The Boolean Quadric Polytope

Adam N. Letchford

Abstract When developing an exact algorithm for a combinatorial optimisation
problem, it often helps to have a good understanding of certain polyhedra associated
with that problem. In the case of quadratic unconstrained Boolean optimisation, the
polyhedron in question is called the Boolean quadric polytope. This chapter gives a
brief introduction to polyhedral theory, reviews the literature on the Boolean quadric
polytope and related polyhedra, and explains the algorithmic implications.

1 Introduction

It has been known for some time that Quadratic unconstrained Boolean optimisation
(QUBO) is equivalent to another well-known combinatorial optimisation problem,
known as the max-cut problem [6, 14,53]. The max-cut problem has been proven to
be “strongly N'P-hard" [26], and therefore the same holds for QUBO. Rather than
explaining strong N'P-hardness in detail, let us just say that it makes it unlikely that
an algorithm can be developed which solves all QUBO instances quickly.

The situation however is far from hopeless. Indeed, for many specific N'P-hard
problems, algorithms have been developed that can solve many instances of interest
to proven optimality (or near-optimality) in reasonable computing times. Many of
these algorithms use a method known as branch-and-cut (see, e.g., [10, 51, 54]).
Branch-and-cut is an enumerative scheme, in which a “tree" of subproblems is
explored, and each subproblem is a linear program (LP).

One of the keys to designing a successful branch-and-cut algorithm for a given
problem s to gain an understanding of certain polyhedra associated with that problem
(e.g., [1-3,12]). In the case of QUBO, the polyhedron in question is called the
Boolean quadric polytope (e.g., [9,14,53]).
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This chapter gives a brief introduction to polyhedral theory, a detailed survey of
known results on the Boolean quadric polytope, and a brief discussion of algorithmic
implications. The structure of the chapter is as follows. The basics of polyhedral
theory are recalled in Section 2. In Section 3, we define the Boolean quadric polytope
and mention some of its fundamental properties. In Section 4, we survey some of the
known valid inequalities for the Boolean quadric polytope. In Section 5, we review
some connections between the Boolean quadric polytope and some other important
polytopes. In Section 6, we mention some other related convex sets. In Section 7,
we look at the algorithmic implications. Finally, concluding remarks are made in
Section 8.

We use the following conventions and notation throughout the chapter. Given a
positive integer n, we sometimes write V,, for {1, ..., n}. We K,, denote the complete
graph on the vertex set V,,, and let E,, denote its edge set. Given a vector v € R”, we
let o-(v) denote Z?:l v;. All matrices are real. Given two matrices A, B € R™" we
write A e B for the (Frobenius) inner product

m n

Z Z Cl[jb[j = TI‘(ATB).

i=1 j=1

Given a positive integer k, we let S¥ denote the set of positive semidefinite (psd)
matrices of order k. We recall that a symmetric matrix M of order k is psd if and
only if all of its eigenvalues are non-negative, or, equivalently, v"Mv > 0 for all
vectors v € R,

2 Elementary Polyhedral Theory

This section draws on material from [33, 52].

Suppose that x', ..., x* e R" are (column) vectors and A1, ..., A are scalars. A
vector of the form A;x! +- - - + xx¥ is called a linear combination of X', ..., x*. Ttis
called a conical combination if Ay, ..., 1, are non-negative, an affine combination
if Z{le A; = 1, and a convex combination if it is both conical and affine. Given some
non-empty set S C R”, the convex hull of S is the set of all convex combinations of
the vectors in S. The linear, affine and conical hulls are defined analogously. We will
let conv(S) denote the convex hull of S.

A set S € R" is called convex if Ax! + (1 — 2)x? € S holds for all x', x> € S and
all 2 € (0,1). A convex set P is called a polyhedron if there exists a non-negative
integer m, a matrix A € Z"" and a vector b € Z™ such that

P={xeR": Ax<b}.

A polyhedron which is bounded (i.e., not of infinite volume) is called a polytope. A
famous theorem of Weyl [68] states that a set P ¢ R" is a polytope if and only if it
is the convex hull of a finite number of points.
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A point x € P is called an extreme point of P if it is not a convex combination of
other points in P. Every polytope is the convex hull of its extreme points.

A set of vectors is called affinely independent if no member of the set is an affine
combination of the others. The dimension of a polyhedron P, denoted by dim(P),
is the maximum number of affinely independent vectors in P, minus one. Note that
dim(P) < n. If equality holds, P is said to be full-dimensional.

A linear inequality a”x < aq is valid for a polyhedron P if it is satisfied by every
point in P. The set

F=Pn{xeR": a'x <ag}

is called the face of P induced by the given inequality. Note that F is itself a
polyhedron. The face F is called a facet of P if dim(F) = dim(P) — 1.

Example: Suppose that S contains the following four points in R?:
0 0 2

X1=0, x2:2, x> =0 xt=1].
1 1 1

One can check that:

» the linear hull of S is R3 itself;

e the conical hull is {X ERI: X120, %20, x1+x3 < 2X3};
e the affine hull is {x eER3: x3= 1};

e conv(S) ={xeR¥: x; 20, x>0, x; +x2 <2, x3 = 1}.

Now let P = conv(S). One can check that (a) P is a polytope, (b) dim(P) = 2, (c)
the extreme points of P are x!,...,x% and (d) P has three facets, induced by the
inequalities x; > 0, x, > 0 and x| +xp < 2. O

We now explain the connection between polyhedra and combinatorial optimi-
sation. Suppose we can formulate our optimisation problem as an integer linear
program (ILP) of the form

max{cx: Ax < b, XGZZ}. (1)

Replacing the condition x € Z] with the weaker condition x € R, we obtain the
so-called continuous relaxation of the ILP. The continuous relaxation is an LP, which
is likely to be easy to solve. Let Xx* be a (basic) optimal solution to the continuous
relaxation. If x* is integral, we have solved the ILP. Otherwise we have to do more
work, and this is where polyhedra come into play.

The feasible region of the continuous relaxation is the polyhedron

P={xeR}: Ax < b},

and the set of feasible solutions to the ILP is § = PNZ!. The convex hull of § is also
a polyhedron, called the integral hull of P. We will denote it by P;. By definition,
we have P; C P. Also, if X" is not integral, then P; is strictly contained in P, and
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there must exist a linear inequality that is valid for P; but violated by x*. Such an
inequality is called a cutting plane.

Example: Consider the ILP

max X1 +Xx2
s.t.  4dx;+2x, <15
2x1—2x2 <5

—2x1+2x, <3
—6x1 — 10x, < -15
2% <5
x € R2.

On the left of Figure 2, we show the polyhedron P. Points with integer coordinates
are represented by small circles. On the right of Figure 2, the points in § are rep-
resented as larger circles. One can check that there are two optimal solutions to the
ILP, (%) and (?) , each with profit 4. The solution to the continuous relaxation, on the
other hand, is x* = (;g), giving an upper bound of 5. On the left of Figure 2, we
show the integral hull P;. Finally, on the right of Figure 2, we show both P and Py,
together with a possible cutting plane, represented by a dashed line. O

X2
A
3 . . o
2 .
1
X1 > X
1 2 3 1 2 3

Fig. 1 Polyhedron P (left) and set S of integer solutions (right).

For simplicity and brevity, we assume from now on that P; (and therefore also P)
is a full-dimensional polytope. Under this assumption, the strongest possible cutting
planes for a given ILP are those that induce facets of P;.

At this point we should mention some negative results from Karp & Papadimitriou
[39]. They showed that, if a combinatorial optimisation problem is N'P-hard, then,
regardless of how it is formulated as an ILP, it is N'P-hard to check if a given linear
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x|

Fig. 2 Polyhedron P; (left) and a possible cutting plane (right).

inequality is valid for the associated polytope P;. They also show that it is N'P-hard
to check if a given inequality induces a facet of P;.

Although the above-mentioned results may appear discouraging, there is also
good news: for many important combinatorial optimisation problems (such as the
knapsack problem, the travelling salesman problem, the stable set problem, and
QUBO itself), researchers have discovered several large families of facet-inducing
inequalities (see, e.g., [1-3, 12,33, 52]). These inequalities can be used as cutting
planes in branch-and-cut algorithms.

3 The Boolean Quadric Polytope

Now consider a QUBO instance of the form:

max x'Qx
s.t. x € {0, 1}",

where, without loss of generality, we assume that Q is symmetric. Glover & Woolsey
[28] proposed to replace each quadratic term x;x; with a new binary variable y;;.
This allows one to formulate QUBO as the following 0-1 LP:

max ey, qiiXi + 2 X (i jyeE, 9ijYij 2
s.t. Yij <X ({i.j} € En) €)
Vij < X; ({i.j} € En) 4

Xi+x; <yjj+1 (i, j} € En) (5)

x € {0, 1}" (6)

y € {0,1}(2). 7
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For a given n > 2, the convex hull of pairs (x,y) satisfying (3)—(7) is called the
Boolean quadric polytope of order n and denoted by BQP,, [14,53]. (Some authors
call it the correlation polytope instead; see, e.g., [22,55].)

To make this clear, consider the case n = 2. To obtain a feasible solution to the
0-1 LP, we require:

X1 0 1 0 1
x| € 410],10], 111,11
Y12 0/ \0/ \O 1

One can check that the four points in question are affinely independent. Thus, BQP,
is a tetrahedron, as shown in Figure 3. Its facets are induced by the inequalities
Y12 £X1,¥12 < X2, Y12 2 x1 +x2— land y;p > 0.

Yi2

0

0
Fig. 3 The Boolean quadric polytope of order 2.

Padberg [53] proved that BQP,, is full-dimensional and that the inequalities (3)—
(5), along with the non-negativity inequalities y;; > 0, always induce facets. He also
derived some additional inequalities, which we review in Section 4.

The Boolean quadric polytope has some remarkable properties. For one thing, ev-
ery extreme point of BQP,, is adjacent to every other one [60]. Moreover, BQP,, has a
high degree of symmetry. In particular, BQP,, is invariant under two transformations,
called permutation and switching [22,53,55]. These are defined as follows.

Definition 1 (Permutation) Let v : V,, — V,, be an arbitrary permutation. Consider
the linear transformation ¢”™ : R*(2) s R™*() that:

* replaces x; with x(;) foralli € V,,,
» replaces y;; with y ;) »(;) forall {i, j} € E,,.

By abuse of terminology, we call this transformation itself a “permutation”.

Definition 2 (Switching) For an arbitrary set S c V,,, let ¢S : R™(3) s R™*(5) be
the affine transformation that:

* replaces x; with 1 —x; foralli € S,
* replaces y;; withx; — y;; foralli € {1,...,n} \ Sandall j € S,
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* replaces y;; with 1 —x; —x; +y;; forall {i, j} C S,
* leaves all other x; and y,; variables unchanged.

Applying the transformation ¢S is called “switching" (on S).

It is fairly easy to show that BQP,, is invariant under permutation. (That is, for
any n and any permutation  of {1, ...,n}, we have ¢” (BQP,,) = BQP,,.) To make
this chapter self-contained, we now show that the same holds for switching:

Proposition 1 BQP,, is invariant under switching. That is, for any n and any S C V,,,
v*(BQP,) = BQP,.

Proof Let (X,¥) be an extreme point of BQP,,. By definition, we have x; € {0, 1}
fori € V, and j;; = %%, for {i,j} € E,. Now let (%,§) = ¢°(X,§). From the
definition of switching, we have X; € {0, 1} fori € V,, and ¥ = %X for {7, j} € E,.
Thus, (X, ¥) is also an extreme point of BQP,,. This shows that every extreme point
of ¥ (BQP,) is an extreme point of BQP,,. A similar argument shows that every
extreme point of BQP,, is an extreme point of 5 (BQP,,). Now, recall that BQP,, is
a polytope. Given that switching is an affine transformation, S (BQP,,) must be a
polytope as well. Thus, BQP,, and y° (BQPn) are polytopes with the same extreme
points, and are therefore equal. O

The permutation and switching transformations are very useful, because they
enable one to convert valid linear inequalities for BQP,, into other valid linear
inequalities that induce faces of the same dimension. For example, if we take the
inequality y;; > 0 and switch on {i} or {;}, we obtain the inequalities y;; < x;
and y;; < x;, respectively. If we switch on {i, j} instead, we obtain the inequality
Yij > X +x;— 1.

We remark that switching on S and then switching on 7' is equivalent to switching
on the set (SUT) \ (S NT). Thus, given any valid (or facet-inducing) inequality
for BQP,,, we can obtain up to 2" — 1 other valid (or facet-inducing) inequalities by
switching.

4 Some More Valid Inequalities

In this section, we review some additional valid inequalities for BQP,,.
Padberg [53] derived three additional families of inequalities. The first are the
following triangle inequalities:

Xi+xj+xp < yij+yik+yi+ 1 ({i,j,k} S Va) (8
Vij +Yik < Xi+Yjk (i € Vi, {J. kY SV \ {i}). )

To see how these might be useful as cutting planes, observe that fractional points
with x; = x; = x¢ = 1/2 and y;; = yix = yjx = 0 satisfy (3)-(5), but violate (8).
Similarly, fractional points with x; = x; = xx = y;; = yix = 1/2 and y jx = 0 satisfy
(3)-(5), but violate (9). Note that (9) can be obtained from (8) by switching on {i}.
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Padberg’s second family are called cligue inequalities. The easiest way to derive
them is to note that, given any integer s, we have s(s+ 1) > 0. Thus, forany § C V,,
and any integer s, we have

(Z) (zxi_s_l) 20

ieS ieS

Expanding this and re-arranging yields

(2s+l)Zx,- - lez <2 Z xixj+s(s+1).

ies ieS {i,j}cs

Linearising and dividing by two yields the clique inequalities:

s X < Zyij+(“2’1) (SCVus=0,...,1S|=1).  (10)

ies {i.jrcs

Padberg showed that these induce facets when |S| > 3and 1 < s < |S| - 2.

Note that the clique inequalities (10) reduce to the triangle inequalities (8) when
|S| = 3 and s = 1. Moreover, the inequalities (5) can be regarded as “degenerate”
clique inequalities with |S| = 2 and s = 1. In a similar way, the non-negativity
inequalities y;; > O can be regarded as “degenerate” clique inequalities with |S| =2
and s = 0.

Padberg’s last family are called cut inequalities. They can be derived from the
fact that, for any disjoint sets S, T C V,,, we have

(Zx,. _Zx,.) (Z By 1) 20

ieS ieT = ieT
They take the form:
Do) m+ D v+ DL vy (STCSVeSnT=0). (D
ieS,jeT ieT {i,jrcs {i.jycT

They induce facets when |S| > 1 and |T'| > 2.

Note that the cut inequalities (11) reduce to the triangle inequalities (9) when
S| = 2 and |T| = 1. Moreover, the inequalities (3) and (4) can be regarded as
“degenerate" cut inequalities with |S| = |T| = 1.

Next, we observe that the arguments for proving the validity of the clique and cut
inequalities can be easily generalised. Indeed, for any disjoint sets S,7 c V,, and any
s € Z, we have

(Zx,._zxi_s) (Zx,._zxi_s_l) 20

ieS ieT ieS ieT
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Expanding and linearising yields

sti+ Z yijS(S+1)in+ Z Yij + Z yij+(s;l). (12)

icS ieS,jeT ieT {i,jrcs {i,j}CcT

These inequalities, which include all those mentioned so far, have been rediscovered
many times (e.g., [9,15,22,69]). They define facets when |S|+|T| > 3and 1 — |T| <
s < |S| — 2. We remark that they can also be derived by taking the clique inequality
(10), and switching on 7.

An even larger family of valid inequalities was found by Boros & Hammer [9].
Take an arbitrary vector v € Z" and integer s, and consider the quadratic inequality
(v'x — 5)(v'x — s — 1) > 0. Expanding and linearising yields:

Zvi(2s+1—v,~)xis2 Z viviyij +s(s+1). (13)

i€V, 1<i<j<n

Although the Boros-Hammer inequalities are infinite in number, it is known
that they define a polytope [45]. That is, a finite number of them dominate all the
others. At the time of writing, however, a necessary and sufficient condition for a
Boros-Hammer inequality to define a facet of BQP,, is not known.

We remark that switching a Boros-Hammer inequality is remarkably easy. Indeed,
to switch on a set S C V,,, it suffices to change the sign of v; for all i € §.

Still more valid inequalities for BQP,, can be derived from a connection between
BQP,, and the cut polytope. This is explained in the next section.

5 Some Related Polytopes

We now review some polytopes that are closely related to the Boolean quadric
polytope. Subsection 5.1 deals with the cut polytope, and Subsection 5.2 deals with
polytopes that exploit sparsity in the objective function.

5.1 The cut polytope

As before, let K;,, = (V,,, E;;) denote the complete graph on n nodes. Given any set
S C V,,, we let §(S) denote the set of edges in E,, that have exactly one end-node in
S. The set §(S) is called an edge-cutset or simply cut. Given an integer n > 3 and a
weight w, € Q for all e € E,,, the max-cut problem calls for a cut of maximum total
weight.

It is well-known (e.g., [6, 14]) that any QUBO instance with n variables can be
converted into a max-cut instance with »n + 1 variables, and vice-versa. This result
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turns out to have a polyhedral counterpart. Before explaining this, we first present
the standard 0-1 LP formulation of the max-cut problem.

For all e € E,, let z, be a binary variable, taking the value 1 if and only if e
belongs to the cut. The max-cut problem can be formulated as:

max  Y.cg, WeZe (14)
st zij +zik + 2k <2 ({i, 7.k} C Vi) (15)
zij = Zik — 2k <0 ({i, j} € Ep, k € Va \ {i. j}) (16)

z e {0,1}(3). (17)

The constraints (15), (16) are (somewhat confusingly) also called triangle inequali-
ties.

For a given n > 3, the convex hull of vectors z satisfying (15)—(17) is called the
cut polytope and denoted by CUT,, [7]. To make this clear, consider the case n = 3.
There are four cut vectors:

212 0 0 1 1
13| € 0 s 1 s 0 s 1
223 0 1 1 0

One can check that these vectors are affinely independent. Thus, CUTj is a tetrahe-
dron, as shown in Figure 5.1.

Fig. 4 The cut polytope of order 3.

One can check that the tetrahedron in question is defined by the triangle inequali-
ties 212+213+223 < 2,212—213-223 < 0,213 —213—223 < 0and 223 — 212 — 213 < 0.
In other words, for n = 3, the triangle inequalities give a complete linear description
of CUT,,.
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Now recall that BQP, was also a tetrahedron. It turns out that BQP,, and CUT,,;
are congruent to each other, under a simple (invertible) linear transformation [14,
19,53]:

Theorem 1 Let x* € R" and y* € R() be given. Construct a vector 7" € R("Z) as
follows:

Z;‘k,n+1 = x;'k (l € Vn)

=x; +x;. - 2y;‘j ({i,j} € En).

*

Then (x*,y*) € BQP,, if and only ifz € CUT,41.

The linear transformation in Theorem 1 has come to be known as the covariance
map [22]. A consequence of Theorem 1 is that the inequality o’z < g is valid for
CUT,,4 if and only if the inequality

Z Z @ij Xi—zzae)’eﬁﬁ

i€V \j eV \ (i} ecE,

is valid for BQP,,. This enables one to easily convert valid (or facet-defining) inequal-
ities for the cut polytope into valid (or facet-defining) inequalities for the Boolean
quadric polytope, and vice-versa.

Example: If we take the inequalities (15) and apply the covariance map, we can ob-
tain the inequalities (5) (if k = n+ 1) or (8) (if n+1 ¢ {i, j, k}). Similarly, if we take
the inequalities (16) and apply the covariance map, we can obtain the inequalities
(3) and (4) (if we seti or j to n + 1), the non-negativity inequality y;; > O (if we set
k to n+ 1), or the inequality (9) (if n + 1 ¢ {i, j, k}). O

Example: If we take the clique inequalities (10) with |S| odd and s = (|S|—-1)/2, and
apply the covariance map, we obtain (with a little work) the following inequalities
for the cut polytope:

D uy < [ISP/4] (S SV IS] odd). (18)
{i.j}cs
These inequalities were discovered by Barahona & Mahjoub [7]. O

Example: More generally, if we take the Boros-Hammer inequalities (13), and apply
the covariance map, we obtain (again with a little work) the following inequalities
for the cut polytope:

2
> viviz < r(v) J (veZ": o(v) odd). (19)

{i.j}eEn 4

These inequalities were discovered by Deza (see [22]). O
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We remark that Laurent & Poljak [44] derived a family of inequalities for CUT,,,
called gap inequalities, that are even more general than (19). In [24], the gap inequal-
ities are adapted to BQP,,, and then generalised to the case of general mixed-integer
quadratic programs.

One can also define a switching operation for the cut polytope [7,22].

Proposition 2 (Switching for the Cut Polytope) For an arbitrary set S C V,,, let
75 :R() 5 RG) pe the affine transformation that:

e replaces 7z, with 1 — z, for all e € 6(S),
o leaves z, unchanged for all e € E,, \ 6(S).

CUT,, is invariant under this operation.

This switching operation enables one to take any valid inequality for CUT,, and
generate other valid inequalities. For example, if we take the triangle inequality (15)
and switch on {k}, we obtain the triangle inequality (16).

Many other valid inequalities have been discovered for the cut polytope (see [22]
for a survey). Among them, we mention only the odd bicycle wheel inequalities [7]
and the 2-circulant inequalities [58]. We will see in Section 7 that those particular
inequalities are “well-behaved" from an algorithmic viewpoint.

For some other polytopes related to BQP,, see, e.g., [36,45,49,61,63]. We close
this subsection with a remark about the strength of the LP relaxation of the 0-1 LP
(14)—(17). Poljak & Tuza [59] showed that, even if all edge-weights are non-negative,
the upper bound from the relaxation can be as large as twice the optimum. In other
words, the integrality gap can be as large as 100%. For a generalisation of this result,
see [5].

5.2 Polytopes which exploit sparsity

A matrix is said to sparse if the majority of its elements are zero. Consider a QUBO
instance whose quadratic cost matrix Q is sparse, and assume w.l.o.g. that Q is
symmetric. For all {i, j} € E, such that g;; = 0, we can delete the variable y;;
from the formulation (2)—(7), along with the associated constraints. This makes the
formulation much smaller and, if we are lucky, much easier to solve. On the other
hand, we must take care when deriving valid inequalities: we can no longer use
inequalities that involve the variables that have been deleted.

To deal with this from a polyhedral point of view, we need a bit of notation. Let
E ={{i,j} € E,: qi # 0}, let m = |E|, and let G = (V,,, E). We define the
polytope:

BQP(G) = conv {(x, y) € {0, 1} sy =xix; ({i, )} € E)}

Geometrically speaking, BQP(G) is the projection of BQP,, into R™*™,
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Unfortunately, projecting a polytope into a subspace is difficult computationally.
This makes it harder to derive valid inequalities for BQP(G) than for BQP,,. Nev-
ertheless, some useful inequalities are known. In particular, Padberg [53] derived
some inequalities called odd cycle inequalities, and proved that they define facets of
BQP(G). We do not go into details, however, since the notation is rather burdensome.

We can exploit sparsity in the case of the max-cut problem as well. Consider a
max-cut instance defined on a graph G = (V,, E). For a given S C V,,, we let §G(S)
denote the set of edges in E that have exactly one end-node in S. We then define the

polytope:
CUT(G) = conv {z €{0,1}":3SCVy:zo=1 e ec 5G(S)}.

As one might expect, CUT(G) is the projection of CUT;,, into R™.

Barahona & Mahjoub [7] proved the following. Let C be the set of chordless
simple cycles in G. Then a vector z € {0, 1} belongs to CUT(G) if and only if it
satisfies the following inequalities:

> 22 Y z-ID|+1  (CeC.DcC:|D|odd).
ecC\D eeD

These inequalities are called co-circuit inequalities. Their validity follows from
the fact that every cut intersects every cycle an even number of times. Note that the
number of co-circuit inequalities can grow exponentially with n. Note also that, when
G = K,, every chordless simple cycle is a triangle, and the co-circuit inequalities
reduce to the triangle inequalities (15), (16).

It turns out that Padberg’s odd cycle inequalities for BQP(G) are precisely the
inequalities that can be obtained from the co-circuit inequalities via the covariance
map. We omit the proof, for brevity.

6 Some Other Related Convex Sets

In this section, we mention some other important convex sets related to BQP,,. Sub-
section 6.1 presents a non-polyhedral convex set that contains BQP,;, and Subsection
6.2 presents the analogous set for CUT,,. Then, Subsection 6.3 deals with certain
convex cones.

6.1 A non-polyhedral convex set

Our first convex set arises from a certain semidefinite programming (SDP) relaxation
of QUBO. This set turns out to be non-polyhedral, because an infinite number of
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linear inequalites are needed to define it. (Informally speaking, it has a “curved"”
surface.)

The idea of applying SDP to 0-1 quadratic programs is due to Shor [66], and
was developed in, e.g., [35,40,57]. The basic idea is as follows. We define the n X n
symmetric matrix X = xx”, along with the augmented matrix

(- (3

Since X" is defined as the product of a vector and its transpose, it should be psd.
Moreover, given that x; = )ci2 for all i, the main diagonal of X should be equal to x.
This leads immediately to the following SDP relaxation of QUBO:

max {Q e X: diag (X) =x, X' e Sf”}.

To someone who is unfamiliar with nonlinear optimisation, this SDP relaxation
may look somewhat mysterious. Fortunately, it can be interpreted in the space of the
. St . .
x and y variables. Indeed, X is psd if and only if

(i) ()1( ’;) (i) >0 (seR, veR"). (20)

Moreover, we have £; = x; foralli € V,,, and X;; = £;; = y;; for all {i, j} € E,.
Thus, we can write the inequalities (20) in the following form:

Zvi(25+vi)xi+2 Z Viviyij+5° 20 (seR, veR"). 1)
i€V, {i,j}€E,

We will call these psd inequalities. Note that the psd inequalities are infinite in
number.

The psd inequalities include some important inequalities as special cases. For
example, if we set v; to 1, s to 0, and all other components of v to 0 in (21), we obtain
the non-negativity inequality x; > 0. If we change s to —1, we obtain —x; + 1 > 0,
which is equivalent to the upper bound x; < 1.

Now consider the following principle submatrix of X:

Kii Kij
Xij %jj)
Given that the SDP relaxation includes the constraints x; = £;; and x; = £;;, this

submatrix must be equal to
Xi )?,'j
)21']‘ Xj

Moreover, given that X is psd, this submatrix must have non-negative determinant.
Thus, all feasible solutions to the SDP relaxation satisfy ﬁ?j < x;x;j. In other words,
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the projection into (X, y)-space satisfies y?j < x;x;. This implies in particular that
vij < L.

On the other hand, the projection does not satisfy the non-negativity inequalities
of the form y;; > 0. Indeed, one can check that, when n = 2, we obtain a feasible
solution to the SDP by setting x, x, £1; and £y to 1/4, and setting £, to —1/8.
In other words, the SDP relaxation can be strengthened by adding the inequalities
)?,-.,'ZOforlsi<j§n.

6.2 A convex set related to max-cut

As one might expect, the results in the previous subsection have an analogue for
the max-cut problem. The SDP relaxation of max-cut was suggested by Schrijver
(unpublished) and analysed in, e.g. [29,43,56].

We now show how to derive the SDP relaxation. Recall the definitions of &(S)
and w, from Subsection 5.1. For each i € V,,, let y; be a variable that takes the value
1ifi € S, and —1 otherwise. One can formulate max-cut as the following bivalent
quadratic program:

Z wij (1= pipy) o pe {=1,+1}"
{i.j}eEn

N —

To see that this formulation is valid, note that the quantity %(1 — pipj) equals 1 if
nodes i and j are on opposite shores of the cut, and O if they are on the same shore.

Next, we define the matrix M = uu”. Note that M is psd and has 1s on the main
diagonal (since ,ul.2 = 1forall i € V};). This leads immediately to the SDP relaxation

max l Z W,-j(l—m[j): miizl(ievn),MESf

{i.j}€En

The feasible region of this SDP is called the elliptope [43].

Note that the matrix M is related to the traditional z variables via the identities
m;j = 1 —2z;; for {i, j} € E,. Using this fact, Laurent & Poljak [43] projected
the elliptope into z-space. The resulting convex set is defined by the following
inequalities:

Z vivizij < oc(W2/4  (veR™). (22)
{i,j}€En
One can check that these inequalities are equivalent to the psd inequalities (21), via
the covariance map.

It is not hard to see that the inequalities (19) dominate the inequalities (22). This
implies in turn that the Boros-Hammer inequalities (13) dominate the psd inequalities
(21). See [22] for detailed proofs.
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6.3 Cones

There are also several important convex cones that are related to BQP,,. To explain
them properly, we need to define two more families of inequalities:

e When o (v) = 1, the inequalities (19) reduce to

Z vivizij <0 (VeZ': a(v) =1). (23)
{l’f}eEn

These are called hypermetric inequalities [17,18].
¢ When o (v) = 0, the inequalities (22) reduce to

Z vivizi; 0 (VER": o (v) =0). 24)
{i.jTeEx

These are called negative-type inequalities [19, 64].

Note that the triangle inequalities (16) are hypermetric inequalities. It is also known
that the hypermetric inequalities dominate the negative-type inequalities [19].
We now define four convex cones:

¢ The cut cone of order n, which we will call CC,,, is the conic hull of the vectors
z that lie in CUT,,.

e The metric cone of order n, denoted by MET,,, is the set of points z satisfying
the triangle inequalities (16).

* The hypermetric cone, HYP,,, is the cone defined by the hypermetric inequalities
(23).

* The negative-type cone, NEG,,, is the cone defined by the negative-type inequal-
ities (24).

From the above considerations, we have CC,, ¢ HYP,, ¢ MET,n NEG,,. By
definition, the cut and metric cones are polyhedral. It has also been shown that
the hypermetric cone is polyhedral [21]. The negative-type cone, however, is not.
All four cones have interesting applications to the theory of metric spaces and the
geometry of numbers; see again [22] for details.

Note that, if we are given a complete linear description of CC,,, we can use
switching to get a complete linear description of CUT,,. To see this, let Z be an
extreme point of CUT,, that is not the origin, and let §(S) be the corresponding cut
in K,,. If we switch on S, Z is mapped to the origin, and any facet containing Z is
mapped to a facet containing the origin. Reversing this argument, we can obtain any
inequality that defines a facet of CUT,, by switching an inequality that defines a facet
of CC,,.

Using the covariance map, one can derive analogous inequalities and cones in
(X, y)-space. For the sake of brevity, we do not go into details. We just mention that
the hypermetric inequalities (23) map to the following inequalities for BQP,,:
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Z V[(l - vi)xi <2 Z Viv;Yij (V € Zn) 25)

i€V, 1<i<j<n

These are called hypermetric correlation inequalities [20]. We remark that they can
be viewed as the special case of the Boros-Hammer inequalities (13) in which s = 0.

7 Algorithms

Now we turn to the algorithmic implications of the above results. Subsection 7.1
describes a (fairly) simple exact algorithm, called cut-and-branch. Subsection 7.2
concerns subroutines that search for useful cutting planes. Finally, Subsection 7.3
describes a more sophisticated algorithmic framework, called branch-and-cut.

7.1 Cut-and-branch

Suppose we wish to solve an ILP of the form (1). The continuous relaxation of the
ILP is an LP, which can be solved with, e.g., the simplex method. This yields a
solution, say x*. If x* is integral, we have solved the ILP. If not, the quantity ¢"x*
gives an upper bound on the optimal profit.

At this point, we can resort to an old-fashioned solution method, such as Gomory’s
cutting-plane method [30] or branch-and-bound [42]. A more effective approach,
first suggested by Crowder et al. [13], is to add some strong (preferably facet-
defining) valid inequalities to the formulation, and then invoke branch-and-bound.
The resulting algorithm, which has come to be known as “cut-and-branch", is outlined
in Algorithm 1.

The idea behind cut-and-branch is that the cutting planes typically yield a signif-
icant decrease in the upper bound. This in turn leads to a reduction in the size of
the branch-and-bound tree. The results in [13] indicate that, for many ILPs arising
in practice, the reduction in the size of the tree can be dramatic, and enable one to
solve ILPs that are unsolvable with traditional branch-and-bound.

Cut-and-branch algorithms for QUBO and related problems can be found in,
e.g., [6,23,35,49].

7.2 Separation algorithms

In Algorithm 1, there is a line that says “Search for strong valid inequalities that are
violated by x*". Geometrically speaking, finding such inequalities (cutting planes)
amounts to finding a hyperplane that “separates" the current fractional LP solution
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Algorithm 1: Cut-and-Branch Algorithm

input : positive integers n and m; matrix A; vectors b, ¢

Solve the LP relaxation and let x* be the solution;

repeat

if X" is integer then

| Output x* and quit;

end

Search for strong valid inequalities that are violated by x*;

if at least one inequality has been found then
Add one or more inequalities to the LP as cutting planes;
Re-optimise the LP and update x*;

end

until no more violated inequalities are found,

Optional: Delete all cutting planes that have a positive slack;
Declare all variables integer;

Feed the resulting ILP into a branch-and-bound solver;

Let x* be the solution;

output Optimal solution x*

from the feasible integer solutions. For this reason, algorithms that search for cutting
planes are called “separation algorithms" [32]. More precisely:

* An exact separation algorithm for a given family of valid inequalities is an
algorithm that takes a fractional LP solution as input, and outputs one or more
violated inequalities in the given family, if any exist.

* A heuristic separation algorithm for a given family of valid inequalities is an
algorithm that takes a fractional LP solution as input, and outputs either one or
more violated inequalities in the given family, or a failure message.

In the context of QUBO, we can assume that the fractional solution is a pair (x*, y*) S
[0, 1]m+().

The separation problem for the triangle inequalities (8), (9) can be solved in O (n3)
time by brute-force enumeration. The complexity of the separation problems for the
inequalities (10)—(13) is unknown, but we suspect that they are all N'P-hard. Greedy
separation heuristics for the inequalities (10)—(12) can be found in, e.g., [48,67,69].

The separation problem for the psd inequalities (21) can be solved in polyno-
mial time [32]. The following method works well in practice (e.g., [34,65]). Given
(x*, y*), construct the matrix X*. Find the minimum eigenvalue of X*, to some
desired precision. If the eigenvalue is non-negative, stop. Otherwise, find the asso-
ciated eigenvector, again to the desired precision. Write the eigenvector as (z) This
eigenvector yields a violated psd inequality. To see why, let 1 < O be the eigenvalue,
and note that
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Several polynomial-time separation algorithms are known for the cut polytope.
The separation problem for the triangle inequalities (15), (16) can be solved in
O (n?) time by enumeration. Gerards [27] presented an O (1n°) separation algorithm
for the odd bicycle wheel inequalities. There are also O (n5) separation algorithms
for various generalisations of the 2-circulant inequalities [37,38,45]. The separation
problems for the inequalities (22) and (24) can be solved in a similar way to the psd
inequalities (see [22]).

At the time of writing, the complexity of separation is unknown for the remaining
inequalities for the cut polytope. In [35], a greedy separation heuristic is presented for
the inequalities (18) and their switchings. Separation heuristics for the inequalities
(19) can be found in [16,25,34,35]. A separation heuristic for the gap inequalities
is given in [25].

Letchford & Sgrensen [46] showed that the separation problems for the inequali-
ties (13), (19), (23) and (25) are equivalent. That is, either all of them can be solved
in polynomial time, or none of them can. See also Avis [4].

Finally, we mention that there are several exact and heuristic separation algorithms
designed for sparse QUBO and max-cut instances (e.g., [6-8, 11,47]). We omit
details, for brevity.

7.3 Branch-and-cut

Now that we have explained the concept of separation, we return to solution algo-
rithms. Recall that, in cut-and-branch, we are permitted to add cutting planes only
before running branch-and-bound. A natural extension is to permit the addition of
cutting planes while running branch-and-bound.

To make this more precise, we recall that branch-and-bound is a recursive algo-
rithm, which solves a series of LP subproblems, arranged in a tree structure. Suppose
that we have just solved the LP that corresponds to one particular branch of the tree.
If the solution is fractional, we can run one or more separation algorithms, in an
attempt to cut it off. If any cutting planes are found, we can add them to the LP,
re-optimise, and repeat. This causes the upper bound at that branch to decrease,
which may allow one to eliminate the branch from consideration.

This approach was discovered by several authors, apparently independently (e.g.,
[31,50,54]). It was given the name branch-and-cut by Padberg and Rinaldi [54]. It
works remarkably well, and has been applied to a wide range of problems in integer
programming and combinatorial optimisation [10,51].

Although branch-and-cut is conceptually simple, it requires considerably more
programming effort than cut-and-branch. The main reason is that the branch-and-
bound solver can no longer be treated as a “black box". Moreover, some additiona
implementation “tricks" are needed to make the approach work efficiently. Several
such tricks are given in [54], such as (a) starting with a subset of the variables and
generating the others dynamically, (b) storing cutting planes in a “cut pool", (c)
scanning the cut pool before calling the more time-consuming separation routines,
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(d) deleting non-binding cutting planes to save memory, and (e) producing heuristic
integer solutions by rounding fractional values to integers.

Oddly, no-one has yet designed and implemented a full branch-and-cut algorithm
for QUBO. Indeed, at present, the most effective exact algorithms for QUBO use
SDP relaxations, with triangle inequalities incorporated via Lagrangian relaxation
(see, e.g., [41,62]).

8 Concluding Remarks

The Boolean quadric and cut polytopes have been studied in depth, and many families
of strong valid linear inequalities are now known. For some of the families, we also
have efficient exact or heuristic separation algorithms.

There remain several interesting directions for possible future research. Among
them, we mention the following:

» Determine whether or not the separation problem for the hypermetric inequalities
(23) can be solved in polynomial time.

* Design, implement and test a full branch-and-cut algorithm for QUBO and
related problems.

* Understand better the relative advantages and disadvantages of LP-based and
SDP-based approaches to QUBO.

» Provide an open source library of separation algorithms for QUBO and related
problems.
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