
Algorithmic Developments in

Two-Stage Robust

Scheduling

Matthew Bold, B.Sc.(Hons.), M.Res

Submitted for the degree of Doctor of

Philosophy at Lancaster University.

June 2022

Abstract

This thesis considers the modelling and solving of a range of scheduling problems,

with a particular focus on the use of robust optimisation for scheduling in two-stage

decision-making contexts.

One key contribution of this thesis is the development of a new compact robust

counterpart for the resource-constrained project scheduling problem with uncer-

tain activity durations. Resource con�icts must be resolved under the assumption

of budgeted uncertainty, but start times can be determined once the activity du-

rations become known. This formulation is also applied to the multi-mode version

of this problem. In both cases, computational results show the clear dominance of

the new formulation over the prior decomposition-based state-of-the-art methods.

This thesis also demonstrates the �rst application of the recoverable robust

framework to single machine scheduling. Two variants of this problem are consid-

ered, in which a �rst-stage schedule is constructed subject to uncertain job pro-

cessing times, but can be amended in some limited way following the realisation

of these processing times. The �rst of these problems is considered under general

polyhedral uncertainty. Key results concerning the second-stage subproblem are

derived, resulting in three formulations to the full problem which are compared

computationally. The second of these problems considers interval uncertainty but

I

II Abstract

allows for a more general recovery action. A 2-approximation is derived and the

performance of a proposed greedy algorithm is examined in a series of computa-

tional experiments.

In addition to these results on two-stage robust scheduling problems, a new

deterministic resource-constrained project scheduling model is developed which,

for the �rst time, combines both generalised precedence constraints and �exible

resource allocation. This model is introduced speci�cally for the application of

scheduling the decommissioning of the Sella�eld nuclear site. A genetic algorithm

is proposed to solve this model, and its performance is compared against a mixed-

integer programming formulation.

Acknowledgements

First and foremost, I would like to thank my supervisors, Marc Goerigk, Burak

Boyaci and Chris Kirkbride. I certainly wouldn't be here without their patience,

encouragement, enthusiasm and good ideas. They have taught me a huge amount

and I will greatly miss working with them.

Thank you also to Panos Frangos, Andrew MacPherson and Steve Hastewell

from Sella�eld Ltd for being so generous with their time and their feedback, as

well as for their exhaustive data collection e�orts throughout the project.

I feel particularly lucky to have been a part of the STOR-i Centre for Doctoral

training. Big thanks to the people that have helped to run STOR-i (Jon, Kevin,

Idris, Jen, Wendy, Kim, Nicky, Oli, Dan, Georgie), and cheers to all of the other

wonderful students of STOR-i for making it such a fun and memorable few years.

I am, of course, also thankful to the EPSRC for funding my time at STOR-i.

Big love to Tom, Alan and Mirjam. Thanks for all the great times together at

110 Bowerham Road. Huge thanks also goes to Em, for her words of wisdom and

encouragement and for so many moments of joy. Finally, I would like to thank

Mum and Dad and the rest of my family for their endless support, interest and

pride. It means a lot.

III

Declaration

I declare that the work in this thesis has been done by myself in collaboration with

my supervisors, and has not been submitted elsewhere for the award of any other

degree.

The contents of Chapter 5 has been published as Bold, M. and Goerigk, M.

(2021). A compact reformulation of the two-stage robust resource-constrained

project scheduling problem.Computers & Operations Research, 130:105232.

The contents of Chapter 6 has been submitted for publication as Bold, M.,

Goerigk, M. (2022). A faster exact method for solving the robust multi-mode

resource-constrained project scheduling problem.

The contents of Chapter 7 has been submitted for publication as Bold, M., Go-

erigk, M. (2022). Recoverable Robust Single Machine Scheduling with Polyhedral

Uncertainty. (We note that this work is awaiting feedback from theJournal of

Schedulingfollowing revisions made in response to a �rst set of reviews.)

The contents of Chapter 8 has been published as Bold, M. and Goerigk, M.

(2022). Investigating the recoverable robust single machine scheduling problem

under interval uncertainty. Discrete Applied Mathematics, 313:99-114.

Matthew Bold

IV

Contents

Abstract I

Acknowledgements III

Declaration IV

Contents IX

List of Figures XVI

List of Tables XVIII

1 Introduction 1

2 Deterministic Resource-Constrained Project Scheduling 7

2.1 The RCPSP . 8

2.1.1 Mixed-integer linear programming formulations 10

2.1.2 Heuristic approaches . 14

2.2 The GRCPSP . 18

2.3 The FRCPSP . 22

2.4 The MRCPSP . 25

3 Robust Optimisation 27

V

VI Contents

3.1 Background and motivation . 27

3.2 Single-stage robust optimisation . 30

3.2.1 Common uncertainty sets 32

3.3 Two-stage Robust Optimisation . 36

3.3.1 Adjustable robustness . 36

3.3.2 Recoverable robustness . 39

3.3.3 K -adaptability . 40

4 The Generalised Flexible Resource-Constrained Project Schedul-

ing Problem 43

4.1 Introduction . 43

4.2 Problem description . 46

4.2.1 Precedence constraints . 46

4.2.2 Resource constraints . 49

4.3 Mixed-integer programming formulation 51

4.4 Metaheuristic algorithm . 56

4.4.1 A �exible schedule generation scheme 56

4.4.2 Genetic algorithm . 65

4.5 Computational study . 66

4.5.1 Test instances . 68

4.5.2 Computational results . 69

4.6 Case Study: The Sella�eld nuclear decommissioning project 74

4.6.1 Modelling the decommissioning problem 75

4.6.2 Results . 79

4.7 Conclusion . 80

Contents VII

5 A Compact Reformulation of the Two-Stage Robust Resource-

Constrained Project Scheduling Problem 82

5.1 Introduction . 82

5.2 The two-stage robust RCPSP . 86

5.3 A compact reformulation . 89

5.3.1 The adversarial sub-problem 90

5.3.2 Compact reformulation . 98

5.4 Computational experiments . 101

5.4.1 Instances . 101

5.4.2 Implementations . 102

5.4.3 Results . 105

5.5 Conclusion . 111

6 A Faster Exact Method for Solving the Robust Multi-Mode Resource-

Constrained Project Scheduling Problem 113

6.1 Introduction . 113

6.2 Problem description . 115

6.3 A compact formulation . 119

6.4 A Benders' decomposition approach 122

6.4.1 The master problem . 123

6.4.2 The subproblem . 124

6.4.3 Optimality cuts . 125

6.4.4 Example . 127

6.5 Computational experiments and results 128

6.6 Conclusions . 133

VIII Contents

7 Recoverable Robust Single Machine Scheduling with Polyhedral

Uncertainty 135

7.1 Introduction . 135

7.2 Problem de�nition . 140

7.3 A general model for recoverable robustness 145

7.4 Complexity of subproblems and compact formulations 149

7.4.1 Matching-based formulation 149

7.4.2 Assignment-based formulation 156

7.5 Comparison of formulations . 159

7.6 Computational experiments . 162

7.6.1 Heuristics . 163

7.6.2 Exact models . 164

7.6.3 Model parameters . 170

7.7 Conclusions . 171

8 Investigating the Recoverable Robust Single Machine Scheduling

Problem Under Interval Uncertainty 173

8.1 Introduction . 173

8.2 Problem properties . 179

8.3 A 2-approximation algorithm . 183

8.4 Computational experiments . 197

8.4.1 MIP . 198

8.4.2 UB-SMSP . 202

8.4.3 Greedy heuristic . 205

8.5 Conclusions . 207

Contents IX

9 Conclusions 209

A GFRCPSP Pre-processing Procedure 214

B Supplementary Material for Chapter 5 216

B.1 Non-integrality of the adversarial sub-problem 216

B.2 Example of the warm-start procedure 218

C Supplementary Material for Chapter 7 220

C.1 Omitted proofs . 220

C.1.1 Proof of Theorem 7.6 . 220

C.1.2 Proof of Theorem 7.8 . 223

C.2 Complete formulations . 225

C.2.1 General model . 225

C.2.2 Matching-based model . 227

C.2.3 Assignment-based model . 228

Bibliography 230

List of Figures

2.1 An example RCPSP instance involving seven non-dummy activities

and a single renewable resource withR1 = 6. 9

2.2 An optimal solution to the RCPSP instance shown in Figure 2.1. . . 9

2.3 Resource �ow corresponding to the optimal solution given in Figure

2.2. The su�cient selection given by the dashed arcs, and �ow of

resource is shown by the arcs in red. 13

2.4 Example of the two-point crossover �rst proposed by Hartmann

(1998). 17

2.5 An example GRCPSP instance involving the same seven non-dummy

activities as the RCPSP instance in Figure 2.1, and one renewable

resource withR1 = 6. 20

2.6 An optimal solution to the GRCPSP instance given in Figure 2.5. . 21

2.7 An example FRCPSP involving seven non-dummy activities and

one renewable resource withR1 = 6. The minimum block length is 2. 23

2.8 An optimal solution to the FRCPSP instance given in Figure 2.7,

assuming a minimum block length of 2. 23

X

List of Figures XI

2.9 An example MRCPSP involving seven non-dummy activities and

one renewable resource withR1 = 6. The �rst modes for each

activity corresponds to the data for the RCPSP instance given in

Figure 2.1. 26

2.10 An optimal solution to the MRCPSP instance given in Figure 2.9.

The activity mode choices are written in brackets. 26

3.1 Common types of uncertainty set. 33

4.1 An example GFRCPSP instance with �ve non-dummy activities and

a single resourcer � , with availability Rmax
r � = 6. For each activity i 2

V, the total principal resource requirementwi , and upper and lower

bounds on its per-period allocationq
r � i

, qr � i , are shown. Minimal

time-lags are shown next to each arc in the network. 48

4.2 An optimal solution to the GFRCPSP instance shown in Figure 4.1. 51

4.3 Schedule to the GFRCPSP instance shown in Figure 4.1 gener-

ated by Algorithm 3.1 with the input parameters � = (2 ; 1; 3; 5; 4),

� = (0 ; 0; 0; 0; 1), and � = (0 ; 0; 0; 0; 1). This schedule violates a

maximum time-lag between the �nish of activity 2 and the start of

activity 4. 63

4.4 Schedule produced by applying the unscheduling step in Algorithm

3.2 to the schedule shown in Figure 4.3. 64

XII List of Figures

4.5 Left-most plots show average percentage gap to best known solution

for each heuristic algorithm, as a function of the number of schedules

searched. Middle plots show the number of instances for which

each heuristic algorithm �nds the best solution, as a function of the

number of schedules searched. Right-most plots show performance

pro�le of each algorithm. 71

4.6 The construction and decommissioning stages of a facility on the

Sella�eld site. Note that, whilst not every facility must complete

all of these stages, the stages that a facility does need to complete

must be executed in the order dictated by this �gure. 76

4.7 The largest connected component of the precedence network of the

Sella�eld decommissioning project. Each separate decommissioning

activity has a start and �nish node contained in a box coloured ac-

cording to the colours shown in Figure 4.6. The activities associated

with a single building follow the decommissioning order shown in

Figure 4.6, and are shown on the same rank within a larger box.

Note that time-lags are not shown on this network diagram. 77

4.8 Best found makespan for each metaheuristic algorithm, as a function

of time (in seconds). Each algorithm was used to generate 50,000

schedules. 79

5.1 Example project involving seven non-dummy activities and a single

resource withR1 = 5. 87

5.2 An extension of the example project shown in Figure 5.1, corre-

sponding to the su�cient selection given by the dashed arcs. 89

List of Figures XIII

5.3 Counter-example showing that model (5.13)-(5.22) is not equivalent

to its linear relaxation. 93

5.4 Example augmented graph for a project with four non-dummy ac-

tivities, and where up to � = 2 activities can reach their worst-case

durations. 96

5.5 Performance pro�le of relative solution times. 106

5.6 Cumulative percentage of instances solved to within given gap of

optimality within time-limit. 107

6.1 An example instance involving �ve non-dummy activities and a sin-

gle renewable resource with availabilityR1 = 4. Activities 2 and 5

each have two available processing modes, whilst the other activities

have only a single mode. 116

6.2 Optimal solution to the example instance in Figure 6.1. Activity

mode choices are highlighted in bold and the su�cient selection is

given by dashed arcf (3; 2)g. 118

6.3 Worst-case schedule corresponding to optimal robust solution in

Figure 6.2, where activities 1 and 3 have been delayed. 119

6.4 Comparison of the Benders' approaches and compact formulation

over instances in thej 10 set. 131

6.5 Comparison of the Benders' approaches and compact formulation

over instances in thej 20 set. 132

XIV List of Figures

7.1 An example �rst and second-stage solution. The �rst-stage assign-

ment is given by the solid arcs oriented towards the right, and corre-

sponds to the schedule (1,2,4,5,3). The second-stage assignment is

given by the dashed arcs oriented towards the left, and corresponds

to the schedule (1,4,2,3,5). There are two 4-cycles corresponding

to the switching of positions of jobs 2 and 4, and 3 and 5. Hence

d(x ; y) = 2 . 143

7.2 An example of a 1/2-fractional cycle involvingq = 5 nodes. Up and

down arrows indicate increasing and decreasing edges respectively.

It is optimal to replace the two consecutive decreasing edges(3; 4)

and (4; 5) with the dashed edge(3; 5), i.e. w35 > w 34 + w45. 153

7.3 Cumulative percentage of instances solved to within a given gap of

the best known solution. 164

7.4 Performance pro�les of relative solution times for di�erent instance

sizes. 169

8.1 An example instance of (RecSMSP) involving four jobs. First-stage

processing times are shown in the top row and second-stage process-

ing times are shown in the bottom row. An edge between �rst-stage

node and second-stage node indicates that these processing times

belong to a single job. 185

8.2 Uncrossed and crossed instances. 186

8.3 Examples showing the constructed instances forn = 4 and n = 5. . 193

List of Figures XV

8.4 The upper bound on the approximation ratio of (UB-SMSP), as

proved in Theorem 8.4, is shown in blue. A lower bound on the

approximation ratio as a function of� =n, computed using a fully-

crossed 0-1 instance withn = 100 is shown in orange. The lower

bound as a function of� =n for fully-crossed 0-1 instances asn ! 1

is shown in red. 194

8.5 Optimal solution for a fully-crossed 0-1 instance wheren = 7 and

� = 3 . The bn� �
2 c = 2 available swaps are applied to the outer-

most jobs. This structure is shared by the optimal solutions to all

fully-crossed 0-1 instances. 196

8.6 Average time to solve the MIP for even and odd values of� as

a percentage ofn, for n 2 f 10; 20; 50; 100g. Line becomes dotted

when not all instances were solved to optimality within the 1200s

(20 minute) time limit. 200

8.7 Average LP gap for even and odd values of� as a percentage ofn, for

n 2 f 10; 20; 50; 100g. Line becomes dotted when not all instances

were solved to optimality within the 20 minute time limit. 202

8.8 Percentage of instances for which the LP gap is non-zero, for even

and odd values of� as a percentage ofn, for n 2 f 10; 20; 50; 100g. . 203

8.9 Solutions to instance shown in Figure 8.3a, found by MIP and its

linear relaxation for � = 1 and � = 2 204

8.10 Solutions to instance shown in Figure 8.3a, found by MIP and its

linear relaxation for � = 3 and � = 4 204

XVI List of Figures

8.11 Average gap between solution to (UB-SMSP) and the solution to

(RecSMSP) for values of� as a percentage ofn, for n 2 f 10; 20; 50; 100g.

Line becomes dotted for the range of� values for which not all in-

stances were solved to optimality by the MIP within its 20 minute

time limit for the odd values of � within this range. 205

8.12 Average greedy heuristic run time for values of� as a percentage

of n, for n 2 f 10; 20; 50; 100g. 206

8.13 Average gap between greedy and MIP solution for values of� as a

percentage ofn, for n 2 f 10; 20; 50; 100g, plotted as a dotted line.

Odd-� data points are connected with a solid line. 207

B.1 Earliest start times and latest �nish times for the deterministic

project corresponding to the example project shown in Figure 5.1.

Latest start times have been calculated relative to an arbitrary up-

per bound on the minimum project makespan given byTmax = 20. . 219

List of Tables

4.1 Summary of notation. 52

4.2 Decision variables used in formulation (4.1)-(4.29). 53

4.3 Number of instances for which a feasible solution was found. 69

4.4 Average percentage gap to the critical path-based lower bound of

solutions found by the MIP and FUGA. These values are denoted

by � MIP
lb and � F UGA

lb , respectively. 72

4.5 Average time to generate 1000 schedules in seconds. 73

5.1 Comparison of the variants of model (5.34)-(5.44) for di�erent values

of � . 108

5.2 Comparison of primal method (Bruni et al., 2018), basic model (5.34)-

(5.44), and extended model including warm-start and transitivity con-

straints. 110

6.1 Solution information at each of the six iterations of the Benders'

algorithm required to solve example instance in Figure 6.1. 127

6.2 Average optimal objective values across instances in thej 10and j 20

instance sets for di�erent values of� 129

XVII

XVIII List of Tables

6.3 Comparison of the Benders' decomposition approach and the com-

pact reformulation across thej 10 and j 20 instance sets and for

di�erent values of � . 130

7.1 Comparison of the three exact models proposed in this paper and

their warm-start variants, for di�erent values of � 167

7.2 Comparison of the three exact models proposed in this paper and

their warm-start variants, for di�erent values of � 168

7.3 The e�ects of increasing� on the average objective value of the best

known solution. 170

7.4 The e�ects of increasing� on the average objective value of the

best known solution. 170

8.1 Example problem data. Columns ofM = f 3; 4g are in bold. 180

8.2 Right-hand side of constraint (y) for eachj 2 N when n = 6. 192

8.3 Number of instances withn = 100 for which the MIP could not be

solved to optimality within 20 minutes, for di�erent values of � . All

instances were solved to optimality for the values of� not present

in the table. 199

8.4 Largest LP gap for a single even-� instance and odd-� instance for

each of the instance sets. 201

B.1 The set of feasibley-variables corresponding to the solution found

by the LFT priority-rule heuristic for the example project in Figure

B.1. The ij -th element of this table gives the value of variableyij . . 219

For Grandad

Chapter 1

Introduction

Scheduling has been one of the most active areas of operational research since

the mid-1950s, and continues to be very well-studied to this day. This comes

as no surprise given the broad range of �elds for which scheduling is of critical

importance, including construction, engineering, manufacturing, transportation,

and computer science, to name just a few. Indeed, it is estimated that in 2020,

Advanced Planning and Scheduling (APS) software had a total global market value

of $1.5 billion1.

The work in this thesis contributes to this active area of research by develop-

ing and analysing a set of novel models and algorithms for a number of di�erent

scheduling problems, with a particular focus on the application of robust optimi-

sation to problems with uncertain activity durations. The scheduling problems

considered in this thesis have each, to a greater or lesser extent, been motivated

by the speci�c challenges involved in the scheduling of the decommissioning of the

1https://www.statista.com/statistics/1238886/worldwide-advanced-planning-

scheduling-market/ . Accessed: 29/03/2022

1

2 1. Introduction

Sella�eld nuclear site.

Covering 6 square kilometers on the Cumbrian coast, the Sella�eld site contains

more than 200 legacy nuclear facilities which together, house the world's largest

inventory of untreated nuclear waste. The systematic dismantling of these facilities

and remediation of the site is a vast project, expected to take in excess of 100 years

to complete and cost over ¿90 billion (NDA, 2019). Given its scale and complexity,

it is crucial that this program is scheduled carefully and systematically in a manner

that accounts for all of the features and constraints of the site. In Chapter 4, a

model is speci�cally developed for scheduling the decommissioning of the site.

There exists a large degree of uncertainty surrounding the quantity and con-

dition of much of the waste contained within the oldest facilities on the Sella�eld

site. When it comes to scheduling the decommissioning of the site, this uncer-

tainty primarily manifests itself as durational uncertainty in the decommissioning

activities. Therefore the development of scheduling approaches that are able to

account for this durational uncertainty are of signi�cant interest to Sella�eld. The

later chapters consider a range of scheduling problems, and are linked by their use

of robust optimisation to account for uncertainty in the durations of activities. So

although these later chapters do not directly reference Sella�eld decommissioning,

their shared direction of research have been guided by this particular challenge.

Furthermore, the problems in these chapters also share a two-stage decision frame-

work in which a �rst-stage decision is made under the problem uncertainty, but can

be extended or amended once that uncertainty has been resolved in the second-

stage.

The problems considered in this thesis can also be broadly grouped by the

1. Introduction 3

following two categories: 1.resource-constrained project scheduling problems, and

2. single machine scheduling problems. Resource-constrained project scheduling,

as considered by Chapters 4, 5 and 6, is concerned with the assignment of multiple

types of scarce resource to a set of project activities which are related through

a network of logical precedence relationships. Single machine scheduling, on the

other hand, involves the ordering of a set of jobs on a single machine, with the

aim of optimising some objective. In Chapters 7 and 8 we consider two versions

of this problem with the objective of minimising the sum of job completion times,

subject to uncertainty.

The content and of contributions of each of the chapters of this thesis are

outlined below.

ˆ Chapter 2: Deterministic Resource-Constrained Project Schedul-

ing. This chapter provides an overview of the most relevant existing lit-

erature that relates to the classic model for project scheduling known as

the resource-constrained project scheduling problem (RCPSP). A number of

extensions to this model that are considered in this thesis are also covered.

ˆ Chapter 3: Robust Optimisation. This chapter serves to introduce

the framework of robust optimisation. Particular attention is paid to de-

velopments in two-stage robust combinatorial optimisation with the aim of

providing the necessary context for the work in Chapters 5-8.

ˆ Chapter 4: The Generalised Flexible Resource-Constrained Project

Scheduling Problem. Motivated by the real-world Sella�eld decommis-

sioning problem, this chapter introduces a novel extension to the determinis-

tic RCPSP that includes both generalised precedence constraints and �exible

4 1. Introduction

resource allocation. This new problem is referred to as the generalised �exi-

ble resource-constrained project scheduling problem (GFRCPSP). A mixed-

integer linear programming (MILP) formulation and genetic algorithm are

proposed to solve this problem, and a computational study demonstrates

the e�ectiveness of the genetic algorithm. The newly developed GFRCPSP

scheduling model is used to solve a version of the Sella�eld decommissioning

problem.

A shortened version of this work was presented at the17th International

Workshop on Project Management and Scheduling, 2021.

ˆ Chapter 5: A Compact Reformulation of the Two-Stage Robust

Resource-Constrained Project Scheduling Problem. This chapter

considers the RCPSP with uncertain activity durations. The proposed ap-

proach makes use of a two-stage decision process and assumes that activity

durations lie in a budgeted uncertainty set. A new reformulation of the

second-stage problem is introduced, which enables the derivation of the �rst

compact robust counterpart to the full two-stage adjustable robust optimi-

sation problem. Computational experiments show that this compact for-

mulation can be solved using standard optimisation software signi�cantly

faster than the prior decompostion-based state-of-the-art algorithm for solv-

ing this problem, reaching optimality for almost 50% more instances on the

same benchmark set.

This work has been published as Bold, M. and Goerigk, M. (2021). A

compact reformulation of the two-stage robust resource-constrained project

scheduling problem.Computers & Operations Research, 130:105232.

1. Introduction 5

ˆ Chapter 6: A Faster Exact Method for Solving the Robust Multi-

Mode Resource-Constrained Project Scheduling Problem. The chap-

ter extends the formulation developed in Chapter 5 for application to the

two-stage robust multi-mode resource-constrained project scheduling prob-

lem. Results from this formulation are shown to dominate an improved

version of the prior state-of-the-art method for solving this problem.

This work has been submitted for publication as Bold, M., Goerigk, M.

(2022). A faster exact method for solving the robust multi-mode resource-

constrained project scheduling problem.

ˆ Chapter 7: Recoverable Robust Single Machine Scheduling with

Polyhedral Uncertainty. This chapter considers a recoverable robust sin-

gle machine scheduling problem under general polyhedral uncertainty with

the objective of minimising the total sum of completion times. A speci�c re-

covery framework is considered in which up to� distinct pairs of jobs can be

swapped when amending the �rst-stage schedule. Following its formulation

using a general recoverable robust framework, the structure of this prob-

lem is examined in detail to reveal a positive complexity result for matching

problems with a particular cost structure, resulting in the development of a

further two formulations for this problem. The relative strengths of these

models are compared computationally for the case of budgeted uncertainty.

This work has been submitted for publication as Bold, M., Goerigk, M.

(2022). Recoverable Robust Single Machine Scheduling with Polyhedral Un-

certainty.

6 1. Introduction

ˆ Chapter 8: Investigating the Recoverable Robust Single Machine

Scheduling Problem Under Interval Uncertainty. This chapter also

considers the recoverable robust single machine scheduling problem with the

objective of minimising the total sum of completion times, but does so in

the context of interval uncertainty and a more general recovery action, which

speci�es that at least � jobs share the same position in the �rst and second-

stage schedules. A handful of important special cases of this problem are

shown to be polynomially solvable, before a 2-approximation algorithm is

derived for the full problem. Computational experiments examine the per-

formance of an exact MILP formulation and the approximation algorithm,

and demonstrate the strength of a proposed polynomial-time greedy heuris-

tic.

This work has been published as Bold, M. and Goerigk, M. (2022). In-

vestigating the recoverable robust single machine scheduling problem under

interval uncertainty. Discrete Applied Mathematics, 313:99-114.

ˆ Chapter 9: Conclusions. Concluding remarks are made, and a number

of possible suggestions for building on the work in the thesis are given.

As noted in the summaries above, Chapters 5, 6, 7 and 8 have each been have

been either published or are currently in submission as standalone papers. These

have been included here in their published or submitted form, with only very

minor edits to frame them into the context of the thesis. These chapters can each,

therefore, be read as self-contained pieces of work and as a result, may contain

material that overlaps to some degree with each another and with the literature

reviews presented in Chapters 2 and 3.

Chapter 2

Deterministic Resource-Constrained

Project Scheduling

This chapter surveys the most relevant existing literature regarding the deter-

ministic resource-constrained project scheduling problem (RCPSP), as well as the

extensions and variants of this problem that are also considered in the work of this

thesis.

Before beginning this review, we make note of the numerous survey papers

(Herroelen et al., 1998; Brucker et al., 1999; Kolisch and Padman, 2001; Hart-

mann and Briskorn, 2010, 2022) and books (Demeulemeester and Herroelen, 2006;

Weglarz, 2012; Artigues et al., 2013a; Schwindt et al., 2015) on the RCPSP and

deterministic project scheduling more generally, many of which have aided the

writing of this chapter.

7

8 2. Deterministic Resource-Constrained Project Scheduling

2.1 The RCPSP

Stated brie�y, the RCPSP consists of �nding a feasible project schedule that

minimises the overall project completion time. Given its numerous applications

throughout industry, as well as its theoretical interest, the RCPSP has been one of

the most widely-studied problems in operational research since a model was �rst

proposed by Pritsker et al. (1969).

A project consists of a set of activitiesV = f 0; 1; : : : ; n; n+1g, where 0 andn+1

are dummy activities that represent the start and end of the project, respectively.

Each activity i 2 V has a duration di and a requirementr ik of each resource

type k 2 K . Each resource is assumed to berenewable, meaning there is an

constant availability of Rk in each time period of the project scheduling horizonT.

The project activities are related through a set of strict �nish-to-start precedence

relationships. These can be represented on a directed acyclic graphG = (V; E),

where arcsE capture the relationships between the activitiesV. The activities are

also assumed to benon-preemptive, meaning they must be completed in a single

processing phase. The aim of the RCPSP is to determine a resource and precedence

feasible schedule, i.e. a start time for each activityi 2 V, that minimises the overall

project duration, known as themakespan. An example RCPSP instance is shown

in Figure 2.1 and its optimal solution is given in Figure 2.2.

2. Deterministic Resource-Constrained Project Scheduling 9

Figure 2.1: An example RCPSP instance involving seven non-dummy activities

and a single renewable resource withR1 = 6.

Figure 2.2: An optimal solution to the RCPSP instance shown in Figure 2.1.

Blazewicz et al. (1983) showed that the RCPSP is strongly NP-hard. As a

result, exact mixed-integer programming (MILP) formulations can typically only

be solved for moderately-sized instances. However, its severe complexity is one of

the reasons the RCPSP has garnered so much academic attention, with it having

become a testing ground for many general metaheuristic optimisation approaches.

Before reviewing some of these approaches, we �rst present a couple of MILP

formulations.

10 2. Deterministic Resource-Constrained Project Scheduling

2.1.1 Mixed-integer linear programming formulations

Although there exist many alternative formulations, here we detail only the two

most relevant to our work. The �rst is the original formulation proposed by

Pritsker et al. (1969):

min
X

t2 T

tx n+1 ;t (2.1)

s.t.
X

t2 T

x it = 1 8i 2 V (2.2)

X

t2 T

tx jt �
X

t2 T

tx it + di 8(i; j) 2 E (2.3)

X

i 2 V

tX

� =max f 0;t � di +1 g

r ik x i� � Rk 8k 2 K; t 2 T (2.4)

x it 2 f 0; 1g 8i 2 V; t 2 T; (2.5)

wherex it = 1 if activity i starts in time period t, and x it = 0 otherwise. Observe

that the activity start times are tracked using
P

t2 T tx it for eachi 2 V. Constraints

(2.2) ensure the non-preemption of each activity by allowing allowing only a single

start time for each activity, whilst (2.3) and (2.4) enforce the precedence and

resource constraints respectively.

This model is referred to as adiscrete-time formulation, since it de�nes a set

of binary variables for each period in the time horizon. This discrete-time formu-

lation was re�ned by Christo�des et al. (1987) who strengthened the precedence

constraints (2.3) by `disaggregating' them into separate constraints for each of the

time periods in the project horizon.

Note that the project precedence constraints enforce a time-window of possible

start times for each activity i 2 V, given by f ESi ; : : : ; LSi g, whereESi and LS i

2. Deterministic Resource-Constrained Project Scheduling 11

denote the earliest and latest start times of activityi . These time-windows can

be computed in a simple pre-processing step. By restricting the creation of thex it

variables to only the feasible time-windows of each activity, the number of variables

required by model (2.1-2.5) can be greatly reduced.

Although this discrete-time model generally produces strong LP relaxations,

even when the model variables are pruned using the feasible time-windows of each

activity, this formulation involves a pseudo-polynomial number of variables and

constraints and therefore su�ers particularly poor performance for instances with

long time horizons.

Building on the work of Alvarez-Valdès and Tamarit (1993), Artigues et al.

(2003) proposed an alternative �ow-based continuous-time MILP formulation for

the RCPSP. Their formulation makes use of continuous �ow variablesf ijk to track

the amount of resourcek that is transferred from activity i to activity j on its

route through the network from the dummy source activity 0 to the dummy sink

activity n + 1. Additionally, binary variables x ij indicate whether or not activity

i is processed before activityj , and variablesSi de�ne the activity start times.

Using these variables this �ow-based formulation can be written as

min Sn+1 (2.6)

s.t. x ij = 1 8(i; j) 2 E (2.7)

S0 = 0 (2.8)

Sj � Si + di � M (1 � x ij) 8i; j 2 V (2.9)

f ijk � Nx ij 8i; j 2 V; k 2 K (2.10)

X

j 2 V

f ijk = r ik 8i 2 V; k 2 K (2.11)

12 2. Deterministic Resource-Constrained Project Scheduling

X

i 2 V

f ijk = r jk 8j 2 V; k 2 K (2.12)

f ijk � 0 8i; j; k 2 V (2.13)

x ij 2 f 0; 1g 8i; j 2 V; (2.14)

where r0k = rn+1 ;k = Rk for eachk 2 K , and M and N are constants that are

large enough to trivially satisfy their corresponding constraints when required.

Constraints (2.7) capture the original project precedence constraints. The activity

start times are determined by (2.8) and (2.9), which ensure that the start times

respect the precedences de�ned by thex ij variables. Constraints (2.10-2.12) are

the resource �ow conservation constraints.

The network formed by the �ow of resource from source 0 to sinkn + 1 is an

extension of the original project network. As shown by Bartusch et al. (1988),

the RCPSP can be reduced to determining the optimal set of additional arcs

to include in this extension of the original project network. This observation is

based on the consideration of so-calledforbidden sets. Introduced by Igelmund and

Radermacher (1983a,b), a forbidden setF � V is de�ned to be any set of activities

that are not precedence-related, such that
P

i 2 F r ik > R k for somek 2 K . That is,

a forbidden set is a set of activities that cannot be executed in parallelonly because

they would violate resource constraints. Aminimal forbidden set is a forbidden

set with no subsets that are also forbidden sets. Bartusch et al. (1988) show that

the RCPSP is equivalent to the problem of optimally selecting a setX � V 2 n E

of additional precedence constraints, known as asu�cient selection , such that

G(V; E [X) is acyclic and contains no minimal forbidden sets. In a solution

to formulation (2.6)-(2.14), the x ij variables exactly de�ne a set of additional

2. Deterministic Resource-Constrained Project Scheduling 13

precedence constraintsX which resolve the resource con�icts, and the �ow of

resource, given by thef ijk variables, is directed through the extended network

G(V; E [X). The su�cient selection corresponding to the optimal solution shown

in Figure 2.2 is given byf (2; 4); (4; 6); (6; 7)g. The resulting extended network and

�ow of resource is shown in Figure 2.3.

Figure 2.3: Resource �ow corresponding to the optimal solution given in Figure

2.2. The su�cient selection given by the dashed arcs, and �ow of resource is shown

by the arcs in red.

Unlike the time-based formulation, the �ow-based formulation contains a poly-

nomial number of variables and constraints. However it yields a weak LP relaxation

as a result of its use of Big-M constraints. This formulation is of particular rel-

evance because its separation of the resource allocation and scheduling variables

enables the two-stage scheduling approach that is considered in chapters 5 and 6.

A number of other formulations exist for the RCPSP including, notably, a

set of event-based continuous-time formulations. For an extensive comparison of

MILP formulations for the RCPSP, including the discrete-time and �ow-based

14 2. Deterministic Resource-Constrained Project Scheduling

formulations stated above, see Koné et al. (2011, 2013).

Although we do not cover them in any detail here, we brie�y mention that tai-

lored branch and bound (B&B) approaches are typically able to exploit the prob-

lem structure much more e�ectively than the generic solution approaches used in

o�-the-shelf mathematical solvers. B&B approaches therefore usually obtain bet-

ter computational results than can be achieved by directly passing a full MILP

formulation to one of these solvers. Most early research regarding the RCPSP was

concerned with the development of di�erent branching schemes for the incremental

extension of the solution schedule. One such scheme is based on the removal of

minimal forbidden sets, as described above. The reader is referred to Demeule-

meester and Herroelen (2006) for an extensive review of B&B and lower bounding

procedures for the RCPSP.

2.1.2 Heuristic approaches

Given its complexity, a large proportion of literature relating to the RCPSP is

concerned with the development of scalable heuristic approaches. Here we brie�y

outline some of the key developments in this regard, focusing particularly on the

application of genetic algorithms in preparation of Chapter 4.

Many heuristic scheduling methods are built upon a schedule generation scheme

(SGS). An SGS constructs a feasible schedule from a topologically-ordered (with

respect to the project precedences) list of the project activities (such a list is

referred to as anactivity list). There exist two types of SGS, theserial SGSand

the parallel SGS. The serial SGS iterates through the activity list and schedules

each activity at the earliest precedence and resource feasible time period. On the

2. Deterministic Resource-Constrained Project Scheduling 15

other hand, the parallel SGS iterates through time periods in the project horizon

and schedules as many precedence and resource feasible activities as possible at

each time period, doing so in the order dictated by the activity list.

The simplest type of heuristics for the RCPSP are known as priority-rule heuris-

tics. These algorithms simply specify some rule for generating activity lists and

decodes them using an SGS. Examples of classic priority-rules include shortest

processing time, latest �nish time or most total successors. For an analysis of

priority-rules for scheduling, see Kolisch (1996a,b). The application of a priority-

rule to generate a single schedule is referred to as a single-pass approach. More

commonly however, di�erent activity lists and SGS types are combined repeatedly

to generate many di�erent schedules in a so-called multi-pass approach. Although

priority-rule heuristics are some of the oldest and most basic heuristics for the

RCPSP, their simplicity and computational speed mean that they remain widely

used, and form the basis of many more complex metaheuristic approaches.

Although countless types of metaheuristics have been proposed for solving the

RCPSP including simulated annealing, tabu search, ant colony optimisation and

particle swarm optimisation, among others, here we concentrate exclusively on the

use of genetic algorithms (GA). This is for two reasons. Firstly, GAs are consis-

tently among the most popular and best performing metaheuristic approaches for

the RCPSP, and secondly, a GA is proposed to solve the project scheduling model

developed in Chapter 4. For a thorough review of heuristics and metaheuristics for

the RCPSP, including a number of genetic algorithms, see Kolisch and Hartmann

(1999), Hartmann and Kolisch (2000) and Kolisch and Hartmann (2006).

First proposed by Holland (1975), GAs take their inspiration from the biolog-

16 2. Deterministic Resource-Constrained Project Scheduling

ical process of evolution. They work by strengthening a population of candidate

solutions over a course of generations, with new solutions being created by `breed-

ing' and `mutating' existing solutions using a so-calledcrossover and mutation

operators. The best solutions survive to the next generation and gain the chance

to spread their characteristics further through the population, whilst the weaker

solutions are deleted.

Considering the RCPSP, activity lists provide a very natural encoding on which

a GA can operate. Another encoding frequently used in the literature is therandom

key representation, which assigns a real number between 0 and 1 to each project

activity that determines its priority in the schedule. As mentioned above, many

of the strongest heuristics for solving the RCPSP are GAs. There are too many

papers that propose GAs for the RCPSP to exhaustively list them here, so instead

we only mention the strongest and most notable of these methods.

Hartmann (1998) proposed a GA based on an activity list encoding, and used

the serial SGS to schedule these lists. Their approach employs a so-calledtwo-

point crossover, which has since become a standard feature of GAs for project

scheduling. This works by taking two `parent' solutions, i.e. a `mother' and

`father', and choosing two random crossover points. The child solution inherits

the activity ordering of its father up to the �rst point, the activity ordering of

its mother between the two points, and the ordering of the remaining activities

from its father again after the second point. An example of this crossover is

shown in Figure 2.4. Note that a second child can be generated by switching the

roles of the two parent solutions. In the �rst review of heuristic methods for the

RCPSP given by Hartmann and Kolisch (2000), this GA was the best performing

2. Deterministic Resource-Constrained Project Scheduling 17

algorithm. Alcaraz and Maroto (2001) extended this GA to include an extra gene

which determines whether the serial SGS is used to do forwards or backwards

scheduling. Similarly, Hartmann (2002) strengthened the results from Hartmann

(1998) by including a gene to choose between the use of the serial or the parallel

SGS. Hindi et al. (2002) also proposed a similar GA to Hartmann (1998), but

suggested an alternative strategy for building the initial population of solutions.

Figure 2.4: Example of the two-point crossover �rst proposed by Hartmann (1998).

Valls et al. (2005) demonstrate the e�ectiveness of a forward-backward justi�-

cation technique that involves right-shifting then left-shifting the project activities

to obtain a better schedule. They subsequently employed this technique in a GA

in Valls et al. (2008). Their approach remains among the strongest metaheuristic

approaches for solving the RCPSP. This work inspired a number of other GAs that

also made use of this forward-backward improvement step, including Debels and

Vanhoucke (2007), Wang et al. (2010), Gonçalves et al. (2011) and Zamani (2013).

More recent approaches have tended to combine elements from various di�erent

metaheuristic approaches in so-called hybrid metaheuristics. Particularly e�ective

examples of hybrid GAs include Proon and Jin (2011), who added a local neigh-

18 2. Deterministic Resource-Constrained Project Scheduling

bourhood search to their crossover operator, and Lim et al. (2013), who made use

of a simulated-annealing-type search heuristic. Elsayed et al. (2017) propose an

algorithm which adapts its use of metaheuristic algorithm depending on its perfor-

mance on the instance in question. Pellerin et al. (2020) present a computational

comparison of an extensive list of hybrid metaheuristic approaches for solving the

RCPSP, including those mentioned here.

2.2 The GRCPSP

The basic �nish-to-start precedence relationships in the classic RCPSP limit its

suitability for modelling many real-world scheduling problems that include fea-

tures such as processing time windows, �xed start times, setup times, deadlines

and minimal and maximal overlap of activities. Given the common occurrence of

such constraints, the generalisation of the precedence constraints of the RCPSP

is one of the earliest and most widely-studied extensions of this problem. It is

worth noting that this extension has been referred to under many di�erent names

including the resource-constrained project scheduling problem with time-windows

(Bartusch et al., 1988), the resource-constrained project scheduling problem with

minimum and maximum time-lags (RCPSP/max) (Neumann and Zhan, 1995),

the generalised resource-constrained project scheduling problem (GRCPSP) (De-

meulemeester and Herroelen, 1997) and the resource-constrained project schedul-

ing problem with generalised precedence relations (De Reyck and Herroelen, 1998).

Speci�cally, generalised precedence constraints extend the concept of the basic

�nish-to-start relationship in the standard RCPSP to include start-to-start, start-

to-�nish, �nish-to-start and �nish-to-�nish relationships, as well as minimum and

2. Deterministic Resource-Constrained Project Scheduling 19

maximum time-lags. A minimum time-lag speci�es the minimum number of time

periods that must elapse between the predecessor and successor, whilst a maximum

time-lag speci�es the maximum number of time periods that can elapse between the

predecessor and successor. The four types of precedence relationships can easily be

converted into one another by adjusting the associated time-lag to account for the

required addition or subtraction of the relevant activity durations (see Bartusch

et al. (1988)). Observe also that maximum time-lag constraints can be converted

into negative minimum time-lag constraints. For example consider the constraint

sj � f i + `, that is, a maximum time-lag of length` � 0 from f i to si , wheref i and

sj denote the �nish time of i and the start time of j respectively. This relationship

can be rewritten asf i � sj � `, which exactly de�nes a minimum time-lag of length

� ` going from sj to f i .

Having pre-processed all the precedence constraints into minimum time-lag

start-to-start type, they can be represented on a directed graph as was the case

with the RCPSP. As a result of the maximum time-lags however, this graph may

contain cycles. A positive length cycle corresponds to a logical inconsistency within

the project precedences, e.g. starta beforeb, and start b beforea, and as a result

a GRCPSP instance is feasible with respect to its precedence constraints if and

only if its precedence network contains no cycles of positive length. This can be

checked straightforwardly in O(jV j3) time by implementing the Floyd-Warshall

algorithm to compute a distance matrix containing the longest path between each

pair of project activities.

The presence of these cycles make the GRCPSP especially challenging. In par-

ticular, a feasible solution to a GRCPSP instance exists if and only if a feasible

20 2. Deterministic Resource-Constrained Project Scheduling

solution exists to each of the makespan-constrained RCPSP sub-problems corre-

sponding to the separate cycles in the project network. Hence, just determining

whether or not a feasible solution exists for a given GRCPSP instance is itself an

NP-complete problem (Bartusch et al., 1988).

Figure 2.5 shows an example GRCPSP instance involving the same seven non-

dummy activities as the example RCPSP instance from the previous section. This

instance contains two temporally-feasible cycles3 ! 6 ! 3 and 2 ! 5 ! 7 ! 2.

An optimal solution to this instance is shown in Figure 2.6.

Figure 2.5: An example GRCPSP instance involving the same seven non-dummy

activities as the RCPSP instance in Figure 2.1, and one renewable resource with

R1 = 6.

2. Deterministic Resource-Constrained Project Scheduling 21

Figure 2.6: An optimal solution to the GRCPSP instance given in Figure 2.5.

Bartusch et al. (1988) were the �rst to consider this problem and developed a

B&B algorithm that branches on the introduction of additional precedence con-

straints to break forbidden sets. Subsequently, other B&B algorithms also based

on this idea were also developed by Demeulemeester and Herroelen (1997) and

De Reyck and Herroelen (1998). An alternative time-based B&B approach was

presented by Dorndorf et al. (2000), who used constraint propagation to further

strengthen its performance. Cesta et al. (2002) proposed a constraint satisfaction

procedure that works by incrementally removing resource con�icts from a solution

that is precedence feasible. Bianco and Caramia (2011) presented a transforma-

tion of the generalised precedence constraints into zero time-lag �nish-to-start

relationships by introducing dummy activities for each relationship into the origi-

nal network. Calculating the longest path through this transformed network gives

a lower bound to the original problem. Bianco and Caramia (2012) proposed a

B&B algorithm based on a new mathematical formulation, and strengthened their

algorithm by making use of Lagrangian relaxation. The most e�ective exact ap-

proaches for solving the GRCPSP have been developed by Schutt et al. (2013) and

de Azevedo et al. (2021), who both formulate and solve the problem as a constraint

22 2. Deterministic Resource-Constrained Project Scheduling

satisfaction problem.

A number of heuristic approaches have also been developed to solve the GR-

CPSP. Neumann and Zhan (1995) were the �rst to present a number of priority-rule

heuristics, and motivated by the decomposition result of Bartusch et al. (1988),

they proposed a strategy of generating sub-schedules for each cycle in the project

network, before bringing them together to create a full schedule for the original

problem. Franck et al. (2001) proposed and compared a number of heuristics for

the GRCPSP, including truncated B&B, �lter-beam search, priority-rule heuris-

tics, a genetic algorithm and a tabu search. Ballestín et al. (2011) developed an

evolutionary algorithm based on a serial SGS and a crossover which attempts to

identify and pass-on good orderings of the activities involved in the cycle struc-

tures. Their approach is the most e�ective metaheuristic developed to date for

solving the GRCPSP.

2.3 The FRCPSP

The resource-constrained project scheduling problem with �exible resource pro�les

(FRCPSP) is a more recent and less studied extension to the RCPSP than the

GRCPSP. First considered by Kolisch et al. (2003) in the context of pharmaceutical

research, the FRCPSP relaxes the assumption that each project activity has a

�xed duration and resource requirement, and instead assumes that only the overall

amount of resource required to complete each activity is known. The FRCPSP

aims to �nd a resource allocation to each activity at each period of its duration, as

well as a start time for each activity, in order to minimise the project makespan. In

addition to the usual precedence and resource constraints of the standard RCPSP,

2. Deterministic Resource-Constrained Project Scheduling 23

a solution to the FRCPSP must also satisfy lower and upper bounds on the per-

period allocation of each resource to each activity, as well as a minimum number of

periods for which resource allocation to an activity must remain constant, known

as the minimum block length. An example FRCPSP instance is given in Figure

2.7, and an optimal solution to this instance is shown in Figure 2.8.

Figure 2.7: An example FRCPSP involving seven non-dummy activities and one

renewable resource withR1 = 6. The minimum block length is 2.

Figure 2.8: An optimal solution to the FRCPSP instance given in Figure 2.7,

assuming a minimum block length of 2.

24 2. Deterministic Resource-Constrained Project Scheduling

As well as introducing this new scheduling model, Kolisch et al. (2003) proposed

an MILP formulation and greedy priority-rule heuristic to solve it. Since then, a

handful of other MILP formulations have been presented for this problem. Naber

and Kolisch (2014) introduced and compared four discrete-time MILPs, showing

the clear superiority of one of them, and more recently, Naber (2017) proposed the

�rst continuous-time MILP formulation for the FRCPSP. Baumann et al. (2015)

presented an MILP formulation for the problem with discrete resources.

As with most other project scheduling models, the di�culty of solving large

instances with exact methods means that a greater proportion of literature relating

to the FRCPSP has been concerned with the development of heuristic solution

approaches. For the FRCPSP with discrete resources Fündeling and Trautmann

(2010) introduced a priority-rule heuristic based on a greedy serial SGS. Ranjbar

and Kianfar (2010) used a GA based on a serial SGS to choose between a limited

set of resource allocation pro�les for each activity. An alternative approach that

uses an MILP-based heuristic to sequentially schedule the project activities was

suggested by Zimmermann (2016). Considering the FRCPSP with continuous

resources, Schramme (2014) proposed both an MILP formulation and GA with a

non-greedy SGS for the problem without a minimum block length. Most recently,

Tritschler et al. (2017) developed a hybrid metaheuristic for the full FRCPSP

with continuous resources. Their approach is based on a non-greedy parallel SGS

embedded in a GA, with an additional variable neighbourhood search improvement

step.

2. Deterministic Resource-Constrained Project Scheduling 25

2.4 The MRCPSP

The �nal extension of the classic RCPSP that we cover in this chapter on determin-

istic project scheduling is the multi-mode resource-constrained project scheduling

problem (MRCPSP). Of all the extensions and variants of the classic RCPSP, the

MRCPSP has been the subject of the most number of publications, especially in

the domain of metaheuristics and GAs. However, since the MRCPSP is only con-

sidered in the context of robust scheduling in Chapter 6, here we just state the

nominal version of the problem, and defer a review of the robust MRCPSP to

Chapter 6. For a survey of the various formulations and solution approaches for

deterministic MRCPSP, see W¦glarz et al. (2011), or one of the books mentioned

in the introduction of this chapter.

Introduced by Talbot (1982), the MRCPSP generalises the RCPSP to include

multiple options for the processing of each activity, allowing the modelling of

situations in which there is more than one way of executing project activities, with

each option having its own duration and resource requirements. This approach is

frequently used to model trade-o�s between the duration and resource consumption

of activities. Furthermore, the MRCPSP allows for the inclusion ofnon-renewable

resources, i.e. resources with an overall availability for the entire project horizon.

These features introduce a signi�cant degree of �exibility for modelling and solving

many real-world scheduling problems. Subject to all the same precedence and

resource constraints of the standard RCPSP, a solution to the MRCPSP must

determine the start time and processing mode for each project activity with the

objective of minimising the project makespan. An example MRCPSP instance and

its corresponding optimal solution are given in Figures 2.9 and 2.10, respectively.

26 2. Deterministic Resource-Constrained Project Scheduling

Figure 2.9: An example MRCPSP involving seven non-dummy activities and one

renewable resource withR1 = 6. The �rst modes for each activity corresponds to

the data for the RCPSP instance given in Figure 2.1.

Figure 2.10: An optimal solution to the MRCPSP instance given in Figure 2.9.

The activity mode choices are written in brackets.

Although the MRCPSP shares similarities with the FRCPSP, since the MR-

CPSP only considers a discrete number of activity processing modes with constant

resource requirements across the periods of its durations, the MRCPSP does not

o�er the complete �exibility in the choice of resource pro�les that is a�orded by

the FRCPSP.

Chapter 3

Robust Optimisation

In preparation for the main contributions of this thesis, this chapter aims to serve

as a primer on the robust optimisation framework, with a particular focus on its

application to combinatorial optimisation.

3.1 Background and motivation

Almost all real-world optimisation problems are subject to some degree of uncer-

tainty. As mentioned in the introduction, given that the quantity and condition of

the waste in some of Sella�eld's oldest facilities can only be estimated, the decom-

missioning of Sella�eld is certainly no exception to data uncertainty. Although by

no means the �rst to do so, Ben-Tal and Nemirovski (2000) convincingly motivated

the need for methods that are speci�cally designed to account for uncertain data

when they demonstrated how deterministic solutions to uncertain optimisation

problems can become catastrophically infeasible for even the smallest perturba-

tions to the input data.

Sensitivity analysis and stochastic optimisation are two traditional approaches

27

28 3. Robust Optimisation

that are often used in an attempt to account for uncertain data, however both these

approaches have major drawbacks. Sensitivity analysis is a tool for assessing the

response of the output solution to changes in the input data, rather than a method

for constructing a solution that is robust with respect to the input data. Further-

more, joint sensitivity analysis of multiple parameters quickly becomes impractical

when the number of uncertain parameters begins to grow. Stochastic optimisation

on the other hand is indeed an approach that considers the problem uncertainty in

its solution. However, it makes the assumption that the uncertain data follows a

known probability distribution, and most commonly formulates a problem which

aims to optimise the expected long-term performance of the solution, subject to

constraints that must be satis�ed with a certain probability. Despite its success-

ful application of this approach to many problems, stochastic optimisation does

su�er some signi�cant disadvantages. Firstly, accurate probabilistic knowledge of

the uncertain data is very rare for real-world problems. Moreover, even if the

distribution of the uncertain data is known, stochastic optimisation is typically

very computationally intensive, and often results in problem instances that are

too large to solve in practice.

Robust optimisation presents a di�erent approach to accounting for uncer-

tainty. In particular, robust optimisation makes no assumptions about the prob-

ability distributions of the inputs, but instead assumes that the uncertain data

can lie anywhere inside a so-calleduncertainty set. The problem then becomes

to �nd solutions that are feasible for all the inputs in the speci�ed uncertainty

set, whilst optimising for some measure of the worst-case performance. As well

as circumventing the need for detailed probabilistic information about the input

3. Robust Optimisation 29

data, robust optimisation tends to produce computationally tractable problems in

many more cases than stochastic optimisation. Additionally, the worst-case per-

formance considered by robust optimisation is, in and of itself, a valuable objective

that is relevant in many contexts, particularly when a solution can only ever be

evaluated once, as is frequently the case for engineering and construction projects,

e.g. bridges, �ood barriers, decommissioning schedules etc.

Although the �rst publication relating to robust optimisation dates back to

the 1970s (Soyster, 1973), the �eld has mostly been developed over the previous

25 years following the introduction of new approaches to control the risk appetite

of the robust solution, and the generalisation of robust optimisation to a range

of classes of optimisation problems. Notable works that led the way to robust

optimisation becoming a thriving �eld of research include Ben-Tal and Nemirovski

(1998, 1999, 2000); El Ghaoui and Lebret (1997); El Ghaoui et al. (1998); Kouvelis

and Yu (1997); Bertsimas and Sim (2004). For an extensive survey of robust

optimisation, the reader is referred to Ben-Tal et al. (2009). A list of more concise

survey papers include Bertsimas et al. (2011), Gabrel et al. (2014), Gorissen et al.

(2015) and Goerigk and Schöbel (2016).

In the two sections that follow, the main concepts with respect to single-stage

and multi-stage robust optimisation are outlined, with particular attention paid

to its application to combinatorial optimisation problems. Reviews of the existing

literature speci�cally relating to robust optimisation for project scheduling and

single machine scheduling are deferred to the relevant chapters later in the thesis.

30 3. Robust Optimisation

3.2 Single-stage robust optimisation

Also known as min-max, strict, absolute or static robustness, this is the classic

approach to robust optimisation �rst developed by Soyster (1973) and re�ned by

the works of Ben-Tal, Nemirovski, El Ghaoui and their co-authors. In this case, the

decision-maker must determine a complete solution under the problem uncertainty.

Consider the following general nominal optimisation problem:

min f (x)

s.t. g(x) � 0

x 2 X ;

(3.1)

where f : Rn ! R de�nes the objective function,g : Rn ! Rm de�ne a set ofm

constraints, andX � Rn is some general set of variables. Denoting the uncertainty

set of possible scenarios asU � R` , the robust version of this optimisation problem

can be written as

min max
� 2U

f (x; �)

s.t. g(x; �) � 0 8� 2 U

x 2 X ;

(3.2)

where f (�; �) : Rn ! R and g(�; �) : Rn ! Rm for a �xed scenario � 2 R` .

This problem aims to �nd a solution with the best performance in the worst-case

scenario, such that the solution is feasible in all possible scenarios� 2 U. By

replacing the objective of (3.2) by a variablet 2 R and adding the constraints

t � f (x; �) 8� 2 U;

3. Robust Optimisation 31

without loss of generality, it can be assumed that the problem uncertainty resides

entirely in the constraint coe�cients (see Gorissen et al. (2015) for details). How-

ever, given our interest in problems with uncertain costs, for clarity of exposition,

we continue to write the uncertainty in both the objective function and constraints

as is the case in (3.2).

Although the approach de�ned in (3.2) �nds a solution with the best per-

formance in the worst-case scenario, it fails to consider that this solution may

perform poorly in non-worst-case scenarios. When the problem uncertainty a�ects

the objective function, regret is commonly used to de�ne an alternative measure

of robustness that attempts to account for this, thereby reducing the conservatism

of the robust formulation. Furthermore, regret can also serve as a useful indica-

tion of how much the performance of a solution could be improved if the problem

uncertainty were able to be removed. Regret robustness (also known asabsolute

regret or absolute deviation) replaces the objective function in (3.2) with

f (x; �) � f � (�);

wheref � (�) is de�ned to be the best possible objective value that can be achieved

in scenario� 2 U. Another closely related measure of robustness is relative regret,

which uses the objective function

f (x; �) � f � (�)
f � (�)

;

that is, the absolute regret normalised by the best objective value in scenario� .

For a survey on regret and relative regret robustness in the context of discrete

32 3. Robust Optimisation

optimisation, see Kouvelis and Yu (1997) and Aissi et al. (2009).

3.2.1 Common uncertainty sets

The conservatism of the robust formulation (3.2), as well as its computational

tractability, is largely in�uenced by the choice of the uncertainty setU. For this

reason, considerable attention has been given to the development and analysis of

di�erent types of uncertainty sets for many di�erent problem classes. We examine

the most common of these here.

Discrete uncertainty. Discrete uncertainty sets are de�ned simply by a

�nite set of possible scenariosU = f � 1; : : : ; � kg. Although discrete uncertainty

sets are conceptually very simple and are an intuitive way to de�ne uncertainty in

many problems, in practice they almost always lead to intractable robust problems.

For many well-known combinatorial optimisation problems that can be solved in

polynomial time, their robust counterparts are NP-hard even in the case of just two

scenarios. This is the case for all three measures of robustness mentioned above

for the robust assignment problem, the minimum spanning tree problem and the

robust shortest path problem, as well the single machine scheduling problem that

we consider in chapters 7 and 8, (see Kasperski and Zieli«ski (2016a) and Aissi

et al. (2009) for full references of these results in addition to a number of others).

Polyhedral uncertainty. Polyhedral uncertainty arises from the considera-

tion of convex combinations of discrete scenarios and can be written in its general

form as U =
�

� 2 R` : A� � b
	

, where A 2 Rp� ` and b 2 Rp. For min-max ro-

bust optimisation, given that the optimal solution can be found by considering

one of the extreme vertices of the uncertainty set, it can be shown that replacing

3. Robust Optimisation 33

Figure 3.1: Common types of uncertainty set.

a discrete uncertainty set by its convex hull does not fundamentally change the

complexity of the problem. Hence, the (mostly negative) complexity results that

apply to problems under discrete uncertainty also hold in the case of general poly-

hedral uncertainty. It is worth noting that comment does not extend in general

to the two-stage problems that are the topic of the following section. Despite its

general complexity, there do exist a couple of important special cases of polyhedral

uncertainty for which analysis is more amenable, speci�cally interval uncertainty

and budgeted uncertainty.

Interval uncertainty. Another natural choice of uncertainty set is the inter-

val, or box, uncertainty set de�ned by the Cartesian product of intervals

U = f � 2 [�
1
; � 1] � � � � � [�

`
; � `]g;

34 3. Robust Optimisation

where �
i

and � i de�ne lower an upper bounds on the range of interest of variable

� i . In the case of min-max robustness, supposing that all variables are positive, the

worst-case scenario overU is simply given by the worst-case value� i for eachi =

1; : : : ; `. The robust problem can therefore be solved just by solving the underlying

nominal problem for this worst-case scenario, and as a result the robust problem

is just as simple as the nominal problem. For regret robustness however, it is not

so straightforward to compute the worst-case scenario. Although the worst-case

scenario is known to lie at one of the extreme points ofU (Averbakh and Lebedev,

2004), since there are2` such points, to enumerate them all is intractable in general.

As a result, most regret-based problems of interest are NP-hard under interval

uncertainty, including those that are mentioned above in the context of discrete

uncertainty (again, see Kasperski and Zieli«ski (2016a) and Aissi et al. (2009) for

the detailed references of these results). A valid criticism of the use of interval

uncertainty is its strong pessimism that results from it covering scenarios in which

every single uncertain parameter attains its extreme value simultaneously. With

this in mind, Ben-Tal and Nemirovski (1998, 1999, 2000), El Ghaoui and Lebret

(1997) and El Ghaoui et al. (1998) developed the use of ellipsoidal uncertainty

sets.

Ellipsoidal uncertainty. A general ellipsoidal uncertainty set can be written

in the form

U =
n

� 2 R` : (� � �̂)| � � 1(� � �̂) � r 2
o

;

where �̂ 2 R` de�nes the centre of the ellipsoid, and� 2 R` � ` is positive semi-

de�nite. Ellipsoidal uncertainty aims to reduce the conservatism of interval un-

certainty by excluding the most extreme scenarios. The size of the ellipsoid and

3. Robust Optimisation 35

therefore the conservatism of the resulting robust formulation can be controlled

by the parameterr . Furthermore, ellipsoidal uncertainty sets allow the modelling

of normally distributed uncertainty with mean �̂ and covariance matrix� . The

robust formulations that arise from the use of ellipsoidal uncertainty however are

conic optimisation problems, and therefore tend to be intractable for discrete op-

timisation problems. However, as pointed out by Buchheim and Kurtz (2018), the

complexity of robust combinatorial optimisation problems under the special case

of uncorrelated ellipsoidal uncertainty (where� is a diagonal matrix, resulting in

an ellipse that is parallel to the axes) is less known. Some complexity results for

a handful of problems involving regret robustness are presented by Chassein and

Goerigk (2017).

Budgeted uncertainty. Bertsimas and Sim (2004) proposed an alternative

approach to reducing the so-called `price of robustness' that involves restricting

the number of parameters that can achieve their worst-case values simultaneously.

We refer to their approach asbudgeted uncertainty, however it is also known as

cardinality-constrained uncertainty or � -robustness. Speci�cally, Bertsimas and

Sim (2004) propose the use of the following uncertainty set:

U(�) =

(

� 2 R` : � i 2 [�̂ i ; �̂ i + � i
�� i]; 0 � � i � 1; i = 1; : : : ; `;

`X

i =1

� i � �

)

:

When � = 0 , each uncertain variable takes its nominal value and the resulting

robust counterpart reduces to the deterministic version of the problem. In the

other extreme, when� = `, all the variables can take their worst-case values and

the budgeted uncertainty set becomes equivalent to interval uncertainty. Hence

the parameter � controls conservatism of the uncertainty set by determining the

36 3. Robust Optimisation

extent to which the outer regions of the interval uncertainty set are cut o�. As

well as being intuitive to de�ne and use, one of the major advantages of this

approach is that the resulting robust formulation shares the same computational

complexity as the underlying nominal problem. As a result, this approach can be

directly applied to discrete optimisation problems, as examined by Bertsimas and

Sim (2003). Subsequently, budgeted uncertainty has become the most widely used

and studied uncertainty set for a range of combinatorial optimisation problems.

3.3 Two-stage Robust Optimisation

Ben-Tal et al. (2004) were the �rst to extend the robust optimisation framework to

a two-stage setting. Following this, much of the research relating to robust optimi-

sation, including the primary contributions of this thesis, has been concerned with

the analysis and application of two-stage approaches for many di�erent problem

types. This section summarises the main approaches in the literature to two-stage

robust optimisation. For a discussion on the extension of the robust optimisation

to more than two stages, see Delage and Iancu (2015).

3.3.1 Adjustable robustness

First introduced by Ben-Tal et al. (2004) for linear optimisation, adjustable ro-

bust optimisation (also known simply as two-stage robust optimisation) makes the

assumption that the problem decision variables can be split into two categories:

1. variables that must be determined under the problem uncertainty, i.e.here-

and-now variables, and 2. variables that can be decided once the actual scenario

� 2 U becomes known, i.e.wait-and-see variables. By allowing a subset of the

3. Robust Optimisation 37

decision variables to be determined after the realisation of the uncertain data,

a greater degree of �exibility is o�ered compared to classic one-stage robust op-

timisation, resulting in a reduction in conservatism and an improvement in the

objective value of the robust solution. Furthermore, this two-stage approach mod-

els many real-world decision processes quite naturally, including the scheduling

process considered in Chapters 5 and 6 of this thesis. Denoting the feasible sets

of the �rst and second-stage variables byX 1 � Rn1 and X 2 � Rn2 respectively,

wheren1 + n2 = n, the adjustable robust optimisation problem can be written as

min
x2X 1

max
� 2U

min
y(�)2X 2

f (x; y(�); �)

s.t. g(x; y(�); �) � 0 8� 2 U:

(3.3)

The �rst-stage variables x 2 X 1 must be chosen such that for any possible sce-

nario � 2 U there exists second-stage variablesy 2 X 2 such that the feasibility

constraints can be satis�ed, whilst minimising the objective function.

Observe that the single-stage robust optimisation problem (3.2) is a special case

of this problem obtained simply by settingn2 = 0 and forcing all the second-stage

variables to be speci�ed under the problem uncertainty in the �rst stage. Clearly

therefore, the adjustable robust problem is at least as hard as the single-stage

problem. Considering problems with uncertainty only in the objective function, if

the setsU, X 1 and X 2 are all convex, then by making use of the minimax theorem

it can be shown that the adjustable robust problem is equivalent to the min-max

problem. For problems that involve uncertainty in the constraints however, in

general, (3.3) is NP-hard, even if the corresponding min-max problem is polyno-

mially solvable. As a result, much of the research regarding adjustable robust

38 3. Robust Optimisation

optimisation has been focused on the development of approximations for solving

this problem.

Supposing that the second-stage recourse variables are continuous, Ben-Tal

et al. (2004) proposed an approximation to (3.3) based on assuming that the

second-stage variables are a�ne functions of the problem uncertainty, i.e.y = y0 +

Q� , wherey0 2 Rn2 andQ 2 Rn2 � ` . In this case, the second-stage decision variables

y are replaced byy0 and Q and must be determined in the �rst-stage subject to the

problem uncertainty. Supposing �xed recourse, it is shown that this problem has

the same complexity as the single-stage min-max robust problem. Furthermore, it

has been shown that for many problems, these a�ne decision rules obtain optimal,

or near optimal results, encouraging the use of this approximation to solve a wide

range of problems. We note that there exist many alternative approaches for the

tractable approximation of (3.3), as well as a number of exact decomposition-based

approaches, including, most notably, a row-and-column generation approach for

the case of polyhedral uncertainty developed by Zeng and Zhao (2013).

Adjustable robust optimisation with integer recourse is of particular interest

with regards to combinatorial optimisation, however this setting has received con-

siderably less attention in the literature than the case of continuous recourse men-

tioned above. Kasperski and Zieli«ski (2011), Kasperski and Zieli«ski (2017),

Chassein et al. (2018), Goerigk et al. (2021a) and Goerigk et al. (2022a) all con-

sider this model for a range of combinatorial optimisation problems including se-

lection, spanning tree and shortest path problems and show that for discrete or

general convex uncertainty sets the resulting adjustable robust problem is hard.

Under interval and continuous budgeted uncertainty, a number of more positive

3. Robust Optimisation 39

complexity results are derived. Chapters 5 and 6 of this thesis consider adjustable

robustness for the RCPSP and MRCPSP with uncertain activity durations.

For a review of adjustable robust optimisation and its various approximations

and solution approaches, see Yan�ko§lu et al. (2019).

3.3.2 Recoverable robustness

Developed by Liebchen et al. (2009) for the problem of timetabling trains, re-

coverable robustness is an alternative approach to two-stage robust optimisation.

Instead of determining a partial solution under the problem uncertainty and then

completing the solution once the uncertain data becomes known, recoverable ro-

bustness constructs a complete solution under the problem uncertainty, whilst

accounting for a set of recovery actions that can be applied to the solution once

the uncertainty has been revealed.

Letting A denote the set of recovery actions, the general recoverable robust

optimisation problem can be written as

min
x2X

f (x)

s.t. g(A(x; �); �) � 0 8� 2 U

A 2 A :

(3.4)

That is, a solution x 2 X and recovery actionA 2 A must be chosen such

that x minimises f and is feasible following its recovery after the realisation of

the actual scenario. In the case of objective uncertainty, the recoverable robust

approach can be reinterpreted as having the aim of �nding a feasible solution

x 2 X with the best possible performance in the nominal scenario, subject to being

40 3. Robust Optimisation

recovered to optimality once the uncertainty has been revealed. This model can

be extended to also include the cost of the recovery of the �rst-stage solution. For

any particular problem, clearly, the complexity of the recoverable robust version

very much depends on the speci�cation of the set of recovery actionsA , as well as

on the choice of uncertainty setU.

Given its generality, the recoverable approach to robust optimisation has seen

numerous applications in recent years to a range of problems including the knap-

sack problem (Büsing et al., 2011), shortest path problem (Büsing, 2012), travelling

salesman problem (Chassein and Goerigk, 2016), selection problem Chassein et al.

(2018); Kasperski and Zieli«ski (2017); Goerigk et al. (2022b) and assignment

problem (Fischer et al., 2020), among others. In chapters 7 and 8, recoverable

robustness is applied to the single machine scheduling problem for the �rst time.

3.3.3 K -adaptability

Bertsimas and Caramanis (2010) introduced an approach to approximating the

adjustable robust problem (3.3) based on the idea of determiningK solutions

under the problem uncertainty in the �rst stage, before selecting the best of these

K options in the second stage, once the uncertain scenario becomes known. This

so-calledK -adaptability problem can be written as

min
x 2X 1

y 1 ;:::;y K 2X 2

max
� 2U

min
i =1 ;:::;K

f (x; y i ; �)

s.t. g(x; y i ; �) � 0 8� 2 U:

(3.5)

This approach of preparingK solutions subject to uncertainty is particularly well

suited to model many real-world decision problems and its application has been

3. Robust Optimisation 41

widespread. Example include hub location (Alumur et al., 2012) and parcel deliv-

eries (Eu�nger et al., 2020).

Hanasusanto et al. (2015) apply theK -adaptability approach to two-stage ro-

bust binary optimisation, and show that if the problem uncertainty resides only in

the objective function, then an optimal solution can be found by usingK = n + 1

second-stage solutions. This result is used to derive one of the formulations pro-

posed for the recoverable robust single-machine scheduling problem considered in

Chapter 7 of this thesis. This result does not extend to the general two-stage ro-

bust binary problem where uncertainty is also present in the constraints, in which

case the problem is NP-hard. Recently Subramanyam et al. (2020) have extended

K -adaptability to mixed-integer programming and propose a branch-and-bound

scheme to solve the resulting problem.

As a special case ofK -adaptability, Buchheim and Kurtz (2017) study two-

stage robust combinatorial optimisation problems of the form

min
x1 ;:::;x K 2X

max
� 2U

min
i =1 ;:::;K

f (x i ; �) (3.6)

where there are no �rst-stage variables and all the problem uncertainty is con-

tained within the objective function. They refer to this approach asmin-max-min

robustness. Buchheim and Kurtz (2017) show that whenK � n + 1, for convex

uncertainty sets, this problem has the same complexity as the underlying determin-

istic problem. As shown by Buchheim and Kurtz (2016), this result does not extend

to discrete uncertainty, because, unlike the case for min-max robustness, replacing

a discrete uncertainty setU by its convex hull in (3.6) fundamentally changes the

problem. Whilst proving that the min-max-min problem is NP-hard for discrete

42 3. Robust Optimisation

uncertainty, Buchheim and Kurtz (2016) also propose a pseudopolynomial-time al-

gorithm to reduce (3.6) to its min-max version, implying that pseudopolynomial-

time solution algorithms to (3.6) exist for a number of combinatorial problems.

In a series of recent papers Chassein et al. (2019); Goerigk et al. (2020); Chas-

sein and Goerigk (2021), the min-max-min problem has been studied under both

discrete and continuous budgeted uncertainty sets. For the continuous set, posi-

tive complexity results are proved for a range of optimisation problems, however,

unsurprisingly these do not extend to discrete budgeted uncertainty.

Chapter 4

The Generalised Flexible

Resource-Constrained Project Scheduling

Problem

4.1 Introduction

The decommissioning of the Sella�eld nuclear site in North West England is one

of the largest and most complex ongoing engineering projects in Europe. It is ex-

pected to take in excess of 100 years to complete and cost a total of over ¿90 billion

(NDA, 2019). Given its scale and complexity, it is crucial that this project is chore-

ographed according to a carefully designed master schedule that fully accounts for

the network of logical precedence relationships between the decommissioning ac-

tivities, as well as the limited availability of the project resources. This chapter

introduces and solves a new project scheduling model designed to schedule this

project and others like it.

The resource-constrained project scheduling problem (RCPSP) has been thor-

43

44 4. The GFRCPSP

oughly studied since the introduction of a �rst model by Pritsker et al. (1969).

The RCPSP consists of scheduling a set of activities, subject to resource and

precedence constraints, in order to minimise the overall project duration, known

as the makespan. Although a very general scheduling model, the applicability of

the classical RCPSP to many real-world problems, including the Sella�eld nuclear

decommissioning project, is limited by the following two assumptions: 1. only

�nish-to-start, zero time-lag precedence relationships exist between activities, and

2. the resource requirements of the activities are �xed and constant throughout

their duration. This chapter introduces and solves an extension to the classical

RCPSP that allows for both of these assumptions to be relaxed, enabling the Sel-

la�eld nuclear decommissioning project and other projects with similar features,

to be modelled and scheduled.

Extensions to the RCPSP that address one of these two limiting assump-

tions are well-studied. The addition of generalised precedence relationships to

the RCPSP addresses the �rst of these. Although a number of di�erent names are

used to refer to this extenstion of the RCPSP, here we refer to it as the gener-

alised resource-constrained project scheduling problem (GRCPSP). More recently,

attention has turned to addressing the second limiting assumption of the classi-

cal RCPSP, with the introduction of the resource-constrained project scheduling

problem with �exible resource-pro�les (FRCPSP) by Naber and Kolisch (2014).

In this problem, it is assumed only that the total amount of resource required to

complete each activity is known, and that, as well as the start time, the resource

allocation for each activity throughout its duration must be determined, subject

to a set of constraints on that allocation.

4. The GFRCPSP 45

To the best of our knowledge, up until now, no model has been introduced

that simultaneously relaxes both of these assumptions. By introducing the gen-

eralised �exible resource-constrained project scheduling problem (GFRCPSP) in

this chapter, we combine the two extensions mentioned above into a single model

capable of accurately capturing the features of a much wider range of real-world

projects than the standard RCPSP.

The GFRCPSP is a very challenging problem. In particular, due to the intro-

duction of generalised precedence constraints, the decision problem of determining

whether or not a feasible solution exists for a given GFRCPSP instance is an

NP-complete problem (Bartusch et al., 1988), and in practice, for many problem

instances, just �nding a feasible solution is the primary di�culty. Hence, a solu-

tion approach must be designed to prioritise the �nding of feasible solutions, before

it then works to improve upon these feasible solutions. Therefore, as well as in-

troducing a mixed-integer programming (MIP) formulation, we propose a genetic

algorithm for �nding good solutions to production-sized instances. A computa-

tional study demonstrates the strong performance of the proposed metaheuristic

algorithm when compared with solving the proposed MIP using a state-of-the-art

solver, as well as four additional benchmarking heuristics. The applicability of this

newly developed model and the proposed metaheuristic is further demonstrated

by the modelling and scheduling of a decommissioning project from the Sella�eld

site.

The remainder of this chapter is organised as follows: Section 4.2 formally intro-

duces the GFRCPSP. Section 4.3 presents an MIP formulation for the GFRCPSP,

before Section 4.4 details a genetic algorithm-based solution approach. Section

46 4. The GFRCPSP

4.5 presents and compares computational results from the proposed metaheuris-

tic algorithm, the MIP formulation and four additional benchmarking heuristics.

Section 4.6 applies the methods proposed in the earlier sections to the scheduling

of a Sella�eld nuclear decommissioning project. Finally, concluding remarks are

given in Section 4.7.

4.2 Problem description

A project consists of a set of non-preemptive activitiesV = f 0; 1; : : : ; n; n + 1g,

where activities 0 andn+1 are dummy project-start and project-end activities with

duration 0 and no resource requirements. We letN = f 1; : : : ; ng denote the set of

non-dummy activities. The start time and resource pro�le of each activity must

be determined over a planning horizon of discrete time periodst 2 T, subject to a

set of precedence and resource constraints. We �rst detail the project precedence

constraints.

4.2.1 Precedence constraints

There are four possible types of generalised precedence relationship between two

activities: start-to-start, start-to-�nish, �nish-to-start and �nish-to-�nish, and

each generalised precedence relationship has an associated minimal or maximal

time-lag. For example, consider a �nish-to-start type relationship between activ-

ities i and j . If this relationship has a minimal time-lag of lengtha � 0, the

resulting constraint requires that sj � f i + a, where sj and f i are the start and

�nish times of activities j and i , respectively. That is, j cannot start until a

time periods after the �nish of i . If there is also a maximal time-lag of length

4. The GFRCPSP 47

b � a between the �nish of i and the start of j , the resulting constraint requires

that sj � f i + b, i.e. j must have started by b time periods after the �nish of

i . These two precedence relationships combine to create a feasible time-window

f f i + a; : : : ; f i + bg in which activity j must start, relative to the �nish time of

activity i .

For the GRCPSP, since the duration of each activity is known, the four types

of generalised precedence constraints are in fact equivalent and any relationship

type can be transformed into any other (see Bartusch et al. (1988)). A standard

pre-processing step when solving the GRCPSP is therefore to transform all the

project precedence relationships into a single type, typically start-to-start. In our

setting however, to avoid time-lags depending on the variable activity durations,

these transformations are not applied and the di�erent precedence relationships

types are considered separately.

It is important to recognise that maximal time-lags can be rewritten as negative

minimal time-lags going in the opposite direction. For example, again consider a

maximal time-lag of length b from f i to sj given by sj � f i + b. This maximal

time-lag can be rewritten asf i � sj � b; that is, as a minimal time-lag of length� b

from sj to f i . Having converted all maximal time-lags into minimal time-lags, we

can represent a �nish-to-start precedence relationship of lengtha betweeni and j

as a tuple(i; j; a), wherea may be either positive or negative. The other types of

generalised precedence relationship can also be represented in this way, resulting

in a set for each type of relationship, which we denote byESS, ESF , EF S and EF F .

Additionally, once all maximal time-lags have been converted into minimal

time-lags, the project precedence constraints can be represented on a network.

48 4. The GFRCPSP

An example project network for a GFRCPSP instance involving �ve non-dummy

activities is shown in Figure 4.1. Note the occurrence of a cycle involving activ-

ities 2, 3 and 4. Although not the case with this example, if a cycle of positive

length exists in the network, it can immediately be determined that the project is

infeasible with respect to the precedence constraints.

Figure 4.1: An example GFRCPSP instance with �ve non-dummy activities and

a single resourcer � , with availability Rmax
r � = 6. For each activity i 2 V, the total

principal resource requirementwi , and upper and lower bounds on its per-period

allocation q
r � i

, qr � i , are shown. Minimal time-lags are shown next to each arc in

the network.

Given a set of generalised precedence constraints, earliest and latest start and

�nish times of each activity i 2 N can be calculated using the pre-processing

step outlined in Appendix A. We denote these values byESi , LS i , EF i , and

LF i , respectively. The sets of time periods in which an activityi 2 V must

4. The GFRCPSP 49

start and �nish are given by STi = f ESi ; : : : ; LSi g and FTi = f EF i ; : : : ; LF i g,

respectively. A feasible time-window for the processing of activityi is given by

Ti = f ESi ; : : : ; LF i g. In addition to these time-windows, an upper bound on the

minimum project makespan,Tmax , is also computed in this pre-processing step.

4.2.2 Resource constraints

We now detail the resource constraints. We follow the de�nition of the resource

constraints of the FRCPSP as presented in Naber and Kolisch (2014) and assume

that each resourcer 2 R is renewable, continuously divisible, and has a limited

availability of Rmax
r at each time periodt 2 T. Furthermore, for each activity

i 2 N , each resourcer 2 R is categorised into one of the following three types of

resource:

1. The principal resource r � of activity i is the main resource used by that

activity. The amount of principal resource allocated toi entirely determines

the amount of dependent resource allocated toi .

2. A dependent resource r of activity i is a resource for which the amount

allocated to i depends on the amount of principal resource allocated toi .

More speci�cally, if qr � it is the amount of principal resourcer � allocated to

activity i in time period t, qrit = � ri qr � it + � ri gives the amount of dependent

resourcer allocated to i at time t, where � ri = (qri � q
ri

)=(qr � i � q
r � i

) and

� ri = q
ri

� q
r � i

� ri are the coe�cient and constant of the non-decreasing linear

resource function that links the dependent and principal resource allocations.

q
ri

and qri are lower and upper bounds on the allocation of resourcer to

activity i in any given time period. The set of dependent resources of activity

50 4. The GFRCPSP

i is denoted byRdep
i .

3. An independent resource r of activity i is a resource with allocation that

is independent from the allocated quantity of any other resources. The set

of independent resources of activityi is denoted byRind
i .

For each activity i 2 N , the allocation of each resourcer 2 R at each time

period t 2 T must be determined. This forms theresource pro�le of activity i .

The resource pro�le of each activityi 2 N is subject to the following constraints:

1. The total amount of principal resource allocated to activityi over its duration

must at least satisfy a required amount, denoted bywi .

2. There is an upper bound,qri , and lower bound,q
ri

, on the amount of re-

sourcer that can be allocated toi for each period in which activityi is being

processed. The upper bound on the principal resource allocation provides

a lower bound on the duration of activity i , given by di = dwi =qr � i e. Simi-

larly, the lower bound on the principal resource allocation provides an upper

bound, given bydi = dwi =q
r � i

e. Note that since we allow the total resource

requirement of each activity to be exceeded, this upper bound is not strictly

necessary and may be chosen di�erently or omitted entirely. The minimum

and maximum duration of each activity i 2 N can be represented as a min-

imal and a maximal time-lag from si to f i , respectively. Recall that the

maximal time-lag representing the maximum duration ofi can be converted

into a negative minimal time-lag of length� di from f i to si .

3. There is a minimum number of consecutive time periods for which the re-

source allocation to an activity must be constant. This is known as the

4. The GFRCPSP 51

minimum block lengthand is denoted bylmin .

The GFRCPSP problem consists of �nding a start time and resource pro�le

for each activity i 2 N that is feasible with respect to the precedence and resource

constraints outlined above, to minimise the project makespan. Figure 4.2 shows

an optimal solution to the GFRCPSP represented by the network in Figure 4.1.

Table 4.1 provides a summary of the notation used throughout this chapter.

Figure 4.2: An optimal solution to the GFRCPSP instance shown in Figure 4.1.

4.3 Mixed-integer programming formulation

Of the four MIP models for the FRCPSP introduced by Naber and Kolisch (2014),

the so-calledvariable-intensity-basedmodel (Model FP-DT3), based on the RCPSP

model of Bianco and Caramia (2013), was shown to be the strongest. This section

details an extension to this model to include generalised precedence constraints.

This model uses `intensity' variables� it to represent the proportion of the

required principal resourcewi that has been allocated to activity i by time t.

These intensity variables are linked to variablesqrit which track the allocation of

52 4. The GFRCPSP

Indices

i , j Activities

r Resource (of unspeci�ed type)

t Time period

Parameters

ESi , LS i , EF i , LF i Earliest and latest start and �nish times of activity i

r �
i Principle resource of activity i

Rmax
r Availability of resource r

q
ri

, qri Lower and upper bounds on per-period allocation of resourcer

to activity i

wi Total amount of principal resource required by activity i

lmin Minimum block length

� ri , � ri Coe�cient and constant of the linear resource function linking

qrit to qr � it

di , di Minimum and maximum duration of activity i

Tmax Upper bound on the minimal project makespan

Variables

si , f i Start and �nish time of activity i

qrit Amount of resourcer allocated to activity i in time period t

Index sets

V = f 0; 1; : : : ; n; n + 1g Set of activities (including dummy activities)

N = f 1; : : : ; ng Set of non-dummy activities

T = f 0; 1; : : : ; Tmaxg Project planning horizon

Ti = f ESi ; : : : ; LF i g Feasible processing periods of activityi

STi = f ESi ; : : : ; LS i g Feasible starting periods of activity i

FTi = f EF i ; : : : ; LF i g Feasible �nishing periods of activity i

R Set of resources

Rdep
i , Rind

i Sets of dependent and independent resources of activityi

ESS, ESF , EF S , EF F Set of start-to-start, start-to-�nish, �nish-to-start and �nish-to-

�nish minimum time-lag precedence relations, e.g. (i; j; a) 2

EF S represents the constraintsj � f i + a

Table 4.1: Summary of notation.

4. The GFRCPSP 53

resourcer to activity i in time period t. Variables x it indicate whether activity i

has started by time periodt, and similarly, variablesyit indicate whether activity i

has �nished by time periodt. Consequently, the processing status of activityi can

be determined byx it � yit and the start and �nish times of activity i can be written

as si = LF i �
P

t2 Ti
x it and f i = LF i �

P
t2 Ti

yit , respectively. Finally, in order

to satisfy the minimum block length condition, variables� it track the changes in

the quantity of principal resource allocated to activityi . Table 4.2 summarises the

decision variables used in this formulation.

Binary variables

x it

8
><

>:

1; if activity i starts at or before time t,

0; otherwise;
8i 2 N; t 2 Ti

yit

8
><

>:

1; if activity i ends at or before timet,

0; otherwise;
8i 2 N; t 2 Ti

� it

8
><

>:

1; if qr � i;t � 1 6= qr � it ,

0; otherwise;
8i 2 N; t 2 Ti [f LF i + 1g

Continuous variables

Cmax Project makespan

qrit Quantity of resource r 2 R allocated to activity i 2 N in time period

t 2 Ti [f ESi � 1; LF i + 1g

� it Proportion of activity i 2 N completed by time period t 2 Ti

Table 4.2: Decision variables used in formulation (4.1)-(4.29).

54 4. The GFRCPSP

Using the notation and variables from Tables 4.1 and 4.2, respectively, an MIP

model for the GFRCPSP can be formulated as follows:

min Cmax (4.1)

s.t. Cmax � LF i �
X

t2 Ti

yit + 1 8i 2 N (4.2)

qrit � qri (x it � yit) � 0 8r 2 R; i 2 N; t 2 Ti (4.3)

qrit � q
ri

(x it � yit) � 0 8r 2 R; i 2 N; t 2 Ti (4.4)

qrit � � ri qr � it + � ri (x it � yit) 8r 2 Rdep
i ; i 2 N (4.5)

qr � it � wi (� i;t +1 � � it) 8i 2 N; t 2 Ti (4.6)

X

f i 2 N :t2 Ti g

qrit � Rmax
r 8r 2 R; t 2 T (4.7)

t+ lmin � 1X

� = t

� i� � 1 8i 2 N; t 2 f ESi ; : : : ; LF i � lmin + 2g (4.8)

qr � it � qr � i;t � 1 � qr � i � it � 0 8i 2 N; t 2 Ti [f LF i + 1g (4.9)

qr � i;t � 1 � qr � it � qr � i � it � 0 8i 2 N; t 2 Ti [f LF i + 1g (4.10)

qri;ES i � 1 = qri;LF i +1 = 0 8r 2 R; i 2 N (4.11)

� it � x it 8i 2 N; t 2 STi (4.12)

� it � yit 8i 2 N; t 2 FTi (4.13)

x j;t + a � x it 8(i; j; a) 2 ESS; t 2 STi [f ESj � a; : : : ; LSj � ag (4.14)

yj;t + b � x it 8(i; j; b) 2 ESF ; t 2 STi [f EF j � b; : : : ; LFj � bg (4.15)

x j;t + c � yit 8(i; j; c) 2 EF S ; t 2 FTi [f ESj � c; : : : ; LSj � cg (4.16)

yj;t + d � yit 8(i; j; d) 2 EF F ; t 2 FTi [f EF j � d; : : : ; LF j � dg (4.17)

� it � � i;t +1 8i 2 N; t 2 Ti (4.18)

x i;t � 1 � x it 8i 2 N; t 2 Ti n f ESi g (4.19)

4. The GFRCPSP 55

yi;t � 1 � yit 8i 2 N; t 2 Ti n f ESi g (4.20)

� i;ES i = 0 8i 2 N (4.21)

� i;LF i = 1 8i 2 N (4.22)

x it = 1 8i 2 N; LS i � t � LF i (4.23)

yit = 0 8i 2 N; ES i � t � EF i � 1 (4.24)

qrit � 0 8r 2 R; i 2 N; t 2 Ti [f ESi � 1; LF i + 1g (4.25)

0 � � it � 1 8i 2 N; t 2 Ti (4.26)

x it 2 f 0; 1g 8i 2 N; t 2 Ti (4.27)

yit 2 f 0; 1g 8i 2 N; t 2 Ti (4.28)

� it 2 f 0; 1g 8i 2 N; t 2 Ti [f LF j + 1g (4.29)

Constraints (4.2) de�ne the makespan to be the latest completion time of an

activity in the project. Constraints (4.3) and (4.4) enforce the upper and lower

bounds on the resource allocation for each activity in the time periods that it is

being processed. Constraints (4.5) determine the allocation of each dependent re-

source according to the linear function of the allocation of principal resource. Con-

straints (4.6) link the resource allocation variablesqrit to the intensity variables� it ,

and constraints (4.7) ensure that the total amount of each resource used in each

period does not exceed the availability. Constraints (4.8) ensure that the minimum

block length is satis�ed, whilst constraints (4.9) and (4.10) make sure that the� it

variables track changes in the resource allocation as intended. Constraints (4.11)

initialise the resource allocation variables to zero outside the feasible processing

time window of each activity. Constraints (4.12) and (4.13) ensure that the pro-

56 4. The GFRCPSP

cessing of an activity can only occur between its start and �nish times. Constraints

(4.14)-(4.17) ensure that the generalised precedence constraints are satis�ed. Note

that these constraints are the only signi�cant di�erence between the MIP formula-

tion presented here, and the FP-DT3 formulation presented in Naber and Kolisch

(2014). Constraints (4.18)-(4.20) are non-preemption constraints, and constraints

(4.21)-(4.24) initialise the variables with known values. Finally, the variables are

de�ned by constraints (4.25)-(4.29).

4.4 Metaheuristic algorithm

In this section we present a scheduling heuristic and genetic algorithm to solve the

GFRCPSP. Section 4.4.1 outlines the proposed �exible schedule generation scheme,

before the genetic algorithm into which this scheduling heuristic is embedded is

detailed in Section 4.4.2.

4.4.1 A �exible schedule generation scheme

A new non-greedy �exible serial schedule generation scheme (FSGS) has been

developed speci�cally for GFRCPSP. This FSGS takes an activity list and con-

structs a complete solution by scheduling activities one at a time in the order

given by the activity list. Activities are scheduled to start as early as possible and

with as much resource allocated as possible, whilst respecting enforced delays on

start times, limits on resource allocations, and the project precedence constraints.

These delays and resource limits enable the FSGS to perform non-greedy schedul-

ing. The following three sections list the input parameters required by the FSGS,

detail the speci�c steps performed by the algorithm, and provide an example of

4. The GFRCPSP 57

its use, respectively.

Input parameters

The input parameters required by this FSGS are the same parameters used in the

FSGS developed by Tritschler et al. (2017) for the FRCPSP. These are:

1. Activity list � . A precedence feasible permutation of the project activities

i 2 V, specifying the order in which the activities are added to the schedule.

2. Greediness parameters � . A list � = (� 1; : : : ; � n) of resource alloca-

tion limiting parameters for each non-dummy project activity i 2 N . � i 2

f 0; : : : ; � i g, where� i = dwi =q
r � i

e � di . The resource allocation limit� i deter-

mines the maximum principal resource allocation to activityi through the

function qr � it = wi =(di + � i).

3. Delay parameters � : A list � = (� 1; : : : ; � n) of start delay parameters

for each non-dummy project activity i 2 N . � i 2 f 0; : : : ; � i g, where � i =

min(dwi =q
r � i

e � di ; LF i � ESi). Delay parameter� i speci�es the number of

time periods by which the start of activity i must be delayed beyond its

earliest feasible start time.

Algorithm

The FSGS we present here extends the serial SGS for application to the GFRCPSP.

Algorithm 3.1 shows the steps performed by the FSGS in scheduling a single

activity i 2 N . For the purposes of this initial exposition, it is assumed that

the schedule produced by Algorithm 3.1 is time-feasible, and therefore that the

unscheduling step is not required.

58 4. The GFRCPSP

In Algorithm 3.1, � i denotes the remaining principal resource requirement of

activity i , and ' rt denotes the remaining availability of resourcer 2 R at time t.

l it denotes the time since the last change in resource allocation for activityi at

time t. Note that, for the sake of brevity, the parameter updates that occur at

the end of eachwhile loop, as well as the allocation of independent resource, have

been omitted from Algorithm 3.1. Note also that for eachi 2 V, l it is initialised

to lmin . The steps of Algorithm 3.1 are outlined below.

Firstly, t is initialised in line 1. While either the current resource block of

activity i is incomplete or its resource requirement has not yet been met (line 2),

resource is allocated to activityi one period at a time. When determining the

amount of principal resource to allocate to activityi at time t, two situations may

occur. 1. If the current resource block has not yet satis�ed the minimum block

length (line 3), the current resource block is extended into the next time period

by setting qr � it = qr � i;t � 1. Alternatively, 2. if the minimum block length has been

met (line 5), a new block with a di�erent level of resource allocation can begin. In

this situation, the following three cases are considered:

(i) (lines 6, 7) If there is su�cient resource availability, then the current re-

source block is extended by settingqr � it = qr � i;t � 1.

(ii) (lines 8-16) If enough resource is available to satisfy the minimum resource

allocation to activity i for at least one minimum block length, then a new block

can be started. The maximum principle resource allocation to this block is limited

by the following considerations: 1. a new block must satisfy the minimum block

length, and hence principle resource allocation cannot exceed� i =lmin ; 2. the limited

resource availability during the time periodst; : : : ; t + lmin � 1 cannot be exceeded;

4. The GFRCPSP 59

3. the greediness parameter� i limits principle resource allocation through the

function wi =(di + � i). Additionally, if t is before the earliest �nish time ofi , the

principle resource allocation is also limited by' i =(EF i � t) in order to reduce

unnecessary over-allocation. If a new block of increased resource allocation can

begin, an additional check is made in line 15 to ensure that the increased resource

allocation does actually speed-up processing. If not, then the current resource

block is continued.

(iii) (lines 17, 18) If there is not enough resource available to continue the

current block, nor satisfy the minimum resource allocation for one minimum block

length, then the activity can not be completed, and the activity is rescheduled to

start at the next resource feasible time period.

Having determined the principal resource allocation to activityi at time t, if

fewer than two minimum block lengths remain until activity i is completed under

the current resource allocation, over-allocation of resource to activityi is limited

by setting qr � it = max
�

q
r � i

; � i =d � i
qr � it

e
�

in line 20. Finally, in line 21, the dependent

resource allocation is updated based on the principal resource allocation.

The FSGS ensures that each activity is scheduled feasibly with respect to the

project resource constraints. This however may lead to violations of particular

maximal time-lags. In this case, an unscheduling step can be performed in an

attempt to restore feasibility. The unscheduling step shown in Algorithm 3.2 is

invoked if the latest start time of activity i is missed in line 1 of Algorithm . The

unscheduling step can easily be adapted for the alternative situation where it is

the latest �nish of activity i that is missed.

In Algorithm 3.2, t denotes the time period in which the unscheduling step was

60 4. The GFRCPSP

4. The GFRCPSP 61

invoked andS denotes the set of scheduled activities. The unscheduling step begins

by computing the sets of activities which have starts and �nishes that determine

the latest start time of activity i in lines 1 and 2. These sets are denoted byUs
i and

Uf
i respectively. The set of activities that must be unscheduled, denoted byUi , is

computed in line 3 as the activities inUs
i and Uf

i , plus any activities j 2 S with a

start time later than the earliest start time of any activity in Us
i or Uf

i . Following

the unscheduling of the activities inUi , the earliest start times of the activities in

Us
i and the earliest �nish times of the activities inUf

i , are increased by the amount

by which they were missed, and the activity time-windows are updated based on

the activities that remain in S. The unscheduled activities are then rescheduled

using Algorithm 3.1.

62 4. The GFRCPSP

We refer to the FSGS which makes use of the unscheduling step as the FSGS-

U. FSGS-U is a recursive and computationally expensive procedure and therefore

a maximum number of unscheduling attempts is speci�ed upon implementation.

If this maximum is reached, then the schedule is completed without the use of

the unscheduling step. Hence, although the FSGS and FSGS-U always produce

resource feasible schedules, neither heuristic can guarantee that these schedules

are also time-feasible.

Example

To illustrate the FSGS and unscheduling step outlined above, we provide an ex-

ample of their application to the GFRCPSP instance shown in Figure 4.1. Fig-

ure 4.3 shows the schedule outputted by Algorithm 3.1 using the parameters

� = (2 ; 1; 3; 5; 4), � = (0 ; 0; 0; 0; 1), and � = (0 ; 0; 0; 0; 1) after performing the

following steps:

ˆ Activity 2 (� 2 = 0, � 2 = 0) is started at time 0 and allocated its maximum

resource limit of 4 units. It �nishes at time 3.

ˆ Activity 1 (� 1 = 0, � 1 = 0) is started without delay at time 0 and allocated

the remaining 2 available units of resource. At time 3, its resource allocation

can be increased. The 9 units of resource it still requires are spread over the

2 periods to its earliest �nish time of 5, resulting in an allocation of 9/2 units

per period.

ˆ Activity 3 (� 3 = 0, � 3 = 0) is started at its earliest feasible start time of 5

and allocated its maximum of 4 units of resource. It �nishes at time 8.

4. The GFRCPSP 63

ˆ Activity 5 (� 5 = 1, � 5 = 1) is scheduled with one period of enforced delay at

time 6 and the 2 remaining resource units at time 6 and 7 are allocated to

it. Its resource allocation can increase once activity 3 ends. Since activity

5's earliest �nish time is 11, 11/3 units of resource are allocated over the

remaining 3 time periods.

ˆ Activity 4 (� 4 = 0, � 4 = 0) is attempted to be scheduled at its earliest start

time of 8. However, this violates its latest start time is 6, caused by the

maximum time-lag of length 3 from the �nish of activity 2.

Figure 4.3: Schedule to the GFRCPSP instance shown in Figure 4.1 generated by

Algorithm 3.1 with the input parameters � = (2 ; 1; 3; 5; 4), � = (0 ; 0; 0; 0; 1), and

� = (0 ; 0; 0; 0; 1). This schedule violates a maximum time-lag between the �nish

of activity 2 and the start of activity 4.

Since a maximum time-lag has been violated at timet = 8, Algorithm 3.1

invokes the unscheduling step shown in Algorithm 3.2. Activity 2 is the only

activity with a precedence relationship that a�ects the latest start of activity 4

and soUs
4 = ; and Uf

4 = f 2g. All activities have start times greater than or equal

64 4. The GFRCPSP

to the start time of 2 and soU4 = f 1; 2; 3; 4; 5g. These are unscheduled, and the

earliest start time of activity 2 is updated to ES2 = 0 + (8 � 6) = 2. The earliest

and latest start and �nish time of the other activities are reset to their original

values. Algorithm 3.1 is then used to reschedule all of these activities.

As before, activity 2 is scheduled �rst, although this time its earliest feasible

start time is ES2 = 2 and it �nishes at time 5. Activity 1 can be started at time

0 with its maximum resource limit of 5. Its resource allocation is decreased to

its minimum required allocation of 2 units at time 2, and it �nishes at time 5.

Activity 3 is started immediately after the �nish of activity 2, at time 5 and it

�nishes at time 8. Considering its enforced delay, activity 5 starts at time 6 and

uses the 2 available units of resource. At time 8, the resource allocation to activity

5 is increased to 11/3 and it �nishes at time 11. Finally, activity 4 is scheduled

to start at time 8, and since activity 2 �nishes at time 5 its maximum time-lag is

now satis�ed. Activity 4 �nishes at time 12. This schedule is now feasible, and is

shown in Figure 4.4.

Figure 4.4: Schedule produced by applying the unscheduling step in Algorithm 3.2

to the schedule shown in Figure 4.3.

4. The GFRCPSP 65

4.4.2 Genetic algorithm

We propose the following genetic algorithm (GA) to search over the space of input

parameters to the FSGS described in the previous section. As explained above, an

individual solution consists of an activity list representation� , a list of greediness

parameters� , and a list of delay parameters� .

An initial population of solutions is constructed by generating activity list

representations� randomly, subject to the topological ordering that results from

the project precedence constraints. The greediness and delay parameters for each

solution in the initial population are all set to zero. Hence, the FSGS will behave

greedily in the initial population.

The `�tness' of a feasible solution is measured by its makespan, whilst the

�tness of an infeasible solution is measured as the total number of time periods by

which precedence relationships are missed in that schedule, i.e.
P

i 2 N max(0; si �

LS i) + max(0 ; f i � LF i), plus some �xed infeasibility penalty.

New individuals are obtained using the adapted two-point crossover of Franck

et al. (2001), which takes two parent solutions as input, i.e. a `father' and `mother',

and outputs two o�spring solutions, i.e. a `son' and a `daughter'. Considering the

son's activity list, activities before the �rst randomly selected crossover point are

inserted in the order that they appear in the father's activity list. Activities

between the �rst and second crossover points are inserted in the order that they

appear in the mother's activity list, and the remaining activities after the second

crossover are taken again from the father's activity list. If however, one of the

crossover points fall in the middle of a cycle structure, the remaining activities of

the cycle structure are inserted immediately into the son's activity list in the order

66 4. The GFRCPSP

that they appear in the relevant parent's activity list. This crossover is designed

to keep activities that are related by a maximal time-lag close together in the

resulting activity list, thus increasing the likelihood of generating feasible o�spring.

On the greediness and delay parameter lists, this crossover simply behaves like

the standard two-point crossover of Hartmann (1998). The daughter solution is

produced by reapplying the crossover with the roles of father and mother reversed.

The mutation operator of Hartmann (1998) is applied to the activity of each

o�spring solution. If feasible with respect to the project precedence relationships,

this operator swaps each activity with the activity that follows it with probability

p� . For each i 2 N , � i is mutated with probability p� , and � i is mutated with

probability p� . When � i is mutated, half of the time it is either increased or

decreased by one (with equal probability), and the other half of the time, a new

value for � i is chosen randomly from within its bounds. When� i is mutated, it is

replaced by a random integer from within its bounds.

Having doubled the original population size, the topnelite solutions are carried

into the next generation. Following this,nrand randomly generated new solutions

are carried forward. The remaining spaces in the next generation are then chosen

using 3-tournament selection from the current generation. The next generation

has the same size as the initial population.

4.5 Computational study

This section compares the performance of the algorithms for solving the GFRCPSP

we have presented in this chapter. We begin by brie�y summarising each of the

algorithms that have been included in this computational study:

4. The GFRCPSP 67

ˆ MIP : The MIP presented in Section 4.3 and based on the FP-DT3 model

from Naber and Kolisch (2014).

ˆ GGA : A greedy FSGS without the unscheduling step, embedded into the

GA from Section 4.4.2 which searches only over activity list representations.

ˆ FGA : The FSGS from Section 4.4.1 without the unscheduling step, embed-

ded into the GA from Section 4.4.2.

ˆ FURS : The full FSGS-U from Section 4.4.1, applied to randomly sampled

solutions.

ˆ FUGA : The full FSGS-U as described in Section 4.4.1, embedded into the

GA from Section 4.4.2.

ˆ FGAU : The same as FGA, however at the end of each generation,nreschedule

of the least infeasible solutions are rescheduled using the full FSGS-U. These

solutions are recorded but not added to the population.

By comparing the results of GGA, FGA and FUGA, the bene�t of the FSGS and

the unscheduling step can be evaluated. Similarly, by comparing the results of

FURS and FUGA, the impact of the genetic algorithm can be assessed.

The population size for each metaheuristic algorithm was set to 500. The

selection parameters used by the GA werenelite = 10, and nrand = 30, leaving

500� nelite � nrand = 460 individuals to be chosen from the previous generation

through 3-tournament selection. The mutation rates used by the GA werep� =

5%, p� = 5%, and p� = 0:5%. Whenever the FSGS-U was used, the unscheduling

step was invoked up to a limit of 20 times, after which the remaining activities were

scheduled without the use of the unscheduling step. The metaheuristic algorithms

68 4. The GFRCPSP

were each given a limit of 50,000 schedules before their best found solutions were

reported, whilst the MIP was solved using a time limit of 2 hours. All of the

solution methods were written in Python 3.6.8 and run on a single thread of a

2.3GHz Intel Xeon E5-2699 v3 processor. The MIP was solved using Gurobi 8.1.0.

Before being solved by any of the methods, a basic pre-processing procedure

was applied to each instance to compute the earliest and latest start and �nish

times of each activity. This procedure is outlined in detail in Appendix A.

4.5.1 Test instances

The six algorithms described in the previous section have been applied to �ve sets

of GFRCPSP test instances of di�ering size and di�culty. The instances in these

test sets have been created by extending the ProGen/max project generator of

Schwindt (1996) to generate instances that allow for �exible resource allocation to

activities.

The �ve developed test sets each contain 90 test instances, resulting in a total

of 450 instances. The instances in these �ve test sets contain 10, 20, 30, 50 and

100 activities respectively, and are correspondingly referred to as P10, P20, P30,

P50 and P100.

The order strength (OS), resource strength (RS) and resource factor (RF)

parameters (Kolisch and Sprecher, 1997) have been controlled when generating

these GFRCPSP instances. OS controls the number of precedence relationships in

the project network, RS measures the restrictiveness of the resource availability,

and RF indicates the average number of resources required by each activity. Since

RS has the largest e�ect on the di�culty of solving an instance, only this parameter

4. The GFRCPSP 69

has been varied across the instances generated in each test set, with 30 instances

being generated for each of the RS values 0.05, 0.15, 0.25. For every instance, OS

is set to 0.4, and RF is set to 0.75. Each instance involves �ve resources, and the

minimum block length is chosen randomly to be either 2, 3 or 4.

The �ve sets of test instances used in this computational study and the code

used to generate them can be found athttps://github.com/boldm1/GFRCPSP_

instgen .

4.5.2 Computational results

This section reports and analyses the results from applying the six algorithms

listed above to the P10, P20, P30, P50, P100 test sets.

We �rst report the number of instances for which a feasible solution was found

by each algorithm. This is shown in Table 4.3 for each test set. Observe that

FUGA is the only algorithm to �nd a feasible solution to all 450 test instances.

Test set MIP GGA FSGA FURS FUGA FGAU

P10 90 90 90 90 90 90

P20 90 89 90 90 90 90

P30 87 86 90 90 90 90

P50 35 86 90 90 90 90

P100 32 60 75 73 90 89

Table 4.3: Number of instances for which a feasible solution was found.

We now examine the results shown in Figure 4.5. Each row of plots corre-

sponds to a di�erent set of test instances, as labelled down the left-hand-side. The

left-most plots shows the average percentage gap to the best known solution for

each heuristic algorithm, as a function of the number of schedules that have been

70 4. The GFRCPSP

searched. When an algorithm failed to �nd a feasible solution to a given instance,

a `penalty gap' of 50% was applied. If an algorithm fails to �nd a feasible so-

lution to at least one instance in a test set, its corresponding line is dashed to

emphasise that the plotted value is an estimate that is dependent on this choice

of penalty gap. The middle plots show the number of instances for which each

heuristic algorithm �nds the best known solution, as a function of the number of

schedules that have been searched. Finally, the right-most plot of each row shows

the performance pro�le of each solution method; that is, a function showing the

proportion of instances solved to within� of the best known solution.

Looking at the �rst two plots of each row, it is clear that FUGA is the strongest

performing heuristic algorithm across all test sets, with its superiority becoming

more pronounced as the instances become larger. Across all the test sets, the

algorithms that make use of the unscheduling step (FURS, FUGA and FGAU)

�nd the better solutions in the early generations than the algorithms that do not

(GGA and FGA). However, only the algorithms that also use the GA (FUGA and

FGAU) maintain this advantage over the 50,000 schedules.

Looking at the performance pro�les, we can directly compare the MIP with

the heuristic algorithms. The MIP outperforms FUGA and the other heuristic

algorithms for the P10 test set, where it �nds a provably optimal solution for all

90 instances. The MIP remains the best performing algorithm for P20, where it

solves 77/90 instances to optimality. Despite also �nding an optimal solution to

77/90 instances for P30, the MIP fails to �nd a solution within 50% of the best

known solution for 9/90 instances, whereas FUGA �nds a solution within 5% of

the best known solution for 86/90 instances. For P50 and P100, the performance

4. The GFRCPSP 71

Figure 4.5: Left-most plots show average percentage gap to best known solution

for each heuristic algorithm, as a function of the number of schedules searched.

Middle plots show the number of instances for which each heuristic algorithm �nds

the best solution, as a function of the number of schedules searched. Right-most

plots show performance pro�le of each algorithm.

	Abstract
	Acknowledgements
	Declaration
	Contents
	List of Figures
	List of Tables
	Introduction
	Deterministic Resource-Constrained Project Scheduling
	The RCPSP
	Mixed-integer linear programming formulations
	Heuristic approaches

	The GRCPSP
	The FRCPSP
	The MRCPSP

	Robust Optimisation
	Background and motivation
	Single-stage robust optimisation
	Common uncertainty sets

	Two-stage Robust Optimisation
	Adjustable robustness
	Recoverable robustness
	K-adaptability

	The Generalised Flexible Resource-Constrained Project Scheduling Problem
	Introduction
	Problem description
	Precedence constraints
	Resource constraints

	Mixed-integer programming formulation
	Metaheuristic algorithm
	A flexible schedule generation scheme
	Genetic algorithm

	Computational study
	Test instances
	Computational results

	Case Study: The Sellafield nuclear decommissioning project
	Modelling the decommissioning problem
	Results

	Conclusion

	A Compact Reformulation of the Two-Stage Robust Resource-Constrained Project Scheduling Problem
	Introduction
	The two-stage robust RCPSP
	A compact reformulation
	The adversarial sub-problem
	Compact reformulation

	Computational experiments
	Instances
	Implementations
	Results

	Conclusion

	A Faster Exact Method for Solving the Robust Multi-Mode Resource-Constrained Project Scheduling Problem
	Introduction
	Problem description
	A compact formulation
	A Benders' decomposition approach
	The master problem
	The subproblem
	Optimality cuts
	Example

	Computational experiments and results
	Conclusions

	Recoverable Robust Single Machine Scheduling with Polyhedral Uncertainty
	Introduction
	Problem definition
	A general model for recoverable robustness
	Complexity of subproblems and compact formulations
	Matching-based formulation
	Assignment-based formulation

	Comparison of formulations
	Computational experiments
	Heuristics
	Exact models
	Model parameters

	Conclusions

	Investigating the Recoverable Robust Single Machine Scheduling Problem Under Interval Uncertainty
	Introduction
	Problem properties
	A 2-approximation algorithm
	Computational experiments
	MIP
	UB-SMSP
	Greedy heuristic

	Conclusions

	Conclusions
	GFRCPSP Pre-processing Procedure
	Supplementary Material for Chapter 5
	Non-integrality of the adversarial sub-problem
	Example of the warm-start procedure

	Supplementary Material for Chapter 7
	Omitted proofs
	Proof of Theorem 7.6
	Proof of Theorem 7.8

	Complete formulations
	General model
	Matching-based model
	Assignment-based model

	Bibliography

