in 2015 meant that there was a greater difference in 

the ranking of players contesting each match.  During these 5 years, the higher-

rated player won 86% of matches in the 1st qualifying round and 68% of matches 

thereafter.  This implies that the chances of a player seeded 17-32 qualifying 

for the final stages had reduced to 86% x 68% x 68% = 40% - with 6.4 out of 

the 16 top seeds expected to qualify.  In fact, Figure 2.4 shows that the actual 

proportion qualifying was 48%, although this figure is potentially skewed by 

results from 2016 when 12 of the qualifiers were seeded 17-32. 
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Figure 2.4: Number of players seeded 17-32 qualifying for the final stages of the 

World Championship each year (out of 16).  

We can speculate that the changes to the format in 2020 will see the chances 

of players seeded 17-32 rise to 68% x 68% = 47% (as the opposition they face 

in their 2 matches is likely to be comparable to previous years).  

2.5.3 Expected Results 

These aggregated estimates provide an indication of what will happen, but they 

also obscure variations in the expected outcomes - especially due to the way 

the draw is seeded.  For example, the highest-ranked player the 17th seed could 

face is the 48th seed, while the 32nd seed will potentially have to play the 33rd 

seed in the final qualifying round. 

To fully understand the impact of the changes we can learn more from modelling 

the results in full.  As well as analysing the effect on qualification for the finals, 
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we can also consider the effect on the expected amount of prize money earned 

by different players.   

The amounts awarded to players losing at each stage are shown in Table 2.12.   

Note that players losing their first match receive £0 prize money regardless of 

which round they enter the tournament; players seeded 49-80 will receive 

nothing if they lose in the 2nd qualifying round, and players seeded 17-48 will 

receive nothing if they lose in the 3rd qualifying round. 

For the purposes of this analysis, I have not considered any additional amounts 

that may be earned by qualifiers if they should progress beyond the 1st round of 

the World Championship finals.  

Table 2.12: Prize Money awarded to players knocked-out in each of the qualifying 

rounds, and the minimum amount earned by players qualifying for the final 

stages 

 2019 2020 

Qualifying Round 1 £0 £0 

Qualifying Round 2 £10,000 £5,000 / £0 

Qualifying Round 3 £15,000 £10,000 / £0 

Qualifying Round 4 n/a £15,000 

1st Round £20,000 £20,000 

   

I replicated the structure of the qualifying rounds of the World Championship 

under both the 2019 and 2020 formats and used the 2-year Win Percentage 

model described in Section 2.2.2 to estimate the probability of each player 

progressing from one round to the next.  This model was preferred as it 

produced results for the 2019 format which were broadly comparable with actual 

results from the last 5 years. 
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To achieve this, I used data from the last three seasons to produce a regression 

model for the 2-year win percentage of players based on their ranking prior to 

the World Championship each year.  The linear model (with an R-squared of 

61%) yielded a typical win percentage of 56.4% for the 17th seed, down to a win 

percentage of 46.8% for the 80th seed, as shown in Fig. 2.5.   

The error bars represent the highest and lowest win percentages across the 

three years, while the trendline represents the resultant regression model. 

 

Figure 2.5: Mean 2-year win percentages of the players ranked 17-80 prior to the 

World Championship in 2017, 2018 and 2019.   

Players seeded 81-144 are randomly drawn so I have just used the average 

win percentage of 39.9% for this group.  In any given year the results of each 

player will not form such a predictable distribution, but this reflects the relative 

ability of a player at each level of the World Rankings over time.  
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Table 2.13 compares the actual and modelled outcomes for players at different 

levels of the rankings under the format used between 2015-2019; and how 

these are expected to differ under the new format introduced for 2020. 

The modelled results indicate that a player’s chances of qualifying for the final 

stages are not much different under the 2020 format.  Players seeded 17-48 

see their chances improve slightly as a result of playing one match fewer – 

although most of these players won their 1st round matches under the 2019 

format anyway.     

Table 2.13: A comparison of expected results from the World Championship 

qualifying rounds, looking at the probability of different players 1) losing their 

first match, and 2) qualifying for the final stages 

 Probability of losing 1st match Probability of Qualifying 

 2015 – 2019  

format 

2020  

format 

2015 – 2019  

format 

2020 

 format 

Seeds Actual Modelled Modelled Actual Modelled Modelled 

17-32 0.08 0.10 0.23 0.48 0.44 0.47 

33-48 0.15 0.14 0.37 0.20 0.28 0.30 

49-64 0.23 0.19 0.19 0.18 0.17 0.14 

65-80 0.13 0.25 0.25 0.11 0.10 0.08 

81-144 0.85 0.83 0.50 0.04 0.02 0.01 

Conversely, players seeded 81-144 see their (already slim) chances reduce as 

they are required to play an extra match.  Players seeded 49-80 play the same 

number of matches in both formats but are now guaranteed to face a higher-

ranked player in their second match so see their chances of progressing fall 

slightly. 
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The flip side of the changes is that exactly half of the players seeded 81-144 

will now win their 1st round match – and receive prize money – while under the 

previous format 85% went home with nothing.  Their expected average earnings 

increase from £1,932 to £3,133 as a result.  Higher-ranked players actually see 

a slight reduction in their expected earnings (Figure 2.6), with players seeded 

17-48 in particular having a greater chance of losing their 1st match and going 

home with nothing (Figure 2.7). 

 
Figure 2.6: Expected amount of prize money won by players seeded 17-80 under 

the 2019 and 2020 qualifying formats for the World Championship  
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Figure 2.7: Estimated probability of 1) a 1st match defeat, and 2) qualifying for 

the final stages for players seeded 17-32 under the 2019 and 2020 qualifying 

formats for the World Championship. 

2.5.4 Summary of Findings 

The new structure introduces a clear difference in expectations for players just 

inside the Top 48 and those just outside.  Those just inside benefit from having 

to win fewer matches to qualify, but with a greater risk that they will lose their 

1st match and not win any prize money.  Although they would have to win one 

more match to qualify than players ranked above them, the 49th seed is less 

likely to lose their first match than any other player in the qualifying competition 

and over time is consequently expected to win more prize money than players 

seeded 40-48.     

One further factor not considered in the modelling is that lower-ranked players 

may benefit from having already won a match before taking on a higher-ranked 

opponent who hasn’t played yet.  It will be interesting to see if there is any 
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evidence of such players winning more frames than expected, particularly in the 

early stages of these matches. 

On balance, the changes introduced for 2020 seem very reasonable, with a 

limited impact on a player’s chances of qualifying.  Players seeded 17-48 

receive a small advantage from having to play one fewer match – which they 

typically won anyway.  Players seeded 81-144 now compete against each other 

for the right to take on higher-ranked opponents, and a higher proportion will 

win a match and receive prize money from the tournament as a result.   

The total amount of prize money won is more unpredictable as it depends on 

how many of the higher-ranked players lose their first match, but World Snooker 

can expect to pay out around £28,800 extra as a result of the changes – from a 

total pot for the tournament of around £2.5million.   

2.5.5 Postscript 

The 2020 World Championship took place in July & August 2020, delayed by 

over three months due to the Coronavirus pandemic.  There was also a slight 

modification to the qualifying rounds to reduce the amount of time players spent 

at the venue.  Originally intended to be the “Best of 19 frames” played over two 

sessions, matches played during the first three qualifying rounds were reduced 

to the “Best of 11 frames”, each played in a single session.  The same format 

was followed for the 2021 World Championship qualifiers in April 2021. 

Table 2.14 shows the number of players qualifying for the final stages from 

different levels of the world rankings, based on their seeding for the event.  

Modelled results are also shown based on a) the intended format of “Best-of-

19” frame matches in each round and b) the actual format used of “Best-of-11” 
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frame matches for the first three qualifying rounds.  Note that these are the long-

term expected results using the methodology described in Section 2.5.3, rather 

than being based on the actual rating of individual players in each year. 

Table 2.14: The actual number of qualifiers for the final stages of the World 

Championship in 2020 and 2021 coming from different levels of the World 

Rankings compared with modelled outcomes  

 Actual Qualifiers Modelled Qualifiers 

Seeds 2020 2021 Mean 
Intended 
Format 

Actual    
Format 

17-32 4 7 5.5 7.6 7.2 

33-48 6 3 4.5 4.9 4.9 

49-64 2 5 3.5 2.2 2.2 

65-80 4 1 2.5 1.2 1.4 

81-144 0 0 0 0.1 0.5 

The outcomes in 2021 were reasonably close to the expected outcomes given 

the shortened format of matches played.  There were more surprises in 2020 

when 8 of the players seeded 17-32 lost their first qualifying first match 

(compared with 4 the following year).  

A notable feature from both years is that there were more qualifiers than 

expected from lower down the rankings (those seeded 49-80).  They may have 

benefited from playing a match before taking on a higher-ranked opponent, 

particularly given the shortened matches.  In 2020, the effects of the suspension 

of the Professional Tour and limited use of practice facilities during the period 

of lockdown may also have compounded this.  We cannot conclude anything 

from just two years of results, but it will be interesting to see if this is repeated 

in subsequent years.  
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2.6 Concluding Remarks 

With a prediction accuracy in the 67-69% range, the models all met the 

benchmark for a well-structured model and there was relatively little to choose 

between them.  Overall, the Bradley-Terry and Elo models showed greater 

discrimination than the Win Percentage models but tended to over-estimate the 

performances of higher-rated players and did not produce more accurate 

results. 

Using frames won as the basis for the model means that there is a large pool 

of data used in producing the ratings for each player (with most professionals 

contesting over 200 frames per season).  Playing conditions are broadly 

consistent from one tournament to another and the physical demands on 

players are relatively low, so performances are likely to be fairly stable.  Win 

Percentages have therefore shown to be a reliable measure of a player’s 

relative ability, albeit with some potential room for improvement in using this as 

a basis for modelling future performances.   

Each of the models underestimated the performances of relatively 

inexperienced players and would be improved from having a more informed 

estimate of their ability, perhaps using results from amateur competitions.  As 

anticipated, this was the main limitation of the model based on the World 

Rankings as it utilises the least amount of information about players who are 

new to the professional tour. 

Models based on two years of results were found to be more reliable than those 

based on a single year of results.  Although there was some indication that a 

recent improvement in form may be worth accounting for, dips in performance 
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appear to be less significant, with the 1-year models and Elo model (which 

places more weight on recent results) underestimating the performances of 

players with win percentages that had fallen over the last year.  The concept of 

form has not been extensively studied, although an analysis of results in golf 

tournaments showed that a player’s performance in their last 6 tournaments had 

a significant influence over their finishing position in their next one (McHale and 

Forrest, 2005).  Similar analysis applied to snooker could indicate whether the 

Win Percentage and / or Bradley-Terry models would be improved by weighting 

recent results more heavily. 

One anticipated limitation of the Win Percentage model is that it does not 

account for differences in the strength of opposition previously faced by players.  

I found some evidence to suggest that it under-estimated the performance of 

the highest-ranked players, who tend to progress further in competitions and 

therefore compete against stronger opponents.  This was not so apparent for 

matches involving lower-ranked players though, suggesting that other factors 

may be more relevant in establishing the relative ability of these players.  The 

Bradley-Terry model did not produce more accurate predictions so an 

alternative approach would be to adapt the Win Percentage model instead – 

such as the Ratings Percentage Index described by Barrow et al, 2013. 

Variations on the Elo model may also help to improve predictions for players at 

different stages of their career.  This could be achieved by applying different 

weights according to the player’s level of experience (Stefani, 2011) or allowing 

for differing amounts of variation in their performance (Glickman, 1999).   
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The assumption that frames are independent from another yields reliable results 

although there is likely to be some element of dependence, particularly where 

the higher-rated player takes a substantial lead in a match.  Further analysis 

could be carried out to explore whether / when expectations should change 

within a match - if a match goes down to the final frame, do we still believe that 

one player is more likely to win, or is the outcome now closer to 50 / 50? 

As well as predicting the outcomes of individual matches, these models could 

also be used to predict expected outcomes from tournaments.  A single edition 

could be simulated by using the rating of players at the start of the event.   

Alternatively, Section 2.5 demonstrated how expected outcomes in the long run 

could be modelled by looking at the mean rating of players at each rank.  The 

impact of changes to the World Championship qualifying rounds were shown to 

affect players in different ways.  Higher-ranked players would see a slight 

increase in their chances of qualifying for the final stages, while lower-ranked 

players were more likely to win a match and receive prize money under the new 

design. 

A further extension to this would be to model an entire season of professional 

events to consider the results and level of performance required for players to 

progress higher up the rankings.  

  



87 
 

3 The Analysis and Development of Performance 

Measures in Snooker 

 

The second objective of this research is to identify and evaluate ways of 

measuring different aspects of a player’s performance during a match. 

This chapter reviews the statistics that are produced for televised matches, 

evaluating their objectivity and validity.  Alternative measures which capture the 

dynamic progression of a frame more effectively are also considered.  A limited 

amount of data is currently available but there is potential for generating 

statistics from the scoring system used for all matches on the professional tour. 

Section 3.1 summarises existing literature relating to performance analysis in 

sport, while Section 3.2 sets out the data used in this research, including 

published match statistics (§3.2.1), data collected using post-match video 

analysis (§3.2.2) and data generated from the official scoring system (§3.2.3). 

In Section 3.3, the validity and objectivity of the existing statistics are discussed, 

while in Section 3.4 alternative measures are considered.  The relevance of 

statistics relating to the number of scoring visits made by each player and the 

points scored during each scoring visit is demonstrated.  Dynamic measures 

capturing the Scoring Potential of each player (the proportion of visits in which 

a ball is potted) and their Scoring Power (the proportion of pots followed by 

another) are shown to have a strong relation with match outcomes.  Concluding 

remarks are presented in Section 3.5. 
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3.1 Introduction 

In Moneyball, Lewis (2004) describes how Billy Beane took advantage of the 

wealth of baseball data available to make more educated decisions over who 

to sign and how to assess and use the strengths of different players within a 

match.  He had been inspired by analysis produced by Bill James which 

questioned the validity of traditionally used statistics.  In recent years, many 

sports have gone through a similar process whereby the increasing availability 

and accessibility of data have inspired analysts to develop enhanced methods 

of evaluating the performance of competing players. 

Snooker is a sport which lends itself well to detailed analysis.  The two players 

take turns visiting the table, making it easier to assess the execution and 

outcome of each shot.  Shot choice plays a key part in the game as players 

weigh up the potential benefits from an attacking shot against the increased risk 

of handing their opponent an easy opportunity to score points.  Despite this, 

there is very limited data collected and no work has been carried out to evaluate 

potential indicators of performance. 

A description of the game is previously provided in Section 1.2.1, with existing 

literature relating to snooker discussed in Section 1.4.1. 

3.1.1 Performance Analysis in Sport 

There are various aspects of a sporting contest which we may wish to analyse 

to help understand how the match has progressed and how a particular result 

has arisen.  Scoring measures provide information about key events during 

the match, such as the number of goals scored, or games / sets / frames won.  

Quality measures capture more detailed aspects of a player’s or team’s 
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performance such as passing accuracy or strike rate.  These may capture 

technical skills, tactical decisions or biomechanical factors (Hughes and 

Bartlett, 2002).   

In developing appropriate measures of performance, O’Donoghue (2015) 

describes the qualities which a performance indicator should possess.   

Validity refers to the relevance and importance of the aspect of performance 

the indicator is measuring.  The scale of measurement should be known and 

recognisable and it should be possible to interpret each indicator through 

evaluation against a ‘gold standard’.  This could be the outcome of the match 

or a recognised benchmark for success based on data from a comparable peer 

group or past performances of the teams / individuals studied.  A complete set 

of indicators should ideally cover all aspects of performance.   

Objectivity means that the values taken by an indicator should be independent 

of a given observer’s opinion.  Human judgement may be required when 

categorising the data collected but the indicator should be clearly defined to 

ensure that observers produce consistent records.  The reliability of each 

indicator should be tested by checking levels of inter-operator consistency.   

Suitable indicators can be identified by contrasting the performances of winning 

and losing teams.  Three methods are compared by Fitzpatrick et al (2019a) - 

the point-biserial correlation between the performance characteristic and the 

match outcome (win / loss), a paired t-test comparing the performance of the 

winner and loser, and the proportion of matches in which the winner 

outperformed the loser on a particular characteristic.  This latter method was 
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used to assess the relative importance of different aspects of performance in 

tennis matches played on clay and grass (Fitzpatrick et al, 2019b). 

In game sports such as snooker, the outcome of a match is not determined 

purely by the individual performance of each player.  Lames and McGarry 

(2007) argue that such contests are characterised by a dynamic interaction 

between the competitors and that the approach used to analyse performance 

should take this into account.  Care needs to be taken in interpreting individual 

performance measures as performance fluctuates both during and between 

matches, making performance traits (and therefore the indicators themselves) 

inherently unstable.  Similarly, O’Donoghue (2009) shows that outcomes and 

styles of play in tennis are influenced by both the quality and type of opponent 

faced, and that different players are influenced by the same opponent types in 

different ways. 

Lames and McGarry (2007) highlight the merits of modelling game sports as 

Markov processes, using an example from a Volleyball match to show how a 

transition matrix summarising the progression of points within a match could be 

used to help identify key areas where one team dominated.  Sensitivity analysis 

can also be carried out to understand how improvements in one area of 

performance might affect the overall result. 

As the quantity and type of data increases, analysts have taken more creative 

steps to evaluate the performance of competitors.  The development of ball-

tracking data in golf allowed Broadie (2012) to devise an approach for 

quantifying the success of every shot played - the number of Strokes Gained 

compared with the performance of an average PGA Tour player.  This yielded 
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a more robust method for comparing the relative ability of each player in 

different aspects of the game (putting, long tee shots, approach shots etc.).   

In football, matches are now analysed using measures such as the Expected 

Goals created by each team - rather than the actual number of goals scored 

(Brechot & Flepp, 2020).  This increases the amount of action within a match 

that is evaluated, reducing the influence of randomness in actual goals scored, 

and producing a more reliable assessment of a team’s true performance and 

the contribution of individual players.   

3.2 Data 

Three sources of data are used in this study: official data produced by Alston 

Elliot for the BBC, data that I have collected through post-match video analysis, 

and data captured on the frame sheets generated from a tournament’s scoring 

system.  This section describes the data gathered from each of the sources and 

how I have used them in my research. 

The statistics covered in this chapter treat each shot equally.  Some shots are 

played after a frame has effectively been ‘won’ (i.e. when the difference in the 

score is greater than the total value of the balls remaining).  There may be an 

argument for counting these separately, but this is beyond the scope of this 

research. 

3.2.1 Official Statistics 

Real-time statistics are produced for televised matches.  These are sometimes 

referred to by the commentators during a match and displayed on screen, but 

they are not systematically collated or disseminated after the match.   The only 
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data that have been made available publicly are from matches played in The 

Masters (an invitational event open to the 16 highest-ranked players) and the 

final stages of the World Championship (involving the 16 highest-ranked players 

plus 16 qualifiers).  These were released by Alston Elliot via their twitter account 

(no longer available).  From this source I extracted statistics from 146 matches 

played over 7 tournaments (the 2016, 2017, 2018 and 2019 Masters and 2017, 

2018 and 2019 World Championships). 

The main figures produced are a combination of scoring statistics (Frames Won, 

Total Points Scored, Balls Potted and Highest Break) and indicators of quality 

in the form of success rates for different types of shot.  Table 3.1 presents the 

official statistics produced for the 2018 World Championship Final, won by Mark 

Williams. 

Table 3.1: Official statistics produced by Alston Elliot for the 2018 World 

Championship Final 

Measure Mark Williams John Higgins Notes 

Frames Won 18 16  

Total Points 
Scored 

1,930 1,784 
Includes penalty points conceded 

by their opponent   

Balls Potted 556 485  

Highest 
Break 

118 131 
The highest break made in a 

single visit 

Pot Success 
91% 

(556 / 614)  

92% 

(485 / 529)  

Successful pots as a proportion of 
all attempted pots 

Long Pot 
Success 

62% 

(29 / 47)  

57% 

(13 / 23)  

Attempted pots which are over half 
the length of the table 

Rest Pot 
Success 

94% 

(30 / 32) 

83% 

(24 / 29) 

Pots attempted using the rest, an 
implement which allows players to 
take shots beyond their physical 

reach 

Safety 
Success 

83% 

(116 / 140)  

74% 

(114 / 155)  

The proportion of safety shots 
deemed to have been executed 

successfully 
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3.2.2 Data collected from post-match video analysis 

Many professional matches are subsequently made available to view on 

youtube.com.  I used this footage to manually record data from all 31 matches 

played during the final stages of the 2018 World Championship and the 15 

matches played during the 2019 Masters; a total of 32,601 shots played over 

734 frames. 

For every shot played I recorded the Player, the Type of shot (Pot or Safety 

shot) and any Points scored (or conceded).  Additional data were collected for 

a subset of matches to enable the production of my own estimates of the full 

suite of shot success rates.  A sample of the data recorded is provided in 

Appendix IV.      

3.2.3 Data generated from the scoring system 

An automated scoring system is used at all professional tournaments, as well 

as some of the leading amateur tournaments.  After every shot, the official 

scorer (who might also be the match referee) will enter how many points were 

scored.  This automatically updates the score displayed at the venue, while the 

feed (for professional events) is also used to update World Snooker’s live 

scoring service (World Snooker Tour, n.d.), as well as being sent to bookmakers 

for use on their websites.  For commercial reasons the outputs from this are not 

available for professional events, but the frame sheets from the 2020 World 

Snooker Federation (WSF) Open – a high profile amateur event whose winner 

qualifies for the professional tour – are available online (World Professional 

Billiards and Snooker Association, 2020). 

A sample of the information captured is shown in Appendix II. 
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I extracted data from 56 matches played during the WSF Open, covering all 

matches featuring the 8 quarter-finalists (excluding the Last 64 tie between 

Iulian Boiko and Nickolas Neale, where the frame sheets were unavailable).  

For each shot played, one of the following actions is recorded on the frame 

sheet, along with additional information about the shot: 

• Ball potted + the player who potted it and the points scored as a result 

• Foul committed + the penalty points given away and the player receiving 

them 

• Play switching to the opponent + the player now at the table 

It became apparent that the first and last shots of a frame were sometimes not 

recorded – if no points were scored then this has no impact on the frame score.  

Video recordings were available for some matches to confirm what was 

happening, so I subsequently added shots where it appeared that these had 

been missed. 
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3.3 Existing Statistics 

This section analyses separately the existing scoring measures and quality 

indicators, considering their validity, objectivity and reliability.   

3.3.1 Scoring Measures 

Scoring measures are intended to provide an overview of the match and to give 

a sense of how well each player has performed.  The current statistics of Total 

Points Scored, Balls Potted and Highest Break are all clearly defined and 

measured so we can focus our assessment on their validity. 

The number of points scored is clearly critical to the outcome of a frame but 

Total Points Scored over a match is a less relevant measure to collect and 

isn’t a meaningful indicator of a player’s performance.  To enable a comparison 

across matches, it would be slightly more interesting to present the average 

number of points scored per frame instead.   

There is a direct link between Balls Potted and Total Points Scored so it is 

unsurprising that the two measures are very highly correlated (with a coefficient 

of 1.00).  There is therefore no additional value in knowing how many balls were 

potted by each player.  

Prize money is often awarded for the highest break made in a tournament so 

for this reason the Highest Break made by each player in a match has some 

relevance.  It is not a good indicator of a player’s overall performance though 

as it just reflects a player’s most profitable visit to the table.  Presenting the 

number of 100+ and 50+ breaks made by each player would be more useful in 

this regard.       
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3.3.2 Quality Measures - Validity 

The shot success rates in snooker are primarily used to compare the 

performance of the two players within a match.  To be valid indicators they 

should therefore be correlated with the outcome of the match, or at the very 

least there should be a recognised benchmark for top level performance.   

Table 3.2 shows the mean success rates for the winners and losers of every 

match, with a paired t-test showing that there was a significant difference for 

each of the measures except for the Rest Success rate.  From this we can also 

see that around 75% of all shots were attempted pots and 25% were safety 

shots.  Long Pots (10%) and Rest Pots (5%) represent relatively small 

proportions of the total pots attempted, equating to 3.2 long pots and 1.7 rest 

pots per frame. 

The Pot Success rate had the strongest correlation with match outcomes.  This 

was even clearer when comparing success rates with the proportion of frames 

won – both for individual players and the difference in performance between the 

winner and loser.  A success rate of 90% is often referred to by commentators 

as being the typical standard required to win a match against a top professional, 

which is supported by these data.  One limitation is that shot complexity is not 

taken into account; a low success rate may reflect the type of chances a player 

has had more than the quality of their potting performance.     
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Table 3.2: Success rates achieved by winners and losers of matches and 

correlations with match outcomes.  Data available from official statistics 

produced by Alston Elliot for 146 matches played during The Masters and World 

Championship. 

 
Pot 

Success 
Long Pot 
Success 

Rest 
Success 

Safety 
Success 

Overall Success Rates 

(Total Shots attempted) 

90% 

(76,216) 

59% 

(7,325) 

88% 

(3,822) 

80% 

(25,765) 

Mean Performance of Match Winners 

(and standard deviation) 

91% 

(2%) 

62% 

(12%) 

87% 

(10%) 

81% 

(5%) 

Mean Performance of Match Losers 

(and standard deviation) 

87% 

(5%) 

56% 

(13%) 

88% 

(13%) 

78% 

(6%) 

T statistic1 8.65 4.50 -0.10 5.77 

p-value1 <0.001 <0.001 0.919 <0.001 

Matches won by the player with the 
higher success rate (with 95% 
confidence interval) 

77% ± 
6.8% 

64% ± 
7.8% 

43% ± 
8.0% 

65% ± 
7.9% 

Point-biserial correlation with match 
outcome (Win / Loss) 

0.46 0.25 -0.01 0.28 

Correlation with proportion of frames 
won in the match by each player 

0.66 0.33 0.01 0.36 

Correlation between the difference in 
success rates and margin of victory 

0.75 0.32 0.08 0.39 

1 Paired t-tests of the success rates observed for match winners and losers were 

carried out across all 146 matches (145 available matches for Rest Success)  

 

There was a weaker correlation between match outcomes and Long Pot 

Success, although a clear majority of matches were won by the player with the 

higher success rate.  In theory, this measure considers a subset of more difficult 

pots, which may be key to a player establishing or extending a scoring visit.  In 

practice, this covers a wide range of shots with varying degrees of difficulty and 

given the relatively small number of long pots attempted each match we cannot 
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really say whether the level recorded for a player is better or worse than we 

would expect.  

There are even fewer shots played with the rest, so it is unsurprising that Rest 

Success rates were found to have no influence over the outcome of a match.  

Collecting statistics on this is still relevant though as it is a very specific element 

of the game that players need to master.  An individual player’s success rate 

will vary from match to match but over a longer period of play the statistics 

indicate that we can expect a top professional to pot close to 90% of shots with 

the rest. 

Although not currently utilised, the official statistics allow us to analyse the 

amount that different players use the rest.  For some players this averages more 

than once per frame, for others it is closer to once every two frames – some 

players prefer to take shots with their ‘opposite hand’ (e.g. a naturally right-

handed player would take the shot left-handed) or extend their cue slightly to 

allow them to reach further.  Rather than simply looking at Rest Pot success it 

would be more pertinent to collect statistics on each of the different approaches 

taken by players to execute shots beyond their normal physical reach.   

Safety play is a key element of the game and there is some correlation between 

the Safety Success rate currently collected and match outcomes, with the data 

suggesting that top professionals can be expected to achieve a success rate 

around 80%.  Success rates do vary more from match to match, which may 

suggest that they are affected by the playing style and ability of the opponent – 

or could reflect the level of subjectivity in determining whether a shot has been 

executed successfully or not.   
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3.3.3 Quality Measures – Objectivity and Reliability 

The success rates cannot be produced automatically; human judgement is 

required to determine whether a Pot or a Safety shot has been attempted, 

whether a Pot can be considered ‘Long’ (or if the rest has been used) and 

whether a safety shot has been executed successfully or not.  Alston Elliot do 

provide training and guidance to data collectors to help ensure consistency, but 

comprehensive definitions for these measures are not publicly available. 

To understand the scale of human judgement required I compiled my own 

statistics for the 2018 World Championship and the 2019 Masters.  I did not 

expect to be able to replicate the official statistics precisely but was keen to 

understand some of the challenges involved and potential limitations in the 

production and interpretation of the statistics.  The percentage difference 

between my observations and the official statistics provides some indication of 

the extent to which the subjectivity of observers may affect the statistics 

produced.  

Table 3.3 compares the data I collected with the official statistics from the two 

tournaments.  It is noticeable that I recorded more shots in both tournaments 

than the official statistics - I have not been able to definitively establish why this 

is the case.  It could be that some types of shot are not included in the success 

rates – possibly shots re-taken following a foul (as the outcome of the shot has 

not yet been fully resolved), or fouls incurred while potting a ball (the ‘pot’ itself 

was successful so these aren’t strictly ‘missed pots’) – so I have classified these 

separately in my records.  Alternatively, it could be that the final shot in some 
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frames is not recorded in the official statistics where it has no impact on the 

match (as I found in my analysis of the data from the scoring system). 

Table 3.3: A comparison of official data recorded by Alston Elliot and data 

collected through post-match video analysis for 1) the 2018 World Championship 

(1st round matches) and 2) 2019 Masters 

 2018 World Championship 

 1st round (16 matches) 

 
Official dataA My dataB 

% Difference1 

(Range)2 

Total Shots 11,537 11,601 1% (0%, 2%) 

Attempted Pots 8,499 8,569 1% (0%, 3%) 

- Successful 7,571 7,570 0% (0%, 0%) 

- Missed 928 981 6% (-8%, 20%) 

- Fouls n/a4 19  

Pot Success3 89% 89% -1% (-2%, 1%) 

Attempted Long Pots 837 698 -18% (-38%, 9%) 

- Successful 518 380 -31% (-55%, -3%) 

- Missed 319 318 0% (-34%, 38%) 

Long Pot Success3 62% 54% -7% (-18%, 0%) 

Attempted Rest Pots 444 437 -2% (-11%, 15%) 

- Successful 385 378 -2% (-11%, 18%) 

- Missed 59 59 0% (-40%, 18%) 

Rest Success3 87% 86% 0% (-3%, 2%) 

Attempted Safeties 3,038 3,032 0% (-4%, 3%) 

- Successful 2,442 2,408 -1% (-13%, 12%) 

- Unsuccessful 596 545 -9% (-33%, 31%) 

- Re-taken shots n/a4 79  

Safety Success3 80% 82% 1% (-7%, 7%) 
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 2019 Masters 

 (15 matches) 

 
Official dataA My dataB 

% Difference1 

(Range)2 

Total Shots 6,160 6,197 1% (0%, 2%) 

Attempted Pots 4,676 4,645 -1% (-2%, 1%) 

- Successful 4,139 4,136 0% (0%, 0%) 

- Missed 537 490 -9% (-22%, 3%) 

- Fouls n/a4 19  

Pot Success3 89% 89% 1% (0%, 2%) 

Attempted Long Pots 413 340 -19% (-49%, 5%) 

- Successful 212 185 -14% (-67%, 18%) 

- Missed 201 155 -26% (-73%, 0%) 

Long Pot Success3 51% 54% 3% (-10%, 13%) 

Attempted Rest Pots 202 197 -3% (-13%, 7%) 

- Successful 171 165 -4% (-14%, 0%) 

- Missed 31 32 3% (0%, 15%) 

Rest Success3 85% 84% -1% (-4%, 0%) 

Attempted Safeties 1,484 1,552 4% (0%, 13%) 

- Successful 1,132 n/a4  

- Unsuccessful 352 n/a4  

- Re-taken shots n/a4 53  

Safety Success3 76%   

1 For frequencies the % difference has been calculated as (𝐵 − 𝐴) [(𝐴 + 𝐵) 2⁄ ]  × 100⁄ , 

while for percentages the % difference has been calculated as (𝐵 − 𝐴).  Note that the 

convention for inter-observer comparisons is to calculate the absolute % difference but 

in this case the direction of any differences is of interest. 

2 The range in the % difference across all matches analysed is shown in brackets   

3 Success rates for all measures are the number of successful shots as a proportion of 

all successful and unsuccessful attempts 

4 n/a = not available (official data), or not captured (my data) 



102 
 

For more difficult attempts at pots, players will have the additional aim of 

keeping the balls safe in case they miss.  These are described as shots-to-

nothing as there is no attempt made to retain good position for the next object 

ball.  In such cases where a ball is not potted, some subjectivity is required in 

determining whether these should be categorised as safety shots or missed 

pots.  For the 2018 World Championship I tended to record these as missed 

pots, counting more than the official statistics.  I changed my approach for 2019 

The Masters so that I was more inclined to classify shots-to-nothing as safety 

shots – and subsequently counted more safety shots than the official statistics.   

Despite this, the outcomes of an attempted pot are clearly identifiable, so I was 

able to match the overall Pot Success rates quite closely to the official figures.  

Similarly, the Rest Success measure is relatively easy to replicate, with 

observed differences due to human error.  [Note that the percentage difference 

for rest shots is still quite large for some matches, but this typically only reflects 

a difference of one or two shots.]   

The Long Pot Success rates proved more difficult to reproduce, with a 

relatively wide variation in the figures produced.  It was particularly noticeable 

that I counted far fewer long pots than the official statistics.  Although some of 

this may be down to perceptual error, I may have used a narrower definition of 

a long pot by only looking at the distance between the cue ball and the object 

ball.  A broader interpretation would also consider the distance between the 

object ball and the pocket.  Even within the official statistics there is 

considerable variation between tournaments - ranging from 51% during the 
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2019 Masters to 71% at the 2018 Masters – suggesting that different criteria 

were used and / or different judgements were made by observers. 

My overall Safety Success rate for the 1st round of the 2018 World 

Championship was relatively close to the official figure, although there was 

much wider variation for individual matches.  Deciding whether a safety shot 

had been executed successfully or not was the most time-consuming of 

judgements to make and I chose to not to capture this for subsequent matches. 
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3.4 Alternative Measures 

It should be possible to use technology which exists in other sports to track the 

location of balls on the table.  With this information an expected success rate 

could be derived for each attempted pot, while a player’s positional prowess 

could also be assessed.    

Such technology is not currently available, so the immediate aims of this 

research were to set out additional scoring measures which help to explain how 

matches have progressed; and to consider outcome-based quality measures 

which better reflect the dynamics of a snooker match.  This yields a more 

objective set of measures, opening up the potential for using information 

captured by the scoring system to vastly increase the quantity of performance 

data available.    

3.4.1 Scoring Visits 

As the primary aim of each player is to score enough to points to win the frame 

it makes sense to highlight the number of scoring visits each player has made 

and their associated scoring rate.   

The mean number of scoring visits made per frame (by both players) across the 

two professional tournaments analysed was 3.7, with the full distribution shown 

in Figure 3.1.  Unsurprisingly the average number of scoring visits per frame 

was much higher (6.3) for the amateur event – the 2020 WSF Open - with 

players needing more opportunities to score enough points to win a frame. 
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Figure 3.1: Distributions of the number of scoring visits made per frame during 

the 2018 World Championship and 2019 Masters (Professionals) and 2020 WSF 

Open (Amateurs) 

Presenting the following two scoring measures during a match would indicate 

whether one player has had more opportunities to score points and / or has 

scored more heavily from their opportunities.  Both measures are objective and 

could be produced using data generated by the scoring system.    

• Number of Scoring Visits – which should be divided by the number of 

frames played to produce a figure that can be compared across matches. 

• Mean ‘average’ points scored per Scoring Visit – total number of points 

scored from potting balls divided by the number of scoring visits. 

Figure 3.2 shows that there is a negative correlation between the two measures; 

the more points scored at each visit then the fewer visits required to end the 

frame.  The two measures therefore need to be interpreted in conjunction with 

one another rather than in isolation.   
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Figure 3.2: The mean number of points scored per scoring visit plotted against 

the mean number of scoring visits per frame, for the winners and losers of 46 

professional matches 

 

During the 2018 World Championship final, Mark Williams made almost 50% 

more scoring visits than John Higgins (Table 3.4).  Higgins scored very heavily 

when he did get in (his average of 40 points per scoring visit was the highest of 

the tournament) but it wasn’t quite enough to make up for the relatively limited 

number of chances he was getting. 

Table 3.4: Alternative summary statistics for the 2018 World Championship Final 

collated from post-match video analysis 

Measure 
Mark 

Williams 
John 

Higgins 
Tournament 

Average 

Frames Won 18 16  

Scoring Visits 64 43  

Scoring Visits per frame 1.9 1.3 1.9 

Mean Points per Scoring Visit 29 40 26 
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3.4.2 Quality Measures – Match Dynamics 

Thinking about a match in terms of scoring visits also helps us to describe a 

simple model for the dynamics of a snooker match.  There are essentially two 

phases of the game – firstly, a player seeks to create a scoring opportunity for 

themselves (while restricting chances for their opponent); secondly, once they 

have an opportunity, they want to score as many points as they can.  The 

opportunity presented on the first shot of a visit is largely dependent on the 

outcome of the opponent’s shot; thereafter it is primarily down to the player’s 

ability to build a break.   

Distinguishing between these two states we can set out a simple transition 

matrix for a snooker match, as shown in Table 3.5.  In this model, 𝑃𝑖𝑁 is the 

probability that Player 𝑖 pots a ball given that they are taking the first shot of a 

new visit.  𝑃𝑖𝐶 is the probability that Player 𝑖 pots a ball given that this is a 

continuation of their visit (having potted a ball in their previous shot). 

Table 3.5: A simple transition matrix describing the progression of a snooker 

match from one shot to the next 

 Player 1: Player 2: 

 New Visit Continuation New Visit Continuation 

Player 1: New Visit 0 𝑃1𝑁   1 −  𝑃1𝑁   0 

Player 1: Continuation 0 𝑃1𝐶   1 −  𝑃1𝐶   0 

Player 2: New Visit 1 −  𝑃2𝑁   0 0 𝑃2𝑁 

Player 2: Continuation 1 −  𝑃2𝐶   0 0 𝑃2𝐶 

 

𝑃𝑖𝑁 can be generated directly from the scoring system.  This can be viewed as 

a player’s Scoring Potential as it represents the proportion of visits to the table 

in which the player potted at least one ball.  It is really a composite measure of 



108 
 

one player’s ability to deny their opponent opportunities to score points (through 

good safety play), and the other player’s ability to create an opportunity (e.g. 

through a good pot) so isn’t a pure indicator of either player’s performance.  It 

is, however, a reasonable measure of how play has developed during a match 

and offers a good starting point for further development.     

𝑃𝑖𝐶  is slightly different to a player’s Pot Success rate as it does not include all 

attempted pots and also depends on a player’s ability to retain good position for 

the next pot.  It is a measure which can be generated from the scoring system 

and is produced by downloadable scoring apps such as mysnookerstats (Guest, 

2010).  This can be viewed as a player’s Scoring Power as it reflects the 

player’s ability to make the most of their opportunities to score points.  It is 

directly related to the mean points scored per scoring visit; albeit based on balls 

potted in succession rather than points scored. 

Table 3.6 summarises the measures of Scoring Potential and Scoring Power 

for match winners and losers, looking separately at data available from 

professional and amateur levels. 

A clear majority of matches were won by the player with the higher outcome 

rates, while the paired t-test showed a significant difference between the rates 

achieved by the winners and losers of each match.  

There was a significant difference between the Scoring Power of the top 

professionals (89%) and the leading amateurs (79%), which equates to potting 

around 10 balls per scoring visit compared with 5.  The measure of Scoring 

Potential is much more even, although comparing rates across matches (let 
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alone tournaments) is less meaningful given the composite nature of this 

measure.    

Table 3.6: Analysis of the Scoring Potential and Scoring Power recorded during 

46 matches played across the 2018 World Championship and 2019 Masters (Pro), 

and 56 matches played during the 2020 WSF Open1 (Amateur) 

 
Scoring Potential Scoring Power 

 Pro Amateur Pro Amateur 

Overall rates 

(Total shots analysed) 

27% 

(10,147) 

25% 

(5,482) 

89% 

(21,487) 

79% 

(6,329) 

Mean Performance of Match Winners 

(and standard deviation) 

30% 

(6%) 

31% 

(10%) 

89% 

(3%) 

82% 

(6%) 

Mean Performance of Match Losers 

(and standard deviation) 

24% 

(4%) 

22% 

(7%) 

87% 

(4%) 

70% 

(13%) 

T statistic2 5.90 5.86 4.28 7.03 

p-value <0.001 <0.001 <0.001 <0.001 

Matches won by the player with the 
higher success rate (with 95% 
confidence interval) 

85% ± 
10.4% 

79% ± 
10.7% 

78% ± 
11.9% 

88% ± 
8.7% 

Point-biserial correlation with match 
outcome (Win / Loss) 

0.50 0.43 0.40 0.54 

Correlation with proportion of frames 
won in the match by each player 

0.54 0.54 0.49 0.57 

Correlation between the difference in 
outcome rates and margin of victory 

0.38 0.66 0.48 0.37 

1 Note that the match lengths for the WSF Open (Best of 5 frames in early rounds, with 

the final the Best of 9) are much shorter than The Masters (Best of 11 frames before 

the final, which is Best of 19) and the World Championship (Best of 19; rising to Best 

of 35 in the final)  

2 Paired t-tests of the success rates observed for match winners and losers were 

carried out across 45 matches (Pro) and 55 matches (Amateur) 
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3.4.3 Quality Measures – Further Development 

This analysis has demonstrated that meaningful statistics relating to scoring 

visits, along with measures of Scoring Potential and Scoring Power could be 

generated from the scoring system, with the potential to provide valuable insight 

into the relative performance of individual players and how matches are won 

and lost at all levels of the professional game.   

With a larger pool of data there may be ways in which these measures could be 

refined to indicate if / how shot outcomes vary at different stages of the break 

and / or different stages of a frame, but there is clearly a limit to what we can 

infer without additional manual input helping to join the dots in the data. 

Using this framework as a basis, the most useful information to add manually 

would be whether the player was attempting a pot or playing a safety shot.  As 

discussed in Section 3.3. this introduces a small amount of subjectivity 

regarding how shots-to-nothing are classified, so it would be necessary to agree 

a definition between observers and users of the data.  This approach allows for 

a wider range of measures to be produced, as shown in Table 3.7. 

The Pot Success measure used here is comparable with the one produced for 

the official statistics (I identified slightly fewer missed pots).  An additional split 

is provided to distinguish between pots attempted at the start of a new visit, and 

those as part of an ongoing break.  This first of these splits is preferred to the 

existing Long Pot Success rate as it is more objective and focusses more 

directly on a player’s attempt to establish a scoring opportunity. 
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Table 3.7: Alternative statistics for the 2018 World Championship final collated 

from post-match video analysis 

Measure Mark Williams John Higgins 

Frames Won 18 16 

Scoring Potential 34% (64 / 189) 23% (43 / 188) 

Scoring Power 90% (492 / 547) 93% (442 / 474) 

Pot Success 91%  (556 / 612) 92%  (485 / 527) 

 - New visit 73%  (64 / 88) 68%  (43 / 63) 

 - Continuation 94%  (492 / 524) 95%  (442 / 464) 

Scoring Visits1     

 - Ending with Missed Pot 58% (32 / 55) 69% (22 / 32) 

 - Ending with Safety 42% (23 / 55) 31% (10 / 32) 

Outcomes of Safety Shots     

 - No balls potted 87% (122 / 141) 77% (117 / 152) 

 - No chance left 79% (111 / 141) 63% (96 / 152) 

Outcomes of Missed Pots     

 - No balls potted 57% (32 / 56) 31% (13 / 42) 

 - No chance left 41% (23 / 56) 24% (10 / 42) 

1 Note that the bases for these measures are scoring visits which ended with either a 

missed pot or safety shot.  This excludes scoring visits which ended with a successful 

pot (e.g. on the final black of the frame). 

The number (and proportion) of scoring visits which ended with a missed pot 

and those ending with a safety shot (implying that the player lost position) can 

be identified.  The consequences of missed pots and safety shots can also be 

analysed by looking at whether the opponent potted a ball (or had a chance to 

pot a ball on their shot).  The cost of each missed pot or failed safety shot could 

also be quantified by identifying how many points were subsequently scored by 

the opponent.   
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These additional measures confirm that Mark Williams left far fewer chances 

for his opponent following his safety shots (30 v 56).  Despite Williams missing 

more pots than Higgins (56 v 42 according to my data), Higgins had relatively 

few opportunities to score from them.  Indeed, this was a feature of Williams’ 

performances throughout the tournament.  He has a reputation for being able 

to identify attacking shots which offer an opportunity to score while minimising 

the risk should he miss.  

Appendix VI sets out a complete transition matrix with these additional 

breakdowns, populated with data collected from the 2018 World Championship 

final.  Additional states of ‘Break-off’ and ‘Frame End’ are added to capture the 

start and end of each frame.      
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3.5 Concluding Remarks 

Snooker is a long way behind other sports in the way performance data is used 

to understand the game and evaluate the strengths and weaknesses of its 

participants.  The biggest issue is the lack of data available, but we have seen 

how this could be addressed by producing basic statistics for every professional 

match using the scoring system.  The current set of measures - which rely on 

human judgement to identify the type of shot attempted – could not be replicated 

but this approach would yield information about how each match was won and 

lost and the relative strengths of each player. 

In the longer term, it is anticipated that greater use of technology will enable 

analysts to extract more detailed information about the relative difficulty of every 

shot played and the expected success rates for different types of shot.  In the 

short term there are clear improvements which could be made to the current set 

of measures which are produced. 

The existing scoring measures would be enhanced by presenting data on the 

number of scoring visits made by each player and the average number of points 

scored on each of these visits.  Together these provide an indication of whether 

one player took more opportunities to score points than the other and / or 

whether one player scored more heavily while at the table.  This information 

could all be extracted from the feed generated by the scoring system. 

The existing quality measures each have their merits but are limited by the level 

of human judgement required to produce them.  They do not cover all elements 

of the game, with positional play not captured at all.  Shot choice is also a key 

element of the game but none of the existing measures capture these tactical 
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decisions.  As a simple starting point, it would be possible to compare the 

number of pots and safety shots attempted by different players.  If this was 

available over a larger set of matches this may reveal some information about 

the playing style of each player.      

Considering the game as a series of dynamic interactions between the two 

players points towards the development of measures based on the outcomes 

of successive shots rather than simply looking at how an individual shot was 

executed.  The measures of Scoring Potential and Scoring Power described in 

this analysis can be produced based on data available from the scoring system.   

Analysis of a player’s safety game is more complicated as we cannot 

automatically identify when a safety shot was played – so there will always be 

a place for more subjective measures.  Thinking about the progression of a 

frame in a dynamic way at least indicates how existing measures relating to 

safety shots and long pots could be enhanced.   
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4 Simulating the Progression of a Snooker Frame 

 

The third objective of this research is to model a snooker frame to explore how 

the relative strengths of the two players affects the way the frame progresses 

and our expectation of likely outcomes.  This expands on the analysis presented 

in Chapters 2 & 3 by developing a framework to understand how differences in 

performance affect the progression of a snooker match and why the top players 

achieve better results than the rest.   

This chapter sets out the analysis produced to create and validate a shot-by-

shot simulation of a frame.  A series of inputs are used to determine the 

probability of potting a ball on each shot based on the stage of the frame and 

the status of the current visit.  The main output of the model is an estimate of 

the chances of either player winning the frame, along with additional statistics 

reflecting the progression of a frame based on the outcome of each shot played 

and every scoring visit made. 

Section 4.1 summarises existing analysis of snooker and the use of Monte Carlo 

simulation to model sporting contests.  Section 4.2 describes the conceptual 

model (§4.2.1) and the data used (§4.2.2) to generate the model inputs (§4.2.3 

& §4.2.4). 

Section 4.3 summarises analysis carried out to verify and validate the results of 

the model, comparing the simulated outcomes with the observed data with 

respect to the outcomes of shots played at different stages of the frame (§4.3.1), 

and the progression of the frame (§4.3.2).  The estimated probabilities of a 

player winning based on the state of the frame at the start of a scoring visit are 
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also compared with the actual outcomes of frames played (§4.3.3).  The 

deciding frame of the 1994 World Championship is presented as a case study, 

showing how the model can be used to chart the progression of a frame by 

looking at how the chances of each player winning fluctuated from one shot to 

the next (§4.3.4). 

Section 4.4 describes sensitivity analysis carried out by applying a scaling factor 

to the model inputs which modifies the relative strength of each player; 

controlling separately for a player’s scoring potential and scoring power as 

defined in Chapter 3.  Inputs relating to each player’s scoring power are 

adjusted to compare the expected progression of a frame depending on the 

ability of both players (§4.4.1).  The scoring power (§4.4.2) and scoring potential 

(§4.4.3) of a single player are then adjusted relative to the other to analyse the 

effect on the likely outcome of the frame. 

Section 4.5 describes potential applications of the model to support a player’s 

decision making at key points during the frame.  It first looks at the potential 

benefit for a player should they be able to increase the effectiveness of their 

break-off shot and reduce the chances of their opponent potting the first ball 

(§4.5.1).  It then looks in more detail at the simulated outcomes of a frame and 

how this varies depending on the status of the frame and which player pots the 

next ball (§4.5.2).  This is used to identify recommend strategies for situations 

where 1) a player faces a choice between a safety shot or a risky pot, and 2) a 

player is snookered and has to weigh up the ease of the escape against the risk 

of leaving their opponent certain chance pot (§4.5.3).   

Concluding remarks are presented in Section 4.6.     
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4.1 Introduction 

Snooker is a sport which lends itself well to detailed analysis.  The two players 

take turns visiting the table, making it easier to assess the outcome of each shot 

and the interaction between successive shots.  Shot choice plays a key part in 

the game as players weigh up the potential benefits from an attacking shot 

against the increased risk of handing their opponent an easy opportunity to 

score points.  Despite this there are few articles focussed on the analytical side 

of the game. 

4.1.1 Snooker 

A description of the game of snooker is provided in Section 1.2.1, with existing 

literature discussed in Section 1.4.1.  No previous analysis has been published 

looking at the progression of a frame, although some consideration has been 

given to the strategies involved in shot selection.   

Percy (1994) demonstrated how Bayesian methods of predictive inference 

could be applied, albeit acknowledging the difficulties in obtaining enough data 

relating to each shot to enable a posterior distribution to be generated – a 

problem which still exists!   In a later paper he discussed how dynamic learning 

could be used to inform stochastic processes for strategy selection and 

outcome prediction across a variety of sports (Percy, 2015). 

There is a limited amount of data available for analysis.  An automated scoring 

system is used at all professional tournaments, as well as some of the leading 

amateur tournaments.  This automatically updates the score displayed at the 

venue, while the feed (for professional events) is also used to update World 

Snooker’s live scoring service (World Snooker Tour, n.d.), as well as being sent 
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to bookmakers for use on their websites.  For commercial reasons the outputs 

from this are not publicly available. 

Scoring apps can also be downloaded by players to help track their own games.  

The creators of the scoring app mysnookerstats (MSS) have carried out 

analysis of a variety of players to understand how performance varies among 

different levels of player (Guest, 2010).  The MSS Ratings shown in Table 4.1 

are based on the proportion of successful pots by a player which are followed 

by another.  In this research this is referred to as a player’s scoring power, as 

it is effectively a measure of a player’s break-building capability. 

Table 4.1: The playing standard reflected by different levels of performance as 

captured by mysnookerstats (MSS) ratings.   

MSS Rating Playing Standard 

92+ The very best in the world (only Ronnie O’Sullivan at his best!) 

87 – 91 The World’s Top 16 

83 – 87 The remainder of the Professional Tour players 

80 – 83 Q-School hopefuls1 

75 – 80 Strong amateurs 

70 – 75 Good league players 

60 – 70 League players 

40 – 60 Club players 

< 40 Beginners / Novices 

1 Q-school refers to the Qualifying school for the Professional Tour, an annual event 

with the top performers invited to join the Tour at the start of the following season. 

Source: From Why Should I Use MySnookerStats? by Guest (n.d.) 

(https://www.mysnookerstats.com/why-mysnookerstats/). Copyright 2007-2021 by 

MySnookerStats.com 

  

https://www.mysnookerstats.com/why-mysnookerstats/
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4.1.2 Modelling sporting contests 

Monte Carlo analysis is commonly used to simulate the results of sporting 

contests; typically to model the outcome of a larger tournament with the purpose 

of evaluating expected results (Koning et al, 2003), different tournament 

designs (Scarf et al, 2009) or scoring rules (Scarf et al, 2019).  There are, 

however, surprisingly few examples where Monte Carlo simulation has been 

used to model the constituent parts of a scoring contest.   

Freeze (1974) described an early model of baseball matches by simulating the 

outcome of individual pitches, which he used to assess how much variations to 

a team’s batting order affected the expected outcome of a match.  More recent 

studies into baseball, such as Hirotsu and Bickel’s analysis of the sacrificial bunt 

(2019), have used a Markov model based on the transitions between states 

from one batter to the next. 

Markov models are often used to predict the results of tennis matches (Spanias 

and Knottenbelt, 2013).  These use the simplifying assumption that points won 

on serve are near enough independent and identically distributed (Klaassen and 

Magnus, 2001).  A Markov model has also been used to determine the outcome 

of successive balls in ten-pin bowling (vanDerwerken and Kenter, 2018).  

Swartz et al (2009) used Monte Carlo simulation to model runs scored in a one-

day cricket match; simulating the outcome of each delivery using characteristics 

of the batsman and bowler, as well as factors such as the number of balls 

bowled and the number of wickets lost.  They posed a range of questions 

relating to team selection and batting order which could be addressed using the 

model.   
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Alternative approaches to modelling a cricket match have been utilised to arrive 

at optimal solutions to specific problems; including dynamic programming to 

determine optimal scoring rates (Clarke, 1988) and simulated annealing to 

determine optimal batting line-ups in Twenty20 cricket (Perera et al, 2016). 

Broadie and Ko (2009) used simulation to model the outcomes of golf shots 

based on parameters relating to both the golfer and course layout.  They were 

particularly interested in isolating the effect of changing one skill parameter (e.g. 

driving distance) while holding others constant. 

In a similar way, the flexibility of Monte Carlo simulation makes it an ideal choice 

for modelling a frame of snooker and as the starting point for more detailed 

analysis of the game and alternative shot choices available to players.  A range 

of different outputs can be extracted depending on the scenario chosen and 

inputs can easily be adjusted to represent different levels of player.    
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4.2 Model Development 

This section describes the model developed and summarise the data analysis 

carried out to identify the inputs required. 

4.2.1 Conceptual Model 

A key decision in the development of any simulation model is to determine its 

scope.  It is not necessary to model all potential outcomes of a shot if some 

rarely happen, such as potting 2 reds on the same shot.  The model described 

in this research is limited to two outcomes for each shot; either a single ball is 

potted, or no balls are potted.   

Most notably, I have chosen not to model any shots which result in a foul 

(around 2% of observed outcomes).  A key consequence of this is that once 

one player requires snookers, they cannot win the simulated frame.  Upon 

reaching this state, the simulation continues until the current scoring visit is 

completed, but no subsequent visits are modelled. 

The default starting position for a frame is that there are 15 reds on the table, 

giving a potential 147 points remaining (based on the black being potted after 

each red).  Both players begin with 0 points.  The model has been set up so 

that alternative starting positions can be specified. 

Table 4.2 summarises the process the model follows depending on whether a 

ball is potted or not.  This varies slightly depending on whether the player was 

attempting to pot a red [1], a colour following a red [2], or a colour at the end of 

the frame once all reds have been potted [3].       
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The required inputs to the model therefore relate to the probability of potting a 

ball on each shot, and (for colours played after a red) the choice of colour 

played.  

Table 4.2: The flow of the simulation model for each type of shot played 

depending on whether a ball is potted or not 

 Shot Played Process if ball is potted Process if ball is not potted 

[1] Player i takes 
a shot at a 
red 

The number of points scored by 
Player i increases by 1 

The number of reds remaining 
reduces by 1 

The number of points remaining 
reduces by 1 

Player i takes a shot at a colour [2] 

If the difference in points scored 
exceeds the number of points 

remaining, then the frame ends 

Otherwise, Opponent takes a 
shot at a red [1] 

[2] Player i takes 
a shot at a 
colour (with 
value c) 

The number of points scored by 
Player i increases by c 

The number of points remaining 
reduces by 7 

If reds remain on the table, Player i 
takes a shot at a red [1] 

Otherwise, Player i takes a shot at 
the yellow [3] 

The number of points remaining 
reduces by 7 

If the difference in points scored 
exceeds the number of points 

remaining, then the frame ends 

Otherwise, if reds remain on the 
table, Opponent takes a shot at a 

red [1] 

Otherwise, Opponent takes a 
shot at the yellow [3] 

[3] Player i takes 
shot at yellow 
/ green / 
brown / blue / 
pink / black 
(with value c) 

The number of points scored by 
Player i increases by c 

The number of points remaining 
reduces by c 

If there are 0 points remaining, then 
the frame ends 

Otherwise, Player i takes a shot at 
the next colour, with value c + 1 [3] 

If the difference in points scored 
exceeds the number of points 

remaining, then the frame ends 

Otherwise, Opponent takes a 
shot at the colour [3] 

 

4.2.2 Data 

To determine suitable inputs to the model, post-match video analysis has been 

used to collect data on 31,298 shots played during all 734 frames contested 

over the 46 matches in the 2018 World Championship finals and 2019 Masters. 

A list of the matches analysed is provided in Appendix III.  Both tournaments 
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are contested by the 16 highest-ranked professional players, with an additional 

16 players qualifying for the World Championship after progressing through 

three qualifying rounds.  The data gathered therefore reflect the play of top 

professionals.   To be consistent with the scope of the model, shots played 

during visits which started after one player required snookers are not included 

in the analysis presented in this chapter. 

For each shot I recorded the number of reds (and points) remaining on the table.  

I also noted whether the player was taking the first shot of a new visit or 

continuing their visit (having previously potted a ball).  For new visits I calculated 

the number of shots since the last pot, while for continuing visits I identified the 

number of shots (successful pots) already played.  The outcome recorded for 

each shot was whether a ball was potted; and if so, how many points were 

scored.  A sample of the data recorded is provided in Appendix IV. 

Although my initial data collection recorded what type of shot was played (e.g. 

safety shot or attempted pot) I have not used this in my analysis.  Nor have I 

recorded any information about the position of the remaining balls, or the 

distance between the cue ball and object ball.  The data used are therefore 

comparable to the information which would be available from an automated 

scoring system. 

4.2.3 Model Inputs – Probability of potting a ball 

The first set of inputs required are estimates of the probability that a ball will be 

potted on any shot played in the frame.  Chi-square automatic interaction 

detection (CHAID) analysis has been carried out on the data collected to inform 

my approach (as used by Méndez-Domínguez et al, 2019 to identify the best 
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predictors of ball possession efficacy when using the goalkeeper as an outfield 

player in elite futsal), although I have ultimately used my judgement in 

determining which are the most appropriate dynamics of a snooker frame to 

capture.  A list of all inputs is provided in Appendix VII.  The results of chi-

squared tests are presented alongside each of the inputs to support the 

decisions made.    

I first split a frame into different phases depending on how far it has progressed.  

While this would not be the first factor chosen by CHAID or any other decision 

tree methodology, it offers the most logical starting point for modelling the 

progression of a frame.   

At the start of the frame the reds are packed together so safety shots are played 

until there is a chance to pot the first red.  As the frame develops the reds 

become more spread out and there is a greater chance of a player potting a ball 

and establishing a break.  Reds which are well-placed tend to be potted first, so 

the later reds (and the final red in particular) can be harder to gain position on. 

The first four phases are therefore represented by number of reds remaining on 

the table when the red was played (1st Red; Reds 2-4; Reds 5-12; Reds 13-

15).  The colours played immediately following each red are referred to 

accordingly – the colour following the 1st Red etc.   

During the fifth and final phase, the reds have all been potted and only the 

colours remain on the table.   There was relatively little difference between the 

pot rates for each of the colours, so a collective set of assumptions were 

developed.  
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The most significant factor in predicting the outcome of each shot during each 

phase of the frame was found to be the current status of the visit.  If a player 

has just potted a ball, then it is far more likely that they will be in position to pot 

the next one than if they have just come to the table following a shot by their 

opponent. 

A player’s options when starting a new visit are highly dependent on the 

previous shot played by their opponent.  If a pot is missed, then it is more likely 

that a scoring opportunity will be left than if they played safe.  I account for this 

indirectly in my model as a player was found to be more likely to pot a ball on a 

new visit if they were countering a scoring visit from their opponent than if there 

had been an exchange of shots since the last ball was potted.  Aside from this, 

the probability of potting the next ball was found to be independent of the length 

of the exchange.   

 

Figure 4.1: Proportion of shots which resulted in a pot depending on the status 

of the current visit and the phase of the frame 
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Figure 4.1 shows the proportion of shots played which resulted in a pot over 

different phases of the frame and how this depended on whether the player was 

continuing an existing visit or starting a new visit.  For continuing visits there 

were slightly higher probabilities of potting the colours rather than the reds.  For 

new visits there was a higher probability of potting the ball when the opponent 

had potted a ball on their previous visit (counter) than if they had not (exchange).  

Looking at the last colour potted in the visit provided an additional indication of 

how likely a player was to pot the next red.  If a player had just potted the pink 

or black then they were more likely to pot the next red than if they had potted 

the one of the baulk colours (yellow, green or brown) – in which case there is 

often further for the cue ball to travel to retain good position for the next red. 

Towards the end of a frame, the more established the scoring visit was, the less 

likely a player was to miss.  The length of the current visit is effectively providing 

an indication as to how open the frame has been and how well positioned the 

remaining balls are likely to be. 

A colour was less likely to be potted following the first red in a scoring visit than 

after subsequent reds, likely reflecting the relative difficulty of the pot on the 

initial red and the resultant impact on a player’s ability (and ambition) to retain 

good position on a colour.  This was particularly true nearer the start and end 

of each frame.   

As the frame progressed, the probability of potting a colour tended to increase.  

The exception was for the colour following the penultimate red, where the player 

may have to try and develop the final red while potting the colour – although for 
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more established breaks (perhaps where the frame is already won) this 

appeared to be less of an issue. 

4.2.4 Model Inputs – Choice of colour following a red 

In modelling the colours played following each red, the model first determines 

whether a colour was potted and, if it was, only then selects the colour.  

Although there may be interest in modelling the choice of colour first, that 

information was typically not collected when no ball was potted – and for safety 

shots the choice of colour is less relevant. 

The value of the colour potted was found to change as an individual visit and 

the wider frame developed, as shown in Table 4.3.   

Table 4.3: Frequency at which each colour was potted after a red at 

different stages of the frame 

 Colour selected (and associated points value) 

Stage of Frame 
Yellow 

 (2) 

Green 

(3) 

Brown 

 (4) 

Blue 

(5) 

Pink 

(6) 

Black 

(7) 

New Visit (1st Red) 10% 13% 8% 30% 12% 27% 

New Visit (Reds 2-15) 8% 10% 9% 24% 17% 32% 

Continuing Visit (Reds 2-14)      

- Following Baulk Colour 5% 6% 5% 27% 22% 35% 

- Following Blue 3% 3% 3% 34% 19% 38% 

- Following Pink 2% 2% 1% 19% 46% 30% 

- Following Black 2% 2% 2% 17% 13% 65% 

Continuing Visit  

(15th Red) 
4% 7% 8% 29% 14% 38% 

 

At the beginning of a new visit (particularly if it was the first red to be potted in 

the frame), a player was more likely to finish on the blue or one of the baulk 
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colours; perhaps to allow an element of safety in case the red was missed.  As 

the break continued, they were more likely to play for the blue, pink or black; 

both for their greater points value and for their proximity to the reds.  Following 

the final red, I noted that the blue and baulk colours were again chosen more 

frequently with the player aiming to finish close to the yellow for their next shot.    

An additional dynamic that I identified was a dependency in the choice of 

successive colours.  In particular, if a player potted the black after the previous 

red then they were more likely to pot the black after the next red as well.  

Similarly, the pink is often played less frequently at the start of a frame as its 

spot is closest to the reds, which tend to block the pink’s path to the pockets.  

Once this area of the table is opened up though, the pink can become a more 

favourable option for retaining position on the reds. 

It should be noted that I have not attempted to refine a player’s choice of colour 

in the model depending on the current score (for example, where high-valued 

colours need to be chosen in order to reach / avoid reaching the situation where 

snookers are required).       

4.2.5 Implementation 

The model was developed in R using the shot probabilities listed in Appendix 

VII and the colour choice distributions presented in Table 4.3.   

To validate the model, 10,000 simulations were run of a full frame, starting with 

15 reds on the table and the score at 0-0.  For subsequent scenarios described 

in this research, 10,000 simulations were again run, with the starting point 

dependent on the scenario being studied.  
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4.3 Verifying and Validating the Model 

This section sets out the analysis carried out to check that the model is working 

as expected and is yielding an accurate representation of a frame of snooker. 

The outcomes of different shots played within a frame are analysed in Section 

4.3.1 and compared with the input assumptions used.  Statistics capturing the 

progression of the observed and simulated frames, such as the number of 

scoring visits made, the points scored during these visits and the number of 

shots played between each scoring visit are then compared in Section 4.3.2.   

Section 4.3.3 considers the situation at the start of each scoring visit in respect 

of the current score and the number of points remaining on the table.  The 

proportion of frames won from similar situations are then compared between 

the observed and simulated frames.    

As a case study for how the simulation model can be used to track the course 

of a frame, the model is repeatedly run to replicate the situation prior to every 

shot played in the deciding frame of the 1994 World Championship Final, 

showing how the chances of each player fluctuated as the frame progressed 

(Section 4.3.4).   

4.3.1 Shot Outcomes 

The model uses assumptions about the probability that a player will pot a ball 

on each shot, so we would expect the overall success rates to be similar.  Table 

4.4 summarises the outcomes of shots played at different stages of the frame.  

Pearson’s chi-squared test was carried out to assess whether the number of 
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shots resulting in a pot was consistent between the observed and simulated 

values.  None of the differences were significant at the 95% level. 

Table 4.4: Modelled and observed outcomes of shots played at different 

stages of a frame; based on 734 observed and 10,000 simulated frames 

   Shots played on new visit Significance test 

Phase of 
frame 

Object 
ball 

Status of 
visit 

Observed data Simulation   

# % Pots # % Pots chi-sq p-value 

1st Red 

Red New1 3,145 23.3 42,881 23.3 0.00 0.99 

Colour Continuing 731 77.0 10,000 77.0 0.00 1.00 

Reds  

2-4 

Red New 1,824 28.2 25,736 28.2 0.00 0.99 

Red Continuing 1,881 89.0 25,645 88.6 0.23 0.63 

Colour Continuing 2,191 90.0 30,000 90.1 0.03 0.85 

Reds  

5-12 

Red New 2,853 33.7 38,950 33.4 0.11 0.74 

Red Continuing 5,380 89.2 73,582 89.7 1.27 0.26 

Colour Continuing 5,761 92.6 79,006 92.5 0.13 0.72 

Reds  

13-15 

Red New 1,027 22.0 16,242 21.6 0.11 0.74 

Red Continuing 1,656 80.3 23,126 80.0 0.07 0.79 

Colour Continuing 1,554 91.1 22,000 90.7 0.32 0.57 

Colours 

 New 646 18.7 13,336 18.4 0.05 0.83 

 Continuing 1,913 86.4 28,853 84.9 3.28 0.07 

All 

 New1 9,496 26.9 137,145 26.4 1.16 0.28 

 Continuing 21,068 89.0 292,212 88.8 0.51 0.47 

1 Excluding the first shot played in each frame 

Table 4.5 summarises the number of times each colour was potted following a 

red.  The simulated data is shown to follow a similar distribution to the observed 

data, with Pearson’s chi-squared test showing no evidence that these are 

significantly different from one another: Χ2 (5) = .52, p = .99.   
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Table 4.5: Colours potted following a red; based on 734 observed and 10,000 

simulated frames 

 Observed data Simulation 

Object Ball Pots % Pots Pots % Pots 

Yellow 350 3.8% 4,839 3.8% 

Green 429 4.6% 5,935 4.6% 

Brown 362 3.9% 4,929 3.9% 

Blue 2,138 23.0% 29,677 23.2% 

Pink 1,918 20.7% 26,558 20.8% 

Black 4,090 44.0% 55,830 43.7% 

 

4.3.2 Frame statistics 

A stronger test of the model is whether the frames generated follow a similar 

pattern to the observed data.  Outputs related to the first scoring visit made in 

each frame are evaluated, looking at how many shots were played before the 

first ball was potted and how many points were scored during the first scoring 

visit.  Similar analysis is then presented for subsequent visits, along with other 

features of the observed and simulated frames.     

First Scoring Visit 

A summary of all statistics produced for the first scoring visit is presented in 

Table 4.6.  Where the measures are continuous in nature, t-tests have been 

carried out to compare the distributions of the observed and simulated data.  

When comparing the number of observed and simulated frames which did (or 

did not) produce a particular outcome, Pearson’s chi-squared test for 

homogeneity is used.  The player “breaking-off” (taking the first shot in the 

frame) is denoted as Player 1.    
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Table 4.6: Summary statistics for the first scoring visit made in each frame 

 Means / Proportions Significance test 

 Observed 
data 

Simulation t-stat chi-sq p-value 

Shot on which 1st red was 
potted 

5.28 5.29 -0.06 - 0.95 

Player 1 makes 1st scoring visit 47.3% 45.4% - 0.96 0.33 

Points scored in 1st scoring 
visit 

30.2 30.8 -0.44 - 0.66 

50+ Points in 1st scoring visit 21.4% 23.4% - 1.50 0.22 

100+ Points in 1st scoring visit 6.9% 6.1% - 0.77 0.38 

Total Clearances1 3.1% 3.1% - 0.00 0.99 

% Frames ‘won’ on 1st scoring 
visit 

15.1% 15.9% - 0.31 0.58 

1 A total clearance is when a player pots all 15 reds with colours and the final 6 colours 

in the same visit (a total of 36 pots – unless multiple reds are potted in the same shot) 

The distributions for the shot on which the first red was potted are shown in 

Figure 4.2, with a close match between the observed and simulated frames.  

The observed probabilities of potting a ball on Shot 1 (0.00) and Shot 2 (0.20) 

are used directly by the model.  The simulated data is then based on the 

assumption that from Shot 3 onwards the probability of potting a red is 0.24.  

The observed proportion of balls potted on Shot 3 was actually slightly higher 

than this (0.27), but the difference was not significant and it was not 

incorporated into the model, resulting in the only notable deviation between the 

distributions obtained. 

Based on the input assumptions used for the model we can calculate 

mathematically that Player 1 has a 45.5% probability of potting the first ball in 

the simulation, putting them at a slight disadvantage at the start of the frame.  

Section 4.1 considers the effectiveness of the break-off shot and how much this 

influences the outcome of a frame.   
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Figure 4.2: Distribution of shots played when the first red is potted in each frame 

 

The number of points scored during the first scoring visit also followed very 

similar distributions for the observed and simulated data (Figure 4.3).  There 

were a slightly higher proportion of visits in which 50 or more points were scored 

in the simulation, although a slightly lower proportion in which 100 or more were 

scored – neither difference being significant.  There was also no evidence of a 

significant difference in the number of frames reaching the “snookers required” 

stage – i.e. effectively ‘won’ - by the end of the first scoring visit.   
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Figure 4.3: Distribution of points scored during the first scoring visit in each 

frame 

Frame Outcomes 

Table 4.7 contains statistics relating to subsequent scoring visits made during 

the frame (before snookers were required) and additional summary statistics 

relating to the frames recorded.   

Table 4.7: Summary frame statistics 

 Means / Proportions Significance test 

 Observed 
data 

Simulation t-stat chi-sq p-value 

Shots between scoring visits 3.47 3.59 -1.41 - 0.16 

Points per scoring visit (Visit 2+) 27.0 26.4 0.88 - 0.38 

% Frames won by Player 1 48.5% 48.9% - 0.05 0.82 

Scoring visits per frame 3.51 3.62 -1.39 - 0.17 

Frames with a 50+ break 68.1% 68.2% - 0.00 0.98 

Frames with a 100+ break 14.7% 12.0% - 4.56 0.03 
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With Player 1 less likely to pot the first ball in the model, they went on to win 

fewer than 50% of the simulated frames.  During a match the break-off shot for 

each frame alternates between the two players, so we would expect the 

probability of each player in the model winning a match to tend towards 0.5 the 

more frames that were played. 

A similar proportion of observed and simulated frames contained at least one 

break of 50 points or more; although there was some evidence of a difference 

in the number of century breaks made, with the simulation model producing a 

lower proportion than the observed data.   

There is some prestige associated with making a century break (i.e. 100 points 

or more), so it is possible that players were particularly focused on reaching this 

milestone.  If we instead compare the proportion of frames featuring a break of 

90 points or higher, the simulated data is again lower (18.5% of frames 

compared with 19.8% in the observed data) – but not significantly so: Χ2 (1) = 

.75, p = .39.  Similarly, there is also insufficient evidence of a difference in the 

proportion of frames featuring a break of 110 points or more (7.9% of frames 

compared with 9.8% in the observed data; Χ2 (1) = 3.30, p = .07).  

The number of shots played between scoring visits (Figure 4.4) followed similar 

distributions in both the observed and simulated data; as did the number of 

points scored on each scoring visit (Figure 4.5).   
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Figure 4.4: Distribution of shots played between scoring visits 

 

 

Figure 4.5: Distribution of points scored during the second and subsequent 

scoring visits in each frame 
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The distribution of the number of scoring visits played before the frame was won 

was skewed slightly more to the right in the simulation (although not significantly 

so).  In particular, there were a relatively large number of frames won in exactly 

2 or 3 scoring visits during the observed matches (Figure 4.6). 

 

Figure 4.6: Distribution of scoring visits made in each frame before a player 

required snookers 

 

4.3.3 Win Probabilities 

The main output produced by the simulation model is an estimate of the 

probability that each player will win the frame from a given position.  There is 

insufficient data available from actual matches to compare outcomes from 

specific situations, but similar instances can be grouped together to provide an 

indicative comparison of the simulated results against the available 

observations. 
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The analysis presented in Table 4.8 considers the position at the start of each 

scoring visit in terms of the number of points remaining and the current score 

from the perspective of the player at the table.  The proportion of frames which 

were subsequently won by that player has been calculated for both the 

observed and simulated data – with figures only presented for a scenario if there 

were at least 30 such occurrences in the observed data. 

Table 4.8: Proportion of observed and simulated frames won from different 

scenarios under which the next scoring visit started.  The figures in brackets 

show the number of instances analysed in each case.      

 
Difference in Score 

Points 
Remaining 

>= 50 
behind 

30-49 
behind 

10-29 
behind 

9 behind 
–  

10 ahead 

11-30 
ahead 

31-50 
ahead 

> 50 
ahead 

Observed Data 

147    
60% 

(727) 
   

123-139   
54% 

(89) 

67% 

(374) 

76% 

(49) 
  

91-115  
50% 

(110) 

62% 

(164) 

71% 

(93) 

80% 

(109) 

95% 

(57) 
 

59-83 
37% 

(65) 

40% 

(82) 

47% 

(55) 

70% 

(64) 

89% 

(55) 

98% 

(54) 

90% 

(40) 

7-51   
56% 

(89) 

81% 

(110) 

92% 

(97) 

100% 

(34) 
 

Simulated Data 

147    
63% 

(10,000) 
   

123-139   
57% 

(1,189) 

65% 

(5,433) 

73% 

(648) 
  

91-115  
45% 

(1,457) 

57% 

(2,066) 

67% 

(1,109) 

80% 
(1,443) 

89% 

(774) 
 

59-83 
21% 

(1,112) 

35% 

(1,102) 

54% 

(815) 

72% 

(799) 

83% 

(744) 

93% 

(871) 

99% 

(601) 

7-51   
49% 

(1,559) 

74% 

(1,959) 

90% 

(1,443) 

98% 

(451) 
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Grouping the cases together in this way means that the data cannot formally be 

compared – and a relatively small sample of actual frames are available for 

analysis – but the simulated results do follow a logical pattern along the same 

lines as the actual outcomes.  The most notable difference is in the relatively 

high number of actual frames won from 50 points or more behind (24 / 65 = 

37%) compared with the simulated data (235 / 1112 = 21%) but further data 

would be required to assess whether this reflected a limitation in the model or 

just an anomaly in the frames observed. 

The analysis presented in this section shows the value of being “in control” of 

the table.  If one player leads by more than 30 points while reds remain on the 

table then the model indicates they are very likely to win the frame if they pot 

the next ball (89% in the case where there are 91-115 points remaining), but 

their opponent still stands a good chance of winning (45%) if they make the next 

pot.  This is explored in more detail in Section 4.5.2. 

4.3.4 Case Study 

The simulation model developed has been used to estimate the probability of 

each player winning based on the situation prior to each shot of the deciding 

frame in the 1994 World Championship final between Stephen Hendry and 

Jimmy White.   

A high-level summary of the frame is provided in Table 4.9.  The pattern of the 

frame – with both players making two scoring visits – is typical of the frames 

which informed the inputs to the model, so the level of performance reflected 

should be reasonably comparable even if overall standards of play are now 
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slightly higher.  Figure 4.7 then charts the simulated probability of Stephen 

Hendry winning the frame at the start of each shot.   

Table 4.9: Summary of the final frame from the 1994 World Championship final 

# Summary of scoring visits 
Score at end of visit 

(Hendry - White) 

1 
White pots the first red (shot #5) but runs out of position 

after potting the black and plays safe. 
0 - 8 

2 

After White misses a long pot, Hendry has the first real 

chance of the frame (shot #10).  He also loses position 

though and misses a difficult red (shot #18) to leave a 

chance for White. 

24 - 8 

3 

White plays a couple of good positional shots to develop 

the reds and establish a frame-winning opportunity.  He 

misses a straightforward black though (shot #28) to hand 

the opportunity back to Hendry.  

24 - 37 

4 

Within a couple of shots Hendry is in prime position and 

completes the clearance to claim frame, match and the 

Championship. 

82 - 37 

                              

 

Figure 4.7: Shot by shot simulated probability of Stephen Hendry winning the 

final frame against Jimmy White during the 1994 World Championship final  
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White became the clear favourite to win the frame once he had established his 

second scoring visit.  At the point he missed the crucial black, the simulation 

model gave him an 85% chance of winning the frame.  If anything, the 

opportunity was even more promising than this given the position of the balls. 

Similarly, the model was initially cautious about Hendry’s chances of winning - 

on the basis that the last couple of reds can be more difficult to gain position on.  

In fact, the reds were all out in the open, so the clearance looked to be a 

formality even before the final red was potted (shot #37). 

Nevertheless, simulating the frame in this way provides an informative method 

for quantifying and depicting how the chances of each player fluctuates over the 

course of the frame and in assessing the impact of potential turning points.             
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4.4 Sensitivity Analysis 

As well as analysing the outputs from the model under the core set of inputs we 

are also interested in understanding how sensitive these outputs are to any 

changes in the inputs.  This also helps us to understand how the progression of 

a frame depends on the ability of the two players.   

To assess this, we can view each of the inputs as either representing the 

probability of potting a ball at the start of a new visit, or as a continuation of an 

existing visit.   

The overall proportion of successful pots at the start of a new visit reflects a 

player’s scoring potential, as described in Chapter 3.  In part this reflects a 

player’s potting ability, often where the cue ball is some distance from the object 

ball.  Arguably to a greater extent though, these inputs reflect the opponent’s 

safety prowess / tactical awareness; players with greater capability in this 

respect (or perhaps just those showing more caution in their shot selection) will 

be less likely to leave a scoring opportunity for their opponent.  A scaling factor 

is introduced into the model to modify a player’s scoring potential by adjusting 

each of the underlying input parameters by the same proportion.   

Collectively, inputs relating to the probability of a player successfully continuing 

their visit reflect the player’s scoring power, another measure introduced in 

Chapter 3.  The greater their skill at manoeuvring the cue ball between shots, 

the higher their subsequent probability of potting a ball.  A second scaling factor 

is introduced into the model to modify one or both player’s scoring power by 

adjusting each of the underlying input parameters by the same proportion.     
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Setting both scaling factors at 1.00 reflects the default model described in 

Section 4.2, broadly representing a Top 16 player. 

This section summarises the impact on the progression of a simulated frame 

from using these scaling factors to modify the input assumptions to reflect 

different levels of ability for one or both of the players. 

4.4.1 Changing the scoring power of both players       

The first element of this analysis considers the effect of the break-building 

prowess of the two players on the progression of the frame.  Under each 

scenario the model was run with a different scaling factor to adjust the scoring 

power of both players by the same amount, leaving them evenly matched.  The 

scoring potential of the two players was not modified.  

The first five values chosen are believed to reflect the range of abilities within 

the professional ranks.  The final four values were chosen to mirror some of the 

levels identified by mysnookerstats (see Table 4.1) – ‘Q-School hopefuls’, 

‘Strong amateurs’, ‘Good league players’ and ‘League players’.  Additional data 

would be required to accurately model the ability of different players, but this 

serves to provide an indication of the effect on frame progression and 

demonstrate the sensitivity of the inputs used. 

Table 4.10 shows the effect of applying different scaling factors.  Note that the 

effect on the scoring power of the players is typically slightly larger than the 

scaling factors used.  This arises from using the length of the current visit as a 

factor in determining the outcome of shots played towards the end of the frame, 

so the success of shots played at the start of the frame has an additional 

influence over the success of subsequent shots played.   
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Table 4.10: Impact on scoring rates from changing the proportion of balls potted 

following a pot by both players 

Scaling 
Factor 

Scoring 
Power 

Scoring 
Visits 

Points per 
Scoring 

Visit 

High Breaks 
Total 

Clearances 50+ 100+ 

1.04 93.3% 2.49 43.2 88% 31% 13% 

1.02 91.0% 3.06 33.8 79% 20% 6% 

1.00 88.8% 3.62 27.6 68% 12% 3% 

0.98 86.7% 4.19 23.4 58% 8% 1% 

0.96 84.6% 4.71 20.3 49% 5% 1% 

0.93 81.4% 5.57 16.7 37% 2% 0% 

0.89 77.2% 6.68 13.4 24% 1% 0% 

0.84 72.2% 8.00 10.8 12% 0% 0% 

0.76 64.4% 9.96 8.1 4% 0% 0% 

Even a small change to the scoring power of the two players has a pronounced 

effect on the average points scored on each visit.  The nature of the game also 

changes – at the highest level the model indicates that there would often only 

be a couple of scoring visits per frame as players score so heavily.   

The proportion of frames in which a 50+ or 100+ break is made varies 

considerably across the professional ranks.  The simulated figures are 

comparable to data extracted from Cuetracker.net on century breaks made 

during the 2020/21 season (Florax, 2021).  These show that the 4 highest-

ranked players made 100+ breaks in 27% of the frames they won and players 

in the bottom half of the rankings made 100+ breaks in 6% of the frames they 

won.  [Breaks made in frames won is referenced here as a proxy for the rate 

expected from two players of equal ability competing against one another.]      



145 
 

4.4.2 Changing the scoring power of one player       

The second set of scenarios considers how the chances of a player winning the 

frame are affected by the relative strength of their scoring power compared with 

their opponent. 

Under each scenario the model was run with a different scaling factor to adjust 

the scoring power of a single player – the player taking the first shot in the frame 

(Player 1).  A scaling factor above 1 therefore indicates that Player 1 has a 

greater scoring power than their opponent.  The scoring potential of the two 

players is not adjusted. 

The range of values chosen in this analysis are broadly consistent with levels 

recorded across the 46 matches analysed.  Of the 20 players contesting at least 

30 frames, the lowest aggregate success rate recorded was 82.5% (315 / 382) 

and the highest was 92.2% (1130 / 1226). 

Table 4.11: Impact on the performance of Player 1 and the proportion of frames 

won from changing their probability of potting a ball during a scoring visit 

 Player 1 Performance Measures 

Scaling Factor Scoring Power 
Points per 

Scoring Visit 
% Scoring 

Visits made 
% Frames Won 

1.04 93.1% 41.6 49.9% 60.1% 

1.02 91.0% 33.5 49.2% 54.3% 

1.00 88.8% 27.6 49.2% 48.9% 

0.98 86.7% 23.4 48.8% 43.6% 

0.96 84.7% 20.4 48.6% 39.5% 

0.94 82.7% 18.0 48.3% 34.9% 

0.92 80.7% 16.0 48.5% 31.4% 

0.90 78.6% 14.4 48.3% 27.8% 
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Table 4.11 shows that the proportion of scoring visits made by Player 1 is largely 

unaffected by the scaling factors applied but it is the number of points scored at 

each visit which drives the changes in the proportion of frames they are 

modelled to win.   

Note that as Player 1 is modelled as playing the first shot in every frame they 

have slightly less than a 50% chance of winning a ‘fair’ simulated frame (i.e. 

when using a scaling factor of 1.00).  In reality, the player taking the break-off 

shot would alternate, so this would even out over a longer match. 

On the basis that players with a scoring power of around 83% and above are of 

a professional standard (Table 4.1), the results from these simulations are 

consistent with observed win percentages over the last two seasons 

(Collingwood et al, 2022).  On average, a middle-ranking professional would be 

expected to win around 40% of frames against a Top 16 player, while a lower-

ranked professional might win 33%.        

4.4.3 Changing the scoring potential of one player       

The third element of this analysis considers how the chances of a player winning 

the frame are affected by the strength of their tactical play relative to their 

opponent’s. 

The measure of scoring potential is not as clear an indicator of an individual 

player’s level of performance as it is partly dependent on the performance of 

their opponent as well as their style of play (for example, whether they are more 

inclined to play safe than take on a difficult pot).  Nevertheless, if one player is 

taking more opportunities to score than their opponent then we would expect 

them to gain an advantage. 



147 
 

Under each scenario, the inputs relating to the probability of potting a ball at the 

start of a new scoring visit (reflecting a player’s scoring potential) are adjusted 

for Player 1 using a scaling factor.  A scaling factor above 1 therefore indicates 

that Player 1 has a relatively strong safety game compared with their opponent 

and is more likely to pot the next ball following any safety exchange.  The 

scoring power of the two players is not adjusted. 

The range of values chosen in this analysis are broadly consistent with levels 

recorded across the 46 matches analysed.  Of the 20 players contesting at least 

30 frames, the lowest aggregate success rate recorded was 20.3% (47 / 232) 

and the highest was 37.6% (65 / 173).  This latter figure was a bit of an outlier, 

with the next highest at 31.4% (157 / 500).  

Table 4.12 shows that against weaker opponents, Player 1 is more likely to pot 

a ball on a new visit so makes a slightly higher proportion of the scoring visits 

made during the simulated frames.  This in turn increases their chances of 

winning the frame.  Against stronger opponents, Player 1 has fewer 

opportunities to score and wins a lower proportion of frames as a result.  

Differences in the relative scoring potential of the two players would appear to 

have less of an influence on the frame outcome than their relative scoring 

power.  This is not unexpected given that in the matches analysed 69% of shots 

played were part of a continuing visit as opposed to the start of a new visit. 
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Table 4.12: Impact on the performance of Player 1 and the proportion of frames 

won from changing their opponent’s probability of potting a ball on a new visit 

 Player 1 Performance Measures 

Scaling Factor 
Scoring 
Potential 

Points per 
Scoring Visit 

% Scoring 
Visits made 

% Frames Won 

1.20 32.6% 27.4 53.4% 54.4% 

1.15 31.2% 27.4 52.5% 53.2% 

1.10 29.7% 27.2 51.3% 51.9% 

1.05 28.4% 27.4 50.2% 50.3% 

1.00 27.0% 27.6 49.2% 48.9% 

0.95 25.6% 27.7 47.8% 46.9% 

0.90 24.3% 27.7 46.7% 45.3% 

0.85 22.9% 27.7 45.2% 43.8% 

0.80 21.6% 27.8 43.7% 42.0% 
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4.5 Applications 

There are a variety of potential applications for the model.  Section 4.5.1 models 

the effectiveness of the break-off shot to explore what impact this has on the 

outcome of the frame.   

Section 4.5.2 presents estimates of the probability of each player winning from 

different stages of the frame should they pot the next ball.  This is used in 

Section 4.5.3 to evaluate alternative approaches available to a player.  Firstly, 

where they have to decide whether or not to take on a risky pot.  Secondly, 

where they are snookered (unable to hit the object ball directly) and must weigh 

up the risks incurred from either playing a straightforward escape which is likely 

to leave their opponent an easy opportunity to score; or attempting a more 

difficult escape which may see them concede penalty points.       

4.5.1 Effectiveness of the break-off shot 

The position of the balls for the first shot of each frame is the same, so in theory 

a player should be able to reach a high level of consistency with the shot.  A top 

professional would certainly expect the cue ball to finish close to the baulk 

cushion – ideally in a way in which the baulk colours were blocking the path to 

most of the reds.  They have less control over the reds themselves - although 

the red they hit will usually finish safe, a red on the other side of the pack will 

be released and may finish in a position from which it can be potted. 

I was surprised to find that a ball was potted on as many as 20% of occasions 

immediately following the break-off.  Subsequently, the player who broke-off 

(played the first shot in the frame) was observed to pot the first ball less 

frequently than their opponent.  A one-sided binomial test of the observed 
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outcomes (N = 734, K = 346) indicates that there is not enough evidence to 

conclude that this is significantly less than random chance (p = .07), but it would 

be interesting to test this with a larger sample of data.  Over 60% of the 

observed frames were won by the player making the first scoring visit so I was 

still interested in analysing how much the effectiveness of the break-off shot 

might affect the outcome of a frame.       

To do this I changed the probability of potting a ball on Shot 2 (default = 0.200) 

to reflect differences in the quality of Player 1’s break-off shot.  The better the 

shot, the lower the probability that Player 2 will pot a red on their turn.  The 

probabilities associated with subsequent shots were not adjusted.  The 

outcomes compared are the proportion of frames in which Player 1 

subsequently pots the first ball, and the proportion of frames they go on to win, 

shown in Table 4.13. 

Table 4.13: The impact on the outcome of a frame from changing the probability 

that Player 2 pots a red on their first shot 

Probability that Player 2 pots 
a red on their first shot 

Proportion of frames 
where Player 1 pots 1st red 

Proportion of frames won 
by Player 1 

0.00 56.4% 51.7% 

0.05 54.2% 51.3% 

0.10 51.2% 50.3% 

0.15 49.0% 49.9% 

0.20 45.5% 48.9% 

0.25 43.2% 48.1% 

0.30 40.5% 47.8% 

 

The results show a direct impact on the proportion of frames where Player 1 

pots the first red.  Under the default inputs, Player 2 has a 20% chance of potting 
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a ball on their first shot, making them more likely to pot the first ball in the frame.  

If Player 1 could reduce Player 2’s chances to around 10% then my modelling 

indicates that the advantage switches and Player 1 is now slightly more likely 

to pot the first ball.  The impact on the ultimate outcome of the frames is 

relatively low, although in elite sport competitors are looking for such marginal 

gains which may give them a crucial advantage over their opponent. 

It should be noted that this analysis is based on Player 1 increasing the 

effectiveness of their break-off shot by achieving a higher level of consistency, 

either though practice and / or a small modification to the shot attempted.  A 

significant change in approach (e.g. rolling up to the reds) may not have the 

same effect as the shot faced by Player 2 would also be very different, 

potentially making it easier for them to restrict their opponent’s opportunity to 

score in return. 

More comprehensive data would be required to determine whether some 

players are consistently able to limit their opponent’s chance following the 

break-off shot; the sample sizes available are not substantial enough.  For 

interest though, of players breaking-off in at least 20 frames during the recorded 

matches I observed the following extremes: 

• Neil Robertson’s opponents were only able to pot a ball on the following shot 

once out of 22 frames (5%) and Robertson made the first pot on 13 

occasions (59%) – although despite this, he only went on to win 9 of the 22 

frames when he broke-off (41%).   

• Conversely, Kyren Wilson’s opponents successfully potted a ball on their 

first shot in 13 out of 44 frames (30%).  As a consequence, Wilson potted 
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the first ball in just 19 of the frames in which he broke-off (43%) - although 

he did go on to win exactly 50% of them. 

4.5.2 Impact of making the next scoring visit on the outcome of a frame 

Section 3.3 compared the observed and modelled outcomes of frames based 

on the difference in the score and the number of reds remaining when each 

scoring visit started.  In this section, that analysis is extended to focus on 

specific scenarios and simulate the outcomes of frames at each point. 

Figure 4.8 shows the probability of winning at different instants during a frame 

based on the number of balls remaining at the start of the visit (with each 

estimate based on a separate simulation of 10,000 frames).  A range of 

scenarios have been run based on the player being 30 points ahead; 15 points 

ahead; scores level; 15 points behind and 30 points behind.   

 

Figure 4.8: Proportion of frames won by the player who makes the next scoring 

visit at different stages of the frame given the score at the start of the visit 
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Note that the simulation was not run in cases where snookers are already 

required (i.e. where a player is 30 points ahead on the colours, or 15 points 

ahead with only pink and black remaining).  Scenarios are included where a 

player is ahead or behind at the start of the frame, although these would only 

occur if a player had conceded penalty points before a ball was potted.    

There is, unsurprisingly, no overlap between the lines produced; the more 

points a player leads by at any stage of the frame, the greater their chances of 

winning.  With a player 30 points ahead or behind the lines are relatively smooth; 

the further the frame has progressed, the more likely it is that the player leading 

will go on to win the frame.  As noted in Section 3.3, even if a player is 30 points 

behind, they still stand a good chance of winning the frame if they can take the 

next opportunity to score. 

Where the scores are closer, the probability that the player potting the next ball 

goes on to win the frame is slightly higher while there are a number of reds left 

on the table presenting a good opportunity to make a decisive break.  It then 

falls slightly for the last few reds, which may not be as well positioned.   

If the frame is still close when it reaches the colours, then the next player to pot 

a ball will be favourite to win the frame.  The number of pots required to win 

becomes a factor in determining how likely it is that each player will win – 

resulting in the non-monotonicity of the probabilities presented in Figure 4.8.  

For example, with scores level on the blue the player who pots the blue just 

requires either the pink or black, while their opponent needs both.  With scores 

level on the pink, the player potting the pink still requires the black.  If they miss, 

then their opponent can also win by potting the black. 
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4.5.3 Evaluating shot choice 

There are a number of variables which we cannot fully model, such as the 

position of the remaining balls, but we can make some general assumptions to 

help devise appropriate strategies for different situations faced within a frame 

of snooker. 

Risky Pot or Play Safe? 

The first scenario considered is where Player 1 is at the table at the start of a 

new visit and has the choice of playing safe or taking on a pot. 

If they play safe, their probability of winning the frame can be written as: 

𝑃(𝑊𝑖𝑛 | 𝑆𝑎𝑓𝑒) =  𝑆𝑉1 +  (1 − 𝑆)(1 − 𝑉2)     (2) 

where 𝑆 is the probability that Player 1 pots the next ball after the initial safety 

shot and 𝑉𝑖 is the probability that Player 𝑖 wins the frame given that they pot the 

next ball, which is estimated using the simulation model.  Where 𝑉1 ≠ 𝑉2 this 

would typically imply that either one player has currently scored more points 

than the other and / or there is a difference in the relative scoring power of each 

player.  Towards the start of the frame, it could also imply that the safety play 

of one player is stronger than the other, enabling that player to make a higher 

proportion of the scoring visits. 

If they take on the pot, then with probability x a ball is potted with a ‘fair’ chance 

of continuing the visit (i.e. consistent with the model inputs).  Otherwise, P 

represents the probability that Player 1 pots the next ball after their initial 

attempt at a pot is missed.  Their probability of winning the frame having taken 

on the pot can therefore be written as: 
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𝑃(𝑊𝑖𝑛 | 𝑃𝑜𝑡) = 𝒙𝑉1 + (1 − 𝒙)[𝑃𝑉1 +  (1 − 𝑃)(1 − 𝑉2)]   (3) 

In order to justify taking on the pot, we seek criteria for x, which for estimated 

values of 𝑉𝑖, S and P would satisfy 𝑃(𝑊𝑖𝑛 |𝑃𝑜𝑡) ≥ 𝑃(𝑊𝑖𝑛 | 𝑆𝑎𝑓𝑒). 

Equation (2) can be rearranged as: 

𝑃(𝑊𝑖𝑛 | 𝑆𝑎𝑓𝑒) = 𝑆(𝑉1 +  𝑉2 − 1) + (1 −  𝑉2) 

and similarly, equation (3) can be rearranged as: 

𝑃(𝑊𝑖𝑛 | 𝑃𝑜𝑡) = 𝒙(𝑉1 + 𝑉2 − 1) + (1 − 𝒙)𝑃(𝑉1 +  𝑉2 − 1) + (1 −  𝑉2) 

Cancelling the term (1 −  𝑉2) and dividing throughout by (𝑉1 + 𝑉2 − 1) this 

leaves us with the following criterion for choosing the pot over the safety shot: 

𝒙 ≥ (𝑆 − 𝑃)(1 − 𝑃)−1      (4)  

It is notable that this criterion is only dependent on S and P and not on 𝑉𝑖.  Under 

this model of a frame, a player’s strategy should only be affected by how likely 

they are to pot the next ball and not by the current score in the frame or the 

scoring power of their opponent. 

In the scenario where two players of equal ability are level on points with 5 reds 

(67 points) remaining, we can use the simulation outputs displayed in Figure 

4.8 to estimate that the next player to pot a ball has a 70% chance of winning 

the frame (i.e. 𝑉1 = 𝑉2 = 0.7). 

From equation (2) we see that the probability of Player 1 winning the frame if 

they choose to play safe is therefore 0.4S + 0.3.  If S = 0.5 then this intuitively 

means that 𝑃(𝑊𝑖𝑛 | 𝑆𝑎𝑓𝑒) = 0.5. 
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To resolve equation (3) we consider how the probability of winning the frame 

given different estimates of x varies according to the consequences of the shot 

being missed, represented by P:  

• P = 0 reflects the riskiest shot; if the pot is missed then their opponent is 

certain to pot the next ball.  The probability of Player 1 winning the frame 

from this opportunity is 0.4x + 0.3.   

• P = 0.25 reflects a shot with a 50% chance of leaving the balls safe – from 

which Player 1 has a 50% chance of potting the next ball.  Their probability 

of winning the frame is now 0.3x + 0.4. 

The horizontal (red) lines in Figure 4.9 show 𝑃(𝑊𝑖𝑛 | 𝑆𝑎𝑓𝑒) for different values 

of S, while the diagonal (black) lines show 𝑃(𝑊𝑖𝑛 | 𝑃𝑜𝑡) for different values of 

P and x.   

 

Figure 4.9: Probability of winning the frame with the scores level and 5 reds (67 

points) remaining when a) playing safe, or b) taking on a pot with different 

expectations of success at selected levels of risk 
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This can be used to identify criteria for x which would justify taking on the pot 

for different estimates of S and P, shown in Table 4.14.  These criteria also hold 

in scenarios where there is a difference in the current score or in the scoring 

power of the two players.  

Table 4.14: The expected success rate for a particular pot which is required in 

order to justify taking on the pot rather than playing safe, for specified estimates 

of the probability of potting the next ball after playing safe (S) and the probability 

of potting the next ball if the pot is taken on but missed (P). 

 P = 0 P = 0.25 

S = 0.25 x ≥ 0.25 x ≥ 0.00 

S = 0.40 x ≥ 0.40 x ≥ 0.20 

S = 0.50 x ≥ 0.50 x ≥ 0.33 

S = 0.60 x ≥ 0.60 x ≥ 0.47 

 

In a match between two top professionals, we would anticipate that the neutral 

assumption of S = 0.5 would be reasonable in most situations.  A general rule 

that follows from this is that a player should always take on the pot if they would 

expect to be successful at least 50% of the time – even if they would leave a 

certain scoring opportunity for their opponent if they missed. 

Where the player believes that they can play the pot with a degree of safety 

(e.g. P = 0.25), it would be reasonable for them to be more aggressive and take 

on a more difficult pot (x ≥ 0.33) as a missed pot would not always be costly.   

Where the player thinks they can gain a genuine advantage in the safety 

exchange (e.g. S = 0.6), then they may benefit from waiting for a better 

opportunity (x ≥ 0.60).  Conversely, where the player has no straightforward 

safety shot (e.g. S = 0.25), a difficult pot (x ≥ 0.25) may be the best option.   
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Snookered 

When a player (Player 1) finds themselves snookered (i.e. unable to hit a red 

directly) with multiple reds left on the table they could take one of two alternative 

approaches to the shot.   

One approach (sometimes preferred by Ronnie O’Sullivan) would be to 

maximise their chances of hitting a red by playing at pace towards a group of 

reds, hoping to get lucky and not leave an easy chance for their opponent (a 

“hit and hope”).  The likely outcome is that they would not give away any penalty 

points but would hand their opponent a good chance of potting a ball.   

The alternative approach (more commonly taken by professional players) is to 

attempt a more difficult escape which minimises the chances of leaving their 

opponent an easy pot, perhaps by rolling up to a solitary red near a cushion.  

The risk from this approach is that they are more likely to miss the red and 

concede penalty points, with their opponent also having the option to ask them 

to replay the shot.   Successive misses can occur in such a situation, with the 

player giving away numerous penalty points before finally hitting the red. 

Equation (2) from the previous scenario can again be used to estimate the 

probability of Player 1 winning the frame if they follow each of the potential 

approaches.  In this scenario, both players are modelled as being of equal ability 

and the scores are level before the shot is taken. 

For the first approach, it is assumed that no penalty points are conceded by 

Player 1 (so 𝑉1 = 𝑉2) but that their chances of potting the next ball are now very 

low – the cases where S = 0 (i.e. a certain pot for their opponent), and S = 0.125 

(i.e. a 25% chance of leaving the initial shot safe, with a 50% chance of winning 
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the resultant safety exchange) are considered.  Using the simulation outputs 

displayed in Figure 4.8, if there are currently 10 reds remaining the player who 

pots the next ball is estimated to have a 68% chance of winning the frame (i.e. 

𝑉1 = 𝑉2 = 0.68).  Player 1’s chances of winning the frame therefore stand at 

32% (where S = 0) or 37% (where S = 0.125). 

For the alternative approach, it is assumed that once the player hits the red, 

they do not leave a pot for their opponent and that there is an even chance of 

each player winning the subsequent safety exchange (i.e. S = 0.5).  In this case, 

equation (2) simplifies to 0.5 +  𝑉1 − 𝑉2.  If they hit the red at the first attempt, 

𝑉1 = 𝑉2 and their chances of winning the frame are 50%.  Otherwise, if they 

concede penalty points before hitting the red, 𝑉2 > 𝑉1 and their chances of 

winning the frame are reduced.   

With 10 reds remaining, the analysis in Section 4.2 estimates that their chances 

of winning would fall to 42% if they concede 15 penalty points before hitting the 

red, while if they were to concede 30 penalty points their chances fall to 34%.  

[Missing the reds on a single shot would typically concede 4 penalty points, so 

the examples given are very roughly comparable to missing the red on 4 

occasions, and on 7-8 occasions.] 

Figure 4.10 plots the potential outcomes from playing a cautious escape (in red) 

and from playing a riskier ‘hit and hope’ (in black) at different stages of the 

frame.  During the first half of the frame (i.e. with at least 5 reds remaining), 

conceding 15 points in penalty points but not leaving a chance is always 

preferable to handing the opponent a scoring opportunity.  It is rare that a 

professional will miss more than 3 or 4 times in succession, so the more 
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cautious approach (assuming that the player will succeed in keeping the balls 

safe) is generally advised.  This is also the case where the scores are not level 

– subject to the player being able to concede points without requiring snookers 

themselves.     

 

Figure 4.10: Probability of winning the frame depending on the outcome of the 

shot played when snookered and the number of points conceded in the process 

 

As the frame progresses, it can be concluded that the difficulty of the escape 

should be considered; conceding 15 penalty points becomes more costly than 

allowing the opponent to pot the next ball – on the basis that the last couple of 

reds may be difficult to gain position on, preventing the opponent from making 

a frame-winning break.  A ‘hit-and-hope’ shot may also stand a greater chance 

of leaving the balls safe when there are only a couple of reds left on the table.              
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4.6 Conclusions 

This chapter described the development of a simulation model which accurately 

reflects the progression of a typical frame of snooker played between two top 

professionals.  The analysis is based on over 30,000 shots and indicates how 

the probability of potting a ball on each shot changes as the frame progresses. 

The number of points scored during each scoring visit closely matches the 

observed data and the scoring power of a player within the simulation can be 

adjusted to reflect players with slightly greater / weaker break-building prowess.  

This scaling factor could be used to reflect the scoring power of players at a 

lower level of the game as well, although further data would be required to 

validate this. 

The safety prowess and tactical awareness of players is harder to measure, 

although the inputs to the model can be refined to reflect how likely it is that a 

player will leave an opportunity for their opponent.  This has a direct impact on 

the proportion of scoring visits made by each player (their scoring potential), 

which potentially gives one player a crucial advantage over another.  It would 

also be important to understand if there is also an effect on scoring power, i.e. 

whether the quality of the scoring opportunities is affected as well as the 

quantity.  This may potentially affect both players if longer safety exchanges 

tend to leave more reds close to the cushion / colours away from their spots. 

In theory it would be possible to determine suitable scaling factors to represent 

the abilities of each individual professional snooker player, allowing for more 

detailed analysis of how likely one player is to defeat another, and which aspect 

of their game provides them with this edge.  A lot of additional data would be 
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required, but this could be generated from the automated scoring system, rather 

than requiring a significant amount of manual collection.  A potential approach 

to estimating a player’s scoring potential and scoring power based on available 

data is discussed in Section 5.4.4. 

Developing a method of simulating the frames played by individual players 

would allow for more formal analysis of which factors differentiate the top 

players from the rest and how this translates to them winning more matches. 

Examples of how the model could be used to help analyse particular situations 

which occur during a frame were discussed.   

• The effectiveness of the break-off shot has a limited impact on the outcome 

of a frame, but this could nevertheless give one player an advantage at a 

crucial stage of match.   

• As a general rule, a player is advised to take on a risky pot if they would 

expect to execute it successfully more often than not – even if missing it 

would leave a certain chance for their opponent.  If there is an element of 

safety attached to the shot then they could afford to attempt a more difficult 

pot; whereas if they felt they could gain an advantage in the safety exchange 

then they would be advised to wait for a better opportunity. 

• When snookered with multiple reds still on the table, a player is generally 

advised to attempt a more cautious escape which minimises the risk of 

leaving their opponent a chance - even if they concede penalty points in the 

process. 
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The model could be developed to explore other situations too, such as whether 

a player who is ahead would benefit from pushing a colour to a safer position; 

reducing the risk of their opponent clearing the table to steal the frame.         

For this version of the model, I have chosen not to capture any shots which 

result in a foul.  Towards the start of the frame, it would be straightforward to 

introduce these as a potential outcome from each shot; primarily occurring 

during a safety exchange.  In the latter stages of a frame, particularly where one 

player requires snookers, additional assumptions would be required to reflect 

the changing objectives of each player and the types of shot played in these 

circumstances.  While in theory the inclusion of fouls would make the model 

more realistic, I believe that there are limited benefits from doing so.      

A more natural development would be to extend the model to simulate full 

matches rather than a single frame.  A Bayesian updating rule could be 

introduced to reflect actual performance as the match develops, as developed 

by Kovalchik and Reid (2019) to model changes in the proportion of points won 

on serve as a tennis match progressed, and by Song and Shi (2020) to model 

the effect of in-play adjustments to team parameters on the results of basketball 

matches.       
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5 Conclusions and Further Work 

This chapter summarises the findings and contributions from the three elements 

of research presented in this thesis: rating & ranking players (§5.1), measuring 

performance (§5.2) and modelling the progression of a snooker frame (§5.3).  

Areas of potential further work are explored in Section 5.4 and concluding 

remarks presented in Section 5.5.   

5.1 Rating & Ranking Players 

In any competitive environment we are interested in accurately ranking the 

participants in some way, thus identifying the strongest competitor and their 

closest rivals, while providing an assessment of where all other participants fit 

within the hierarchy.  Within sport, rankings are commonly used to determine 

eligibility and generate seedings for tournaments.  At the end of a season, they 

can also control promotion and relegation from a league or tour.   

More than this, we ideally want to quantify the difference in ability between any 

two competitors, which enables us to translate this into an expectation of the 

likely outcome of each match.  Aside from the potential interest for bettors and 

bookmakers, the accurate rating of players can also provide valuable insights 

to schedulers, spectators and players.   

Tournament organisers can use the information to anticipate how long a match 

(or series of matches) may take to play, while different tournament designs can 

be modelled and compared.  The chances of unexpected results can be 

estimated, providing perspective for those participating in and following the 

sport.  Over a longer timeframe, anticipating the progression of a player’s 

ranking can help them to manage their effort over a season. 
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There is no perfect way of ranking and rating players, with various methods and 

options available.  Measuring performance over different time periods will yield 

different rankings, while results can be either be treated equally or weighted 

towards more recent, or more high-profile matches.  A player’s performance 

can be assessed purely by their progression in a tournament or can be scaled 

according to the level of opposition they faced.  The merits of these alternatives 

need to be considered in determining a suitable rating system.         

Chapter 2 set out four different methods for rating and ranking players with the 

objective of quantifying the relative ability of professional snooker players.  The 

predictive ability of the models was compared using professional snooker 

results from the 2017/18 and 2018/19 seasons. 

The merits of the models developed are discussed in Section 5.1.1, along with 

suggestions for how each of the models could be developed.  The approach 

taken to comparing the predictive ability of the models is considered in Section 

5.1.2, acknowledging the benefits of analysing subsets of matches to better 

understand the limitations of each model.  Potential applications of the models 

are then discussed in Section 5.1.3.   

5.1.1 Evaluation of the Models Developed 

Four different models were described in Section 2.2.  Logit models were created 

based firstly, on the difference in world ranking points earned by players over 

the last two years (§2.2.1), and secondly, the difference in the percentage of 

frames won (§2.2.2).  Two paired comparison models were also created, using 

formulations devised by Bradley-Terry (§2.2.3) and Elo (§2.2.4).    
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The relatively large amount of prize money offered during the World 

Championship has a clear impact on the world ranking of the top players.  

Otherwise, the ranking of players was relatively similar between each of the 

models using at least 2 years of data (§2.3.1).  The predictive ability of all four 

types of model chosen was also largely comparable (§2.3.2).   

The model based on the world rankings was noticeably weaker at reflecting the 

ability of less experienced players (§2.4.1); a direct consequence of excluding 

the previous results of returning professionals and all amateur players.  There 

is justification for using an accumulative system to determine the official 

rankings, but consequently there is a clear limitation in its use as a predictive 

model. 

The model based on win percentages over the last 2 years produced reliable 

predictions, on a par with the Bradley-Terry and Elo models.  A potential 

limitation is that it does not account for the strength of opposition faced by 

players.  In particular, the highest-ranked players progress through to the latter 

stages of competitions more frequently and face a higher level of opponent as 

a result.  This is discussed further in Section 5.4.1. 

Win percentages offer a further advantage in that they are relatively 

straightforward for non-analysts to understand.  This research indicates that 

they can play a meaningful role in communicating the relative performance of 

players to a wider audience. 

The Bradley-Terry model showed better discrimination than the Win Percentage 

model and for the highest-ranked players (who play the most matches) there 

was some evidence that it produced better predictions.  This did not always 
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appear to be the case for lower-ranked players; it was noticeable that the overall 

results were no better than those of the Win Percentage model (§2.4.2).   

Utilising two years of historical results generally improved the predictive ability 

of the models.  There may be a case for introducing a factor which reflects a 

player’s recent form more heavily, especially where there has been an 

improvement in a player’s performance over the last year (§2.4.3).  More 

generally, there would be an argument for trying to capture the variation in a 

player’s performance.  This is discussed further in Section 5.4.2. 

It would be interesting to explore whether the Bradley-Terry model would benefit 

from the inclusion of additional years of data, particularly for those players who 

compete less frequently.  More recent results could be weighted more heavily 

to mitigate any change in performance levels over time.    

One advantage of the Bradley-Terry and Elo models is that data from amateur 

tournaments could easily be added, with the different level of opposition faced 

automatically accounted for in the generation of the relative ratings.  This would 

increase the amount of information available for players who have just joined or 

returned to the professional tour. 

The Elo model did appear to benefit from the use of a larger set of historical 

data, with predictions for less experienced players exhibiting lower levels of bias 

(§2.4.1).  A useful development to the model would be to vary the weight 

allocated to the most recent results depending on the experience of the player.  

The ability of higher-ranked players is likely to be more stable, justifying the use 

of a lower weight when updating their ratings.  This is also considered in Section 

5.4.2.   
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For this research, the models have been updated around 10 times a season to 

mirror the way in which the official World Rankings are used to determine the 

seedings for each tournament.  This means that a player’s rating will not include 

results from the most recent tournament(s) played if an update is not applied 

until a later date.  Taking this work forward, it is anticipated that the models 

would be updated more frequently so that the ratings for each player at the start 

of each tournament (or stage of a tournament) would include all results from 

matches played over the last two years. 

5.1.2 Evaluation Methods 

A variety of methods have been used in previous academic literature to 

compare the results of predictive models.  The approach used in this research 

has followed that taken by Kovalchik (2016), with a range of metrics used to 

assess the levels of accuracy and bias in the predictions made.   

Kovalchik derived her calibration ratio from the expected and actual wins for the 

tennis player with the higher World Ranking but I have preferred to base mine 

on the higher rated player according to the model being analysed.  The 

calibration of each model is therefore assessed on its own basis rather than 

also being influenced by the strength of alignment between the model and the 

World Rankings. 

In attempting to replicate her results I identified an error in her application of the 

Bradley-Terry model, which meant that her predictions were reflecting the 

probability of a player winning a single game, rather than the whole match.  This 

would explain the relatively poor calibration and log-loss scores achieved by the 

model in her analysis. 
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In presenting the results of this analysis in Section 2.4, I identified specific 

subsets of matches which are relevant to understanding differences in the 

models and in comparing their performance.  This is rarely covered in academic 

papers but helps to highlight the strengths and limitations of each model and 

provide insights into how they could be developed.  This analysis indicates that 

the effects of form and the relative strength of opposition previously faced are 

not as clear-cut as anticipated and that further analysis would be required to 

improve the reliability of the models.   

5.1.3 Potential Applications 

The intention of this element of the research was to develop a reliable model 

for anticipating the outcome of a snooker match between any two professional 

players, which could be used as the basis for further analysis of the game.   

A natural application is to use the models created to simulate the progression 

of tournaments and potentially even the entirety of a professional season.  We 

can also analyse the progression of a match to test the assumption of 

independence between the outcomes of individual frames.  

Modelling Tournaments 

Section 2.5 provided an example of how the expected outcomes of a 

tournament could be modelled and how alternative tournament designs could 

be evaluated based on their expected impact on different players.   

The change to the qualifying rounds of the World Championship is not the only 

variation in tournament design which has recently been implemented or 

proposed.   
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• The Saudi Arabia Snooker Masters was due to be introduced during the 

2020/21 season but was cancelled due to the Covid-19 pandemic.  The 

proposed tournament structure would have seen players entering in different 

rounds based on their seeding; players seeded 65+ would enter in Round 1, 

players seeded 33-64 would enter in Round 2, while players seeded 1-32 

would receive byes through to Round 3 (World Snooker Tour, 2019). 

• Two additional tournaments were played during the 2020/21 season which 

featured a series of round-robin group stages rather than a traditional knock-

out tournament.  The Championship League saw participants split into 

groups of 4, with the winner progressing to the next group stage.  The World 

Snooker Tour (WST) Pro Series saw participants split into groups of 8, with 

the top two qualifying for the next group stage.  The former even allowed for 

the possibility of drawn matches as players effectively contested a “Best of 

4 frames” match, with possible outcomes of 3-0, 3-1 or 2-2.    

A notable feature of the round-robin design is that players are guaranteed to 

play multiple matches (3 in the Championship League, 7 in the WST Pro 

Series), whereas half of entrants will only play a solitary match in a traditional 

knock-out tournament. 

The variation in the lengths of professional snooker matches was also 

discussed in Section 1.2.2, with Appendix V showing how the length of the 

match influences the expected outcome of a match contested by players of 

different abilities.  The effect that this has on the outcomes of tournaments can 

also be analysed in this way; for example, comparing the chances of each 
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individual winning if matches are the “Best of 7 frames” or the “Best of 19 

frames”. 

The way that the seeding of players within a tournament influences its 

progression could also be analysed.  The top 16 seeds are usually separated 

from each other in the draw so that they won’t play each other until the 4th round 

(the “Last 16”).  The British Open (reintroduced in 2021) is one exception to this, 

with the draw made completely at random.   

On the other hand, the UK Championship draw is completely determined by the 

seedings.  The 1st round (the “Last 128”) is designed so that the #1 seed plays 

the #128 seed, and the #2 seed plays the #127 seed etc.  Subsequent rounds 

follow a similar pattern, so in the 2nd round (the “Last 64”) the #1 seed would 

potentially play the #64 seed and the #2 seed plays the #63 seed etc. 

The efficacy of this was raised during the 2021 UK Championship, after Shaun 

Murphy (seeded #6) was knocked out in the 1st round by an amateur, Si Jiahui 

(effectively seeded #123).  Murphy controversially argued that “amateur players 

should not be permitted to play in professional tournaments” (Hafez, 2021), with 

Jiahui one of 8 amateurs invited to enter the tournament to ensure a full 

complement of 128 players.   

One of the points raised was that Jiahui, who had been a professional for the 

previous two seasons, was arguably a stronger opponent than some of the 

professionals seeded above him who had only recently joined the Tour.  There 

is indeed some merit in this argument as he won 47% of his frames during the 

2020/21 season, giving him the 75th highest win percentage.  This research has 

shown more generally that the world rankings are limited in their ability to 
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accurately rank amateur players and new professionals – especially early in the 

season when the 2021 UK Championship was contested.  It is, therefore, very 

likely that some players will end up with easier (or more difficult) 1st round 

opponents compared with the intentions of the tournament design.                 

Modelling Seasons 

A natural extension from modelling a single tournament would be to model an 

entire season of professional events.  A key area of interest would consider the 

speed at which players might progress up (and down) the rankings and how 

likely it is that a player joining the Professional Tour will break into the Top 64 

within two years (and secure their place for another year).  What results would 

they need to achieve this and what level of performance would be required?   

Match Progression 

The models described in Chapter 2 were all based on the outcomes of frames 

played, with Figure 2.1 showing a strong correlation between the proportion of 

frames won and the proportion of matches won by each player.  The models 

created assume that the outcome of frames played are independent of one 

another and provide us with a baseline expectation of how a match is likely to 

progress.  Comparing this against actual results will help to assess how reliable 

an assumption this is, or whether our expectations should change as the match 

progresses based on the outcome of previous frames.   This is discussed in 

more detail in Section 5.4.4. 
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5.2 Measuring Performance 

Statistics provide a condensed summary of a match, giving the audience an 

understanding of how the two players are performing and how this has 

influenced the current score.  Some statistics are ultimately just intended to 

provide a high-level picture of the match (such as the current score), while 

others are presented with the purpose of providing a meaningful indicator of the 

performance of each player.    

Valid and reliable performance indicators provide valuable information for 

players and their coaches, whether for comparing the statistics of different 

players or evaluating how an individual’s level of play has progressed over time.  

More generally they can help to identify the relative strengths of players and 

highlight where improvements could be made. 

Chapter 3 set out alternative measures of performance which could be used in 

snooker instead of the existing statistics that are produced.  The merits of 

adopting summary statistics relating to the number of scoring visits made by 

each player are discussed in Section 5.2.1.   Dynamic measures which focus 

on how play transitions from one shot to the next are described in Section 5.2.2.   

A key issue in assessing the performance of individual players is the limited 

amount of publicly available data.  The potential for developing basic statistics 

using the official scoring system is examined in Section 5.2.3, along with a 

discussion of the type of analysis which could be possible using technology 

available in other sports. 
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5.2.1 Summary Measures and Scoring Visits 

My analysis concluded that there is limited value in the existing measures of 

Total Points Scored, Balls Potted and Highest Break (§3.3.1).  Presenting the 

average points scored per frame would at least allow for some level of 

comparison across different matches but this still does not provide a meaningful 

indication of a player’s performance.  Reporting the number of 100+ and 50+ 

breaks made during the match would also be more informative than the highest 

break recorded, albeit making relatively limited use of the available information. 

Snooker frames are made up of a series of visits, with a player’s points largely 

accrued through a subset of visits in which a ball is potted (scoring visits).  

Information relating to the scoring visits made during a match therefore provides 

valuable insight into how it has progressed and as a basis for analysing 

differences in the performance of both players1.  Two alternative measures were 

set out in Section 3.4.1:    

The number of scoring visits made by each player provides an indication of 

the number of scoring opportunities created by each player.  To enable a 

comparison across matches this can be presented as the average number of 

scoring visits per frame. 

The average number of points accumulated per scoring visit then provides an 

indication of how productive these visits have been.  In conjunction, these 

summary scoring measures help to provide an indication of where one player 

may have gained an advantage over the other. 

 
1 A small proportion of points (3.4% in the 46 matches observed) are accrued through 

penalty points, but these have not been analysed within this research. 
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5.2.2 Performance Indicators and Dynamic Measures 

The existing measures of player performance are based on their success at 

executing individual shots – whether attempted pots or safeties.  They are 

subjective measures, which require someone to assess whether a pot or safety 

shot was being attempted.  An additional distinction is made for shots from long 

distance and those played using the rest, while the success of a safety shot is 

also based on the observer’s judgement.  There are no official definitions for 

each type of shot which make the statistics difficult to replicate, whilst providing 

scope for potential inconsistencies in the production of the official statistics.  

At the highest level, the Pot Success rate does to a large extent reflect the 

relative performance of each player (§3.3.2), although it does not account for 

the difficulty of the pots attempted or the consequences from making or missing 

the pots.  As a result, it is questionable whether the measure reliably reflects 

the progression of the match between players of a lower level of ability, or when 

relatively few frames are played.  In these cases, the link between Pot Success 

and match outcomes is less apparent.   

An example of this is the quarter-final between Jimmy White and Peter Lines 

during the 2020 World Seniors Championship.  Lines officially recorded an 

impressive Pot Success rate of 90.9% (50/55), compared with 87.6% for White 

(85/97).  His recorded Safety Success rate was also higher (87.3% v 83.7%).  

This wasn’t an accurate reflection of the match though - Lines won the first 

frame but White dominated the remaining frames and won 4-1.  Although Lines 

missed just 5 pots during the match he frequently ran out of position and could 

not make the most of his opportunities to score.   
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Analysis of the scoring visits made by each player provides a much more 

accurate representation of the match.  Lines made an average of 10 points from 

his 15 scoring visits but White comfortably outscored his opponent with an 

average of 27 points from his 10 scoring visits. 

The measures of Long Pot Success and Rest Success focus on particular types 

of shot but these occur relatively infrequently and provide limited information 

about the way a match has progressed.  The exact definition of a long pot is 

unclear and will reflect a wide variety of attempted pots, some of which will be 

far more difficult than others.  It is interesting to compare the relative success 

which different players have in using the rest, although it would be more 

informative to develop the measure to incorporate alternative methods of 

playing shots beyond a player’s normal reach. 

A measure of a player’s safety play is clearly valuable, but the existing measure 

of Safety Success is very subjective and has limited value in explaining who 

gained the advantage in key safety exchanges and how this translated to the 

number points scored by each player.  Further work is required to scope out 

potential measures of safety play and this is discussed in Section 5.4.3. 

In a sport such as snooker, where the outcome of one shot has a very clear 

impact on the subsequent one, shots cannot purely be evaluated in isolation.  A 

successful pot is more valuable if it is followed by another, while the success of 

a safety shot is ultimately determined by which player pots the next ball.  The 

dynamic nature of a frame should be captured within measures of performance. 

This research proposes two core measures which evaluate a player’s Scoring 

Potential and Scoring Power.  The merits of these measures were discussed in 
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the context of measuring a player’s performance (§3.4.2) and also in modelling 

the progression of a frame (§4.4).   

A player’s Scoring Potential represents the proportion of visits made in which 

a ball is potted and reflects the overall probability that a player will pot a ball 

given that they are starting a new visit.  This is influenced by both players so is 

a less effective indicator of an individual’s performance, although the difference 

in performance between the two players was found to be a factor in determining 

the outcome of a match. 

A player’s Scoring Power represents the proportion of successful pots which 

are followed by another and reflects the overall probability that a player will pot 

a ball given that they are continuing a visit.  There is evidence that this is a key 

indicator of the ability of a snooker player, and not just at the professional level.  

The relative performance of the two players during a match was shown to be a 

factor in determining its outcome. 

These measures are just a starting point, but they do provide a sound basis for 

further analysis into how scoring visits start and progress and where some 

players gain an advantage over others.  They are both objective measures, 

which enables them to be derived directly from information generated by the 

scoring system and greatly increases the number of matches which they could 

be produced for.  There would still be merit in producing more subjective 

measures to enable a more precise assessment of a player’s performance, but 

there is no need for such statistics to be the only ones produced.   
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5.2.3 Data Expansion 

The limited amount of within-match data currently available is the primary 

reason why snooker lags far behind other sports in the way data is used to 

analyse player performance.  Much of the analysis within this thesis is based 

on a bespoke data collection from 46 matches using post-match video analysis, 

a tiny fraction of the 2,000+ professional matches contested each year.  This is 

in sharp contrast to the way that data is collected and used in other sports, as 

described in Section 1.4.3. 

All professional snooker matches use an automated scoring system which 

records the player taking each shot and the number of points scored.  The data 

from this could be used to produce the statistics described in this thesis, both 

for all individual matches and at an aggregate level for each professional player.  

This would offer far greater scope for understanding where matches are won 

and lost, how performance differs between players and how much an individual 

player’s performance varies over all matches played. 

A larger pool of data would also enable additional statistics to be generated: 

• It would be interesting to determine the proportion of frames in which a 

player potted the first ball, and how many times they (or their opponent) 

potted a ball on the shot following the break-off.   

• The average number of points scored during each scoring visit could also 

be calculated for different stages of the frames – based on the number of 

reds remaining on the table at the start of the visit. 
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• A player’s propensity to win frames from different situations could be 

measured, comparing actual outcomes with an expected outcome given the 

current score in the frame. 

• Further analysis could be carried out to develop meaningful measures of the 

more tactical side of the game.  This is discussed in Section 5.4.3.                     

The use of ball tracking, in a similar way to golf, would generate a massive leap 

forward in the type of performance analysis that could be carried out.  The 

geometry relating to each pot could be captured (the distances and angles 

between the cue ball and object ball, and between the object ball and the 

pocket) and based on historical data an expectation of the pot success could 

be generated.  A player’s success in executing different types of shot could then 

be compared against a particular standard of player.  An extension of this 

approach would seek to estimate the expected points scored during a player’s 

visit based on the position of all balls on the table. 

Some of this would take time and money to set up but the technology exists and 

is used extensively in other sports, so it will hopefully be introduced into snooker 

in the not-too-distant future.  In the meantime, analysis of data from the scoring 

system would enable a core set of indicators to be developed, providing the 

groundwork for further exploration.  
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5.3 Modelling the Progression of a Snooker Frame 

Chapter 3 considered different measures of performance and their relative 

importance in determining the outcomes of matches.  To analyse this in more 

detail we need to explore how a frame progresses depending on the ability of 

the two players. 

Chapter 4 detailed the development of a Monte Carlo simulation model of the 

progression of a frame.  Simulation is a tool used to create a representation of 

a system to enable further exploration and enhance understanding.  In 

modelling a frame of snooker, we are particularly interested in understanding 

how the probability of each player winning the frame evolves as the frame 

progresses. 

This is clearly of interest to the betting industry and anyone wishing to place a 

bet “in play”, but also provides context to the general viewer as well.  Perhaps 

more significantly, it provides potential benefits for players and coaches in 

informing strategies used by players.  Should someone play more cautiously to 

defend a lead, or be more inclined to take a risk if they find themselves behind?  

How is this affected by the strength or playing style of their opponent? 

An evaluation of the model created is summarised in Section 5.3.1, with the 

ability of the model to estimate expected outcomes at different stages of the 

frame explored in Section 5.3.2.  The potential for using the model to aid 

decision making is discussed in Section 5.3.3. 
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5.3.1 Model Evaluation 

Chapter 4 extended the analysis behind Chapter 3 to model the progression of 

a frame, using a series of inputs to reflect the outcome of each shot at different 

stages of a frame.  Analysis was carried out on 31,298 shots played during 46 

matches in the 2018 World Championship and 2019 Masters; broadly reflecting 

the performances of a player ranked in the Top 16.  

A subset of the model inputs relates to the probability of a player potting a ball 

at the start of a new visit, collectively representing a player’s Scoring Potential.  

This was found to be slightly higher immediately after the opponent had finished 

a scoring visit, typically reflecting occasions where a pot is missed.  

The remaining inputs relate to the probability of a player potting a ball when 

continuing a visit (having potted a ball on the previous shot), collectively 

representing a player’s Scoring Power.  The length of the current visit and the 

previous colour which was potted were identified as having some influence over 

the way a visit progressed. 

The simulation model created was shown to fit the data well, with simulated 

frames exhibiting similar features to the observed matches with respect to the 

distributions of the number of scoring visits made, the length of the scoring visits 

and the number of shots played between scoring visits (§4.3.2).  The only 

superficial difference was that the proportion of simulated frames containing a 

100+ break was lower than in the observed matches, possibly due to players 

adapting their strategy slightly to ensure they reach that milestone. 

Scaling factors were introduced into the model to reflect different levels of play 

by adjusting the core inputs relating to a player’s scoring potential and / or 
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scoring power (§4.4).  A significant amount of additional data would be required 

to accurately represent individual players, but this approach yields plausible 

outcomes for frames contested by players of different levels of ability.  Should 

it become possible to generate reliable estimates of the typical levels of each 

player’s performance then the model appears capable of producing a 

reasonable simulation of their matches. 

5.3.2 Expected Outcomes 

It is not possible to formally evaluate the model’s estimates of each player 

winning the frame as it develops.  The simulated outcomes did, however, look 

realistic considering the state of the frame at the start of each new scoring visit 

(§4.3.3).  The one notable difference was in the relatively high number of actual 

frames won from a deficit of 50+ points, but further data would be needed to 

assess whether this reflected a limitation in the model or was just an anomalous 

feature of the observed matches. 

The communication of expected outcomes could be a valuable addition to the 

commentary in televised snooker matches.  In a similar context, Jakeman 

(2021) described the development of an algorithm used in cricket called WinViz, 

which estimates the probability of each team winning as the match develops.  

Jakeman provided a quote from the former England captain and commentor, 

Mike Atherton, describing how he compares the model’s prediction with his own 

estimates: “Most of the time I’ll be within two or three percentage points, but 

when I’m massively out of sync, that’s the starting point for a conversation.” 

The model is ultimately reflecting what has typically happened in similar 

situations and it would be extremely challenging to incorporate details which 
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were specific to the current frame, such as the position of all the balls.  There 

would always be scope for an expert commentator to complement the model’s 

estimate with their own insight.  It should be noted that in this context, a 

simulation model, which can take time to run, may not be the most appropriate 

tool for producing real-time win probabilities.  A deterministic approach, perhaps 

using logistic regression, may be more appropriate. 

An alternative use of the model in this vein would be to compare simulated and 

actual outcomes for individual players.  In a similar way to analysis of expected 

goals in football, this could help to evaluate a player’s ability to win a frame from 

different situations.       

5.3.3 Decision Making 

One insight from the analysis of expected outcomes is that in frames between 

top professionals, a good lead for one player can easily be negated if their 

opponent takes the next opportunity to score.  To demonstrate this, a handful 

of scenarios were simulated to show the probability of winning at different 

stages of the frames given the current difference in the score and used as the 

basis for further exploration of the strategies involved in snooker (§4.5.2). 

A further interesting insight from this is that the choice of shot should not be 

influenced by the current score; just on the choice of pot or safety shot which 

gives the player the best chance of potting the next ball.  This is a slightly 

simplified analysis as it ignores the positions of the balls and the quality of the 

opportunity which is likely to present itself.  Nevertheless, it does demonstrate 

the importance of having ‘control’ of the table and how quickly momentum can 

change in a frame at the highest level. 
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The significance of potting the next ball also applies to the case where a player 

finds themselves snookered (§4.5.3).  A difficult escape which may concede 

multiple penalty points but leaves the balls safe, is generally preferred over a 

simple escape with a much higher chance of leaving a pot for the opponent.  

Given the potential risks of conceding either penalty points or the next pot, it is 

conceding the next pot which a player should treat as the bigger threat. 

Section 4.5.1 considered the significance of the break-off shot in determining 

the outcome of the frame.  Some players have started experimenting with a 

more cautious break-off shot to minimise the risk of leaving a pot, and the data 

suggests that there is certainly some justification in being concerned about how 

frequently a ball is potted on the second shot of the frame.  Further data would 

be required to evaluate the actual effectiveness of any alternative shot, but the 

analysis presented in this research at least provides a framework for 

understanding how much of an influence the break-off shot has on the 

progression of the frame and the potential impact of any alternative approach. 

The simulations run using the model have been based directly on the inputs 

generated from the observed data.  Speculative adjustments could be made to 

these inputs to reflect different scenarios encountered during a match, such as 

how a frame might be affected by one of the baulk colours being located near 

a cushion and therefore harder to pot.  To what extent would this affect the 

chances of either player winning the frame, and how might this affect their 

strategies?  To extend this further, if a player is ahead in the frame should they 

opt to put a colour safe rather than taking on a risky pot in the hope of winning 

the frame during their current visit?    
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5.4 Further Work 

This section identifies aspects of the research which warrant further analysis.   

In analysing the rating models, it was noted that accounting for the strength of 

opposition faced by a player may lead to a more reliable assessment of their 

rating, although the predictive ability of the pairwise comparison models were 

not superior to the model based purely on overall win percentages.  This is re-

visited in Section 5.4.1, analysing how much variation there was in the strength 

of opposition faced by different players.  The potential for developing the Win 

Percentage model to incorporate this as a factor is also discussed. 

The analysis described in this research has focussed on a player’s typical level 

of performance.  Further work is required to understand how much this varies 

and whether this has a significant impact on the results we would expect to 

observe.  This is discussed in Section 5.4.2, which considers how natural 

variation in performance creates a prediction ceiling for any model.    

The way in which the number of matches contested by a player affects the level 

of confidence in our assessment of their rating is also discussed and an 

alternative version of the Elo model is described.  The development of the rating 

models highlighted current form as a potential factor – particularly where a 

player’s results over the last year had been better than the previous year.  

Further analysis would be required to determine the best way of measuring 

form, whether based on a player’s results or their underlying performance. 

In measuring a player’s performance, the tactical element of the game is the 

most challenging to evaluate given the limited amount of data available.  Section 
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5.4.3 discusses potential measures of the quality of a player’s safety shots, the 

style of their play and effectiveness of their shot selection.  A more 

comprehensive set of data would be required to produce these, although using 

data from the scoring system would enable analysis to be carried out on the 

number of shots played between each scoring visit and the number of scoring 

visits each player made. 

The simulation model described in Chapter 4 reflects the typical performance 

of a player ranked in the Top 16 as observed in two tournaments.  Section 5.4.4 

considers how assumptions could be developed to enable the input parameters 

to be scaled in order to reflect the performance of individual players over a 

longer period of time. 

In developing the ratings models an assumption was made that the outcomes 

of each frame were independent of one another.  Section 5.4.5 sets out analysis 

which could be carried out to look at how a match progresses and whether there 

is any indication that the outcome of a frame is dependent on how the match 

has progressed so far. 
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5.4.1 Strength of Opposition 

Accumulative ranking models, such as snooker’s world rankings, are based on 

how far a player progressed in a tournament.  It does not matter whether a 

player had to defeat a succession of top-rated players or was fortunate to draw 

lower-ranked opponents - the same amount of world ranking points are 

awarded.  Over the course of a season there are likely to be differences in the 

strength of the opponents faced by each player.  Rather than just considering 

how many matches a player won, accounting for the players they faced may 

produce a more reliable assessment of their rating relative to other players.   

One of the differences between the Win Percentage and Bradley-Terry models 

is that the latter is based on pairwise comparisons, effectively accounting for 

the strength of opposition faced by each player.  The analysis reported in 

Section 2.4.2 found some evidence that this could improve the accuracy of 

match predictions when a Top 16 player faced someone ranked 17-64, but there 

was very little difference in the overall performance of the models.  This section 

considers this further and discusses how the Win Percentage model could be 

modified to account for differences in the strength of opposition faced. 

Figure 2.2 provided an indication of how the average strength of opponents 

varied across all professional players during the 2017/18 and 2018/19 seasons.  

This showed a clear difference between players at different levels of the World 

Rankings, with players ranked in the Top 16 tending to play stronger than 

average opponents.  This is understandable in that players who regularly 

contest the latter stages of tournaments (and thus achieve a higher ranking) will 
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have won a relatively high proportion of frames in the process.  The same will 

typically be true of the opponents they face in later rounds. 

This analysis also indicated that the average opposition faced by players 

typically only varied by around 1% one way or the other.  To understand what 

the natural spread of opponents would look like, I drew random samples from 

the 2-year win percentages achieved by professional players at the end of 

2017/18 to represent the opponents faced over 2 years.  This yielded a similar 

spread, which perhaps goes some way to explaining why the strength of 

opposition does not appear to be a critical factor in establishing a relative rating 

for players and why the Bradley-Terry model could not significantly improve on 

the predictions generated by the Win Percentage model. 

There may still be some merit in incorporating strength of opposition into a rating 

model and the Win Percentage model could itself be modified to account for the 

strength of opposition faced by each player.  A Ratings Percentage Index has 

been used by the National Collegiate Athletic Association (NCAA) in the USA 

to rank teams across different conferences where it is not possible to organise 

fixtures between every pair of teams.  This calculates a team’s Rating 

Percentage based on their own win percentage (with a weight of 0.25), along 

with that of their opponents (weight = 0.5) and their opponents’ opponents 

(weight = 0.25) (Pickle and Howard, 1981 as cited in Barrow, 2013). 

A simpler method is likely to be sufficient for snooker given the relatively small 

variation in the strength of opposition faced.  One approach to deriving a 

Weighted Win Percentage (WWP) would be to scale a player’s Win Percentage 

(WP) based on the weighted average of their opponents’ win percentages (OP). 
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𝑾𝑾𝑷 = 𝑾𝑷 + 𝑶𝑷 − 0.5 

If OP = 0.5 then no adjustment is made, while if a player’s WP = 0.5 then we 

conclude that they are an equivalent standard to their opponents and so WWP 

= OP.  More generally, if the level of opposition faced is x% higher than the 

average (i.e. 50%) then WWP = WP + x, with a similar downward adjustment if 

the level of opposition faced is x% lower than average. 

Additional historical data are required to calculate the OP.  For example, in 

determining a player’s WP ahead of the 2019 World Championship, the 

previous 2 years of results are required – including results from the 2017 World 

Championship.  To also determine their OP, we require the WP of their 

opponents ahead of the 2017 World Championship, which is based on matches 

played from the 2015 World Championship onwards.    

Table 5.1 shows that there is little difference in the relative rating of the 10 

highest rated players at the end of the 2018/19 season.  Looking more broadly 

at all professionals, their WWP was typically within 1-2% of their WP.  Long-

time professional Andrew Higginson (officially ranked 57th at the end of that 

season), saw the largest reduction in his rating (WP = 52.5%, OP = 45.9%, 

WWP = 48.4%), with Ronnie O’Sullivan seeing the largest increase (WP = 

65.7%, OP = 54.4%, WWP = 70.1%) 
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Table 5.1: Players with the highest win percentages at the end of the 2018/19 and 

how they ranked when weighting their results to account for strength of 

opposition faced 

Win Percentage 
 

Weighted Win Percentage 

Rank Rating Player Rank Rating 

1 66% Ronnie O'Sullivan 1 70% 

2 62% Judd Trump 2 65% 

3 62% Mark Williams 3 64% 

4 61% Neil Robertson 4 62% 

5 60% John Higgins 5 62% 

6 60% Stuart Bingham 6 61% 

7 59% Kyren Wilson 9 60% 

8 59% Mark Selby 7 60% 

9 59% Joe Perry 12 58% 

10 58% Mark Allen 8 60% 

 

As with the Win Percentage models described in Section 2.2.2, a logit model 

can be created to estimate the probability of each player winning a single frame 

against each other based on the difference in their Weighted Win Percentage.  

Using frames played in 2016/17 to fit such a model, a coefficient factor of 3.788 

was identified for the difference in WWP.  [The coefficient used for the 2-year 

Win Percentage model was 3.764.]   

An assessment of the predicted results from this model for the 2017/18 and 

2018/19 seasons shows very little difference compared with the 2-year Win 

Percentage model (Table 5.2).  The most noticeable difference is an 

improvement in the log-loss score and calibration measure for matches 
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contested by a player ranked in the Top 16 against a player ranked 17-64 – 

similar to the results achieved by the Bradley-Terry model. 

Table 5.2: A comparison of the predictions made by the 2-year Win Percentage 

model and the Weighted Win Percentage model 

 
 Win Percentage 

model 
Weighted Win 

Percentage model 

All Matches   

 Prediction Accuracy 
68.8% 

(3041 / 4421) 

68.8% 

(3040 / 4421) 

 Log-Loss score 0.592 0.591 

 Calibration 1.01 1.02 

 Discrimination 6.61 6.73 

Top 16 v 17-64 (651 matches)   

 Log-Loss score 0.604 0.598 

 Calibration 0.92 0.99 

Top 16 v 65+ (551 matches)   

 Log-Loss score 0.482 0.485 

 Calibration 1.02 1.04 

17-64 v 65+ (1,562 matches)   

 Log-Loss score 0.583 0.585 

 Calibration 1.02 0.99 

 

The Weighted Win Percentage model described above could be refined, 

although ultimately it would appear that further analysis is required to 

understand what is driving the differences in the results and whether additional 

factors need to be accounted for.   

It could be that top-ranked players tend to face lower-ranked opponents (ranked 

65+) in the early rounds when they are still getting used to the table conditions.  
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These matches may also take place in front of smaller audiences than they are 

used to, or outside of the main arena, which could have a bigger impact on their 

performance compared with an opponent who is more used to these conditions.  

If they face higher ranked opponents (those ranked 17-64) slightly later in the 

tournament then they may be closer to their best form. 

An alternative hypothesis is that the performance of players ranked 65+ is more 

variable, and that when they are at the top of their game, they pose more of a 

threat to the top-rated players than their typical level of play would suggest.    
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5.4.2 Variations in Performance 

This research has focussed on a player’s typical level of performance, whether 

in estimating their overall rating, or in the probability of a ball being potted on 

their next shot.  Understanding the variation in a player’s performance warrants 

further investigation and could inform further development of the models 

presented in this thesis. 

This section considers variation in performance with respect to: 

• Understanding the maximum potential for any prediction model (prediction 

ceiling) given that results are inevitably subject to some random variation 

which cannot be predicted. 

• Considering whether the relative uncertainty in a player’s rating could be 

incorporated into the models. 

• Determining whether variation in a player’s results should be attributed to 

natural variation or whether it reflects a short-term change in form or a more 

substantial change in their ability. 

• Analysing the variation within a player’s performance to understand the 

variation in their match results.  

Outcome Uncertainty and Prediction Ceilings 

One method used to estimate the maximum potential for any model is based on 

a measurement of the variation in observed results across all competitors 

(𝑉𝑂𝐵𝑆).  This is compared with the expected variation in results if all competitors 

were of an equal ability; the amount of variance which can be attributed to 

randomness (𝑉𝑅𝐴𝑁𝐷).  In a series of win / loss contests between competitors 
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of equal ability, 𝑉𝑅𝐴𝑁𝐷 is calculated as (0.5 × 0.5) 𝑵⁄ , where 𝑵 is the number 

of games played over a season (Birnbaum, 2011). 

The proportion of variation in observed results which is purely due to chance is 

therefore estimated as: 
𝑉𝑅𝐴𝑁𝐷

𝑉𝑂𝐵𝑆
.  The remainder of the variation can theoretically 

be attributed to differences in ability or other factors which influence the 

outcome of a contest (such as home advantage). 

The best a predictive model could feasibly achieve is to reflect the variation 

which is due to skill or other factors.  Even this prediction ceiling is unlikely to 

be reached as it would require a complete understanding of all measurable 

differences between the competitors. 

A similar approach can be applied to snooker, with the added complication that 

players will contest different numbers of matches depending on how far they 

progress in each tournament. 

Looking separately at the results of professionals in the 2017/18 and 2018/19 

seasons, the strongest performance was from Ronnie O’Sullivan in 2017/18, 

who won 45 of the 52 matches he played (87%).  Three players contested at 

least 10 matches in a season but failed to win any.   

The weighted mean performance of all professionals (not counting the results 

of amateur players) was a win percentage of 51.3%, calculated as �̅� =  
∑ 𝑤𝑖𝑠

∑ 𝑛𝑖𝑠
 , 

where 𝑤𝑖𝑠 represents the number of matches won by player 𝑖  in season 𝑠, and 

𝑛𝑖𝑠 represents the number of matches played by player 𝑖  in season 𝑠. 
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The weighted variance in the proportion of matches won by professionals during 

2017/18 and 2018/19 is similarly calculated as �̂�2 =  
∑ 𝑛𝑖𝑠(𝑥𝑖𝑠 − �̅�)2

∑ 𝑛𝑖𝑠
, where 

𝑥𝑖𝑠 represents the win percentage of player 𝑖  in season 𝑠.  This gives an 

estimate of 𝑉𝑂𝐵𝑆 = 0.02926. 

Across all professional players, the average number of matches played per 

season was 33.1, which gives an estimate for 𝑉𝑅𝐴𝑁𝐷 = 0.00755.  To account 

for the difference in matches played, I also simulated the results from two 

seasons based on 128 players of equal strength contesting 20 knock-out 

competitions a season (a very rough approximation to the snooker season).  

Over 1,000 trials, the average variation in performance gave an alternative 

estimate of 𝑉𝑅𝐴𝑁𝐷 = 0.00669. 

These give estimates for the % variation due to randomness between 23-

26%, indicating that a model with a prediction accuracy of 75% would be 

exceptional (and probably unrealistic).  The models tested in this research, with 

an accuracy of 68-69% would appear to be doing quite well, albeit with some 

theoretical room for improvement. 

Scarf at el (2021) considered the level of outcome uncertainty in different sports 

and proposed a broader model based on variation in the strength of the 

competitors, the scoring rate of the sport and any score dependence.   

For snooker, score dependence is largely negligible – any (dis)advantage from 

breaking-off in a frame is minimal (§4.5.1) and there is no clear evidence of any 

dependence in the outcomes of frames (considered further in Section 5.4.4). 
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The scoring rate has an influence in the sense that the number of frames 

contested does impact on outcome uncertainty (demonstrated in Appendix V).  

We would therefore expect longer matches to have more predictable outcomes.  

The number of scoring visits required to win a frame is lower for higher-ranked 

players (§3.4.1), so this would also suggest that outcome uncertainty would be 

higher for two top-ranked players, compared with two lower-ranked players with 

a comparable difference in strength.      

Incorporating Uncertainty 

As noted above, the win percentages for different players are based on differing 

numbers of matches played.  The more frames a player has contested over the 

last couple of years, the more confidence we have that their win percentage 

accurately reflects their true ability.  Accounting for the level of uncertainty in 

player ratings could help to enhance the models. 

Using a normal approximation, a confidence interval for each player’s win 

percentage (�̂�) can be calculated as  �̂�  ± 𝑧√
�̂� (1−�̂�)

𝑛
.  

Over the 2017/18 and 2018/19 seasons, Judd Trump contested the most 

frames (962).  The 95% confidence interval for his win percentage over this 

period is therefore 0.62 ± 0.031 [0.59, 0.65].  Simon Lichtenberg contested the 

fewest frames (123).  The 95% confidence interval for his win percentage is 

therefore much wider: 0.28 ± 0.079 [0.20, 0.36]. 

A way in which the Elo model can be adapted is to use a different updating 

weight for different players based on the number of matches they have played.    
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The data journalism site FiveThirtyEight have applied Elo models to sports and 

vary the weight used to update a player’s rating based on the number of 

matches they have contested (Morris & Bialik, 2015).  The formula they use to 

allocate a weight to player 𝑖 is  
𝐾

(𝑛𝑖+𝑜)𝑠
  where 𝐾 is a constant multiplier, 𝑛𝑖 is 

the number of matches played by player 𝑖, 𝑜 is referred to as the offset and 𝑠 

determines the shape of the function.  The values chosen by Morris and Bialik 

were 𝐾 = 250, 𝑜 = 5 and 𝑠 = 0.4 

I have followed this approach to apply sliding weights to the Elo model 

described in Section 2.2.4.  Setting values of 𝐾 = 40, 𝑜 = 5 and 𝑠 = 0.5 was 

found to work well; the lower value for 𝐾 chosen on the basis that we are 

modelling frames rather than matches - as with the initial Elo model created.  

An extended exercise could seek to optimise these parameters for a given set 

of training data.   

The effect of applying this formula was to set a weight of around 15 for a player 

who had only contested 1 or 2 matches over the previous 2 years; reducing to 

10 for a player who had contested 11 matches; 5 for a player who had contested 

59 matches and 4 for a player who had contested 95 matches (Figure 5.1). 
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Figure 5.1: Weight used in the updating formula depending on the number of 

matches played by the individual over the last two years 

This revised model performed slightly better against each of the metrics 

analysed (presented in Table 5.3), indicating that the application of sliding 

weights would be worthwhile. 

Table 5.3: A comparison of the predictions made by the Elo model with fixed 

weights and an adaptation of the Elo model using sliding weights 

 Elo 

(fixed weight) 

Elo 

(sliding weights) 

Prediction Accuracy 
68.7% 

(3039 / 4421) 

68.9% 

(3048 / 4421) 

Log-Loss score 0.593 0.587 

Calibration 1.04 1.03 

Discrimination 7.11 7.20 

 

The Elo model could also be adjusted to allow for a ratings deviation in common 

with the revised model devised by Glickman (1999), although it is perhaps more 
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debatable whether there is greater uncertainty associated with the performance 

of a snooker player if they play less frequently.  Ronnie O’Sullivan famously won 

the 2013 World Championship despite having only played one professional 

match in the previous year. 

 

Changes in Form 

The section above has considered natural variations in a player’s results and 

how this affects our confidence in the rating of each player.  We are also 

interested in being able to identify changes in the level of a player’s 

performance.  This could be tackled in a variety of ways: 

A measure of a player’s current form could be developed to understand what 

impact this has on a player’s results.  McHale and Forrest (2005) developed a 

predictive model based on a golfer’s finishing position in their last 6 competitions 

(along with a longer-term indicator of their ability) and found that recent results 

did have a strong impact on a player’s likely finishing position in the following 

tournament. 

This is arguably more straightforward for a sport such as golf, where each player 

completes at least 2 rounds during each tournament and their score is not 

directly affected by any other player.  In snooker, a player can perform 

reasonably well but still lose in the first round – or struggle to find their best form 

but do just enough to defeat a succession of opponents. 

Nonetheless, a separate measure of a player’s current form over the last n 

matches, or last t months could be developed and incorporated into the logit 

models based on World Rankings or Win Percentages. 
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An alternative way of developing the World Ranking, Win Percentage and 

Bradley-Terry models would be to introduce a decay factor, such that recent 

performances would be weighted more heavily (McHale and Morton, 2011).  It 

is likely that this would support the use of a longer series of historical results, 

with older results contributing to (but not unduly influencing) a player’s rating. 

Further analysis would be required to assess the merits of either approach.  The 

former requires a suitable time frame to be identified allowing for the variation 

in the number of matches contested by different players.  The latter essentially 

assumes that more recent results are better predictors of a player’s relative 

rating, which this analysis has shown is not always the case. 

All of the models described in this research are essentially attempting to 

establish a reliable rating of a player’s ability.  An alternative way of approaching 

the effect of form is to consider whether we can identify when a player is 

performing at a different level of ability than their current rating would suggest.  

Rather than automatically incorporating a measure of current form in the model, 

we would only do so in the case that a player’s results were consistently better 

(or worse) than those predicted by our current assessment of their ability.  The 

objective then becomes one of identifying when this has happened and 

determining how best to adjust our assessment of their ability.      

Changes in Performance 

Rather than just looking at a player’s results, the analysis carried out in this 

research points towards an alternative way of identifying and capturing changes 

in performance. 
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With sufficient data we would be able to analyse how a player’s performance 

measures vary across different matches.  The effects of the match length and 

the level of opposition faced could also be considered. 

The simulation model developed would then provide an indication of how much 

of an impact such a variation in performance would have on the probability of 

one player winning a frame against another. 

These results could then be used to inform the development of the prediction 

models.  Analysing changes in a player’s performance measures may also be 

a more effective way of assessing the current form of a player, or whether there 

has been a sustained improvement in their level of play. 

  



202 
 

5.4.3 Developing Measures of Safety Play 

The measure of a player’s scoring power described in Chapter 3 reflects a 

player’s break-building capability and is a strong indicator of performance. 

It is more challenging to identify a reliable indicator of a player’s safety game.  

The official measure of safety success could be suitable if sufficient data were 

available to reliably measure the performance of all professional players.  There 

would also need to be widely recognised method for classifying a safety shot as 

being either successful or unsuccessful.  The subjective nature of the measure 

is a significant limitation though, meaning that it is only currently produced for 

televised matches.  Even if the data which is currently collected were publicly 

available, there would not be enough to evaluate the typical level of 

performance for most players.  Taking each match in isolation, the measure 

offers only limited value in explaining the outcome. 

This research has indicated that there are additional measures which could be 

developed using data from the automated scoring system based on the number 

of scoring visits made in a match.  With access to sufficient data there is likely 

to be value in exploring these in more detail. 

One potential area of analysis is to assess the type of frame or match being 

played based on the number of scoring visits and the number of shots between 

each scoring visit.  An open frame would consist of a higher proportion of pots 

and is likely to have relatively few scoring visits, with players able to score 

heavily from the chances they get.  A more tactical frame would consist of a 

larger number of shots which don’t result in a pot; while we might also expect 

that fewer points are scored from each scoring visit. 
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We would expect to see that some players are more likely to be involved in one 

type of frame over the other depending on whether they are prepared to take 

on more attacking shots (leading to an open frame) or prefer to be more 

cautious (leading to a more tactical frame).  It would also be interesting to see 

if some players are more likely to win one type of frame or another – and 

whether this tallies with their style of play. 

An alternative approach could seek to identify key moments in a frame through 

which an individual’s tactical play could be assessed.   

• Do some players pot the first ball in a frame more frequently than others?   

• If a lengthy safety exchange has developed (i.e. a number of shots have 

been played since the last pot), are some players more likely to pot the next 

ball?   

• When a player’s scoring visit comes to an end, how frequently does their 

opponent pot a ball on their next shot?   

• Do some players have a better record at winning a frame when they require 

snookers?     

More sophisticated measures of an individual’s safety play would require 

additional information to be collected manually – it is unlikely that a modification 

to the scoring system would be appropriate as any additional data entry would 

only hinder the scorer’s ability to keep score.  Capturing some basic information 

on the type of shot played would, however, allow enable further analysis of a 

player’s shot choice and whether they were more likely to concede chances to 

their opponent through a missed pot or a poorly executed safety shot (§3.4.3). 
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5.4.4 Simulating Individual Players 

The simulation model described in Chapter 4 is based on the typical 

performance of a player ranked within the Top 16. Section 4.6 discussed the 

potential for modelling a frame between players with different levels of 

performance, scaling the input parameters to reflect the scoring potential and 

scoring power of individual players. 

The data collected for this research only covers two tournaments, so while a 

player’s performance within the observed matches could be measured, this 

would not necessarily provide a reliable indication of their play over a longer 

period of time.  A significant amount of additional data would be needed to 

develop suitable scaling factors for all professional players. 

Data from the automated scoring system, which covers all professional matches 

played, would allow this.  For each player this would provide shot-by-shot data 

from around 100-500 frames contested over the course of a season (depending 

on the extent of a player’s participation in tournaments and how far they 

progressed). Access to the data can be acquired through SportRadar, but this 

service is only available to licensed bookmakers and media companies. 

As an alternative, it may be possible to create an informed adjustment by using 

publicly available data to supplement the data collected in this research.  There 

would be three separate steps involved in this approach. 
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Step 1 – establishing the relative importance of a player’s scoring 

potential and scoring power on the outcome of a frame. 

The post-match video analysis carried out for this research covered 734 frames.  

Looking at those players contesting at least 25 observed frames, a regression 

model can be created for the proportion of frames won by a player based on 

their scoring potential and scoring power. 

An appropriate outcome variable would be the proportion of frames won (FW) 

by each player above the average (y = FW - 50%).   

Scoring power for an individual (Pow) can be captured relative to the average 

scoring power observed (x1 = Pow - 89%).   

In looking at scoring potential, it is more salient to look at the observed scoring 

potential of a player (Pot) relative to their opponents (Opp), as one is likely to 

be influenced by the other.  The aggregated scoring potential of their opponents 

during the observed frames can be calculated as the proportion of all new visits 

made by the player’s opponents where a ball was potted. (x2 = Pot - Opp).   

A resultant model produced on this basis gave the following equation for 

estimating a player’s win percentage based on their scoring power and their 

scoring potential relative to their opponents: 

FW = (Pow – 0.89) * 1.96 + (Pot – Opp) * 1.02 + 0.5   

The coefficients estimated for this model are consistent with the simulated 

findings presented in Chapter 4, which estimate the effects of changes to a 

player’s scoring power (Table 4.11) and scoring potential (Table 4.12) on their 

probability of winning a frame. 



206 
 

Step 2 – using the rate at which a player makes 50+ breaks to estimate 

their scoring power 

The number of 50+ breaks made by a player over the course of a season is 

captured by CueTracker.net (Florax, 2019d), with the rate at which they make 

these breaks providing an alternative indication of their relative scoring power.  

Based on ranking events contested during the 2018/19 and 2019/20 seasons, 

players ranked in the Top 16 at the end of the 2019/20 season averaged a rate 

of 39.3 50+ breaks per 100 frames (0.393 for a single frame), with Ronnie 

O’Sullivan achieving the highest rate of 49.6 (0.496 for a single frame). 

Table 4.10 provides an indication of the relationship between scoring power and 

50+ breaks made.  Running the simulation model using a scaling factor of 1, 

the two players had a combined scoring power of 88.8% and collectively made 

a break of 50+ in 68% of the frames simulated (which we can infer to be 34% 

for each player).  Increasing their scoring power by 2.2% resulted in 50+ breaks 

made in 79% of simulated frames (inferred to be 39.5% for each player).   

An increase in a player’s scoring power of 1% therefore roughly increased the 

rate at which they made 50+ breaks by 2.5 per 100 frames; equivalently if the 

rate at which 50+ breaks are made is higher by 1 per 100 frames, this is 

indicative of an increase in a player’s scoring power of 0.4%. 

If we take the average scoring power of a player in the Top 16 to be 89%, we 

can estimate a player’s scoring power based on the rate at which they made 50 

breaks.  O’Sullivan therefore had an estimated scoring power of 93.1% over this 

period [0.89 + (0.496 – 0.393)*0.4].  Luca Brecel recorded the lowest rate of 

50+ breaks made (0.319) so had the lowest estimated scoring power of 86.0%. 
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Step 3 – estimating a player’s scoring potential based on their win 

percentage and scoring power 

The average proportion of frames won by the Top 16 players in these two 

seasons was 59.0%.  The coefficient for scoring power from our regression 

equation (1.96) can therefore be used to estimate the proportion of frames we 

would expect each individual player to have won based purely on differences in 

their scoring power [E(FW) = 0.590 + (Pow – 0.89) * 1.96]. 

This can be compared with their actual win percentage, with the inference being 

that the difference is due to the relative difference in their scoring potential 

compared with a typical opponent (taken to be 27% based on the observed 

matches).  The coefficient in the regression model for scoring potential relative 

to the opponent was 1.02, so a player’s scoring potential is estimated as: E(Pot) 

= 0.27 + [FW – E(FW)] / 1.02 

Based on our estimate of scoring power for Luca Brecel, he would only have 

been expected to win 53% of frames.  He actually won 56%, suggesting that his 

scoring potential was around 3% higher than his opponents, giving an estimate 

of 29.9%.  O’Sullivan won a lower percentage of frames than indicated by his 

scoring power (66% v 67%), giving an estimate for his scoring potential of 

25.6%.  Estimates for each of the players ranked in the Top 16 at the end of 

2019/20 are presented in Table 5.4. 
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Table 5.4: Estimates of scoring power and scoring potential for each player 

ranked in the Top 16 at the end of the 2019/20 season, based on the rate at which 

they made 50+ breaks in 2018/19 and 2019/20 and the proportion of frames they 

won during this period. 

Player  

(World Ranking at 
end of 2019/2020) 

50+ breaks / 
100 frames 

Scoring 
Power 

Expected 
Frame 
Win % 

Actual 
Frame 
Win % 

Scoring 
Potential 

Ronnie O’Sullivan (1) 46.0 93.1% 67.1% 65.7% 25.6% 

Judd Trump (2) 48.8 90.6% 62.3% 62.1% 26.7% 

Mark Williams (3) 45.2 89.5% 60.0% 62.1% 28.9% 

Neil Robertson (4) 41.1 91.4% 63.8% 60.8% 23.9% 

John Higgins (5) 42.0 88.5% 58.0% 60.0% 28.8% 

Mark Selby (6) 40.2 89.5% 60.2% 59.0% 25.8% 

Mark Allen (7) 32.4 89.3% 59.7% 58.2% 25.4% 

Kyren Wilson (8) 39.4 88.9% 58.9% 59.2% 27.2% 

Barry Hawkins (9) 35.0 88.2% 57.6% 57.6% 26.9% 

Ding Junhui (10) 34.5 88.1% 57.3% 58.2% 27.8% 

Jack Lisowski (11) 37.2 89.1% 59.2% 57.8% 25.5% 

David Gilbert (12) 38.3 87.2% 55.7% 55.5% 26.7% 

Stuart Bingham (13) 37.0 88.6% 58.3% 59.9% 28.5% 

Shaun Murphy (14) 37.9 87.9% 56.9% 55.6% 25.7% 

Luca Brecel (15) 29.1 86.0% 53.2% 56.3% 29.9% 

Stephen Maguire (16) 33.9 87.5% 56.1% 56.7% 27.4% 

 

Additional analysis would be desirable to the test the assumption that all inputs 

could be scaled – but this would require data from the scoring system.  This 

would explore whether there was:   

• Any difference in scoring rates across a frame? (e.g. are some players more 

adept at developing the last reds?)   

• Any interaction between scoring potential and scoring power? (i.e. do more 

defensive players affect the scoring power of their opponent?)      
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5.4.5 Progression of a Snooker Match 

Chapter 4 presented a model of a snooker frame and from here it is a natural 

progression to consider how to model an entire match.  There is insufficient data 

to analyse how a player’s performance changes during a match and whether it 

is affected by winning or losing frames.  The models created in Chapter 2 can, 

however, be used to evaluate whether a player’s probability of winning the next 

frame is influenced by what happened during previous frames.  In using the 

models to predict match outcomes an assumption was made that each frame 

was independent, but how accurate is this and could the models be improved 

by making an alternative assumption? 

To explore this, I have initially looked at how all “Best of 7 frames” matches 

(1,877) progressed during the 2017/18 and 2018/19 seasons.  This was the 

most common match length, but the analysis could easily be extended to longer 

matches. 

Table 5.5 compares the actual and expected proportion of frames won by the 

higher-rated player at different stages of the frame – grouped according to 

whether the higher-rated player was level, ahead or behind at the start of the 

frame.  The expected results are based on the 2-year Win Percentage model 

described in Section 2.2.2.  The calibration measure is presented to provide an 

indication of potential bias in the expected results, with scores below 1.0 

indicating that the higher-rated player won more frames than expected. 

There is no significant evidence of bias in any of the results, although there are 

some notable features which would warrant further analysis. 
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Table 5.5: A comparison of actual and expected frames won by the higher-rated 

player during “Best of 7 frames” matches played in the 2017/18 and 2018/19 

seasons. 

Current Score # Frames % Frames won by higher-rated 
player 

Calibration 

  Actual Expected  

0-0 1,875 57% 58% 1.01 

1-1 885 58% 58% 1.00 

2-2 672 56% 58% 1.03 

3-3 501 53% 57% 1.07 

All level 2,230 57% 58% 1.02 

     

1-0 1,075 58% 58% 1.00 

2-0 627 60% 59% 0.97 

3-0 379 67% 59% 0.89 

2-1 759 55% 58% 1.05 

3-1 544 60% 58% 0.98 

3-2 596 58% 58% 1.00 

All ahead 3,980 59% 58% 0.99 

     

0-1 800 55% 57% 1.05 

0-2 363 52% 57% 1.08 

0-3 173 54% 56% 1.05 

1-2 564 59% 57% 0.97 

1-3 326 55% 56% 1.02 

2-3 475 53% 57% 1.07 

All behind 2,701 55% 57% 1.04 

     

All frames 10,614 57% 58% 1.01 

 

The higher-rated player won fewer frames when the score was 3-3 (known as 

‘deciders’) than the win percentage model expected (53% v 57%).  Their 

previous results may be less relevant for predicting the winner given that the 
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players were evenly matched throughout the contest so far – although the 

higher-rated player did still prevail in the majority of these frames. 

501 matches went to a deciding frame, of which 52% were won by the player 

who had won the previous frame (against an expectation of 50%).  This 

suggests a slight advantage from having some momentum going into the 

decider, although there was insufficient evidence of a significant advantage – 

the confidence interval for the calibration measure was (0.87, 1.04). 

At any stage during the match, the player who had won the previous frame also 

won the next frame on more occasions (53% of 8,739 frames) than was 

expected (51%).     

Extending this analysis to look at additional years of results, or different lengths 

of matches may yet provide some evidence of a dependence in the outcomes 

of consecutive frames, although at this stage the assumption of independence 

would appear to be justified.   

A similar implicit assumption made is that the outcomes of matches played in 

the same tournament are independent of another.  A couple of questions of 

particular interest are:  

1) Does a lower-ranked player fare better than expected if facing a high-ranked 

player in the first round of a tournament, rather than at a later stage? 

2) In tournaments where players enter at different stages (such as the qualifying 

rounds of the World Championship), does a player who has already won a 

match have an advantage against an opponent playing their first match? 
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5.5 Concluding Remarks 

In seeking to determine what differentiates the best snooker players from the 

rest, this research first compared and evaluated four methods of quantifying the 

relative ability of professional snooker players. 

This analysis found little difference between the methods in who they identified 

as the strongest players.  In common with the views of more subjective 

observers, the ordering varies slightly depending on the time-period analysed 

and whether the method weights performance in some tournaments more 

heavily than others (whether due to their profile or recency).   

There were larger differences between the methods in their rating of lower-

ranked players, largely dependent on the quantity of historical results used – 

with the official world rankings notably ignoring the past results of players when 

they were amateurs and / or during previous spells on the professional tour. 

The proportion of frames won by players over the previous two years was found 

to provide a reliable and transparent basis for rating players.  Developing an 

assessment of a player’s recent form to complement this may be the most 

effective way to strengthen the relative ratings produced. 

This research has also looked at the merits of various measures used to assess 

the performance of snooker players, concluding that the existing statistics which 

are produced offer limited value. 

There is greater for potential for developing measures based on the scoring 

visits made by players during a match, considering whether some players are 

more adept at creating chances for themselves (or at restricting the chances 
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given to their opponent), and whether some players score more heavily from 

the scoring visits they make. 

Objective measures could be developed using data collected automatically by 

the scoring system.  Further data and analysis would be required to establish 

effective indicators of a player’s safety game, although the measure of scoring 

potential proposed in this research provides some indication of this.  The 

complementary measure of a player’s scoring power captures the dynamic 

nature of the game and is shown to be a reliable indicator of a player’s break-

building prowess – a key element of their performance.  

These two measures also form the basis of the final part of this research, the 

development of a Monte Carlo simulation model of a frame of snooker.  This 

was demonstrated to reliably reflect frames played between top-level 

professionals, with the potential for providing a framework for understanding 

how differences in player performance affect the outcome of a frame. 

The simulation model also offers potential for evaluating the merits of different 

types of shot, providing some insight into the relative importance of being the 

player to gain the next scoring opportunity.   

A player is generally advised to take on a pot if they estimate their chances of 

success to be greater than their chances of potting the next ball should they 

play safe – even if they would certainly leave a chance for their opponent if they 

missed.  When faced with the risk of conceding a scoring opportunity to their 

opponent, they are advised to play a more difficult shot to avoid this – even if 

they may concede penalty points in the process.      
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I – Professional snooker tournaments  

A summary of all ranking events played during the 2016/17, 2017/18 and 2018/19 

seasons 

European Events Asian Events 

Riga Masters China Championship 3 

Paul Hunter Classic 1 Shanghai Masters 4 

European Masters International Championship 

German Masters Indian Open 

Snooker Shoot-Out 2 World Open 

Gibraltar Open China Open 

1 Contested for the last time as a ranking event in 2018/19 

2 Contested as a single frame of snooker played under time constraints and modified rules 

3 Non-ranking invitational event in 2016/17; full ranking event in 2017/18 & 2018/19 

4 Full ranking event in 2016/17 & 2017/18; non-ranking invitational event in 2018/19 

Home Nations Series Coral Series 5  

English Open World Grand Prix 6  

Northern Ireland Open Players Championship 7  

Scottish Open Tour Championship 8  

Welsh Open   

5 Series sponsored by Coral in 2019 & 2020 and subsequently by Cazoo from 2021. 

6 Top 32 players on the current season’s money list 

7 Top 16 players on the current season’s money list 

8 Top 8 players on the current season’s money list.  Introduced in 2018/19. 

Triple Crown Series 

UK Championship 

Masters 9 

World Championship 

9 A non-ranking invitational event contested by the Top 16 in the World Rankings 
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II – Score sheet from the deciding frame played during the 

final of the 2020 World Seniors Snooker Championship 
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III – Matches recorded using post-match video analysis 

 

2018 World Championship 

Match Round Winner Loser Score 

1 Last 32 Joe Perry Mark Selby 10 – 4 

2 Last 32 Mark Allen Liam Highfield 10 – 5 

3 Last 32 Kyren Wilson Matthew Stevens 10 – 3 

4 Last 32 Jamie Jones Shaun Murphy 10 – 9 

5 Last 32 John Higgins Thepchaiya Un-Nooh 10 – 7 

6 Last 32 Jack Lisowski Stuart Bingham 10 – 7 

7 Last 32 Ricky Walden Luca Brecel 10 – 6 

8 Last 32 Judd Trump Chris Wakelin 10 – 9 

9 Last 32 Ding Junhui Xiao Guodong 10 – 3 

10 Last 32 Anthony McGill Ryan Day 10 – 8 

11 Last 32 Lu Haotian Marco Fu 10 – 5 

12 Last 32 Barry Hawkins Stuart Carrington 10 – 7 

13 Last 32 Mark Williams Jimmy Robertson 10 – 5 

14 Last 32 Robert Milkins Neil Robertson 10 – 5 

15 Last 32 Ali Carter Graeme Dott 10 – 8 

16 Last 32 Ronnie O'Sullivan Stephen Maguire 10 – 7 

17 Last 16 Mark Allen Joe Perry 13 – 8 

18 Last 16 Kyren Wilson Jamie Jones 13 – 5 

19 Last 16 John Higgins Jack Lisowski 13 – 1 

20 Last 16 Judd Trump Ricky Walden 13 – 9 

21 Last 16 Ding Junhui Anthony McGill 13 – 4 

22 Last 16 Barry Hawkins Lu Haotian 13 – 10 

23 Last 16 Mark Williams Robert Milkins 13 – 7 

24 Last 16 Ali Carter Ronnie O'Sullivan 13 – 9 

25 Quarter-Final Kyren Wilson Mark Allen 13 – 6 

26 Quarter-Final John Higgins Judd Trump 13 – 12 

27 Quarter-Final Barry Hawkins Ding Junhui 13 – 5 

28 Quarter-Final Mark Williams Ali Carter 13 – 8 

29 Semi-Final John Higgins Kyren Wilson 17 – 13 

30 Semi-Final Mark Williams Barry Hawkins 17 – 15 

31 Final Mark Williams John Higgins 18 – 16 
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2019 Masters 

Match Round Winner Loser Score 

32 Last 16 Luca Brecel Mark Allen 6 – 5 

33 Last 16 Ding Junhui Jack Lisowski 6 – 1 

34 Last 16 Ryan Day John Higgins 6 – 5 

35 Last 16 Ronnie O'Sullivan Stuart Bingham 6 – 2 

36 Last 16 Mark Selby Stephen Maguire 6 – 2 

37 Last 16 Judd Trump Kyren Wilson 6 – 2 

38 Last 16 Barry Hawkins Shaun Murphy 6 – 2 

39 Last 16 Neil Robertson Mark Williams 6 – 3 

40 Quarter-Final Ding Junhui Luca Brecel 6 – 5 

41 Quarter-Final Ronnie O'Sullivan Ryan Day 6 – 3 

42 Quarter-Final Judd Trump Mark Selby 6 – 2 

43 Quarter-Final Neil Robertson Barry Hawkins 6 – 3 

44 Semi-Final Ronnie O'Sullivan Ding Junhui 6 – 3 

45 Semi-Final Judd Trump Neil Robertson 6 – 4 

46 Final Judd Trump Ronnie O’Sullivan 10 - 4 
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IV – Sample of data collected using post-match video analysis 

Shots played during the 1st frame of the 2018 World Championship Final 

 

 Derived information  

Raw Data Statistical Data Modelling   

T M # F # S # Player Shot Pts Break S/Pot S/Pow Reds Length Lead Rem Notes 

WC 31 1 1 Williams S   0  15 0 0 147  

WC 31 1 2 Higgins S   0  15 0 0 147  

WC 31 1 3 Williams S   0  15 0 0 147  

WC 31 1 4 Higgins S   0  15 0 0 147 Left a red near corner pocket 

WC 31 1 5 Williams P 1  1  15 0 0 147  

WC 31 1 6 Williams P 7   1 14 1 1 146  

WC 31 1 7 Williams P 1   1 14 2 8 139  

WC 31 1 8 Williams P 7   1 13 3 9 138  

WC 31 1 9 Williams P 1   1 13 4 16 131  

WC 31 1 10 Williams P 6   1 12 5 17 130  

WC 31 1 11 Williams P 1   1 12 6 23 123  

WC 31 1 12 Williams P 7   1 11 7 24 122 Used rest 

WC 31 1 13 Williams P 1   1 11 8 31 115  

WC 31 1 14 Williams P 5 37  1 10 9 32 114 Lost position 

WC 31 1 15 Williams MP    0 10 10 37 107 Wild attempt but left safe 
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 Derived information  

Raw Data Statistical Data Modelling   

T M # F # S # Player Shot Pts Break S/Pot S/Pow Reds Length Lead Rem Notes 

WC 31 1 16 Higgins S   0  10 0 -37 107  

WC 31 1 17 Williams S   0  10 0 37 107  

WC 31 1 18 Higgins S   0  10 0 -37 107  

WC 31 1 19 Williams S   0  10 0 37 107 Left red close to corner pocket 

WC 31 1 20 Higgins P 1  1  10 0 -37 107 Long pot 

WC 31 1 21 Higgins P 5   1 9 1 -36 106  

WC 31 1 22 Higgins P 1   1 9 2 -31 99  

WC 31 1 23 Higgins P 7   1 8 3 -30 98  

WC 31 1 24 Higgins P 1   1 8 4 -23 91  

WC 31 1 25 Higgins P 7   1 7 5 -22 90 Missed cannon on reds 

WC 31 1 26 Higgins P 1 23  1 7 6 -15 83 Lost position 

WC 31 1 27 Higgins MP    0 6 7 -14 82 Missed difficult cut on black 

WC 31 1 28 Williams P 1  1  6 0 14 75  

WC 31 1 29 Williams P 5   1 5 1 15 74  

WC 31 1 30 Williams P 1   1 5 2 20 67  

WC 31 1 31 Williams P 7   1 4 3 21 66  

WC 31 1 32 Williams P 1   1 4 4 28 59  

WC 31 1 33 Williams P 4   1 3 5 29 58  

WC 31 1 34 Williams P 1   1 3 6 33 51  

WC 31 1 35 Williams P 5 25  1 2 7 34 50  
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 Derived information  

Raw Data Statistical Data Modelling   

T M # F # S # Player Shot Pts Break S/Pot S/Pow Reds Length Lead Rem Notes 

WC 31 1 36 Williams MP    0 2 8 39 43 Missed red along black cushion 

WC 31 1 37 Higgins S   0  2 0 -39 43 Caught green with safety 

WC 31 1 38 Williams P 1  1  2 0 39 43 Long pot 

WC 31 1 39 Williams P 4 5  1 1 1 40 42 Higgins requires snookers 

WC 31 1 40 Williams MP    0 1 2 44 35 Missed long red 

WC 31 1 41 Higgins S   0  1 0 -44 35  

WC 31 1 42 Williams P 1  1  1 0 44 35  

WC 31 1 43 Williams P 7 8  1 0 1 45 34 Frame conceded by Higgins 
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Key: 

Raw 

T Tournament (WC = World Championship) 

M # Match number (within tournament) 

F # Frame number (within match) 

S #  Shot number (within frame) 

Player Player taking the shot 

Shot Type of shot played (S = Safety; P = Pot; MP = Missed Pot) 

Pts Points scored during shot 

Derived – 
Statistical Data 

Break Points scored during break (recorded against the last successful pot) 

S/Pot Included in measure of scoring potential (1 = ball potted at start of visit; 0 = no ball potted) 

S/Pow Included in measure of scoring power (1 = ball potted on continuation of visit; 0 = no ball potted) 

Derived – 
Modelling 
Inputs 

Reds Reds remaining at the start of the shot 

Length Number of shots played in the current visit (0 = new visit) 

Lead Difference in score at the start of the shot from perspective of player taking the shot (negative value = player is behind) 

Rem Maximum points remaining on the table at the start of the shot 

Notes A sample of the notes made against key events (Long pot, rest used, snookers required, poor safety, lost position etc.) 
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V – Probability of winning a match (first to win n frames) based on the probability of winning a frame 
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VI - Transition matrix for a snooker match, populated with data from the 2018 World Championship final 

based on post-match video analysis   

 Mark Williams (MW) John Higgins (JH) 
 

 New Visit Continuation New Visit Continuation Frame End 

 Pot1 Safety Pot1 Safety Pot1 Safety Pot1 Safety  

MW: Break-off     29% (5) 71% (12)    

MW: New Visit - attempted pot   65% (57) 8% (7) 20% (18) 7% (6)    

MW: New Visit safety  4%2 (4)   23% (24) 73% (77)    

MW: Continuation - attempted pot   89% (467) 3% (16) 3% (15) 2% (12)   3% (14) 

MW: Continuation - safety     4% (1) 78% (18)   17% (4) 

JH: Break-off 35% (6) 65% (11)        

JH: New Visit - attempted pot 25% (16) 6% (4)     63% (40) 5% (3)  

JH: New Visit - safety 37% (49) 58% (76)    5%2 (6)    

JH: Continuation – attempted pot 3% (16) 1% (3)     91% (424) 2% (7) 3% (14) 

JH: Continuation - safety 10% (1) 70% (7)       20% (2) 

1 Attempted pot, which may or may not have been successful 

2 Represents shots re-taken following a foul
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VII - Input probabilities used in the simulation model 

 

 Observed 
Shots 

Probability 
of potting a 

ball 

Test against Null hypothesis1 

Input Stage of frame Null 𝝌𝟐 P-value 

 1st Red (Start of Frame)     

1 Shot 1 (break-off) 734 0.000 0.189 210.93 0.000 

2 Shot 2 734 0.200 
0.233 5.76 0.016 

3 Subsequent shots 2,411 0.243 

 Reds 2 - 12 (Safety Exchange)     

4 Reds 2 - 4 1,308 0.252 
0.271 4.05 0.044 

5 Reds 5 - 12 1,884 0.285 

 Reds 2 - 12 (Countering Scoring Visit)    

6 Reds 2 - 4 517 0.358 
0.411 9.32 0.002 

7 Reds 5 - 12 969 0.440 

 Reds 2 - 12 (Continuing Visit)     

8 Last Pot = Baulk Colour 923 0.823 

0.891 78.10 0.000 
9 Last Pot = Blue 1,766 0.872 

10 Last Pot = Pink 1,394 0.930 

11 Last Pot = Black 3,179 0.905 

 Reds 13 & 14 (New Visit)     

12 Safety Exchange 416 0.207 
0.251 17.02 0.000 

13 Countering Scoring Visit 145 0.379 

 Reds 13 & 14 (Continuing Visit)     

14 Visit length <= 8 Shots 464 0.808 
0.842 6.73 0.009 

15 Visit length >= 10 Shots 716 0.865 

 15th Red (New Visit)     

16 New Visit 466 0.182    

 15th Red (Continuing Visit)     

17 Visit length <= 4 Shots 95 0.589 
0.704 7.44 0.006 

18 Visit length >= 6 Shots 381 0.732 

 Colour following 1st red of a visit     

19 1st Red of frame 731 0.770 

0.803 16.12 0.000 20 Reds 2 - 13 1,555 0.826 

21 Reds 14 & 15 149 0.725 

 Colour following a subsequent red     

22 Reds 2 - 4 1,674 0.924 
0.941 11.47 0.001 

23 Reds 5 - 13 & 15th Red 5,660 0.946 

 14th Red      

24  - Visit length < 13 Shots 204 0.877 
0.915 6.36 0.012 

25  - Visit length >= 13 Shots 264 0.943 

 Final Colours (New Visit)     

26 Safety Exchange 525 0.173 
0.187 3.60 0.058 

27 Countering Scoring Visit 121 0.248 

 Final Colours (Continuing Visit)     

28 Visit length <= 2 shots 233 0.721 

0.864 63.46 0.000 
29 Visit length = 3 - 8 shots 412 0.828 

30 Visit length = 9 - 23 shots 741 0.889 

31 Visit length > 23 shots 527 0.920 

1 The null hypothesis for each group of inputs is that there is no difference in the probability of 

potting a ball 
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