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Abstract When developing an exact algorithm for a combinatorial optimisation
problem, it often helps to have a good understanding of certain polyhedra associated
with that problem. In the case of quadratic unconstrained Boolean optimisation, the
polyhedron in question is called the Boolean quadric polytope. This chapter gives a
brief introduction to polyhedral theory, reviews the literature on the Boolean quadric
polytope and related polyhedra, and explains the algorithmic implications.

1 Introduction

It has been known for some time thatQuadratic unconstrained Boolean optimisation
(QUBO) is equivalent to another well-known combinatorial optimisation problem,
known as the max-cut problem [6,14,53]. The max-cut problem has been proven to
be “strongly NP-hard" [26], and therefore the same holds for QUBO. Rather than
explaining strongNP-hardness in detail, let us just say that it makes it unlikely that
an algorithm can be developed which solves all QUBO instances quickly.
The situation however is far from hopeless. Indeed, for many specific NP-hard

problems, algorithms have been developed that can solve many instances of interest
to proven optimality (or near-optimality) in reasonable computing times. Many of
these algorithms use a method known as branch-and-cut (see, e.g., [10, 51, 54]).
Branch-and-cut is an enumerative scheme, in which a “tree" of subproblems is
explored, and each subproblem is a linear program (LP).
One of the keys to designing a successful branch-and-cut algorithm for a given

problem is to gain an understanding of certain polyhedra associatedwith that problem
(e.g., [1–3, 12]). In the case of QUBO, the polyhedron in question is called the
Boolean quadric polytope (e.g., [9, 14, 53]).
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This chapter gives a brief introduction to polyhedral theory, a detailed survey of
known results on the Boolean quadric polytope, and a brief discussion of algorithmic
implications. The structure of the chapter is as follows. The basics of polyhedral
theory are recalled in Section 2. In Section 3, we define the Boolean quadric polytope
and mention some of its fundamental properties. In Section 4, we survey some of the
known valid inequalities for the Boolean quadric polytope. In Section 5, we review
some connections between the Boolean quadric polytope and some other important
polytopes. In Section 6, we mention some other related convex sets. In Section 7,
we look at the algorithmic implications. Finally, concluding remarks are made in
Section 8.
We use the following conventions and notation throughout the chapter. Given a

positive integer 𝑛, we sometimes write𝑉𝑛 for {1, . . . , 𝑛}. We 𝐾𝑛 denote the complete
graph on the vertex set 𝑉𝑛, and let 𝐸𝑛 denote its edge set. Given a vector v ∈ R𝑛, we
let 𝜎(v) denote ∑𝑛

𝑖=1 𝑣𝑖 . All matrices are real. Given two matrices A,B ∈ R𝑚×𝑛, we
write A • B for the (Frobenius) inner product

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1
𝑎𝑖 𝑗𝑏𝑖 𝑗 = Tr(A𝑇B).

Given a positive integer 𝑘 , we let S𝑘
+ denote the set of positive semidefinite (psd)

matrices of order 𝑘 . We recall that a symmetric matrix M of order 𝑘 is psd if and
only if all of its eigenvalues are non-negative, or, equivalently, v𝑇Mv ≥ 0 for all
vectors v ∈ R𝑘 .

2 Elementary Polyhedral Theory

This section draws on material from [33,52].
Suppose that x1, . . . , x𝑘 ∈ R𝑛 are (column) vectors and 𝜆1, . . . , 𝜆𝑘 are scalars. A

vector of the form 𝜆1x1 + · · · +𝜆𝑘x𝑘 is called a linear combination of x1, . . . , x𝑘 . It is
called a conical combination if 𝜆1, . . . , 𝜆𝑘 are non-negative, an affine combination
if

∑𝑘
𝑖=1 𝜆𝑖 = 1, and a convex combination if it is both conical and affine. Given some

non-empty set 𝑆 ⊂ R𝑛, the convex hull of 𝑆 is the set of all convex combinations of
the vectors in 𝑆. The linear, affine and conical hulls are defined analogously. We will
let conv(𝑆) denote the convex hull of 𝑆.
A set 𝑆 ⊆ R𝑛 is called convex if 𝜆x1 + (1 − 𝜆)x2 ∈ 𝑆 holds for all x1, x2 ∈ 𝑆 and

all 𝜆 ∈ (0, 1). A convex set 𝑃 is called a polyhedron if there exists a non-negative
integer 𝑚, a matrix A ∈ Z𝑚𝑛 and a vector b ∈ Z𝑚 such that

𝑃 =
{
x ∈ R𝑛 : Ax ≤ b

}
.

A polyhedron which is bounded (i.e., not of infinite volume) is called a polytope. A
famous theorem of Weyl [68] states that a set 𝑃 ⊂ R𝑛 is a polytope if and only if it
is the convex hull of a finite number of points.
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A point x ∈ 𝑃 is called an extreme point of 𝑃 if it is not a convex combination of
other points in 𝑃. Every polytope is the convex hull of its extreme points.
A set of vectors is called affinely independent if no member of the set is an affine

combination of the others. The dimension of a polyhedron 𝑃, denoted by dim(𝑃),
is the maximum number of affinely independent vectors in 𝑃, minus one. Note that
dim(𝑃) ≤ 𝑛. If equality holds, 𝑃 is said to be full-dimensional.
A linear inequality a𝑇x ≤ 𝑎0 is valid for a polyhedron 𝑃 if it is satisfied by every

point in 𝑃. The set
𝐹 = 𝑃 ∩

{
x ∈ R𝑛 : a𝑇x ≤ 𝑎0

}
is called the face of 𝑃 induced by the given inequality. Note that 𝐹 is itself a
polyhedron. The face 𝐹 is called a facet of 𝑃 if dim(𝐹) = dim(𝑃) − 1.

Example: Suppose that 𝑆 contains the following four points in R3:

x1 =
©­«
0
0
1

ª®¬ , x2 =
©­«
0
2
1

ª®¬ , x3 =
©­«
2
0
1

ª®¬ x4 =
©­«
1
1
1

ª®¬ .
One can check that:

• the linear hull of 𝑆 is R3 itself;
• the conical hull is

{
x ∈ R3 : 𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥1 + 𝑥2 ≤ 2𝑥3

}
;

• the affine hull is
{
x ∈ R3 : 𝑥3 = 1

}
;

• conv(𝑆) =
{
x ∈ R3 : 𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥1 + 𝑥2 ≤ 2, 𝑥3 = 1

}
.

Now let 𝑃 = conv(𝑆). One can check that (a) 𝑃 is a polytope, (b) dim(𝑃) = 2, (c)
the extreme points of 𝑃 are x1, . . . , x3 and (d) 𝑃 has three facets, induced by the
inequalities 𝑥1 ≥ 0, 𝑥2 ≥ 0 and 𝑥1 + 𝑥2 ≤ 2. □

We now explain the connection between polyhedra and combinatorial optimi-
sation. Suppose we can formulate our optimisation problem as an integer linear
program (ILP) of the form

max
{
cx : Ax ≤ b, x ∈ Z𝑛+

}
. (1)

Replacing the condition x ∈ Z𝑛+ with the weaker condition x ∈ R𝑛+, we obtain the
so-called continuous relaxation of the ILP. The continuous relaxation is an LP, which
is likely to be easy to solve. Let x∗ be a (basic) optimal solution to the continuous
relaxation. If x∗ is integral, we have solved the ILP. Otherwise we have to do more
work, and this is where polyhedra come into play.
The feasible region of the continuous relaxation is the polyhedron

𝑃 =
{
x ∈ R𝑛+ : Ax ≤ b

}
,

and the set of feasible solutions to the ILP is 𝑆 = 𝑃∩Z𝑛+. The convex hull of 𝑆 is also
a polyhedron, called the integral hull of 𝑃. We will denote it by 𝑃𝐼 . By definition,
we have 𝑃𝐼 ⊆ 𝑃. Also, if x∗ is not integral, then 𝑃𝐼 is strictly contained in 𝑃, and
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there must exist a linear inequality that is valid for 𝑃𝐼 but violated by x∗. Such an
inequality is called a cutting plane.

Example: Consider the ILP

max 𝑥1 + 𝑥2

s.t. 4𝑥1 + 2𝑥2 ≤ 15
2𝑥1 − 2𝑥2 ≤ 5
−2𝑥1 + 2𝑥2 ≤ 3

−6𝑥1 − 10𝑥2 ≤ −15
2𝑥2 ≤ 5
x ∈ R2

+.

On the left of Figure 2, we show the polyhedron 𝑃. Points with integer coordinates
are represented by small circles. On the right of Figure 2, the points in 𝑆 are rep-
resented as larger circles. One can check that there are two optimal solutions to the
ILP,

(2
2
)
and

(3
1
)
, each with profit 4. The solution to the continuous relaxation, on the

other hand, is x∗ =
(2.5
2.5

)
, giving an upper bound of 5. On the left of Figure 2, we

show the integral hull 𝑃𝐼 . Finally, on the right of Figure 2, we show both 𝑃 and 𝑃𝐼 ,
together with a possible cutting plane, represented by a dashed line. □
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Fig. 1 Polyhedron 𝑃 (left) and set 𝑆 of integer solutions (right).

For simplicity and brevity, we assume from now on that 𝑃𝐼 (and therefore also 𝑃)
is a full-dimensional polytope. Under this assumption, the strongest possible cutting
planes for a given ILP are those that induce facets of 𝑃𝐼 .
At this point we shouldmention some negative results fromKarp&Papadimitriou

[39]. They showed that, if a combinatorial optimisation problem is NP-hard, then,
regardless of how it is formulated as an ILP, it isNP-hard to check if a given linear
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Fig. 2 Polyhedron 𝑃𝐼 (left) and a possible cutting plane (right).

inequality is valid for the associated polytope 𝑃𝐼 . They also show that it isNP-hard
to check if a given inequality induces a facet of 𝑃𝐼 .
Although the above-mentioned results may appear discouraging, there is also

good news: for many important combinatorial optimisation problems (such as the
knapsack problem, the travelling salesman problem, the stable set problem, and
QUBO itself), researchers have discovered several large families of facet-inducing
inequalities (see, e.g., [1–3, 12, 33, 52]). These inequalities can be used as cutting
planes in branch-and-cut algorithms.

3 The Boolean Quadric Polytope

Now consider a QUBO instance of the form:

max x𝑇Qx
s.t. x ∈ {0, 1}𝑛,

where, without loss of generality, we assume thatQ is symmetric. Glover &Woolsey
[28] proposed to replace each quadratic term 𝑥𝑖𝑥 𝑗 with a new binary variable 𝑦𝑖 𝑗 .
This allows one to formulate QUBO as the following 0-1 LP:

max
∑

𝑖∈𝑉𝑛
𝑞𝑖𝑖𝑥𝑖 + 2

∑
{𝑖, 𝑗 }∈𝐸𝑛

𝑞𝑖 𝑗 𝑦𝑖 𝑗 (2)
s.t. 𝑦𝑖 𝑗 ≤ 𝑥𝑖 ({𝑖, 𝑗} ∈ 𝐸𝑛) (3)

𝑦𝑖 𝑗 ≤ 𝑥 𝑗 ({𝑖, 𝑗} ∈ 𝐸𝑛) (4)
𝑥𝑖 + 𝑥 𝑗 ≤ 𝑦𝑖 𝑗 + 1 ({𝑖, 𝑗} ∈ 𝐸𝑛) (5)

x ∈ {0, 1}𝑛 (6)
y ∈ {0, 1}(𝑛2) . (7)
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For a given 𝑛 ≥ 2, the convex hull of pairs (x, y) satisfying (3)–(7) is called the
Boolean quadric polytope of order 𝑛 and denoted by BQP𝑛 [14, 53]. (Some authors
call it the correlation polytope instead; see, e.g., [22, 55].)
To make this clear, consider the case 𝑛 = 2. To obtain a feasible solution to the

0-1 LP, we require: ©­«
𝑥1
𝑥2
𝑦12

ª®¬ ∈
©­«

0
0
0

ª®¬ , ©­«
1
0
0

ª®¬ , ©­«
0
1
0

ª®¬ , ©­«
1
1
1

ª®¬
 .

One can check that the four points in question are affinely independent. Thus, BQP2
is a tetrahedron, as shown in Figure 3. Its facets are induced by the inequalities
𝑦12 ≤ 𝑥1, 𝑦12 ≤ 𝑥2, 𝑦12 ≥ 𝑥1 + 𝑥2 − 1 and 𝑦12 ≥ 0.
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Fig. 3 The Boolean quadric polytope of order 2.

Padberg [53] proved that BQP𝑛 is full-dimensional and that the inequalities (3)–
(5), along with the non-negativity inequalities 𝑦𝑖 𝑗 ≥ 0, always induce facets. He also
derived some additional inequalities, which we review in Section 4.
The Boolean quadric polytope has some remarkable properties. For one thing, ev-

ery extreme point of BQP𝑛 is adjacent to every other one [60]. Moreover, BQP𝑛 has a
high degree of symmetry. In particular, BQP𝑛 is invariant under two transformations,
called permutation and switching [22, 53, 55]. These are defined as follows.

Definition 1 (Permutation) Let 𝜋 : 𝑉𝑛 ↦→ 𝑉𝑛 be an arbitrary permutation. Consider
the linear transformation 𝜙𝜋 : R𝑛+(𝑛2) ↦→ R𝑛+(𝑛2) that:

• replaces 𝑥𝑖 with 𝑥𝜋 (𝑖) for all 𝑖 ∈ 𝑉𝑛,
• replaces 𝑦𝑖 𝑗 with 𝑦𝜋 (𝑖) , 𝜋 ( 𝑗) for all {𝑖, 𝑗} ∈ 𝐸𝑛.

By abuse of terminology, we call this transformation itself a “permutation".

Definition 2 (Switching) For an arbitrary set 𝑆 ⊂ 𝑉𝑛, let 𝜓𝑆 : R𝑛+(𝑛2) ↦→ R𝑛+(𝑛2) be
the affine transformation that:

• replaces 𝑥𝑖 with 1 − 𝑥𝑖 for all 𝑖 ∈ 𝑆,
• replaces 𝑦𝑖 𝑗 with 𝑥𝑖 − 𝑦𝑖 𝑗 for all 𝑖 ∈ {1, . . . , 𝑛} \ 𝑆 and all 𝑗 ∈ 𝑆,
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• replaces 𝑦𝑖 𝑗 with 1 − 𝑥𝑖 − 𝑥 𝑗 + 𝑦𝑖 𝑗 for all {𝑖, 𝑗} ⊂ 𝑆,
• leaves all other 𝑥𝑖 and 𝑦𝑖 𝑗 variables unchanged.

Applying the transformation 𝜓𝑆 is called “switching" (on 𝑆).

It is fairly easy to show that BQP𝑛 is invariant under permutation. (That is, for
any 𝑛 and any permutation 𝜋 of {1, . . . , 𝑛}, we have 𝜙𝜋 (BQP𝑛) = BQP𝑛.) To make
this chapter self-contained, we now show that the same holds for switching:

Proposition 1 BQP𝑛 is invariant under switching. That is, for any 𝑛 and any 𝑆 ⊂ 𝑉𝑛,
𝜓𝑆

(
BQP𝑛

)
= BQP𝑛.

Proof Let (x̄, ȳ) be an extreme point of BQP𝑛. By definition, we have 𝑥𝑖 ∈ {0, 1}
for 𝑖 ∈ 𝑉𝑛 and 𝑦̄𝑖 𝑗 = 𝑥𝑖𝑥 𝑗 for {𝑖, 𝑗} ∈ 𝐸𝑛. Now let (x̃, ỹ) = 𝜓𝑆 (x̄, ȳ). From the
definition of switching, we have 𝑥𝑖 ∈ {0, 1} for 𝑖 ∈ 𝑉𝑛 and 𝑦̃𝑖 𝑗 = 𝑥𝑖𝑥 𝑗 for {𝑖, 𝑗} ∈ 𝐸𝑛.
Thus, (x̃, ỹ) is also an extreme point of BQP𝑛. This shows that every extreme point
of 𝜓𝑆

(
BQP𝑛

)
is an extreme point of BQP𝑛. A similar argument shows that every

extreme point of BQP𝑛 is an extreme point of 𝜓𝑆
(
BQP𝑛

)
. Now, recall that BQP𝑛 is

a polytope. Given that switching is an affine transformation, 𝜓𝑆
(
BQP𝑛

)
must be a

polytope as well. Thus, BQP𝑛 and 𝜓𝑆
(
BQP𝑛

)
are polytopes with the same extreme

points, and are therefore equal. □

The permutation and switching transformations are very useful, because they
enable one to convert valid linear inequalities for BQP𝑛 into other valid linear
inequalities that induce faces of the same dimension. For example, if we take the
inequality 𝑦𝑖 𝑗 ≥ 0 and switch on {𝑖} or { 𝑗}, we obtain the inequalities 𝑦𝑖 𝑗 ≤ 𝑥 𝑗
and 𝑦𝑖 𝑗 ≤ 𝑥𝑖 , respectively. If we switch on {𝑖, 𝑗} instead, we obtain the inequality
𝑦𝑖 𝑗 ≥ 𝑥𝑖 + 𝑥 𝑗 − 1.
We remark that switching on 𝑆 and then switching on 𝑇 is equivalent to switching

on the set (𝑆 ∪ 𝑇) \ (𝑆 ∩ 𝑇). Thus, given any valid (or facet-inducing) inequality
for BQP𝑛, we can obtain up to 2𝑛 − 1 other valid (or facet-inducing) inequalities by
switching.

4 Some More Valid Inequalities

In this section, we review some additional valid inequalities for BQP𝑛.
Padberg [53] derived three additional families of inequalities. The first are the

following triangle inequalities:

𝑥𝑖 + 𝑥 𝑗 + 𝑥𝑘 ≤ 𝑦𝑖 𝑗 + 𝑦𝑖𝑘 + 𝑦 𝑗𝑘 + 1
(
{𝑖, 𝑗 , 𝑘} ⊆ 𝑉𝑛

)
(8)

𝑦𝑖 𝑗 + 𝑦𝑖𝑘 ≤ 𝑥𝑖 + 𝑦 𝑗𝑘
(
𝑖 ∈ 𝑉𝑛, { 𝑗 , 𝑘} ⊆ 𝑉𝑛 \ {𝑖}

)
. (9)

To see how these might be useful as cutting planes, observe that fractional points
with 𝑥𝑖 = 𝑥 𝑗 = 𝑥𝑘 = 1/2 and 𝑦𝑖 𝑗 = 𝑦𝑖𝑘 = 𝑦 𝑗𝑘 = 0 satisfy (3)-(5), but violate (8).
Similarly, fractional points with 𝑥𝑖 = 𝑥 𝑗 = 𝑥𝑘 = 𝑦𝑖 𝑗 = 𝑦𝑖𝑘 = 1/2 and 𝑦 𝑗𝑘 = 0 satisfy
(3)-(5), but violate (9). Note that (9) can be obtained from (8) by switching on {𝑖}.
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Padberg’s second family are called clique inequalities. The easiest way to derive
them is to note that, given any integer 𝑠, we have 𝑠(𝑠 + 1) ≥ 0. Thus, for any 𝑆 ⊆ 𝑉𝑛
and any integer 𝑠, we have(∑︁

𝑖∈𝑆
𝑥𝑖 − 𝑠

) (∑︁
𝑖∈𝑆

𝑥𝑖 − 𝑠 − 1

)
≥ 0.

Expanding this and re-arranging yields

(2𝑠 + 1)
∑︁
𝑖∈𝑆

𝑥𝑖 −
∑︁
𝑖∈𝑆

𝑥2
𝑖 ≤ 2

∑︁
{𝑖, 𝑗 }⊆𝑆

𝑥𝑖𝑥 𝑗 + 𝑠(𝑠 + 1).

Linearising and dividing by two yields the clique inequalities:

𝑠
∑︁
𝑖∈𝑆

𝑥𝑖 ≤
∑︁

{𝑖, 𝑗 }⊆𝑆
𝑦𝑖 𝑗 +

(
𝑠 + 1

2

) (
𝑆 ⊆ 𝑉𝑛, 𝑠 = 0, . . . , |𝑆 | − 1

)
. (10)

Padberg showed that these induce facets when |𝑆 | ≥ 3 and 1 ≤ 𝑠 ≤ |𝑆 | − 2.
Note that the clique inequalities (10) reduce to the triangle inequalities (8) when

|𝑆 | = 3 and 𝑠 = 1. Moreover, the inequalities (5) can be regarded as “degenerate"
clique inequalities with |𝑆 | = 2 and 𝑠 = 1. In a similar way, the non-negativity
inequalities 𝑦𝑖 𝑗 ≥ 0 can be regarded as “degenerate" clique inequalities with |𝑆 | = 2
and 𝑠 = 0.
Padberg’s last family are called cut inequalities. They can be derived from the

fact that, for any disjoint sets 𝑆, 𝑇 ⊂ 𝑉𝑛, we have(∑︁
𝑖∈𝑆

𝑥𝑖 −
∑︁
𝑖∈𝑇

𝑥𝑖

) (∑︁
𝑖∈𝑆

𝑥𝑖 −
∑︁
𝑖∈𝑇

𝑥𝑖 − 1

)
≥ 0.

They take the form:∑︁
𝑖∈𝑆, 𝑗∈𝑇

𝑦𝑖 𝑗 ≤
∑︁
𝑖∈𝑇

𝑥𝑖 +
∑︁

{𝑖, 𝑗 }⊆𝑆
𝑦𝑖 𝑗 +

∑︁
{𝑖, 𝑗 }⊆𝑇

𝑦𝑖 𝑗
(
𝑆, 𝑇 ⊆ 𝑉𝑛, 𝑆 ∩ 𝑇 = ∅

)
. (11)

They induce facets when |𝑆 | ≥ 1 and |𝑇 | ≥ 2.
Note that the cut inequalities (11) reduce to the triangle inequalities (9) when

|𝑆 | = 2 and |𝑇 | = 1. Moreover, the inequalities (3) and (4) can be regarded as
“degenerate" cut inequalities with |𝑆 | = |𝑇 | = 1.
Next, we observe that the arguments for proving the validity of the clique and cut

inequalities can be easily generalised. Indeed, for any disjoint sets 𝑆, 𝑇 ⊂ 𝑉𝑛 and any
𝑠 ∈ Z, we have (∑︁

𝑖∈𝑆
𝑥𝑖 −

∑︁
𝑖∈𝑇

𝑥𝑖 − 𝑠
) (∑︁

𝑖∈𝑆
𝑥𝑖 −

∑︁
𝑖∈𝑇

𝑥𝑖 − 𝑠 − 1

)
≥ 0.
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Expanding and linearising yields

𝑠
∑︁
𝑖∈𝑆

𝑥𝑖 +
∑︁

𝑖∈𝑆, 𝑗∈𝑇
𝑦𝑖 𝑗 ≤ (𝑠 + 1)

∑︁
𝑖∈𝑇

𝑥𝑖 +
∑︁

{𝑖, 𝑗 }⊆𝑆
𝑦𝑖 𝑗 +

∑︁
{𝑖, 𝑗 }⊆𝑇

𝑦𝑖 𝑗 +
(
𝑠 + 1

2

)
. (12)

These inequalities, which include all those mentioned so far, have been rediscovered
many times (e.g., [9,15,22,69]). They define facets when |𝑆 | + |𝑇 | ≥ 3 and 1− |𝑇 | ≤
𝑠 ≤ |𝑆 | − 2. We remark that they can also be derived by taking the clique inequality
(10), and switching on 𝑇 .
An even larger family of valid inequalities was found by Boros & Hammer [9].

Take an arbitrary vector v ∈ Z𝑛 and integer 𝑠, and consider the quadratic inequality
(v𝑇x − 𝑠) (v𝑇x − 𝑠 − 1) ≥ 0. Expanding and linearising yields:∑︁

𝑖∈𝑉𝑛

𝑣𝑖
(
2𝑠 + 1 − 𝑣𝑖

)
𝑥𝑖 ≤ 2

∑︁
1≤𝑖< 𝑗≤𝑛

𝑣𝑖𝑣 𝑗 𝑦𝑖 𝑗 + 𝑠(𝑠 + 1). (13)

Although the Boros-Hammer inequalities are infinite in number, it is known
that they define a polytope [45]. That is, a finite number of them dominate all the
others. At the time of writing, however, a necessary and sufficient condition for a
Boros-Hammer inequality to define a facet of BQP𝑛 is not known.
We remark that switching a Boros-Hammer inequality is remarkably easy. Indeed,

to switch on a set 𝑆 ⊂ 𝑉𝑛, it suffices to change the sign of 𝑣𝑖 for all 𝑖 ∈ 𝑆.
Still more valid inequalities for BQP𝑛 can be derived from a connection between

BQP𝑛 and the cut polytope. This is explained in the next section.

5 Some Related Polytopes

We now review some polytopes that are closely related to the Boolean quadric
polytope. Subsection 5.1 deals with the cut polytope, and Subsection 5.2 deals with
polytopes that exploit sparsity in the objective function.

5.1 The cut polytope

As before, let 𝐾𝑛 = (𝑉𝑛, 𝐸𝑛) denote the complete graph on 𝑛 nodes. Given any set
𝑆 ⊆ 𝑉𝑛, we let 𝛿(𝑆) denote the set of edges in 𝐸𝑛 that have exactly one end-node in
𝑆. The set 𝛿(𝑆) is called an edge-cutset or simply cut. Given an integer 𝑛 ≥ 3 and a
weight 𝑤𝑒 ∈ Q for all 𝑒 ∈ 𝐸𝑛, the max-cut problem calls for a cut of maximum total
weight.
It is well-known (e.g., [6, 14]) that any QUBO instance with 𝑛 variables can be

converted into a max-cut instance with 𝑛 + 1 variables, and vice-versa. This result
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turns out to have a polyhedral counterpart. Before explaining this, we first present
the standard 0-1 LP formulation of the max-cut problem.
For all 𝑒 ∈ 𝐸𝑛, let 𝑧𝑒 be a binary variable, taking the value 1 if and only if 𝑒

belongs to the cut. The max-cut problem can be formulated as:

max
∑

𝑒∈𝐸𝑛
𝑤𝑒𝑧𝑒 (14)

s.t. 𝑧𝑖 𝑗 + 𝑧𝑖𝑘 + 𝑧 𝑗𝑘 ≤ 2
(
{𝑖, 𝑗 , 𝑘} ⊆ 𝑉𝑛

)
(15)

𝑧𝑖 𝑗 − 𝑧𝑖𝑘 − 𝑧 𝑗𝑘 ≤ 0
(
{𝑖, 𝑗} ∈ 𝐸𝑛, 𝑘 ∈ 𝑉𝑛 \ {𝑖, 𝑗}

)
(16)

z ∈ {0, 1}(𝑛2) . (17)

The constraints (15), (16) are (somewhat confusingly) also called triangle inequali-
ties.
For a given 𝑛 ≥ 3, the convex hull of vectors z satisfying (15)–(17) is called the

cut polytope and denoted by CUT𝑛 [7]. To make this clear, consider the case 𝑛 = 3.
There are four cut vectors:

©­«
𝑧12
𝑧13
𝑧23

ª®¬ ∈
©­«

0
0
0

ª®¬ , ©­«
0
1
1

ª®¬ , ©­«
1
0
1

ª®¬ , ©­«
1
1
0

ª®¬
 .

One can check that these vectors are affinely independent. Thus, CUT3 is a tetrahe-
dron, as shown in Figure 5.1.
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𝑧12

𝑧13

𝑧23

Fig. 4 The cut polytope of order 3.

One can check that the tetrahedron in question is defined by the triangle inequali-
ties 𝑧12 + 𝑧13 + 𝑧23 ≤ 2, 𝑧12 − 𝑧13 − 𝑧23 ≤ 0, 𝑧13 − 𝑧13 − 𝑧23 ≤ 0 and 𝑧23 − 𝑧12 − 𝑧13 ≤ 0.
In other words, for 𝑛 = 3, the triangle inequalities give a complete linear description
of CUT𝑛.
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Now recall that BQP2 was also a tetrahedron. It turns out that BQP𝑛 and CUT𝑛+1
are congruent to each other, under a simple (invertible) linear transformation [14,
19, 53]:

Theorem 1 Let x∗ ∈ R𝑛 and y∗ ∈ R(𝑛2) be given. Construct a vector z∗ ∈ R(𝑛+1
2 ) as

follows:

𝑧∗𝑖,𝑛+1 = 𝑥∗
𝑖

(
𝑖 ∈ 𝑉𝑛

)
𝑧∗𝑖 𝑗 = 𝑥

∗
𝑖
+ 𝑥∗

𝑗
− 2𝑦∗

𝑖 𝑗

(
{𝑖, 𝑗} ∈ 𝐸𝑛

)
.

Then (x∗, y∗) ∈ BQP𝑛 if and only if z ∈ CUT𝑛+1.
The linear transformation in Theorem 1 has come to be known as the covariance

map [22]. A consequence of Theorem 1 is that the inequality 𝛼𝑇 𝑧 ≤ 𝛽 is valid for
CUT𝑛+1 if and only if the inequality∑︁

𝑖∈𝑉𝑛

©­«
∑︁

𝑗∈𝑉𝑛+1\{𝑖 }
𝛼𝑖 𝑗

ª®¬ 𝑥𝑖 − 2
∑︁
𝑒∈𝐸𝑛

𝛼𝑒𝑦𝑒 ≤ 𝛽

is valid for BQP𝑛. This enables one to easily convert valid (or facet-defining) inequal-
ities for the cut polytope into valid (or facet-defining) inequalities for the Boolean
quadric polytope, and vice-versa.

Example: If we take the inequalities (15) and apply the covariance map, we can ob-
tain the inequalities (5) (if 𝑘 = 𝑛 + 1) or (8) (if 𝑛 + 1 ∉ {𝑖, 𝑗 , 𝑘}). Similarly, if we take
the inequalities (16) and apply the covariance map, we can obtain the inequalities
(3) and (4) (if we set 𝑖 or 𝑗 to 𝑛 + 1), the non-negativity inequality 𝑦𝑖 𝑗 ≥ 0 (if we set
𝑘 to 𝑛 + 1), or the inequality (9) (if 𝑛 + 1 ∉ {𝑖, 𝑗 , 𝑘}). □

Example: If we take the clique inequalities (10) with |𝑆 | odd and 𝑠 = ( |𝑆 | −1)/2, and
apply the covariance map, we obtain (with a little work) the following inequalities
for the cut polytope:∑︁

{𝑖, 𝑗 }⊂𝑆
𝑧𝑖 𝑗 ≤

⌊
|𝑆 |2/4

⌋ (
𝑆 ⊆ 𝑉𝑛 : |𝑆 | odd

)
. (18)

These inequalities were discovered by Barahona & Mahjoub [7]. □

Example:More generally, if we take the Boros-Hammer inequalities (13), and apply
the covariance map, we obtain (again with a little work) the following inequalities
for the cut polytope:∑︁

{𝑖, 𝑗 }∈𝐸𝑛

𝑣𝑖𝑣 𝑗 𝑧𝑖 𝑗 ≤
⌊
𝜎(v)2

4

⌋ (
v ∈ Z𝑛 : 𝜎(v) odd

)
. (19)

These inequalities were discovered by Deza (see [22]). □
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We remark that Laurent & Poljak [44] derived a family of inequalities for CUT𝑛,
called gap inequalities, that are even more general than (19). In [24], the gap inequal-
ities are adapted to BQP𝑛, and then generalised to the case of general mixed-integer
quadratic programs.
One can also define a switching operation for the cut polytope [7, 22].

Proposition 2 (Switching for the Cut Polytope) For an arbitrary set 𝑆 ⊆ 𝑉𝑛, let
𝜋𝑆 : R(𝑛2) ↦→ R(𝑛2) be the affine transformation that:

• replaces 𝑧𝑒 with 1 − 𝑧𝑒 for all 𝑒 ∈ 𝛿(𝑆),
• leaves 𝑧𝑒 unchanged for all 𝑒 ∈ 𝐸𝑛 \ 𝛿(𝑆).

CUT𝑛 is invariant under this operation.

This switching operation enables one to take any valid inequality for CUT𝑛 and
generate other valid inequalities. For example, if we take the triangle inequality (15)
and switch on {𝑘}, we obtain the triangle inequality (16).
Many other valid inequalities have been discovered for the cut polytope (see [22]

for a survey). Among them, we mention only the odd bicycle wheel inequalities [7]
and the 2-circulant inequalities [58]. We will see in Section 7 that those particular
inequalities are “well-behaved" from an algorithmic viewpoint.
For some other polytopes related to BQP𝑛 see, e.g., [36, 45, 49, 61,63]. We close

this subsection with a remark about the strength of the LP relaxation of the 0-1 LP
(14)–(17). Poljak & Tuza [59] showed that, even if all edge-weights are non-negative,
the upper bound from the relaxation can be as large as twice the optimum. In other
words, the integrality gap can be as large as 100%. For a generalisation of this result,
see [5].

5.2 Polytopes which exploit sparsity

A matrix is said to sparse if the majority of its elements are zero. Consider a QUBO
instance whose quadratic cost matrix Q is sparse, and assume w.l.o.g. that Q is
symmetric. For all {𝑖, 𝑗} ∈ 𝐸𝑛 such that 𝑞𝑖 𝑗 = 0, we can delete the variable 𝑦𝑖 𝑗
from the formulation (2)–(7), along with the associated constraints. This makes the
formulation much smaller and, if we are lucky, much easier to solve. On the other
hand, we must take care when deriving valid inequalities: we can no longer use
inequalities that involve the variables that have been deleted.
To deal with this from a polyhedral point of view, we need a bit of notation. Let

𝐸 =
{
{𝑖, 𝑗} ∈ 𝐸𝑛 : 𝑞𝑖 𝑗 ≠ 0

}
, let 𝑚 = |𝐸 |, and let 𝐺 =

(
𝑉𝑛, 𝐸

)
. We define the

polytope:

BQP(𝐺) = conv
{
(x, y) ∈ {0, 1}𝑛+𝑚 : 𝑦𝑖 𝑗 = 𝑥𝑖𝑥 𝑗

(
{𝑖, 𝑗} ∈ 𝐸

)}
.

Geometrically speaking, BQP(𝐺) is the projection of BQP𝑛 into R𝑛+𝑚.
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Unfortunately, projecting a polytope into a subspace is difficult computationally.
This makes it harder to derive valid inequalities for BQP(𝐺) than for BQP𝑛. Nev-
ertheless, some useful inequalities are known. In particular, Padberg [53] derived
some inequalities called odd cycle inequalities, and proved that they define facets of
BQP(𝐺).We do not go into details, however, since the notation is rather burdensome.
We can exploit sparsity in the case of the max-cut problem as well. Consider a

max-cut instance defined on a graph 𝐺 =
(
𝑉𝑛, 𝐸

)
. For a given 𝑆 ⊆ 𝑉𝑛, we let 𝛿𝐺 (𝑆)

denote the set of edges in 𝐸 that have exactly one end-node in 𝑆. We then define the
polytope:

CUT(𝐺) = conv
{
z ∈ {0, 1}𝑚 : ∃𝑆 ⊆ 𝑉𝑛 : 𝑧𝑒 = 1 ⇐⇒ 𝑒 ∈ 𝛿𝐺 (𝑆)

}
.

As one might expect, CUT(𝐺) is the projection of CUT𝑛 into R𝑚.
Barahona & Mahjoub [7] proved the following. Let C be the set of chordless

simple cycles in 𝐺. Then a vector z ∈ {0, 1}𝑚 belongs to CUT(𝐺) if and only if it
satisfies the following inequalities:∑︁

𝑒∈𝐶\𝐷
𝑧𝑒 ≥

∑︁
𝑒∈𝐷

𝑧𝑒 − |𝐷 | + 1
(
𝐶 ∈ C, 𝐷 ⊆ 𝐶 : |𝐷 | odd

)
.

These inequalities are called co-circuit inequalities. Their validity follows from
the fact that every cut intersects every cycle an even number of times. Note that the
number of co-circuit inequalities can grow exponentially with 𝑛. Note also that, when
𝐺 = 𝐾𝑛, every chordless simple cycle is a triangle, and the co-circuit inequalities
reduce to the triangle inequalities (15), (16).
It turns out that Padberg’s odd cycle inequalities for BQP(𝐺) are precisely the

inequalities that can be obtained from the co-circuit inequalities via the covariance
map. We omit the proof, for brevity.

6 Some Other Related Convex Sets

In this section, we mention some other important convex sets related to BQP𝑛. Sub-
section 6.1 presents a non-polyhedral convex set that contains BQP𝑛, and Subsection
6.2 presents the analogous set for CUT𝑛. Then, Subsection 6.3 deals with certain
convex cones.

6.1 A non-polyhedral convex set

Our first convex set arises from a certain semidefinite programming (SDP) relaxation
of QUBO. This set turns out to be non-polyhedral, because an infinite number of
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linear inequalites are needed to define it. (Informally speaking, it has a “curved"
surface.)
The idea of applying SDP to 0-1 quadratic programs is due to Shor [66], and

was developed in, e.g., [35,40,57]. The basic idea is as follows. We define the 𝑛 × 𝑛
symmetric matrix X̂ = xx𝑇 , along with the augmented matrix

X̂+ :=
(
1
x

) (
1
x

)𝑇
=

(
1 x𝑇

x X̂

)
.

Since X̂+ is defined as the product of a vector and its transpose, it should be psd.
Moreover, given that 𝑥𝑖 = 𝑥2

𝑖
for all 𝑖, the main diagonal of X̂ should be equal to x.

This leads immediately to the following SDP relaxation of QUBO:

max
{
Q • X̂ : diag

(
X̂
)
= x, X̂+ ∈ S𝑛+1

+

}
.

To someone who is unfamiliar with nonlinear optimisation, this SDP relaxation
may look somewhat mysterious. Fortunately, it can be interpreted in the space of the
𝑥 and 𝑦 variables. Indeed, X̂+ is psd if and only if(

𝑠

v

)𝑇 (
1 x𝑇

x X̂

) (
𝑠

v

)
≥ 0

(
𝑠 ∈ R, v ∈ R𝑛

)
. (20)

Moreover, we have 𝑥𝑖𝑖 = 𝑥𝑖 for all 𝑖 ∈ 𝑉𝑛, and 𝑥𝑖 𝑗 = 𝑥 𝑗𝑖 = 𝑦𝑖 𝑗 for all {𝑖, 𝑗} ∈ 𝐸𝑛.
Thus, we can write the inequalities (20) in the following form:∑︁

𝑖∈𝑉𝑛

𝑣𝑖
(
2𝑠 + 𝑣𝑖

)
𝑥𝑖 + 2

∑︁
{𝑖, 𝑗 }∈𝐸𝑛

𝑣𝑖𝑣 𝑗 𝑦𝑖 𝑗 + 𝑠2 ≥ 0
(
𝑠 ∈ R, v ∈ R𝑛

)
. (21)

We will call these psd inequalities. Note that the psd inequalities are infinite in
number.
The psd inequalities include some important inequalities as special cases. For

example, if we set 𝑣𝑖 to 1, 𝑠 to 0, and all other components of v to 0 in (21), we obtain
the non-negativity inequality 𝑥𝑖 ≥ 0. If we change 𝑠 to −1, we obtain −𝑥𝑖 + 1 ≥ 0,
which is equivalent to the upper bound 𝑥𝑖 ≤ 1.
Now consider the following principle submatrix of X̂:(

𝑥𝑖𝑖 𝑥𝑖 𝑗
𝑥𝑖 𝑗 𝑥 𝑗 𝑗

)
.

Given that the SDP relaxation includes the constraints 𝑥𝑖 = 𝑥𝑖𝑖 and 𝑥 𝑗 = 𝑥 𝑗 𝑗 , this
submatrix must be equal to (

𝑥𝑖 𝑥𝑖 𝑗
𝑥𝑖 𝑗 𝑥 𝑗

)
.

Moreover, given that X̂ is psd, this submatrix must have non-negative determinant.
Thus, all feasible solutions to the SDP relaxation satisfy 𝑥2

𝑖 𝑗 ≤ 𝑥𝑖𝑥 𝑗 . In other words,
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the projection into (x, y)-space satisfies 𝑦2
𝑖 𝑗

≤ 𝑥𝑖𝑥 𝑗 . This implies in particular that
𝑦𝑖 𝑗 ≤ 1.
On the other hand, the projection does not satisfy the non-negativity inequalities

of the form 𝑦𝑖 𝑗 ≥ 0. Indeed, one can check that, when 𝑛 = 2, we obtain a feasible
solution to the SDP by setting 𝑥1, 𝑥2, 𝑥11 and 𝑥22 to 1/4, and setting 𝑥12 to −1/8.
In other words, the SDP relaxation can be strengthened by adding the inequalities
𝑥𝑖 𝑗 ≥ 0 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛.

6.2 A convex set related to max-cut

As one might expect, the results in the previous subsection have an analogue for
the max-cut problem. The SDP relaxation of max-cut was suggested by Schrijver
(unpublished) and analysed in, e.g. [29, 43, 56].
We now show how to derive the SDP relaxation. Recall the definitions of 𝛿(𝑆)

and 𝑤𝑒 from Subsection 5.1. For each 𝑖 ∈ 𝑉𝑛, let 𝜇𝑖 be a variable that takes the value
1 if 𝑖 ∈ 𝑆, and −1 otherwise. One can formulate max-cut as the following bivalent
quadratic program:

max


1
2

∑︁
{𝑖, 𝑗 }∈𝐸𝑛

𝑤𝑖 𝑗

(
1 − 𝜇𝑖𝜇 𝑗

)
: 𝜇 ∈ {−1, +1}𝑛

 .
To see that this formulation is valid, note that the quantity 1

2
(
1 − 𝜇𝑖𝜇 𝑗

)
equals 1 if

nodes 𝑖 and 𝑗 are on opposite shores of the cut, and 0 if they are on the same shore.
Next, we define the matrixM = 𝜇𝜇𝑇 . Note thatM is psd and has 1s on the main

diagonal (since 𝜇2
𝑖
= 1 for all 𝑖 ∈ 𝑉𝑛). This leads immediately to the SDP relaxation

max


1
2

∑︁
{𝑖, 𝑗 }∈𝐸𝑛

𝑤𝑖 𝑗

(
1 − 𝑚𝑖 𝑗

)
: 𝑚𝑖𝑖 = 1

(
𝑖 ∈ 𝑉𝑛

)
, M ∈ S𝑛

+

 .
The feasible region of this SDP is called the elliptope [43].
Note that the matrix M is related to the traditional 𝑧 variables via the identities

𝑚𝑖 𝑗 = 1 − 2𝑧𝑖 𝑗 for {𝑖, 𝑗} ∈ 𝐸𝑛. Using this fact, Laurent & Poljak [43] projected
the elliptope into z-space. The resulting convex set is defined by the following
inequalities: ∑︁

{𝑖, 𝑗 }∈𝐸𝑛

𝑣𝑖𝑣 𝑗 𝑧𝑖 𝑗 ≤ 𝜎(v)2/4 (v ∈ R𝑛). (22)

One can check that these inequalities are equivalent to the psd inequalities (21), via
the covariance map.
It is not hard to see that the inequalities (19) dominate the inequalities (22). This

implies in turn that theBoros-Hammer inequalities (13) dominate the psd inequalities
(21). See [22] for detailed proofs.



16 Adam N. Letchford

6.3 Cones

There are also several important convex cones that are related to BQP𝑛. To explain
them properly, we need to define two more families of inequalities:

• When 𝜎(v) = 1, the inequalities (19) reduce to∑︁
{𝑖, 𝑗 }∈𝐸𝑛

𝑣𝑖𝑣 𝑗 𝑧𝑖 𝑗 ≤ 0
(
v ∈ Z𝑛 : 𝜎(v) = 1

)
. (23)

These are called hypermetric inequalities [17, 18].
• When 𝜎(v) = 0, the inequalities (22) reduce to∑︁

{𝑖, 𝑗 }∈𝐸𝑛

𝑣𝑖𝑣 𝑗 𝑧𝑖 𝑗 ≤ 0 (v ∈ R𝑛 : 𝜎(v) = 0). (24)

These are called negative-type inequalities [19, 64].

Note that the triangle inequalities (16) are hypermetric inequalities. It is also known
that the hypermetric inequalities dominate the negative-type inequalities [19].
We now define four convex cones:

• The cut cone of order 𝑛, which we will call CC𝑛, is the conic hull of the vectors
z that lie in CUT𝑛.

• The metric cone of order 𝑛, denoted by MET𝑛, is the set of points z satisfying
the triangle inequalities (16).

• The hypermetric cone, HYP𝑛, is the cone defined by the hypermetric inequalities
(23).

• The negative-type cone, NEG𝑛, is the cone defined by the negative-type inequal-
ities (24).

From the above considerations, we have CC𝑛 ⊂ HYP𝑛 ⊂ MET𝑛∩ NEG𝑛. By
definition, the cut and metric cones are polyhedral. It has also been shown that
the hypermetric cone is polyhedral [21]. The negative-type cone, however, is not.
All four cones have interesting applications to the theory of metric spaces and the
geometry of numbers; see again [22] for details.
Note that, if we are given a complete linear description of CC𝑛, we can use

switching to get a complete linear description of CUT𝑛. To see this, let z̄ be an
extreme point of CUT𝑛 that is not the origin, and let 𝛿(𝑆) be the corresponding cut
in 𝐾𝑛. If we switch on 𝑆, z̄ is mapped to the origin, and any facet containing z̄ is
mapped to a facet containing the origin. Reversing this argument, we can obtain any
inequality that defines a facet of CUT𝑛 by switching an inequality that defines a facet
of CC𝑛.
Using the covariance map, one can derive analogous inequalities and cones in

(x, y)-space. For the sake of brevity, we do not go into details. We just mention that
the hypermetric inequalities (23) map to the following inequalities for BQP𝑛:
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𝑖∈𝑉𝑛

𝑣𝑖
(
1 − 𝑣𝑖

)
𝑥𝑖 ≤ 2

∑︁
1≤𝑖< 𝑗≤𝑛

𝑣𝑖𝑣 𝑗 𝑦𝑖 𝑗
(
v ∈ Z𝑛

)
. (25)

These are called hypermetric correlation inequalities [20]. We remark that they can
be viewed as the special case of the Boros-Hammer inequalities (13) in which 𝑠 = 0.

7 Algorithms

Now we turn to the algorithmic implications of the above results. Subsection 7.1
describes a (fairly) simple exact algorithm, called cut-and-branch. Subsection 7.2
concerns subroutines that search for useful cutting planes. Finally, Subsection 7.3
describes a more sophisticated algorithmic framework, called branch-and-cut.

7.1 Cut-and-branch

Suppose we wish to solve an ILP of the form (1). The continuous relaxation of the
ILP is an LP, which can be solved with, e.g., the simplex method. This yields a
solution, say x∗. If x∗ is integral, we have solved the ILP. If not, the quantity c𝑇x∗
gives an upper bound on the optimal profit.
At this point, we can resort to an old-fashioned solutionmethod, such asGomory’s

cutting-plane method [30] or branch-and-bound [42]. A more effective approach,
first suggested by Crowder et al. [13], is to add some strong (preferably facet-
defining) valid inequalities to the formulation, and then invoke branch-and-bound.
The resulting algorithm,which has come to be known as “cut-and-branch", is outlined
in Algorithm 1.
The idea behind cut-and-branch is that the cutting planes typically yield a signif-

icant decrease in the upper bound. This in turn leads to a reduction in the size of
the branch-and-bound tree. The results in [13] indicate that, for many ILPs arising
in practice, the reduction in the size of the tree can be dramatic, and enable one to
solve ILPs that are unsolvable with traditional branch-and-bound.
Cut-and-branch algorithms for QUBO and related problems can be found in,

e.g., [6, 23, 35, 49].

7.2 Separation algorithms

In Algorithm 1, there is a line that says “Search for strong valid inequalities that are
violated by x∗". Geometrically speaking, finding such inequalities (cutting planes)
amounts to finding a hyperplane that “separates" the current fractional LP solution
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Algorithm 1: Cut-and-Branch Algorithm
input : positive integers 𝑛 and 𝑚; matrix A; vectors b, c
Solve the LP relaxation and let x∗ be the solution;
repeat

if x∗ is integer then
Output x∗ and quit;

end
Search for strong valid inequalities that are violated by x∗;
if at least one inequality has been found then
Add one or more inequalities to the LP as cutting planes;
Re-optimise the LP and update x∗;

end
until no more violated inequalities are found;
Optional: Delete all cutting planes that have a positive slack;
Declare all variables integer;
Feed the resulting ILP into a branch-and-bound solver;
Let x∗ be the solution;
output
:

Optimal solution x∗

from the feasible integer solutions. For this reason, algorithms that search for cutting
planes are called “separation algorithms" [32]. More precisely:

• An exact separation algorithm for a given family of valid inequalities is an
algorithm that takes a fractional LP solution as input, and outputs one or more
violated inequalities in the given family, if any exist.

• A heuristic separation algorithm for a given family of valid inequalities is an
algorithm that takes a fractional LP solution as input, and outputs either one or
more violated inequalities in the given family, or a failure message.

In the context of QUBO,we can assume that the fractional solution is a pair
(
x∗, y∗

)
∈

[0, 1]𝑛+(𝑛2) .
The separation problem for the triangle inequalities (8), (9) can be solved in𝑂

(
𝑛3)

time by brute-force enumeration. The complexity of the separation problems for the
inequalities (10)–(13) is unknown, but we suspect that they are allNP-hard. Greedy
separation heuristics for the inequalities (10)–(12) can be found in, e.g., [48,67,69].
The separation problem for the psd inequalities (21) can be solved in polyno-

mial time [32]. The following method works well in practice (e.g., [34, 65]). Given(
x∗, y∗

)
, construct the matrix X̂+. Find the minimum eigenvalue of X̂+, to some

desired precision. If the eigenvalue is non-negative, stop. Otherwise, find the asso-
ciated eigenvector, again to the desired precision. Write the eigenvector as

(𝑠∗
v∗
)
. This

eigenvector yields a violated psd inequality. To see why, let 𝜆 < 0 be the eigenvalue,
and note that (

𝑠∗

v∗
)𝑇 (

1 x𝑇

x X̂

) (
𝑠∗

v∗
)
=

(
𝑠∗

v∗
)𝑇 (

𝜆

(
𝑠∗

v∗
))

= 𝜆





(𝑠∗v∗
)



2

2
< 0.
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Several polynomial-time separation algorithms are known for the cut polytope.
The separation problem for the triangle inequalities (15), (16) can be solved in
𝑂

(
𝑛3) time by enumeration. Gerards [27] presented an 𝑂 (

𝑛5) separation algorithm
for the odd bicycle wheel inequalities. There are also 𝑂

(
𝑛5) separation algorithms

for various generalisations of the 2-circulant inequalities [37,38,45]. The separation
problems for the inequalities (22) and (24) can be solved in a similar way to the psd
inequalities (see [22]).
At the time of writing, the complexity of separation is unknown for the remaining

inequalities for the cut polytope. In [35], a greedy separation heuristic is presented for
the inequalities (18) and their switchings. Separation heuristics for the inequalities
(19) can be found in [16, 25, 34, 35]. A separation heuristic for the gap inequalities
is given in [25].
Letchford & Sørensen [46] showed that the separation problems for the inequali-

ties (13), (19), (23) and (25) are equivalent. That is, either all of them can be solved
in polynomial time, or none of them can. See also Avis [4].
Finally, wemention that there are several exact and heuristic separation algorithms

designed for sparse QUBO and max-cut instances (e.g., [6–8, 11, 47]). We omit
details, for brevity.

7.3 Branch-and-cut

Now that we have explained the concept of separation, we return to solution algo-
rithms. Recall that, in cut-and-branch, we are permitted to add cutting planes only
before running branch-and-bound. A natural extension is to permit the addition of
cutting planes while running branch-and-bound.
To make this more precise, we recall that branch-and-bound is a recursive algo-

rithm, which solves a series of LP subproblems, arranged in a tree structure. Suppose
that we have just solved the LP that corresponds to one particular branch of the tree.
If the solution is fractional, we can run one or more separation algorithms, in an
attempt to cut it off. If any cutting planes are found, we can add them to the LP,
re-optimise, and repeat. This causes the upper bound at that branch to decrease,
which may allow one to eliminate the branch from consideration.
This approach was discovered by several authors, apparently independently (e.g.,

[31, 50, 54]). It was given the name branch-and-cut by Padberg and Rinaldi [54]. It
works remarkably well, and has been applied to a wide range of problems in integer
programming and combinatorial optimisation [10, 51].
Although branch-and-cut is conceptually simple, it requires considerably more

programming effort than cut-and-branch. The main reason is that the branch-and-
bound solver can no longer be treated as a “black box". Moreover, some additiona
implementation “tricks" are needed to make the approach work efficiently. Several
such tricks are given in [54], such as (a) starting with a subset of the variables and
generating the others dynamically, (b) storing cutting planes in a “cut pool", (c)
scanning the cut pool before calling the more time-consuming separation routines,
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(d) deleting non-binding cutting planes to save memory, and (e) producing heuristic
integer solutions by rounding fractional values to integers.
Oddly, no-one has yet designed and implemented a full branch-and-cut algorithm

for QUBO. Indeed, at present, the most effective exact algorithms for QUBO use
SDP relaxations, with triangle inequalities incorporated via Lagrangian relaxation
(see, e.g., [41, 62]).

8 Concluding Remarks

TheBoolean quadric and cut polytopes have been studied in depth, andmany families
of strong valid linear inequalities are now known. For some of the families, we also
have efficient exact or heuristic separation algorithms.
There remain several interesting directions for possible future research. Among

them, we mention the following:

• Determinewhether or not the separation problem for the hypermetric inequalities
(23) can be solved in polynomial time.

• Design, implement and test a full branch-and-cut algorithm for QUBO and
related problems.

• Understand better the relative advantages and disadvantages of LP-based and
SDP-based approaches to QUBO.

• Provide an open source library of separation algorithms for QUBO and related
problems.
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