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Variational and diffusion quantum Monte Carlo methods are employed to investigate the zero-
temperature phase diagram of the three-dimensional homogeneous electron gas at very low density.
Fermi fluid and body-centered cubic Wigner crystal ground state energies are determined using
Slater-Jastrow-backflow and Slater-Jastrow many-body wave functions at different densities and
spin polarizations in finite simulation cells. Finite-size errors are removed using twist-averaged
boundary conditions and extrapolation of the energy per particle to the thermodynamic limit of
infinite system size. Unlike previous studies, our results show that the electron gas undergoes a
first-order quantum phase transition directly from a paramagnetic fluid to a body-centered cubic
crystal at density parameter rs = 86.6(7), with no region of stability for an itinerant ferromagnetic
fluid.

I. INTRODUCTION

The three-dimensional homogeneous electron gas (3D-
HEG) has been of fundamental interest in physics and
chemistry since the early days of quantum mechanics
because it is the simplest realistic bulk electronic sys-
tem capable of exhibiting strong correlation effects [1–6].
The electron-electron interaction strength, and therefore
the coupling between the electrons, is controlled by the
electron density. The 3D-HEG models the electrons in
bulk metals, but more importantly it has long provided
a testbed for the development of ideas, concepts, and
methods in condensed matter physics. For example, the
ground-state energy of the 3D-HEG provides the start-
ing point for most of the exchange-correlation function-
als that have enabled the widespread success of density
functional theory (DFT). In this work we focus on the
low-density energy and phase behavior of the 3D-HEG.

Theory plays a crucial role in the study of dilute 3D-
HEGs due to the lack of a material platform that sup-
ports a 3D electron system with both very high quality
(homogeneity) and low density. It is convenient to char-
acterize the density of the 3D-HEG by the dimensionless
parameter rs defined as the radius of the sphere that
contains one electron on average in units of the Bohr ra-
dius. In Hartree atomic units the 3D-HEG Hamiltonian
is Ĥ = −(1/2)

∑
i∇2

i +
∑
i>j 1/|ri − rj |, where ri is the

position of electron i and the electron-electron Coulomb
interaction is in practice evaluated using Ewald summa-
tion in a finite cell. The Coulomb interaction scales as
1/rs, while the kinetic energy operator scales as 1/r2s . At
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high to intermediate density (small rs) the kinetic energy
dominates, leading to the well-known Fermi fluid behav-
ior of the 3D-HEG at typical metallic densities. On the
other hand, the Coulomb energy dominates the kinetic
energy at low density (large rs), fundamentally altering
the physics of the 3D-HEG. In the low-density limit, the
ground-state wave function is an antisymmetrized prod-
uct of δ-functions centered on body-centered cubic (bcc)
lattice sites to minimize the Coulomb energy, as first pre-
dicted by Wigner [2]. Here, we calculate the critical den-
sity parameter rs at which there is a zero-temperature
phase transition from a Fermi fluid to a Wigner crystal.
Furthermore, Bloch suggested that the spin-unpolarized
(paramagnetic) Fermi fluid should make a spontaneous
transition to a spin polarized (ferromagnetic) Fermi fluid
at large rs before crystallization [1], because aligning the
electron spins causes the spatial wave function to be fully
antisymmetric, so that electrons do not approach each
other and the Coulomb energy is reduced.

Quantum Monte Carlo (QMC) methods have long been
used to provide accurate estimates of properties of 3D-
HEGs [7–14]. For example, ground state QMC energies
of the 3D-HEG [9] are employed in parameterizations of
the local-density approximation to the DFT exchange-
correlation functional [15]. However, calculating the
phase diagram is challenging because of the tiny energy
differences between competing phases. Previous QMC
simulations have indicated that decreasing the density
of a 3D-HEG causes a continuous transition from a spin-
unpolarized (paramagnetic) fluid to a fully spin-polarized
(ferromagnetic) fluid at a density of about rs = 50(2)
[11]. The phase transition to a Wigner crystal was pre-
dicted to take place at density parameter rs = 106(1)
[11, 16]. Because of the fundamental role of the 3D-
HEG in condensed matter physics, the determination of
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its zero-temperature phase diagram and ground-state en-
ergy is a problem that should be revisited from time-to-
time using state-of-the-art computational methods.

In this work we have used the continuum variational
and diffusion Monte Carlo (VMC [7, 17] and DMC [9])
methods in real space to obtain 3D-HEG ground state
energies at different densities and spin polarizations. In
the VMC method, parameters in a trial wave function
are optimized according to the variational principle, with
energy expectation values calculated by Monte Carlo in-
tegration in the 3N -dimensional space of electron posi-
tion vectors. In the DMC method, the imaginary-time
Schrödinger equation is used to evolve a statistical ensem-
ble of electronic configurations towards the ground state.
Fermionic antisymmetry is maintained by the fixed-phase
approximation, in which the complex phase of the wave
function is constrained to equal that of an approximate
wave function optimized within VMC. For real wave
functions (which occur when the system has time-reversal
symmetry, e.g., under pure periodic boundary condi-
tions), the fixed-phase approximation reduces to con-
straining the nodal surface of the wave function. Hence-
forth we refer to “fixed nodes” rather than “fixed phases”
to avoid confusion with thermodynamic “phases”; our ac-
tual fluid calculations used complex wave functions and
the fixed-phase approximation, while our crystal calcu-
lations used real wave functions and the fixed-node ap-
proximation.

Fixed-node DMC finds the variational lowest-energy
state with the same nodal surface as the trial wave func-
tion. Thus the topology of the trial wave function’s nodal
surface selects the quantum state under study. The DMC
energy with an antisymmetric trial wave function is an
upper bound on the fermionic ground-state energy; fur-
thermore, the error in the DMC energy of any quantum
state approximated by the trial wave function is second
order in the error in the trial nodal surface.

In a finite cell the eigenfunctions of the 3D-HEG
Hamiltonian must all be homogeneous (i.e., must sat-
isfy the many-body Bloch theorems [18, 19] with an in-
finitesimal “primitive cell”) and hence eigenvalue cross-
ings as a function of the single parameter rs are avoided
by the von Neumann-Wigner theorem. The true ground
state energy per electron E(rs) of the 3D-HEG in a fi-
nite periodic cell of a given shape, electron number N ,
and spin-polarization ζ = (N↑ − N↓)/N is therefore a
smooth function of rs. The ground-state static structure
factor S(G) = 〈ρ̂(−G)ρ̂(G)〉 − 〈ρ̂(−G)〉〈ρ̂(G)〉, where
ρ̂(G) =

∑
i exp(iG · r̂i), describes the Fourier compo-

nents of the pair density and therefore shows whether
the 3D-HEG is fluid-like or crystal-like; this too is a
smooth function of rs in a given finite cell. In fact there
is a different E(rs) curve for each system size N , spin
polarization, cell shape, and choice of twisted bound-
ary conditions. For example a bcc simulation cell with
N a cubic number strongly favors crystalline behavior.
The fluid energy per particle fluctuates quasirandomly
with system size N , cell shape, and twisted boundary

conditions due to momentum quantization effects. For
a sufficiently large periodic cell of a given shape, there
must be a narrowly avoided crossing of energy levels as
a function of rs near the crystallization density, with
S(Gprim) changing significantly near the avoided cross-
ing, where Gprim is a primitive-cell reciprocal lattice
point of the bcc Wigner crystal, resulting in a smooth
crossover from Fermi fluid to “floating” [20, 21] crys-
tal behavior. For the infinite 3D-HEG, however, the
center-of-mass kinetic energy per electron vanishes and
hence broken-translational-symmetry crystal wave func-
tions are degenerate with floating crystal wave functions.
The avoided crossing of energy levels therefore becomes
a true crossing of energy levels with different symmetry.
Furthermore, E(rs) ceases to depend on the simulation
cell shape and choice of twisted boundary conditions. At
rs → 0, the interaction potential is negligible and we
have a homogeneous ground-state fluid wave function.
At rs →∞, the kinetic energy is negligible and we have
a bcc crystal. The symmetry of the ground state of the
infinite 3D-HEG must therefore change at some finite
rs, i.e., there is a zero-temperature phase transition [2].
The charge density ρ(Gprim) = 〈ρ̂(Gprim)〉 is an appro-
priate order parameter for the fluid-to-crystal transition,
being zero in the fluid phase and nonzero in the crys-
tal phase. The crystallization transition is expected to
be first order, corresponding to a crossing of crystal and
fluid energy levels as functions of rs with the order pa-
rameter being nonzero at the crossing point in the crystal
phase. The following numerical results provide some evi-
dence confirming that the Wigner crystal charge density
is nonzero at the crystallization density.

II. CALCULATING THE
ZERO-TEMPERATURE PHASE DIAGRAM

A. QMC methodology

In QMC studies of the phase diagram of the 3D-HEG,
we look for a first-order phase transition by calculating
the DMC energy as a function of density parameter rs
for trial wave functions that model the ground-state fluid
and the ground-state crystal. For the fluid phases we use
Slater determinants of plane-wave orbitals, multiplied by
Jastrow correlation factors that do not alter the nodal
surface [7–9]. We evaluate the orbitals at quasiparticle
coordinates related to the actual electron coordinates by
continuous backflow (BF) transformations [22–25], allow-
ing variational optimization of the nodal surface without
changing its topology. The nodal topology of the fluid
trial wave function is therefore the same as that of a
Slater determinant of plane waves, i.e., the wave function
of a free electron gas. This model is not exact: as directly
revealed by full configuration interaction QMC calcula-
tions, the exact ground-state wave function of the 3D-
HEG is in fact a linear combination of many ground- and
excited-state Slater determinants of plane waves [13, 26].
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Nevertheless, the single-determinant Slater-Jastrow-BF
(SJB) model of the fluid phase is reasonably accurate
because, by construction, it always leads to a signifi-
cantly lower variational energy than the Hartree-Fock
wave function (a single determinant of plane waves), and
Hartree-Fock theory itself becomes arbitrarily accurate
at high density (rs → 0), where it provides the first two
terms in the high-energy expansion of the 3D-HEG en-
ergy [27]. Furthermore, Landau’s Fermi liquid theory [4]
requires that low-lying excited states of the Fermi fluid
are adiabatically connected to the corresponding excited
states of a free electron gas, implying that the relevant
parts of the nodal surface of the Fermi fluid must be qual-
itatively the same as that of a single determinant of plane
waves. The release-node method [9], in which walkers are
equilibrated in fixed-node DMC and then briefly allowed
to cross nodes and change the sign of their weights, is able
to move nodes but is unlikely to be able to change the
nodal topology; we expect this approach to give similar
results to the fixed-node SJB-DMC method.

Our model of the Wigner crystal is a Slater determi-
nant of single-Gaussian orbitals centered on bcc lattice
sites and made periodic by summing over images, multi-
plied by a Jastrow correlation factor. It therefore explic-
itly breaks translational symmetry, leading to an O(N−1)
finite-size (FS) error due to the center-of-mass kinetic en-
ergy [28]. The Gaussian exponent was determined using
a formula that minimizes the fixed-node DMC energy in
a large 216-electron cell [16, 28]. The Slater determinant
of Gaussian orbitals describes the ground state of an Ein-
stein model of a vibrating electron lattice. In principle
a better model of the ground state of a vibrating elec-
tron lattice would be provided by an antisymmetrized
product of Gaussian functions of quasiharmonic normal
coordinates [29, 30]. However, our Jastrow factor and BF
function allow an approximate description of this quasi-
harmonic behavior, with additional flexibility.

Our Jastrow factor and BF functions contained poly-
nomial and plane-wave expansions in electron-electron
separation [25, 31]. For the Wigner crystal the Jastrow
factor also contained a plane-wave expansion in electron
position. The wave functions were optimized by variance
minimization [32, 33] followed by energy minimization
[34]. The casino package was used for all our QMC
calculations [35].

Monte Carlo-sampled canonical twist-averaged bound-
ary conditions (TABC) were used to reduce quasirandom
single-particle FS errors in Fermi fluid energies due to
momentum quantization effects [36, 37]. Twist averag-
ing is unnecessary for Wigner crystals, which have local-
ized orbitals and do not have Fermi surfaces. Systematic
FS errors due to the use of the Ewald interaction rather
than 1/r to evaluate the interaction between each elec-
tron and its exchange-correlation hole and the neglect of
long-range two-body correlations were removed by fitting
E(N) = E(∞) + b/N to the twist-averaged DMC energy
data at different system sizes [38]. This also removed
the FS bias in Wigner crystal energies due to the center-

of-mass kinetic energy. We examine the performance of
analytic expressions [38, 39].

We studied the fluid phase at rs = 30, 40, 50, 60,
70, 80, and 100. For each density, QMC calculations
were performed for simulation cells with 130 ≤ N ≤ 274.
The energies were calculated for spin polarizations ζ = 0,
0.25, 0.5, 0.75, and 1. Antiferromagnetic and ferromag-
netic bcc crystalline phases were investigated at rs = 80,
90, 100, and 125 for simulation cells with N = 64, 216,
and 512 electrons. Our DMC energies were extrapolated
linearly or quadratically to zero time step, with the tar-
get walker population being varied in inverse proportion
to the time step. The energies and variances calculated
using Slater-Jastrow (SJ) and SJB wave functions for dif-
ferent system sizes are reported in the Supplemental Ma-
terial [28]. The computational and technical details are
discussed in the following sections.

B. Fluid phase wave function

For the fluid phase of the three-dimensional homoge-
neous electron gas (3D-HEG) we used a Slater-Jastrow-
backflow (SJB) trial spatial wave function Ψ(R) =
eJ(R)S(X(R)), where R = (r1, . . . , rN ) is the 3N -
dimensional vector of electron coordinates. The anti-
symmetric Slater part S is a product of determinants
of single-particle orbitals for spin-up and spin-down elec-
trons. The single-particle orbitals in S are of the free-
electron form ψk(r) = exp(ik · r), where wavevector k is
a reciprocal lattice vector of the simulation cell offset by
twist vector ks, where ks lies in the supercell Brillouin
zone. The Jastrow exponent J , which is symmetric under
electron exchange, takes the form

J(R) =

N∑
i<j

u(rij) +

N∑
i<j

p(rij), (1)

where u is a smoothly truncated, isotropic polynomial
function of minimum-image electron-electron distance
rij , and p is a plane-wave expansion in electron-electron
separation rij [31]. The u term is of form

u(r) = (r − Lu)
C

Θ(Lu − r)

×

(
α0 +

[
Γ

(−Lu)
C

+
α0C

Lu

]
r +

Nu∑
l=2

αlr
l

)
,(2)

where the cutoff length Lu is less than or equal to the
radius of the largest sphere that can be inscribed in the
Wigner-Seitz cell of the simulation cell, C = 3 specifies
how smooth the function is at the cutoff length, Θ is the
Heaviside step function, and {αl} are optimizable param-
eters, which differ for parallel- and antiparallel-spin elec-
trons. To satisfy the Kato cusp conditions [40], Γ = 1/2
for opposite-spin electrons and Γ = 1/4 for same-spin
electrons. We chose Nu = 8. The p term has the sym-
metry of the simulation-cell Bravais lattice and allows a
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description of correlation in the “corners” of the simula-
tion cell. Its form is

p(r) =
∑
A

aA
∑

G∈A+

cos(G · r), (3)

where A represents a star of symmetry-equivalent,
nonzero, simulation-cell reciprocal-lattice vectors G, and
A+ is a subset of A that consists of one out of each ±G
pair. The {aA} are optimizable parameters. We used 46
stars of G vectors in p.

Including a backflow transformation in the trial wave
function, the Slater part of the wave function S is evalu-
ated at transformed “quasiparticle” coordinates X(R) =
R + ξ(R), where

ξi(R) =

N∑
j 6=i

η(rij)rij +

N∑
j 6=i

π(rij) (4)

is the backflow displacement of electron i. η is a cusp-
less, smoothly truncated, isotropic polynomial function
of minimum-image electron-electron distance rij . The
polynomial coefficients are optimizable parameters, and
are different for parallel- and antiparallel-spin electrons
[25]. The form of η(r) is mathematically equivalent to
that of the Jastrow u(r) term [Eq. (2), with Γ = 0
for same-spin electrons and optimizable for opposite-spin
electrons]. Typically we used Nη = 8 in the polynomial
expansions. The π term has the form of the gradient of
a Jastrow p term [Eq. (3)]:

π(r) = −
∑
A

cA
∑

G∈A+

sin(G · r)G, (5)

where the cA are optimizable parameters. As the gradi-
ent of a scalar field, the π term is irrotational. We used
44 stars of G vectors in π. The backflow transformation
preserves the antisymmetry of the Slater wave function.
The parameters in the Jastrow factor and backflow func-
tion were optimized by variance minimization and energy
minimization.

C. Crystal phase wave function

The trial wave functions for our Wigner crystal calcu-
lations were of later-Jastrow (SJ) form, apart from some
test calculations with SJB wave functions. The orbitals
in the Slater determinants consisted of Gaussian func-
tions centered on body-centered cubic (bcc) lattice sites
within the simulation cell, made periodic by summing
over simulation-cell images:

φRp
(r) =

∑
Rs

exp
(
−C |r−Rp −Rs|2

)
, (6)

where Rp is a primitive-cell lattice point within the su-
percell (which indexes the orbital) and Rs is a simulation-
cell lattice point. In practice the sum contained

only those Gaussian functions exp
(
−C |r−Rp −Rs|2

)
whose value at the closest point to Rp+Rs in the Wigner-
Seitz simulation cell containing r was greater than 10−7.
It was verified that truncating the sum in this manner
does not introduce statistically significant errors at the
densities considered in this work: see Table I and note
that the effects of truncating the sum are reduced in
larger simulation cells; our production Wigner crystal
calculations used cell sizes of N = 64, 216, and 512 elec-
trons.

TABLE I. Convergence of variational Monte Carlo (VMC)
energy with respect to a parameter g controlling the num-
ber of periodic images retained in the Wigner crystal or-
bitals of Eq. (6). We only retained those Gaussian functions
exp

(
−C |r−Rp −Rs|2

)
whose value at the closest point of

the Wigner-Seitz simulation cell containing r was greater than
10−g. Results are shown for a ferromagnetic bcc Wigner crys-
tal at rs = 90 with N = 27 electrons in the simulation cell and
Gaussian exponent C = 0.000148 a.u. An SJB wave function
optimized with g = 7 was used in each case.

g No. terms in Eq. (6) SJB-VMC energy (Ha/el.)
1 8 −0.0084224(3)
2 24 −0.00849361(7)
3 27 −0.00849268(7)
5 27 −0.00849263(7)
7 27 −0.00849253(7)
15 46 −0.00849254(7)
25 91 −0.00849253(6)

In Fig. 1 we plot diffusion Monte Carlo (DMC) energy
against the logarithm of the Gaussian exponent C for bcc
Wigner crystals at rs = 100 and rs = 125. It is clear that
the formula [16]

C = 0.11r−3/2s (7)

provides near-optimal exponents, especially for antiferro-
magnetic Wigner crystals. By using Eq. (7) we achieve
greater consistency between system sizes and densities
than would result from separately optimizing C in each
case. At small system size there is a tendency for C to be
underestimated relative to the thermodynamic limit, to
reduce the center-of-mass kinetic energy. For both ferro-
magnetic and antiferromagnetic crystals the error in the
DMC energy from using the formula is comparable with
the statistical error bars on the data, and is clearly much
smaller than the difference between the fluid and crystal
energies, even at rs = 100, close to the crystallization
density. A slightly more accurate expression for the opti-
mal Gaussian exponent for ferromagnetic crystals would

be Cferro = 0.068r
−3/2
s ; however, for consistency, we have

used Eq. (7) for all our production calculations. By con-
trast, within Hartree-Fock (HF) theory the low-density

Gaussian exponent is CHF = 1/(2r
3/2
s ) [3, 16].

Our Wigner crystal Jastrow factors were of the same
form as the Fermi fluid Jastrow factors described in the
previous section, except that we used 7 stars of reciprocal
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FIG. 1. DMC energy against logarithm of Gaussian exponent
C for ferromagnetic and antiferromagnetic bcc Wigner crys-
tals (a) at rs = 100 and (b) at rs = 125, using SJ trial wave
functions. The energy has been extrapolated to zero time
step and infinite system size in each case. The solid curves
show quadratic fits to the energies of ferromagnetic and anti-
ferromagnetic crystals as functions of ln(C), while the dashed
curve shows a quartic fit. The horizontal line in (a) shows the
twist-averaged paramagnetic Fermi fluid energy (with the dot-
ted lines indicating error bars), while the vertical line shows
the Gaussian exponent given by Eq. (7).

lattice vectors in the plane-wave two-body term p, and
we also used a plane-wave one-body term of the form

q(r) =
∑
B

bB
∑

G∈B+

cos(G · r), (8)

where B represents a star of symmetry-equivalent,
nonzero primitive-cell reciprocal-lattice vectors G, and
B+ is a subset of B that consists of one out of each ±G
pair. The {bB} are optimizable parameters. We used 7
stars of G vectors in q. The q term has the symmetry
of the Wigner crystal lattice and allows a description of
anisotropic warping of the Gaussian orbitals.

For a ferromagnetic bcc Wigner crystal at rs = 100
with N = 64 electrons, we performed test calculations
using a backflow function of the form described in Sec.
II B, but with 8 stars in the π term. The VMC and DMC
energies and the VMC variances obtained with SJ and
SJB wave functions, using either Eq. (7) or VMC energy
minimization to determine the orbital Gaussian exponent
C, are shown in Table II. Optimizing the Gaussian expo-

nent and backflow function lower the VMC energy and
variance. However, we cannot assume that optimizing
an overall wave function leads to an improved nodal sur-
face. In fact the DMC energies obtained using SJ and
SJB wave functions and either Eq. (7) or VMC energy
minimization to determine C are all in statistical agree-
ment with each other. Because SJ quantum Monte Carlo
(QMC) calculations are much cheaper and allow us to ex-
plore larger system sizes, we have used SJ wave functions
in our production calculations.

D. Finite-size effects in fluid phases

For twist averaging we used random twists {ks} rather
than a grid of twists for the following reasons. (i) Using
random twists is similar to adding three more dimensions
to the 3N -dimensional integrals evaluated in QMC, and
Monte Carlo integration is efficient in high-dimensional
spaces. (ii) A truly systematic approach to twist averag-
ing should use ks in each supercell Brillouin zone (BZ) de-
fined by the reoccupancies of the plane-wave orbitals, and
the corresponding results should be weighted by the size
of that BZ. However, the complexity of the nested BZs
grows very rapidly with the number of electrons N [36],
making this approach infeasible for large system sizes.
On the other hand, a regular grid-based approach effec-
tively gives a random sampling of the nested BZs. (iii)
Monte Carlo sampling of ks is easily extensible: if the
error is too large, it can be reduced by including more
random twists.

To twist average, we used the HF kinetic energy (THF)
and exchange energy (XHF) as correlators and fit

E(ks) = 〈E〉TA + c [THF(ks)− 〈THF〉TA]

+ d [XHF(ks)− 〈XHF〉TA] (9)

to the DMC energy per particle at a given system size,
where ks is the twist, and 〈E〉TA, c, and d are fitting pa-
rameters. The twist-averaged (TA) HF energies 〈THF〉TA
and 〈XHF〉TA are cheap to evaluate and were obtained
using billions of twists.

Analytical expressions have been derived for the
leading-order [38] and next-to-leading-order [39] system-
atic finite-size (FS) corrections to the energy per particle
of a 3D homogeneous electron gas in a finite periodic cell
in which the interaction between the particles is of Ewald
form and the system is assumed to be well-described by a
SJ wave function. The leading-order and next-to-leading-
order FS corrections to the energy per electron of a Fermi
fluid are

∆E =

√
3

2Nr
3/2
s

− C3D

πr2s (2N)
4/3

[
(1 + ζ)

2/3
+ (1− ζ)

2/3
]
,

(10)
where C3D = 5.083 in a face-centered cubic simulation
cell (for fluid phases) and 5.086 in a bcc simulation cell
(for crystal phases). As explained in Ref. 41, back-
flow correlations lead to additional, negative O(r−2s N−1)
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TABLE II. VMC energy and variance and DMC energy for a ferromagnetic Wigner crystal at density parameter rs = 100 with
N = 64 electrons, using SJ and SJB wave functions and using either Eq. (7) or VMC energy minimization to determine the
Gaussian orbital exponent C.

Wave function C (a.u.) VMC energy (Ha/el.) VMC variance (Ha2) DMC energy (Ha/el.)
SJ 0.00011 [Eq. (7)] −0.0076719(3) 0.00000329 −0.00769616(8)
SJ 0.0001553 (opt.) −0.0076737(2) 0.00000274 −0.0076957(2)
SJB 0.00011 [Eq. (7)] −0.0076786(2) 0.00000252 −0.00769619(9)
SJB 0.0001503 (opt.) −0.0076803(2) 0.00000201 −0.0076960(1)

FS corrections to the energy per particle, approximately
given by ∆EBF = −THF/(3N), where THF is the HF ki-
netic energy per particle. There is also a nonsystematic
FS error in the canonical ensemble TA energy per parti-
cle of a Fermi fluid due to the incorrect shape of the TA
Fermi surface; this error has an envelope that decays as
O(r−2s N−4/3) [36].

It is reasonable to assume that Eq. (10) holds approxi-
mately for Wigner crystals, although the static structure
factor differs between fluids and crystals, so the correc-
tions should not really be exactly the same.

The TA SJB-DMC energy of a paramagnetic Fermi
fluid at rs = 100 is plotted against the reciprocal of sys-
tem size in Fig. 2. The results of adding in the leading-
order correction of Eq. (10) and the leading-order plus
next-to-leading-order FS corrections are also shown. At
these low densities the next-to-leading-order correction
is negligible in comparison with the leading-order correc-
tion (and also the backflow correction is relatively small).
Nevertheless, the leading-order FS correction does not re-
move all the systematic FS errors. Near the crystalliza-
tion density the single-determinant wave function form is
increasingly inappropriate, and it is possible that other
FS effects may be present in the correlations implicitly
described by DMC. It is clear from Fig. 2 that the
leading-order analytic corrections do not remove all FS
effects at rs = 100. We therefore believe the most accu-
rate treatment of systematic FS effects is to extrapolate
to infinite system size using the O(N−1) FS-error scaling
implied by the leading-order theory.

The SJ-DMC energy of a ferromagnetic Wigner crys-
tal at rs = 100 is plotted against system size in Fig.
3. It appears that the leading-order O(N−1) behavior
is not completely eliminated by either the long-range FS
correction of Eq. (10) or the subtraction of the center-
of-mass kinetic energy. Equation (10) was derived for
a fluid phase; the static structure factor and long-range
two-body Jastrow factor are different in a crystal phase,
which would lead to a different prefactor. Once again the
best policy would appear to be to regard the theory of
FS effects as providing the appropriate scaling law to fit
to the data.

SJ-DMC energies as functions of system size N for dif-
ferent spin polarizations (ζ = 0, 0.25, 0.5, 0.75, and 1) are
illustrated in Fig. 4. The SJ-DMC energies in the infinite
system size limit for different densities and polarizations
are listed in Table III.

The TA SJB-DMC energies of the fluid phase for vari-
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FIG. 2. TA SJB-DMC energy against inverse of system size
for a paramagnetic Fermi fluid at rs = 100. Also shown are
the effects of applying the first and second terms of Eq. (10),
and the effects of fitting various FS scaling laws to the result-
ing data.
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FIG. 3. SJ-DMC energy against inverse of system size for a
ferromagnetic bcc Wigner crystal at rs = 100. Also shown
are the effects of applying the first term of Eq. (10) and of
subtracting an estimate of the center-of-mass kinetic energy,
together with fits of E(N) = E(∞) + bN−1 to the resulting
energy data.

ous density and polarization are plotted in Fig. 5 against
system size. The SJB-DMC energies extrapolated to in-
finite system are presented in Table IV.
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TABLE III. TA SJ-DMC energy of the Fermi fluid extrapolated from different system sizes (130 < N < 274) with 300 random
twists at each N to the thermodynamic limit. Energies are in mHa/el. The numbers in parentheses indicate statistical errors.
The DMC energies were not extrapolated to zero time step.

rs

ζ
0.0 0.25 0.50 0.75 1.0

30 −22.5336(7) −22.534(3) −22.522(1) −22.500(4) −22.446(3)
40 −17.5518(4) −17.551(4) −17.552(1) −17.550(2) −17.523(1)
50 −14.4003(4) −14.4034(1) −14.4046(4) −14.407(2) −14.399(1)
60 −12.2235(2) −12.2237(1) −12.2286(1) −12.231(2) −12.2303(8)
70 −10.6278(5) −10.629(1) −10.6310(4) −10.634(3) −10.6374(5)
80 −9.404(1) −9.406(1) −9.4101(6) −9.413(1) −9.4161(5)
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FIG. 4. TA Fermi fluid SJ-DMC energies as functions of
system size N at different spin polarizations ζ. The dotted
line represents the extrapolation to infinite system size. These
SJ-DMC energies have not been extrapolated to zero time
step.

TABLE IV. TA SJB-DMC energies of the Fermi fluid ex-
trapolated to the thermodynamic limit from different system
sizes (130 < N < 274). Energies are in mHa/el. The numbers
in parentheses indicate statistical errors. The DMC energies
were not extrapolated to zero time step.

rs

ζ
0.0 0.50 1.0

30 −22.617(8) −22.5862(5) −22.4804(6)
40 −17.612(4) −17.597(2) −17.555(2)
60 −12.254(3) −12.2492(4) −12.2413(1)
80 −9.4250(9) −9.421(1) −9.4242(2)
100 −7.6702(4) −7.669976(7) −7.6717(9)
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FIG. 5. TA SJB-DMC energies against system size N for
different spin polarizations ζ. The dotted lines represent ex-
trapolations to infinite system size. The DMC energies were
not extrapolated to zero time step.

E. Finite-size effects in crystal phases

In our broken-symmetry model of a Wigner crystal
there is an additional FS error due to the center-of-mass
kinetic energy.

At low density, individual electrons occupy Gaussian
orbitals φRp

(r) = exp(−C|r −Rp|2), where Rp is a bcc
primitive-cell lattice vector, and C is a Gaussian expo-
nent. Let s be the offset to the center-of-mass position.
Assuming a rigid displacement of the lattice by s, the
center-of-mass wave function is Φ(s) = exp(−NCs2).
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The resulting center-of-mass kinetic energy is

TCM = − 1

2N

∫
Φ∗∇2

sΦ d3s∫
|Φ|2 d3s

=
3C

2
. (11)

Hence the center of mass kinetic energy per particle falls
off as 3C/(2N). There is therefore an additional FS cor-
rection, on top of those discussed in Sec. II D, to be ap-
plied to the energy per particle of a Wigner crystal:

∆TCM = −TCM

N
= − 3C

2N
≈ − 0.33

2Nr
3/2
s

, (12)

where in the last step we have inserted the approximate
expression for the Gaussian exponent C in a bcc Wigner
crystal obtained by minimizing the DMC energy in a
large simulation cell [16], Eq. (7). The center-of-mass ki-
netic energy correction partially offsets the leading-order
FS correction of Eq. (10).

Where the crystal orbitals are highly localized within
the supercell, twist averaging cannot have much effect
on the energy per particle. If the simulation-cell Bloch
vector ks is nonzero then the crystal orbitals are

φRp
(r) =

∑
Rs

exp
(
−C |r−Rp −Rs|2

)
exp (iks ·Rs) ,

(13)
where Rp is a primitive-cell lattice point within the su-
percell (which indexes the orbital) and Rs is a simulation-
cell lattice point. This is the usual prescription for creat-
ing Bloch orbitals from localized functions; one can easily
check that φRp

(r + R′s) = exp(iks ·R′s)φRp
(r).

For a large simulation cell at low density, at most one of

the Gaussian functions exp
(
−C |r−Rp −Rs|2

)
in Eq.

(13) is non-negligible at any given point r in the simula-
tion cell. So the exp(iks ·Rs) factor just contributes an
unobservable phase to each orbital within the simulation
cell. Hence we do not twist average our crystal energies.

The SJ-DMC energies of ferromagnetic Wigner crys-
tals at different densities rs = 80, 90, 100, and 125 as
functions of system size are plotted in Fig. 6. The en-
ergies extrapolated to infinite system size are listed in
Table V.

TABLE V. SJ-DMC energy of the crystal phase extrapolated
to zero time step and the thermodynamic limit of infinite
system size. The numbers in parentheses indicate statistical
and fitting errors.

Energy (mHa/el.)rs
Antiferromagnetic Ferromagnetic

80 −9.4200(2) −9.41999(9)
90 −8.4585(1) −8.4581(1)
100 −7.6769(1) −7.6774(1)
125 −6.24472(6) −6.24508(6)

The electronic charge densities of antiferromagnetic
and ferromagnetic crystals are plotted in Fig. 7. The
charge densities were extrapolated to infinite system size
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FIG. 6. SJ-DMC energy against the inverse of system size N
for the crystal phase. The dotted line shows the extrapolation
to infinite system size. ζ = 0 and 1 are the spin polarizations
of the system (antiferromagnetic and ferromagnetic crystals,
respectively). The DMC energies have been extrapolated to
zero time step.
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FIG. 7. Extrapolated estimates of the electronic charge den-
sities of antiferromagnetic (AF) and ferromagnetic (F) bcc
Wigner crystals plotted along a straight line in the [100] di-
rection. Results are shown for two density parameters in the
vicinity of the crystallization density. The charge densities
have been obtained by extrapolated estimation (twice the
DMC charge density minus the VMC charge density), which
largely removes errors that are linear in the error in the trial
wave function. Furthermore, the charge densities have been
extrapolated to infinite system size, assuming the FS error
goes as N−1. The shaded regions indicate one standard error
about the mean.

by fitting ρ∞(r) + b(r)N−1 to the charge density data
ρN (r) at each point r. Here, ρ∞(r) and b(r) were fit-
ting parameters at each point r. O(N−1) FS errors in
the charge density arise due to the center-of-mass kinetic
energy, which leads to a tendency for the orbitals to de-
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localize in a finite cell.

It is clear that the charge density is nonuniform at
the crystallization density, providing some numerical ev-
idence that the phase transition is first order. The differ-
ences between ferromagnetic and antiferromagnetic crys-
tals are too small to resolve, but it is clear that increasing
rs has the effect of making the charge density relatively
localized, as expected.

F. DMC time-step bias

The variation of the DMC energy with time step is in-
vestigated in this section. Figure 8 shows TA SJB-DMC
energies against time step. The population is varied in
inverse proportion to the time step. For all the studied
system sizes, densities, and spin polarizations the bias
at finite time step is always positive. Our final results
were linearly extrapolated to zero time step (and hence
infinite population) in every case.
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FIG. 8. TA SJB-DMC energy against time step τ for the
paramagnetic (ζ = 0) and ferromagnetic (ζ = 1) fluid phases
at different system sizes N .

Figure 9 shows SJB-DMC energies of paramagnetic
and ferromagnetic fluid phases, extrapolated to zero time
step, at three different system sizes. TA SJB-DMC en-
ergies extrapolated to infinite system size and zero time
step are listed in Table VI.

The SJ-DMC energy of bcc Wigner crystals is plotted
against time step in Fig. 10. Time steps in the range
10–80 Ha−1 were used in our calculations. At rs = 80
the data are better fitted by a quadratic function of time
step than a linear function of time step; however, the
quadratic fit is no better than the linear fit at rs = 100.
However, even at rs = 80, the difference between the
results of linear and quadratic time-step extrapolation is
not statistically significant.
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FIG. 9. TA SJB-DMC energies against system size N for
different spin polarizations ζ. The DMC energies are extrap-
olated to zero time step. The dotted line represents the ex-
trapolation to infinite system size.

TABLE VI. TA SJB-DMC energies of the fluid phases of the
3D-HEG extrapolated to the thermodynamic limit from dif-
ferent system sizes (130 < N < 274). Energies are in mHa/el.
The numbers in parentheses indicate statistical errors. The
DMC energies were extrapolated to zero time step.

rs

ζ
0.0 1.0

30 −22.6191(7) −22.4819(7)
40 −17.6143(3) −17.5558(7)
60 −12.2556(3) −12.2418(5)
80 −9.4259(4) −9.4246(3)
100 −7.6709(3) −7.6720(4)
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FIG. 10. SJ-DMC energy against time step for bcc Wigner
crystals at (a) rs = 80 and (b) rs = 100. Results are shown
for both antiferromagnetic and ferromagnetic crystals. The
system size is N = 64 electrons. The target population is
varied in inverse proportion to the time step.
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III. RESULTS AND DISCUSSION

A. SJ-DMC magnetic phase diagram for the fluid
phases

The SJ-DMC phase diagram (Fig. 11, left panel) shows
that the spin polarized state ζ = 0.5 has lower energy
than the paramagnetic phase at rs > 40. The fluid with
ζ = 0.75 becomes more stable than the fluid with ζ =
0.5 at rs ≈ 46, and the 3D-HEG system adopts a fully
polarized state ζ = 1 at rs ≈ 62.
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FIG. 11. (Left panel) SJ-DMC spin polarization energy

of the 3D-HEG multiplied by r
3/2
s against density parameter

rs. (Right panel) SJ-DMC spin polarization energy of the 3D-

HEG multiplied by rs
3/2 against spin polarization ζ at various

densities.
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FIG. 12. Correlation energies obtained in SJ-DMC calcula-
tions for the fluid phase (symbols), together with the fit to Eq.
(1) of the main text (lines). Error bars on the QMC data are
shown, but are smaller than the symbols. The DMC energies
were not extrapolated to zero time step.

TABLE VII. Parameters in Eq. (2) of the main text, obtained
by fitting to SJ-DMC data that have been TA and extrapo-
lated to infinite system size, but not to zero time step.

ζ γ β1 β2 χ2

0.0 −0.122(5) 0.923(45) 0.287(10) 1.25
0.25 −0.104(7) 0.758(67) 0.252(15) 10.573
0.5 −0.110(5) 0.937(51) 0.275(10) 3.137
0.75 −0.091(14) 0.938(189) 0.250(36) 0.412
1.0 −0.052(5) 0.808(97) 0.166(13) 6.58

The correlation energy of a Fermi fluid is defined as the
difference between the Hartree-Fock energy per electron

and the exact ground-state energy per electron, where
the latter is approximated by our DMC results. The
procedure developed by von Barth and Hedin [42] and
Perdew and Zunger [15] to interpolate between ζ = 0
and ζ = 1 was applied to our SJ-DMC correlation ener-
gies (Fig. 12, top panel). The well-known Perdew-Zunger
expression for the correlation energy per electron of the
3D-HEG is [15]

Ec(rs, ζ) = Epara
c (rs) +

[
Eferro

c (rs)− Epara
c (rs)

]
f(ζ),

(14)
which has the same ζ-dependence as the exchange en-

ergy [42], f(ζ) = (1+ζ)4/3+(1−ζ)4/3−2
2(21/3−1)

. This interpolation

is exact for the exchange part of the energy and is likely
to be reasonable for the correlation energy too. The in-
terpolation scheme is very successful at low densities, as
illustrated in Fig. 12.

Following Ceperley [8] we fit

Epara,ferro
c (rs) =

γpara,ferro

1 + βpara,ferro
1

√
rs + βpara,ferro

2 rs
(15)

to our Fermi fluid correlation energies.
The fitting parameters γ, β1, and β2 for different po-

larizations are listed in Table VII.

B. SJB-DMC magnetic phase diagram for the fluid
phases

According to our SJB-DMC results for the fluid phases,
the paramagnetic fluid phase (ζ = 0) is stable for the
entire density range rs < 85.5(2) (Fig. 13, left panel).
There is no room for stability of the partially polarized
ζ = 0.5 fluid phase.
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FIG. 13. (Left panel) SJB-DMC relative energies of fluid
phases of the 3D-HEG are plotted against rs for different
spin polarizations ζ in the thermodynamic limit of infinite
system size. (Right panel) SJB spin polarization energy of

the 3D-HEG multiplied by rs
3/2 at various densities. The

DMC energies were not extrapolated to zero time step.

Figure 14 shows the SJB-DMC correlation energy of
the fluid phase as a function of spin polarization at dif-
ferent densities. BF correlations lower the energy of the
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FIG. 14. Correlation energies obtained in SJB-DMC calcu-
lations for the fluid phase (symbols), together with the fit of
Eq. (14) (lines). Error bars on the QMC data are shown, but
are smaller than the size of the symbols.

paramagnetic fluid more than the ferromagnetic fluid.
SJ-DMC predicts that a fully spin-polarized fluid phase
becomes stable at rs = 63(1), whereas our SJB-DMC
results do not show a statistically significant region for
the ferromagnetic fluid phase. Same-spin electrons are
kept apart by the antisymmetry of the many-body wave
function, while opposite-spin electrons are only separated
by correlation effects, so that an accurate treatment of
correlations lowers the energies of paramagnetic phases
more than ferromagnetic phases. Hence any future im-
provements in QMC trial wave functions are expected
further to stabilize the paramagnetic fluid relative to
spin-polarized fluids. In a Wigner crystal electrons are
kept apart by the localization of orbitals on lattice sites,
so there is relatively little scope for BF correlations to
lower the DMC energy significantly. Indeed, the DMC
energy data in the Supplemental Material confirm that
the effects of BF on Wigner crystal DMC energies are
small and do not significantly alter the phase diagram
[28]. Our final energies are obtained using SJB-DMC
for Fermi fluid phases and SJ-DMC for Wigner crystal

phases.

TABLE VIII. Parameters in the interpolation formula of Eq.
(15) for the correlation energy of a Fermi fluid, obtained by
fitting to our SJB-DMC energy data at different spin polar-
izations ζ. The reduced χ2 values for the fits are also shown.

ζ γ (Ha/el) β1 β2 χ2

0 (para.) −0.13(1) 1.0(1) 0.32(3) 0.92
0.5 −0.15(1) 1.3(1) 0.36(2) 10.96
1 (ferro.) −0.062(6) 0.97(8) 0.19(1) 5.51

C. Phase diagram

The DMC energies of different phases of the 3D-HEG,
extrapolated to the thermodynamic limit, are plotted
against rs in Fig. 15. Our Wigner crystal energies are
in good agreement with the results reported in Ref. 16.
However, our Fermi fluid energies are substantially higher
than those of Ref. 11, leading to a significant revision of
the crystallization density, which is now predicted to oc-
cur at rs = 86.6(7). We investigate possible reasons for
the disagreement with Ref. 11 in the next section, finding
that the treatment of finite-size effects is the most likely
source of disagreement.

The ferromagnetic fluid becomes more stable than the
paramagnetic fluid in the immediate vicinity of the crys-
tallization density; hence we do not predict a region of
stability for itinerant ferromagnetism in the 3D-HEG.
The absence of a region of stability for the ferromagnetic
fluid has also recently been predicted by Holzmann and
Moroni, who performed DMC calculations for the fluid
phases of the 3D-HEG in a 66-electron simple cubic cell
and applied finite-size corrections to their data [43]. The
curves fitted to our DMC energy data for ferromagnetic
and antiferromagnetic bcc crystals cross at rs = 93(3),
which is just inside the region of stability for the Wigner
crystal. However, in the region of stability, the differ-
ences between our ferromagnetic and antiferromagnetic
crystal DMC energies are statistically insignificant.

Path integral Monte Carlo calculations of the exchange
coupling constants of bcc Wigner crystals [44] show that
at rs = 100 the energy difference between ferromagnetic
and antiferromagnetic configurations is only 1.2 × 10−8

Ha/el (an order of magnitude smaller than our DMC er-
ror bars), and demonstrate that the 3D Wigner crystal is
antiferromagnetic [45]. Given that the energy difference
between antiferromagnetic and ferromagnetic crystals is
significant at high density and exponentially small at low
density, fitted energy-density curves are liable to cross
spuriously.
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FIG. 15. Energies per particle of the Fermi fluid and Wigner crystal phases at low density. The Madelung energy of the bcc

lattice has been subtracted off and the resulting energies have been rescaled by r
3/2
s to highlight the differences between phases.

D. Investigation of disagreement with F. H. Zong,
C. Lin, and D. M. Ceperley, Phys. Rev. E 66,

036703 (2002) (Ref. 11)

As can be seen in Fig. 15, our SJB-DMC energies in
the thermodynamic limit are higher than those of Ref. 11.
Here we try to identify the cause of the disagreement.

According to Ref. 11, the energy of a paramagnetic
(ζ = 0) 3D-HEG at rs = 40 computed using TA SJB-
DMC simulations and extrapolated to the thermody-
namic limit from N = 54 and N = 108 is −0.0176187(3)
Ha/el. To try to reproduce this result we used SJB
wave functions for the paramagnetic (ζ = 0) 3D-HEG at
rs = 40 and the same system sizes as Ref. 11. The DMC
time step was 10 Ha−1. We used 1200 walkers for N = 54
and 2400 walkers for N = 108. The numbers of twists
for N = 54 and N = 108 were 700 and 110, respectively.
Our DMC energy at the thermodynamic limit, which is
obtained by extrapolation of the TA DMC energies in Ta-
ble IX, is −0.0176038(1) Ha/el. This is 14.9(3) µHa/el.
higher than the result obtained in Ref. 11.

To investigate further, we have studied 54-electron 3D-
HEGs at rs = 50 with the same set of spin polarizations
as Ref. 11. We used our SJB wave function with several
hundred twists to reach a precision of 10−7 Ha/electron.
Figure 16 shows our VMC and DMC energies compared
with data extracted from Fig. 1 of Ref. 11. Because
they used a three-body term in their Jastrow factor, their
VMC energies are ∼ 0.02 mRy/electron lower than our
VMC energies. However, the three-body Jastrow term

TABLE IX. Energies and energy variances (σv
2) of the para-

magnetic (ζ = 0) 3D-HEG at rs = 40. The TA DMC energies
are calculated using an SJB wave function in which the Jas-
trow factor and backflow function were optimized at ks = 0.
Energies are in Ha/el. and variances are in Ha2.

N EVMC σv
2 EDMC

54 −0.0175860(9) 0.0000553(6) −0.01766933(6)
108 −0.0175770(5) 0.0000898(8) −0.01763656(7)

does not directly affect the nodal surface of the wave
function and indeed our DMC energies agree well with
those of Ref. 11. We performed two test calculations
in which a polynomial three-body term was included
in our Jastrow factor. The resulting SJB-VMC ener-
gies for the paramagnetic and ferromagnetic fluid phases
are −0.028913(1) and −0.028906(1) Ry/electron, respec-
tively, which are lower than the corresponding VMC en-
ergies of Ref. 11 (see Fig. 16). However, including the
three-body term did not change our DMC energies signif-
icantly. Indeed, Fig. 16 shows that the source of the dis-
crepancy between our final SJB-DMC results and those
of Ref. 11 is neither the form of our trial wave function
nor the optimization scheme, because the SJB-DMC re-
sults agree at N = 54.

We calculated the energy of the 3D-HEG at rs = 50
in the infinite system size limit using TA and extrapola-
tion from data at N = 54 and N = 108; these are the
system sizes used in Ref. 11. According to Ref. 11, the
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cubic simulation cell. The results reported in Ref. 11 [“PRE
(2002)”] may have been obtained in a simple cubic simulation
cell, although the difference between the ground-state energies
in face-centered and simple cubic cells is small, as shown in
Table XI.

TA SJB-DMC energies of paramagnetic fluids at rs = 50
at a system size of N = 54 and at the thermodynamic
limit are −0.028967(1) and −0.0288990(6) Ry/electron,
respectively. Hence they find the absolute difference be-
tween the SJB-DMC energy at infinite system size and
in a 54-electron cell to be just 0.068(1) mRy/electron.

Our SJB-DMC energies of the paramagnetic fluid at
rs = 50 at a system size N = 54 and at the ther-
modynamic limit are −0.0289755(1) and −0.0288756(4)
Ry/electron, respectively, and the absolute difference be-
tween them is 0.1000(4) mRy/electron, much larger than
predicted in Ref. 11.

According to Ref. 38, the leading order correction for
systematic long-range FS errors in the energy is ∆N =
ωp/(2N) =

√
3/r3s /(2N) in atomic units, where ωp =√

3/r3s is the plasma frequency. Using N = 54 and rs =
50 gives ∆N = 0.09072 mRy/electron, which is relatively
close to our estimate of the difference between the energy
per particle at infinite system size and in a 54-electron
cell.

Figure 17 compares our DMC energies with those of
Ref. 11 for 3D-HEGs at rs = 50 in the thermody-
namic limit. The differences between our DMC ener-
gies and those of Ref. 11 at ζ = 0.0, 0.185, 0.333,
0.519, 0.667, 0.852, and 1.0 are 0.023(7), 0.023(7),
0.0280(7), 0.0247(6), 0.0203(6), 0.0212(9), and 0.013(1)
mRy/electron, respectively.

We investigated other factors that could affect our
DMC energies:

� We reoptimized the backflow function and Jastrow
factor at different twist vectors ks for the param-
agnetic fluid. The SJB-DMC energies at infinite
system size, which are obtained by extrapolation
from TA data at N = 54 and N = 108, show that
the energy change due to optimizing the backflow
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FIG. 17. Energy per electron as a function of spin polariza-
tion ζ at rs = 50. The energies are obtained using extrapo-
lation from TA energies at N = 54 and N = 108 to infinite
system size.

function at different twists is small (see Table X).

� All the results of this section were obtained with
a fixed DMC time step τ = 10 a.u., which is ap-
propriately small at density parameter rs = 50. As
shown in Sec. II F, the resulting time step errors
are much smaller than the difference between our
energy data and those of Ref. 11.

� The shape of the simulation cell affects the DMC
energy at finite system size. We used face centered
cubic (fcc) simulation cells for our fluid calcula-
tions. It is not clear to us what shape of simulation
cell was used in Ref. 11. N = 54 is a magic num-
ber of electrons for paramagnetic 3D-HEGs in both
simple cubic (sc) and fcc cells subject to periodic
boundary conditions. We compare TA SJB-DMC
energies for the paramagnetic fluid phase in fcc and
sc cells at rs = 50 in Table XI. The difference be-
tween these DMC energies in the thermodynamic
limit is negligible, as expected.

Since our SJB-DMC results agree with Ref. 11 at
N = 54 but not in the thermodynamic limit, and since
Ref. 11 states that finite-size effects are small in con-
tradiction with the analytic theory of finite-size effects
[38], we conclude that FS extrapolation is the most likely
cause of the disagreement between our results and Ref.
11.

E. Comparison with M. Holzmann and S. Moroni,
Phys. Rev. Lett. 124, 206404 (2020) (Ref. 43)

Reference 43 disagrees with Ref. 11 and agrees with
our finding that the ferromagnetic fluid has no region of
stability. Nevertheless, there remains a quantitative dis-
agreement over the crystallization density. Reference 43
uses computationally expensive recursive backflow wave
functions in SJB-DMC calculations at a fixed, relatively



14

TABLE X. SJB-DMC energy in Ha/electron of a paramagnetic fluid at rs = 50 in the thermodynamic limit of infinite system
size (N →∞) using three different simulation-cell Bloch vectors ks for the optimization of the backflow function and Jastrow
factor. The SJB-DMC energies were obtained by extrapolation from TA SJB-DMC energies obtained at system sizes of N = 54
and N = 108.

SJB-DMC energy (Ha/electron)
ζ = 0 ζ = 1

ks N = 54 N = 108 N →∞ N = 54 N = 108 N →∞
Γ −0.0144877(1) −0.0144628(1) −0.0144378(1) −0.0144561(2) −0.0144373(3) −0.0144185(3)
L −0.0144870(1) −0.0144627(1) −0.0144383(1) −0.0144553(2) −0.0144369(3) −0.0144185(3)
X −0.0144866(1) −0.0144622(1) −0.0144378(1) −0.0144555(2) −0.0144366(3) −0.0144178(3)

TABLE XI. TA SJB-DMC energy of the paramagnetic fluid
phase at rs = 50 using fcc and sc simulation cells. Energies
are in Ha/electron.

Simulation cell N = 54 N = 108 N → ∞
fcc −0.0144878(1) −0.0144628(1) −0.0144378(1)
sc −0.0144832(1) −0.0144592(1) −0.0144352(1)

small system size (N = 66, in an sc cell). Further-
more, they extrapolate their SJB-DMC energy data to
zero VMC energy variance. In general such an extrapo-
lation is error-prone, possibly introducing nonvariational
errors (consider, for example, the effects of switching be-
tween optimizing wave functions by variance and energy
minimization); however, in Ref. 43 great care has been
taken to ensure the extrapolation is as reliable as possi-
ble. On the other hand, rather than extrapolating energy
data to infinite system size, Ref. 43 relies on analytic FS
correction formulas.

In Table XII we compare our TA SJB-DMC energies
for the paramagnetic 66-electron Fermi fluid in a sc cell
at rs = 100 with the results reported in Ref. 43. Our
(nonrecursive) SJB trial wave function gives a lower TA
DMC energy than their nonrecursive SJB wave function
(“BF0” in Table XII). However, the recursion of back-
flow transformations followed by extrapolation to zero
VMC variance results in lower TA SJB-DMC energies
than ours. This difference between the fluid energies in
our work and Ref. 43 is sufficient to explain about half
the difference between the predicted crystallization den-
sities [rs = 86.6(7) and 113(2), respectively]. The rest
of the difference can be ascribed to the fact that we ex-
trapolate to infinite system size from larger simulation
cells.

IV. CONCLUSION

In conclusion, we have revisited the phase diagram of
the 3D-HEG using state-of-the-art QMC methods. The

energies of Wigner crystals are similar to previous QMC
calculations. However, we find ferromagnetic fluid en-
ergies that are significantly higher than previous calcu-
lations, leading to a higher crystallization density, at
rs = 86.6(7). We find no statistically significant re-

TABLE XII. TA SJB-DMC energies for a 66-electron para-
magnetic Fermi fluid of density parameter rs = 100 in a sc
cell. The results without citation were obtained in the present
work. “BFn” denotes an SJB wave function obtained using
n recursive backflow transformations.

Trial wave function SJB-DMC energy (mRy/el.)
BF0 [43] −15.37588(9)
No 3-body Jastrow term −15.37721(11)
With 3-body Jastrow term −15.37810(8)
BF1 [43] −15.38345(7)
BF4 [43] −15.38683(4)
Extrap. to zero var. [43] −15.38914(17)

gion of stability for itinerant ferromagnetism. The zero-
temperature phase diagram of the 3D-HEG is therefore
found to be qualitatively similar to that of the two-
dimensional homogeneous electron gas [46].
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