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Abstract  
 
Photosynthesis appears the major remaining opportunity for further improvement the genetic yield 

potential of our major crops.  The focus in measurement, analysis and improvement of leaf CO2 uptake 

(A) has been on rates in steady-state and saturating light.  However, in modern crop canopies of several 

leaf layers light is rarely constant.  There are delays of several minutes in adjustment of efficiency both 

in sun-shade and shade-sun transitions, costing a calculated 10 – 40% of potential crop carbon uptake.  

Transgenic manipulations to accelerate the adjustment in sun-shade transitions have already shown 

substantial productivity increase in field trials.  Here we explore means to accelerate these adjustments 

and minimize these losses, through transgenic up-regulations, editing and exploitation of natural 

variation.  Measurement and analysis of photosynthesis in sun-shade and shade-sun transitions are 

explained.  Factors, dominating these transitions and how they could be modified to effect improved 

efficiency are reviewed: non-photochemical quenching, Rubisco activase and stomatal apparatus.  
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1. INTRODUCTION 

Our title, into the shadows and back into the sun, describes the progression of this review in 

dealing with photosynthetic efficiency in fluctuating light.  However, it is also a metaphor for the 

attention  photosynthesis has received in crop improvement over the last few decades.  Photosynthesis 

was viewed as a means to improve both food supply and energy in the 60s and 70s (200).  However, 

failure to make progress, plus the view that ability of the plant to utilize additional photosynthate, i.e. 

sink capacity, was likely limiting and that highly selected elite cultivars showed no better leaf 

photosynthetic rates than the wild ancestors, placed a shadow over further work (69; 80; 192).  In the 

intervening period, rapid progress in understanding limitations to photosynthesis at the biochemical and 

molecular level, and improved tools for measuring and analyzing photosynthesis in vivo together with 

simulation of the process through high-performance computing(17; 19; 67; 68; 167; 251; 259; 262; 271; 

286; 292; 299; 310), opened the door to new approaches to engineering improved photosynthetic 

efficiency(164; 179; 247; 249). The demonstration of bioengineered improvements in photosynthetic 

efficiency that have increased productivity and sustainability in replicated field trials(138; 166; 260; 

302), has given further vigor to this effort. New among current approaches is a focus on non-steady-

state photosynthesis (195; 197; 255; 266; 311). The overwhelming majority of measurement and 

analysis of leaf CO2 uptake (A) has focused on steady-state photosynthesis, under conditions of constant 

high light.  However, in a crop canopy in the field light is never constant.  Most leaves in modern dense 

crop canopies are subject to rapid changes in light due to intermittent cloud cover, and dynamic self-

shading caused by the movement of overlying leaves and the passage of the sun across the sky (255; 

266; 285; 311).  Adjustment to fluctuations in light is at the level of the individual chloroplast and 

individual stoma.  At this resolution, fluctuations in light are rapid.  When considering a canopy on a 

clear sky day, as the sun crosses the sky, one second a stoma or chloroplast is in full sunlight, the next in 

the shade of an overlying leaf.  Yet adjustment to the change will take minutes (Fig. 1b).  Moving into 

the shadow of a single overlying leaf will typically decrease light to about 1/10th of direct sunlight.  

Because of the slow adjustment of photosynthesis, leaves and canopies operate at an efficiency well 

below that achieved at steady-state.  Addressing this, however, opens new opportunities for improving 

crop photosynthesis, sustainability and yield.  Accelerating the ability of the leaf to adjust has improved 

photosynthetic efficiency and crop productivity in the field(138).  This, however, is just a starting point 

and the purpose of this review is to highlight many further opportunities to gain much more.   

What is the need for this?  From the 70s until 2014 the proportion of the global population that 

were calorie insufficient declined.  In 2014 this reversed and has steadily risen since, reaching 690 



million or 8.9% of the world population by 2019. While such increases could be expected in conflict 

zones, numbers are also rising in non-conflict zones(65).    The world is forecast to need 60% more food 

in 2050 than today, and at current rates of increase in food crop yields per hectare there would be a 

very substantial shortfall in supply(230; 231).  Particularly affected are countries of sub-Saharan Africa 

and poorer countries of SE Asia.  Ironically, these are among the countries forecast to experience some 

of the greatest population growth and where agricultural production has already been most impacted 

by climate change(207).  A further irony is that many of the food insufficient are farmers, feeding their 

families from a half- to one-acre plot.  A certain way of insuring future supply and reversing the current 

rise in those that are food insufficient is to provide seed that will increase their crop production(64; 

225).  The 50s and early 60s saw large-scale famines, some due to conflict and poor policies, but others 

because regions simply could not produce enough food to support growing populations and demand.  

The Green Revolution provided the means to grow sufficient food and was the major contributor to 

ensuring supply could meet demand for the next few decades.  It was a genetic revolution providing 

farmers with seed with a higher genetic yield potential and agronomy to realize the increased 

potential(62; 214).  However, the technologies of the Green Revolution are meeting their biological 

limits(231).  The major Green Revolution advance was breeding our major crops so that more of their 

biomass was partitioned into the part of the crop we eat, for example the grains of our major cereals.  

Much was achieved by dwarfing; shorter stems and more grain(214).  Before the Green Revolution the 

major grains had a harvest index of about 30%, that is to say 30% of their shoot biomass was grain.  By 

the turn of this century, more typical harvest indices were 50-65%.  If there is to be some stem and 

structure to support grain it is hard to see how further improvement in harvest index could be 

achieved(61).  In his 1997 address to the Royal Society, the eminent wheat physiologist, Lloyd Evans, 

looked at the prospect of achieving the need for a doubling of food supply by the middle of this Century.  

To quote from his article “it is not apparent how a doubling of yield potential can be achieved unless 

crop photosynthesis can be substantially enhanced by genetic engineering”.  Photosynthesis would 

appear on the surface as an obvious target.  It is directly or indirectly the source of all of our food.  

Further, its efficiency even in our best elite cultivars is less than 1/3 of theoretical(309), so we are a long 

way from its biological limits.  Yet the photosynthetic efficiency of elite cultivars today is little different 

from that of their wild relatives and pre-green revolution cultivars(80; 132).  So why is there now a 

chance to improve photosynthesis?  

While the pathways of photosynthetic electron transport, carbon metabolism and nitrogen 

metabolism were largely elucidated more than a half-century ago, innovations of the last two to three 



decades have allowed identification of points of limitation and means to address these.  Sufficient data 

have accrued to allow mathematical description of all the discrete steps, computational simulation and 

in silico optimization (121; 310; 312).  In parallel, genomics, transcriptomics, metabolomics and 

fluxomics have also provided insight to limitations and means to address these (14; 26; 58; 121).  Great 

strides in the efficiency of genetic engineering of crops have allowed test-of-concept in crop field 

trials(138; 260; 302).  Rapid advances in in vivo measurement and analysis of photosynthesis, in 

particular modulated chlorophyll fluorescence, now allows high-throughput analysis and selection of 

predicted photosynthetic phenotypes from multiple transformation events(17; 184; 185).   This has 

proved particularly valuable in the case of photosynthetic efficiency in fluctuating light(138).  Here we 

assess progress and potential in engineering improved photosynthetic efficiency within the leaf, first in 

sun-shade transitions and then in shade-sun transitions (Fig. 1b).  We then consider the action of 

stomata, which frequently co-limit speeds of induction of photosynthesis on shade-to-sun transitions, 

while their slow rate of closure following sun-shade transitions, lowers water use efficiency.   

2. INTO THE SHADOWS 

Non-photochemical quenching (NPQ) 

In full sunlight leaves receive more light energy than may be used in photosynthesis.  If this excess 

energy is not dissipated, the result will be a build-up of highly reduced electron carriers in the 

photosynthetic electron transport chain, leading to the formation of harmful reactive oxygen species (137; 

187; 265). Mechanisms have evolved to dissipate excess energy as heat, protecting the photosynthetic 

apparatus from damage, collectively referred to as non-photochemical quenching (NPQ) (45; 102; 160; 

193; 198; 203; 234). The major form of NPQ, and fastest relaxing, is energy-dependent quenching 

(qE)(136). Other processes contributing to NPQ that relax progressively more slowly (Figure 2) are 

zeaxanthin-dependent quenching (qZ)(202), state transitions (qT)(224), and photoinhibition independent 

quenching (qH) (9; 171).  

 

In chloroplasts in a field crop canopy, qE is activated when the amount of incoming energy exceeds 

the capacity of electron sinks, as occurs during sun flecks.  The threshold light level inducing this process 

is lowered when stresses, such as drought, nutrient deficiency or temperature extremes further limit 

photosynthesis (162). qE is therefore important for plant fitness (140), and its enhancement can reduce 

photoinhibition (124; 159) and increase biomass production (103). However, too much qE can 

compromise photosynthesis, by converting excitation energy that could be used for CO2 fixation into heat 

(103; 194; 197; 198; 228). The ancestors of today’s crops largely evolved in resource limited open habitats 



where there would be little self-shading.  Today most are grown at high population densities and produce 

canopies of several layers, such that most leaves will experience considerable and often intermittent self-

shading (Figure 1a).  As a result, optimizing the amount of NPQ and the speed of its response to fluctuating 

light is an effective strategy to improve crop performance (194; 311).  Figure 1b illustrates the cost this 

has on the efficiency of CO2 uptake on sun-shade transitions.  Modeling of canopy lighting suggests an 

accumulated  15 – 40% loss of potential crop canopy carbon acquisition over the course of day, compared 

to an instantaneous cessation on NPQ on the transition (285; 312). 

 

Mechanism of NPQ 

Detailed understanding of the mechanisms of NPQ are required to guide engineering approaches. 

qE is mediated by PsbS (158), lumen pH and a VAZ cycle, involving interconversion of the xanthophylls 

violaxanthin (V) antheraxanthin (A) and zeaxanthin (Z). Build-up of a proton gradient (ΔpH) across the 

thylakoid lumen (28) leads to protonation of PsbS (159) and activation of violaxanthin de-epoxidase (84) 

triggering the conversion of V to Z via A to activate quenching (48; 109). The precise mechanism of qE 

remains controversial. However, sufficient progress has been made in understanding the molecular 

components involved in qE to enable initial efforts at optimizing performance.  

 

Activation and relaxation of NPQ is not instantaneous, but modulated by changes in the thylakoid 

proton motive force (pmf)(263), which is controlled by the activity of the proton pumping chloroplast ATP 

Synthase (120), and thylakoid ion transporters including KEA3 (10), VCCN1/2 (53), ClCe (94) and PHT4;1 

(123) as reviewed previously (11; 222; 261). Manipulation of ion transporters has therefore been 

suggested as a means of optimizing NPQ in a fluctuating light environment.  Accordinlgly, overexpression 

of ion transporter KEA3, increased the rate of NPQ relaxation by speeding up dissipation of ΔpH through 

export of protons from the lumen (12). However, increasing the proportion of pmf stored as electric field 

can result in increased photodamage (38), and deregulation of KEA3 caused increased short term carbon 

assimilation at the cost of higher rates of photodamage (275). It is therefore unclear that manipulation of 

the rate of formation of pmf could benefit crop growth.  

 

Measuring NPQ 

A variety of spectroscopic methods have been developed to probe NPQ (21; 120; 183; 196). While 

NPQ values can be obtained with a saturating flash on dark-adapted leaves followed by a single saturating 

flash in illuminated leaves, the different NPQ components (qE, qT, and qI) are determined by applying 



repetitive saturating light pulses during the transition from high light to dark and observing the decay 

kinetics during the quenching relaxation (Figure 2). Measurements of NPQ components are frequently 

based on the Stern-Volmer equation since this method is preferred in studies that evaluate plant stress 

physiology (135). Such measurements are traditionally done with the Pulse Amplitude Modulated (PAM) 

fluorometers that can work alone or be coupled with portable gas exchange systems, allowing the 

acquisition of chlorophyll fluorescence and gas exchange parameters simultaneously. However, the 

increased need for high-throughput phenotyping has driven the development of chlorophyll fluorescence 

imaging  techniques, which include systems based on PAM imaging (208; 248), such as: FluorCam (201), 

CF Imager (196), and LED induced fluorescence (110; 139). These allow high-throughput imaging of speeds 

of relaxation of NPQ across germplasm panels in conventional breeding for improved speeds to relaxation 

and in screening multiple genetic transformation events where improved NPQ relaxation on sun-shade 

transitions is targeted. 

 

Modeling NPQ 

Modeling approaches have been used to further elucidate the mechanism of NPQ, simulate the 

influence of NPQ on the whole photosynthetic system, and estimate the loss of carbon fixation by crop 

canopies.  Mechanistic models have been used to simulate the short term NPQ, which induce and relax 

within a few minutes (Figure 2).  Models found this type of NPQ to be associated with the content of PsbS 

(158), zeaxanthin (Z), antheroxanthin (A), (47; 162), lumen pH (113) and accumulation of lutein (178). 

However, some of the molecular mechanisms, and the interactions between components, remain unclear. 

Several mechanistic models were developed to study photosynthetic electron transport and short term 

NPQ dynamics using differential equations (54; 142; 178; 256; 303; 312), where qE is assumed to be 

activated by Z (53), de-epoxidized xanthophylls (Z+A), protonated PsbS (53; 181; 303), and components 

triggered by lumen pH described by a Hill equation. These models indicate PsbS to contribute to the fast 

response of NPQ to light fluctuations, while the xanthophyll cycle is more closely related to the slower 

response; early phase of qM (Figure 2). Further addition of lutein-dependent NPQ into a simplified 

biochemical model (156), suggested both zeaxanthin and lutein affect NPQ independently.  

 

As structural details of the PSII supercomplex were revealed, qE was incorporated within a 

membrane structure model of excitation transfer (20), which demonstrated that two-dimensional 

diffusion is also important for accurately simulating qE and quantum yield. Although these models 

effectively explain dynamic chlorophyll fluorescence signals, without the restrictions on the use of 



electron transport products, ATP and NAPH.H by carbon metabolism, the models were not able to directly 

estimate the effect of NPQ on CO2 uptake. Therefore, more comprehensive models (142; 182; 189; 190; 

312) integrating the NPQ process into the whole photosynthetic system, establish the relationship 

between NPQ and leaf carbon assimilation required to predict the effects on crop carbon gain and 

productivity.  

 

Although some mechanisms are not fully understood, such as how lumen pH, PsbS and lutein 

affect NPQ kinetics, and how slower components emerge after the qE, with better understanding of NPQ, 

mechanistic models continue to improve. Empirical models of photoinhibition (qI) and hypothetical 

canopy models have been used to estimate the loss of carbon fixation in crop canopy, qI reduces carbon 

fixation between 5 to 30% over a diurnal course (162; 289; 311). The significant limitation indicated a large 

potential for increasing canopy photosynthesis by optimizing NPQ. However, the accuracy of previous 

estimates was limited by simplified canopy structures and light distributions, and short-term NPQ 

dynamics were not incorporated. More recently, an actual 3D canopy structure of soybean was integrated 

with forward ray tracing to predict the spatial dynamics of lighting across the canopy. With this dynamic 

lighting, combined short-term NPQ and qI limitations resulted in a predicted 9 and 11% reduction in 

canopy carbon assimilation on cloudy and sunny days, respectively (285). The 3D canopy structure was 

also used to evaluate the role of PsbS in a rice canopy, accounting for altered canopy structure and the 

light environment (73). The simulation predicted an early growth advantage of PsbS over-expression and 

that manipulating photoprotective mechanisms can impact whole-canopy function.  These models show 

that acceleration of the relaxation of NPQ on sun- shade transitions would potentially give large gains in 

carbon assimilation by crop canopies. 

 

Variation in NPQ as a source for crop improvement 

Models and measurements show NPQ is sustained longer than necessary in the shade after a 

transition from direct sunlight at the cost of photosynthetic efficiency (309; 311). This could be overcome 

by accelerating the rate of NPQ relaxation by increasing the rate of conversion of zeaxanthin to 

violaxanthin on the transition from sun to shade.  This could be achieved by increasing the activity of 

zeaxanthin epoxidase (ZEP).  However, such an increase would also lower zeaxanthin content in full 

sunlight, and remove protection against photodamage and lessen scavenging of reactive oxygen species 

(ROS).  It was therefore reasoned that violaxanthin de-expoxidase (VDE) and PsbS would also need to be 

up-regulated to maintain protection in high light, while allowing faster relaxation of NPQ on a sun-shade 



transitions(138).  Subsequent over-expression of these three genes in  Nicotiana tabacum proved to both 

accelerate induction of NPQ on a shade-sun transition and its relaxation on a sun-shade transition, 

resulting in a ca. 15% improvement in photosynthetic efficiency, measured as mol CO2 assimilated per mol 

photon absorbed.  In a replicated field trial, three independent events of this transformation showed 

significant 14 – 21% increases in productivity(138).  This proof of principle spurred further interest in 

engineering this in crops and was subsequently demonstrated to provide substantial yield increases in 

maize, rice and soybean (273).  It has also raised the question of whether there is natural variation in the 

speed of NPQ relaxation for potential exploitation in breeding(283). 

 

Studies on diverse genotypes of rice (124; 283), Arabidopsis (114; 117; 235; 276) and soybean (95; 

96) have demonstrated the existence of substantial variation in NPQ within species. The insertion of a 

MULE-like element in the promoter of OsPsbS1 in Japonica rice varieties, was found to account for 40% 

of the variation in NPQ found in rice populations (283) by increasing transcription of PsbS (124; 205). 

However, differences in PsbS are insufficient to account for variation in other populations, and 

manipulating the VAZ cycle may not always result in increased performance (78). A greater understanding 

of the diversity of mechanisms driving variation and the conditions where VAZ manipulation would be 

beneficial are therefore required to assess the potential for this approach to improve crop plants.  Given 

the dual role of de-epoxidated xanthophylls in both NPQ and ROS scavenging, impacts of manipulation on 

the latter role also need to be understood. 

 

Diversity of NPQ mechanisms  

A wide diversity of NPQ mechanisms and responses have been described between photosynthetic 

species, allowing adaptation to ecological niches (16; 43; 44; 46; 128). In some plants, a second 

xanthophyll cycle called the lutein epoxide cycle (LxL cycle) operates in tandem with the universal VAZ 

cycle (30; 79; 125; 177; 178). Similar to the VAZ cycle, the LxL cycle is regulated by the antagonistic 

activities of VDE and ZEP which drive the interconversion between lutein epoxide (Lx) and lutein (L)(99; 

297). Both xanthophyll cycles respond to changes in light intensity by modulating light harvesting and 

energy dissipation in photosynthetic antenna complexes, however the LxL cycle operates on a much 

slower timescale and its contribution to these processes is difficult to untangle from rapid and robust VAZ-

mediated responses (175). Introduction of the LxL cycle to Arabidopsis mutants lacking the VAZ cycle 

helped define the role of L in photoprotection and provides new evidence of Lx-enhanced light harvesting 

in low light (155; 156). Natural variations of the LxL cycle exist in a range of shade-tolerant, taxonomically 



diverse plants (177; 178), but most crops lack an intact LxL cycle and incorporate L in their photosystems 

despite the deep shade of their lower canopy. This inability to relax L-mediated photoprotection in low 

light reduces the efficiency of energy transfer to PSII reaction centers causing dissipation of excitation 

energy that could be used in photosynthesis in the lower canopy (60; 111; 176). Engineering crops to 

accumulate Lx in the lower canopy to promote relaxation of photoprotective mechanisms conferred by L 

accumulation is therefore a promising target for further efforts to improve photosynthetic efficiency.  

 

3. BACK INTO THE SUNSHINE – INDUCTION OF PHOTOSYNTHESIS ON SHADE-SUN 
TRANSITIONS 

Induction describes the rise in photosynthesis to steady-state as a leaf goes back into the sun 

after darkness or a period of shading (Figure 1b; 3a).  During this phase, by definition, photosynthetic 

CO2 uptake is less than at steady-state and therefore represents a loss of potential efficiency that may 

be described as forgone carbon loss.  While loss of efficiency between a sun-shade transition and 

regaining steady-state is largely due to the time taken to remove NPQ, induction is affected by many 

processes.  These include induction of photosynthetic electron transport rates in the thylakoid 

membrane; 2) light activation of Calvin-Benson cycle enzymes, in particular Rubisco; 3) accumulation of 

intermediates of carbon metabolism; 4) stomatal opening and 5) increasing mesophyll conductance(42). 

Measuring and analyzing limitations in induction 

Photosynthetic induction can be conceived as the repeatable set of responses to an increase in 

photosynthetic photon flux density (PPFD), and is usually measured in the context of step-changes in 

PPFD from strongly light-limited (shade) to light-saturated (sun) photosynthesis (Figure 3a & b). 

Consequently, ‘induction’ represents a series of compensatory changes necessary to achieve the full 

rate of CO2 assimilation that the increase in light can support: increased RuBP regeneration, Rubisco 

activity, stomatal  conductance and mesophyll conductance.   These combine with increased protection 

against the damaging consequences of over-excitation of the photosynthetic apparatus that results from 

photon absorption in excess of capacity for photochemical quenching, i.e. it requires as increase in non-

photochemical-quenching (NPQ) and availability of compounds that can remove reactive oxygen species 

(33; 115; 116; 213). The involvement of these explicitly protective processes, highlights that from a 

physiological perspective rapid induction can be viewed as a stress minimising process. The flipside, 

from the perspective of maximising crop efficiency, is that rapid induction improves the margin of net 

CO2 gain from intercepted quanta, i.e., radiation use efficiency(309) by minimising CO2 assimilation that 

is ‘forgone’ when induction is slower(294). 



Comparative measures of the impact of forgone assimilation can be obtained from time series 

by establishing the time dependence of net CO2 assimilation (A, µmol m-2 s-1) as it responds to a step 

change in PPFD from shade to sun (Fig. 3). Forgone A can be integrated across the induction, or 

comparisons can be made based on the time taken to obtain e.g. 50, or 90% of the steady-state A. Point 

comparisons are commonly expressed as ‘induction states’; however, alongside differences in 

experimental protocols, alternative use of normalisations to final A or the difference between sun and 

shade values of A(8; 213) applied to forgone assimilation and induction states make values difficult to 

compare across studies. Induction can also be probed to evaluate its constituent processes.  Key 

approaches using gas exchange measurements are partitioning of forgone A between stomatal and 

biochemical components(42; 274), and probing limitations due to Rubisco or RuBP regeneration using 

induction under different [CO2]s (36; 131). Common to these approaches is an interpretation of 

induction as a dynamic change in the response of A to [CO2] (particularly intracellular [CO2], ci, hereafter 

referred to as an A/ci response)(18; 129; 131; 206) (Figure 3c; Tables 1 & 2).   

Gas exchange measurements that directly evaluate how the A/ci response changes during 

induction (36) have recently been implemented in several crop species (Table 1).  Details vary between 

experiments, but the common approach is to make a series of induction measurements at different 

chamber inlet [CO2], allowing the construction of so-called dynamic A/ci responses for different time 

points in induction (Figure 3c & d). The approach enables separation of stomatal limitations from those 

within the mesophyll through the induction, where biochemical limitations can be separated between 

Vc,max (the maximum rate of carboxylation by Rubisco), J (the rate of electron transport limiting RuBP 

regeneration) and TP (triose-phosphate utilization)(268). The benefit of identifying such sub processes or 

separating stomatal and biochemical limitations, is that physiological targets for intervention, for  

decreasing forgone CO2 assimilation in crops, are narrowed down. There is evidence that biochemical 

limiting factors affecting induction and steady-state A, differ between plants, including among and 

within crop species (206; 269). 

Dynamic A/ci experiments, while conceptually simple and providing a rich parameterisation for 

understanding induction responses, are arduous to implement. Where the primary biochemical 

limitation can be inferred or assumed, gas exchange time series can alternatively be used to good effect. 

Applications in crop species include partitioning or comparison of biochemical and stomatal limitations 

(Tables 2).  Prediction of diffusion-corrected values for A that can be used to model the slow-phase 

biochemical limitation affecting photosynthesis during induction (Table 3) is linked with activity of the 

molecular chaperone Rubisco activase (Rca)(33; 86). Classic, simplified approaches that obtain diffusion-



corrected A by assuming linearity of the A/ci response (86) have shown a reasonable match to dynamic 

A/ci and Rubisco activity assays(268; 294); however, because the slope of the A/ci response saturates as 

ci increases, these approaches will be increasingly prone to error as ambient [CO2] increases(115; 294). 

More accurate and powerful approaches are now being implemented by inversion of A/ci equations 

(42). 

Practically, three significant complications impact data quality from leaf gas exchange 

measurements during induction. First, large step changes in irradiance affect the energy input to the leaf 

and therefore leaf temperature. This destabilizes both leaf temperature and the calculated vapour 

pressure deficit, with knock-on consequences for system control-loop feedback and estimates of 

stomatal conductance and particularly ci.  Second, standard simplifications used to establish ci based on 

leaf conductance to CO2 assume that stomata are the primary pathway of both CO2 and H2O exchange, 

conditions that may be violated by stomatal closure during shade(88). Finally, in commonly used 

commercial open gas exchange systems, standard equation sets are used that assume a steady-state in 

terms of gas concentrations measured from the leaf cuvette and/or reference air stream. During fast 

phases of induction, the initial rise in assimilation that has been attributed to recovery of RuBP turnover 

(131; 244; 245), the [CO2] inside the cuvette can change so rapidly that longer system averaging times 

will average-out substantial change, or lags in apparent cuvette [CO2] will arise because of incomplete 

turnover. Chamber turnover in particular can be an issue where chamber volumes are relatively large, 

flow rates are low, and leaves are small or have low rates of assimilation. Remedies include adjustment 

to limit the magnitude of PPFD change during sun-shade transitions to limit photoinhibition while still 

ensuring a shift from sub-saturating to saturating irradiance(115), calculation of chamber turnover 

times, and adjustment of protocols, including use of appropriate time-windows in post-processing to 

emphasize the process of interest. The duration, PPFD, and [CO2] during shade all affect initial stomatal 

conductance during induction. In assays focused on biochemical limitations, manipulating these factors 

can be useful in establishing good initial conditions of adequate stomatal conductance for accurate and 

meaningful measurements(268; 269). Alternatively, explicit consideration of cuticular conductance can 

be used in sensitivity analyses or to more fully parameterise the gas exchange model for greater 

accuracy(131; 172) 

Time series measured during induction provide a wealth of physiological information. By 

contrast, because shade results in an immediate transition to light-, rather than enzyme activity-limited 

photosynthesis, using gas exchange to understand loss of induction during shade requires more 

extensive experiments more closely resembling the effort needed to generate dynamic A/ci responses. 



For example, to quantify the rate of decrease in Rubisco activity or capacity for RuBP regeneration 

during shade, gas exchange measurements need to be made for a series of shade durations, and the 

post-shade induction state used to infer declines in the relevant processes(130; 294). Gas exchange 

equipment is more widely available to the plant physiology community, but in lab settings where 

enzyme activity assays are available, destructive sampling during shade may provide data with a similar 

degree of efficiency(245). 

A significant limitation to direct estimates of in vivo induction of Rubisco activity has been the 

availability of methods for establishing mesophyll conductance (gm) and therefore the response of A to 

chloroplast [CO2] (cc) under dynamic conditions. Low precision and other methodological challenges 

mean that attempts to constrain gm during induction using combined gas exchange and chlorophyll 

fluorescence through the variable J method(115)] have so far lacked the precision needed to clearly 

identify induction dynamics. More promisingly, use of isotope discrimination has recently provided a 

detailed analysis of gm during shade-sun transitions in tobacco and Arabidopsis(237). Because methods 

of pre-conditioning are diverse, and bifurcate in particular within dynamic A/ci studies (Table 1), it is 

particularly interesting that gm responses measured by isotope discrimination were strongly affected by 

the preceding light environment.  Relatively weak responses are observed when previously sun-exposed 

leaves are shaded, and strong gm responses are observed in dark-adapted leaves that transition to shade 

before measuring induction(237). 

 

Activation of Rubisco 

The complex regulation of Rubisco activity involves carbamylation of catalytic sites, inhibition by 

certain sugar-phosphate derivatives and activation by the molecular chaperone Rubisco activase (Rca). 

Some additional cellular components are known to interact with and affect the activity of Rubisco. Here, 

the changes in the chloroplast stroma that occur when a leaf transitions from shade-sun-shade to 

directly impact Rubisco activity are discussed. As reviewed previously (241), the coordinated regulation 

of CO2 fixation and electron transport activity enables plants to maintain metabolites at optimal levels 

and respond rapidly to changes in the prevailing environment. Recent evidence suggests that the 

regulation of primary metabolism would benefit from some adjustment to cope with the increasing 

environmental volatility (253). One avenue predicted to result in significant improvement in crop 

productivity is through maintaining high CO2 assimilation of Rubisco and speeding the rate of 

adjustment of Rubisco activity in response to changes in PPFD. 

 



Early in vitro studies on the biochemistry of Rubisco(141; 167), showed that to be catalytically 

competent to catalyze the carboxylation or oxygenation of ribulose-1,5-bisphosphate (RuBP), Rubisco 

must be carbamylated. Carbamylation depends on the pH, CO2 and Mg2+ concentrations of the 

chloroplast stroma. The first step of carbamylation is the binding of CO2 to the ε-amino group of lysine 

201 in the Rubisco catalytic site (169). This amino group has a distinctly alkaline pK, meaning that 

binding of CO2 is minimal at pH 7.0 and optimal above pH 8.0 (15; 168).  It is unlikely that CO2 for 

carbamylation is limiting in the shade, since intercellular [CO2] (ci) is constant or rises slightly with 

decreasing light levels (290), This binding of CO2 to Rubisco is referred to as “activator” CO2, distinct 

from the substrate CO2, The carbamate formation by CO2 binding promotes changes the charge of the 

amino group. The subsequent binding of Mg2+, to the now anionic amino group, occurs rapidly and 

stabilizes the otherwise unstable carbamate. Binding of CO2 and Mg2+ forms the catalytically competent 

carbamylated form of Rubisco.  This is referred to as ECM: enzyme catalytic site bound to activator CO2 

and Mg2+. When a leaf transitions from shade to sun, there is an increase in proton pumping from the 

chloroplast stroma to the thylakoid lumen, coupled with increased flux of Mg2+ from the lumen to the 

stroma (105; 134; 143; 157; 209; 218; 219; 250). These ion fluxes result in a more alkaline pH and 

increased [Mg2+ ] at the site of Rubisco, promoting carbamylation. These conditions are rapidly reversed, 

promoting decarbamylation, upon transition to low light (55; 308). Importantly, the carbamylation of 

Rubisco catalytic sites in vivo is also dependent on [RuBP] and the activity of Rca (221) 

 

In addition to binding ECM prior to catalysis, the sugar-phosphate substrate RuBP binds tightly 

and unproductively to the uncarbamylated catalytic site. Its concentration is saturating at moderate to 

high light but declines to sub-saturating levels at low light and in darkness (33; 215). Sub-saturating 

[RuBP] promote Rubisco deactivation through dissociation of Mg2+ and CO2 from catalytic sites (174; 

220; 242). Tight binding of certain phosphorylated compounds to catalytic sites can also inhibit Rubisco 

activity (reviewed in (27; 211)).  2-carboxy-D-arabinitol-1-phosphate (CA1P) accumulates in some plant 

species after relatively periods of at least 1h exposure to low light and darkness ((83; 188; 236)).  

However, CA1P is not ubiquitous and is unlikely to accumulate to levels that cause significant inhibition 

of Rubisco when leaves are exposed to shade for shorter periods (<30 min).  Thus, Rubisco can 

deactivate by decarbamylation (E, catalytic site free of CO2 and Mg2+) or formation of a dead-end 

complex by tight-binding of RuBP to the uncarbamylated enzyme (ER), depending on the balance 

between [RuBP] and [Mg2+], and the ability of Rca to activate Rubisco. 

 



Rca catalyses the ATP-dependent removal of inhibitory compounds from Rubisco catalytic sites, 

which can then be carbamylated (232). The activity of Rca is regulated by the redox potential, ADP/ATP 

ratio and [Mg2+] of the chloroplast stroma (91; 233; 305; 306), all of which change in response to the 

prevailing light level. Most plant species characterized to date contain more than one isoform of Rca 

(243). In both Arabidopsis and wheat, the Rca isoforms differ in their regulatory properties (33; 216; 

246). Arabidopsis plants expressing only the Rca isoforms that are insensitive to redox-modulation or 

inhibition by ADP (34; 304) and rice plants overexpressing Rca (77; 298) showed faster photosynthetic 

induction in low to high light transitions and grew faster under fluctuating light conditions. 

 

The rate of CO2 assimilation by Rubisco in a leaf is determined by its catalytic properties, 

abundance and regulation. Previous efforts to enhance photosynthetic capacity by overexpressing 

Rubisco (239; 264), Rca (76; 77) or a CA1P phosphatase that dephosphorylates Rubisco inhibitors (161) 

have shown limited success, partly due to the negative correlation between Rubisco abundance and 

activation state (34). However, overexpression of both Rubisco and Rca resulted in enhanced 

photosynthesis and biomass production in rice at high temperature (223; 264). Careful selection of the 

Rca isoforms to overexpress will be necessary to efficiently activate Rubisco and increase photosynthesis 

in the fluctuating light of a crop canopy. 

 

4. STOMATA 

Stomata are the gatekeeper to gaseous exchange between the plant and the atmosphere, and 

adjust aperture in response to both external and internal cues.  Increasing light, low [CO2] and low water 

vapor pressure deficit (VPD) are some of the stimuli that encourage stomatal opening. Closure is driven 

by low or decreasing light levels, high [CO2] (6), high VPD as well plant hormones such as abscisic acid  

(ABA), reactive oxygen species (ROS), nitric oxide, Ca2+ and pH signals (6; 31; 98; 147; 284; 300).  

However, these triggers rarely occur in isolation and therefore stomatal responses are the results of an 

integration of multiple signals in a hierarchical manner (144; 148; 152). Additionally, considerable 

variation in response times and magnitude of change exists both between and within species, and leaves 

within the plant(2; 3; 40) (1; 52; 63; 66; 180; 186).  As noted above, stomata along with activation of 

Rubisco, appear the major factors limiting the speed of induction of photosynthesis on shade to sun 

transitions, and are thus the major causes of forgone carbon fixation due to light fluctuation in crop 

canopies.  Further, balancing stomatal opening with induction of photosynthesis within the mesophyll is 

clearly critical to water use efficiency.  If stomata open more rapidly than photosynthetic induction 



within the mesophyll, then more water will be lost than necessary, too slow and carbon assimilation will 

be forgone.  Crops, and cultivars within crops, clearly differ in the extent to which stomatal opening 

limits photosynthetic induction (2; 3; 40; 186).  While speed of stomatal closure on a sun-shade 

transition is unlikely to affect the typically order of magnitude faster drop in CO2 assimilation, the speed 

with which stomatal closure adjusts, will have a strong effect on field canopy water use efficiency. 

 

Changes in stomatal aperture are brought about by modifications in guard cell turgor, driven by 

sophisticated osmoregulatory pathways that move solutes and ions in and out of the cells.  This alters 

solute and water potential facilitating the movement of water into the guard cells causing them to swell 

and thus overcome the pressure of the surrounding epidermal cells (75).  Mechanically, the asymmetric 

thickening of the walls, causes the guard cells to move away from the stoma as their turgor pressure 

increases and close as it decreases.  The capacity of stomata to allow CO2 and H2O into and out of the 

leaf is expressed as stomatal conductance (gs) and is influenced by both anatomical features as well 

biochemical processes (147; 180).  It is well-established that there is a close relationship between 

photosynthesis and gs (81; 291), however in a dynamic environment such as the field, stomatal 

responses to changing conditions can be an order of magnitude slower than photosynthetic responses 

(146; 212; 274) which can limit carbon assimilation (40; 186) and erode intrinsic water use efficiency 

(iWUE).  iWUE is a measure of CO2 gained relative to water loss through stomata, Wi = A/gs at the leaf 

level (52; 74; 97; 151; 152; 186).  Therefore, increasing the rapidity of stomatal and gs responses and/or 

optimizing the co-ordination between gs and mesophyll demands for CO2 in light fluctuations is 

increasingly gaining attention as a currently unexploited avenue to increase photosynthesis, water use 

efficiency and crop productivity.  

 

What influences the speed of stomatal responses? 

The rapidity of stomatal responses is governed by a combination of anatomical, structural and 

biochemical components of the guard cells. Stomatal movements are caused by changes in guard cell 

turgor driven by the uptake and release of solutes and ions, typically K+, Malate and sucrose, which alter 

osmotic potential and water influx (23). The number and activity of transporters and/or ion channels 

determine the capacity for solute transport and therefore influences the rapidity of stomatal 

movements (24; 25; 39; 85; 145; 222; 270). Anatomical or morphological features, including stomatal 

density, the presence or absence of subsidiary cells and the size and geometry of guard cells also impact 

stomata responses (22; 89; 147). Stomatal density (SD) is the number of stomata, per unit leaf surface 



area.  Smaller stomata, frequently associated with higher densities, often exhibit faster responses than 

larger stomata (66; 74; 122) although this may depend on how closely species are related (57; 186).  The 

relationship between size and speed is based on a greater surface area to volume ratio in smaller 

stomata, which lowers the solute flux requirement for movement (66; 74; 229). This also allows the 

faster movement of the dumbbell shaped guard cells of grasses compared to the kidney shaped ones of 

dicotyledonous plants (32; 82; 97; 119; 186).  Smaller guard cells in C4 crops may bring a double benefit.  

Unlike C3 crops, leaves of C4 crops are saturated by the elevated [CO2] of today’s atmosphere, such that 

gs can be reduced to lower water loss without affecting CO2 uptake (165; 217).  Here engineered or bred 

smaller stomata could serve to increase efficiency of water use in both steady-state and non-steady-

state conditions (153).  The faster speed of movement in the dumbbell shaped guard cells of grasses is 

further enhanced by a local reservoir of solutes and ions, provided by adjacent subsidiary cells, which 

can move rapidly between the two cell types.  This gives a rapid alteration of turgor pressure in the 

guard cells while simultaneously removing the ‘back pressure’ from the subsidiary cells (74; 226).    

Structural components, including actin filaments (100; 104; 126)(Eisinger et al., 2012) and cell 

wall properties (35; 296) which influence the shape of the guard cells, also affect the rapidity and 

magnitude of change.  Carter et al. (35) advocated that stomatal cell well thickening at the poles rather 

than the traditional idea of radial thickening is  critical to facilitate rapid movements, whilst actin 

filaments within guard cells, which control fusion of smaller vacuoles into a large vacuole (as found in 

some species and required for osmoregulation), also influence the speed of stomatal responses and 

overall gs (107; 112).    

 

Can the speed of stomatal responses be manipulated?  

Several laboratories have produced plants with differences in stomatal density that have 

translated into different gs responses to changing conditions(e.g. (22; 49; 93; 267)), however these 

studies have often only considered “steady state” gs values and only a handful have investigated the 

impact on stomatal kinetics, and particularly fluctuating  light.  Manipulating two members of Epidermal 

Patterning Family (over expressing EPF9 and knocking out EPF1) in rice, Sakoda et al. (238) produced 

plants with greater stomatal densities and reported faster stomatal responses to changes in light 

intensity in both mutants. Interestingly stomatal size was only reduced in the EPF9 OE plants, supporting 

the theory that smaller stomata are not a pre-requisite for fast responses (147; 186; 307).  Alterations in 

SD can also influence stomatal patterning and clustering which can be detrimental to stomatal function 

and rapidity (51; 154; 210) through decreased capacity for solute fluxes (Papanatsiou et al., 2016), 



higher metabolic cost (145; 210; 229; 280) and water uptake requirements (92).  On the other hand, 

Vialet-Chabrand et al. (279) showed that the stomatal patterning mutant wer1-1 (in which the surface 

location of the guard cells relative to the subsidiary is altered), open and close much faster than WT 

which was attributed to the ectopic nature of the guard cells relative to epidermal cells, removing back 

pressure. All of these studies suggest the existence of an optimal stomatal density and size to facilitate 

rapid stomatal movement. However, Bussis et al. (31) demonstrated that changes in aperture 

counterbalanced alterations in stomatal density, which resulted in similar steady state gs. A reasonable 

assumption would be that such compensatory mechanisms also holds true for the speed of response 

and it may therefore be more appropriate to focus on functional/metabolic targets. For example, 

Kimura et al., (127) using Arabidopsis over-expressed PATROL1, which encodes a factor that regulates 

the localization of the guard cell plasma membrane H+-ATPase (90).  This is essential for ion fluxes and 

its over-expression resulted in faster stomatal responses to changes in light intensity.  

Several studies have shown that photorespiratory processes are involved in modifying gs (56; 70; 

272), suggesting that manipulation of the photorespiratory pathway  could be useful to explore stomatal 

kinetics and co-ordination between gs and A.  Direct manipulation to guard cell specific metabolism may 

increase the speed of gs, as demonstrated by modified starch breakdown in guard cells, which has been 

shown to be essential for rapid blue light opening early in the day (72).  Blue light is 20x more effective 

inducing opening compared to red light driven stomatal behavior and recent work has demonstrated 

that it is not only faster, but of  greater magnitude (252; 278).  However, this may not be consistent 

across all species (50; 278).  These findings suggest that strengthening the blue light response could also 

be a route to increasing the speed of stomatal opening, although the biological components of these 

pathways and species specific regulatory mechanisms need first to be understood before these 

approaches can be exploited.  

 Manipulation of solute transfer and ion channels within the stomatal complex 

represents another possible target to improve the speed of stomatal responses. For example, knock out 

mutants of SLAC1 which encodes a stomatal anion channel involved in stomatal closure exhibited higher 

rates of stomatal opening in rice (298).  A further example includes monosccharide/proton symporters 

(STP1 and 4) in the plasma membrane in Arabidopsis which are required for glucose imports from 

mesophyll into the guard cells and are linked to rapid stomatal movements (71). However, the 

correlation between the speed of stomatal response and the speed of solute flux and accumulation may 

not be direct (147), with a systems modelling approach (37; 101; 277; 282; 287) demonstrating that 

manipulating a single channel or transporter might not be sufficient to achieve the desired changes in 



rapidity.  This model provides a useful tool for identifying multiple and/or novel targets for manipulation 

as well as providing a platform for testing potential synthetic biology strategies.   For example, guard cell 

expression of a synthetic light-gated K+ channel (BLINK1) resulted in the production of plants with faster 

stomatal opening and in turn faster photosynthetic induction (210).   

In subsidiary cells, K+ channels in the plasma membrane inversely polarized with guard cells 

facilitate rapid K+ fluxes during stomatal movements (170), and reciprocal concentration gradients of 

ABA between the two cell types appear also involved in the more rapid stomatal responses of grasses to 

changes in light intensity (204; 227).  Subsidiary cells also play an important role in signaling, for 

example stomatal closure in maize leaves through drought induced H2O2 accumulation (301), and 

feedback regulation of stomatal behavior via a glucose transporter (cst1) (282). These studies suggest 

that alterations to fluxes between guard and subsidiary cells or signaling pathways represent another 

unexploited target to increase the speed of gs response in induction of photosynthesis (29; 147; 204; 

226).   

In summary, there are several routes for potential manipulation of stomatal behavior in terms of 

both the magnitude and rapidity of response to increase photosynthetic induction.  These involve 

adjustments to guard cell or stomatal anatomy, signaling, biochemistry and osmoregulatory pathways.  

However, there must be close account of underlying mesophyll photosynthetic rates and capacity.  This 

is because the mesophyll itself could provide a signal and trigger for stomatal responses (150), along 

with guard cell photosynthesis (149).  The close co-ordination between mesophyll demands for CO2 and 

stomatal behavior is critical for both carbon capture and water use efficiency.  Improving the rapidity of 

stomatal responses to changing stimuli is a novel and mostly unexploited target for improving crop 

production and resource use, however, further research is needed on which targets or combination of 

targets are required to fully exploit this for future breeding programs. 

5. CONCLUSION 

While early work described induction of photosynthesis on dark/shade-sun transitions, and 

provided means to analyze some of the limitations, only recently has the importance of non-steady-

state responses for improving crop photosynthesis and resource use efficiency been recognized.  

Manipulations, some resulting in successful crop field demonstrations, are now proving the value of this 

recognition.  The previous sections have highlighted the many opportunities to be exploited.  Most so 

far have involved transgenic up-regulation of enzymes and other proteins.  With rapid improvements in 

in silico engineering of proteins through atomistic simulation(7), coupled with accelerating editing 

capabilities(13; 199; 288), improving the kinetics and properties of native proteins may replace this.  



Investigation of natural variation may deliver two benefits.  First, by application of genome wide 

association study (GWAS) identify genetic elements affecting increased speeds of adjustment of 

photosynthesis to sun-shade and shade-sun transitions.  Secondly, by identifying such elements allow 

genomic selection of improved germplasm. 

To further advance improvements in efficiency under non-steady state light conditions, 

important knowledge gaps need to be filled.  The slow phases on NPQ relaxation account for a long-tail 

on the recovery of CO2 assimilation to its steady-state level in the shade.  Determining the key 

processes, particularly in crops, will be important to further improvements.  Mesophyll conductance 

(gm), appears important in partially limiting the speed of induction of CO2 assimilation(237), but from a 

very limited number of studies, and these focused on Arabidopsis.  Its importance in crops and degree of 

variation within crop germplasm needs to be established.  At the same time a better fundamental 

understanding of the dominant influence, within the mesophyll, of gm is needed if it is to manipulated in 

crops.  Rca clearly plays a key role in induction and considerable progress has been made in 

understanding its isoforms and how these might be manipulated.  Its efficacy clearly varies from species 

to species and even within crops.  Understanding the basis of efficacy differences will again inform 

editing.  There is understanding of what makes faster stomata, and at least of the genes that affects 

stomatal size and number, which now clearly need to be tested in crops. 

Finally, and to revert to the point made in our first paragraph as to why photosynthesis as a 

means to improve crop production fell into the shadows, improved efficiency of carbon gain is only of 

benefit if the crop can use it to make more of the harvested product(254).  Evidence that modern 

cultivars would benefit strongly from increased supply of photosynthate comes from season-long open-

air [CO2] enrichment experiments, in so-called Free-Air CO2 Enrichment (FACE) facilities.  Because C3 

photosynthesis is CO2-limited, elevation of [CO2] increases net photosynthesis (163).   In both rice and 

soybean a general trend was found, in that older varieties did indeed appear sink-limited with little yield 

response, while the most recent and productive varieties showed strong yield responses with ca. 20% 

increases in grain per unit ground area (reviewed: (5)).  This provides strong evidence, that breeders 

have, or are able, to develop yield potential to utilize increased photosynthate suppy.  Yield potential, is 

the maximum yield a crop can produce at a location when in the absence of biotic and abiotic stresses, 

perhaps a rare situation.  However, the experience of the Green Revolution and beyond is that raising 

genetic yield potential on average raises achieved yields not only in years with the best growing 

conditions, but also in the worst years (e.g. the best years, but also in the worst achieved, but also the 



minimum yields (e.g. (133)).  In summary, addressing efficiency of crop photosynthesis in conditions of 

fluctuating light has much, and overlooked, promise in providing achieved improved crop yields. 

 

  



Tables 

 
Table 1. Analyses of crop plant induction using dynamic A/ci approaches with parameters obtained. 
Ref. Species Accessions 

per species  
Pre-shade 
treatment 

A/ci parameters 
reported 

(258) Glycine max 2 Dark 
 

Vc,max, Jmax, ci, ls 

(257) Glycine max 3 Dark Vc,max 
(268) Triticum aestivum 1 Fully induced Vc,max, J, Ls, ci,trans 
(240) Triticum aestivum 10 Fully induced Vc,max, J, ci,trans 
(269) Brassica napus, B. oleracea, B. rapa 1 Fully induced Vc,max, ci,trans 
(3) Oryza sativa 3 Dark Vc,max, LSN 
(40) Manihot esculenta 3 Dark Vc,max, ls 
Vc,max, maximum Rubisco carboxylation rate; Jmax, maximum rate of electron transport; ci, intercellular 
[CO2]; J, rate of electron transport; ls, stomatal limitation by differential method; Ls, stomatal 
limitation following(68); LSN partitioning of stomatal and non-stomatal limitation following (115); 
ci,trans, ci at which limitation transitions away from Vc,max 

 

  



Table 2. Studies and methodologies used to evaluate the contributions of biochemical and stomatal 
limitations during induction in crops 
Ref. Crop species PPFD sequence (PPFD 

units: μmol m−2 s−1) 
Analytical method 

(206) Hordeum 
vulgare 

25 (>120 min); 800 Assumes linear A/ci response in calculating 
photosynthetic CO2 use efficiency: (A + Rd)/(ci − 
Γ*) 

(173) Coffea arabica dark (360 min); 20 (5 
min); 1500 

Assumes linear A/ci response to correct A to ci 
observed at full induction using A* = (A + Rd)(ci 
− Γ*)/(ci − Γ*) − Rd. Diffusional limitation (A* − 
A), and biochemical limitation (Amax – A*) are 
normalised to steady-state gross assimilation 

(115) Solanum 
lycopersicum 

dark (60-120 min); 
1000 

Non-linear steady-state A/ci response used to 
correct A to atmospheric [CO2] (diffusional 
limitation) or final steady-state ci (biochemical 
limitation), normalised to the change in A 
during induction (Af − Ai). 

(281) Helianthus 
anuus 

dark (not specified, 
likely various); 1000 

Follows Ögren & Sundin 

(41) 
See 
also 
(42) 
 
 

Gossypium 
hirsutum; 
Spinacia 
oleracea; Vicia 
faba; Vitis 
vinifera 

dark (overnight); 25 
(until steady-state); 
1000 

Differential method, partitioning limitation due 
to Vc,max (one-point estimate assuming infinite 
gm and Rubisco limited A) and gsc  

(4) Oryza sativa dark (30 min); 50 (9 
min); 1500 

Visual comparison of diffusion-corrected A* = 
A(300/ci): simplified method assuming linear 
A/ci response through origin 

 



 

Table 3. Gas exchange studies that have evaluated the kinetics of increasing Rubisco activity during 
induction in food crops.  
Ref. Crop species Access- 

ions per 
species 

PPFD sequence (PPFD 
units: μmol m−2 s−1) 

Analytical method (if 
other than (294) 

Mean τ (s) 
(range 
given 
where 
multiple 
accessions/ 
conditions) 

(294) Spinacia 
oleracea 

1 690 (60 min) dark (10 – 
60 min); 690 

- 300 

(108) Spinacia 
oleracea 

1 690 (60 min) dark-135 (45 
min); 690 

 104-228 

(295) Spinacia 
oleracea 

1 160 (45 min); various - 103-298 

(191) Spinacia 
oleracea 

1 Dark or 180 (> 60 min); 
1200 [various ci] 

- 94-425 

(293) Spinacia 
oleracea 

1 1200 (60 min); various 
(30 min); 1200 

- 90-153 

(59) Ocimum 
basilicum 

1 1180 (steady-state); 180 
(0-40); 1180 [ca 25 Pa] 

- 246 (199-
338) 

(86) Nicotiana 
tabacum 

1 
(+antisense 
Rca) 

110 (30 min); 1200 - 118 (857) 

(87) Nicotiana 
tabacum 

1 1200 (60 min); 105 (30 
min); 1200 

Equation of (294) fit 
using non-linear least 
squares 

119 

(106) Oryza sativa 1 
(+transgenic 
RbcS × 2) 

1800 (30 min); 60 (45 
min); 1800 [noting 
subambient inlet ca of 25 
Pa) 

- 148 (161, 
172) 

(298) Oryza sativa 1 
(+transgenic: 
OE Rca; 
antisense 
Rca) 

1500 (30 min); 60 (45 
min); 1500 

- 135-257 
(94-174; 
194-395) 

(77) Oryza sativa 1 
(+transgenic: 
OE Rca × 2) 

1800 (30 min); 60 (45 
min); 1800 [noting 
subambient inlet ca of 25 
Pa) 

- 152 (130, 
132) 

(258) Glycine max 7 dark (overnight); 50 
(steady-state); 2000  

Diffusion-corrected A* 
= A(300/ci): simplified 
method assuming 
linear A/ci response 
through origin 

149-307 



(118) Solanum 
lycopersicum 

1 dark-200 (steady-state); 
1000 [ca varied: 20 – 80 
Pa] 

Diffusion corrected A* 
based on A/cc 
response 

76-256 

(268) Triticum 
aestivum 

1 1200 (steady state); 50 (); 
1200 

- 180-240 

(307) Oryza sativa 8 10 (assumed steady-
state); 1200 

- 132-1369 
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