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Abstract

The General Routing Problem (GRP) is a fundamental NP-hard
vehicle routing problem, first defined by Orloff in 1974. It contains
as special cases the Chinese Postman Problem, the Rural Postman
Problem, the Graphical TSP and the Steiner TSP. We examine in
detail a known constructive heuristic for the GRP, due to Christofides
and others. We show how to speed it up, in both theory and practice,
while obtaining solutions that are at least as good. Computational
results show that, for large instances, our implementation is faster
than the original by several orders of magnitude.

Keywords: vehicle routing, arc routing, combinatorial optimisation,
heuristics.

1 Introduction

The General Routing Problem (GRP) is an NP-hard vehicle routing prob-
lem, first defined by Orloff in 1974 [35]. We are given an undirected graph
G = (V,E), a cost ce ∈ Q+ for each edge e ∈ E, a set VR ⊆ V of required
nodes and a set ER ⊆ E of required edges. The task is to find a minimum-
cost closed walk in G that visits each required vertex at least once and
traverses each required edge at least once.

The GRP contains several other vehicle routing problems as special cases:

• When VR = ∅, we have the Rural Postman Problem or RPP [35].

• When VR = ∅ and ER = E, we have the Chinese Postman Problem or
CPP [13,22].
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• When ER = ∅, we have the Steiner Travelling Salesman Problem or
STSP [11].

• When ER = ∅ and VR = V , we have the Graphical Travelling Salesman
Problem or GTSP [11].

The RPP is NP-hard in the strong sense [31], and so is the GTSP [11]. This
implies that the STSP and GRP are also NP-hard in the strong sense. The
CPP, on the other hand, can be solved in polynomial time [13].

The GRP is particularly suitable for modelling vehicle routing problems
that involve road networks [15, 32, 35]. The edges in E represent roads or
road segments, the nodes in VR represent customers, the nodes in V \ VR

represent road junctions, and the edges in ER represent (usually urban)
streets that require service.

Several methods have been proposed for the GRP and its special cases,
including both exact methods (e.g., [1, 6–9, 14, 15, 20, 32, 33, 38, 39]) and
heuristic methods (e.g., [3,6,10,16,19,21,23–25,28,37]). Here, we are inter-
ested in a constructive heuristic that is obtained by adapting the well-known
Christofides heuristic for the TSP [5] to the GRP. This heuristic has a rather
complicated history, and it is difficult to attribute it to any single author
(see Subsections 2.3 and 2.4). For brevity, we call it the “C-heuristic”.

The goal of this paper is to show how to speed up the C-heuristic, in
both theory and practice, without incurring any loss in solution quality. (In
fact, the solutions obtained by our version of the C-heuristic are guaranteed
to be at least as good as those obtained by the original version.) After that,
we present some extensive computational results, on instances created using
real road network data. It turns out that, for large instances, our version of
the C-heuristic is faster than the original by several orders of magnitude.

The paper has a simple structure. Section 2 contains a brief literature
review. Section 3 presents the new heuristic, and Section 4 presents the
computational results. Section 5 contains some concluding remarks.

Throughout the paper, we assume without loss of generality that end-
nodes of required edges do not belong to VR. We let V +

R denote the union
of VR and the set of end-nodes of required edges. Note that VR ⊆ V +

R ⊆
V . We sometimes refer to the subgraph GR = (V +

R , ER). The connected
components of GR will be called “R-components”. Finally, traversing an
edge without servicing it will be called “deadheading”.

2 Literature Review

We now briefly review the relevant literature. For purposes of exposition,
we cover the CPP, the RPP and the GRP in that order.
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2.1 The CPP

To tackle the CPP, one needs to be familiar with matchings and T -joins.
Given a graph G = (V,E) with |V | even, a perfect matching is a set of
edges that touches each vertex exactly once. In the minimum-weight per-
fect matching problem (WPM), one is also given a weight ce ∈ Q for each
edge e ∈ E, and one seeks a perfect matching of minimum total weight. Ed-
monds [12] showed that WPM can be solved in polynomial time. An O(|V |3)
time algorithm was given in [30]. More recently, Gabow [18] presented an
O(|V ||E|+ |V |2 log |V |) time algorithm.

Given a graph G = (V,E) and a set T ⊆ V with |T | even, a T -join
is a set of edges that meets each vertex in T an odd number of times,
and each other vertex an even number of times. In the minimum-weight
T -join problem (WTJ), one is also given a weight ce ∈ Q for each edge
e ∈ E, and one seeks a T -join of minimum total weight. Edmonds and
Johnson [13] showed that one can reduce WTJ to WPM as follows. Create
a complete graph in which the vertex set is T , and the weight of an edge
{u, v} ⊂ T is the cost of the shortest path from u to v in G. Solve the
WPM in the complete graph, and replace each edge in the matching with
the corresponding shortest path in G. This T -join algorithm takes O(|V |3)
time. A faster algorithm, which runs in O(|T |(|E| + |V | log |V |)) time, was
recently found by Gabow [18].

Korte and Vygen [27] gave an alternative reduction from the WTJ to
the WPM. The resulting WPM instance is rather large, with O(|E|) nodes
and O(|V ||E|) edges. If the vertex degrees in G are bounded by a constant,
however, the WPM instance has only O(|V |) nodes and edges.

Edmonds and Johnson [13] observed that an optimal CPP solution can
be constructed by setting T to the set of nodes incident on an odd number
of edges, and then finding a minimum-cost T -join in G. (The edges in the
T -join are the ones that need to be traversed twice in the CPP solution.)

Finally, Boyacı et al. [4] pointed out that the Korte-Vygen approach is
well-suited to CPP instances on road networks, since road networks have
bounded degree. Using the Korte-Vygen approach in conjunction with an
open-source matching routine, they were able to solve CPP instances with
50,000 nodes in less than a second on a laptop.

2.2 Exact algorithms for the RPP

Christofides et al. [6] gave an exact algorithm for the RPP based on La-
grangian relaxation. It could solve instances with up to 180 edges. Corberán
and Sanchis [9] presented a cutting-plane algorithm, which could solve in-
stances of around the same size. Ghiani and Laporte [20] presented a full
branch-and-cut algorithm, which could solve instances with up to around
600 edges. A different branch-and-cut algorithm was given by Fernández et
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al. [14].
The above-mentioned algorithms all begin by transforming the RPP in-

stance into an equivalent RPP instance with V = V +
R . For what follows,

we explain this transformation. We take the subgraph GR = (V +
R , ER). For

all pairs {i, j} ⊂ V +
R , we add a non-required edge, whose cost is that of

the shortest path from i to j in G. We then simplify the resulting graph
by deleting all non-required edges (i, j) such that cij = cik + cjk for some
k ∈ V +

R \ {i, j}. We also delete a non-required edge if there is a parallel
required edge with the same cost. We remark that this transformation can
increase the number of non-required edges in the RPP instance. In practice,
however, it usually decreases it.

Jünger et al. [29] show that one can easily transform any RPP instance
into a standard TSP instance, as follows. Construct a complete undirected
“auxiliary” graph, say G+, with 2|ER| nodes. Each required edge in G is
replaced by a clique of size two in G+. The cost of an edge in G+ is set to the
cost of the corresponding shortest path in G, with the following exception:
the cost of an edge whose end-nodes are in the same clique is set to be the
cost of the corresponding required edge in G, minus a large positive number
M . Then, a TSP solution in G+ can be easily converted into an optimal
RPP solution. Using this method, in conjunction with their own TSP solver,
Jünger et al. were able to solve RPP instances with up to 300 edges.

2.3 Heuristics for the RPP

There are also many papers on heuristics for the RPP. Frederickson [16]
stated that the famous “spanning tree + matching” heuristic for the TSP,
due to Christofides [5], could be modified to give a 3/2-approximation algo-
rithm for the RPP. He did not however give any details. A detailed “span-
ning tree + matching” heuristic for the RPP was given in Christofides et
al. [6], and it was proven to be a 3/2-approximation algorithm by Benavent
et al. [3].

For what follows, we describe the heuristic in [6] in detail. The first
step is to transform the RPP instance into an equivalent RPP instance with
V = V +

R , as described above. We let G′ denote the transformed graph. The
next step is to construct a “shrunk graph” as follows. We take a copy of
G′, shrink each R-component down to a single node, and delete any loops.
Then, for each set of parallel edges (if any), we delete all apart from the one
with the smallest cost. We then compute a Minimum-Weight Spanning Tree
(MST) in the shrunk graph. Let F denote the set of edges in the tree. By
construction, ER∪F induces a connected spanning subgraph of G′. Finally,
we set T equal to the set of nodes in V +

R that are incident on an odd number
of edges in ER ∪ F , and solve the WTJ in G′. The desired RPP solution is
obtained by traversing the edges in the T -join and the edges in ER ∪ F .

Modified versions of the above heuristic can be found in [24, 37]. Other
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heuristics for the RPP can be found in, e.g., [10,19,21,23,37]. For the sake
of brevity, we do not go into details.

2.4 The GRP

The GRP has received much less attention than the RPP. We are aware of
only two papers on exact algorithms. Corberán et al. [7] gave a cutting-plane
algorithm, which solved instances with up to 300 edges. Later on, Corberán
et al. [8] presented a very effective branch-and-cut algorithm, which can
solve instances with up to 3000 edges.

There are also very few papers on heuristics for the GRP. Heuristics
based on local search algorithms are given in [33, 36]. Jansen [28] extended
the RPP heuristic in [6] to a variant of the GRP, in which nodes in VR must
be visited exactly once rather than at least once.

Finally, for completeness, we mention that there are several papers on
exact algorithms for the STSP (e.g., [1, 15, 32, 38, 39]), plus a paper on a
heuristic [25]. The algorithm in [1] is capable of solving instances with over
2000 required nodes.

3 Improving the Heuristic

Observe that the constructive heuristic of Christofides et al. [6], mentioned in
Subsection 2.3, can be easily extended from the RPP to the GRP. The only
alterations are that (i) each node in VR needs to be treated as a (trivial) R-
component in itself, and (ii) thoseR-components do not need to be “shrunk”.
(Recall that we are using the convention that end-points of required edges
do not lie in VR.) We will call the resulting heuristic for the GRP the
“C-heuristic”.

The purpose of this section is to show that the C-heuristic can be sig-
nificantly improved. In Subsection 3.1, we point out two drawbacks of the
original C-heuristic. The improved C-heuristic is described in Subsection
3.2 and analysed in Subsection 3.3.

3.1 Drawbacks of the C-heuristic

In our preliminary experiments with the C-heuristic, we soon noticed two
significant drawbacks. The first is that the heuristic can take a very long
time when applied to large-scale GRP instances. The second is that the
heuristic can yield solutions that are “obviously bad”, in the sense that they
can be easily improved by visual inspection.

To understand the first drawback better, let us analyse the running time
of the C-heuristic. The first step is to compute shortest paths in G between
all pairs of nodes in V +

R . This can be done by calling Dijkstra’s single-source
shortest-path algorithm O(|V |) times. If we use the Fibonacci heap version
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of Dijkstra’s algorithm [17], each Dijkstra call takes O(|E|+|V | log |V |) time.
Thus, the shortest-path phase takes O(|V | (|E|+ |V | log |V |)) time.

The next step is to construct the graph G′. The most time-consuming
part of that is the deletion of non-required edges (i, j) such that cij = cik+cjk
for some k ∈ V +

R \ {i, j}. This takes O(|V |3) time. Compared to that, the
time taken to compute the MST in G′ is negligible. As for the WTJ phase,
it takes O(|V |3) time using the Edmonds-Johnson approach. Thus, the C-
heuristic as a whole takes O(|V |3) time. This is rather slow when one is
dealing with large-scale GRP instances.

The other drawback of the C-heuristic is best illustrated through a couple
of examples. First consider the STSP instance in Figure 1(a). Required and
non-required nodes are represented by big and small circles, respectively. (In
the online version of the paper, the big circles are red.) The costs are also
indicated on the edges. Figure 1(b) shows the transformed instance, defined
on the graph G′. Note that, for this instance, G′ is equal to the shrunk
graph. Figure 1(c) shows the shrunk graph, with the edges in F indicated
by thick black lines. One can check that the edges {1, 5} and {2, 4} form an
optimal T -join. Figure 1(d) shows the resulting STSP solution in G′, and
Figure 1(e) shows the corresponding STSP solution in G. This solution is
obviously sub-optimal, since the edge {1, 3} is traversed four times.

Now consider the GRP instance in Figure 2(a). In this instance, there is
only one required edge, represented by a thick red line. Figure 2(b) shows the
transformed instance, defined on G′. Figure 2(c) shows the shrunk graph,
with an optimal spanning tree represented as thick lines. Figure 2(d) shows
the graph G′ with the edges in the tree as thick lines. One can check that
the edges {3, 6} and {6, 8} form an optimal T -join. Figure 2(e) shows the
GRP solution in G′, and Figure 2(f) shows the corresponding GRP solution
in G. This solution is obviously sub-optimal, since we can make a saving by
deadheading the edge {2, 3} instead of the edges {2, 5}, {5, 6} and {3, 6}.

3.2 The improved C-heuristic

Our improved version of the C-heuristic is intended to overcome both of
the above-mentioned drawbacks simultaneously. It has five main phases: a
shortest-path phase, a spanning-tree phase, a mapping phase, a sparsifica-
tion phase, and a T -join phase.

To proceed, we need some more notation. We assume that there are κ
R-components, called C1, . . . , Cκ. For i = 1, . . . , κ, we let E(i) denote the
set of required edges (if any) that have both end-nodes in Ci. A path in G
that connects a node in Ci to a node in Cj will be called an “(i, j)-link”.
We let c(i, j) denote the cost of the shortest (i, j)-link in G.

The first phase of our heuristic is described in Algorithm 1. Observe
that the algorithm solves only κ − 1 shortest-path problems in G, whereas
the standard C-heuristic solves |V +

R |−1 of them. (Note that κ ≤ |V +
R |, with

6



1

2
3

4

5

2 2

2

1

1

2 4

5

3 33

4 4

4

(a) Original STSP instance (b) Transformed instance

1

2 4

5

1

2 4

5

(c) Shrunk graph and tree (d) STSP solution in G′

1

2

3

4

5

(e) STSP solution in G

Figure 1: Bad STSP instance for the C-heuristic

7



1

4

7

3

6

2

5

8

2 8

2 4

2

1

3

3

4

7

3

6

2

8

8

4

5

6

7

6
7

7

(a) Original GRP instance (b) Transformed instance

{2}

{3, 6}

{7} {8}

5

6

6

7

7

7

7

3

6

2

8

(c) Shrunk graph and tree (d) Graph G′ with tree

7

3

6

2

8

1

4

7

3

6

2

5

8

(e) GRP solution on G′ (f) GRP solution on G
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equality if and only if ER = ∅.) Moreover, we do not bother to construct
the graph G′. (It will turn out later on that G′ is not actually needed.)

Algorithm 1: Shortest-Path Phase

input : Graph G, set of required nodes VR ⊆ V , set of required
edges ER ⊆ E, edge costs ce

Compute the R-components C1, . . . , Cκ and their edge sets
E(1), . . . , E(κ);
for i = 1 to κ− 1 do

Temporarily change to zero the cost of all edges in E(i);
Let v be an arbitrary node in Ci;
Run Dijkstra’s single-source shortest path algorithm to get the
shortest paths in G from v to all other nodes in V ;
Let T (i) be the shortest-path tree;
for j = 1 to κ do

if j ̸= i then
Let c(i, j) be the cost of the shortest path from v to the
nearest node in Cj ;

end

end
Restore the costs of the edges in E(i) to their original values;

end
output: Costs c(i, j) and shortest-path trees T (i)

In the second phase, we construct the shrunk graph and compute a MST
in it, just as in [6]. Note that the weights of the edges in the shrunk graph
are nothing but the c(i, j) values that were stored at the end of phase 1.
Note also that the shrunk graph has only κ nodes.

In the third phase, we map the spanning tree onto G. Let F denote the
set of edges in the MST. Each edge {i, j} ∈ F corresponds to an (i, j)-link
in G, and we can identify the edges in that link using the shortest-path trees
that were generated in phase 1. We let F ′ denote the set of edges in E that
correspond to the edges in F . Note that F ′ is actually a multi-set, i.e., it
may contain more than one copy of a given edge. (Indeed, for the example
in Figure 1, our set F ′ will contain three copies of the edge {v1, v5}.)

By construction, the edge set ER ∪ F ′ induces a connected subgraph
of G that contains all required nodes and edges. It may happen, however,
that one can drop edges from F ′ without causing that subgraph to become
disconnected. This observation is the motivation for our fourth phase, which
we call sparsification. Details are given in Algorithm 2.
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Figure 3: Sparsification applied to the GRP instance in Figure 2

Algorithm 2: Sparsification Phase

input : Graph G, edge costs ce, R-components C1, . . . , Cκ, edge
(multi-)set F ′

Construct a graph with vertex set V and edge set ER ∪ F ′;
Shrink each R-component of the graph to a single node;
Remove any loops and/or isolated nodes;
Compute an MST in the resulting graph;
Let F− denote the set of edges in the MST;
output: Edge set F− ⊂ E

Figure 3 shows how the sparsification phase works, when applied to the
GRP instance that was presented in Figure 2(a). Figure 3(a) shows the
graph G, with the multi-set F ′ represented by thick black lines. Figure
3(b) shows the same graph with the reduced set F−. For this instance,
sparsification eliminates the edge {2, 5}, one copy of the edge {3, 6}, and
one copy of the edge {4, 7}.

Now, consider the graph G− = (V,ER ∪ F−). By construction, G− has
one non-trivial connected component, which contains all required nodes and
edges. (There may also be some trivial components, consisting of isolated
non-required nodes.) In our fifth and final phase, we attempt to make G−

Eulerian at minimal cost.
Let T be the set of nodes in V that are incident on an odd number of

edges in ER ∪ F−. To obtain our desired GRP solution, we solve a WTJ
problem in G, with the given set T , and add the edges in the T -join to the
edges in ER ∪ F−.

Figure 4 shows how the T -join phase works, using the same GRP instance
as before. Figure 4(a) is the same as Figure 3, except that the nodes in T
are represented by big hollow circles. One can check that the edges {2, 3},
{4, 7} and {5, 8} form an optimal T -join. The resulting GRP solution is
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Figure 4: Illustration of T-join phase for the graph in Figure 2

shown in Figure 4(b).
Note that the GRP solution in Figure 4(b) is cheaper than the one that

was found by the traditional C-heuristic, which was already shown in Figure
2(f). One can check that our version of the C-heuristic also yields a cheaper
solution for the STSP instance shown in Figure 1(a).

To complete the description of our heuristic, it suffices to explain how we
solve the WTJ. We decided to use the Korte-Vygen algorithm rather than
the Edmonds-Johnson algorithm. The reason is that most real-life GRP
instances are defined on road networks. In road networks, most nodes have
degree less than 5. As a result, when applied to a WTJ on a road network,
the Korte-Vygen algorithm involves the solution of a matching problem with
only |V | nodes and edges (see also [4]).

3.3 Advantages of the modified C-heuristic

We now give some theoretical evidence that the modified C-heuristic is su-
perior to the original. First, we show that, under a mild assumption, the
modified version is faster and uses less memory.

Proposition 1. Suppose the degrees of the nodes in G are bounded from
above by a constant (as is the case for GRP instances on road networks). The
modified C-heuristic can be implemented so that it runs in O(|V |2 log |V |)
time and O(κ |V |) space.

Proof. Under the stated condition, |E| = O(|V |). Now, Algorithm 1 in-
volves the solution of κ shortest-path problems in G. Using a heap version
of Dijkstra’s algorithm, this takes O(κ |V | log |V |) time and O(|V |) space.
Storing the κ shortest-path trees takes O(κ |V |) space. Constructing the
shrunk graph takes only O(κ2) time and space. Computing the MST using
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Prim’s algorithm takes only O(κ2 log κ) time and O(κ2) space. Mapping the
tree F to the multi-set F ′ takes O(κ |V |) time and space. If we use Prim’s
algorithm also in the sparsification phase, it takes O(|V |2 log |V |) time and
O(|V |) space. Computing the set T takes only O(|V |) time and space. Con-
verting the WPM into a WTJ, as in Korte & Vygen [27], takes only O(|V |)
time and space when the node degrees are bounded. Finally, using a decent
matching algorithm, such as the one of Gabow [18], the WPM can be solved
in O(|V |2 log |V |) time and O(|V |) space (since the WPM is defined on a
graph with only O(|V |) nodes and edges).

One can check that the original C-heuristic takes O(|V |3) time and O(|V |2)
space under the same assumption.

Next, we show that, under mild conditions, the solution found by the
modified C-heuristic is at least as good as the one found by the original.

Proposition 2. If the following two conditions are satisfied, then the modi-
fied C-heuristic produces a GRP solution that costs no more than the solution
found by the original C-heuristic:

(a) There is a unique optimal tree F in the shrunk graph.

(b) For each edge {i, j} ∈ F , if there is more than one shortest (i, j)-link
in G, then all such links connect the same node in Ci to the same node
in Cj.

Proof. If condition (a) is satisfied, then both heuristics will produce the
same MST F in the shrunk graph. Now, consider the standard C-heuristic.
Let F be the set of edges in the spanning tree, let T be the set of nodes used
in the T -join phase, and let J be the set of edges in the resulting T -join.
Note that F ∪ J is a multi-set in general. By replacing each edge in F ∪ J
with the corresponding shortest path in G, we obtain a (multi-)set F ′ ∪ J ′

in the original graph G. Note that F ∪ J and F ′ ∪ J ′ have the same cost.
Now consider the modified version of the heuristic. If condition (b) is

satisfied, then F ′ will be the same as in the previous paragraph, and T will
be the set of nodes that are incident on an odd number of edges in ER ∪F ′.
Finally, we let T ′ denote the set of nodes that are incident on an odd number
of edges in ER ∪ F−, and we observe that the union of F ′ \ F− and J ′ is a
T ′-join. In the modified heuristic, however, we compute an optimal T ′-join.
By definition, the cost of F− together with the cost of the optimal T ′-join
is no larger than the cost of F ′ ∪ J ′.

When the conditions do not hold, the performance of both heuristics can
vary depending on the choice of tie-breaking rule. In practice, if we wish to
ensure that the modified C-heuristic performs at least as well as the original,
it suffices to use the same tree T and the same (i, j)-links in both versions.
In other words, given any solution obtained by using the C-heuristic, one
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can always find a solution, produced by the modified version, which is at
least as good. This is also confirmed by the results in the next section.

4 Computational Experiments

In this section, we present the results of some computational experiments.
For most of the experiments, we used a PC with an i7-6820HQ processor,
running under Windows 10 at 2.7 GHz with 8GB of RAM. For the largest
instances, with 10, 000 or 20, 000 nodes, our PC ran into memory difficulties
when running the C-heuristic. So, for those instances, we used a workstation
with an Intel Xeon W-1390P processor, at 3.5 Ghz and 128 GB of RAM,
instead.

All algorithms were implemented with C# in the .NET framework and
compiled with Microsoft Visual Studio 2019. To solve the matching prob-
lems, we used the open-source software package Blossom V [26]. It runs in
O(|V |3) time in the worst case, but performs extremely well in practice.

4.1 Results for existing benchmark instances

There exist several sets of benchmark GRP, RPP and STSP instances in the
literature (see, e.g., [7–9, 20, 23, 25, 32]). Some of them are available on the
following web site:

https://www.uv.es/corberan/instancias.htm

These include:

• Three sets of GRP instances taken from [8]. These sets are called
ALBA, GRP and MADR.

• Three sets of RPP instances taken from [8]. These sets are called
UR500, UR750 and UR1000.

• A set of miscellaneous GTSP instances taken from [7].

The results that we obtained for these instances are shown in Table 1. The
first three columns of the table show the following for each set of instances:
the problem type, the name of the set (where applicable), and the number
of instances in the set. The column headed “%gap” shows the average gap
between the upper bound from the heuristics and the optimum, expressed as
a percentage of the optimum. (For these instances, the improved C-heuristic
gave the same upper bound as the classical version.) The remaining columns
show the average running time, in seconds, for the original C-heuristic and
our version.

It is clear that our version of the heuristic is much faster than the origi-
nal, especially for the RPP instances. The average percentage gaps are also
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Type Set # %gap C-time New-time

ALBA 15 3.03 0.06 0.04
GRP GRP 10 3.86 0.08 0.04

MADR 15 3.84 0.08 0.04

UR500 12 1.91 0.17 0.05
RPP UR750 12 1.96 0.37 0.07

UR1000 12 2.29 0.60 0.09

GTSP — 7 19.30 0.09 0.07

Table 1: Results for several sets of benchmark instances.

encouraging for the GRP and RPP instances. On the other hand, the gaps
for the GTSP instances are large. Moreover, it is disappointing that our
version of the heuristic gave no improvement in the upper bounds. Closer
inspection of the problem data revealed that, for all instances, the transfor-
mation from G to G′ had already been applied. This meant that F ′ was
equal to F for all instances.

After contacting several authors directly, we managed to find three sets
of “raw”, untransformed instances:

• 2 manually constructed RPP instances based on the road network of
Albaida, a municipality of Valencia, Spain [9].

• 20 STSP instances created using the procedure in [32], which produces
random planar graphs that resemble road networks. The procedure
takes two parameters: the number of nodes (|V |) and the probability
that a node is required (p). Further details can be found in [25,32].

• 10 additional real-world STSP instances created by Interian & Ribeiro
[25], based on road and telecommunications networks.

Table 2 shows the results for the two RPP instances. For each instance,
we show the number of vertices, the number of edges, the number of required
edges, and the number of vertices incident on at least one required edge. We
also show the following for each of the two heuristics: the gap between the
upper bound and the optimum, expressed as a percentage of the optimum,
and the running time, in seconds. It is apparent that these instances are
very easy for both heuristics.

Table 3 shows the results that we obtained for the first set of STSP
instances. For each instance, we show the probability p, the number of
vertices, the number of edges and the number of required vertices, along
with the percentage gaps and times, as before. The last column, labelled
“%impr”, shows the percentage gap improvement gained by using the new
heuristic. It is computed as (UB1-UB2)/(UB1-OPT) × 100%, where UB1
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C-heuristic New heuristic

|V | |E| |ER|
∣∣V +

R

∣∣ %gap time %gap time

116 174 100 103 0.00 0.48 0.00 0.05
116 174 88 90 0.00 0.13 0.00 0.09

Table 2: Results for 2 RPP instances from [9].

C-heuristic New heuristic

p |V | |E| |VR| %gap time %gap time %impr

50 69 16 14.07 0.07 14.07 0.06 —
75 105 25 12.89 0.06 10.96 0.05 14.95
100 139 33 15.23 0.09 12.40 0.06 18.57
125 179 41 17.06 0.09 16.01 0.06 6.15

1/3 150 215 50 11.58 0.11 10.32 0.05 10.94
175 252 58 10.46 0.10 9.67 0.06 7.52
200 291 66 11.20 0.11 10.73 0.10 4.14
225 326 75 12.13 0.18 8.50 0.07 29.94
250 367 83 18.96 0.16 17.42 0.07 8.16
300 440 100 14.67 0.19 13.93 0.08 4.18

50 69 33 14.42 0.08 11.66 0.05 19.15
75 105 50 14.38 0.07 14.38 0.05 —
100 139 66 19.78 0.09 19.70 0.05 0.42
125 179 83 16.74 0.10 16.74 0.13 —

2/3 150 215 100 13.98 0.12 13.98 0.06 —
175 252 116 14.95 0.18 14.83 0.08 0.81
200 291 133 12.79 0.23 11.60 0.11 9.32
225 326 150 14.62 0.27 14.52 0.11 0.72
250 367 166 17.10 0.31 16.95 0.12 0.88
300 440 200 17.15 0.57 16.49 0.17 3.84

Table 3: Results for 20 STSP instances from [25,32].

and UB2 are the upper bounds from the old and new heuristics, respectively,
and OPT is the optimal value. The improvement is significant, especially
on the instances with p = 1/3.

Table 4 gives some additional details for the 20 STSP instances. For
each instance, we show the probability (p), the number of vertices (|V |), the
number of edges in the spanning tree in the shrunk graph (|F |), the number
of edges in G that correspond to the edges in the spanning tree (|F ′|), and
the number of those edges that remain after sparsification (|F−|). We also
show the number of additional edges in G that come from the T-join, for the
C-heuristic (|J |) and the new heuristic (|J ′|). The benefit of sparsification
is apparent.

Finally, Table 5 shows the results for the 10 larger STSP instances from
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Edges from tree Edges from T -join

p |V | |F | |F ′| |F−| |J | |J ′|

50 15 22 22 12 12
75 24 44 42 16 14
100 32 56 53 25 24
125 40 74 71 30 31

1/3 150 49 83 78 30 31
175 57 103 99 29 31
200 65 117 109 37 42
225 74 135 124 44 44
250 82 148 140 48 51
300 99 182 172 58 62

50 32 47 44 16 16
75 49 59 59 24 26
100 65 78 76 29 29
125 82 98 98 37 38

2/3 150 99 122 119 46 43
175 115 138 135 48 47
200 132 170 163 62 64
225 149 180 177 75 73
250 165 195 194 78 77
300 199 230 226 90 84

Table 4: Additional details for the 20 STSP instances from [25,32].
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C-heuristic New heuristic

|V | |E| |VR| %gap time %gap time %impr

58 13.20 0.65 4.40 0.11 66.69
1174 1417 117 12.09 0.73 5.40 0.17 55.30

176 9.60 0.82 5.93 0.28 38.25
234 11.34 1.03 6.08 0.30 46.41

105 6.10 2.49 2.21 0.43 22.83
2113 6632 211 6.70 2.93 1.92 0.70 16.68

316 5.35 4.23 2.43 0.82 17.91

167 12.98 5.91 10.02 0.49 63.70
3353 8870 335 11.34 8.19 9.45 0.83 71.29

502 13.67 11.39 11.22 1.23 54.66

Table 5: Results for 10 larger STSP instances from [25].

|V | 100 200 500 1000
Length 269.9 396.0 645.0 932.7

|V | 2000 5000 10000 20000
Length 1323.0 2165.9 3096.5 4366.2

Table 6: Computation of initial squares.

[25]. For these instances, the new heuristic gives significantly better upper
bounds than the C-heuristic. Moreover, the new heuristic is more than seven
times faster on average.

4.2 New test instances

Since we found few suitable GRP and RPP instances in the literature, we cre-
ated some of our own. Our instances have |V | ∈ {100, 200, 500, 1000, 2000,
5000, 10000, 20000}, and they are based on real road network data for the
city of London, extracted using OpenStreetMap [34]. For each desired value
of |V |, we computed the smallest square, centred on Mayfair, that contain
the given number of nodes. Table 6 shows the length of the eight resulting
squares, in metres.

For each of the eight squares, we created an undirected graph G as
follows. We set E to the set of all street segments for which both end-nodes
lay in the square. The cost of each edge e ∈ E was set to the length of the
corresponding road, rounded to the nearest metre. We assume for simplicity
that all streets are two-way streets.

For each of the eight resulting graphs, we created three GRP instances,
by making each node and edge required with probability p, where p ∈
{0.25, 0.5, 0.75}. Some relevant statistics for the resulting GRP instances
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|V | |E| p |VR|
∣∣V +

R

∣∣ |ER| κ

0.25 14 59 29 30
100 124 0.50 10 88 68 23

0.75 3 97 90 13

0.25 30 123 61 62
200 252 0.50 17 185 144 46

0.75 13 193 187 20

0.25 63 324 162 162
500 656 0.50 47 456 346 118

0.75 21 494 479 51

0.25 134 639 328 312
1000 1326 0.50 99 908 684 240

0.75 48 978 969 93

0.25 237 1290 676 619
2000 2627 0.50 217 1805 1329 507

0.75 111 1969 1953 210

0.25 613 3280 1719 1567
5000 6525 0.50 518 4514 3289 1287

0.75 287 4921 4927 471

0.25 1230 6339 3273 3077
10000 12798 0.50 1051 8899 6436 2575

0.75 538 9823 9618 971

0.25 1235 11697 6724 4998
20000 26749 0.50 1031 16989 13259 4050

0.75 443 19179 20019 1154

Table 7: Statistics for the new GRP instances.

can be found in Table 7. We also created 24 RPP instances, simply by tak-
ing the GRP instances and setting VR = ∅. The data for each instance is
made available at the Lancaster University Data Repository 1.

Before running the heuristics, we attempted to find the optimal solution
values for the new instances. To do that, we converted all instances into
standard TSP instances, using a transformation similar to the one described
in [29]. We then fed the resulting TSP instances into CONCORDE, the leading
open-source exact TSP solver [2]. We set a time limit of one day per instance.
We found that CONCORDE was able to solve 13 GRP instances and 13 RPP
instances within the time limit. For the remaining instances, we ran into
serious time and/or memory problems. Table 8 shows the optimal values
for the instances that CONCORDE was able to solve.

1http://www.research.lancs.ac.uk/portal/en/datasets/search.html
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|V | p GRP RPP

0.25 4360 3678
100 0.50 6476 5746

0.75 6937 6815

0.25 9407 7605
200 0.50 13116 12063

0.75 14494 13512

0.25 22929 19844
500 0.50 31825 28746

0.75 37051 35785

0.25 42735 36260
1000 0.50 60816 55278

0.75 73647 71164

2000 0.25 90857 76726

Table 8: Optimal values for some of the new GRP and RPP instances.

4.3 Results for new GRP instances

The next step was to run both heuristics on the 24 new GRP instances. Table
9 shows the results. For each instance, we show the number of nodes |V |
and the probability p. Also, for each instance and each of the two heuristics,
we show the upper bound (“UB”), the gap between the upper bound and
the optimum, expressed as a percentage of the optimum (“%gap”), and the
running time, in seconds. We set a time limit of 24 hours for each run. A
dash indicates either that the run did not terminate within the time limit,
or ran into memory problems.

For the 13 instances that CONCORDE was able to solve within the time
limit, the average percentage gap was 2.94% for the C-heuristic and 2.75%
for our heuristic. Looking at the 21 instances for which the C-heuristic
terminated within the time limit, the new heuristic found a better upper
bound than the C-heuristic for 13 instances, the same bound for 7 instances,
and a worse bound for 1. (It appears that the instance with |V | = 5000 and
p = 0.5 does not satisfy the conditions in Proposition 2.)

Note that the percentage gap decreases dramatically as p increases. A
likely explanation for this phenomenon is that the cost of servicing the re-
quired edges is effectively a “fixed cost”. As p increases, this “fixed cost”
makes up a larger proportion of both “Opt” and “UB”. (Indeed, when
p = 1, the GRP reduces to a CPP, and both heuristics will yield the optimal
solution.)

In terms of running time, we see that the C-heuristic takes several hours
for some instances with |V | = 10000. The new heuristic, on the other hand,
takes just a few seconds on all instances but the largest. For |V | ≥ 1000,
our heuristic is several orders of magnitude faster than the C-heuristic.
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C-heuristic New heuristic

|V | p UB %gap time UB %gap time %impr

0.25 4536 4.04 0.09 4472 2.57 0.04 36.36
100 0.50 6580 1.61 0.14 6580 1.61 0.04 —

0.75 6937 0.00 0.14 6937 0.00 0.04 —

0.25 9934 5.60 0.19 9930 5.56 0.05 0.76
200 0.50 13315 1.52 0.31 13315 1.52 0.05 —

0.75 14494 0.00 0.29 14494 0.00 0.06 —

0.25 24729 7.85 1.54 24639 7.46 0.12 5.00
500 0.50 32572 2.35 3.75 32543 2.26 0.11 3.88

0.75 37210 0.43 4.22 37210 0.43 0.09 —

0.25 45489 6.44 10.21 45365 6.15 0.36 4.50
1000 0.50 61888 1.76 31.36 61876 1.74 0.28 1.12

0.75 73911 0.36 41.86 73910 0.36 0.19 0.38

0.25 96605 6.33 102.33 96411 6.11 0.91 3.38
2000 0.50 127021 — 302.56 126925 — 0.69 —

0.75 151038 — 385.08 151027 — 0.45 —

0.25 254675 — 1896.34 253351 — 5.70 —
5000 0.50 328744 — 6061.84 328784 — 4.58 —

0.75 394331 — 6559.32 394331 — 1.96 —

0.25 515965 — 16667.58 513817 — 14.84 —
10000 0.50 663559 — 50611.01 663318 — 11.33 —

0.75 798603 — 71370.72 798539 — 4.41 —

0.25 — — — 1317827 — 66.60 —
20000 0.50 — — — 1795515 — 51.83 —

0.75 — — — 2220663 — 20.68 —

Table 9: Results for new GRP instances.
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C-heuristic New heuristic

|V | p UB %gap time UB %gap time %impr

0.25 3696 0.49 0.08 3696 0.49 0.04 —
100 0.50 5850 1.81 0.10 5850 1.81 0.04 —

0.75 6815 0.00 0.10 6815 0.00 0.04 —

0.25 8380 10.19 0.11 8380 10.19 0.04 —
200 0.50 12263 1.66 0.23 12263 1.66 0.04 —

0.75 13512 0.00 0.33 13512 0.00 0.04 —

0.25 21553 8.61 0.93 21423 7.96 0.09 7.61
500 0.50 29392 2.25 2.49 29385 2.22 0.07 1.08

0.75 35985 0.56 3.59 35985 0.56 0.06 —

0.25 38963 7.45 4.77 38904 7.29 0.20 2.18
1000 0.50 56267 1.79 21.93 56267 1.79 0.17 —

0.75 71318 0.22 33.63 71317 0.21 0.11 0.65

0.25 82040 6.93 51.64 81900 6.74 0.51 2.63
2000 0.50 112665 — 193.36 112665 — 0.46 —

0.75 143960 — 317.16 143960 — 0.28 —

0.25 218046 — 976.69 217281 — 3.15 —
5000 0.50 297873 — 3486.04 297616 — 2.37 —

0.75 374044 — 5982.47 374044 — 0.91 —

0.25 437382 — 9409.54 435771 — 7.98 —
10000 0.50 598008 — 33867.66 597815 — 6.04 —

0.75 759760 — 62245.68 759696 — 2.04 —

0.25 1221458 — 77533.41 1218154 — 59.73 —
20000 0.50 — — — 1711591 — 59.96 —

0.75 — — — 2175634 — 19.09 —

Table 10: Results for new RPP instances.

4.4 Results for new RPP instances

Table 10 presents the results for the 24 new RPP instances. The table has
an identical format to Table 10.

The results here are similar to what we saw in the case of the GRP.
For the 13 instances that CONCORDE was able to solve within the time limit,
the average percentage gap was 3.23% for the C-heuristic and 3.15% for our
heuristic. Looking at the 22 instances for which the C-heuristic terminated
within the time limit, the new heuristic found a better upper for 11 instances
and the same bound for 11 instances.

As before, the percentage gap decreases dramatically as p increases, and
our heuristic is several orders of magnitude faster than the C-heuristic for
|V | ≥ 1000.
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5 Concluding Remarks

The GRP is a classic problem in combinatorial optimisation. We have taken
an existing constructive heuristic for the GRP and improved it in terms
of both solution quality and running time. Although the improvement in
quality is modest in most cases, the improvement in time is dramatic, even
amounting to four orders of magnitude in some cases. The improved heuris-
tic works particular well on GRP instances involving road networks.

One obvious potential topic for future research is to improve the heuristic
further. We have one suggestion in that regard. A key step in our version of
the heuristic is the “sparsification” phase, in which we compute a minimum
spanning tree in a suitable shrunk graph. It would be interesting to compute
several different spanning trees, rather than just one. This would enable us
to generate several heuristic solutions, and then pick the best. Of course,
this would come at the cost of increased running time, since several T -join
problems would need to be solved.

Acknowledgement: We thank Ángel Corberán for helping us locate some
of the benchmark instances. The second author gratefully acknowledges
financial support from the EPSRC through the STOR-i Centre for Doctoral
Training under grant EP/L015692/1.
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[11] G. Cornuéjols, J. Fonlupt & D. Naddef (1985) The travelling salesman
problem on a graph and some related integer polyhedra. Math. Pro-
gram., 33, 1–27.

[12] J. Edmonds (1965) Maximum matching and a polyhedron with (0,1)
vertices. J. Res. Nat. Bur. Stand., B69, 125–130.

[13] J. Edmonds & E.L. Johnson (1973) Matchings, Euler tours and the
Chinese postman problem. Math. Program., 5, 88–124.

[14] E. Fernández, O. Meza, R. Garfinkel & M. Ortega (2003) On the undi-
rected rural postman problem: Tight bounds based on a new formula-
tion. Oper. Res., 51, 281–291.

[15] B. Fleischmann (1985) A cutting plane procedure for the traveling sales-
man problem on a road network. Eur. J. Oper. Res., 21, 307–317.

[16] G.N. Frederickson (1979) Approximation algorithms for some postman
problems. J. of the ACM, 26, 538–54.

[17] M.L. Fredman & R.E. Tarjan (1987) Fibonacci heaps and their uses in
improved network optimization algorithms. J. of the ACM, 34, 596–615.

[18] H.N. Gabow (2018) Data structures for weighted matching and exten-
sions to b-matching and f-factors. ACM Trans. Alg., 14, 1–80.
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