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Abstract

Deep Learning (DL) applications are growing at an unprecedented rate across many

domains, ranging from weather prediction, map navigation to medical imaging.

However, training these deep learning models in large-scale compute clusters face

substantial challenges in terms of low cluster resource utilisation and high job waiting

time. State-of-the-art DL cluster resource managers are needed to increase GPU

utilisation and maximise throughput. While co-locating DL jobs within the same

GPU has been shown to be an effective means towards achieving this, co-location

subsequently incurs performance interference resulting in job slowdown.

We argue that effective workload placement can minimise DL cluster interference

at scheduling runtime by understanding the DL workload characteristics and their

respective hardware resource consumption. However, existing DL cluster resource

managers reserve isolated GPUs to perform online profiling to directly measure GPU

utilisation and kernel patterns for each unique submitted job. Such a feedback-based

reactive approach results in additional waiting times as well as reduced cluster resource

efficiency and availability.

In this thesis, we propose Horus: an interference-aware and prediction-based

DL cluster resource manager. Through empirically studying a series of micro-

benchmarks and DL workload co-location combinations across heterogeneous GPU
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hardware, we demonstrate the negative effects of performance interference when co-

locating DL workload, and identify GPU utilisation as a general proxy metric to

determine good placement decisions. From these findings, we design Horus, which in

contrast to existing approaches, proactively predicts GPU utilisation of heterogeneous

DL workload extrapolated from the DL model computation graph features when

performing placement decisions, removing the need for online profiling and isolated

reserved GPUs. By conducting empirical experimentation within a medium-scale DL

cluster as well as a large-scale trace-driven simulation of a production system, we

demonstrate Horus improves cluster GPU utilisation, reduces cluster makespan and

waiting time, and can scale to operate within hundreds of machines.
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Chapter 1

Introduction

1.1 The Rise of Deep Learning Clusters

Deep Learning (DL) has made a significant impact in various domains from

medical imaging [130], environment modelling [158], to DNA sequencing [258].

However, accomplishing production-ready Deep Neural Network (DNN) models

requires significant compute and financial investment. The compute systems required

for training and deploying DNN models for a large number of users are typically

composed of large clusters of machines equipped with heterogeneous accelerator

hardware devices such as Graphical Processing Units (GPUs) [79], Tensor Processing

Units (TPUs) [113] and Field Programmable Gate Arrays (FPGAs) [40]. Given these

large-scale DL clusters are expensive to design and operate1 due to the significant

demand for electrical power [200, 257] and computing resource [247, 266], it is

necessary and desirable to maximise the underlying cluster resources more effectively

(CPU, GPU, memory, network bandwidth, etc.) in order to improve cost efficiency,

i.e., maintaining cluster resources consistently at a high level of utilisation.

1For example, assuming a NVIDIA V100 32GB GPU cost $3000 with bulk purchase discount

(listed on Amazon for $11,999 [172] in 2022), the costs of 5,000 GPUs [247] is 15 million dollars.

2
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1.2 Underutilisation in Deep Learning Clusters

Leveraging DL clusters and petabyte-scale data to produce highly accurate and

domain-specific DL models is now the norm. For example, Meta in 2019 reported that

it is common to perform frequent re-training of their News Feed, Ads, and Community

Integrity models within their DL clusters to avoid prediction inaccuracy [86]. However,

ensuring high resource utilisation and model iteration time performance guarantees

within DL clusters is challenging to achieve with existing DL resource managers [81,

187, 246, 247, 266], that are primarily responsible for resource allocation and workload

deployment, whereby a workload comprising many jobs [78, 195].

These challenges are mainly caused by: (i) hardware heterogeneity [162], whereby

changes to iteration time performance from differing hardware processing power

results in additional complexity in workload placement and choosing an appropriate

input size [208]; (ii) unpredictable job completion time [81], resulting in less effective

workload schedules within deadline-aware scheduling approaches designed to optimise

system utilisation [95]; (iii) task distribution skew [81, 181], causing difficulties

in estimating the number and resources required to execute a task within a job;

and (iv) engineering limitations [95, 246, 247], whereby the maturing technology

underpinning the majority of existing production DL cluster resource managers can

not yet effectively share a GPU device.

Underutilisation is a systemic issue which frequently manifests within compute

clusters, primarily due to their requirement to provision service for peak user demand.

Therefore, compute clusters are designed and constructed to operate under both

maximum and average resource usage scenarios [107, 199], therefore it is inevitable

that these clusters often experience resource underutilisation [16, 52] because it is rare

for cluster workload to exhibit peak demand constantly [263]. This is especially the

case for DL training clusters [95, 108, 246, 247] that mainly hosts DL jobs, i.e. (i)
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training workload, the process of producing an accurate DL model; and (ii) inference

workload, utilising the trained DL model to provide the predictions; the average

cluster GPU utilisation of production DL clusters has been reported to between 15%

to 55% [95, 108, 247].

An effective means to increase cluster resource utilisation is via workload co-

location, whereby multiple DL tasks from the DL jobs, are simultaneously executing on

shared physical hardware [51, 52, 148, 263]. However, naively co-locating these tasks

can lead to performance interference (interference) due to resource contention [31, 148,

159], resulting in user-facing application quality of service (QoS) degradation [136,

146] and therefore, loss in financial revenue.

1.3 Performance Interference in Deep Learning

Training Clusters

Performing effective workload co-location decisions that minimises interference re-

quires understanding how the workload will behave on shared hardware, and attaining

an estimate of the workload’s utilisation profile (i.e. resource consumption usage

patterns) during resource scheduling assignment time.

To mitigate interference in compute clusters, existing cluster resource managers

require a dedicated GPU to conduct isolated profiling of workload resource utilisation

and resource access patterns [169, 180], as well as performing online interference

modelling for placement decisions [31, 51, 148, 180, 231]. However, these approaches

are not directly applicable to DL clusters, primarily due to hardware architectural

differences, since they only model CPU, memory, disk and bandwidth utilisation

profiles, and not the GPU accelerators required for DL computation. This is

because GPU interference is a result of the resource contention manifesting from

resources such as the number of processing elements, global memory bandwidth and
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PCIe bandwidth [29]. Second, the GPU resource utilisation profiles do not directly

translate to their resource active usage by definition [174], and therefore it is unclear

how workload slowdown can be inferred by these utilisation profiles. Furthermore,

existing interference mitigation approaches are known to reactively migrate jobs

upon performance degradation detection [31, 263], which could incur additional time

overhead from re-scheduling and re-execution.

The majority of production DL clusters are incapable of co-locating workload

because they are currently not designed to support accelerator hardware sharing (e.g.,

GPUs) [95, 246]. In recent years, a number of DL resource management frameworks

have been proposed that allow for co-location to address underutilisation [246, 247].

However, co-location strategies are not considered at resource allocation scheduling

time, which leads to mitigation approaches that are reactive, incurring re-scheduling

time and resource overhead. For instance, Gandiva [246] requires isolated resource

utilisation profiling to obtain their utilisation profile in order to enact workload

co-location decisions. Antman [247] also requires isolated resource access patterns

profiling to obtain both utilisation profiles and workload GPU operation kernel

patterns to determine throttle and co-location decisions. These isolated resource

utilisation and access patterns profiling approaches have to reserve dedicated GPUs,

which reduces resource availability, increases waiting time and degrades cluster

resource utilisation.

While there exist GPU-specific interference-aware cluster scheduling approaches [184,

227, 230], they all require isolated profiling of GPU resource consumption and

hardware resource access patterns, which reduces the availability of cluster resources.

This is particularly challenging within DL clusters, as obtaining the exact utilisation

profile and GPU operation kernel patterns of a DL training workload can take between

tens of minutes to hours to complete [247] due to the workload often undergoing many

phases, including data loading, pre-processing, and training.
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To increase resource utilisation and mitigate the profiling and re-scheduling

overheads within DL training clusters, it is necessary to design a new workload co-

location approach that is specially tailored to DL models. However, it is unclear how

to interpret DL training workload utilisation profiles in the context of co-location,

i.e., how much slowdown would a DL training workload experience. Therefore, there

is a need to understand the system behaviour during DL workload co-location, the

relationship between interference and their respective utilisation profiles; as this would

allow us to ascertain these utilisation profiles efficiently and finally, enable us to

determine safe co-location scenarios, improving DL clusters resource utilisation.

1.4 Research Questions

The objective of this work is to improve DL training cluster resource utilisation and

cost efficiency. To achieve this, we propose Horus, a DL training cluster resource

manager that can proactively determine safe DL workload co-location decisions by

minimising interference, removing the need to reserve isolated hardware. Doing so

requires understanding workload utilisation profiles. This work aims to explore how

to determine the workload utilisation profiles on heterogeneous hardware efficiently,

without reserving isolated hardware. From these profiles, it would then be possible to

design resource managers capable of performing efficient workload co-location within

a DL training cluster. This thesis postulates the hypothesis:

Hardware consumption patterns of DL training workload are dictated by the

DNN’s architecture, therefore extracting features from the DNN’s architecture can

allow us to estimate the resource utilisation on particular hardware, given historical

data. Using these predictions, we can create DL cluster resource managers that

improve cluster average resource utilisation, makespan and lower job waiting time.

This hypothesis can be validated by decomposing into three key research questions:
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[RQ1] When co-locating DL training workload onto shared hardware to improve

utilisation, what are the relationships between their respective utilisation profiles

and interference?

Answering this question allows us to infer the likely interference effect given DL

training workload utilisation profiles. This is important as it can enable us to

consider the interference effect with respect to the actual resource utilisation

during resource allocation scheduling time.

[RQ2] How to determine DL training workload utilisation profile efficiently without

online profiling?

Answering this question first requires us to determine the key DL training

workload features that drive their respective utilisation profile, thus enabling

us to derive accurate utilisation profiles without reserving isolated resources.

[RQ3] Can DL cluster resource management frameworks leverage this resource utili-

sation estimate to provide better co-location scheduling decisions than existing

frameworks, thus improving average cluster utilisation and lower job waiting

time?

To answer this question, it will require us to design new components that can

interact with resource management frameworks, in order to provide the resource

utilisation estimate.

1.5 Major Contributions

The major contributions of this work are:

• An approach to profile and extract DL model intrinsic characteristics, in-depth

analysis of these characteristics with its relationship to resource utilisation on
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specialised hardware. Existing DL resource managers are unable to determine

resource utilisation based on DL model characteristic.

• Analysis of the performance degradation severity caused by DL job interference

and identification of an efficient way to quickly determine potential time and

resource cost when co-locating jobs. Existing DL resource managers are unable

to proactively mitigate interference in DL clusters due to treating the underlying

Deep Learning model as a blackbox.

• An empirical analysis of a production DL training cluster that demonstrate a

systemic issue of low cluster resource utilisation, and this phenomena manifests

across production DL training clusters of similar scale.

• A data-driven approach to rapidly determine the likely hardware resource

consumption and identify the relevant features of a DL workload that directly

influence the resource consumption. Based on the identification, we present

a solution that extracts DNN architecture information and utilises historical

resource consumption data to predict its resource consumption on hardware.

• A proactive interference-aware cluster scheduler that maximises resource utili-

sation while minimising performance degradation. We present how data-driven

techniques can aid cluster schedulers in co-location decision-making within DL

clusters. This is critical for providers to maximise cost efficiencies in terms of

maximizing their resource utilisation.

1.6 Thesis Organisation

The thesis is structured as follows:

Chapter 2 introduces the topics of Machine Learning, Deep Learning Systems,

and Cluster computing. The background is organised to understand deep learning
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compute clusters, from algorithmic intuition to software implementation, hardware

execution and resource management. This is followed by a comprehensive overview

of the state-of-the-art (SOTA) DL cluster schedulers, Interference-aware schedulers in

clusters, Machine Learning for Systems, and Machine Learning for Clusters. Finally,

the chapter concludes with the limitation of existing DL cluster schedulers.

Chapter 3 presents the empirical analysis of production DL training cluster,

the co-location study on DL jobs, and relationship analysis between DL models and

GPU resource consumption. This analysis demonstrates the key challenges in existing

production DL training cluster, discovering the relationship between performance

degradation and co-location, and presents the opportunity for data-driven estimation.

Chapter 4 presents Horus, a proactive cluster resource manager, and its approach

to DL training job scheduling. Horus proactively improves cluster resource utilisation

and minimises performance degradation caused by interference. Leveraging findings

from chapter 3, we present the Horus GPU resource prediction engine and the final

scheduling system architecture.

Chapter 5 presents the experimentation setup and evaluation of an empirical

study in a university testbed DL cluster and a large-scale simulation based on a

production cluster. We present the methodology used for evaluating the proposed

approach. Specifically, this chapter quantifies and shows the improvements in cluster

resource utilisation, makespan, job waiting time and job completion time with respect

to different configurations of the experiments.

Chapter 6 summarises the contributions of the thesis, provides conclusions, and

outlines potential future research directions for this research.



Chapter 2

Background

Many modern Deep Learning (DL) powered applications depend on large quantity of

high-quality data to train the underlying models, which often take days to months

to converge to a satisfactory accuracy. Large-scale DL compute clusters containing

accelerators to speed up training [81, 162, 182, 187, 246, 247], are expensive to operate

and require extensive effort to optimise.

This chapter presents the broader context of this research. In Section 2.1, the

background of Machine Learning is discussed, presenting the main concepts behind

prediction and Deep Neural Networks (DNNs). Section 2.2 presents the background

of DNNs and their respective architectures. Section 2.3 then introduces software

and hardware systems behind Deep Learning, the DNNs resource consumption, and

the need for large-scale compute clusters to accelerate both training and inference.

Section 2.4 first describes the need for compute clusters, then discusses resource

management for large-scale compute clusters, followed by expressing the several

challenges in both tradition compute clusters and in DL compute clusters context.

Finally, we survey both non-DL-based cluster resource managers and DL cluster

resource managers to identify gaps that this thesis addresses.

10
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2.1 Machine Learning

The problem of learning can be defined as searching for patterns in data. Machine

Learning (ML) is defined as machines automatically discovering regularities in data x

through the use of a computer algorithm (a model f), with parameters θ; leveraging

a model f with learned parameters θ to make predictions ŷ. Formally, this is defined

as mapping x and θ into ŷ, ŷ = f(x, θ) [20]. The act of making a prediction is

called inference. Majority of ML applications operate on processed data in the hope

that the computer algorithms can discover regularities to make prediction better than

heuristic approaches. For instance, a computer vision problem of digit recognition

may pre-process the images by scaling the size of the image. This pre-processing

stage is sometimes called feature extraction. The precise process of determining the

function f and parameters θ is called the training or learning phase, on the basis

of utilising the pre-processed or original training data. A model is defined as the

function f and parameters θ, the training procedure usually involves splitting the

data set D into training, validation, and test sets. Once the model is trained (i.e.,

the best parameters θ and the form of function f are determined), the model can be

leveraged to determine the results of new validation and testing data. The end goal for

ML training is to produce a trained model that can achieve satisfactory performance

with respect to production measures such as the number of customers in the next

hour, the travelling time between cities and the resource consumption of a workload.

Machine Learning can be categorised into three major learning paradigms: (i)

Supervised Learning, (ii) Unsupervised Learning and (iii) Reinforcement Learning.

Although each learning algorithm’s inner working mechanisms are different, they can

be combined into a larger system to solve complex problems. This work utilises both

supervised and unsupervised learning as part of the larger system to make effective

data-driven decisions. To evaluate how well the learning algorithms perform, it is
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essential to define an error or loss function in regard to the key performance indicators.

Loss function. An error or loss function is a function that evaluates how well the

underlying models performed relating to production aspects such as accuracy, system

costs, distances, and density [20]; in order to determine the proper set of parameters θ

of a model. For instance, evaluating the accuracy between predicted CPU utilisation

ŷ with the true CPU utilisation y in the next hour can be evaluated with absolute

error ŷ−y. Similarly, generating N images that are close to the original images can be

evaluated by comparing each pixel for each image y with mean-squared-error (MSE)

function as shown in Equation 2.1 [69]:

1

N

N∑
i=1

(ŷ − y)2 (2.1)

In contrast, for a multi-class classification across C classes, a common loss function

is the cross entropy loss [77]:

−
C∑
i=1

ŷi log yi (2.2)

where ŷi is the predicted probability for class i. Distance measures such as the

Manhattan Distance may be leveraged for clustering problems [105], i.e. grouping

objects into individual groups. There are many more loss function such as Huber

loss [99], Mean Average Percentage Error [48], Root Mean Square Error (RMSE) [102]

and Root Mean Square Log Error (RMSLE) [215]. The loss function is the most

important component for training a machine learning model, as it guides the learning

model to make accurate predictions. The rest of the learning paradigms in this section

all utilise one or more loss functions.
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Figure 2.1: Simplified view of the supervised learning paradigm.

2.1.1 Supervised Learning

Supervised learning is a subcategory of machine learning, where the algorithm

leverages ground truth input-label data pairs x, y to adjust its internal parameters

θ through the training process [57]; where x is the input data and y is the ground

truth label, in dataset D = {(xi, yi)}, (|D| = n). The input data x can consist of m

features that describe each data point, xi ∈ Rm. For instance, an input instance for

predicting the CPU resource consumption in the next hour may involve current CPU

utilisation, memory consumption and number of requests, i.e., a vector consisting of

{xCPU , xmemory, xnum}. The learning model f with parameters θ can learn to provide

an accurate prediction ŷ, ŷi = fθ(xi), by adjusting its internal parameters according

to an error metric that exploit a loss function l , e = l(yi, ŷi).

Supervised Learning problems can be categorised into either (1) classification –

classifying a data point into a discrete class, or (2) regression – predicting a continuous

value given a data point. Considering an image and asking the question whether this

image has a cat, a dog, or a bird, is a classification task. Alternatively, predicting the

housing prices for an area is a regression task. The simplified supervised learning
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paradigm is shown in Figure 2.1. Common algorithms that leverage supervised

learning include polynomial regressions [20], linear regressions [20], decision trees [20,

23, 32, 65, 117] and deep learning [77]. In many complex and large-scale problems,

obtaining accurate labels require in huge amount of manual labor efforts, and therefore

unsupervised learning is exploited instead.

𝑩 = 𝒙𝒊+𝟏𝟏, 𝒙𝒊+𝟏𝟐…𝒙𝒊+𝟏𝒎

𝑨 = 𝒙𝒊𝟏, 𝒙𝒊𝟐…𝒙𝒊𝒎

𝑪 = 𝒙𝒊+𝟐𝟏, 𝒙𝒊+𝟐𝟐…𝒙𝒊+𝟐𝒎
𝑨

𝑪
𝑩

Training Data Learning Model

Figure 2.2: Simplified view of the unsupervised learning paradigm.

2.1.2 Unsupervised Learning

In contrast, an unsupervised learning algorithm analyses input data without ground

truth labels, i.e. D = {(xi)}, (|D| = n). The objective of unsupervised learning is to

discover hidden patterns or data groupings according to a predefined metric [58], this is

shown in Figure 2.2. The data groupings can reveal interesting insights among massive

data sets, whereas discovering hidden patterns can lead to data dimension reduction,

and association, such as a customer that bought a film also bought this other film.

The above use cases are very common in production settings such as recommendation

systems [88], vocabulary similarity [183] and anomaly detection [202]. However,

unsupervised learning models can occasionally result in inaccurate results, and manual

human intervention is needed to validate before deployment. Recently, a subcategory

of learning algorithms that combines both supervised and unsupervised learning has

emerged, semi-supervised learning. Semi-supervised learning uses a dataset that
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contains both labelled and unlabelled data, in the hope that a learning model can

learn features that are relevant from the labelled data combined with pattern discovery

to predict unseen data more accurately. This is particularly useful in settings where

a portion of the data has been labelled, and obtaining ground truth labels for the

remaining data is expensive. Apart from semi-supervised learning, reinforcement

learning (RL) also contains elements of both supervised and unsupervised learning.

2.1.3 Reinforcement Learning

Reinforcement Learning (RL) is defined as learning how to map observations from

the environment to actions given a cost function or a reward function [221]. Formally,

the RL objective is to learn an optimal policy π with parameters θ. Under the policy

π, an action a is performed given an observed state s from the environment. By

interacting with the environment, an agent observed the new state s′ and the reward

r. The tuple (s, a, s′, r) from each interaction is collected and served as training data.

RL can be applied into various complex domains such as robotics manipulation [133],

network congestion control [28] and process scheduling [143].

2.1.4 Applications

ML algorithms provide a computational approach that leveraged data, in order

to learn the underlying patterns of the world [158]. There are many impactful

applications that can leverage ML today, for example, gaining insights of customers

behaviours [42], autonomous driving [12] and contributing towards biomedical

engineering efforts [8]. Supervised learning is particularly useful, since ground

truth labelled data can guide the algorithms into making accurate predictions.

Unsupervised learning on the other hand contributes greatly to fields where data

generation are fast and obtaining labelled data are expensive. They can be leveraged
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to discover clusters effectively. Finally, reinforcement learning is concerned with

learning from interaction and has grown due to the success of beating human players

in GO recently [212].

The field of machine learning has grown in an accelerated rate due to the re-

emergence of Deep Learning (DL), and DL is an effective learning model algorithm

that can be leveraged by all three paradigms for making inference.

2.2 Deep Learning

DL is defined as machine learning models that are based on artificial neural networks

(ANNs) with many layers (greater than or equal to three), which enables learning

complicated concepts by building them out of simpler ones [77]. As mentioned

in Section 2.1, machine learning algorithms require engineers to carefully extract

important features in the pre-processing stage to present a good representation of

the data for the problem at hand. In contrast, DNNs do not require explicit

handcrafted features and are generally well suited for high dimensional problems such

as image and natural language domains. DNNs can discover not only a mapping from

the representation to outputs, but also the representation itself from the data [77,

198]. However, the effort on handcrafted features has now shifted to carefully

designing the DNNs architecture. Common architectures include Feed Forward

Neural Network (Multi-Layer Perceptrons – MLPs), Convolutional Neural Networks

(CNNs), Recurrent Neural Networks (RNNs), Graph Neural Networks (GNNs) and

auto encoders. In the following section, we present MLPs, CNNs and RNNs due to

their prominent use in the DL community and are the fundamental building blocks of

larger DNN architectures. A comprehensive background of DL can be found in [77].
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2.2.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are modelled after neuron connections within the

human brain, where a single neuron receives signals from nearby connections and

activates, if it crosses a threshold. Computationally, a neuron (node) contains its

own set of inputs, weights θ and a bias value. When inputs x are received from

nearby signals, a weighted sum is then performed between the weights and the inputs

within the neuron. The bias term b is then added after. Finally, the neuron activates

based on a predefined activation function fa (i.e., crossing the threshold) and emits an

output h. This is shown in the Figure 2.3 and mathematically, each node computes

the following:

Inputs Weights

𝑥1

𝑥2

𝑥3

𝑥𝑛

…

𝜃1

𝜃2

𝜃3

𝜃𝑛

…

∑𝜃𝑖𝑥𝑖

Neuron

Figure 2.3: Internal of a single neuron, comprising a set of weights, performing a weighted sum and

one addition, followed by an activation function.

h = fa(
N∑
i=1

θi ∗ xi + b) (2.3)

A single neural network layer can consist of one or more nodes, as shown in

Figure 2.4. DNN is defined as an ANN that comprises at least one input layer,

and one or more intermediate (hidden) layers and output layers. Specifically, the
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input layers (the layers of which inputs are feeding in) do not consist of any weights.

Outputs ŷ depends on the previous hidden layers’ outputs, which depends on the

initial inputs x. Formally, let a DNN consists of 1...l ∈ L hidden layers then:

ŷ = fl(fl−1(fl−2(...f1(x)))),∀l ∈ L (2.4)

Hidden Layer 1 Hidden Layer 2 Output LayerInput Layer Hidden Layer 3

Figure 2.4: Example of a Feed Forward Neural Network.

DNNs can also be viewed as a graph, where vertices v are computation operations

and edges e represent the connections. In certain application-specific architectures,

the final outputs ŷ and each individual hidden layer hi can depend on many previous

hidden layers hj, where j < i, resulting in many inward edges to a single vertex [87].

The ability to learn useful representations not only depends on high-quality data and

the training regimes, but also comes from the architecture.

2.2.1.1 Neural Network Architectures

Feed Forward Neural Networks (Multi-Layer Perceptrons - MLPs), Convolutional

Neural Networks (CNNs), and Recurrent Neural Networks (RNNs) are the most

prominent architectures leveraged for solving different complex problems. All of these

common architectures are utilised within this research.
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Feed Forward Neural Networks. This is the simplest DNN architecture, where

it mainly consists of Fully Connected (Linear) layer. It is defined as a NN without

any cycles, i.e., a Directed Acyclic Graph (DAG). The linear layer performs matrix

multiplication, a dot product (weighted sum) between the inputs and the weights.

The dot product outputs are followed by a non-linear activation function layer such

as Rectified Linear Unit (ReLU), Gaussian Error Linear Unit (GELU) [89], or Scaled

Exponential Linear Unit (SELU) [121], in order to introduce a non-linear relationship

between the inputs and the outputs. An example of a Feed Forward neural network

is shown on Figure 2.4. Although, feed forward network can capture non-linear

relationships between inputs and outputs, there are architectures that can outperform

feed forward networks in spatial or temporal problem domains. Nevertheless, research

in feed forward networks is still ongoing [232] and recent research indicates that

combining a feed forward network with other layer types can improve performance

(e.g., the convolutional layer [56]).

Convolutional Neural Networks. For complex spatial problem domains such

as object recognition, spatial grouping of features can provide stronger signals than

scanning through an individual feature (i.e., a pixel). For example, an image

usually has a dimension of width w, height h and channel Cin data represented in

multidimensional arrays, where the channel dimension specifies the colors of the image,

and grouping of these data can provide signals indicating an object is present. This is

because the nearby pixels within a patch of an image, can have better representation

than pixels that are at the edge of an image. For instance, an image patch that is

near an object versus a patch that is of nothing but background. In these domains,

CNNs can outperform vanilla feed forward networks by a large margin [123].

Instead of only using linear layers as the main feature extraction layers, CNNs

utilise convolutional layers in which cross correlation is performed on a subset of the
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inputs through filters (kernels). The number of filters (kernels) in a convolutional

layer dictates the output channel dimension Cout. Each filter has its width kw, height

kh and channel kc dimensions, and slides across the inputs from left to right, top to

bottom, over the channels, according to (i) a stride s parameter, i.e., distance between

two consecutive positions of the filter and (ii) a dilation d parameter, i.e., where the

convolutional operation is performed on the expanded filter [254]; thus capturing

the spatial relationship between input features. Engineers can specify padding pj

parameter where the features are padded by zeroes along j dimension before going

through a convolutional layer in order to retain the feature dimensions. Retaining

the spatial sizes by padding the inputs can have performance benefits, allowing the

CNNs to retain information and propagate further into the network. Figure 2.5 shows

1-Dimension and 2-Dimensions convolution examples with padding.

𝑡𝑡 = 1 𝑡𝑡 = 2 𝑡𝑡 = 3 𝑡𝑡 = 5

(a) Convolution 1D with padding of 1, stride of 1. A filter of size 2 (green) is sliding across the inputs (blue).

𝑡𝑡 = 1 𝑡𝑡 = 2 𝑡𝑡 = 3 𝑡𝑡 = 6

(b) Convolution 2D with padding of 1 × 1, stride of 1 × 1. A filter of size 2 × 2 (green) is sliding across the inputs

(blue).

Figure 2.5: Examples of Convolution Arithmetic for channel of size 1.

Similar to the fully connected layer, the convolutional layer’s output goes through

non-linear activation function to produce intermediate features. The output size of

the intermediate features can be calculated from the following equation:

Oj = bIj + 2× pj − dj × (kj − 1)− 1

sj
+ 1c (2.5)
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where Oj denotes the output size of dimension j, Ij denotes the input of dimension

j, and j can be either the width w, height h or channel C dimension.

Pooling Layer is another layer that contributes towards the success in CNNs for

the spatial problem domain. One can think of the pooling layer as a special type

of convolutional operator where the function applied is typically one of two types:

average or max, instead of a weighted sum. Average pooling layers compute the

average of all input features under the filters, and max pooling layers compute the

max of all features under the filters similarly.

3 22
4

96 55

256 27 384 13 384 13 256 13

140
96

10
00
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Figure 2.6: AlexNet [123] – Convolution Neural Network that consists of convolution layers (light

blue), pooling layers (light yellow), fully connected layers (purple) and the final output fully

connected layer (red).

An example of a fully constructed convolutional network is shown in Figure 2.6.

Although convolution layer is typically applied to spatial problem domain, temporal

dependence problems such as time series forecasting are also applicable. However,

for long term temporal dependence problems such as language modelling, a recurrent

neural network is better suited.
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Figure 2.7: An example of a 1 layer Recurrent Neural Network. Weights are shared across each time

step. Representation of rolled RNN (Left) and unrolled RNN (Right).

Recurrent Neural Networks. RNNs are better suited for long term sequential

dependence problems because each input xt in the sequence can take information

bidirectionally, i.e., from either prior step xt−1 or future step xt+1 depending on the

direction, hence having similar behaviour as “memorising” the features across time

steps. Note that, unlike CNN and MLP, instead of having different weights in each

layer, RNN layer share weights across each time step. Additionally, each time step

takes a feature vector from the previous layer ht−1 to produce ht in order to retain

information1. Figure 2.7 shows an example of a recurrent neural network.

Although, an RNN architecture is good for modelling a temporal dependence

problem, having a long sequence of time steps in RNNs can result in diminishing per-

formance [91]. Nevertheless, two approaches proposed to address the aforementioned

problem towards regular RNNs resulted in Long Short Term Memory (LSTM) neural

networks and Gated Recurrent Unit (GRU) neural networks.

1The initial h0 can be initialised randomly or zeros [196]
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LSTM neural networks use gates to control the information flow, and outperform

vanilla RNNs. Instead of having recurrent hidden layers, LSTM comprise recurrent

modules (cells), where a cell has three gates, an input, output, and a forget gate, as

shown in Figure 2.8. Each gate has its own set of weights to learn to activate based

on the provided information. First, the forget gate is applied to the previous cell state

ct−1 based on previous hidden state ht−1 and the input xt, producing a filtered cell

state c′t−1. Second, the input gate is responsible for deciding how much information

should get updated to the filtered cell state c′t−1. Finally, the output gate decides the

output for ht and ct feature vectors. For the interested reader on the inner workings

of the gates, we refer the reader to [77, 91]. While LSTM outperforms vanilla RNN,

the introduced gates added additional computation and memory parameters.

𝒙

𝒚
𝑐𝑡−1

ℎ𝑡−1

𝐼𝐹 𝑂

Figure 2.8: An overview of LSTM recurrent module, F, I, O represent Forget, Input and Output

gate respectively.

GRU neural networks are a simplification of LSTM networks. GRU networks also

have recurrent cells throughout the network, but instead of consuming and producing

two feature vectors along with the input xt, GRU produces only one feature vector ht.

We refer the interested reader to [77] for more details. Both LSTM and GRU utilise

learned gates to determine the information flow during each time step xt.



Chapter 2. Background 24

Although, recurrent neural networks outperform vanilla feed forward neural

networks in long term temporal dependence domain problems, recent research has

indicated that by carefully constructing a feed forward neural network (Trans-

former [232]), feed forward neural network can outperform recurrent networks even

in applications such as language modelling [189].

The design of the above architectures all comes from understanding the target

applications at hand. For instance, CNN LeNet-5 [127] is inspired by previous research

on understanding a cat’s visual system [98]. Hence, it is important to design a

DNN architecture according to the target application. However, designing a DNN

architecture requires domain expertise and takes a large amount of experimentation

to find the optimal architecture.

All of the above neural network architectures have been shown to be successfully

applied in DL applications [12, 129].

2.2.2 Deep Learning Applications

A wide range of complex problems are now leveraging DNNs to make accurate

decisions such as DNA sequencing prediction [60], environment modelling [158], and

map navigation [125]. While many applications can leverage DNNs to tackle problems,

this thesis focuses on two specific applications domains for micro-benchmarking and

analysis, (i) image classification and (ii) language modelling. These two application

domains are common micro-benchmark targets due to the ease of accessibility and

wide adoption [81, 182, 246].

Image Classification. Given image data, the aim is to assign a suitable label for

the image content. Such classification is useful in vision applications such as cancer

or illness detection [59, 135, 197, 252]. It was shown that DNNs can significantly

outperform other machine-based vision algorithms [123]. Many highly accurate
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proposed DNN architectures consist of the previously presented layers [87, 224].

Importantly, training such DNNs and discovering effective architectures can take days

to months of computation and experimentation.

Language Modelling. Remarkable results are shown within language modelling

domain, where DNNs can generate sentences for documents of text given inputs

related to a particular topic [54, 166, 190, 232]. GPT [190] is one of the most advanced

language models, containing billions of parameters. It was shown that training such

a language model requires petabytes of data and compute clusters operating for

months to achieve state-of-the-art (SOTA) results. Although this thesis does not

leverage GPT-based models, this thesis utilises Transformer [232], an architecture

that is leveraged by GPT-based models and recent SOTA computer vision models.

Training and discovering accurate DNN models not only require efficient algo-

rithms but also both software and hardware systems. Software systems should ensure

applications are scheduled and executed efficiently on physical hardware with respect

to resource utilisation, availability, and performance.

2.3 Deep Learning Systems

As research on DL continues to innovate, the underlying systems for DL also require

research effort to cope with performance constraints and increased demands. In this

section, DNN execution on hardware and software systems, the underlying principles

for both DL training and inference are presented; the DL system key performance

metrics are discussed, and pertaining to the proposed approach in this thesis.
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2.3.1 Deep Learning Program Execution

DL program execution usually takes matrices as the inputs of the program. Tensors

are the inputs to a DL program, a generalisation of matrices with dimensions greater

than or equal to two. DL programs have one or two major execution phases (i) forward

phase, where tensors flow forward along DNN layers producing an output, and (ii)

backward phase, where the learning step of DNN happens [77].

2.3.1.1 Execution Phase

As mentioned in § 2.2.1, each DNN is represented as a graph, has its own sets of weights

θ, the objective of training a DNN is to achieve satisfactory results by adjusting

the weights iteratively according to one or more loss functions, until convergence

Err <= ε, where Err = l(y, ŷ) is an error measure. An iteration of training step

involves two operations, (i) forward, this is also called inference, and (ii) backward,

on the basis of backpropagation [126, 198], which is defined as leveraging chain rule

to calculate the contribution of each weight towards making the error, thus adjusting

the weights towards the derivatives direction that minimise the error [77]. The step

of updating the weights is called Gradient Descent [44] and is a common method

for optimisation problems. Iterating over an entire training dataset once is called

an epoch. The training phrase can consist of thousands to millions of epochs. It is

hard to predict the number of epochs for a DNN to converge (see Table 2.1). This is

because DNN architecture, size of data and the complexity of the problem can affect

the rate of learning and convergence.

Additionally, the parameters for training such as batch size, learning rate and

optimiser configuration [111, 120, 253] that do not affect the DNN architecture are

called hyperparameters, however, they all contribute towards the learning process,

statistical efficiency [79, 187, 253], i.e., the amount of progress made per training
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DNN Type Parameters (MB) Examples to Convergence FLOPs per Example

MLP0 225 1 trillion 353 M

MLP1 40 650 billion 133 M

LSTM0 498 1.4 billion 29 G

LSTM1 800 656 million 126 G

CNN0 87 1.64 billion 44 G

CNN1 104 204 million 34 G

Table 2.1: Six DNN models that were used at Google in 2018 [16]

example processed. For the inference phase, the underlying DNN weights are frozen

(fixed) and will not be updated when serving online queries, and therefore inference

typically has less computation per iteration when compared to training.

The execution of a DL program can cross many layers of the stack, including both

software, such as DL frameworks, and hardware accelerators.

2.3.1.2 Hardware Systems & Frameworks

The majority of the DNN computation comes from matrix manipulation, i.e.,

multiplication and addition; the parameters of a DNN are usually stored in the

machine’s memory as Single Precision Floating Point (FP32), hence the larger the

model, the more Floating Point Operations (FLOPs) are performed. To accelerate

DNN execution, hardware must execute these FLOPs efficiently. Central Processing

Units (CPUs) are general purpose and built with tens to hundreds of cores. Although

they can execute DNN operations with reasonable latency in the inference phase, they

can not execute DNN training in a reasonable time. There are much better suited

hardware devices for DNN execution phases. Devices such as Graphical Processing
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Units (GPUs), Tensor Processing Units (TPUs) and Field Programmable Gate Arrays

(FPGAs) are devices that consist of hundreds to thousands of processing cores.

Therefore, they are better suited for high throughput data intensive operations, due

to the ability to process large number of FLOPs, through higher hardware efficiency,

i.e., number of examples processed per wall-clock time [187]. These devices are

often referred to as accelerators as they speed up computation. TPUs version 1

to version 3, and FPGAs are predominantly leveraged for the inference phase, due

to the ability to customise the underlying hardware topology to specifically execute

matrix multiplication efficiently, resulting in much better energy efficiency [40, 113,

222]. In contrast, GPUs have a fixed topology and are designed to be general purpose

in comparison to TPUs and FPGAs, they allow for more flexibility to run bespoke

DL GPU operations and run DL training in large batches of data at the cost of

more energy consumption. GPU accelerators are the main hardware focused on in

this thesis due to academic constraints. As DL research accelerate, DL frameworks

DL Program

Machine

Process Scheduler

CPU GPU TPU FPGA

𝒕𝟏 𝒕𝟐 𝒕𝟑

DNN Graph

DL Framework 
Runtime

DL Library

Device Driver

Figure 2.9: DL program execution in machine and devices. For a program that exploits accelerators,

a DL framework’s runtime will request program tasks to schedule onto them via device drivers.

such as PyTorch [178], TensorFlow [4] and MxNET [33], were created to provide
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high-level APIs for DL engineers to write DL programs efficiently (easily define DNN

architectures and automatically perform backpropagation). To execute DL programs

on machines and devices, DL frameworks parse the DNN graph and schedule each

operation onto the devices for execution, as shown in Figure 2.9.

Interposed between a plethora of DL frameworks and hardware accelerators,

intermediate representation (IR) for DL programs were developed to enable smooth

transition and execution between systems.

2.3.1.3 Intermediate Representation

The parsing of the DNN graph generates a high-level IR of the DNN architecture, in

which the IR is often referred to an object instance that represent the DNN graph

programmatically [35, 45], without specifying how the underlying operation must be

implemented. For instance, a convolution IR specifies the common parameters for a

convolutional layer such as kernel size, stride, and padding as shown in Figure 2.10.

Node 
Properties

Type Conv

Name Conv_0

Attributes

Kernel 7,7

Pads 3,3,3,3

Strides 2,2

Inputs

X Name: input
Type: Float32[Batch_size, 3, 
224, 224]

Input

Conv

Figure 2.10: Convolution Operator IR, adopted from Open Neural Network Exchange (ONNX) [74].

IR is especially useful due to interoperability [74], for instance, ML engineers in

a training team can train a model in a specific framework and convert the same
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model into a common IR, in order to collaborate with deployment engineers that

utilise another framework. In certain inference frameworks [173], the IR file is all

that is needed for executing the DL program as it captures the dependencies between

operations and control flows of the DNN program. Additionally, IR provides an

interface and opportunities for high level hardware-independent (graph level) and low-

level hardware dependent optimisation to accelerate executions. There are numerous

DL compilers that focus on both high and low-level optimisation such as Halide [191],

TVM [35] and PET [240]. Their objective is to generate highly optimised machine

code, including scheduling order for execution. Nevertheless, the scheduling order and

execution of a DL program largely depends on the high-level IR.

Scheduling execution on machines and devices is important, as scheduling policies

can affect various production aspects within systems. To schedule DL program

execution on an actual hardware, a process scheduler is needed for scheduling program

execution. Additionally, custom device drivers and device schedulers can also affect

the scheduling efficiency of the program, depending on the accelerators.

2.3.1.4 Execution Scheduling

Before the GPU kernel operations are scheduled to execute on the GPU, the DL

program process is first scheduled onto the CPU by the process scheduler.

Process Scheduling. When a Process Scheduler such as the Linux Completely Fair

Scheduler (CFS) or a custom-built microkernel scheduler [66, 101] decides to run a DL

program among other processes in the same machine, the process scheduler makes the

scheduling decision according to a policy, where policy dictates the scheduling order

with respect to various business aspects such as makespan (the total time it takes to

finish all jobs), fairness (waiting time) and resource utilisation (resources used over

available resources) and latency (time taken for a task to finish its execution).
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For example, consider the following scenario, assuming only one resource unit is

available, no sharing of resources and pre-emption is not permitted (i.e., once a job

is started, it cannot be stopped unless the job is finished or encounters errors). With

the Shortest Job First (SJF) scheduler, the objective is to reduce the average job

completion time, which it does so by scheduling job with the shortest computation

time, however, longer jobs can be starved in such systems [81]. First In First

Out (FIFO) schedules jobs according to the arrival order. FIFO, the objective is

to maximise fairness by scheduling jobs and their waiting time; however, resource

utilisation could be decreased due to long and small jobs blocking up the resources for

sharing [246]. Similarly, Linux CFS’s objective is to maximise fairness with respect

to tasks priority; therefore, a red-black tree data structure is exploited in order to

execute the highest priority thread based on CPU timeshare and task priority [26,

175]. Determining a suitable policy depends on the scheduling scenario.

Although a process scheduler manages which process gets executed next, it does

not manage the actual execution on the external devices such as accelerators, due to

these devices having their own separate vendor-specific device scheduler [156].

Device Scheduling. When a DL program executes on multicore machines with

accelerators such as GPUs, since host CPUs and GPUs are different devices, there

are different vendor-specific device drivers installed in order to aid with scheduling

work onto accelerators. For example, NVIDIA GPUs contain a proprietary device

driver that schedules work onto the device [156]. Note that devices may have different

definitions of resource utilisation. For instance, NVIDIA GPUs report GPU utilisation

as the percentage of time in a given sample interval where one or more kernels executed

on a GPU [174]; the definition does not measure the actual cores’ utilisation but only

whether there is work that is currently being carried out in the given sampling period.

This is not useful to determine how many cores exactly are being utilised.
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Figure 2.11: An example of launching DL operations sequentially (time-share), convolution operation

follows by a GEMM operation onto the GPU. Assuming the sampling period is between the start

and end of the timeline, the GPU utilisation would be shown as 50%.

In Figure 2.9, a DL program using a framework such as NVIDIA Triton Inference

Server [173] parses the DNN graph in IR form, then schedules the DNN operations

through the device driver; the implementation of the DNN operations are implemented

in a hardware-aware DL library [38, 71, 237]. The scheduling order is usually in

topological order to guarantee correctness but can be in out-of-order within the ready

operations [109]. The scheduling of the DNN operations first follow the framework’s

policy for scheduling onto the device [109, 247], then follow the device scheduler’s

policy for actual execution [110, 156]. Figure 2.11 shows an example of the devices

and their corresponding execution order, the accelerator starts executing the DL

operations (GPU kernels) after CPUs initiate the execution through invoking device-

specific APIs. For GPUs, time-sharing occurs when cores or memory on the GPU do

not satisfy an individual GPU Kernel, but when GPU Kernels can “fit” on the GPU,

they can be space-shared.

Since, the hardware efficiency and operational cost are proportional to hardware

usage [16, 244], it is important to utilise these expensive accelerators well in terms

of resource consumption. DL model resource consumption largely depends on the

memory and computation it needs.
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2.3.1.5 DL Model Hardware Resource Consumption Factors

Memory Consumption. Accelerator memory capacity is the major limiting factor

to be considered when executing DNNs in DL training. Consider a DNN with M

parameters, L layers, and inputs with batch size of B, the total inference phase’s

memory consumption Meminfer is approximated with the following:

Meminfer = M + (
L∑
i=0

hi ×B) + ε (2.6)

where h denotes the per layer intermediate outputs and ε denotes the frameworks

or library memory overhead including, for example, temporary memory for compu-

tations. For the total training phrase’s memory consumption Memtrain, G gradients,

optimisers’ states Os are needed for the backpropagation calculation where G and Os

are both 'M [43, 77].

Memtrain = M +G+Os + (
L∑
i=0

hi ×B) + ε (2.7)

Therefore, the memory limitation mainly scales with the batch size B and the model’s

parameters M , and so does the computation.

Computation. The larger the DNN, the more FLOPs the accelerators have to

perform. For the inference phrase, the total inference phase’s computation Cominfer

is given as:

Cominfer =
L∑
i=0

mi × hi ×B (2.8)

where m denotes per layer parameters count.

For the training phrase Comtrain, the additional backward phrase and optimiser

calculation should be taken into account. Calculating the derivatives for each

parameter may require the other parameters’ derivatives due to chain rule [126, 198].
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Additionally, the optimiser’s gradient descent algorithm is computed regarding each

parameter [253]. Therefore, the total computation required is shown as:

Comtrain ' 2× Cominfer +
L∑
i=0

li(m) (2.9)

Discussion. Memory consumption estimation (2.6 and 2.7) of a DL program is

difficult. This is due to the various independent optimisation efforts conducted across

the individual DL frameworks and DL libraries [34, 192, 256], causing difficulties to

account for the memory savings. For example, DeepSpeed ZeRO partitions the model

parameters, gradient and optimizer states to avoid memory redundancy in large-scale

distributed data-parallel training regime [256]. In our estimation modelling, we do

not account for these memory saving techniques.

Nevertheless, the number of FLOPs scale with the input data and DNN

parameters. To saturate the accelerators’ compute capability, engineers can choose

to scale the batch size, optimise scheduling policies, or redesign the DNN model.

2.3.2 Deep Learning Training System Limitations

There are many successful DNN-powered applications today that achieve SOTA

results in domains such as DNA sequencing [8], games [212], and autonomous

driving [12]. However, discovering an accurate and production-ready DNN model

often requires a large number of machines due to the following reasons:

Complex Problem Domains. All of these SOTA DNN models require a huge

number of computations, iterating over terabytes of data repetitively in order to learn

and produce useful predictions. For instance, OpenAI-Five [17] leverages 51,200 CPUs

and 1024 GPUs for multiple months in order to train a single layer LSTM DNN.
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Accuracy

Figure 2.12: The growth of the model parameters in the past years [46, 123, 193, 213, 248]. The

higher number of parameters, the higher accuracy obtained in ImageNet ILSVRC 2012 [53].

Large Models. Solving computationally complex problems [12, 158, 217] often

requires more memory parameters, as it has been shown that larger models can

outperform smaller ones [224]. Figure 2.12 shows selected models the numbers of

parameters. The Alibaba M6 [134] model contains 100 billion parameters, which

requires roughly 372 GB of memory to host the model, exceeding the capacity of a

single accelerator, even at the 80 GB NVIDIA A100 [171].

Large Datasets. To cope with the ever-increasing scale of data, and newly

generated data each day, distributed storage systems spanning across many machines

are leveraged [131, 211]. For example, the size of the July 2019 Common Crawl

uncompressed text dataset was 242 TB [114], exceeding the capacity of a commodity

hard disk in a single machine. The frequent retrieval of training data from many

distributed machines requires new innovation in these storage systems.
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Large Design Space. Searching for an optimal DNN architecture not only

involves carefully constructing the DNNs but also tuning relevant hyperparameters

(hyperparameter tuning), and rapid turn-around experiments [95]. For example, to

search for an optimal DNN, over 12,800 experimental DNNs were trained using Neural

Architecture Search (NAS) at Google [269]; DeepMind evaluated over 1,500 relevant

hyperparameter settings for a LSTM model [151]; calling for both efficient searching

methods and parallelisation across machines.

New & Frequent Data Generation. Coupled with the above challenges, data

is generated each day that may affect previously trained DNN models, and therefore

frequent re-training of the DNN models and data preprocessing is required. For

example, the Meta Community Integrity team require frequent re-training of their

models to avoid potentially misclassified offensive content [86]; also calling for

parallelised training of individual models across machines to keep up with new data.

A large-scale cluster of machines is the ideal solution to tackle the above challenges

in order to support searching and training DNNs using large datasets repetitively

across multiple organisations and teams, at the same time in a cost-efficient manner.

2.4 Deep Learning Training Cluster Management

DL researchers and engineers alike desire (i) a quick turn-around time for training

and evaluating the performance metrics of a DNN in the search for an optimal DNN

architecture, and (ii) high availability of their prediction services with quick response

time. A large-scale cluster of machines can provide the infrastructure and necessary

resources (i.e., the computation, storage, and ease of management [16]) needed for

these services to operate.
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2.4.1 Compute Clusters

A cluster is defined as multiple machines co-located and interconnected with network

capabilities to communicate and provide resources for one and another [16].

There are many forms of large-scale compute clusters, some comprising hundreds

and thousands of machines, across various paradigms such as grid computing [64],

cloud computing [64], fog computing [21] and edge computing [210]. Resource sharing

and problem-solving are the primary drivers for these cluster use cases. Many large-

scale applications today, such as web search [15], social media platform [177, 226]

and video sharing platform [47] run on clusters due to the ability to scale resources

dynamically responding to user traffic demand in a timely manner [207], providing

large amounts of storage and compute resources across multiple tenants (i.e., multiple

organisation and teams) cost efficiently [16].

Compute clusters exist to simplify the deployment of applications and use the

underlying hardware resources efficiently. One of the key technologies that enable

deployment of applications easily across such machines is virtualisation [14, 152].

Virtualisation enables isolation of applications and allows multiple guests operating

systems to co-exist on the same physical hardware. Popular variants of virtualisation

are containers [18], as they allow sharing of host OS kernel and associated binaries

and libraries, executing workloads on the host operating system without hosting a

full guest OS on top of the existing OS.

Jobs & Tasks. Workloads consists of many jobs. A job is defined as the grouping

of one or more tasks to ease management [24, 234]. Consider a DL application with

four containers, where each container requests a GPU to accelerate training of a DNN.

We can coincide the DL application as a DL job with four tasks. An example of a

DL job is given in Figure 2.13.
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Figure 2.13: A DL inference job with three task types and their replicas (copies).

DL training jobs are usually offline, do not require immediate return of results,

and can tolerate delays or failure of machines [81, 86, 108, 140, 162, 246]. In contrast,

online DNN-powered user-facing jobs must respond in a timely manner even under

high numbers of user requests [82, 177, 208].

Managing deployment and assigning resources for these jobs require a layer of

software components to orchestrate systems and machines. Resource management

framework is the layer responsible for the orchestration.

2.4.2 Resource Management

Resource management in clusters can be defined as controlling the mapping of

tasks to hardware resources, enforcing priorities of these tasks for execution and

managing quotas between tenants [16]. Managing clusters of machines and placement

of tasks, via a layer of software components can ease management overheads. A

resource management framework (resource manager) is needed, and it provides a

software interface to automate resource management processes [16]. The two key

responsibilities of cluster resource management are (i) resource allocation – allocate
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the resources to the tasks and (ii) resource assignment – assigning the tasks to the

best machines according to the scheduling policy [52, 76].

API Servers

Scheduler
Scheduler

Metric

2/47

…

Job

Master

Agent

Data 
store

Agent Agent Agent

API ServersAPI Servers

Collect 
Metrics

Figure 2.14: Major components and roles in cluster resource management framework.

These resource managers [24, 90, 226, 233, 234] consist of the following major roles:

master and agent. An overview of resource manager is shown in 2.14. A master is a

locally centralised controller comprises the following software components: (i) cluster

scheduler – a crucial part of resource management within compute clusters responsible

for allocation and assignment decisions, (ii) persistent database – responsible for

storing tasks allocation and assignment decisions, and (iii) API server – a server

for communicating state information and job submission. An agent runs on each

machine, a software component that receives decisions from the master and manages

execution of tasks, communicating machines’ state information back to the master.

Quality of Service (QoS). One of the key responsibilities of the resource manager

is to ensure tasks’ QoS requirement are met [31, 51, 244, 264]. The QoS requirement

are maintained by defining one or more Service Level Agreements (SLAs) between

the cluster operator and the task’s owner [112, 179]. A SLA is defined as a contract
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that includes the consequences of meeting or missing the task’s objectives, whereby

the objectives can be a target value or range of values [112, 179]. Therefore, cluster

scheduler decisions can have a significant impact on task QoS.

Cluster Scheduler. A cluster scheduler makes the resource assignment decision

by selecting appropriate machines based on the scheduling policy, which is similar to

process scheduling mentioned in Section 2.3.1. A cluster scheduling policy can make

these assignments based on a series of rules heuristically [24, 83, 234] or formulate a

problem in multiple dimensions and solve them through optimisation approaches [68,

76, 80, 167]. An optimal policy can increase the allocation rate of a cluster, which

in turn increases resource utilisation [229], boosting financial sales (i.e., able to sell

more rentable compute resources by harvesting unused resources. For instance, Spot

Instances [10] and Harvest VM [11]) and cost efficiency; thus, the cluster scheduler is

one of the most important components within the resource manager.

Operating a large-scale cluster of machines and scheduling tasks comes with many

challenges. These compute clusters require a lot of power to operate [124, 132, 200,

244], encounter failures [49, 140, 163, 203], have to abide by agreements set between

cluster operators and users [112, 179], and have to consider the effects of different

hardware generations [16, 51, 268].

2.4.2.1 Hardware Heterogeneity

Compute clusters are created by purchasing the underlying hardware in bulk to

benefit from economies of scale [16]. In practice, these compute clusters have

various generations of hardware due to long lifetime and application demands [51,

95, 147, 162, 164]. For instance, Microsoft recently indicated their compute clusters

currently consist of twenty generations of hardware, thus requiring automated tuning

of applications to achieve satisfactory performance [268]. Similarly, when scheduled
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tasks depend on each other, stragglers (slow workers) manifest from tasks scheduled

onto older generation hardware [268]. Thus, it is important to be aware of the

underlying hardware when scheduling tasks.

2.4.2.2 Resource Utilisation

A resource manager’s key objective is to make high-quality assignments of tasks to

improve cluster resource utilisation [229], i.e., binding a task to an appropriate node

for the task execution. A core element of the resource assignment decision is making

sure the candidate machines have adequate resources to run the tasks. Formally, this

can be expressed as for each machine m, the resource type ri, the requested resources

of task tj must be able to be adequately accommodated by the machine capacities Cm,

∀ri ∈ R,
∑

j

∑
i tj × ri ≤

∑
mCm. Resource allocation is a metric for the allocated

resources, and one of the goals of a cluster resource manager is to increase the resource

allocation rate to improve financial sales [83, 118], however, a high resource allocation

rate does not necessarily mean high resource utilisation.

Resource utilisation is a key metric to measure whether resources are used

effectively for task execution. The resource utilisation metric can be measuring any

resources available such as power, CPU, memory, disk I/O, and accelerators. For

instance, a task can request 4 CPUs, but the majority of the task execution may only

ever utilise 1 CPU core. Therefore, underutilised machines, i.e., commonly defined as

machines that are utilising <80% of their resources [229], contribute to undesirable

financial and operational expenses. It is often undesirable to utilise machines to

the maximum capacity due to unstable performance, lower system availability, and

thus violating SLAs [41]. Resource underutilisation often occur due to application

engineers do not necessarily understand their application performance on different

generations of hardware and their resource consumption; therefore, it is difficult

for engineers to estimate the resources required to execute their tasks, leading to
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overestimate resource requirements [7, 52]. In addition, cluster operators may reserve

machines to account for machine failures [234], peak request loads [52] and power

delivery interruption [167]. As a result, compute clusters usually operates at low

CPU utilisation, ranging from 20% to 60% [7, 226, 229], which greatly reduces

cost-effectiveness. A common approach to improve cluster resource utilisation is by

assigning multiple tasks onto the same physical hardware, this is called co-location.

2.4.2.3 Co-location & Interference

Co-location can improve resource utilisation in large-scale compute clusters, thus

boosting cost efficiency, and power usage ratios [51, 124, 132, 167, 234]. However,

interference (performance degradation) arises when multiple tasks are contending for

resources [51, 66, 148, 263], leading to ineffective execution of tasks, prolonged task

execution time, and security risks [160]. Figure 2.15 shows the comparison between

safe and unsafe co-location.

𝒕𝒊𝒎𝒆

𝑹𝒆𝒔𝒐𝒖𝒓𝒄𝒆

Task B

Task A

(a) Safe co-location without interference.

𝒕𝒊𝒎𝒆

𝑹𝒆𝒔𝒐𝒖𝒓𝒄𝒆

Task A

Task B

(b) Unsafe co-location, interference manifest due to

resource contention.

Figure 2.15: Example of safe and unsafe co-location.

Unfortunately, achieving safe co-location of tasks is difficult due to task QoS

constraints [31, 247] and hardware heterogeneity [51, 52]. To achieve safe co-location,

it is crucial to understand how resources are shared between tasks. Fundamentally,

interference is a system phenomenon in resource sharing computing systems, and

can manifest in any component of a computing system, ranging from power [132] to
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hardware resources [29, 51, 66, 160, 263]. Particularly, the following resources often

gained attention in system performance optimisation:

CPU & Memory. One of the primary shared resources in machines are CPU

cores in one or more CPU sockets; resource contention in CPUs arises when tasks

do not acquire the necessary number of CPU cores for execution, one of the primary

causes of which is workload spiking (i.e., a particular task suddenly needs to consume

all the resources due to computational demand) [51, 66, 263]. The introduction

of hyperthreading [242] in CPUs also introduced more risks of interference due to

CPU dividing physical core resources (e.g., the instruction micro-op queue) between

tasks, when tasks are running on sibling cores [66]. The same form of interference

can also happen in physically shared resources such as L1/L2 caches [169], memory

bandwidth [159] and Last Level Cache (LLC) [104, 148]. For instance, LLC

interference manifests when many tasks are reading and writing data to the shared

LLC, causing data needed by a task to be evicted quickly, leading to cache misses

when the task requests the now evicted data.

GPU & PCIe bandwidth. As of the writing of this thesis, the majority of GPUs

do not provide fine-grained physical resources partitioning except, for example, the

NVIDIA A100 GPU [170], i.e., the ability to physically (spatially) share the GPU

hardware resources for task execution instead of time-sharing. Therefore, for the

earlier GPU hardware generations, the primary reason for interference is queuing

latency for accessing GPU hardware resources such as the processing elements, on chip

memory bandwidth and the PCIe interconnects [29, 138, 247, 251]. PCIe bandwidth

interference manifests similarly when bandwidth is not sufficient for frequent and high

volume of data transfer between the host machine and the PCIe attached GPUs [29].

Table 2.2 shows examples of different levels of interference between two DL

workloads across two GPU architectures.
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Model Batch

Size

Device Isolation

Time

Co-location

Time

Slowdown

VGG19 64 V100 350s 487s 1.39X

MNASNet 1.3 64 V100 227s 281s 1.24X

VGG19 64 2080 556s 688s 1.24X

MNASNet 1.3 64 2080 262s 302s 1.15X

Table 2.2: Examples of DL workloads interference when co-locating MNASNet and VGG19 on GPUs.

Each workload was set to train for 10 epochs.

Naively co-locating tasks can lead to severe interference and hence performance

degradation. Matching suitable pairs of tasks and respecting specific resource

requirements is difficult [31]. For example, Zhang et al. [263] co-locates offline

processing tasks with user-facing tasks and discovered interference can cause perfor-

mance degradation up to two times. Mystic [230] observed interference stemming

from co-locating two tasks from thirty plus applications can range from 45% to

more than 250% on GPUs. Thus, resource managers need to consider the possible

effect of interference, understand the tasks’ resource access patterns to determine the

acceptable performance degradation level and schedule tasks accordingly [31, 52].

2.4.2.4 Interference-aware Resource Managers

Interference is an important and fundamental problem to be addressed in compute

clusters [31, 51, 107, 148, 231]. There are two types of data-driven approaches (see

Table 2.3) that alleviate interference at scheduling time (i) reactive – involves profiling,

detecting, and action, and (ii) proactive – leverage historical data to make predictions

without profiling and detection.
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Resource Manager Resources Approaches Assumptions

Bubble-Up [148] Memory Reactive, stress testing. Isolated stress testing.

CPI2 [263] CPU, Cycles Per Instruc-

tion

Reactive, statistical outlier

detection.

Repetitive Jobs.

Whare-Map [146] CPU, Instruction Per Sec-

ond

Reactive, analytical model,

random trial-error.

Repetitive Jobs.

DejaVu [231] vCPU, vMemory, Hard-

ware performance coun-

ters

Reactive, classify tasks into

classes, monitor performance

ratio.

Isolated monitoring (days to

week).

Smite [265] Memory, CPU Functional

Units

Reactive, stress testing, ana-

lytical model.

Profile both co-located appli-

cations.

Paragon [51] Memory, CPU Reactive, ML classification

after profiling.

Profiling duration of∼4 mins,

Workload phases do not devi-

ate.

Heracles [136] Memory, CPU, Network,

Power, Disk

Reactive, feedback-based

control.

No significant change in

workload.

Janus et al. [107] CPU Reactive, statistical estima-

tion.

all tasks have same priority

& All machines have equal

capacities.

PARTIES [31] CPU, Memory, Disk, Net-

work

Reactive, stress test work-

load, reactive co-location

Fine grained monitoring.

Resource Central [41] CPU Proactive, predict P95th

CPU utilisation.

Task utilisation correlated to

users.

FIRM [188] CPU, Memory, Network,

Disk

Proactive, RL to control re-

sources.

Offline simulation available to

train RL model.

Mystic [230] GPU Reactive, ML classification

after profiling.

Profiling duration of ∼10

seconds.

KubeKnot [227] GPU Reactive, online modelling of

running tasks future usage.

Task usage does not fluctu-

ate.

Phull et al. [184] GPU Proactive, discrete time

graph of access patterns.

Repetitive Jobs.

Xu et al. [250] GPU Reactive, collect features of

each job and predict interfer-

ence levels to co-locate VMs.

Homogenous GPUs.

Table 2.3: Overview of interference-aware cluster resource manager approaches.
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Reactive, CPU-Based. Bubble-Up [148] carefully stress tests an application

with potential co-runners, deriving a memory pressure score to drive co-location.

DejaVu [231] profiles an application for at least a day to a week, then leverages

unsupervised learning to cluster tasks to determine resource allocation for each task

class, driving co-location scheduling decisions. Smite [265] characterises application

individually by stress testing and leveraging linear regression to predict the tail latency

of the target application when co-located to drive co-location decisions. Similarly,

Paragon [51] combines both hardware heterogeneity and interference slowdown into

a machine learning problem, it first profiles incoming tasks for a few minutes,

uses Singular Value Decomposition (SVD) to perform collaborative filtering to

identify similarities between tasks to drive scheduling decisions. Heracles [136] and

PARTIES [31] characterised interference on multiple resources such as CPU, network,

Disk, and memory, and developed a feedback-based heuristic algorithm to drive co-

location decisions. Janus et al. [107] conducted statistical analysis on Google Cluster

data [194], realising CPU requirements distribution vary significantly. Yet, the high

percentiles of total CPU requirements can be approximated reasonably well by a

Gaussian distribution; thus it is sufficient to co-locate tasks based on the distribution

prediction, to increase resource utilisation and achieve satisfactory performance.

Reactive, GPU. Similar to Paragon [51], Mystic [230] profiles GPU tasks in

an isolated machine to extract specific GPU hardware features such as Stream

Multiprocessor (SM) efficiency, texture cache hit rate and reads to feed into SVD, in

order to derive an interference score, driving co-location decisions. Kube-Knot [227]

predicts GPUs resource consumption based on execution patterns after tasks have

been executing for some time to drive live migration and co-location decisions.

The above works explore offline analytics, online profiling and reactively mitigate

interference and maintain high resource efficiency. While these works are effective,
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now that application behaviour, resource consumption and cluster scheduler decisions

are recorded and collected, resource management techniques can become even more

effective by being able to predict the value for relevant metrics of interest [19]. Prior

history may be an accurate predictor of the future behaviour for periodic tasks, tasks

with well-defined behaviour and cluster characteristics.

Proactive, CPU-Based. Resource Central [41] identifies and extracts relevant

key features (of up to hundreds) of submitted jobs, using ML algorithms to predict

average and 95th-percentile CPU utilisation to co-locate tasks for improving resource

utilisation. FIRM [188] leverages offline simulation and labelling in order to train

(i) Support Vector Machine (SVM) models for classifying tasks for resource re-

provisioning, and (ii) individual RL model for candidate tasks in order to scale

up/down based on estimated interference levels.

Application-agnostic. While the above interference-aware cluster resource man-

agers are effective given sufficient time for online profiling to obtain metrics of

interest. They are mainly application-agnostic, i.e., they do not leverage any

application-specific knowledge that is readily available in the job submission request

or access job-specific application performance metrics. For example, Decima [144] is

a cluster scheduler for large-scale data-processing, Spark [255] specifically; it extracts

information from the job’s DAG at submission time and leverages RL to learn to

schedule tasks. Sharad et al. [207] proposed an approach to leverage historical

serverless function’s idle time to build a predictor to forecast the idle time for

scheduling functions, resulted in less resource idleness and thus cost savings. Hence,

it is beneficial for cluster resource managers to leverage application-specific domain

knowledge for tasks scheduling.
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Scheduling algorithm type. The majority of the interference-aware resource

manager scheduling algorithms are based on heuristics, with the exception of

FIRM [188], which leverages RL to automatically adjust resources when interference

is detected. For example, Resource Central [41] avoids interference by heuristically

avoiding over-subscribing the CPUs, using the predicted 95-th percentile utilisation.

Xu et al. [250] heuristically minimises interference by packing jobs on least-loaded

GPUs. PARTIES [31] derives a heuristic feedback-based algorithm to adjust the

application resources. Smite [265] estimates the performance slowdown after profiling

and heuristically migrate jobs that can caused high interference. Paragon [51] samples

servers and derives a co-location score to select the best servers for each incoming job.

There is a reason why resource managers mainly leverage heuristic-based algorithms

instead of optimisation algorithms such as integer linear programming, and network-

flow; this is due to the interpretability of the results and lower computational costs.

Therefore, interference-aware resource managers should opt for an approach that is

easily understandable and computation efficient.

Numerous data-driven methods are presented, and their common goal is to utilise

resources efficiently, and able to mitigate performance degradation stemming from

interference. However, there is a lack of accelerator-based, specifically, GPU cluster

resource schedulers that are proactive and able to mitigate interference at scheduling

decision time. Furthermore, application-aware cluster resource management can bring

additional benefits to general cluster resource managers due to domain knowledge on

data inputs, computation, communication patterns and jobs characteristics [109, 140,

161, 162, 187]. In recent years, there have been numerous resource management

approaches developed for deep learning training clusters.
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2.4.3 Deep Learning Training Clusters

Large-scale DL training in compute clusters requires distributed machines to fre-

quently communicate due to the iterative nature of training with large-scale datasets.

To minimise communication overhead and provide accelerators for computation,

compute clusters specifically built for DL training are now common practice [17, 81,

95, 108, 113]. This thesis defines DL training clusters as compute clusters specifically

for DL training.

In a recent production DL training cluster study, Hu et al. [95] indicates the

majority of the jobs are single-GPU (> 50%) and their average GPU utilisation can

range from 10% to ≤50%. A potential reason to the phenomena could be due to the

application constraints requiring DNN models to be small, in the region of ≤10GB.

Therefore, training a lot of small models on a single GPU on many machines is

sufficient during early development. Additionally, evaluating a set of hyperparameters

due to newly generated data [95] could be another potential reason for the many single-

GPU jobs. For large DL models (>10GB), training models across many machines can

accelerate training and in general have higher GPU utilisation when compared to

jobs using a single GPU, with utilisation ranging from 40% to >60% [95, 108]. Both

categories of jobs are equally important in producing a high-quality DL model.

2.4.3.1 Distributed Training

The time needed to train a DNN model using a single machine can range from minutes,

hours, or days to months; it is now a common practice to deploy tasks across many

machines to accelerate models training [50, 108]. In particular, there are various

distributed learning paradigms, data parallel, model parallel, and pipeline parallel.
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(a) Parameter Server and Worker strategy [50]
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(b) Ring ALLREDUCE strategy [72]

Figure 2.16: Data parallel training strategies.

Data Parallel tasks are defined as each task has its own copy of DNN model and

performs training in isolation. There are usually two training strategies in data parallel

training, where the gradients are communicated in centralised or decentralised fashion,

as shown in Figure 2.16. In centralised strategy, where the gradients g calculated

by each task typically are sent to one or more dedicated master tasks (parameter

server) synchronously or asynchronously, and perform statistical optimisation to

get the processed gradients ĝ [4, 50, 168]. Finally, the processed gradients ĝ are

broadcasted back to each training task in order to update the local model. In

decentralised strategy, there are no dedicated master tasks to communicate gradients,

and training tasks communicate with one another partially or fully to obtain ĝ. A

popular implementation of decentralised strategy is Ring ALLREDUCE, where each

training task communicates with its right most neighbour in a ring, after two passes

of the ring, each training task will have obtained the full set of gradients.

Major bottlenecks in Data Parallel training are stragglers [27] and communication

overhead [72, 109]. Communication overhead scales with the number of tasks

participating in the distributed training due to bandwidth used when communicating

g. This is further complicated in shared multi-tenant clusters where network
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𝑭𝑭𝟎𝟎𝟑𝟑 𝑩𝑩𝟎𝟎𝟑𝟑

Figure 2.17: Model Parallelism, Fij and Bij indicate the forward and backward phase at ith step

with jth stage (model part).

traffic is high. The system research community focuses on alternate hardware [81,

113], topology arrangement [9, 165] and communication procedures [55, 209, 262]

to tackle the aforementioned problems, whereas the machine learning research

community focuses on statistically efficient optimisation to side step communication

overhead [111, 253]. As recent research suggests, larger models can express and are

able to learn complicated functions, which poses more memory resource requirements

and consequently leads to hardware being unable to host a single large model [50].

This is addressed via model parallelism.

Model Parallel tasks are defined as each task occupying a part of a DNN model,

which is then executed in stages, illustrated in Figure 2.17. This is useful when

total memory consumption for a model exceeds the capacity of the accelerator, it is

therefore necessary to split the model from n into k parts for training. The amount

of data communicated between machines is much smaller than with the data parallel

counterpart, as only intermediate activation and gradients are communicated. The

major downside of this paradigm is that at any given time, only the parts that are

ready to execute can be active, leading to machines that host the other n − kactive

tasks idle, degrading cluster resource utilisation [161]. Second, the burden of deciding
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how a model should be partitioned falls on engineers, which often is suboptimal and

time-consuming [6, 157]. One solution is to leverage pipeline parallelism.
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GPU1

GPU3

GPU2

𝑭𝑭𝟎𝟎𝟎𝟎 𝑭𝑭𝟏𝟏𝟎𝟎 𝑭𝑭𝟐𝟐𝟎𝟎 𝑩𝑩𝟎𝟎𝟏𝟏 𝑩𝑩𝟏𝟏𝟎𝟎 𝑩𝑩𝟐𝟐𝟎𝟎 𝑭𝑭𝟑𝟑𝟎𝟎 𝑭𝑭𝟒𝟒𝟎𝟎 𝑭𝑭𝟓𝟓𝟎𝟎
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Figure 2.18: Pipeline parallel strategy.

Pipeline Parallel is defined as executing operational stages independently, as

shown in Figure 2.18. Similar to model parallel, pipeline parallel execute different

stages of a model, but overlapping the communication and computation with different

inputs, i.e. operating on different batches of data and parameters; this technique can

effectively addresses the problem of machines being idle waiting for an iteration to

be completed. In the extreme case of only one stage, the pipeline training becomes

model parallel training [97]. For large models, pipelining can scale to more machines

in comparison to both data and model parallel. However, naive pipelining has to

carefully accounted for stale parameters, this is because the Bt batches executing are

using t − m parameters, leading to stale gradient updates, and could hinder model

learning. Additionally, pipelining requires careful placement of the model stages on

machines similar to model parallelism, this is because stages executing at different

speeds can lead to stragglers; while excessive numbers of model stages can lead to

over communication, both problems can lead to underutilisation.
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2.4.3.2 Resource Management Limitations for Deep Learning

As with traditional compute clusters, DL training clusters require a resource manager

to assign tasks to machines, ensure fairness and improve cluster resource utilisation.

However, there are challenges in leveraging existing cluster resource managers such

as Kubernetes [24], YARN [233] and Mesos [90], for DL training clusters.

Exclusive Lock & Coarse-grained Cluster State. At the time of writing,

current cluster resource managers are not built to cater for DL training and considering

the actual load in clusters [227, 236]; there is no explicit sharing mechanism for

DL training jobs in many existing DL training clusters, including co-location [95,

108, 227, 246]. Note that, currently, NVIDIA A100 GPUs do provide Multi-Instance

GPU technology for hardware-level physical resource sharing, however many existing

DL training clusters do not yet contain these newly released GPUs [95, 108, 247].

Although training jobs are often compute and communication intensive, there are

many reasons for dedicated GPUs training jobs to experience underutilisation [108].

For example, inefficiencies in data processing code [247] and exclusive locks on GPU

resources [95, 246], restricting co-location. Analysis by Microsoft [108] has shown

that average GPU utilisation is around 55%, and this could be due to dedicated

GPU training; Similarly, Alibaba [247] reports an average of 15% GPU utilisation.

Figure 2.19a illustrates the entire GPU resource is dedicated to one task only.
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(a) Exclusive lock of GPU resource.
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(b) GPUs fragmentation & Multi-tenancy.

Figure 2.19: Illustration of exclusive lock and resource fragmentation in DL training cluster.
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Placement Sensitivity & Locality. Since DL training requires large amount of

data and its training process is iterative, the number of jobs situated on a machine

matters (see Figure 3.8), as the sharing of resources is not only limited to GPUs but

to network, PCIe bandwidth and disk I/O [95, 108, 142, 246]. Additionally, jobs that

are spread across machines perform worse due to locality. For example, instead of

eight DL training tasks spread across eight nodes, each occupying a GPU, it is often

desirable to place them all on one node with eight GPUs [81, 266], a simple example

is shown in Figure 3.8. DL training jobs can specify locality requirement during job

submission time, however, if there is no satisfactory condition, the job must wait,

contributing to high waiting time, low cluster utilisation and resource fragmentation.

Task B2

Task A1 Task B1

Task A2

(a) Tasks have to communicate across machines causing

performance degradation.

Task A1

Task A2

Task B1

Task B2

(b) Tasks only communicate internally.

Figure 2.20: Illustration of the importance of locality within DL training cluster.

Multi-tenancy & Resource Fragmentation. Compute clusters are usually

multi-tenanted, providing services for many organisations or teams. Multi-tenant DL

training clusters typically have more users submitting jobs than the clusters’ resources

can execute [81, 95, 108, 246, 266]. In production cluster analysis at Microsoft [81,

108, 246], job waiting time (starvation) can range from tens of minutes to hours due

to exclusive locks and long execution times. This is further complicated when jobs

have diverse resource requirements and each tenant reserves resource quotas with

specified limits, i.e., the number of devices (CPUs and GPUs) and memory [95, 266].
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For instance, Zhao et el. [266] identifies that a tenant’s DL training jobs have to wait

significantly longer for GPUs than they would in a private cluster of size at least equal

to the resource quota. Even when there are enough resources for a particular tenant,

it is desirable to reserve adequate resources in the case of job’s submission burst and

maintain fairness, lead to low utilisation.

As a result, cluster resource managers are proposed that are specifically tailored

to DL training clusters, aiming to optimise DL training jobs performance, achieving

faster turn around time and increasing cluster resource efficiency.

2.4.4 Deep Learning Training Cluster Resource Managers

DL training cluster resource managers are proposed with varying motivations to

address the aforementioned challenges in Section 2.4.3.2:

Job Completion Time (JCT) & Locality. Speeding up DL JCT to effectively

increase system throughput and reduce job waiting time. Many DL-aware cluster

schedulers adopt approaches that aim to leverage DL-specific workload characteristics

to optimise the training progress. For instance, Optimus [182] accelerates training by

adaptively scaling tasks (parameter servers/workers) based on fitted regression to

training progress and improve locality by consolidating tasks evenly on each machine,

with regard to the type of the task. Amaral et al. [9] proposes a topology-aware

approach to minimise cross-socket and cross-machine communication to mitigate

communication latency. Tiresias [81] and ByteScheduler [181] speed up JCT by

understanding the communication patterns of DL training jobs, proposing network-

specific prioritisation approaches. KungFu [142] adapts the batchsize, communication

strategy and number of workers based on monitored performance metrics such as

throughput and gradient noise scale [149], to speed up JCT. Pollux [187] derives

an analytical model, based on gradient noise scale [149], to tune the batch size and
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leverage genetic algorithms to migrate jobs to improve JCT. Tiresias [81] improves

locality by consolidating jobs with large communication demands. Gavel [162] and

Themis [141] on the other hand speed up JCT by improving the selection of underlying

hardware leveraged for training jobs.

Fairness. Improving fairness can be achieved by one or more of the following,

allocate equal resource share, timeshare, waiting time and equivalent computation.

HiveD [266] adopts the buddy allocation algorithm to manage multi-tenant fairness,

ensuring tenants can request GPUs when they need them (equal resource share).

Gandiva [246] schedules jobs in a round-robin manner to ensure fairness for each

job and in the hope that short jobs finish as soon as possible; improving job turn-

around time for quick DNN architecture experimentation (equal time on resources).

Tiresias [81] leverages a multi-level feedback queue with the least attained service

to promote jobs with high waiting time (equal waiting time). Gavel [162] and

Themis [141] maintain fairness by switching hardware when they experience slowdown

due to hardware and machine assignment (equivalent computation).

Resource utilisation. Improving resource utilisation in DL cluster is important.

One effective means to do so is by making modifications to existing DL cluster

resource manager frameworks to enable co-location. This is especially important

given the current state of GPU utilisation is low in multi-tenant DL compute clusters.

Gandiva [246] is the first DL training cluster scheduler to enable co-location; however,

it reactively monitors the training progress of a job and migrates the job after detecting

performance interference. Antman [247] introduces a DL GPU operation manager

to control co-located jobs execution; the manager sits between the application and

device driver to allow effective throttling of lower priority jobs when interference is

detected between co-located jobs. Both the Gandiva and Antman approaches require

modification of the DL frameworks, which is of high maintenance cost.
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Scheduler Objectives Approaches Assumptions & Evaluations

Amaral et al. [9] JCT,

Locality

Reactive, analytical model for communica-

tion cost and utility.

Jobs’ graphs available. | ? –

2 GPUs, 6 models. | ♣

Optimus [182] JCT,

Locality

Reactive, add or remove task based on

predicted training progress via regression

model learned online.

Modify DL Frameworks for

job progress. Data parallel

jobs only. | ? – 12 GPUs, 4

models. | ♣

Gandiva [246] Fairness,

Resource

utilisation

Reactive, enable co-location, migrate jobs

when progress slows down.

Modification of DL Frame-

works. Profile jobs in isola-

tion. | ? – 180 GPUs, 10

models. | ♣

Tiresias [81] JCT,

Locality,

Fairness

Reactive, consolidate jobs to maximise

locality via network profiling and promote

jobs based on the Gittins index [3].

Profile jobs in isolation. Data

parallel jobs only. | ? – 60

GPUs, 10 models. | ♣

ByteScheduler

[181]

JCT Reactive, prioritise jobs with small tensors

size to speed up communication.

Integrate a new communica-

tion layer for DL frameworks.

Modification of DL frame-

works and training code. | ?

– 128 GPUs, 3 models. | ♣

Themis [141] JCT, Fair-

ness

Reactive, exchange hardware type and

number of resources with respect to fairness

between jobs.

Modification of DL frame-

works. | ? – 64 GPUs, 11

models. | ♣

Antman [247] Resource

utilisation

Reactive, throttle low-priority jobs via DL

frameworks.

Modify DL frameworks to

coordinate with cluster sched-

uler. Profile jobs in isolation.

| ? – 64, 5000 GPUs, 9

models. | ♣

HiveD [266] Fairness Reactive, leverage buddy allocation algo-

rithm to improve fairness due to resource

fragmentation.

– | ? – 96, 2232 GPUs, 11

models. | ♣

KungFu [142] JCT Reactive, scale batchsize, communication

strategy and workers based on monitored

performance metrics.

Modification of training

code.| ? – 32/16 GPUs, 4

models.

Pollux [187] JCT Reactive, scale task based on analytical

model and meta-heuristic algorithm; tune

batch size of each job.

Modification of training code.

| ? – 64 GPUs, 6 models. | ♣

Gavel [162] JCT, Fair-

ness

Reactive, exchange hardware type based on

system throughput.

Modification of training code.

| ? – 36 GPUs, 7 models. | ♣

Table 2.4: DL training cluster resource managers and their design goals.

? and ♣ denote empirical system and large-scale simulation evaluation, respectively.
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2.4.5 Discussion

Many DL training resource managers focus on accelerating training, but there is lack

of support for improving resource utilisation and fairness. They are all reactive, i.e.,

decisions are based on online monitoring and profiling in isolation, which ties up GPUs

and reduces resource efficiency.

Gandiva [246] and Antman [247] are the only resource managers designed to

improve resource utilisation as one of their main objectives. They improve resource

utilisation by modifying existing resource management and DL frameworks to allow

sharing of GPUs. However, interference manifests as a result of GPU sharing.

Gandiva [246] reactively mitigates interference by migrating tasks after interference

is detected. Antman [247] reactively throttles low-priority tasks similarly upon

interference detection. Importantly, both approaches require online monitoring

and profiling in isolation on dedicated GPUs before deployment to obtain correct

utilisation patterns or GPU kernel patterns, which does result in overheads.

A few DL training resource managers exploit DNN model characteristics to

accelerate training [9, 81, 181, 187], usefully DNN model characteristics may be able

to provide hints on resource utilisation, allowing DL training resource managers to

make proactive scheduling decisions; however, there is a lack of analysis between

DNN model characteristics and heterogeneous GPU utilisation. We focus on this

potential in Chapter 3. None of the existing DL training cluster schedulers address

the hardware heterogeneity, co-location, and interference challenges in a proactive

manner while exploiting the intrinsic features from the DNN models. Yet, in order

to improve DL training cluster GPU utilisation, makespan and job waiting time, an

application-aware cluster scheduler should:

• understand the utilisation relationship with the submitted DL model, in order

to predict the utilisation of a DL model likely to have given the hardware.
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• avoid interference between co-located DL jobs that share the underlying

hardware by co-locating suitable jobs that likely to fit the hardware and execute

well together; and

• improve fairness by scheduling DL jobs likely to finish quickly while avoiding

large DL job starvation.

2.4.6 Summary

As discussed in Section 2.4.2, efficient usage of cluster resources requires scheduling

decisions that consider application characteristics and the underlying infrastructure.

Within the same section, the thesis also explored how proactive scheduling approaches

can be beneficial to cluster schedulers making high-quality decisions at resource

assignment scheduling time in comparison to reactive approaches. This section has

surveyed many existing DL training cluster schedulers that adopt various techniques

to improve DL training jobs performance. The section started with the current

challenges in DL training compute clusters (§ 2.4.3.2), and then discussed the

relevant cluster schedulers (§ 2.4.4) that focus on one or more of the following: JCT,

Fairness, and Resource utilisation. Finally, we identified the need for a co-location

enabled, proactive interference-aware, DL-specific training cluster scheduler that

understands the hardware consumption patterns, make predictions and maximises

resource utilisation. To achieve this, we need to understand the relationships between

co-located DL training workload and interference.

In Chapter 3, the thesis presents analysis that enables understanding of the

relationship between DL models and GPU utilisation; a large-scale production GPU

DL training cluster analysis that provide motivation for the need of a DL training

cluster scheduler that is proactive and interference-aware. In Chapter 4, the thesis

presents Horus, a proactive DL training cluster scheduler that support these goals.
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Towards a Proactive Approach to

DL Training Scheduling

This chapter presents analysis and justification for a proactive approach in DL training

compute clusters. First, to illustrate that DL training cluster resource management

challenges exist, we present an analysis of DL workload data (§ 3.1). We show

that low GPU utilisation persists across existing large-scale industrial production

DL training compute clusters. Section 2.4.2.3 explains why co-location is important

to boost average cluster GPU utilisation; we then ascertain the relationship between

GPU utilisation and interference for co-located DL jobs by conducting a series of co-

location experiments(§ 3.2). Heterogeneous GPUs are also presented within the co-

location experiments, identifying the effects of hardware generation to GPU utilisation

(§ 3.2.1). To understand the relationship between GPU utilisation and DL model

characteristics, we conduct an in-depth analysis between the features that can be

extracted from the DL models’ IR (§ 3.3). We observe that DL model characteristics

have a positive correlation with GPU utilisation and GPU utilisation is also correlated

with interference levels.

60
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3.1 DL Training Cluster Underutilisation

In this section, we analyse a production DL training cluster and observe that GPU

underutilisation exists and is a systemic issue across production DL clusters with

similar scale. Additionally, we observe that a large number of DL training jobs in

production DL clusters are single-GPU, presenting opportunities for co-location.

3.1.1 Cluster Characteristics

Cluster Environment. The cluster studied is a production DL training cluster,

which we refer to as Apollo. At the time of the study, Apollo is a 500+ GPU

cluster, with each machine containing 4 GPUs (NVIDIA V100 or NVIDIA P100).

Apollo serves multiple teams in the research department of a major Internet company,

including both research and production engineers. Each team has its own resource

quota. When the demands of a team increases, new machines are purchased and

allocated to the team’s quota. Apollo supports various applications in the DL

training pipeline, e.g., data preprocessing, model training and hyperparameter tuning

as outlined in Section 2.3.2. These jobs are submitted by research groups exploring

and developing viable commercially valuable models. The majority of the models fall

into the DL domain of computer vision. Jobs submitted include both single-GPU

and multi-GPU jobs; for multi-GPU jobs, distributed training strategies discussed in

Section 2.4.3.1 are leveraged, utilising PyTorch [178] and TensorFlow [4].

Job Management Software. Kubernetes [24] is leveraged as the resource manager

for Apollo. To interact with Kubernetes, a management software framework is

implemented to allow individual users to submit their DL training jobs, similar to

Figure 2.14. The management framework allows users to track their experiments and

allow administration to manage resource quotas. Resource allocation decisions are
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Metric Unit Type Source

Size per task discrete Relational

Database

Duration second aggregate Relational

Database, Time

Series Database

GPU utilisation percentage sampled DCGM, Time

Series Database

GPU memory byte sampled DCGM, Time

Series Database

Table 3.1: DL jobs metrics collected and their corresponding source in Apollo.

made following three steps: (i) A user submits their job to the management web UI

layer, specifying the resource demands, typically by instance type, i.e., pre-configured

resource combination. (ii) the management software then polls each team’s queue

for pending jobs; upon submission to Kubernetes, jobs are tagged with relevant

labels such as job name and unique identifier. (iii) Kubernetes allocates jobs to

machines following the default policy. After the job is scheduled, it keeps running

until completion, terminated by the user, killed by the system, or fails due to errors.

No sharing of GPUs or preemption mechanisms are enabled.

Performance Metrics. Since the study’s aim is to measure the performance of

current DL training resource managers, the metrics of interests are: (i) the number

of DL jobs, (ii) the size of DL jobs, (iii) the duration of DL jobs and (iv) the average

GPU utilisation for each job, as reported by NVIDIA GPUs.
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The dataset 1 was collected via a custom aggregation process that interacts

with (i) a time series database component similar to [75] and (ii) a relational

database. The time series database contained the actual resource utilisation and

memory consumption per GPU, reported from the NVIDIA Data Center GPU

Manager (DCGM) daemon [73]. Table 3.1 lists the precise set of metrics collected in

Apollo. The relational database contained job request information, such as, number

of requested GPUs, and the submitted, start of execution and finish times for the

training jobs. For GPU utilisation and memory consumption, we aggregated these

per DL task and calculated the corresponding mean average per DL job via the labels

attached to the metrics time series.

3.1.2 The Importance of Co-location

To emphasise co-location is important in DL training clusters, we analysed and

compared Apollo with previously reported DL training clusters of comparable size

and characteristics (see Table 3.2): Helios [95], a production DL cluster in SenseTime;

Philly [108], a production DL cluster in Microsoft, where it has been leveraged for

various DL training resource manager research evaluation and analysis [81, 187, 246,

247]; and AntMan [247], a production DL cluster in Alibaba Group, leveraged for both

public and private use. For the rest of the analysis, we omitted jobs that have average

GPU utilisation of 0% in Apollo due to management or machine errors, leading to

jobs entering the zombie state.

Requested GPUs. Table 3.2 shows both the average and maximum number of

requested GPUs across production DL training clusters. We observe that Apollo’s

average number of requested GPUs (18.1) are much higher than the other clusters

reported in the literature (<5) and have a much lower proportion of single-GPU jobs

1The dataset is a month-long trace consisting of 300+ jobs from September 2020.
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Helios [95] Philly [108] AntMan [247] Apollo

Trace Duration 6 months 83 days 1 week 1 month

Average # of GPUs 3.72 1.75 Not Reported 18.1

Maximum # of GPUs 2048 128 Not Reported 128

Single-GPU Jobs ∼70% ∼80% Not Reported ∼10%

Average Duration 6652s 28329s Not Reported 37494s

Maximum Duration 50 days 60 days Not Reported 12 days

CDF 50% GPU utilisa-

tion

Not Reported ∼50% ∼15% ∼65%

Average Queuing Delay Medium High Medium Not Reported

Table 3.2: Comparisons between the Helios, Philly, AntMan clusters and Apollo. Medium and high

queuing delay indicate minutes and hours, respectively.
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DL jobs size (# GPUs)

0.0

0.1

0.2

0.3

0.4

0.5

No
rm

al
ise

d 
jo

b 
co

un
t

0

20

40

60

80

GP
U 

ut
ilis

at
io

n 
%

GPU utilisation

Figure 3.1: Normalised jobs count (%) and GPU utilisation (%) in Apollo.
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(∼10%), indicating that the submitted jobs mainly consist of distributed training jobs

(55% of jobs require 8-GPUs) as shown in Figure 3.1. In contrast, both Helios and

Philly consist of ∼70% and ∼80% single-GPU jobs respectively. Potential reasons

are (i) more users sharing Helios and Philly, therefore limiting resource usage; (ii)

users at the early stages of developing a DNN model architecture, therefore utilising a

single-GPU to search for a promising DNN architecture; (iii) users at the final stage of

training, hyperparameter tuning – searching for optimal parameters for their chosen

DNN architecture. We speculate the differences are mainly due to Apollo’s role in

serving a research department for innovation and production, in contrast both Helios

and Philly that may have restrictions on the resources each engineer can request.

JCT. Table 3.2 shows the average and maximum JCT in Apollo, 37942s and 12

days, respectively. Similar to Philly, Apollo’s jobs have longer duration due to its

training models from scratch to convergence. One of the reasons indicated in Philly

was locality-agnostic scheduling, leading to higher synchronisation time for distributed

jobs. The scheduling policy in Apollo did not consider locality, we speculate this is

the reason for similar average duration since a large majority of jobs in Apollo were

multi-GPUs DL training jobs. In contrast, Helios mainly consists of shorter jobs

with an average JCT of 6652s, this is due to the majority of jobs being of program

debugging and model evaluation rather than model training [95].

Figure 3.2 illustrates the Cumulative Distribution Function (CDF) of job duration

in Apollo. We observe that half of the jobs have a duration of 2.5 hours or lower. In

contrast, Helios and Philly traces indicated that half of the jobs have duration ranging

from minutes to less than an hour. Our hypothesis is that the shorter duration are due

to frequent experimentation, model evaluation or frequent error events as indicated

in [108], which may also explains the large number of single-GPU jobs and the JCT

distribution. Interestingly, Figure 3.2b shows that jobs in Apollo have different JCT
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(a) DL job duration CDF for all jobs.
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(b) DL job duration CDF for individual job size.

Figure 3.2: DL job duration CDFs in Apollo.

distribution for individual job sizes, where jobs with 64+ GPUs finished earlier than

jobs with 4 to 64 GPUs. This is intuitive as data parallel jobs scale with number of

GPUs, therefore 64+ GPUs finished training faster than 4 to 64 GPUs. Jobs with 1

to 4 GPUs finished earlier than 4 to 64 GPUs, this is likely as a result of models and

hyperparameter exploration, which is often killed or stopped early.

GPU Utilisation. Figure 3.3 depicts the CDF of job average GPU utilisation in

Apollo. We observed half of the jobs in Apollo have average GPU utilisation of

≤65%. Half of the jobs in Apollo for both small (1 to 4) and large (64+) DL jobs,

both exhibit low GPU utilisation ranging from 15% to 50% respectively as shown in

both Figure 3.3b and Figure 3.1. In contrast, AntMan’s cluster manages only 15%.

The mean GPU utilisation in Apollo is 60% which is slightly higher than Philly’s 52%.

A potential reason for the low GPU utilisation phenomena is due to exclusive locking

of the GPUs, this is mentioned in both Philly’s and Antman’s analysis [108, 247].

A major reason for such low GPU utilisation in larger jobs is because network

communication bottlenecks delayed the actual execution on the GPUs. For medium

size jobs (4 to 64), they achieve mean GPU utilisation of 70% or lower. The

observations corroborate previously reported statistics where average cluster GPU
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utilisation is at the lower end (≤60%) [108, 247]. The primary causes of such low

average GPU utilisation are due to applications being unable to keep the GPU at

high load, coupled with exclusive GPU locking and scheduling without considering

locality, further degrading average GPU utilisation as discussed in Section 2.4.3.2.
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(a) Average GPU utilisation CDF for all jobs.
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(b) Average GPU utilisation CDF for individual job size.

Figure 3.3: DL jobs average GPU utilisation CDFs in Apollo.

3.1.3 Discussion

We summarise the key similarities across large-scale production DL training clusters.

Single-GPU Jobs. We observed that the majority of production DL training

clusters comprise many single-GPU training jobs, ranging from ∼70% to ∼80%.

Moreover, these single-GPU jobs are often underutilising GPUs, with utilisation

ranging from ∼5% to ∼50%. The reasons could be due to the majority of these single-

GPU DL jobs being for program debugging and model evaluation. This indicates that

cluster GPU resource utilisation can be improved if co-location is enabled, especially

for single-GPU DL jobs.

Low Average GPU Utilisation. We observed the average GPU utilisation across

DL training compute clusters is lower than 60%. This corroborates the reported
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limitations of existing resource managers such as Kubernetes [24] and YARN [233],

mentioned in Section 2.4.3.2. The main reason being due to application-agnostic

scheduling, which does not consider both locality and actual GPU load.

3.2 Improving DL Training Cluster Utilisation

Using Co-location

One key strategy for mitigating low utilisation and exploiting the fact that the

majority of jobs are single-GPU, is co-location. Existing GPU device managers

and DL training cluster resource managers that allow co-location [29, 115, 184, 230,

246, 247, 250] alleviate interference effects, by profiling GPU workload characteristics

such as resource access patterns (see Figure 2.11) and GPU utilisation at runtime,

to orchestrate GPU kernel scheduling order or to opportunistically co-locate GPU

compute jobs respectively. However, it is possible to extend DL job training time

from minutes to hours, due to the additional overheads of profiling DL GPU resource

access patterns and hardware statistics at runtime. For instance, Xiao et al. [247]

indicates that a DL job can go through many phases at the start of the training job

and could take up to tens of minutes to reach stable resource access patterns.

Additionally, profiling must be performed for every new job (DL model) submitted

to the system, resulting in additional time overhead in the system, further increasing

the high job waiting times (see § 2.4.3.2). To optimise the co-location decision for

DL training jobs, interference between DL jobs should be analysed. However, there

is no in-depth analysis for co-location of DL jobs to date that can enable fast co-

location decisions. We therefore make a contribution by conducting an interference

analysis and co-location study. The aim of this section is to answer [RQ1] and confirm

whether there are high-level metrics to be leveraged as a general proxy to estimate

the interference level, i.e., JCT degradation, without fine-grained profiling.
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Feature System A System B

CPU Intel i7-6850K AMD Ryzen 1920X

GPU Nvidia GeForce GTX 1080 Nvidia GeForce RTX 2080

RAM 32GB 128GB

Table 3.3: Micro-benchmark hardware setup.

- CV, - NLP, - FC

Architecture Permutations

MobileNet [94] [default]

MobileNetV2 [201] [default, custom(§D.2)]

MobileNetV3 [93] [075, 100]

GoogLeNet [223] [default]

ResNet[87] [18, 18 - bottleneck, 34, 50],

VGGNet[214] [11, 11 - bottleneck, 19]

SqueezeNetV1[103] [1.0]

DenseNet[96] [121, 161, 169]

ShuffleNetV2[139] [0.5, 1.0, 1.5, 2.0]

MNASNet[225] [0.5, 1.0, 1.3],

DualPathNetwork[37] [92, 26], blocks: [2,2,2,2]

ProxyLess [25] [cpu, gpu, mobile, mobile-14]

PyramidNet[84] depth: [48,84,270], alpha: [66,110]

ResNeXt[249] [11,29] cardinality: 2, width: [16,64]

LSTM [70] ParaDNN implementation [241](§D.1)

Gated Recurrent Unit [39] ParaDNN implementation [241](§D.1)

Fully Connected (custom) ParaDNN implementation [241](§D.1)

Table 3.4: Analyzed DL models. Datasets (CV): Cifar10 [122], batch sizes: {8, 16, 32, 64}. (NLP):

WikiText2 [154] & News Commentary v14-en-zh [1]. NLP: sentence length: 200, vocab. 10000,

default batch sizes: {16,32,64}.
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3.2.1 Co-location Study

To answer the above question, we conducted a co-location study of DL systems. A

wide range of DL models were selected to be included in the micro-benchmarks that

contain both computer vision and natural language processing models. Specifically,

we selected 14 CNN, 2 RNN and 1 MLP model (see Table 3.4), which is of comparable

size to previous system research [81, 153, 182, 246, 250, 259]. Each model architecture

was then further refined into different configurations by varying mini-batch size,

hidden dimensions and number of layers, to create a number of model permutations.

Within the memory constraints of GPU devices (see Table 3.3), this resulted in 292

unique configurations profiled in isolation with further 638 co-location combinations.

We ran these models on our systems until they encountered out-of-memory (OOM).

Figure. 3.4 shows an example of 72 DL models.
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Figure 3.4: Overview of sampled DL workload GPU utilisation differences (NVIDIA RTX 2080).

Benchmarks Environment. Micro-benchmarks were conducted using two differ-

ent DL systems (A & B), described in Table 3.3. Leveraging methods established

in the literature [29, 30, 250], DL model profiling was conducted using isolated

GPUs, and by co-locating different combinations of DL jobs within the same GPU.

Each micro-benchmark was repeated five times to ensure metric consistency. Both
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systems used an Nvidia container runtime, CUDA Toolkit 10.2 and PyTorch 1.5 DL

Framework [178].

Performance Metrics. To understand the impact of interference, several key

metrics of interest are extracted: GPU utilisation, Job Completion Time (JCT)

and GPU kernel access patterns. Each DL job is configured to run for five epochs

in order to set a baseline for isolated execution and to limit the time spent on

training. Metrics were collected using nvidia-smi, nvml-golang bindings, and

NVIDIA Nsight Systems. We measured the impact of interference by analysing the

corresponding JCT slowdown in each co-located execution case by comparing with

the isolated execution case. JCT degradation or slowdown Tdeg is measured as:

Tdeg =
Tcolo
Tsolo

(3.1)

where Tcolo is the time taken for a co-located DL job to reach a fixed time epoch, and

Tsolo is the time taken for the same DL job executing in isolation.
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Figure 3.5: Co-location study results.
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3.2.2 GPU Utilisation as a Proxy for Interference

GPU over-commitment. The results shown in Figure 3.5a indicate that co-

located job combinations with increasing levels of GPU over-commitment, i.e., the

cumulative GPU utilization requirement for DL jobs greater than 100%, results

in a JCT increase of between 1.5x–3x; For instance, co-locating two VGG19

models (each requiring 90%+ utilization in isolation) results in over three times

JCT increase as shown in Figure 3.5b. In contrast, pairs of co-located DL jobs

which individually require less than 50% utilization are less likely to exhibit severe

performance degradation, with an increase in JCT between 1x – 1.5x. This finding

is similar to previous co-location studies in CPU-based co-location enabled cluster

resource managers, confirming that GPU utilisation can be used as a proxy metric for

determining job interference levels. This is intuitive, as GPU utilisation is driven

by the degree to which GPU kernels engage the GPU’s processing elements and

memory; thus, co-located jobs with high GPU over-commitment experienced greater

JCT slowdown due to more significant levels of resource contention by the scheduled

GPU kernels. Figure 3.6 shows a snapshot of the competing GPU kernels for VGG11

and MNASNet1.3. We further investigate the utilisation patterns when co-locating

jobs with varying computational demands by changing the batch size.
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Figure 3.6: Competing GPU Kernels. VGG11 is the main source of contention on NVIDIA 1080.
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(a) GPU utilisation patterns between VGG11 and MNASNet1.3, both with batch size 32.
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(b) GPU utilisation patterns between DenseNet169 (batch size 64) and VGG11 (batch size 8).

Figure 3.7: GPU utilisation patterns between DL jobs when co-located: VGG11 (15.2 GFLOPs with

Batch Size of 1), MNASNet1.3 (1.06 GFLOPs with Batch Size of 1) and DenseNet169 (6.8 GFLOPs

with Batch Size of 1).

Computation Demand. Computation is mainly driven by the number of FLOPs

and the inputs size to the model [13, 220]. Figure 3.7 depicts the resulting GPU

utilisation patterns between three models when co-locating on to the same GPU.
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Figure 3.7a shows the utilisation patterns between VGG11 and MNASNet1.3 with the

same batch size, it is observable that VGG11 consumed more resources in comparison

to MNASNet1.3 due to larger amount of computation. Similarly, Figure 3.7b shows

that a model with fewer FLOPs but large input size – DenseNet169 with a batch size of

64, can dominate the GPU computation consumption in comparison to a model with

a great number of FLOPs but small input size – VGG11 with batch size of 8. This

demonstrates that computational requirements such as FLOPs and input size for DL

jobs can be indicative of the resultant interference, and that GPU utilisation clearly

reflects the computational patterns and correlates with performance interference.

3.2.3 Modelling Interference

It is observable that GPU over-commitment manifests, when the cumulative GPU

utilisation is >75% as shown in Figure 3.5a. This is intuitive as GPU resources are

in heavy contention when both DL training jobs are resource hungry as indicated

in Figure 3.7. Therefore, a non-linear relationship is observed as a whole, and

a quadratic polynomial fits well to the data with the lowest R-squared difference,

indicated by 0.88 and 0.84 for NVIDIA 1080 (Equation 3.2) and Nvidia RTX 2080

(Equation 3.3), respectively (closer to 1 the better). We utilised NumPy [85] package

for the polynomial regression fitting technique.

y = x2(1.32198) + x(−0.00728) + 6× 10−5 (3.2)

y = x2(1.16664) + x(−0.00302) + 4× 10−5 (3.3)

Impact of Hardware. The interference impact is not significantly different

between our DL systems as shown on Figure 3.5a. However, when running identical

DL jobs, the coefficient of the lines of best fit reveals that the severity of interference is



Chapter 3. Towards a Proactive Approach to DL Training Scheduling 75

slightly lower on the NVIDIA RTX 2080 architecture than on the NVIDIA 1080. This

is due to additional processing elements, increased cache size, and memory bandwidth.

Impact of Locality. While the aim of this study was to measure interference

impact from co-locating DL jobs within the same GPU, we have also studied how

locality impacts DL job JCT to demonstrate that interference has the same order of

impact. This was conducted by using data parallelism for distributed training, and

the workers were placed in GPUs on separate machines as described in Section 2.4.3.1.

Communication primitives within the NVIDIA NCCL library was used to allow for

multi-node communication, as frequently used by the distributed DL community [81,

95, 238]. We observed that locality increased DL job JCT ranging from 2x to 5.5x

when executing distributed DL jobs across multiple machines, as shown in Figure 3.8.

This demonstrates interference does result in comparable performance degradation as

locality-agnostic placement.
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Figure 3.8: JCT increase by locality across five distributed DL jobs with 10GB Ethernet

It is observable that distributed DL job performance patterns share similarities to

DL job interference in terms of performance degradation severity and heterogeneity.
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Such results reinforce the notion that network latency is a sizeable contributor to JCT

slowdown in DL clusters, and is a major focus of prior DL cluster schedulers [9, 81,

182, 246]. However, it is apparent that interference can also contribute similar levels

of JCT slowdown and is in some cases, a greater concern considering the majority of

DL jobs are single-GPU as shown in Section 3.1.

3.2.4 Summary

Our method for conducting the co-location study on DL training jobs on GPUs is

general and presents confirmation that interference is manifested when each of the co-

located DL training jobs is of a high GPU utilisation. The interference can contribute

to JCT increase, ranging from 1.5x to 3x. We identify GPU overcommitment is

highly correlated with performance interference. We further characterised the impact

of hardware heterogeneity on interference level, and observe that there are minor

differences between our DL systems via fitted regression coefficients.

The observations answer our [RQ1] that GPU utilisation does indeed contribute

towards DL training jobs interference, and one should leverage GPU utilisation to

determine safe co-location at scheduling time. However, the mean for determining

the GPU utilisation of a particular DL training job remains unclear. Answering the

question can allow us to determine safe co-location in DL training job scheduling with

minimal overhead, improving GPU utilisation in DL training clusters.

3.3 Deep Learning models and GPU utilisation

Relationship

We turn to investigate the relationship between DL models and GPU utilisation and

attempt to answer our [RQ2]. As discussed in Section 2.3.1.5, the number of FLOPs
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and memory parameters of a model are the main contributors toward computation

intensity and memory consumption during DNN execution on compute devices. As we

confirmed the relationship between GPU utilisation and interference level, we turn to

investigate the relationship between DL models and GPU utilisation, confirming safe

co-location can be enabled by inferring GPU utilisation from DL model characteristics.

DL model execution consists of a series of matrix operations including both

multiplication and addition, which are floating point arithmetic. The greater the

number of FLOPs a GPU must execute, the higher load on the GPU, as indicated

in Section 3.2.2. Since the load on the GPU correlates to FLOPs and it to

GPU utilisation, we first investigate whether the number of FLOPs, which can

be determined by traversing the DL model’s IR, has a direct influence on GPU

utilisation (§3.3.2). We then investigate whether other features extracted from DL

model’s IR exhibit a similar relationship to GPU utilisation (§3.3.3), confirming that

a relationship exists between DL models and GPU utilisation.

3.3.1 Profiling Method

Input

W: {64, 3, 3, 3}

Conv2D

W: {1024, 10}

MatMul

Output

DL Model

ONNX IR

Result

Profiling
Feature Extraction

DL Frameworks

TensorFlow PyTorch

Workflow

Figure 3.9: Extraction process via ONNX model’s IR.
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Algorithm 1 Pseudocode for profiling a DL model

Input: (f , X) // DL model file, example inputs

Output: S // statistic results

1: M← loadOrConvert(f , X) // load or Convert DL model

2: N ← topoSort(M.graph.node)

3: H ← initHookTable() // supported operations

4: for n in N do

5: fn← H.get(n.opType) // get profiling function

6: sn ← fn(n) // profile

7: S.write(sn)

In order to obtain the number of FLOPs for each individual model (Table 3.4 and

Figure 3.4), a custom profiler is built using Python. Specifically, our profiling process

operates on the ONNX model’s IR as it maintains good interoperability across DL

frameworks (see § 2.3.1.3). Our profiling process traverses the DL model’s IR and

calculates the number of FLOPs required for each operation encountered, based on

the required inputs, output shape, and parameters. For example, for a standard

general matrix multiplication, the total number of FLOPs between A = Rm×n×k and

B = Rk×p is calculated from the following:

Fgemm = 2× k × p× n×m (3.4)

where the multiplication of two 2 comes from the fact that addition is performed

after multiplication [228]. To facilitate the profiling of individual operations, we

register each operation within an operation table, the calculation for the number

of FLOPs is based on our own understanding of how the matrix manipulation is

performed. Specifically, the list of operations we support is shown in Table 3.5, and

2Multiply-Accumulate (MAC) [92] is defined as the number of FLOPs divided by two.
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they are common DL operations in most prominent DL models. Figure 3.9 and

Algorithm 1 describe the process of our profiling engine and shows the pseudocode

for obtaining FLOPs from each operation, respectively. We verify our profiling fidelity

via comparing our outputs with numbers reported in literature.

Features

FLOPs, MACs, Memory Parameters, Batch Size, Memory Activations,

Split, Constant, GlobalAveragePool, ReduceMean, MaxPool, GRU

Reshape, LSTM, Concat, Gather, Squeeze, Pad, BatchNormalization

AveragePool, Conv, Slice, Transpose, Flatten, Relu, Gemm, Exponentials

Table 3.5: ONNX model operation, DL model’s characteristics and matrix manipulation counts, i.e.,

count of the operations, memory parameters and FLOPs.

Model FLOPs

(ours)

FLOPs

(reported)

MACs

(ours)

MACs

(reported)

FLOPs

Difference

MACs

Difference

DenseNet121 5.7B 5.5B [96] 2.8B NR 3.6% –

DenseNet169 6.8B 7.1B [96] 3.4B NR 4.4% –

MNASNet1.0 634M 680M [225] 314M 340M [225] 7.2% 8.2%

NASNetMobile 1.1B 1.1B [225] 563M 564M [225] – 0.1%

ResNet50 7.8B 3.9B [87] 3.9B NR ∼2X –

VGG19 39.3B 19.6B [213] 19.6B NR ∼2X –

Table 3.6: Comparison across profiled and reported models FLOPs count. NR – Not Reported. M

– Million. B – Billion.

Profiling fidelity. Table 3.6 shows six examples of the FLOP count calculated

by our profiling engine against reported the FLOP count in literature. Our FLOP
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calculation for Resnet50 and VGG19 differ by approximately a factor of two, this could

be due to the reported count omitting the number of addition as indicated by the

comparison between MACs (ours) and reported FLOPs. In contrast, our calculation

for the other DL models are within 10% of the reported values. This indicates that

our approach to FLOP calculation approach is within satisfactory accuracy and unless

stated otherwise, we report the FLOP count including the number of additions, as

the majority of FLOP calculations reported in literature include addition [4].

3.3.2 FLOP Analysis

As discussed previously in Section 3.2.2, computation demand drives GPU utilisation

and FLOPs drive computation, we then investigate the relationship between FLOPs

and GPU utilisation.
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Figure 3.10: Relation of GFLOPs to GPU utilization.

Figure 3.10 shows that the FLOP count does correlate to GPU utilisation, and this

confirms our understanding of the limit between matrix manipulation and hardware

execution as explained in Section 2.3.1.2. However, there exist several models that
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exhibit low FLOP counts and high GPU utilization, which we postulate is likely a

result of model architectures producing a high number of intermediate feature maps

leading to a large number of memory accesses. These findings are supported by prior

studies in the neural architecture search literature [201, 224].

Since the relationship between FLOPs and GPU utilisation is not entirely linear,

this may indicate that there are other features that may contribute toward GPU

utilisation for DL models.

3.3.3 Identifying additional Features

Data-driven methods often depend on a set of features that are correlated with the

target variable. It is understood that the inputs to a DL model and its DL operations

are the main drivers toward the number of FLOPs and memory consumption, as

explained previously in Section 2.3.1.5 and in the literature [35, 67, 224, 243].

Additionally, a DL model with a large linear layer can occupy a large amount of

GPU memory [218]. Therefore, to quantify the correlation between features and

GPU utilisation, we investigate the remaining features extracted via traversing the

DL model’s IR, shown in Table 3.5.

Batch Size. In reality, the number of FLOPs and memory transactions increase

when the batch size is increased. This is due to the number of FLOPs and memory

transactions being correlated to the number of elements within a batch of inputs, i.e.,

B×X where B is the batch size and X is the number of DL model inputs. Therefore,

the number of computations scales with the increase in batch size, leading to higher

GPU load as shown in Figure 3.7b. Batch size is one of the major parameters to be

considered in DL models inference [82, 177, 208].
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Model Parameters. DL models with a large number of parameters come with

greater capacity to learn from data as shown previously in Figure 2.12, leading to

higher accuracy but also higher memory consumption [224]. Additionally, a larger

model usually comes with larger computation. For instance, larger convolutional

filter size, and thus larger number of parameters and greater number of FLOPs

computed [94]. Thus, more GPU computation and memory kernels launched in the

GPU device, causing increased GPU load. It is observable that models with large

numbers of parameters seem to exhibit higher GPU utilisation, for example, VGG19

with 98.8% as shown in Table 3.7.

DL operations. DL operations are composed of one or many GPU kernels that are

either computationally intensive or memory intensive, i.e., most of the time spent on

a GPU is computation or memory transactions [155]. Notably, DL models that have

a significant number of both computational or memory operations should result in

lower execution latency due to memory and computation GPU kernels overlapping.

However, DL models that result in an uneven number of the kernels may result in

high latency due to GPU kernels queuing for required inputs and execution [155],

thus lower GPU utilisation. Table 3.7 shows that ResNet50 exhibits higher GPU

utilisation in comparison to MNasNet1.0 with higher number of DL operations, 68

and 46, respectively. To identify and study these features that can contribute to GPU

utilisation, we instruct our profiling engine to extract relevant features, specifically,

count both the number of DL operations and matrix operations. Table 3.7 shows a

sample of changes to DL model utilisation that include the number of convolution

and linear operations, and model parameters; notably the number of convolution and

memory parameters appear to contribute to GPU utilisation.
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MNasNet1.0 VGG19 ResNet50

Number of convolution layer 52 16 53

Number of linear layer 1 3 1

Number of parameters 4.3M 143M 25M

FLOPs 633M 39.3B 8.1B

Other modules

(e.g. Batchnorm, AveragePool)
46 25 68

Utilization 29.8 98.8 80.9

Table 3.7: Sample of changes to DL model utilisation at batch size 8 on NVIDIA 2080.

3.3.4 Quantifying the Relationships

In the previous Sections(§3.3.2 and §3.3.3), we identify the set of related features and

explained the relationships between them and GPU utilisation. We then conduct

correlation analysis to quantify the relationships between all extracted features, using

Pandas [150], a Python package for data manipulation.

In order to do so, we conduct two correlation analysis by using the Pearson [205]

and Spearman-rank [204] methods to measure the strength of linear and monotonic

relationships, shown in Figure 3.11 and Figure 3.12. These correlation methods

are often leveraged in the system research community [36, 137, 265]. A correlation

measure of 1 implies a positive relationship, whereas -1 implies a negative relationship.

Correlation between features. It is observable that features themselves have

interesting correlation relationship. For example, the number of convolution layer

correlates strongly with the number of ReLU activation operations in both pearson

correlation and spearman rank correlation; this is due to CNNs typically being

composed of individual blocks [87, 94], where each block usually contains at least one
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convolutional layer followed by an activation layer (e.g., ReLU). Similarly, the number

of convolution layer and number of batch normalization layer correlate strongly for the

same reason. Importantly, memory parameters correlate strongly with the number

of FLOPs in both pearson and spearman rank correlation, this confirms our analysis

that larger models with a large number of memory parameters contributes to more

computation as explained in Section 2.3.1.5. Finally, we observe that FLOPs do

correlate in both pearson and spearman rank correlation, as expected.

GPU utilisation correlation. It is observable that the last row of Figure 3.11,

matrix manipulations (FLOPs, MACs), the number of parameters, pooling operations

(MaxPool, AveragePool) and memory intensive operations (Flatten) correlates

linearly (≥0.6) with GPU utilisation using the pearson correlation. This confirms

the moderate linear relationship that we speculated. Interestingly, by looking into

the last row of Figure 3.12, the majority of the relevant features we extracted seem to

exhibit a positive relationship to GPU utilisation (≥0.5). In particular, the number

of matrix manipulation, memory activations and memory parameters exhibit a strong

positive increasing relationship (≥0.7). Our findings indicate that all individual

features we extracted have moderate to significant importance towards contributing

to GPU utilisation.

Inspecting the DL model’s computation graph, extracting and leveraging features

such as the number of matrix manipulation, memory parameters, memory activations

and operation types, may allow us to infer the likely resultant GPU utilisation given

both the linear and monotonic relationships discovered, answering our [RQ2]. Paving

the way for a proactive approach to estimating GPU resource consumption given a

DL model computation graph.
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Figure 3.11: Pearson correlation between extracted features and GPU utilisation.
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Figure 3.12: Spearman Rank correlation between extracted features and GPU utilisation.
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3.4 Summary

In this chapter, we have presented an in-depth analysis of a large-scale DL training

cluster, interference analysis between DL training jobs and analysed the relationship

between DL models against GPU utilisation (during the training phase). We observe

that low GPU utilisation is a systemic issue in large-scale DL training clusters and

the majority of production DL training clusters comprise single-GPU jobs; justifying

a need for proposing new DL training resource managers that enable co-location. The

interference analysis enables the study and characterisation of DL training job co-

location, and identifies the relationship between GPU utilisation and interference

(JCT increase); the result of this analysis quantifies the interference effects and

enable a minimal overhead approach to safely co-locate DL training jobs with respect

to hardware. Finally, the results from analysis between DL model characteristics

and GPU utilisation demonstrate both linear and monotonic relationships exist, and

suggest that one can leverage features readily available from DL model IRs to infer

GPU utilisation.

The DL training cluster analysis indicates exclusive locks have a huge impact

on average cluster GPU utilisation, and low GPU utilisation persists across large-

scale production DL training clusters, averaging at 60% or lower. Moreover, a large

proportion of jobs (70 to 80%) are single-GPU, presenting significant opportunities

for co-location to address low cluster GPU utilisation.

The interference analysis studies and models interference for GPU over-commitment

with respect to GPU hardware with polynomial regressions. Notably, interference

manifests when the cumulative GPU utilisation is greater than 75%. These polynomial

regression coefficients are presented, so they can be leveraged by other researchers.

This analysis demonstrates that by understanding GPU utilisation and the level of



Chapter 3. Towards a Proactive Approach to DL Training Scheduling 88

GPU over-commitment, one can derive a safe co-location scheme.

The relationship between DL model characteristics and GPU utilisation is

presented and discussed in detail. From the analysis, it is observable that the number

of matrix operation, memory consumption and DL operations correlate positively

with GPU utilisation in both pearson and spearman correlation methods (≥0.6 and

≥0.7 respectively), presenting an opportunity to infer GPU utilisation by extracting

features from a DL model’s IR.

In the next chapter, we present a data-driven interference-aware cluster scheduling

approach that leverages our findings to improve co-location decisions and DL training

cluster resource utilisation.



Chapter 4

Proactive DL Training Job

Scheduling with Horus

The efficient co-location of tasks on GPUs resources to improve cluster GPU utilisation

are important and hard to achieve in cluster scheduling, according to analysis

presented in Section 3.1.

In a DL training compute cluster, the cluster resource manager is responsible

for maintaining state about machine load, scheduling and the allocation of tasks.

The objectives of existing DL cluster resource managers mainly focus on accelerating

training time and respecting job fairness, which affect cluster GPU utilisation. In this

chapter, we present our proactive DL training cluster resource manager, Horus.

4.1 Overview

Horus is a prediction-based interference-aware DL training cluster resource manager

that focuses on improving cluster GPU utilisation and fairness, while minimising

training time. Horus is proactive, which means it anticipates potential performance

interference effects at scheduling time, by predicting the likely resource consumption

89
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of an incoming DL job. Horus has been designed as a set of components that

can be deployed alongside of existing cluster resource manager frameworks such

as Kubernetes. Figure 4.1 depicts how Horus fits into a cluster resource manager

framework and its main components.

API Servers

Metric

1/47

…

Job

Collect 
Metrics

Master

Agent

Data 
store

Agent Agent Agent

API ServersAPI Servers

Scheduler

Horus
Application 
Controller Prediction 

Engine

Figure 4.1: Horus overview, comprising (i) an application controller, (ii) a scheduler and (iii) a

prediction engine.

To achieve safe co-location of DL jobs while scheduling, we need to co-locate

DL jobs with suitable GPU utilisation patterns and GPU memory consumption, as

indicated in Section 3.2.1. To this end, we have designed three main components: (i) a

GPU resource prediction engine, (ii) a scheduling cost model and (iii) an application

controller and resource scheduler. The GPU prediction engine estimates: (i) GPU

utilisation and (ii) GPU memory consumption, so they can be fed into the scheduling

cost model (§4.3.2) for the cluster resource scheduler, in order to make safe co-location

decisions that avoid performance interference.

We first discuss the methods leveraged within the proposed GPU resource
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prediction engine (§4.2), followed by the overall Horus proactive scheduling approach

that integrate with estimated GPU resource consumption (§4.3).

4.2 GPU Resource Prediction Engine

4.2.1 Overview

The GPU resource prediction engine is composed of two models, (i) a trained ML

model for predicting the average GPU utilisation of a DL job, and (ii) an analytical

model for calculating the likely GPU memory consumption. Our prediction engine

extracts key DL model features as described in Table 3.5, by iterating over the ONNX

DL model’s IR. Obtaining aggregate features such as FLOPs, memory parameters and

memory activations, by calculating them based on their inputs, output shape, and

parameters. The inputs to the prediction engine are the following: (i) DL model

definition, it can be ONNX IR or one of any publicly supported ONNX IR DL

model’s file (checkpoint file), and (ii) input definition, the expected input including

the shape and type. These extracted features are normalised and used as numerical

inputs to a ML model in order to predict the GPU utilisation (GUtilj) of a given

job j. We train the prediction model in an offline training stage based on a set

of historical DL workload profile micro-benchmarks similar to existing prediction-

based approaches [41, 51, 230]. These profiles are nominally acquired by developers

running micro-benchmarks or by monitoring existing non co-located DL workloads

on isolated GPUs. Critically, after successful prediction model training, there is no

need for isolated profiling for unique incoming DL workloads entering the system. To

accommodate with new innovation, the machine learning model can be periodically

retrained after collecting additional profiles (e.g., when new models are discovered)

or after the detection in accuracy decreased.
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Apart from the GPU utilisation, GPU memory consumption (GMemj) is also

calculated following Equation 2.7 mentioned in Section 2.3.1.5; since the inputs are

already determined, the GPU memory calculation can be obtained following the

FLOPs calculation process. The GPU memory calculation can be conducted in

advance to provide hints to cluster resource managers to avoid potential OOM error,

minimise error overhead, re-scheduling time, and improve overall scheduling efficiency.

The machine learning model training process is described (§4.2.2).

4.2.2 Prediction Model Training

Our ML model’s aim is to predict GPU utilisation for a given DL job, and therefore the

ML objective is modelled as a supervised regression task, i.e., predicting a continuous

value as discussed in Section 2.1.1. In the following section, we show the prerequisites

for training the GPU utilisation predictor.

Dataset Collection. Training a ML model requires a well-prepared dataset. In the

pursuit of an accurate GPU utilisation predictor, a dataset composed of 145 rows of

unique DL model features were collected by running the profiling process described in

our co-location study analysis (§3.3). We collected 145 rows of data entries based on

one DL system. Our dataset size is comparable to prior work [250]. Table 4.1 shows

example rows and columns from the dataset we collected. The ground-truth label in

the dataset is the GPU utilisation column.

Data Preprocessing. It is common for ML pipelines to normalise data to the same

scale to avoid inefficient learning as regularisation often has the assumption of a zero

mean and unit variance [216]. Therefore, before training the ML model for predicting

the GPU utilisation, features are normalised via the python package scikit-learn [216]
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Model Batch Size FLOPs MACs ... Num. Parameters GPU utilisation

DenseNet121 32 1.8e+11 9.1e+10 ... 32M 34.2%

DesneNet169 32 2.2e+11 1.1e+11 ... 57M 35.4%

MobileNetV2 32 1.9e+10 9.6e+9 ... 14M 35.9%

ResNet18 32 2.3e+11 1.2e+11 ... 46M 76.6%

ShuffleNet 1.5 32 1.9e+10 9.5e+09 ... 14M 42.7%

Table 4.1: Example rows and columns from the DL models’ features dataset.

using the standard scaler, which works by following equation 4.1.

z =
x− µ
σ

(4.1)

where z is our normalised value, x is the original value, µ is the mean for the column

feature and σ is the standard deviation for the column feature.

Model Selection. The standard technique to choose the best performing model

across a range of ML models is by training and evaluating each individual model on

a metric of interest [20, 250, 259]. Given it is a regression task (predicting GPU

utilisation), we picked four prominent regression models for evaluation: (i) Linear

Regression, (ii) LightGBM [117], (iii) XGBoost [32] and (iv) Random Forest [23].

These models are commonly used by system research community for regression

tasks [153, 259, 267].

Training Procedure. To properly evaluate models and ensure the predictor can

predict GPU utilisation for unseen models (i.e., a new DL model architecture), we

have to incorporate validation and testing into our training procedure, which consists

of commonly conducted steps [22, 123, 259, 261]: (i) Random shuffling and splitting
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samples into 80% training and 20% testing sets. (ii) Applying the chosen regression

models on the training set to investigate prediction effectiveness. Additionally, we

perform a grid search on each regressor to train the model with five-fold cross

validation using the training dataset to find the best parameters, i.e., n estimators

and max depth for tree-based regressors. (iii) Testing our models with 20% testing

set to ensure the model can generalise to unseen data.

Metric Selection. The predictive performance must be measured using an appro-

priate error metric. Since the predicted GPU utilisation is leveraged for safe co-

location, an under-predicted value is undesirable. In contrast, an over-predicted value

is acceptable, i.e., taking the worst-case in calculating the cost of co-location. While

the Mean Absolute Percentage Error (MAPE) is a common regression error metric

leveraged in prior work [116, 119], it does not capture or penalise under-predicted

values. Therefore, we opted to leverage the Root Mean Square Log Error (RMSLE)

as shown in Equation 4.2. RMSLE is an established measure of regression accuracy

that penalises under-prediction [2].√√√√ 1

n

N∑
i=1

(log(ŷi + 1)− log(yi + 1))2 (4.2)

where ŷi is the predicted value and yi is the ground-truth value. The log function

is an inverse of the exponential function, meaning values grow exponentially, and

therefore the error calculated from the equation would appear higher for a lower

range of predicted values with respect to the ground-truth value.

4.2.3 Prediction Model Evaluation

Accuracy. Table 4.2 shows the relative prediction accuracy achieved by different

predictors. We observe that XGBoost outperforms other models consistently across

the five-fold cross validation and similarly on test dataset. XGBoost achieves both low



Chapter 4. Proactive DL Training Job Scheduling with Horus 95

Linear Regression LightGBM[117] XGBoost[32] Random Forest [23]

MAPE 0.169 0.145 0.077 0.087

RMSLE 0.188 0.193 0.133 0.158

Table 4.2: MAPE and RMSLE for GPU utilisation prediction on test dataset, lower is better.

0.077 MAPE and 0.133 RMSLE error, and has a 45% – 70% decrease in MAPE and

RMSLE, when compare to a Linear Regression baseline, respectively. As discussed

previously for metric selection, XGBoost has the lowest RMSLE error, meaning it is

less likely to under-predict values when compared to other regressor models, therefore

XGBoost is chosen as our GPU utilisation predictor.

Feature Importance. It is often important to conduct feature analysis after ML

model training to determine whether our trained models learnt the correct features.

Understanding what features are important could help to improve the design of

the DNN architecture and understand GPU resource consumption. Therefore, to

understand further what contributes towards GPU utilisation, we investigate the

importance of each tree-based regressor feature by extracting the weights associated

with each feature per tree and taking the mean across them. For example, random

forest feature importance are computed by the accumulation of the impurity decrease

within each tree [61]; XGBoost feature importance is computed by accumulation of the

gain within each tree [32, 245], where the gain is computed based on gradient scores.

Both of these importance values are calculated via the scikit-learn and XGBoost

Python packages, respectively.

Figure 4.2 shows the most important seven features across the tree-based ML

models. We observe that the FLOPs metric was the most important, this is intuitive

as FLOPs encapsulates the number of computations that must be performed, and we

showed that FLOPs correlated with GPU utilisation in Section 3.3.2. Furthermore,
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it is not surprising that batch size is one of the most significant features, as it was

discussed in Section 3.2.2; batch size can drive a higher amount of computation,

and thus GPU load. Generalised Element Matrix Multiplication (GEMM) expressed

the number of matrix multiplications to be performed, and it is intuitive that the

greater the number of GEMM operations, the more computations the GPU must

perform. Memory related features such as a number of parameters and activations

also resulted in the top two and four most important features. As discussed previously

in Section 3.3.3, a greater number of parameters could result in a higher number

of computations, and thus activations. These features are clear indicators and

follow existing literature on model compression and neural architecture search, where

reducing the number of parameters and intermediate activations can save computation

and memory consumption on the hardware [201, 225]. The number of Flatten

operations is the seventh of the top most important features, this is interesting as

the flatten operation does not perform computation but memory manipulation. This

confirms that when the amount of memory manipulation is large, the GPU needs to

frequently launch memory transactions, increasing GPU load.

50 100 150 200
Weights

Num. Flatten
Num. Relu

Num. Gemm
Memory Activations

Batch Size
Memory Parameters

Flops

Figure 4.2: Most important identified regressor features.
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Discussion. We chose to evaluate the four simpler regression models mentioned in

Section 4.2.2, due to the consideration of computational cost. It is often a concern in

cluster resource scheduling to be mindful of long decision time due to a large number

of job submissions [63]. There are other regression models that can be leveraged when

we have a large dataset and a softer constraint in prediction time. For instance, DNN-

based regression models leveraged in the DL compiler community [116, 259] can be

evaluated in addition to the four regression models. We leave this for future work.

Re-training prediction models are important in any practical setting. The de-

facto approach is to pick a decision threshold or confidence score to evaluate whether

to use the predicted value [206]. A re-training trigger could be activated when

many predictions are below the confidence score n times. Alternatively, by actively

monitoring the absolute error between predicted values and actual GPU utilisation,

a re-training can be triggered when the MAPE fell above a certain threshold.

Limitation. The GPU utilisation prediction method within our prediction engine

operates on the assumption that GPU utilisation does not differ massively between

our DL systems (Table 3.3). However, to increase the accuracy of GPU utilisation

prediction, it is possible to incorporate readily available hardware features such as core

count, bandwidth and clock speed. Note that, one could also train a GPU utilisation

predictor per hardware device, similar to the approach taken in [268].

4.2.4 GPU Memory Estimation

Reducing the likelihood of GPU OOM error is important, as OOM errors interrupt

the training progress of a DL job. However, estimating GPU memory consumption

is a complex task [260]. Our estimation method operates on the high-level IR

layer, however, this misses information on (i) the underlying gradient optimiser’s

state (backpropagation calculation), and (ii) implementation details of DL operation.
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Nevertheless, Equation 2.7 provides a coarse grained approximation for the GPU

memory consumption and our estimation results in 48% average error across the 145

rows dataset. Table 4.3 shows the estimated GPU memory consumption against

actual GPU memory consumption on our DL system B.

Model Batch Size Estimated (MiB) Actual (MiB) Difference

DenseNet121 16 1592.6 1003.4 58%

DenseNet169 8 1069.1 1035.5 3%

Resnet34 64 1621.9 1195.5 36%

MNASNet1.3 16 717.7 953.8 -25%

ResNet50 32 2250.8 4118.8 -45%

Table 4.3: Examples comparison between estimate GPU memory consumption against actual.

Limitation. Our GPU Memory estimation currently operates on the DL models’

IR, fine-grained details on how the DL library implements the GPU computation and

memory kernels are not available. Obtaining such implementation details may give

clearer and more accurate memory consumption usage patterns due to the ability

to account for temporary memory allocation and memory re-use mechanisms in DL

frameworks [4]. As mentioned in Section 2.3.1.5, accounting for memory optimisation

techniques for DL libraries [256] are difficult, and our memory estimation technique

currently does not handle them. One potential way to address this challenge is to

scan through the code to detect DL library optimisations; however, this is outside the

scope of this thesis.

Although, our training dataset does not cover the whole spectrum of DNN

architectures, the features obtained are common DL operations that exist across

most prominent DL models, covering the entire spectrum is not the core focus in this

thesis. Importantly, the core focus of our prediction engine is to provide two critical
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and relevant key features of DL jobs in order to enable safe co-location within a DL

training cluster, (i) the predicted GPU utilisation and (ii) GPU memory consumption.

These values are useful and provide hints for the DL training resource manager when

making scheduling decisions.

4.3 Interference-aware DL training Job Scheduling

4.3.1 Overview

Application Controller

Workload Definitions

Task Allocator

Metric Repository

Cached workload queues

Cached cluster state

Infrastructure Updates
[node add, remove … ]

Infrastructure

Horus 1. Receive info. for new workloads 
and infrastructure.

2. Periodic update 
cluster utilisation.

3. Predict computation 
and memory requirement 
for each job.

Scheduler
Predictor

ML Model
Memory 
Estimator

4. Request Allocations.

5. Deployment.

Periodic metrics collection.

Agent …Agent AgentAgent

Figure 4.3: The Horus architecture and scheduling steps.

Fig. 4.3 depicts the Horus architecture, which comprises two main components:

the GPU resource prediction engine (§4.2), and the interference-aware application

controller. On job submission, the application controller first receives the job

definition from the API server, and sends a request to the prediction engine to estimate

DL job GPU usage, i.e., both GPU Utilisation and GPU memory consumption by
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inspecting the DL model’s IR. The application controller then labels the job with

the predicted GPU resource consumption, selected nodes and GPUs that minimise

interference, based on the slowdown functions (§3.2) and a derived cost function

(§4.3.2). Finally, the existing cluster resource scheduler (task allocator) then assigns

resources accordingly. We believe the application level scheduling logic such as custom

costs calculation, task labelling and spawning task groups, should be separated from

task allocation logic, hence the design. Note that, this architectured design was

adopted in the hyperscale datacenter after Horus was published [226].

The entire cluster state is maintained through infrastructure updates and moni-

toring agents via existing resource manager frameworks, to collect infrastructure data

from each node including GPU and system usage (host memory usage, and CPU

utilisation). Additionally, we employed a metric repository to track real GPU usage,

allowing the application controller to periodically update its internal cached cluster

state, enabling scheduling decisions with respect to real GPU load.

To account for GPU utilisation misprediction and inaccurate slowdown estimation,

we combined a reactive migration mechanism to move jobs away from overutilised

GPUs (≥ three jobs on the same GPU) by preempting the newest job, so we can

preserve the job progress on jobs that been running for a while. Horus combines

both proactive and reactive techniques to provide safe co-location and thus boosting

resource utilisation.

4.3.2 Interference-aware Cost Model

The key to our interference-aware scheduling is understanding the compute resource

requirement prior to job execution, and performing job placement with the lowest

cost possible to the corresponding resources for the job. This contrasts with existing

DL cluster resource managers that either react after obtaining workload utilisation

patterns or heuristically schedule onto the least-loaded resources (§ 2.4.4).
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Symbol Description

J, j Jobs awaiting scheduling, a job

N, n Cluster node collection, a node

Gn Available GPUs on node n

ωi Component weights in the objective function

R Enumerated resource types: CPU(0), RAM(1),GMem(2)

r a given resource type in R

CP r
n Capacity of resource r on node n

URr
n Used resource r on node n

CP τ
ng Capacity of resource τ (GMem) on GPU g on node n

URτ
ng Used resource τ (GUtil, GMem) on GPU g on node n

Xjng 1 if job j is allocated to GPU g on node n; 0 otherwise

RQr
j Requested resource of job j for resource r

RQGPU
j Requested GPU number of job j

GUtilj Estimated GPU utilization of a job j

GMemj Estimated GPU memory usage of a job j

β the number of jobs considered in each scheduling round

k the number of queues

Table 4.4: Notation definition.

Problem formulation. Our objective is to find a job placement schedule onto a

cluster of nodes with GPU capacities that minimizes the cost value of all possible

solutions. In this context, we use a decision variable Xjng to represent the node n’s

GPU g is allocated to the job j at the decision time, and Costjng denotes the cost

variable for this placement. The optimization problem is therefore defined as the

following Integer Linear Programming (ILP) problem:
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min
∑
j∈J

∑
n∈N

∑
g∈Gn

Costjng ·Xjng (4.3)

s.t.
∑
n∈N

∑
g∈Gn

Xjng = RQGPU
j ,∀j ∈ J (4.4)

∑
j∈J

∑
g∈Gn

RQr
j ·Xjng ≤ CP r

n − URr
n,∀r ∈ R, ∀n ∈ N (4.5)

Xjng = {0, 1},∀j ∈ J,∀n ∈ N,∀g ∈ Gn (4.6)

The constraints ensure at every time all GPU requests for each job can be satisfied

(Constraint 4.4) and the sum of any type of resource (i.e., CPU, memory, and GPU

memory) requested by all jobs on any node must be within the bound of that node’s

free resources (Constraint 4.5). Subject to these constraints, we aim to minimise the

cost of the overall GPU allocation among co-located jobs (Constraint 4.3). For clarity,

notations used in this paper are summarised in Table 4.4.

Cost breakdown. To accurately capture the incurred cost and the impact of GPU

co-location onto the DL job performance, we further break down the overall cost into

two independent portions, GPU memory usage and GPU utilisation:

Costjng = ω1C
GMem
jng + ω2C

GUtil
jng (4.7)

wherein ωi is a customised weight that indicates the performance impact and we set

all weights equally by default.

Since higher GPU memory usage has a higher chance of OOM errors and JCT

slowdown, the cost of GPU memory CGMem
jng is inherently referred to as a proportion

of GPU memory usage as a result of placing the job j (Eq. 4.8):

CGMem
jng =

URGMem
ng + GMemj

CPGMem
ng

(4.8)
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where CPGMem
ng is a fixed number, i.e., the total GPU memory of the GPU device,

while GMemj is the estimated GPU memory usage of job j and URGMem
ng is the used

GPU memory within URτ
ng.

Due to the relationships between increased GPU utilisation of co-located DL jobs

and JCT slowdown with respect to hardware outlined in Section 3.2.1, we penalise the

combinations of co-located DL jobs when over-commitment manifests. Specifically,

let F be a set of functions that we trained and fitted on the JCT slowdown and

cumulative GPU utilisation with respect to GPU device g. fg is the function instance

in F and represents the function when the targeting device is of g type.

Hence, the GPU cost can be expressed as:

CGUtil
jng = fg(GUtiljng)

GUtiljng = URGUtil
ng + GUtilj

(4.9)

where GUtiljng is the estimated GPU utilization if job j is placed onto node n’s

GPU g. Our functions F was fitted against the JCT slowdown and GPU utilisation,

we can directly use the outcome of the function as an estimated cost when these jobs

are packed onto the GPU device. Therefore, the scheduling probability of the node

would be inversely correlated to the JCT slowdown estimate. As this ILP problem is

NP-hard and due to the heterogeneity of job resource requirements [81, 108], we took

a heuristic cost-based approach to greedily solve this scheduling problem.

4.3.3 Weighted Fair Queuing Scheduling

Overview. As we observed in Section 3.1.2, JCTs vary among DL training jobs,

and it is important to avoid head-of-line blocking and any form of resource starvation

– particularly incurred by long jobs with large resource requests as mentioned in

Section 2.4.3.2. To schedule different DL training jobs in a fair manner, we borrow

the ideas from [176, 239]; (i) cluster similar jobs into several groups to individually



Chapter 4. Proactive DL Training Job Scheduling with Horus 104

Algorithm 2 Weighted Fair Queuing-Based Job Scheduling

Input: (J , S, k, β) // Pending jobs, current cluster state, k queues and β jobs to consider

into the buffer for each scheduling round.

1: // Cluster the similar jobs into multi-tiered queues

2: Q ← Put pending jobs into k queues via k-means (J , k)

3: while queues in Q is not empty do

4: J̃ ← Pick β jobs into scheduling buffer via weighted fairness

5: for j in J̃ do

6: if the cluster has allocatable resources (S) then

7: // capacity check (CPUs, Mems, GPU Mems)

8: N ← filter all nodes passing capacity check (j, S)

9: λ← j.requestedGPU

10: σ ← dλ/#GPUperNodee

11: if len(N ) < σ then

12: continue

13: // calculate the cost of placing a job onto GPUs on the nodes

14: Cj ← Eq. 4.7, (j,∀g ∈ Gn, ∀n ∈ N )

15: // shortlist a collection of GPUs with min costs

16: G ← select top-λ from Cj in ascending order

17: // resource allocation

18: Schedule(j, G)

manage the jobs in a group and (ii) at each scheduling round, we fairly pick a certain

number of jobs from k queues, considering job waiting time and the length of the

queue, finally assigning the most suitable GPU resources to launch them in the GPU

cluster. Algorithm 2 outlines the algorithm details.

Job clustering. Before jobs are scheduled, at each scheduling round, we carry out

a clustering procedure for all pending jobs. Specifically, the L1 Distance metric is
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used to identify similar jobs considering the following features: (i) Number of tasks;

(ii) predicted GPU utilisation; (iii) GPUs per task; and (iv) estimated GPU memory.

These features outline per-job resource requirements and can be obtained by adopting

the method in Section 4.2. In practice, we run the k-means algorithm on all yet-to-

executed jobs to identify similarities and put them into the corresponding queues,

i.e., Q = [Q1, . . . ,Qk] (Line 2). We set k = 3 as we found that from Figure 3.2b, the

utilisation patterns have three distinct CDFs.

Picking jobs based on weighted fair queuing. Backfilling has been shown to

improve cluster utilisation by identifying suitable jobs in the queue to jump ahead for

execution [62, 219]. Combined with backfilling, β jobs are allowed, as a batch, into

each scheduling round. Horus picks up a number of pending jobs from each queue

according to the queue weight, i.e., the degree of pending jobs within each queue (Line

4). We measure the weight as the product of the median waiting time for jobs per

queue and the queue length, i.e., wx = max{Len(Qx),Med(Qx) × Len(Qx)}, x =

{0 . . . k}, where the max operation is to guarantee a non-zero value once median

waiting time is zero when all jobs are new arrivals on the system. The median has

a statistical property that is less affected by skewed data [100], and thus can more

accurately reflect the queuing time for a class of job. Finally, the number of jobs

picked from Qx can be calculated by wx∑k
i wi

β.

The rationale behind this queuing weight is, jobs are expected to be selected and

processed from a queue with longer waiting time and larger queue length. This design

can actively avoid job starvation of any particular class of jobs, whenever a class of

jobs starts to starve, an increased number of jobs will be selected. Thus, reservation

is implicitly implemented for starving jobs, as the weighted fair queuing algorithm

will select the jobs from the longest waiting time queue.
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Resource allocation. Because all pending jobs are now well-ordered into J̃

according to the weighted fairness, the scheduler will try its best to allocate available

resources to each job in turn whist minimising performance interference.

Specifically, for each job, we check the resource capacity and select all the nodes

(N ) that can satisfy all requirements of job j in terms of CPU, memory and GPU

memory (Lines 8). The GPU memory requirement is inferred by using Equation 2.7

in Section 2.3.1. Based on the total number of GPUs required by the job and the

number of GPUs per node, we calculate the minimal number of nodes that can meet

the needs of the job j (Lines 9-12). By using Equation. 4.7, we can then calculate the

cost of scheduling a job onto each GPU of each node in N (Line 14) and pick the top-λ

GPUs (G) with the minimal costs (Line 16) before the final resource allocation and

job scheduling (Line-18). Figure 4.4 depicts the overall Horus scheduling approach.

B CA

Job Queue 1

J KG

Job Queue k

…

1. K-means sorted into groups 2. Pop β jobs based on median waiting time

4. Select lowest cost job and schedule.

GPU 1 GPU N

Cost Fn.

Slowdown Fn.3. Filter & calculate cost of 
co-location.

Capacity Check.

…

Figure 4.4: The Horus scheduling approach.
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4.4 Interference-aware Scheduler Implementation

Horus was implemented as a set of components that can be deployed into existing

resource manager frameworks, and was shown to integrate into Kubernetes 1.15. The

Horus application controller is approximately 5k+ lines of code written in Go. The

prediction engine is written in Python, and operates as a separate process within

the DL training cluster, i.e., in Kubernetes. Both our application controller and

prediction engine are pods within the Kubernetes ecosystem, and they communicate

via remote procedure calls (RPC). We leverage the gRPC1 library as the underlying

RPC implementation to perform data serialisation and de-serialisation during data

transfer, allowing our scheduler to request predicted information upon job submission.

It is worth noting that our approach requires no modification to any underlying DL

libraries such as TensorFlow or PyTorch.

Application Controller. The application controller is written as a single process,

and maintains its own view of the cluster state in memory by watching any

infrastructure update through the API server. Our implementation of the cluster

state requires each machine node to have a map of GPU devices for ease of querying,

whereas existing open-source resource manager frameworks do not associate GPUs

with machines. Listing 2 shows the type definition of the machine node structure. On

startup, the Horus application controller registers with the resource manager to build

up its cluster state cache. Within the application controller, a gRPC communication

channel is opened between the controller and the prediction engine. By default, the

key GPU metrics are not collected by existing resource managers, and therefore an

extra monitoring framework must be deployed to collect GPU load information.

1https://github.com/grpc/grpc, [01/07/2020]
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Monitoring Monitoring is the key to application-aware optimisation [81, 182, 227,

247]. In order to obtain a fine-grained view of the infrastructure, we modified

cAdvisor2, a container monitoring framework to accommodate GPU utilisation per

process instead of per GPU. The metrics are then exported, collected and aggregated

into a centralised time series database, Prometheus, which our application controller

can query via a thin client, and make decisions based on the job’s historical usage.

Horus collected the same metrics shown in Table 3.1. Listing ?? shows the function

to build the machines cache. Horus also periodically updates its scheduling cache,

as stale information on GPUs utilisation and memory consumption can result in a

significant performance degradation.

Fault tolerance. Using a Network File System (NFS) is often necessary in DL

training jobs due to the large volume of training data and limited on-host memory

storage [81, 108]. In addition to efficient retrieval of training data, a checkpoint

file or miscellaneous event files can be persisted across nodes by using NFS. This

allows DL job recovery after a failure and, more importantly, enables job preemption

and migration. In Horus, upon selecting the best candidate GPU for placement, a

persistent volume request is submitted to the resource manager.

Migration. Apart from periodic cluster state updates, the Horus application

controller spawns an additional thread for speculative migration. The Migration

thread periodically scans the current cluster state. The reason migration is considered

is due to accounting for inaccurate GPU utilisation prediction and stale information

from cluster state cache. Our conditions for migration must satisfy the followings:

(i.) there must be at least an underutilised GPU, i.e., free or <45% utilised; and (ii.)

we have GPUs that are overallocated, i.e., ≥ three DL jobs co-located on the same

2https://github.com/google/cadvisor
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GPU. We found that GPUs with less than 45% utilisation can at least accommodate

one or two more smaller DL jobs. Listing 5 shows the migration procedure in Horus.

OOM Failure. It is possible for our approach (as well as other DL training resource

managers) to encounter issues associated with OOM errors due to co-located DL

jobs exceeding the total GPU memory capacity, stemming from incorrect memory

requirement estimation. Upon an OOM failure, Horus proactively queries its current

GPU cache to obtain the last used GPU memory in order to update the DL job

memory requirement, i.e., GPU memory must be equal or greater than the memory

currently used by the GPU. Listing 4 shows the GPU memory update procedure.

Prediction Engine. The prediction engine is implemented as a Python class with

two objects, the memory estimator and GPU utilisation predictor. We assumed

that the prediction engine has access to the underlying distributed storage system to

access the DL model’s checkpoint file, i.e., accessible via storage clients or mounting

a file system. Upon receiving a job request, the application controller then sends the

request to the prediction engine via gRPC along with the storage path. The memory

estimation then follows the procedure described in algorithm 1. The GPU utilisation

predictor then receives the features extracted from the memory estimation process

and emits a utilisation prediction value. We allow the prediction engine to update

the ML model through a file system, as shown in listing 6.

4.4.1 Design Assumptions

Locality considerations. This work primarily tackles the JCT slowdown due to

interference stemming from job co-location, while optimising the distributed job

training is not the focus of this paper. The current job placement scheme assumes

high-speed connection across machines, hence the data transfer time during training
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is not the dominating factor in the current algorithm design. The GPU interference

aware scheduling is most suitable for jobs that do not have high frequently transfer of

gradients and parameters. As indicated in Section 3.1.3, this is particularly useful for

DL training cluster with a large number of single-GPU jobs. For jobs requiring GPUs

across machines, the cost model in the algorithm can be integrated with locality-

based placement [81, 182, 266], so that GPUs on the same machines or racks can be

prioritised before the cost-based GPU filtering to reduce data transfer bottlenecks.

Timing constraints. Horus factors in the waiting time in multiple queue job selec-

tion, however like many other DL training cluster resource managers, Horus does not

consider the timing constraint in terms of completion time in the placement/planning

phase [162, 182, 187, 247, 266]. This is because a DL job’s convergence rate is often

non-linear, depends on hardware/software parameters and does not correlate to the

number of iterations [81, 108, 187], thus DL cluster managers cannot rely on the DL

job’s (remaining) execution time, which is used by generic algorithms such as shortest-

job-first (SJF) and shortest-remaining-time-first (SRTF), etc, or other optimisation

problem formulation based on timing constraints. Estimation of execution time relies

on a strong assumption, that is, workloads are pre-known, e.g., periodic jobs with same

datasets, hyperparameters, and architecture. This assumption does not always hold

in DL training clusters due to constant model evaluation with different datasets [86,

95]. Considering this constraint is beyond the scope of this thesis.

4.4.2 Comparing Horus with Existing Co-location Approaches

There are existing DL training cluster resource managers that enable co-location of DL

jobs. Table 4.5 highlights the key differences between co-location enabled DL training

cluster resource managers. The Gandiva [246] placement strategy entails monitoring

of DL jobs throughput, a DL job is then killed or migrated upon detecting a slowdown,
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using an undefined threshold value given a time period. In such an approach, it is

possible for the DL job being migrated to be allocated with another incompatible

DL job, leading to equal or greater performance slowdown. Antman [247] enables

co-location by monitoring DL jobs, scheduling jobs onto the least-loaded GPUs,

employing a local coordinator and modifing the underlying DL frameworks to allow

fine-grained control of DL jobs kernels, injecting idle time on a GPU to alleviate

interference between co-located jobs. This approach, however, requires maintenance

of the modified DL frameworks and allowing communication between cluster resource

manager and the running DL job.

Gandiva [246] AntMan [247] Horus

Objectives
High utilisation

Time-share

High utilisation

Time-share

High utilisation

Makespan

Co-location Trial-and-Error Least-Loaded
Prediction

cost

Locality Consolidation Consolidation Consolidation

Scheduling

input
Waiting time Current Utilisation

Predicted utilisation

Predicted memory

Waiting time

Hardware

awareness
No No Regression based

Interference

mitigation

Reactive

Migrate

Reactive

Throttle

Proactive

Migrate

DL frameworks

modification

Emit training

progress

GPU kernel

operation manager
No

Table 4.5: Co-location enabled DL training cluster schedulers comparison.
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Unlike existing co-location enabled DL training resource managers, Horus proac-

tively assigns DL training jobs to GPUs by computing their suitability—minimising

a cost function objective to support co-location with respect to cached cluster state

at scheduling time without online profiling. Our approach aims to maximise GPU

utilisation, minimise makespan and job waiting time by de-prioritizing co-location

placement decisions that would result in JCT slowdown from severe interference.

4.5 Summary

In this chapter, we presented the Horus proactive interference-aware approach and

discussed Horus main scheduling objectives, resource utilisation and fairness(§4.3.1).

Horus combines both proactive and reactive approaches, it does not require online

isolated profiling, Horus predictive approach can minimise scheduling overhead at

runtime. Importantly, Horus leverages application characteristics and DL model

structure to estimate GPU resource consumption (§4.2), a key innovative approach

to DL training cluster scheduling.

Finally, we described the Horus architecture, and how it schedules jobs with

infrastructure metrics according to the scheduling algorithm (§4.3.2).

In the following chapter, we demonstrate Horus performance using an experimen-

tation testbed cluster and large-scale simulation, and find that it compares favourably

to other systems.



Chapter 5

Horus Evaluation

To demonstrate the effectiveness and applicability of Horus in a DL training cluster,

two evaluations are conducted: (i) an empirical study in an experimental testbed

(§5.2) and (ii) a large-scale trace-driven simulation (§5.3). The combination of

empirical plus simulation based evaluation is consistent with that previously reported

in the literature [81, 95, 182, 187]. In our evaluation, we focus on answering the

following questions:

• What improvements does Horus bring to DL training compute clusters in terms

of GPU utilisation, makespan and job waiting time?

• How well does Horus scale in a large DL training cluster with hundreds of

machines?

• How sensitive is Horus regarding its configurable parameters?

113
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5.1 Experimental Setup

5.1.1 Environment

Experimental testbed cluster. Empirical experimentation is carried out on a

12-GPU cluster with each node containing 4 x NVIDIA 2080 GPUs, an AMD Ryzen

1920X 12 Core Processor (2 threads per core) with a 10Gb Ethernet network, and

128GB DDR4 memory. Our cluster was resource-managed using the Kubernetes

1.15.2 resource management framework. Ubuntu Disco 19.04 was used as the

operating system on each node, supported by NVIDIA driver (version 430.50). In

our experiments, the software used for DL training was identical to the ones we used

in our co-location study (§3.2.1). The DL framework, library and CUDA toolkits

responsible for DL job instantiation and execution were packaged in a container

for ease of deployment within our Kubernetes cluster. cAdvisor and DCGM were

configured to extract data at 1s and 250ms intervals, respectively, as initial trial runs

indicated that these parameters resulted in appropriate system state monitoring for

the purposes of Horus, given our cluster configuration.

Large-scale trace-driven simulation. We have also designed and implemented

a discrete-time cluster simulator to evaluate Horus within larger scale systems. The

simulator is written in Python, and simulates a 512-GPU cluster where each machine

consists of 8 GPUs. The simulation operates by replaying the full 398 job traces

described in Section 3.1. We fast-forward the trace by dividing the normalised time

by 10000, effectively fast-forwarded it by 10 seconds per step (the trace timestamp is

in milliseconds), as the full trace duration is a month with idle time period. When

each schedule loop is conducted, the time step is incremented by one. Listing 1 shows

the functions for generating jobs in each time step.
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Listing 1 Jobs Generator function.
class JobGenerator:

#...

def generate_jobs(self, delta_time):

'''output jobs that are not scheduled and already passed the delta time'''

def _gen(df, delta):

# not yet generated + passed the time offset

logging.info("delta-time: %d" % delta)

cond = (df["generated"] == 0) & (df["normalized_time"] <= delta)

return df[cond]

# Read Jobs from trace data frame

to_be_generated = _gen(self.trace_df, delta_time)

self.trace_df.loc[to_be_generated.index, "generated"] = 1

return to_be_generated

class JobsManager:

#...

def gen_jobs(self, delta_time, scale_factor=1):

# Read jobs from csv that should be in the system by this time

samples = self.job_generator.generate_jobs(delta_time)

# put into the queue or queues.

logging.info("generated: %d" % len(samples))

converted_jobs = []

for idx, row in samples.iterrows():

j = Job(idx, row.minutes * scale_factor, row.normalised_time, row.gpu_per_container,

gpu_utilization_avg=row.gpu_utilization_avg, gpu_utilization_max=row.gpu_utilization_max,

gpu_memory_max=util.convert_bytes(row.memory_max, unit="MiB"),

gpu_memory_avg=util.convert_bytes(row.memory_avg, unit="MiB"),

total_gpus=row.used_gpus)

converted_jobs.append(j)

# insert to Jobs Queue Manager.

self.insert(converted_jobs)

return len(samples)

We replay the scheduling trace in resemblance to the real production workflow as

shown in Figure 5.1. A job is submitted when the scheduling time step is greater

than or equal to the job’s submission time, tsched ≥ tsubmitted. A job is in a queuing

state when there is no available machine to execute the job, and its waiting time

is incremented by one at each scheduling round. Allocated jobs will start executing

and will be in a finished state when their execution time is up. Each job is only

scheduled when the resources are satisfied according to its resource request, similar to

production scheduling scenarios. Table 5.1 shows the fields available in the job trace.
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Queuing Executing Finished

Preempt

Schedule
No Available 

Machine

Figure 5.1: DL job state machine diagram in simulation.

Fields Unit Description

Submission time second The normalised submission time of a DL job.

GPUs (task) unit Number of GPUs per task.

GPUs (Job) unit Total number of GPUs per job.

Average GPU utilisation percentage Average GPU utilisation aggregated per job.

Maximum GPU utilisation percentage Maximum GPU utilisation per job.

Average GPU memory consumption MiB Average GPU memory consumption aggregated per job.

Maximum GPU memory consumption MiB Maximum GPU memory consumption per job.

Table 5.1: Available DL job information in Apollo’s trace.

Since GPU resources are a major evaluation consideration, our simulation only

considers DL training GPU jobs, i.e., no CPU jobs. Each GPU in the simulated

infrastructure has 32 GiB memory capacity based on NVIDIA V100 GPU. The

scheduling cost calculation is drawn from the sum of the average GPU utilisation per

job per machine (capped at 100%) and GPU memory per job per machine (capped at

full GPU memory capacity), similar to [41]. We model the interference effect by using

the polynomial function derived in Equation 3.3, multiplied by the sum of the GPU

utilisation of the device. Average cluster GPU utilisation is modelled by aggregating

GPU utilisation per machine and dividing by the number of GPUs.
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5.1.2 Evaluation Methodology

Metrics. Scheduler performance was measured using the following:

• Cluster GPU Utilisation: The cluster average GPU utilisation of all GPUs

at a single point in time. The metric is used to characterise the GPU resource

utilisation of a cluster.

• JCT: The end-to-end completion time for a DL job is calculated via the start

of the executing state to the finished state, excluding the submission time and

queuing time of the job. This metric is used to quantify whether the job

performance is affected by interference.

• Makespan: The total span of time to complete all DL jobs from enqueuing

through to completion. The metric is derived by determining the difference

between the completion time of the last job and the submission time of the first

job.

• Job waiting time: Job waiting time is particularly important in large-scale

clusters because the resources within a single multi-tenant cluster are typically

insufficient to serve all users at a single point in time. Hence, we measure the

job waiting time in our simulation in addition to the above metrics. The metric

is measured from a job’s point of arrival to being placed and executed by our

scheduler.

Comparative algorithms. Note that, our core focus is to evaluate our proactive

bin packing scheduling policy against the reactive ones. Thus, we are only focusing

on implementing the scheduling policies. We evaluate the Horus scheduling approach

described in §4.3.2, with existing DL training cluster scheduling algorithms for

comparison:
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• First in First Out (FIFO): FIFO assigns the DL job according to arrival

time without priority consideration. FIFO by design does not share GPUs

among DL jobs. This algorithm is leveraged in production DL training

clusters [95, 186] and traditional cluster schedulers such as Kubernetes [24] and

the YARN Capacity scheduler [233].

• Performance-aware Bin Packing (PAB): PAB schedules DL jobs based

on job progress characteristics – detected iteration slowdown. The scheduler

measures the difference in the average steps per second vs. the previous state.

After a new job placement, if performance drops by 50%, the job is simply re-

queued. We picked 50% due to the threshold not being specified in previous

approaches, and we consider a slowdown of 50% unacceptable, similar to prior

interference-aware resource manager work [52]. We allow a warm-up period

between 0-60s, so all DL jobs achieve stable resource patterns due to most

DL jobs having a preprocessing stage and our DL jobs on average take 60s

to preprocess and start the dataloader [247]. PAB mimics recent proposed

DL training cluster schedulers packing policy [182, 246]. In comparison to

both Gandiva and Optimus, our approach does not modify the underlying

DL frameworks to directly retrieve the training iteration time metrics, we

instrument the code to expose the step time metrics to the training logs and

instruct our scheduler to parse the logs at every scheduling loop. Furthermore,

we do not throttle jobs upon slowdown detection, as we focus only on evaluating

the bin packing algorithms.

• Opportunistic Bin Packing (OBP): OBP assigns DL jobs based on cached

GPU resource information. During job submission time, if a GPU has more

memory available than the DL job estimated memory requirement, the scheduler

opportunistically schedules the DL job onto the minimally loaded GPUs. This
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approach is taken in one of the recent DL training resource manager [247]. In

comparison to Antman, since we are only focusing on the scheduling bin packing

policy, we did not model their throttling mechanism in the OBP. We utilised

the same migration approach in Horus for OBP, to make sure we only compare

least-loaded scheduling policy effectiveness.

Workload. We generated two types of workload for our empirical study and large-

scale trace-driven simulation:

• Empirical Study Workload. Empirical study experiments were conducted

using a mixture of DL jobs generated from the set of jobs presented in Table 3.3,

as well as new DL model configurations and models (PyramidNet, LSTM and

transformer) resulting in Horus being exposed to 30 new DL jobs not used in

predictor training. All algorithms were evaluated with two different workload

job duration patterns W-Small & W-Large to demonstrate the effectiveness of

a utilisation-based packing approach. W-Small comprises DL jobs ranging from

1 minute to 1 hour with 60% of jobs less than 1800s, whereas W-Large has jobs

ranging from 3 minutes to 1 hour with only 40% of jobs less than 1800s, therefore

W-Large has longer job duration in comparison to W-Small. Additionally, we

assigned 20% higher probability to W-Large jobs to utilise a higher batch size,

≥ 128, in order to produce DL jobs with >60% utilisation. W-Small and W-

Large are adopted and modified from the job distributions derived from prior

work [81]. JCT was controlled by terminating jobs at specified epoch numbers

to emulate JCT patterns of production systems. Note that over 70% to 80% of

total production DL jobs have been shown to require a single-GPU (§3.1.3), and

hence for our testbed experiments, we focused on DL jobs requiring a single-GPU

for training. Secondly, our objective is to study changes in workload makespan

and JCT due to interference from DL job co-location. Locality, a focus in prior
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DL cluster schedulers [81, 182, 246, 266]–introduces further JCT heterogeneity,

making it difficult to fairly measure potential trade-off gains between resource

utilisation against JCT increase when co-locating DL jobs, therefore distributed

DL jobs were not included.

• Large-scale Evaluation Workload. To demonstrate scalability, we evaluated

Horus’s performance in simulation by replaying the 398 jobs from Apollo’s

production trace (§3.1.2). The jobs have (i) duration ranging from 10 minutes

to 25,654 minutes, (ii) GPU utilisation ranging from 1% to 98.6% and (iii) GPU

memory consumption ranging from 655MiB to 31.7GiB. Each DL job is assumed

to consume 12 CPU and 60 GiB memory per task for simplicity. A job is finished

when its execution time count is up, as discussed previously in §5.1.1.

Parameters & experiment configuration. The job waiting time is more

significant in large-scale multi-tenant clusters [108, 266], thus in our experimental

testbed experiments, Horus was configured to operate with the number of queues

k = 1 and a backfilling buffer size β = 15 to maximise the scheduling throughput

and cluster utilisation. This was set to demonstrate scheduling throughput. In

our large-scale simulation, we additionally evaluate job waiting time improvement

by including Horus-f with k = 3 in order to evaluate fairness. Moreover, we added

the Gandiva [246] time slicing approach to OBP in order to fully evaluate the overhead

of context-switching DL jobs and trade-off between job waiting time and makespan in

large-scale cluster. Our Python-based simulator does not capture the precise effects

of GPU kernel-level characteristics or internal job progress, therefore, PAB was not

included in the simulation. We repeat each experiment five times each, and the results

are reported using the arithmetic mean.
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5.2 Empirical Study Results

5.2.1 Makespan Analysis

As shown in Table 5.2, Horus successfully schedules all DL jobs with the lowest

makespan of 204 and 212 minutes across W-Small and W-Large, respectively, and

is equivalent to a 23.7% – 30.7% improvement against FIFO, an 18.4%–23.3%

improvement over PAB, and a 9.4% – 10.8% improvement over OBP.

Workload Algorithm Avg.(mins) St. Dev.(mins) Gain

W-Small

FIFO 267.3 1.32 –

PAB 250.4 2.02 6.3%

OBP 225.3 5.38 15.7%

Horus 204.0 8.5 23.7%

W-Large

FIFO 306.9 1.15 –

PAB 277.6 1.72 9.5%

OBP 238.6 4.9 22.2%

Horus 212.8 5.04 30.7%

Table 5.2: Makespan statistics.

We observe that OBP has the second lowest makespan, achieving 225 and 238

minutes across W-Small and W-Large as shown in Figure 5.2 and Table 5.2. OBP

outperforms PAB due to the latter algorithm incurring additional overhead when

determining whether slowdown occurred (threshold violation) after the initial co-

location decision. Since W-Large have 20% of jobs with longer duration in comparison

to W-Small, the early execution of these longer jobs from co-location would enable

makespan improvement. We observe the worst makespan Horus achieved still

outperforms the mean makespan achieved by other algorithms as shown in Figure 5.2.
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Figure 5.2: Makespan comparison, lower is better.

5.2.2 JCT Analysis

All co-location approaches introduce slowdown with PAB having the smallest

slowdown (8.2% – 10.3%), Horus achieving the second-smallest slowdown (17.3% –

28.1%) and OBP achieving the highest slowdown (21.8% – 30.3%). Figure 5.3 shows

the comparison of average JCT of each scheduling approach. We observe that FIFO

achieves the fastest JCT, due to exclusive GPU access, hence having no interference.

All co-location approaches suffer greater slowdown in W-Small in comparison to

W-Large as shown in Table 5.3. This is because a higher proportion of short and

small jobs allows for a more frequent and varied co-location within GPUs, as opposed

to longer and heavier jobs that claim a large portion of (or the entire) GPU. Although

FIFO achieves the fastest average JCT, it has resulted in the largest makespan and

lowest GPU Utilisation due to longer queuing times and isolation of the GPUs. We

observe that the JCTs standard deviation between Horus and OBP are similar as

shown in Figure 5.3, however makespan achieved by Horus is lower, this is because

the backfilling and prediction-based scheduling approach allows better co-location of
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Workload Algorithm Avg. (s) St. Dev (s) Slowdown

W-Small

FIFO 1618.1 874.5 -

PAB 1784.8 1047.5 10.3%

OBP 2108.9 1236.8 30.3%

Horus 2073.6 1200.0 28.1%

W-Large

FIFO 1869.7 1054.3 -

PAB 2024.1 1121.0 8.2%

OBP 2277.5 1293.1 21.8%

Horus 2193.8 1307.3 17.3%

Table 5.3: JCT statistics.
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Figure 5.3: JCT comparison, lower is better.

suitable jobs. When considering the majority of DL jobs are for experimental and

debugging purposes [95, 108], we believe that this is an acceptable tradeoff as engineers

can obtain quicker feedback due to earlier execution of their training jobs as shown

in the improved makespan results. Figure 5.4 depicts the JCT CDF between the

algorithms.
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Figure 5.4: Job Completion Time (JCT) in testbed cluster experiments.

5.2.3 GPU Utilisation Analysis

Horus achieves the highest overall cluster resource utilisation in all experiment runs as

shown in Figure 5.5 and Table 5.4, reflected by an average 60.1% GPU utilisation and

69.6% GPU utilisation across the experiments. We observed that in some experiments

runs of W-Small, both Horus and OBP can experience up to 30 minutes of DL cluster

resource utilisation of only 3–5%. This is because a small portion of our generated

DL jobs have long epoch times, yet exhibit low GPU utilisation, according to JCT

distribution presented in [81] and findings in Section 3.1. When omitting such tail

behavior in W-Small, cluster resource usage of OBP and Horus algorithms increases

by a further 5.2% and 11.9%, respectively.

While OBP and PAB both achieve higher utilisation compared to FIFO due to

their ability to perform co-location, OBP is able to achieve higher utilization as a

result of its rapid scheduling cycle. In contrast, PAB incurs additional scheduling
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Workload Algorithm Avg. Std. Dev Gain

W-Small

FIFO 45.2 14.3 -

PAB 49.5 17.5 9.5%

OBP 56.8 21.1 25.7%

Horus 60.1 19.9 33.0%

W-Large

FIFO 43.1 16.7 -

PAB 47.1 21.4 9.3%

OBP 59.7 27.2 38.5%

Horus 69.6 26.9 61.5%

Table 5.4: Cluster GPU utilisation statistics, higher is better.
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Figure 5.5: GPU utilisation comparison, higher is better.

waiting time in order to profile a scheduled job’s stable performance, this results

in a total of n × Twait waiting time, where Twait is the time it takes for a job to

preprocess data and start its iterative training loop [247]. Interestingly, Horus’s ability

to effectively co-locate jobs, achieving higher DL job throughput and GPU Utilisation
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Figure 5.6: Average cluster GPU utilisation in empirical study experiments.
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Figure 5.7: Sampled GPU utilisation CDF for W-Small workload.

will paradoxically induce interference and consequent JCT slowdown. Horus, does

however, still achieve a lower JCT in comparison to OBP, and when considering our

gains to resource utilisation and makespan, we view this as an acceptable trade-

off. Figure 5.6 depicts the mean GPU utilisation of the testbed cluster during the

experiments, and Figure 5.7 depicts the CDF of the GPU utilisation at the time

when the cluster was highly utilised for W-Small. We observe that Horus successfully
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achieves the highest utilisation usage across the GPUs during the experiments.

5.2.4 Sensitivity Analysis

In order to explore how Horus performs under various configurations and parameter

choices, we study how Horus operated under different configurations in the experi-

mental testbed cluster for its predictor accuracy and queue size buffer β.

Prediction Error. Since Horus’s approach is based on accurate GPU utilisation

prediction, it is beneficial to evaluate the impact of scheduling decisions when

prediction error increases and decide when to re-train the GPU utilisation prediction

model [185]. Thus, we investigated how Horus operated under different predictor

accuracy by introducing additional error, ±e, onto the predicted GPU utilisation of

each DL job, where 0% is the original prediction.
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Figure 5.8: GPU utilisation prediction error and evictions statistics

When introducing artificial error e into the prediction output, we observe that the

number of DL job failures increases by up to three times when the prediction error



Chapter 5. Horus Evaluation 128

is high as shown in Figure 5.8. This is likely resultant from our cost calculation in

Section 4.3.2, when GPU utilisation cost CGUtil appears to be of medium cost, the total

cost likely neglected the GPU memory cost CGMem due to the weighted parameters

ω (Equation 4.7), causing job failures due to inaccurate GPU memory estimation,

thus causing OOM errors. Such results show that during a warm-up phase where

large prediction errors are observed, it may be beneficial to assign a higher weighting

on CGMem until the ML predictor is trained to a satisfactory accuracy or when the

predicted quality degrades after a period of continuous online evaluation. Finally,

periodic monitoring of GPU utilisation error should be conducted and trigger a re-

training step when prediction error starts to deviate more than ± 10%.
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Figure 5.9: Beta configurations and makespan changes.

Queue Buffer Size. Altering queue buffer size β affects workload makespan,

ranging from a makespan decrease of 14% to an increase of 12% as shown in Figure 5.9.

We observe that β=30 performs the most effectively in experiment runs. While it is

intuitive to assume that a larger queue size allows a scheduler to determine better

co-location combinations, we found that across experiment runs, β=45 resulted in
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a 12% makespan increase. Because Horus prioritises making the best placement for

co-location, we found that DL jobs with very high or very low GPU utilisation and

memory consumption requirements were de-prioritised as placement candidates for co-

location, and were forced to execute near the end of experiment runs. In comparison,

β=5 indicates a selection of fewer candidates results in less effective placement for co-

location, thus indicating that the queue buffer size β is likely affected by DL cluster

configuration and DL jobs size.

5.3 Large-scale Trace-driven Simulation Results

5.3.1 Makespan Analysis
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Figure 5.10: Makespan comparison, lower is better.

Similar to the testbed experiments, both Horus and Horus-f approaches resulted

in the fastest makespan up to hundreds of scheduling decision steps, 8933 and 9121,
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respectively, as shown in Figure 5.10. FIFO resulted in the longest makespan (9676

steps) as expected due to dedicated GPUs, followed by OBP (9486 steps). Horus

has improved the makespan by 8% compared to FIFO. Interestingly, by adding the

fairness consideration into Horus, Horus-f in simulation resulted in a slightly slower

makespan, a 2% makespan increase. This is due to the overhead of clustering DL

jobs at each scheduling step. The results demonstrate that in larger-scale DL training

clusters, both Horus approaches still successfully scheduled jobs, whilst minimising

interference and outperforming other co-location approaches in terms of makespan.

5.3.2 JCT Analysis

In large-scale simulation, both Horus approaches incurred a performance slowdown

on impacted jobs over 1.39x – 2.29x in comparison to OBP, as shown in Table 5.5.

This is due to the large number of jobs in Apollo having ≥50% GPU utilisation as

discussed in Section 3.1 and co-locating these jobs incurred slowdown due to GPU

over-commitment. Although both Horus approaches degrade JCT higher than OBP,

both Horus approaches still achieve faster makespan due to backfilling and co-locating

suitable jobs that minimise interference. This phenomenon is similar to previous JCT

observations in our empirical testbed study.

Algorithm Avg. Med. St. Dev Reduction

OBP 162.12 144.0 213.72 –

Horus 225.43 147.0 481.78 1.39x

Horus-f 371.69 157.0 737.83 2.29x

Table 5.5: JCT statistics for impacted DL jobs in simulation.

When considering the entire JCT distribution, there is only a minor degradation

when compares to FIFO, 0.2% as shown in Table 5.6. The reasons for the phenomena
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Algorithm Avg. Med. St. Dev Reduction

FIFO 270.60 119.29 614.56 –

OBP 271.06 121.47 614.58 0.2%

Horus 271.19 121.15 614.62 0.2%

Horus-f 271.18 119.29 614.8 0.2%

Table 5.6: JCT statistics in simulation.

are because Apollo jobs’ arrival patterns were sparse, and therefore the DL jobs did

not experience high GPU interference in the cluster.

5.3.3 GPU Utilisation Analysis

It is observable that both Horus and Horus-f achieve the highest cluster GPU

utilisation, as shown in Figure 5.11. At scheduling step 800, Horus and Horus-f achieve

60.85% and 60.78% average GPU utilisation respectively, while FIFO and OBP are

averaging 53.6% and 49.96% respectively. OBP is lower than FIFO in comparison

to FIFO, this could be due to the time slicing for DL jobs can introduce additional

scheduling overhead, i.e., frequent switching and re-scheduling of jobs. The period of

re-scheduling and migration contributes to lower average cluster GPU utilisation.

When including the standard deviation, we observe that Horus and Horus-f can

achieve average cluster GPU utilisation of ≥80%, outperforming FIFO and OBP

significantly when compared against FIFO and OBP. This is due to Horus’s efficient

packing, which leads to high GPU utilisation early in the large-scale simulation and

tail jobs contributing to the low GPU utilisation as shown in Figure 5.12. We speculate

there are more jobs in the early scheduling rounds, could be due to working and

holidays difference. The tail job behaviour manifests due to few but long-running

jobs existing in the Apollo trace as discussed in §3.1, and in empirical study (§5.2.3).
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Figure 5.11: GPU utilisation comparison, higher is better.
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Figure 5.12: Cluster GPU utilisation in simulation.

5.3.4 Waiting Time Analysis

Combining fair queueing and co-location, Horus-f achieves the lowest average waiting

time (132.9 steps) across all scheduling approaches, as shown in Figure 5.13. Table 5.7
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shows Horus-f achieves a 71.5% job waiting time reduction when compared with FIFO.

Algorithm Avg. Med. St. Dev Reduction

FIFO 466.2 463.1 327.7 –

OBP 347.8 351.4 248.9 25.4%

Horus 142.3 119.3 120.3 69.5%

Horus-f 132.9 106.7 116.6 71.5%

Table 5.7: Job waiting time (steps) in simulation.
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Figure 5.13: Job waiting time comparison, lower is better.

Moreover, We observe that Horus achieves the second-lowest average waiting time

(142.3 steps). The fair queuing mechanism alone results in an approximately 10%

lower median job waiting time when compared to Horus with k = 1, 106.7 and

119.3 respectively. Although OBP is co-location enabled, the mean waiting time only

improves 25.4% when compared against FIFO. Since jobs in Apollo have long job

duration, time slicing will have to go through many rounds for each job, leading to



Chapter 5. Horus Evaluation 134

high makespan, i.e., when a large queue of jobs is waiting for their respective time

slice t, they still have to wait for previous jobs to have obtained their t−1 time slices.

The results demonstrate that Horus-f is desirable when the cluster is divided into

multiple tenants and when jobs have distinct classes of duration [95].

5.3.5 Sensitivity Analysis

Similar to the empirical testbed experiments, we conduct sensitivity analysis in

simulation by examining (i) the configurable number of queues with various values –

3, 4, and 5; and (ii) the queue buffer size β.

Number of queues. We observe that the number of queues does not significantly

affect Horus scheduling performance, as shown in Fig. 5.14a. When k=5, the mean

waiting time is degraded by 6% when compared to k=3, averaging 141.3 and 132.8,

respectively. The reason for higher waiting time with higher number of queues could

be due to when job clustering overhead. Similarly, the makespan performance has

degraded slightly when the number of queues increased, as shown in Figure. 5.14b.

Configuring the number of queues is not the focus in this thesis, however, we speculate

this is workload and cluster size dependent.

Queue buffer size. Figure 5.14c depicts the makespan achieved across different

queue buffer size and queue settings. We observe that Horus with k=1 achieves the

lowest makespan across all queue buffer size configurations. While the queue buffer

size β does not affect Horus (k=1) makespan, we can observe that when β is increasing,

Horus-f (k ≥1) makespan improved slightly. This is due to backfilling scheduler can

consider more variations of DL jobs and pack them according to GPU utilisation.
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Figure 5.14: Sensitivity analysis in simulation.

5.3.6 Simulation validity

Compared with our empirical testbed experiments, it is clear to see that the Horus

scheduling approach performs similarly in simulation settings with a production trace,

where Horus makes tradeoffs between JCT and resource efficiency, outperforms both

FIFO, and OBP, in terms of makespan and GPU utilisation. In simulation, we also

focus on the bin packing scheduling approaches rather than modelling performance

tracking and job throttling. Horus uses the derived interference models (Eq. 3.2 and

3.3) to capture and be faithful to the real-world effect of job slowdown.
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5.4 Discussion

5.4.1 Benefits

The above experiments have shown that Horus can bring several benefits to DL

training clusters.

• Improved cluster average GPU utilisation. Horus has demonstrated that

its prediction-based and cost-based approach can achieve high average GPU

utilisation at ≥60% across empirical study and large-scale simulation, a sizable

improvement over existing DL resource managers. This is due to the ability to

leverage apriori knowledge of GPU utilisation before execution, and backfilling

to enable safe co-location of suitable jobs without head-of-line blocking. This

contrasts with reactive approaches that have to mitigate interference after initial

placement decisions due to GPU over-commitment.

• Improved scheduling makespan. Makespan are improved by 8% to 30%

across large-scale simulation and empirical study, respectively, when compared

against other approaches. Improving makespan is equivalent to efficient

utilisation of GPU resources [51]. This is due to safe co-location of suitable

jobs (prediction) and considering a range of jobs (backfilling) allowing them to

execute early while minimising interference overhead.

• Reduced job waiting time. As a result of early execution of suitable jobs,

job waiting time is reduced, demonstrated by Horus improving waiting time by

71.5% when compared to FIFO. A benefit of our approach is that it provides

earlier execution of scheduled DL models, and therefore ML engineers can

detect poor DNN architecture designs or hyperparameter configurations quicker,

leading to highly efficient usage of GPU resources and engineering effort.
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5.4.2 Limitations

Horus demonstrated three key benefits in DL training cluster scheduling, however,

there are several limitations:

• Large-scale monitoring: The Horus approach requires accurate monitoring

of cluster resources to schedule jobs based on utilisation. Although Horus scales

well when the cluster size is within the region of hundreds of machines, when

cluster size is larger (thousands of GPU devices), frequent and detailed metric

collection can introduce high CPU load to the monitoring framework, DL jobs

and Horus application controller. One way to mitigate this challenge is to

introduce additional components for monitoring and temporary blacklist GPUs

for co-location when utilisation information is not available. Additionally, the

GPU cluster state can be partitioned for distributed monitoring [5, 63].

• Periodic predictor evaluation – Inaccurate GPU utilisation prediction could

worsen scheduling performance, and therefore reduce cluster GPU utilisation

and cluster resource availability. In order to trigger a re-training step, keeping

track of GPU utilisation prediction error rate is necessary. However, this

approach could momentarily introduce high CPU load at run time, in the

region of minutes, and therefore, an additional component could be introduced

in the Horus architecture, in order to re-evaluate the prediction performance

periodically. Specifically, one way to safeguard inaccurate prediction is by

maintaining a sliding window of inaccuracy measurement. When the inaccuracy

is greater than or equal to a threshold, Horus can disable the prediction engine

code path, fallback to default scheduling approach without prediction [145].

• Backfilling configuration: Backfilling can enable higher resource utilisation

when suitable jobs exist [62]. However, as demonstrated in both sensitivity
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analysis across empirical study and large-scale simulation, this requires careful

tuning of the buffer size parameter. This is further complicated when cluster

size and job size distribution can impact the effect of backfilling. It is common

for scheduling approaches to be evaluated using a cluster simulator [76, 144].

Therefore, one way to tune these parameters is to adapt a feedback-based

approach [106] with the use of a trace-based cluster simulator.

• Locality consideration: This work primarily tackles the JCT slowdown due to

interference stemming from job co-location. While optimizing the distributed

job training is not the focus of this work, the current job placement scheme

assumes high-speed connection across-nodes, hence the data transfer time during

training is not the dominating factor in current algorithm design. For jobs

requiring multiple GPUs, our approach can be complementary to locality-based

approaches that currently exist [81, 266], i.e., leveraged the cost model in our

algorithm 2, and a potential future avenue is to calculate the tradeoff between

locality and interference.

5.4.3 Scalability

The Horus prediction engine inference time overhead is under a second, we consider

this overhead as acceptable, as most production DL training cluster schedulers have

a soft constraint of making a scheduling decision under a few seconds due to the

majority of GPU jobs being longer than 1-minute [95, 246, 247]. When there are

bursts in job submission, if the prediction engine becomes the bottleneck of the DL

training cluster, it is possible to deploy replicas of the prediction engine and load-

balance between the prediction engines to cope with scheduling throughput. Since

our scheduling cost model can be implemented as a plugin to cluster schedulers that

follow the filter+cost heuristic policy [24, 83, 118], our approach would be bounded
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by O(Ndk), where N is the number of sampled nodes, d is the number of GPUs and

k is the number of backfill jobs. The precise configuration of sampling ratios and

number of backfill jobs can be tuned according to the job submission throughput.

The complexity is lowered to O(Nd) when backfilling is disabled, results in similar

time complexity to production cluster schedulers that employ sampling approach [83].

5.5 Summary

In Chapter 2, we detailed several goals for improved DL training cluster scheduling

(§2.4.3.2). Within a set of experiments, Horus has been able to achieve these goals:

• Horus has been shown to successfully schedule DL training jobs in a GPU-load

aware manner and avoid exclusively locking a GPU, addressing challenge 1 –

exclusive lock and load-agnostic scheduling. Horus improved GPU utilisation by

up to 61.5% when compared against FIFO in experimental testbed cluster and

15% in large-scale simulation. Horus can achieve the highest GPU utilisation

when compared against existing co-location enabled approaches.

• By proactively predicting GPU utilisation and inferring the likely interference

effect, Horus is able to mitigate severe performance degradation between DL

jobs, addressing challenge 2 – placement sensitivity. Horus improved makespan

by up to 30.7% when compared with FIFO in an experimental testbed cluster

and up to 8% in large-scale simulation. Horus is able to achieve the fastest

makespan when compared against existing co-location enabled approaches.

• Horus can lead to improved waiting time, addressing challenge 3 – multi-tenancy

and high waiting time. Horus improved waiting time by 69.5% – 59.0% when

compared to FIFO and OBP. Moreover, when including a weighted fair queuing

approach, Horus-f improved waiting time by 71.5% and 61.8% when compared to
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FIFO and OBP. Horus can achieve the lowest job waiting time against existing

co-location enabled approaches.

Finally, Horus is a proactive DL resource manager that can be complementary to

existing approaches due to its extensibility, i.e., without modifying the underlying DL

frameworks and core Kubernetes components.
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Conclusion

DL applications are here to stay. They are being increasingly integrated into real-

world applications, from satnav mapping and weather prediction to protein synthesis.

There are a plethora of DL models, both small (<100MiB) and large (≥1GiB). These

are largely trained by organisations using large-scale compute clusters for effective

sharing of hardware between multiple-tenants to increase cost efficiency [108, 177,

266]. DL training compute clusters are unique due to job characteristics, hardware

differences and organisational behaviours; The scale of these clusters is only likely to

increase in the future. Therefore, it is important to use these large-scale DL training

clusters as efficiently as possible.

However, as observed and presented in Chapter 2, existing resource managers

deployed to manage DL training compute clusters are facing several challenges: (i)

exclusive lock and load-agnostic scheduling, leading to low average cluster resource

utilisation; (ii) placement sensitivity and locality-agnostic scheduling, decreasing

job performance; and, (iii) multi-tenancy and resource fragmentation, leading to

high job waiting times. Recently proposed DL training specific resource managers

that bypass exclusive locks to enable job co-location lead to interference from poor

co-location decisions resulting in performance slowdown. A common approach to

141
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mitigate interference in cluster resource managers is to employ isolated profiling and

reactive DL job migration. A better way to tackle the interference challenge without

involving profiling is to improve co-location decisions at scheduling run time. Existing

DL training resource managers mainly focus on improving JCT and fairness, and there

is a lack of innovation in addressing low average cluster resource utilisation.

6.1 Summary of Contributions

To address these challenges, we proposed a proactive approach to DL training resource

scheduling that enables co-location and minimises interference by making better co-

location decisions, while focusing on improving makespan, cluster GPU utilisation

and respecting fairness. The key insight in this thesis is that DL computational

architectures can provide relevant information for the cluster resource manager to

infer the likely GPU memory consumption and GPU utilisation of a DL job, thus

making better co-location decisions at scheduling run time.

• In Chapter 3, we presented an in-depth analysis of a large-scale DL training

compute cluster to demonstrate the severity of low average cluster resource

utilisation and production DL training job characteristics. We demonstrated the

key information in existing DL training clusters, namely a large amount of single-

GPU jobs (>70%) and low cluster GPU utilisation (<60%). We conducted

an interference study for DL jobs and identified that GPU over-commitment

(cumulative GPU utilisation) correlates with performance interference for DL

jobs, and modelled the relationship between interference and pver-commit GPU

utilisation with respect to GPU hardware by fitting the polynomial regression

models. We characterised and discovered DL model features such as FLOP

count, number of model parameters and GEMM, correlate with GPU utilisation,

presenting opportunities for predicting GPU utilisation.
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• Chapter 4 contributes by describing our predictive approach to workload

scheduling in DL training compute cluster. Based on analysis from Chapter

3, we proposed predicting GPU utilisation using ML techniques and estimating

the likely GPU memory consumption of a DL training job through an analytical

model. We trained a ML model that can predict GPU utilisation to a

satisfactory level (0.133 RMSLE and 0.077 MAPE), and extracted the most

important features from these predictors (FLOPs, Parameters, Batch Size,

Activations, GEMM, ReLU and Flatten). Our findings show that these features

should be considered when designing DNN architectures that minimise hardware

load. Finally, we presented Horus, a new DL training resource manager that is

proactive, GPU load-aware, waiting-time-aware and interference-aware that is

based on a cost-model.

• Finally, Chapter 5 evaluated Horus through empirical testbed experimen-

tation and a large-scale trace-driven simulation. We found that Horus

improves the quality of co-location decisions over existing and state-of-the-

art approaches since Horus considers GPU over-commitment behaviour, and

proactively estimates GPU utilisation and memory consumption, to avoid co-

location interference where possible. Horus successfully achieves the highest

cluster average resource utilisation (up to 69.6%), lowest makespan and lowest

job waiting time across co-location enabled approaches. Moreover, Horus can be

complementary to existing DL training cluster resource managers that focus on

various objectives due to its extensibility. Horus can also scale to DL training

clusters with hundreds of machines.
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6.2 Review of Research Questions

The work presented in these chapters collectively answers our research questions

introduced in Chapter 1.

[RQ1] When co-locating DL training workload onto shared hardware to improve

utilisation, what are the relationships between their respective utilisation profiles

and interference?

In Section 3.2.1, we have shown that performance interference introduces

slowdown for DL jobs. The performance slowdown induced is correlated with

GPU over-commitment, i.e., the cumulative GPU utilisation of the co-located

DL jobs. Furthermore, we showed that GPU hardware heterogeneity affects

the performance slowdown by fitting regression models, and are reflected by the

coefficients of the models. Thus, when DL job GPU utilisation is known prior

to execution, resource management frameworks can leverage this information to

improve co-location decisions.

[RQ2] How to determine DL training workload utilisation profile efficiently without

online profiling?

In Section 3.3, we have demonstrated that DNN architecture and its inputs

provide crucial information that are correlated with GPU utilisation, such

as FLOPs, parameters, batch size, and activations, by looking through the

Pearson and Spearman-rank correlation. We identified that there are moderate

linear (≥ 0.4) and monotonic relationships (≥ 0.7) between the DL operations

(e.g., matrix manipulation, GEMM, ReLU and Flatten) within common DNN

architectures and GPU utilisation. Based on our findings, we trained a machine

learning model that can predict GPU utilisation efficiently given these features.
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[RQ3] Can resource management frameworks leverage this resource utilisation estimate

to provide better co-location scheduling decisions than existing frameworks, thus

improving average cluster utilisation and lower job waiting time?

In chapter 4, we proposed Horus, a ML-integrated approach (prediction engine)

in DL training cluster resource scheduling that utilises a cost model to decide

on DL job co-location. The prediction engine comprises a ML model for

predicting GPU utilisation and an analytical model for estimating GPU memory

consumption. We have shown that Horus achieves the highest average cluster

utilisation, fastest makespan and lowest job waiting time in our empirical

experimentation and in a large-scale trace-driven simulation. We discussed that

this approach requires re-training of the ML model and a monitoring system in

order to allow Horus to work effectively.

With Horus, we demonstrate that a proactive approach to DL training jobs

scheduling with co-location that minimises interference without dedicated profiling

can be achieved. This is done via (i) discovering DL training job interference can

be estimated from GPU over-commitment degree, (ii) understanding the DL training

job characteristics that drive GPU resource consumption, i.e., DNN models and their

operations, and (iii) collect relevant data and train an ML model to estimate GPU

resource consumption. We demonstrate that ML’s integrated approach to cluster

scheduling is not only easily trainable, not only limited to CPU-based workload; but

can also scale to a large DL training compute clusters.

6.3 Future Work

There is, however, ample opportunity for future work to extend Horus in DL cluster

resource scheduling. Horus has demonstrated that a modern ML-driven approach to

DL training job scheduling is both practical and appealing. This is only an initial
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step in the direction of making DL cluster scheduling more aware of its infrastructure

and applications. To make Horus a favourable DL compute cluster resource manager,

there are five possible avenues for future research.

6.3.1 Alternative Machine Learning Predictor

An accurate predictor can further enhance co-location scheduling decisions. In the

ML system community, utilising a DNN-based model to predict tensor programs has

gained great attention due to the increase in prediction accuracy over traditional

ML models [13, 220]. For instance, Gao et al. [67] leverages GNN to predict the

end-to-end runtime latency of a DL model. While our XGBoost model provides a

satisfactory level of prediction accuracy, an interesting idea would be to leverage a

DNN-based model to predict the GPU utilisation. A potential obstacle to overcome

is the source of a sufficiently large training dataset for the DNN-based model, as

additional components are needed to acquire such a dataset.

6.3.2 Hardware Feature Integration

Accelerators and ecosystems for DL have increased in recent years. For example,

NVIDIA A100 [171] can statically partition its compute and memory resources for

different workloads. Therefore, the ability to determine the compute and memory

resources needed (i.e., the partition size) for a particular DL workload and space

share between jobs could dramatically increase resource utilisation. By integrating

hardware features directly into the prediction engine and DL workload characteristics,

the cluster operator might be able to draw on the predictive benefits without having

to manually profile the best configuration for hardware partitioning and tuning the

parameters of the DL models for a resource efficient DL cluster resource management.
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6.3.3 Low-level IR Features Integration

While the high-level DL model’s IR emits information about the DL models, the

key implementation details are missing such as the number of loops, tiling structure

and temporary memory allocation. This is because low-level IRs are emitted via DL

compilers that give information on the number of threads needed to execute, number

of loops and hardware intrinsic API used [35]. Incorporating these features into the

prediction engine can provide further hints on resource consumption patterns. This is

already a well-explored area in the DL compiler community [13, 220]. An interesting

next step would be to study whether these features have a direct relationship with

resource consumption and whether co-located DL jobs with similar number of threads,

loops and intrinsic calls will manifest in high interference. Rammer [138], an approach

that leverages low-level IR features including the number of threads and the number

of processing elements, has indicated that a co-ordinated device scheduling approach

would work at the device level. Making it applicable to cluster scheduling might be

fruitful to explore.

6.3.4 Energy-aware scheduling

To further extend the hardware resource selection challenge, energy has now become

one of the major concerns for hyperscale compute cluster operators [124, 132, 244].

The ability to select the right resource configuration for a particular energy budget is

a crucial challenge to improve cost efficiency for DL jobs. Moreover, energy demand

correlates to user request demand and the ability to deliver energy per DL job. It

is essential to deliver the right energy level to a DL job to satisfy their service level

objectives while minimising energy consumption. However, different ML models could

behave differently with different energy levels [235], this becomes much more complex

when DL jobs are co-located.
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It would be interesting to implement an energy-aware proactive scheduling

approach. To explore some of these questions, an additional energy selection ML

model could be trained and implemented. For example, an implementation using

reinforcement learning similar to [143] would allow the ML model to dynamically

evaluate hardware configuration according to cluster state (including power).

6.3.5 Inference Scheduling

Horus is a DL training cluster resource manager, however, further extensions can

be made to support inference jobs. This is both timely and important. Meta has

indicated that 200 trillion inferences are performed per day [128]. We suspect that

major hyperscale cluster operators that provide DL-driven decision-making services

perform a similar number of inferences. Moreover, Mixture-of-Expert (MoE) models,

i.e., many models combined into one, are gaining traction due to its ability for

multitasks inference. Accommodating MoE models in inference can be crucial in

improving resource efficiency. For example, can the number of inferences for the

intermediate models within MoE be evaluated to dynamically adjust the resources

assigned; trading-off accuracy with resources? For example, must a model be invoked

for a request during a high cluster contention period? These questions would be both

interesting and practical to explore.

Horus already has some of these elements, modelling interference with respect to

hardware and DL training jobs. It would be interesting to broaden it to take those

extra dimensions into account.

6.4 Summary

As applications are increasingly powered by DL models, the training infrastructure

for DL models must be supported by better cluster resource management software.
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Existing DL training clusters exhibit low average GPU utilisation and a common

way to improve utilisation is by co-locating workload. However, interference is a

fundamental challenge in all resource sharing compute systems, and it manifests when

naively co-locating unsuitable workload.

In this dissertation, we have made the case for new proactive DL training

cluster resource management that addresses performance interference. We have

shown interference-aware proactive DL scheduling possible via extracting common

features from a DL model’s high-level IR and predicting its resource consumption,

informing the cluster resource scheduler allowing it to make better co-location

decisions without dedicated profiling. We proposed Horus as part of the resource

management framework for DL training clusters.

With these contributions, Horus can make DL training compute clusters more

resource efficient without incurring excessive maintenance.
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[231] Nedeljko Vasić et al. “DejaVu: Accelerating Resource Allocation in Virtualized

Environments”. In: Proceedings of the Seventeenth International Conference

on Architectural Support for Programming Languages and Operating Systems.

ASPLOS ’12. 2012.

[232] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural

information processing systems. 2017, pp. 5998–6008.

[233] Vinod Kumar Vavilapalli et al. “Apache hadoop yarn: Yet another resource

negotiator”. In: Proceedings of the 4th annual Symposium on Cloud Computing.

2013, pp. 1–16.

[234] Abhishek Verma et al. “Large-scale cluster management at Google with Borg”.

In: Proceedings of the Tenth European Conference on Computer Systems. 2015,

pp. 1–17.

[235] Chengcheng Wan et al. “ALERT: Accurate Learning for Energy and Time-

liness”. In: 2020 USENIX Annual Technical Conference (USENIXATC 20).

2020, pp. 353–369.

[236] Chen Wang. Improving resource efficiency for Kubernetes clusters via load-

aware scheduling — IBM Research Blog. 2020. url: https://www.ibm.com/

blogs/research/2020/11/resource-efficiency-kubernetes/ (visited on

11/10/2021).

[237] Endong Wang et al. “Intel math kernel library”. In: High-Performance

Computing on the Intel® Xeon Phi™. Springer, 2014, pp. 167–188.

[238] Guanhua Wang et al. “Blink: Fast and generic collectives for distributed ml”.

In: Proceedings of Machine Learning and Systems 2 (2020), pp. 172–186.

[239] H. Wang et al. “S-CDA: A Smart Cloud Disk Allocation Approach in Cloud

Block Storage System”. In: ACM DAC. 2020.

https://www.ibm.com/blogs/research/2020/11/resource-efficiency-kubernetes/
https://www.ibm.com/blogs/research/2020/11/resource-efficiency-kubernetes/


References 176

[240] Haojie Wang et al. “PET: Optimizing Tensor Programs with Partially

Equivalent Transformations and Automated Corrections”. In: 15th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 21).

USENIX Association, July 2021, pp. 37–54.

[241] Yu Wang et al. “A Systematic Methodology for Analysis of Deep Learning

Hardware and Software Platforms”. In: MLSys. 2020.

[242] What is hyper-threading? 2021. url: https://www.intel.com/content/www/

us/en/gaming/resources/hyper-threading.html (visited on 11/15/2021).

[243] Bichen Wu et al. “Fbnet: Hardware-aware efficient convnet design via differ-

entiable neural architecture search”. In: Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition. 2019, pp. 10734–10742.

[244] Qiang Wu et al. “Dynamo: Facebook’s data center-wide power management

system”. In: ACM SIGARCH Computer Architecture News 44.3 (2016),

pp. 469–480.

[245] xgboost/sklearn.py. 2021. url: https://github.com/dmlc/xgboost/blob/

01152f89ee585c42523add286a78ab9101a5a40a/python-package/xgboost/

sklearn.py#L1143 (visited on 12/10/2021).

[246] Wencong Xiao et al. “Gandiva: Introspective cluster scheduling for deep

learning”. In: USENIX OSDI. 2018.

[247] Wencong Xiao et al. “AntMan: Dynamic Scaling on GPU Clusters for Deep

Learning”. In: 14th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 20). 2020, pp. 533–548.

[248] Qizhe Xie et al. “Self-training with noisy student improves imagenet classifica-

tion”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition. 2020, pp. 10687–10698.

https://www.intel.com/content/www/us/en/gaming/resources/hyper-threading.html
https://www.intel.com/content/www/us/en/gaming/resources/hyper-threading.html
https://github.com/dmlc/xgboost/blob/01152f89ee585c42523add286a78ab9101a5a40a/python-package/xgboost/sklearn.py#L1143
https://github.com/dmlc/xgboost/blob/01152f89ee585c42523add286a78ab9101a5a40a/python-package/xgboost/sklearn.py#L1143
https://github.com/dmlc/xgboost/blob/01152f89ee585c42523add286a78ab9101a5a40a/python-package/xgboost/sklearn.py#L1143


References 177

[249] Saining Xie et al. “Aggregated residual transformations for deep neural

networks”. In: IEEE CVPR. 2017.

[250] Xin Xu et al. “Characterization and prediction of performance interference

on mediated passthrough GPUs for interference-aware scheduler”. In: 11th

USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 19). 2019.

[251] Gingfung Yeung et al. “Horus: Interference-Aware and Prediction-Based

Scheduling in Deep Learning Systems”. In: IEEE Transactions on Parallel

and Distributed Systems 33.1 (2022), pp. 88–100.

[252] Jason Yim et al. Using AI to predict retinal disease progression. 2021. url:

https://deepmind.com/blog/article/Using_ai_to_predict_retinal_

disease_progression (visited on 10/25/2021).

[253] Yang You et al. “Large batch optimization for deep learning: Training bert in

76 minutes”. In: arXiv preprint arXiv:1904.00962 (2019).

[254] Fisher Yu and Vladlen Koltun. “Multi-scale context aggregation by dilated

convolutions”. In: arXiv preprint arXiv:1511.07122 (2015).

[255] Matei Zaharia et al. “Spark: Cluster computing with working sets.” In:

HotCloud 10.10-10 (2010), p. 95.

[256] zero deepspeed: new system optimizations enable training models with over

100 billion parameters. 2020. url: https://www.microsoft.com/en-us/

research/blog/zero-deepspeed-new-system-optimizations-enable-

training-models-with-over-100-billion-parameters/.

[257] Chaojie Zhang et al. “Flex: High-Availability Datacenters With Zero Reserved

Power”. In: 2021 ACM/IEEE 48th Annual International Symposium on

Computer Architecture (ISCA). 2021, pp. 319–332. doi: 10.1109/ISCA52012.

2021.00033.

https://deepmind.com/blog/article/Using_ai_to_predict_retinal_disease_progression
https://deepmind.com/blog/article/Using_ai_to_predict_retinal_disease_progression
https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/
https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/
https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/
https://doi.org/10.1109/ISCA52012.2021.00033
https://doi.org/10.1109/ISCA52012.2021.00033


References 178

[258] Jinny X Zhang et al. “A deep learning model for predicting next-generation

sequencing depth from DNA sequence”. In: Nature communications 12.1

(2021), pp. 1–10.

[259] Li Lyna Zhang et al. “nn-Meter: Towards Accurate Latency Prediction of

Deep-Learning Model Inference on Diverse Edge Devices”. In: The 19th

ACM International Conference on Mobile Systems, Applications, and Services

(MobiSys 2021). June 2021.

[260] Ru Zhang et al. “An Empirical Study on Program Failures of Deep Learning

Jobs”. In: 2020 IEEE/ACM 42nd International Conference on Software

Engineering (ICSE). 2020, pp. 1159–1170.

[261] Shenglin Zhang et al. “Prefix: Switch failure prediction in datacenter net-

works”. In: Proceedings of the ACM on Measurement and Analysis of Com-

puting Systems 2.1 (2018), pp. 1–29.

[262] Sixin Zhang, Anna Choromanska, and Yann LeCun. “Deep learning with elastic

averaging SGD”. In: arXiv preprint arXiv:1412.6651 (2014).

[263] Xiao Zhang et al. “CPI2: CPU performance isolation for shared compute

clusters”. In: Proceedings of the 8th ACM European Conference on Computer

Systems. 2013, pp. 379–391.

[264] Yanqi Zhang et al. “Sinan: ML-based and QoS-aware resource management

for cloud microservices”. In: Proceedings of the 26th ACM International Con-

ference on Architectural Support for Programming Languages and Operating

Systems. 2021, pp. 167–181.

[265] Yunqi Zhang et al. “Smite: Precise QoS prediction on real-system smt

processors to improve utilization in warehouse scale computers”. In: 2014 47th

Annual IEEE/ACM International Symposium on Microarchitecture. IEEE.

2014, pp. 406–418.



References 179

[266] Hanyu Zhao et al. “Hived: sharing a GPU cluster for deep learning with

guarantees”. In: 14th USENIX symposium on operating systems design and

implementation (OSDI 20). 2020, pp. 515–532.

[267] Lianmin Zheng et al. “Ansor: Generating high-performance tensor programs

for deep learning”. In: 14th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 20). 2020, pp. 863–879.

[268] Yiwen Zhu et al. “KEA: Tuning an Exabyte-Scale Data Infrastructure”. In:

Proceedings of the 2021 International Conference on Management of Data.

2021.

[269] Barret Zoph and Quoc V Le. “Neural architecture search with reinforcement

learning”. In: arXiv preprint arXiv:1611.01578 (2016).



Appendix A

Application Controller Listings

A.1 Cluster State Implementation

The cluster state is constructed by watching the infrastructure updates and building

an internal cache as mentioned in Section 4.3.1.

Listing 2 Machine node struct definition.
// NodeInfo is an instance of Machine Node with resources info

type NodeInfo struct {

name string

uid types.UID

node *v1.Node

nonGPUPods []*v1.Pod

numGpus int

devices map[int]*accelerator.DeviceInfo

mu sync.RWMutex

requestedResource *Resource

nonzeroRequest *Resource

allocatableResource *Resource

// double linked list.

next *NodeInfo

prev *NodeInfo

}

The cache contains individual node information such as the allocatable and

requested resources (i.e., CPU, Memory, and GPUs). To achieve efficient querying
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of GPU hardware consumption-aware scheduling, We add any additional accelerator

information within the node cache as shown in Listing 2 and Listing 3.

Listing 3 Function to build up the machines and GPUs cache in Go.
// BuildNodeInfo returns pointer to node info

func (cache *SchedulerCache) BuildNodeInfo(name string, node *v1.Node) (*NodeInfo, error) {

_, ok := node.Labels["gpushare"]

if !ok {

return nil, fmt.Errorf("not responsisble for this node, %s", node.Name)

}

// Add a new node, since we just got one.

klog.V(8).Infof("Going to build new node info: %v \n", name)

var internalIPInCluster string

addresses := node.Status.Addresses

for i := 0; i < len(node.Status.Addresses); i++ {

if addresses[i].Type == v1.NodeInternalIP {

internalIPInCluster = addresses[i].Address

}

}

devices, err := cache.acceleratorManager.GetDevicesByNode(name, internalIPInCluster)

if err != nil {

klog.Errorf("Getting device for Node failed: %v \n", err)

return nil, err

}

n, err := NewNodeInfo(node, devices)

n.allocatableResource = NewResource(node.Status.Allocatable)

// get the the pods currently residing in this node

podList, err := cache.podLister.Pods(utils.ExperimentNameSpace).List(labels.Everything())

if err != nil {

klog.Errorf("getting pods from cache failed: %v \n", err)

return nil, err

}

if err != nil {

klog.Errorf("Building new Node info failed: %v \n", err)

return nil, err

}

klog.Infof("Finish built new node info: %v \n", name)

return n, nil

}
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A.2 Migration Implementation

To cope with GPU OOM, we add a mechanism to update the GPU memory

consumption for a DL training job who recently failed. The DL training job expected

memory will be set to the currently used GPU memory to ensure it will obtain

adequate amount of memory. This is shown in Listing 4.

Listing 4 GPU memory update due to OOM.
// SetUsedMemoryToJob set currently used memory to the job

func (c *MyController) SetUsedMemoryToJob(nodename string, gpus []string, jobCopy *jobs.JobRequest) {

nodeInfo, err := c.schedulerCache.GetNodeInfo(nodename)

if err != nil {

klog.Errorf("%v", err)

}

devices := nodeInfo.DevicesCopy()

for _, g := range gpus {

gpu, err := strconv.Atoi(g)

if err != nil {

continue

}

dev, ok := devices[gpu]

if !ok {

continue

}

currentUsedMem := float64(dev.UsedMem())

klog.Infof("set fail request %v to use this much memory %v", jobCopy.JobName(), currentUsedMem)

// so then the job will keep track of the largest memory we need for this job across all the pods

jobCopy.SetExpectedMemory(currentUsedMem)

}

}

To allow migration to happen, we add a co-routine within the application controller

to periodically scan the cluster and migrate DL training jobs from overloaded devices

to underutilised devices. This is shown in Listing 5.
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Listing 5 Horus migration thread written in Go.
// CheckUnderutilisedAccelerator discover where there is both underutilised and overutilised device

func (c *MyController) migrationCheck() {

if c.scheduleQueue.NumWaitingJobs() < 1 {

return

}

// we check through our cache.

klog.Infof("Start check underutilized")

defer klog.Infof("Finish check underutilized")

c.schedulerCache.MU().RLock()

nodes := c.schedulerCache.GetNodeInfos()

c.schedulerCache.MU().RUnlock()

if !c.HaveUnderutilisedDevice(nodes) {

return

}

dev := c.FindOverloadedDevice(nodes)

if dev == nil {

return

}

c.EvictPodOnDev(dev)

c.metricCollector.AddEviction()

}

A.3 GPU Utilisation Predictor Implementation

As mentioned in Section 4.4, our GPU utilisation predictor implementation leverage

file system to load the trained model into memory for prediction. This is to allow

efficient periodic update due to re-training. Our implementation assumes the model

is packed into a tar file as shown in Listing 6. Finally, our prediction extract the

features passed from the profiling method mentioned in Section 3.3.1 and feed to the

predictor as shown in the defined method predict from job.
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Listing 6 GPU utilisation Predictor class in Python.
class GPUUtilsPredictor(object):

def __init__(self, logger, file_path, pred_dir=None, model_name="xgb_model.sav"):

self.file_path = file_path

self.logger = logger

if pred_dir is None:

self.pred_dir = os.path.dirname(self.file_path)

else:

self.pred_dir = pred_dir

if self.file_path.endswith("tar.gz") and tarfile.is_tarfile(self.file_path):

t = tarfile.open(name=self.file_path, mode="r:gz")

t.extractall(path=self.pred_dir)

t.close()

if not os.path.exists(os.path.join(self.pred_dir, model_name)):

self.logger.warning("No model %s exist for prediction" % (model_name))

self.model = None

else:

self.logger.info("Model %s found" % (model_name))

self.model = joblib.load(os.path.join(self.pred_dir, model_name))

self.logger.info(self.model)

# predict GPU utilisation from features extracted from profiling.

def predict_from_job(self, job_request):

features = job_request.dnn_features

features_arr = np.array(

[features.batch_size, features.flops, features.memory_activations,

features.memory_parameters, features.num_reshape, features.num_relu,

features.num_pad, features.num_maxpool, features.num_gather,

features.num_slice, features.num_concat, features.num_add,

features.num_squeeze, features.num_gru, features.num_transpose,

features.num_reducemean, features.num_conv, features.num_constant,

features.num_batchnorm, features.num_globalavgpool, features.num_flatten,

features.num_gemm, features.num_lstm, features.num_averagepool,

features.num_split]).astype(np.float)

return self.model.predict([features_arr])[0]



Appendix B

DNN Profiling Method

Implementation

Listing 7 DNN model profiling method.
class ModelStats(object):

# ...

def count(self):

for n in self.model.graph.node:

hook_fn = hook.get(n.op_type, None)

assert hook_fn != None, f"Unsupported operation from op: {n}"

_inputs = []

_outputs = []

_attributes = {}

for n_inp in n.input:

io = self.get_io_identifier(n_inp, True)

_inputs.append(io)

for n_out in n.output:

io = self.get_io_identifier(n_out, False)

_outputs.append(io)

for a in n.attribute:

if a.type == AttributeProto.TENSOR:

_attributes["t"] = a

else:

_attributes[a.name] = helper.get_attribute_value(a)

# the _outputs, will get updated!

footprint = hook[n.op_type](_inputs, _outputs, _attributes)

self.add_footprint(n.op_type, footprint)
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Experiment Configuration

Variable Description Value

cAdvisor log period How frequently to collect metrics from the

host machine

100ms

Prometheus scrape

period

How frequently to scrape target metrics 250ms

Backfill buffer The buffer size for backfilling 15

Number of queues Number of queues to sort jobs into 1

Underutilisation

threshold

Threshold to indicate whether a GPU is

underutilised

40%

Accelerator synchro-

nisation period

How frequently the application controller

to update its cache for the accelerators

350ms

Table C.1: Empirical study experiment configuration.
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Additional DL Models

Configuration

D.1 ParaDNN Implementation

Listing 8 Feed Forward Neural Network implementation.
class FC(nn.Module):

def __init__(self, batch, layer, hidden, input_size, output_size):

super(FC, self).__init__()

batch_mult = 2 ** batch

layer_mult = 2 ** layer

hidden_mult = 2 ** hidden

# batch size is overridable

self.batch_size = min(64 * batch_mult, 16384)

self.num_layers = min(4 * layer_mult, 128)

self.nodes = min(32 * hidden_mult, 8192)

self.input_size = min(2000 + ( 2000 * input_size), 8000)

self.input = nn.Linear(self.input_size, self.nodes)

self.output_size = min(200 + ( 200 * output_size), 1000)

self.output = nn.Linear(self.nodes, self.output_size)

self.linears = nn.ModuleList()

for i in range(self.num_layers):

self.linears.append(nn.Linear(self.nodes, self.nodes))

def forward(self, x):

x = self.input(x)

for m in self.linears:

x = m(x)

return self.output(x)
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Listing 8 and Listing 9 shows our implementation of ParaDNN benchmark models.

Listing 9 RNN implementation.
class RNN(nn.Module):

def __init__(self, batch, layer, embed, length, vocab, type="LSTM"):

super(RNN, self).__init__()

self.type=type

# batch size is overridable

self.batch_size = min(16 * (4 ** batch), 1024)

self.num_layers = min(1 + (4 * layer), 13)

self.embed_size = min(100 + (400 * embed), 900)

self.length = min(10 + (40 * length), 90)

self.vocab = min(2 * (4 ** vocab), 1024)

self.output = nn.Linear(self.embed_size*self.length, 1)

self.embedding = nn.Embedding(self.vocab, self.embed_size)

if self.type == "LSTM":

self.rnn = nn.LSTM(self.embed_size, self.embed_size, self.num_layers, batch_first=True)

else:

self.rnn = nn.GRU(self.embed_size, self.embed_size, self.num_layers, batch_first=True)

def forward(self, x, hidden_states=None):

x = self.embedding(x)

if hidden_states is not None:

o, _ = self.rnn(x, hidden_states)

else:

o, _ = self.rnn(x)

return self.output(o.reshape((self.batch_size, -1)))

def init_hidden(self, batches, device=None):

weight = next(self.parameters()).data

h = Variable(weight.new(self.num_layers, self.batch_size, self.embed_size).zero_())

if device is not None:

h.to(device)

if self.type == "LSTM":

c = Variable(weight.new(self.num_layers, self.batch_size, self.embed_size).zero_())

if device is not None:

c.to(device)

return (h, c)

else:

return (h)

Finally, Table D.1 and Table D.2 show the parameters we passed to generate these

ParaDNN models.
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Model Num. Layers Hidden Size First Hidden Layer Output Size

FC0 4 32 2000 200

FC1 8 32 2000 200

FC2 8 64 2000 200

FC3 8 64 4000 200

FC4 8 64 4000 400

FC5 16 32 2000 200

FC6 16 128 2000 200

FC7 16 128 6000 200

FC8 16 128 6000 600

FC9 32 64 2000 200

FC10 32 256 2000 200

FC11 32 256 8000 200

FC12 32 256 8000 800

FC13 64 64 4000 200

FC14 64 512 4000 200

FC15 64 512 8000 200

FC16 64 512 8000 1000

FC17 128 64 4000 400

FC18 128 64 4000 400

FC19 128 1024 8000 400

FC20 128 1024 8000 1000

FC21 128 32 2000 200

FC22 128 2048 2000 200

FC23 128 2048 8000 200

FC24 128 2048 8000 1000

FC25 128 128 2000 200

Table D.1: FC models configuration
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Model Num. Layers Embedding Size Sentence Length Num. Vocabs

GRU0 1 100 10 2

GRU1 5 100 10 2

GRU2 5 500 10 2

GRU3 5 500 50 2

GRU4 5 500 50 8

GRU5 9 100 10 2

GRU6 9 900 10 2

LSTM0 1 100 10 2

LSTM1 5 100 10 2

LSTM2 5 500 10 2

LSTM3 5 500 50 2

LSTM4 5 500 50 8

LSTM5 9 100 10 2

LSTM6 9 900 10 2

Table D.2: RNN models configuration
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D.2 MobileNetV2 Large Configuration

Table D.3 shows our configuration for a larger version of MobileNetV2.

t c n s

1 16 1 1

6 32 2 2

6 64 3 2

6 96 4 2

6 128 4 1

6 256 2 2

6 512 2 1

Table D.3: MobileNetV2 Large inverted residual settings.



Appendix D. Additional DL Models Configuration 192


	List of Figures
	List of Tables
	Nomenclature
	Introduction
	The Rise of Deep Learning Clusters
	Underutilisation in Deep Learning Clusters
	Performance Interference in Deep Learning Training Clusters
	Research Questions
	Major Contributions
	Thesis Organisation

	Background
	Machine Learning
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning
	Applications

	Deep Learning
	Artificial Neural Networks
	Deep Learning Applications

	Deep Learning Systems
	Deep Learning Program Execution
	Deep Learning Training System Limitations

	Deep Learning Training Cluster Management
	Compute Clusters
	Resource Management
	Deep Learning Training Clusters
	Deep Learning Training Cluster Resource Managers
	Discussion
	Summary


	Towards a Proactive Approach to DL Training Scheduling
	DL Training Cluster Underutilisation
	Cluster Characteristics
	The Importance of Co-location
	Discussion

	Improving DL Training Cluster Utilisation Using Co-location
	Co-location Study
	GPU Utilisation as a Proxy for Interference
	Modelling Interference
	Summary

	Deep Learning models and GPU utilisation Relationship
	Profiling Method
	FLOP Analysis
	Identifying additional Features
	Quantifying the Relationships

	Summary

	Proactive DL Training Job Scheduling with Horus
	Overview
	GPU Resource Prediction Engine
	Overview
	Prediction Model Training
	Prediction Model Evaluation
	GPU Memory Estimation

	Interference-aware DL training Job Scheduling
	Overview
	Interference-aware Cost Model
	Weighted Fair Queuing Scheduling

	Interference-aware Scheduler Implementation
	Design Assumptions
	Comparing Horus with Existing Co-location Approaches

	Summary

	Horus Evaluation
	Experimental Setup
	Environment
	Evaluation Methodology

	Empirical Study Results
	Makespan Analysis
	JCT Analysis
	GPU Utilisation Analysis
	Sensitivity Analysis

	Large-scale Trace-driven Simulation Results
	Makespan Analysis
	JCT Analysis
	GPU Utilisation Analysis
	Waiting Time Analysis
	Sensitivity Analysis
	Simulation validity

	Discussion
	Benefits
	Limitations
	Scalability

	Summary

	Conclusion
	Summary of Contributions
	Review of Research Questions
	Future Work
	Alternative Machine Learning Predictor
	Hardware Feature Integration
	Low-level IR Features Integration
	Energy-aware scheduling
	Inference Scheduling

	Summary

	References
	Appendix Application Controller Listings
	Cluster State Implementation
	Migration Implementation
	GPU Utilisation Predictor Implementation

	Appendix DNN Profiling Method Implementation
	Appendix Experiment Configuration
	Appendix Additional DL Models Configuration
	ParaDNN Implementation
	MobileNetV2 Large Configuration


