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Abstract—Empirical studies have observed that the spec-
trum usage in practice follows regular patterns. Machine
learning (ML)-based spectrum prediction techniques can
thus be used jointly with cooperative sensing in cognitive
radio networks (CRNs). In this paper, we propose a novel
cluster-based sensing-after-prediction scheme and aim to
reduce the total energy consumption of a CRN. An integer
programming problem is formulated that minimizes the
cluster size and optimizes the decision threshold, while
guaranteeing the system accuracy requirement. To solve
this challenging optimization problem, the relaxation tech-
nique is used which transforms the optimization problem
into a tractable problem. The solution to the relaxed
problem serves as a foundation for the solution to the
original integer programming. Finally, a low-complexity
search algorithm is proposed which achieves the global
optimum, as it obtains the same performance with exhaus-
tive search. Simulation results demonstrate that the total
energy consumption of CRN is greatly reduced by applying
our clustered sensing-after-prediction scheme.

Index Terms—Spectrum sensing, cognitive radio, energy
consumption, spectrum prediction, decision threshold.

I. INTRODUCTION

To alleviate the severe spectrum scarcity issue in
wireless communications, different technologies have
been proposed such as cognitive radio (CR), millimeter-
wave (mmWave) communications, and non-orthogonal
multiple access [1], [2]. Particular attention has been
drawn to cognitive radio networks (CRNs) since they
can greatly improve the spectrum utilization by allowing
secondary users (SUs) to share the licensed spectrum
with primary users (PUs) [3]–[5]. Cognitive radios sense
the surrounding radio frequency (RF) environment and
make decisions as an intelligent wireless communication
system [6]–[10]. More specifically, to improve the sens-
ing accuracy, cooperative sensing (CS) can be utilized
that requires multiple SUs to sense together and fuses
all the sensing results at a fusion center (FC). Studies
have shown that the sensing performance can be greatly
improved with an increase in the number of cooperative
partners [11]. However, this will result in an increased
energy consumption in CRNs.

Energy consumption is another key issue of CRNs be-
cause SUs are normally battery-powered mobile devices.

When they conduct CS, a large amount of energy can be
consumed. As a result, energy efficiency and energy con-
sumption during spectrum sensing become two important
topics in energy-constrained CRNs. To effectively reduce
energy consumption while maintaining system reliability,
a joint and proactive approach that fully exploits sensing
and prediction techniques is now considered to be a
promising method [12], [13]. Empirical studies have
shown that in real-life spectrum usage, certain patterns
exist [14]. This enables us to use machine learning (ML)-
based prediction methods for CRNs, leading to a reduced
total energy consumption without sacrificing the system
accuracy. It has been shown that the accuracy of spec-
trum prediction is normally close to and sometimes even
exceeds the accuracy of spectrum sensing, depending on
the randomness of system environment, the complexity
and cost of ML algorithms [8], [15].

Many studies have focused on the joint prediction-
sensing scheme for CRNs and analyzed the performance
from different perspectives. A joint prediction-sensing
model was introduced in [12] that utilizes a parallel
fusion-based cooperative spectrum prediction scheme
to minimize errors and increase efficiency for energy-
constrained CRNs. The accuracy was discussed in [12]
using simulation results, while the exact analytical ex-
pressions were not given. A spectrum sharing model
based on spectrum prediction and sensing was proposed
in [13]. The authors investigated a joint optimization
design of transmit beamforming at the secondary base
station (BS) with energy and sensing time constraints,
while the probability models in [13] were from the
perspective of correlation between single-user and co-
operative results. The above-mentioned papers mainly
adopt the joint prediction-sensing scheme to enhance
users’ performance. They did not minimize the number
of users participating in CS or study the tradeoff between
system performance and cluster size. We believe that
while an acceptable accuracy performance is guaranteed,
the system scale and the total energy consumption can
be greatly reduced by finding the minimum number of
required users and allowing the system has other users



performing different functions.
In this paper, we propose a novel cluster-based

sensing-after-prediction scheme. It adopts an adjustable
decision threshold, which decides when the scheme shall
not accept the prediction result and opt for sensing
instead. We aim to reduce the total energy consumption
of a CRN by minimizing the cluster size and finding
the optimal decision threshold for a given accuracy
requirement. The overall contributions of this paper are
summarized as follows:

• We first derive the analytical expressions for system
accuracy and energy consumption for the proposed
sensing-after-prediction scheme, where the accu-
racy is validated through Monte Carlo simulations.

• An integer programming problem that minimizes
the cluster size for a given system accuracy re-
quirement is formulated. To solve it effectively,
we first analyze a relaxed problem that maximizes
the system accuracy for a given cluster size. The
optimal decision threshold is derived analytically.

• A low-complexity search algorithm is finally pro-
posed to solve the original integer programming.
The minimum cluster size and its optimal decision
threshold are obtained. Numerical results indicate
that the required number of users and energy con-
sumption are greatly reduced without violating the
accuracy requirement.

II. SYSTEM MODEL

Consider a classic CRN that consists of one PU, N
SUs, and one FC. The system model is shown in Fig. 1.
Let us consider the primary channel has a regular usage
pattern and the accuracy of ML prediction is known. A
proportion of SUs are combined into a cluster to predict
PU channel states. This cluster is defined as a learning
cluster and consists of n SUs, where each SU in the
cluster performs spectrum prediction and reports their
results to FC. At the FC, the cooperative decision can
be provided based on the adaptive decision threshold and
the collected prediction results from SUs in the learning
cluster. Based on the cooperative prediction (CP) deci-
sion at the FC, the system will opt for CS for a more
assured result or decide to take an action straightaway.
PU and SUs are assumed to be synchronized by a time-
slotted system. In each slot, SUs access the channel in
time division multiple access (TDMA). Each time slot
(T) is divided into three parts, named as prediction stage,
reaction stage and transmission stage respectively. The
slot structure of the proposed system for each SU is
shown in Table I. The detailed explanations of sub-slots
in Table I are given below.

Fig. 1: System model.
TABLE I: Time and energy structure of one time slot.
Prediction Stage Reaction Stage Action Stage

eM
DM: 0 0 if channel busy
IM: eS eT if channel idle

←−tP−→ ←−tR−→ ←−tT−→

• tP: Prediction stage. Each SU in the cluster per-
forms spectrum prediction using ML techniques
and reports the prediction result to FC. The system
will obtain the CP decision at the FC and turn to
determinate (DM) or indeterminate (IM) state at the
end of this stage. If the system considers that the
prediction result is accurate, this stage will end with
a DM state. Otherwise it ends with an IM state [12].
Slot-wise energy spent during prediction stage for
each SU is represented by eM.

• tR: Reaction stage. All SUs do not perform spec-
trum sensing and remain silent if the system state
is DM. On the other hand, if the system state
is IM, spectrum sensing is performed at each SU
and the CS decision is obtained at FC based on
the sensing results. eS represents the energy spent
during spectrum sensing for each SU.

• tT: Transmission stage. Transmission is decided
based on the CP or CS decision obtained in the
first two stages. If the system believes that the PU
channel state is idle, the transmission will start with
an energy consumption eT.

In the prediction stage, after each SU in the learning
cluster performs spectrum prediction, a binary decision
Di is forwarded to the FC. Di being 0 represents that
the SU predicts that PU channel is idle, while Di equal
to 1 means that the SU i predicts that the PU channel is
busy. Prediction results of SUs in the cluster are fused
together according to the logic rule in (1) after all the
1-bit decisions, i.e., Di, 1 ≤ i ≤ n, are received at FC.

Y =

n∑
i=1

Di


≥ σ, DM
≤ n− σ, DM
otherwise. IM

(1)
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σ in (1) is defined as the decision threshold to distinguish
DM and IM states. This threshold indicates that if at least
σ SUs’ prediction results are the same, the system will
enter the DM state and take the CP result, which is what
the majority of SUs (at least σ SUs) agree on, as the final
decision. Here, it is required that σ ≥

⌈
n+1
2

⌉
because it

is natural to make sure at least half of the users make the
same prediction when entering DM state. If the required
decision accuracy is high, a larger threshold σ should be
set. If the system is in DM state, then all SUs will stay
silent and the transmission action is made based on the
CP decision. Otherwise, all n SUs start sensing and the
transmission action is made according to the CS result.

After performing independent spectrum sensing, each
SU reports its binary decision to the FC. There are two
key metrics to evaluate the performance of spectrum
sensing, namely the probability of detection (Pd) and the
probability of false alarm (Pf ) respectively. Pd indicates
the probability that the SU declares the primary channel
is occupied when the primary channel is indeed busy. Pf
indicates the probability that the SU declares the primary
channel is occupied when the primary channel is idle. At
the FC, all binary decisions are fused together according
to a fusion rule. A “q-out-of-m” voting rule is used for
CS decision in our system [16]. For example, the primary
channel is sensed to be busy if at least q sensing results
of m SUs declare the channel as occupied. Therefore,
the detection probability and the false alarm probability
of CS decision are respectively given by

Qd =

m∑
l=q

(
m

l

)
P ld (1− Pd)

m−l
, (2)

Qf =

m∑
l=q

(
m

l

)
P lf (1− Pf )

m−l
. (3)

III. PROBLEM FORMULATION AND OPTIMIZATION

In order to reduce the total energy consumption,
we formulate an optimization problem to minimize the
learning cluster size, while maintaining a required sys-
tem accuracy.

A. Problem Formulation

In this section, p is assumed to be the probability of
ML prediction being right for a single SU. The prediction
depends on the usage history of primary channel. The
probability that at least q prediction results of n SUs are
correct is given by

Pacc =

n∑
l=q

(
n

l

)
pl(1− p)n−l. (4)

Recall that the threshold σ indicates that if at least σ
prediction results are the same, the system will be in DM

Fig. 2: Decision tree diagram of the system.

state and accept the CP result. Because the CP result can
be either correct or wrong, the probability of entering
DM state can be calculated as the probability that at
least σ predictions are right and at least σ predictions
are wrong. Hence, the probability of entering DM state,
i.e., PDM, can be expressed in (5a). Assume that in DM
state, the probability of CP result being right is denoted
by Pa. Then, the accuracy of CP, i.e., QDM, is equal to
Pa

PDM
, yielding (5b). The probability of the system in IM

state is then given by PIM = 1− PDM.
The decision tree diagram of the system is shown in

Fig. 2. The parameters on the branches, i.e., PB, PI, PDM,
and PIM, indicate the probabilities of states, while QDM,
Qd and 1−Qf each represent corresponding state’s accu-
racy. PB and PI are the probabilities of PU in busy and
idle respectively, where PB +PI = 1. Let QS denote the
accuracy of CS, expressed as QS = PBQd+PI(1−Qf ).
According to Fig. 2, the system accuracy can be finally
obtained and expressed in (5c). Monte-Carlo simulations
will be provided to verify the accuracy of (5c) in Section
IV.

In order to obtain the total energy consumption, we as-
sume that there are L slots in total during one experiment
period. The expression of the total energy consumption
for each SU, in Joule, is given by

E = LeM + LPIMeS, (6)
where LeM and LPIMeS are consumed energy during
spectrum prediction and sensing, respectively. We define
that ES = LPIMeS. In comparison, for the traditional CS
scheme, the total energy consumption is ES1 = LeS.

Recall that our aim is to reduce energy consump-
tion by minimizing the cluster size. Given a minimum
accuracy requirement ε, the minimum learning cluster
size n and the optimal decision threshold σ need to be
obtained. It is assumed that the devices used for spectrum
sensing are equal to cluster size n, and the majority rule
(q =

⌈
n+1
2

⌉
) is used for CS. The system accuracy can

be expresses as a function of cluster size n and threshold
σ, i.e., Q(σ, n) in (5d). The optimization problem P1 can

3



PDM =

n∑
l=σ

[(
n

l

)
pl(1− p)n−l +

(
n

l

)
pn−l(1− p)l

]
, (5a)

QDM =

∑n
l=σ

(
n
l

)
pl(1− p)n−l∑n

l=σ

[(
n
l

)
pl(1− p)n−l +

(
n
l

)
pn−l(1− p)l

] , (5b)

Q(n, σ) = PDMQDM + PIM (PBQd + PI (1−Qf )) = PDMQDM + PIMQS (5c)

=

n∑
l=σ

(
n

l

)
pl(1− p)n−l +QS (1−

n∑
l=σ

(
n

l

)
pl(1− p)n−l −

n∑
l=σ

(
n

l

)
pn−l(1− p)l). (5d)

be formulated as
P1: min

σ
n (7a)

s.t. Q(σ, n) ≥ ε, (7b)⌈
n+ 1

2

⌉
≤ σ ≤ n, (7c)

1 ≤ n ≤ N, (7d)
n,N, σ ∈ Z. (7e)

B. Accuracy Analysis

The formulated optimization problem P1 is an integer
programming which is challenging to solve. In order to
solve it, let us first focus on the system accuracy Q(σ)
by considering that the cluster size n is a fixed value in
(5d). Then, we relax the integer variable σ by treating
it as a continuous variable. The optimal threshold σ∗

that maximizes the system accuracy for a certain n can
be obtained by taking the first derivative of Q(σ) with
respect to σ. Inspired by [3], we get that ∂Q(σ)

∂σ ≈ Q(σ+
1)−Q(σ), which yields

∂Q(σ)

∂σ
= (QS − 1)

(
n

σ

)
pσ(1− p)n−σ

+QS

(
n

σ

)
pn−σ(1− p)σ. (8)

The optimal threshold σ∗ is obtained when ∂Q(σ)
∂σ = 0.

Hence, the expression of σ∗ can be given in (9).

σ∗ =

{ ⌈
1
2 log p

1−p

QS
1−QS

(
p

1−p

)n⌉
when n > 1,

1 when n = 1.
(9)

Note that σ∗ should be in the range of n ≥ σ∗ ≥
⌈
n+1
2

⌉
in order to make (9) feasible. To satisfy the feasible
condition, we substitute (9) into the range of σ∗ which
results in a relationship between p and QS, given below.

α > QS > 0.5 when n is even and p > 0.5,

α < QS < 0.5 when n is even and p < 0.5,

α > QS > 1− p when n is odd and p > 0.5,

α < QS < 1− p when n is odd and p < 0.5.
(10)

where α = pn

(1−p)n+pn and Qs 6= p 6= 0.5. This indicates
that σ∗ that maximizes the system accuracy for a fixed
n is given in (9), while the condition (10) is satisfied. If
the parameters do not meet the limitations provided in
(10), the accuracy expression will become a monotonic
function and the maximum accuracy is obtained when
σm = n or σm =

⌈
n+1
2

⌉
. Here, σm is the threshold that

maximizes the system accuracy for a fixed n when (10)
is not satisfied.
C. Search Algorithm

The optimal threshold that maximizes the system
accuracy for a fixed cluster size n is now obtained. A
search algorithm can be then developed to solve the
original integer programming problem P1. Firstly, for
n = 1 : N , we first calculate the σ∗ by using (9) for
each cluster size n if the parameters meet the limitations
provided in (10). The first pair of (n, σ∗) that meets the
accuracy requirement Q(n, σ) ≥ ε can be found. The
minimum cluster size required and its optimal threshold
are therefore given by (n, σ∗). On the other hand, if
the parameters do not meet the limitations provided
in (10), the optimal threshold is σm and σm = n or
σm =

⌈
n+1
2

⌉
. The minimum cluster size required and its

optimal threshold are therefore given by (n, σm). If none
of such pair is found, we continue to search by using
n = n+1 until n = N . The Pseudo code of the proposed
search algorithm is given in Algorithm 1. Since the
loop from 1 to N stops when the algorithm finds the
optimal size n, the complexity is therefore O(n2). If
exhaustive search is used instead, the complexity will
be O(N3). The complexity of our proposed algorithm is
much lower than the exhaustive search.

IV. SIMULATION RESULTS

In this section, we simulate the cluster-based sensing-
after-prediction scheme in a cooperative manner to val-
idate the derived analytical expressions and the perfor-
mance of the proposed search algorithm. More specifi-
cally, we compare the outputs of exhaustive search and
the proposed search algorithm given in Section III-C
under the constraints of system accuracy. We assume that
eS = 100 mJ, eM = 10 mJ, p = 0.8, L = 1000, Pf = 0.1
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Algorithm 1 Proposed Search Algorithm
Input: N , ε, Pd, Pf , p, PB, PI.

Set initial value n = 1. Calculate QS.
1: while n ≤ N do
2: if p and QS do not satisfy (10) then
3: Q∗(n, σm) = max[Q(n, n), Q(n,

⌈
n+1
2

⌉
)];

4: if Q∗ ≥ ε then
5: (nopt, σopt) = (n, σm);
6: return
7: end if
8: else if p and QS meet the limitations in (10) then
9: Calculate σ∗ by using (9), Q∗ = Q(n, σ∗);

10: if Q∗ ≥ ε then
11: (nopt, σopt) = (n, σ∗);
12: return
13: end if
14: end if
15: n = n+ 1;
16: end while
Output: (nopt, σopt)

and Pd = 0.775 [16], unless otherwise indicated. For
Monte-Carlo simulations, the ML prediction accuracy is
0.85, i.e., p = 0.85, in order to clearly compare the data
under small fluctuation. Finally, we have that PB = 1/6
and PI = 5/6, inspired by [14] and [12]. It is also
assumed that the accuracy requirement ε = 0.995 and the
total number of SUs in the network is 50, i.e., N = 50.

Fig. 3 is plotted to validate the accuracy of the derived
analytical expression of system accuracy given in (5d).
It can be noted that the analytical results closely match
with Monte-Carlo simulations. Some differences in the
results are mainly due to the random numbers and
small cluster sizes in the prediction decision states. Fig.
4 shows the system accuracy versus the threshold σ
for different cluster sizes n. From this figure, it can
be observed that there exists an optimal threshold for
each given cluster size n where the system reaches its
maximum accuracy.

Fig. 5(a) and Fig. 5(b) illustrate the energy con-
sumption versus the cluster size n, for the proposed
scheme and benchmark schemes. The optimal threshold
is used for both figures. Fig. 5(a) shows that the average
energy consumption (ES) of SUs for the sensing-after-
prediction scheme becomes much smaller than the tra-
ditional CS scheme [3] at large cluster sizes. Recall that
ES = LPIMeS. When the cluster size becomes larger, the
probability of entering the IM state, i.e., PIM, is reduced.
Hence, there is a smaller probability that SUs will per-
form sensing, resulting in a smaller energy consumption.
Fig. 5(b) shows that the total energy consumption for the
sensing-after-prediction scheme also becomes smaller at
large cluster sizes. The total energy consumption greatly
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Fig. 3: System accuracy vs. threshold σ for the compar-
ison of analytical expressions and Monte Carlo results
where p = 0.85.
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Fig. 4: System accuracy vs. threshold σ for different
values of cluster size n where p = 0.8.

increases with cluster size for the CS system. On the
contrary, the proposed scheme has smaller energy con-
sumption and the consumed energy slowly increases with
cluster size since the energy consumption of spectrum
prediction is considered to be smaller than spectrum
sensing. Fig. 5(b) also plots a parallel sensing-prediction
scheme as a benchmark [12]. The parallel scheme is
assumed to have a fixed cluster size N and its PDM value
is same as our proposed scheme. Fig. 5(b) shows that our
proposed scheme has better energy performance than the
parallel sensing-prediction scheme.

To compare the performance of the proposed search
algorithm and exhaustive search, Table II is provided.
From a practical point of view, the prediction accuracy
p is set to be larger than 0.6. Table II shows that the
obtained optimal solutions of the proposed search algo-
rithm perfectly match with exhaustive search results for
different ML prediction accuracy values, which means
the proposed search algorithm finds the global optimum.
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(b) The comparison of total energy consumption between the
cluster-based sensing-after-prediction scheme, the traditional CS
scheme and the parallel sensing-prediction scheme

Fig. 5: Energy consumption vs. cluster size n.
TABLE II: (nopt, σopt) of the proposed algorithm and
exhaustive search.

ML accuracy p 0.6 0.7 0.8 0.9 1
Our algorithm (11,11) (11,9) (7,6) (5,4) (1,1)

Exhaustive Search (11,11) (11,9) (7,6) (5,4) (1,1)

V. CONCLUSIONS

We proposed a cluster-based sensing-after-prediction
CS scheme to reduce the total energy consumption. After
obtaining analytical expressions for the system accuracy
and energy consumption, an optimization problem that
minimizes cluster size for a given accuracy requirement
has been formulated. To solve it effectively, we derived
an analytical solution for the optimal decision threshold
that maximizes accuracy after problem relaxation. Then,
the original integer programming problem is solved by
a low-complexity search algorithm. Simulations show
that the energy consumption is largely reduced and the
outputs of the proposed search algorithm perfectly match

with exhaustive search results.
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