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Abstract

This thesis considers the modelling and solving of a range of scheduling problems,

with a particular focus on the use of robust optimisation for scheduling in two-stage

decision-making contexts.

One key contribution of this thesis is the development of a new compact robust

counterpart for the resource-constrained project scheduling problem with uncer-

tain activity durations. Resource conflicts must be resolved under the assumption

of budgeted uncertainty, but start times can be determined once the activity du-

rations become known. This formulation is also applied to the multi-mode version

of this problem. In both cases, computational results show the clear dominance of

the new formulation over the prior decomposition-based state-of-the-art methods.

This thesis also demonstrates the first application of the recoverable robust

framework to single machine scheduling. Two variants of this problem are consid-

ered, in which a first-stage schedule is constructed subject to uncertain job pro-

cessing times, but can be amended in some limited way following the realisation

of these processing times. The first of these problems is considered under general

polyhedral uncertainty. Key results concerning the second-stage subproblem are

derived, resulting in three formulations to the full problem which are compared

computationally. The second of these problems considers interval uncertainty but
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II Abstract

allows for a more general recovery action. A 2-approximation is derived and the

performance of a proposed greedy algorithm is examined in a series of computa-

tional experiments.

In addition to these results on two-stage robust scheduling problems, a new

deterministic resource-constrained project scheduling model is developed which,

for the first time, combines both generalised precedence constraints and flexible

resource allocation. This model is introduced specifically for the application of

scheduling the decommissioning of the Sellafield nuclear site. A genetic algorithm

is proposed to solve this model, and its performance is compared against a mixed-

integer programming formulation.
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Chapter 1

Introduction

Scheduling has been one of the most active areas of operational research since

the mid-1950s, and continues to be very well-studied to this day. This comes

as no surprise given the broad range of fields for which scheduling is of critical

importance, including construction, engineering, manufacturing, transportation,

and computer science, to name just a few. Indeed, it is estimated that in 2020,

Advanced Planning and Scheduling (APS) software had a total global market value

of $1.5 billion1.

The work in this thesis contributes to this active area of research by develop-

ing and analysing a set of novel models and algorithms for a number of different

scheduling problems, with a particular focus on the application of robust optimi-

sation to problems with uncertain activity durations. The scheduling problems

considered in this thesis have each, to a greater or lesser extent, been motivated

by the specific challenges involved in the scheduling of the decommissioning of the

1https://www.statista.com/statistics/1238886/worldwide-advanced-planning-

scheduling-market/. Accessed: 29/03/2022

1

https://www.statista.com/statistics/1238886/worldwide-advanced-planning-scheduling-market/
https://www.statista.com/statistics/1238886/worldwide-advanced-planning-scheduling-market/
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Sellafield nuclear site.

Covering 6 square kilometers on the Cumbrian coast, the Sellafield site contains

more than 200 legacy nuclear facilities which together, house the world’s largest

inventory of untreated nuclear waste. The systematic dismantling of these facilities

and remediation of the site is a vast project, expected to take in excess of 100 years

to complete and cost over £90 billion (NDA, 2019). Given its scale and complexity,

it is crucial that this program is scheduled carefully and systematically in a manner

that accounts for all of the features and constraints of the site. In Chapter 4, a

model is specifically developed for scheduling the decommissioning of the site.

There exists a large degree of uncertainty surrounding the quantity and con-

dition of much of the waste contained within the oldest facilities on the Sellafield

site. When it comes to scheduling the decommissioning of the site, this uncer-

tainty primarily manifests itself as durational uncertainty in the decommissioning

activities. Therefore the development of scheduling approaches that are able to

account for this durational uncertainty are of significant interest to Sellafield. The

later chapters consider a range of scheduling problems, and are linked by their use

of robust optimisation to account for uncertainty in the durations of activities. So

although these later chapters do not directly reference Sellafield decommissioning,

their shared direction of research have been guided by this particular challenge.

Furthermore, the problems in these chapters also share a two-stage decision frame-

work in which a first-stage decision is made under the problem uncertainty, but can

be extended or amended once that uncertainty has been resolved in the second-

stage.

The problems considered in this thesis can also be broadly grouped by the
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following two categories: 1.resource-constrained project scheduling problems, and

2. single machine scheduling problems. Resource-constrained project scheduling,

as considered by Chapters 4, 5 and 6, is concerned with the assignment of multiple

types of scarce resource to a set of project activities which are related through

a network of logical precedence relationships. Single machine scheduling, on the

other hand, involves the ordering of a set of jobs on a single machine, with the

aim of optimising some objective. In Chapters 7 and 8 we consider two versions

of this problem with the objective of minimising the sum of job completion times,

subject to uncertainty.

The content and of contributions of each of the chapters of this thesis are

outlined below.

• Chapter 2: Deterministic Resource-Constrained Project Schedul-

ing. This chapter provides an overview of the most relevant existing lit-

erature that relates to the classic model for project scheduling known as

the resource-constrained project scheduling problem (RCPSP). A number of

extensions to this model that are considered in this thesis are also covered.

• Chapter 3: Robust Optimisation. This chapter serves to introduce

the framework of robust optimisation. Particular attention is paid to de-

velopments in two-stage robust combinatorial optimisation with the aim of

providing the necessary context for the work in Chapters 5-8.

• Chapter 4: The Generalised Flexible Resource-Constrained Project

Scheduling Problem. Motivated by the real-world Sellafield decommis-

sioning problem, this chapter introduces a novel extension to the determinis-

tic RCPSP that includes both generalised precedence constraints and flexible
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resource allocation. This new problem is referred to as the generalised flexi-

ble resource-constrained project scheduling problem (GFRCPSP). A mixed-

integer linear programming (MILP) formulation and genetic algorithm are

proposed to solve this problem, and a computational study demonstrates

the effectiveness of the genetic algorithm. The newly developed GFRCPSP

scheduling model is used to solve a version of the Sellafield decommissioning

problem.

A shortened version of this work was presented at the 17th International

Workshop on Project Management and Scheduling, 2021.

• Chapter 5: A Compact Reformulation of the Two-Stage Robust

Resource-Constrained Project Scheduling Problem. This chapter

considers the RCPSP with uncertain activity durations. The proposed ap-

proach makes use of a two-stage decision process and assumes that activity

durations lie in a budgeted uncertainty set. A new reformulation of the

second-stage problem is introduced, which enables the derivation of the first

compact robust counterpart to the full two-stage adjustable robust optimi-

sation problem. Computational experiments show that this compact for-

mulation can be solved using standard optimisation software significantly

faster than the prior decompostion-based state-of-the-art algorithm for solv-

ing this problem, reaching optimality for almost 50% more instances on the

same benchmark set.

This work has been published as Bold, M. and Goerigk, M. (2021). A

compact reformulation of the two-stage robust resource-constrained project

scheduling problem. Computers & Operations Research, 130:105232.
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• Chapter 6: A Faster Exact Method for Solving the Robust Multi-

Mode Resource-Constrained Project Scheduling Problem. The chap-

ter extends the formulation developed in Chapter 5 for application to the

two-stage robust multi-mode resource-constrained project scheduling prob-

lem. Results from this formulation are shown to dominate an improved

version of the prior state-of-the-art method for solving this problem.

This work has been submitted for publication as Bold, M., Goerigk, M.

(2022). A faster exact method for solving the robust multi-mode resource-

constrained project scheduling problem.

• Chapter 7: Recoverable Robust Single Machine Scheduling with

Polyhedral Uncertainty. This chapter considers a recoverable robust sin-

gle machine scheduling problem under general polyhedral uncertainty with

the objective of minimising the total sum of completion times. A specific re-

covery framework is considered in which up to ∆ distinct pairs of jobs can be

swapped when amending the first-stage schedule. Following its formulation

using a general recoverable robust framework, the structure of this prob-

lem is examined in detail to reveal a positive complexity result for matching

problems with a particular cost structure, resulting in the development of a

further two formulations for this problem. The relative strengths of these

models are compared computationally for the case of budgeted uncertainty.

This work has been submitted for publication as Bold, M., Goerigk, M.

(2022). Recoverable Robust Single Machine Scheduling with Polyhedral Un-

certainty.
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• Chapter 8: Investigating the Recoverable Robust Single Machine

Scheduling Problem Under Interval Uncertainty. This chapter also

considers the recoverable robust single machine scheduling problem with the

objective of minimising the total sum of completion times, but does so in

the context of interval uncertainty and a more general recovery action, which

specifies that at least ∆ jobs share the same position in the first and second-

stage schedules. A handful of important special cases of this problem are

shown to be polynomially solvable, before a 2-approximation algorithm is

derived for the full problem. Computational experiments examine the per-

formance of an exact MILP formulation and the approximation algorithm,

and demonstrate the strength of a proposed polynomial-time greedy heuris-

tic.

This work has been published as Bold, M. and Goerigk, M. (2022). In-

vestigating the recoverable robust single machine scheduling problem under

interval uncertainty. Discrete Applied Mathematics, 313:99-114.

• Chapter 9: Conclusions. Concluding remarks are made, and a number

of possible suggestions for building on the work in the thesis are given.

As noted in the summaries above, Chapters 5, 6, 7 and 8 have each been have

been either published or are currently in submission as standalone papers. These

have been included here in their published or submitted form, with only very

minor edits to frame them into the context of the thesis. These chapters can each,

therefore, be read as self-contained pieces of work and as a result, may contain

material that overlaps to some degree with each another and with the literature

reviews presented in Chapters 2 and 3.



Chapter 2

Deterministic Resource-Constrained

Project Scheduling

This chapter surveys the most relevant existing literature regarding the deter-

ministic resource-constrained project scheduling problem (RCPSP), as well as the

extensions and variants of this problem that are also considered in the work of this

thesis.

Before beginning this review, we make note of the numerous survey papers

(Herroelen et al., 1998; Brucker et al., 1999; Kolisch and Padman, 2001; Hart-

mann and Briskorn, 2010, 2022) and books (Demeulemeester and Herroelen, 2006;

Weglarz, 2012; Artigues et al., 2013a; Schwindt et al., 2015) on the RCPSP and

deterministic project scheduling more generally, many of which have aided the

writing of this chapter.

7
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2.1 The RCPSP

Stated briefly, the RCPSP consists of finding a feasible project schedule that

minimises the overall project completion time. Given its numerous applications

throughout industry, as well as its theoretical interest, the RCPSP has been one of

the most widely-studied problems in operational research since a model was first

proposed by Pritsker et al. (1969).

A project consists of a set of activities V = {0, 1, . . . , n, n+1}, where 0 and n+1

are dummy activities that represent the start and end of the project, respectively.

Each activity i ∈ V has a duration di and a requirement rik of each resource

type k ∈ K. Each resource is assumed to be renewable, meaning there is an

constant availability of Rk in each time period of the project scheduling horizon T .

The project activities are related through a set of strict finish-to-start precedence

relationships. These can be represented on a directed acyclic graph G = (V,E),

where arcs E capture the relationships between the activities V . The activities are

also assumed to be non-preemptive, meaning they must be completed in a single

processing phase. The aim of the RCPSP is to determine a resource and precedence

feasible schedule, i.e. a start time for each activity i ∈ V , that minimises the overall

project duration, known as the makespan. An example RCPSP instance is shown

in Figure 2.1 and its optimal solution is given in Figure 2.2.
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Figure 2.1: An example RCPSP instance involving seven non-dummy activities

and a single renewable resource with R1 = 6.
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Figure 2.2: An optimal solution to the RCPSP instance shown in Figure 2.1.

Blazewicz et al. (1983) showed that the RCPSP is strongly NP-hard. As a

result, exact mixed-integer programming (MILP) formulations can typically only

be solved for moderately-sized instances. However, its severe complexity is one of

the reasons the RCPSP has garnered so much academic attention, with it having

become a testing ground for many general metaheuristic optimisation approaches.

Before reviewing some of these approaches, we first present a couple of MILP

formulations.
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2.1.1 Mixed-integer linear programming formulations

Although there exist many alternative formulations, here we detail only the two

most relevant to our work. The first is the original formulation proposed by

Pritsker et al. (1969):

min
∑
t∈T

txn+1,t (2.1)

s.t.
∑
t∈T

xit = 1 ∀i ∈ V (2.2)

∑
t∈T

txjt ≥
∑
t∈T

txit + di ∀(i, j) ∈ E (2.3)

∑
i∈V

t∑
τ=max{0,t−di+1}

rikxiτ ≤ Rk ∀k ∈ K, t ∈ T (2.4)

xit ∈ {0, 1} ∀i ∈ V, t ∈ T, (2.5)

where xit = 1 if activity i starts in time period t, and xit = 0 otherwise. Observe

that the activity start times are tracked using
∑

t∈T txit for each i ∈ V . Constraints

(2.2) ensure the non-preemption of each activity by allowing allowing only a single

start time for each activity, whilst (2.3) and (2.4) enforce the precedence and

resource constraints respectively.

This model is referred to as a discrete-time formulation, since it defines a set

of binary variables for each period in the time horizon. This discrete-time formu-

lation was refined by Christofides et al. (1987) who strengthened the precedence

constraints (2.3) by ‘disaggregating’ them into separate constraints for each of the

time periods in the project horizon.

Note that the project precedence constraints enforce a time-window of possible

start times for each activity i ∈ V , given by {ESi, . . . , LSi}, where ESi and LSi
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denote the earliest and latest start times of activity i. These time-windows can

be computed in a simple pre-processing step. By restricting the creation of the xit

variables to only the feasible time-windows of each activity, the number of variables

required by model (2.1-2.5) can be greatly reduced.

Although this discrete-time model generally produces strong LP relaxations,

even when the model variables are pruned using the feasible time-windows of each

activity, this formulation involves a pseudo-polynomial number of variables and

constraints and therefore suffers particularly poor performance for instances with

long time horizons.

Building on the work of Alvarez-Valdès and Tamarit (1993), Artigues et al.

(2003) proposed an alternative flow-based continuous-time MILP formulation for

the RCPSP. Their formulation makes use of continuous flow variables fijk to track

the amount of resource k that is transferred from activity i to activity j on its

route through the network from the dummy source activity 0 to the dummy sink

activity n + 1. Additionally, binary variables xij indicate whether or not activity

i is processed before activity j, and variables Si define the activity start times.

Using these variables this flow-based formulation can be written as

min Sn+1 (2.6)

s.t. xij = 1 ∀(i, j) ∈ E (2.7)

S0 = 0 (2.8)

Sj ≥ Si + di −M(1− xij) ∀i, j ∈ V (2.9)

fijk ≤ Nxij ∀i, j ∈ V, k ∈ K (2.10)∑
j∈V

fijk = rik ∀i ∈ V, k ∈ K (2.11)
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∑
i∈V

fijk = rjk ∀j ∈ V, k ∈ K (2.12)

fijk ≥ 0 ∀i, j, k ∈ V (2.13)

xij ∈ {0, 1} ∀i, j ∈ V, (2.14)

where r0k = rn+1,k = Rk for each k ∈ K, and M and N are constants that are

large enough to trivially satisfy their corresponding constraints when required.

Constraints (2.7) capture the original project precedence constraints. The activity

start times are determined by (2.8) and (2.9), which ensure that the start times

respect the precedences defined by the xij variables. Constraints (2.10-2.12) are

the resource flow conservation constraints.

The network formed by the flow of resource from source 0 to sink n + 1 is an

extension of the original project network. As shown by Bartusch et al. (1988),

the RCPSP can be reduced to determining the optimal set of additional arcs

to include in this extension of the original project network. This observation is

based on the consideration of so-called forbidden sets. Introduced by Igelmund and

Radermacher (1983a,b), a forbidden set F ⊆ V is defined to be any set of activities

that are not precedence-related, such that
∑

i∈F rik > Rk for some k ∈ K. That is,

a forbidden set is a set of activities that cannot be executed in parallel only because

they would violate resource constraints. A minimal forbidden set is a forbidden

set with no subsets that are also forbidden sets. Bartusch et al. (1988) show that

the RCPSP is equivalent to the problem of optimally selecting a set X ⊆ V 2 \ E

of additional precedence constraints, known as a sufficient selection, such that

G(V,E ∪ X) is acyclic and contains no minimal forbidden sets. In a solution

to formulation (2.6)-(2.14), the xij variables exactly define a set of additional
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precedence constraints X which resolve the resource conflicts, and the flow of

resource, given by the fijk variables, is directed through the extended network

G(V,E ∪X). The sufficient selection corresponding to the optimal solution shown

in Figure 2.2 is given by {(2, 4), (4, 6), (6, 7)}. The resulting extended network and

flow of resource is shown in Figure 2.3.
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Figure 2.3: Resource flow corresponding to the optimal solution given in Figure

2.2. The sufficient selection given by the dashed arcs, and flow of resource is shown

by the arcs in red.

Unlike the time-based formulation, the flow-based formulation contains a poly-

nomial number of variables and constraints. However it yields a weak LP relaxation

as a result of its use of Big-M constraints. This formulation is of particular rel-

evance because its separation of the resource allocation and scheduling variables

enables the two-stage scheduling approach that is considered in chapters 5 and 6.

A number of other formulations exist for the RCPSP including, notably, a

set of event-based continuous-time formulations. For an extensive comparison of

MILP formulations for the RCPSP, including the discrete-time and flow-based
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formulations stated above, see Koné et al. (2011, 2013).

Although we do not cover them in any detail here, we briefly mention that tai-

lored branch and bound (B&B) approaches are typically able to exploit the prob-

lem structure much more effectively than the generic solution approaches used in

off-the-shelf mathematical solvers. B&B approaches therefore usually obtain bet-

ter computational results than can be achieved by directly passing a full MILP

formulation to one of these solvers. Most early research regarding the RCPSP was

concerned with the development of different branching schemes for the incremental

extension of the solution schedule. One such scheme is based on the removal of

minimal forbidden sets, as described above. The reader is referred to Demeule-

meester and Herroelen (2006) for an extensive review of B&B and lower bounding

procedures for the RCPSP.

2.1.2 Heuristic approaches

Given its complexity, a large proportion of literature relating to the RCPSP is

concerned with the development of scalable heuristic approaches. Here we briefly

outline some of the key developments in this regard, focusing particularly on the

application of genetic algorithms in preparation of Chapter 4.

Many heuristic scheduling methods are built upon a schedule generation scheme

(SGS). An SGS constructs a feasible schedule from a topologically-ordered (with

respect to the project precedences) list of the project activities (such a list is

referred to as an activity list). There exist two types of SGS, the serial SGS and

the parallel SGS. The serial SGS iterates through the activity list and schedules

each activity at the earliest precedence and resource feasible time period. On the
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other hand, the parallel SGS iterates through time periods in the project horizon

and schedules as many precedence and resource feasible activities as possible at

each time period, doing so in the order dictated by the activity list.

The simplest type of heuristics for the RCPSP are known as priority-rule heuris-

tics. These algorithms simply specify some rule for generating activity lists and

decodes them using an SGS. Examples of classic priority-rules include shortest

processing time, latest finish time or most total successors. For an analysis of

priority-rules for scheduling, see Kolisch (1996a,b). The application of a priority-

rule to generate a single schedule is referred to as a single-pass approach. More

commonly however, different activity lists and SGS types are combined repeatedly

to generate many different schedules in a so-called multi-pass approach. Although

priority-rule heuristics are some of the oldest and most basic heuristics for the

RCPSP, their simplicity and computational speed mean that they remain widely

used, and form the basis of many more complex metaheuristic approaches.

Although countless types of metaheuristics have been proposed for solving the

RCPSP including simulated annealing, tabu search, ant colony optimisation and

particle swarm optimisation, among others, here we concentrate exclusively on the

use of genetic algorithms (GA). This is for two reasons. Firstly, GAs are consis-

tently among the most popular and best performing metaheuristic approaches for

the RCPSP, and secondly, a GA is proposed to solve the project scheduling model

developed in Chapter 4. For a thorough review of heuristics and metaheuristics for

the RCPSP, including a number of genetic algorithms, see Kolisch and Hartmann

(1999), Hartmann and Kolisch (2000) and Kolisch and Hartmann (2006).

First proposed by Holland (1975), GAs take their inspiration from the biolog-
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ical process of evolution. They work by strengthening a population of candidate

solutions over a course of generations, with new solutions being created by ‘breed-

ing’ and ‘mutating’ existing solutions using a so-called crossover and mutation

operators. The best solutions survive to the next generation and gain the chance

to spread their characteristics further through the population, whilst the weaker

solutions are deleted.

Considering the RCPSP, activity lists provide a very natural encoding on which

a GA can operate. Another encoding frequently used in the literature is the random

key representation, which assigns a real number between 0 and 1 to each project

activity that determines its priority in the schedule. As mentioned above, many

of the strongest heuristics for solving the RCPSP are GAs. There are too many

papers that propose GAs for the RCPSP to exhaustively list them here, so instead

we only mention the strongest and most notable of these methods.

Hartmann (1998) proposed a GA based on an activity list encoding, and used

the serial SGS to schedule these lists. Their approach employs a so-called two-

point crossover, which has since become a standard feature of GAs for project

scheduling. This works by taking two ‘parent’ solutions, i.e. a ‘mother’ and

‘father’, and choosing two random crossover points. The child solution inherits

the activity ordering of its father up to the first point, the activity ordering of

its mother between the two points, and the ordering of the remaining activities

from its father again after the second point. An example of this crossover is

shown in Figure 2.4. Note that a second child can be generated by switching the

roles of the two parent solutions. In the first review of heuristic methods for the

RCPSP given by Hartmann and Kolisch (2000), this GA was the best performing
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algorithm. Alcaraz and Maroto (2001) extended this GA to include an extra gene

which determines whether the serial SGS is used to do forwards or backwards

scheduling. Similarly, Hartmann (2002) strengthened the results from Hartmann

(1998) by including a gene to choose between the use of the serial or the parallel

SGS. Hindi et al. (2002) also proposed a similar GA to Hartmann (1998), but

suggested an alternative strategy for building the initial population of solutions.

1 3 2 56 4 7

1 3 2 5 764

1 2 5 374 6

father

child

mother

Figure 2.4: Example of the two-point crossover first proposed by Hartmann (1998).

Valls et al. (2005) demonstrate the effectiveness of a forward-backward justifi-

cation technique that involves right-shifting then left-shifting the project activities

to obtain a better schedule. They subsequently employed this technique in a GA

in Valls et al. (2008). Their approach remains among the strongest metaheuristic

approaches for solving the RCPSP. This work inspired a number of other GAs that

also made use of this forward-backward improvement step, including Debels and

Vanhoucke (2007), Wang et al. (2010), Gonçalves et al. (2011) and Zamani (2013).

More recent approaches have tended to combine elements from various different

metaheuristic approaches in so-called hybrid metaheuristics. Particularly effective

examples of hybrid GAs include Proon and Jin (2011), who added a local neigh-
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bourhood search to their crossover operator, and Lim et al. (2013), who made use

of a simulated-annealing-type search heuristic. Elsayed et al. (2017) propose an

algorithm which adapts its use of metaheuristic algorithm depending on its perfor-

mance on the instance in question. Pellerin et al. (2020) present a computational

comparison of an extensive list of hybrid metaheuristic approaches for solving the

RCPSP, including those mentioned here.

2.2 The GRCPSP

The basic finish-to-start precedence relationships in the classic RCPSP limit its

suitability for modelling many real-world scheduling problems that include fea-

tures such as processing time windows, fixed start times, setup times, deadlines

and minimal and maximal overlap of activities. Given the common occurrence of

such constraints, the generalisation of the precedence constraints of the RCPSP

is one of the earliest and most widely-studied extensions of this problem. It is

worth noting that this extension has been referred to under many different names

including the resource-constrained project scheduling problem with time-windows

(Bartusch et al., 1988), the resource-constrained project scheduling problem with

minimum and maximum time-lags (RCPSP/max) (Neumann and Zhan, 1995),

the generalised resource-constrained project scheduling problem (GRCPSP) (De-

meulemeester and Herroelen, 1997) and the resource-constrained project schedul-

ing problem with generalised precedence relations (De Reyck and Herroelen, 1998).

Specifically, generalised precedence constraints extend the concept of the basic

finish-to-start relationship in the standard RCPSP to include start-to-start, start-

to-finish, finish-to-start and finish-to-finish relationships, as well as minimum and



2. Deterministic Resource-Constrained Project Scheduling 19

maximum time-lags. A minimum time-lag specifies the minimum number of time

periods that must elapse between the predecessor and successor, whilst a maximum

time-lag specifies the maximum number of time periods that can elapse between the

predecessor and successor. The four types of precedence relationships can easily be

converted into one another by adjusting the associated time-lag to account for the

required addition or subtraction of the relevant activity durations (see Bartusch

et al. (1988)). Observe also that maximum time-lag constraints can be converted

into negative minimum time-lag constraints. For example consider the constraint

sj ≤ fi+ℓ, that is, a maximum time-lag of length ℓ ≥ 0 from fi to si, where fi and

sj denote the finish time of i and the start time of j respectively. This relationship

can be rewritten as fi ≥ sj−ℓ, which exactly defines a minimum time-lag of length

−ℓ going from sj to fi.

Having pre-processed all the precedence constraints into minimum time-lag

start-to-start type, they can be represented on a directed graph as was the case

with the RCPSP. As a result of the maximum time-lags however, this graph may

contain cycles. A positive length cycle corresponds to a logical inconsistency within

the project precedences, e.g. start a before b, and start b before a, and as a result

a GRCPSP instance is feasible with respect to its precedence constraints if and

only if its precedence network contains no cycles of positive length. This can be

checked straightforwardly in O(|V |3) time by implementing the Floyd-Warshall

algorithm to compute a distance matrix containing the longest path between each

pair of project activities.

The presence of these cycles make the GRCPSP especially challenging. In par-

ticular, a feasible solution to a GRCPSP instance exists if and only if a feasible
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solution exists to each of the makespan-constrained RCPSP sub-problems corre-

sponding to the separate cycles in the project network. Hence, just determining

whether or not a feasible solution exists for a given GRCPSP instance is itself an

NP-complete problem (Bartusch et al., 1988).

Figure 2.5 shows an example GRCPSP instance involving the same seven non-

dummy activities as the example RCPSP instance from the previous section. This

instance contains two temporally-feasible cycles 3 → 6 → 3 and 2 → 5 → 7 → 2.

An optimal solution to this instance is shown in Figure 2.6.
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Figure 2.5: An example GRCPSP instance involving the same seven non-dummy

activities as the RCPSP instance in Figure 2.1, and one renewable resource with

R1 = 6.



2. Deterministic Resource-Constrained Project Scheduling 21

1

2

3

4

0
0 5 10 15

time

re
so

ur
ce

 R
1 5

6

7
1

2

3

4

56

Figure 2.6: An optimal solution to the GRCPSP instance given in Figure 2.5.

Bartusch et al. (1988) were the first to consider this problem and developed a

B&B algorithm that branches on the introduction of additional precedence con-

straints to break forbidden sets. Subsequently, other B&B algorithms also based

on this idea were also developed by Demeulemeester and Herroelen (1997) and

De Reyck and Herroelen (1998). An alternative time-based B&B approach was

presented by Dorndorf et al. (2000), who used constraint propagation to further

strengthen its performance. Cesta et al. (2002) proposed a constraint satisfaction

procedure that works by incrementally removing resource conflicts from a solution

that is precedence feasible. Bianco and Caramia (2011) presented a transforma-

tion of the generalised precedence constraints into zero time-lag finish-to-start

relationships by introducing dummy activities for each relationship into the origi-

nal network. Calculating the longest path through this transformed network gives

a lower bound to the original problem. Bianco and Caramia (2012) proposed a

B&B algorithm based on a new mathematical formulation, and strengthened their

algorithm by making use of Lagrangian relaxation. The most effective exact ap-

proaches for solving the GRCPSP have been developed by Schutt et al. (2013) and

de Azevedo et al. (2021), who both formulate and solve the problem as a constraint
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satisfaction problem.

A number of heuristic approaches have also been developed to solve the GR-

CPSP. Neumann and Zhan (1995) were the first to present a number of priority-rule

heuristics, and motivated by the decomposition result of Bartusch et al. (1988),

they proposed a strategy of generating sub-schedules for each cycle in the project

network, before bringing them together to create a full schedule for the original

problem. Franck et al. (2001) proposed and compared a number of heuristics for

the GRCPSP, including truncated B&B, filter-beam search, priority-rule heuris-

tics, a genetic algorithm and a tabu search. Ballestín et al. (2011) developed an

evolutionary algorithm based on a serial SGS and a crossover which attempts to

identify and pass-on good orderings of the activities involved in the cycle struc-

tures. Their approach is the most effective metaheuristic developed to date for

solving the GRCPSP.

2.3 The FRCPSP

The resource-constrained project scheduling problem with flexible resource profiles

(FRCPSP) is a more recent and less studied extension to the RCPSP than the

GRCPSP. First considered by Kolisch et al. (2003) in the context of pharmaceutical

research, the FRCPSP relaxes the assumption that each project activity has a

fixed duration and resource requirement, and instead assumes that only the overall

amount of resource required to complete each activity is known. The FRCPSP

aims to find a resource allocation to each activity at each period of its duration, as

well as a start time for each activity, in order to minimise the project makespan. In

addition to the usual precedence and resource constraints of the standard RCPSP,
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a solution to the FRCPSP must also satisfy lower and upper bounds on the per-

period allocation of each resource to each activity, as well as a minimum number of

periods for which resource allocation to an activity must remain constant, known

as the minimum block length. An example FRCPSP instance is given in Figure

2.7, and an optimal solution to this instance is shown in Figure 2.8.
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Figure 2.7: An example FRCPSP involving seven non-dummy activities and one

renewable resource with R1 = 6. The minimum block length is 2.
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Figure 2.8: An optimal solution to the FRCPSP instance given in Figure 2.7,

assuming a minimum block length of 2.
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As well as introducing this new scheduling model, Kolisch et al. (2003) proposed

an MILP formulation and greedy priority-rule heuristic to solve it. Since then, a

handful of other MILP formulations have been presented for this problem. Naber

and Kolisch (2014) introduced and compared four discrete-time MILPs, showing

the clear superiority of one of them, and more recently, Naber (2017) proposed the

first continuous-time MILP formulation for the FRCPSP. Baumann et al. (2015)

presented an MILP formulation for the problem with discrete resources.

As with most other project scheduling models, the difficulty of solving large

instances with exact methods means that a greater proportion of literature relating

to the FRCPSP has been concerned with the development of heuristic solution

approaches. For the FRCPSP with discrete resources Fündeling and Trautmann

(2010) introduced a priority-rule heuristic based on a greedy serial SGS. Ranjbar

and Kianfar (2010) used a GA based on a serial SGS to choose between a limited

set of resource allocation profiles for each activity. An alternative approach that

uses an MILP-based heuristic to sequentially schedule the project activities was

suggested by Zimmermann (2016). Considering the FRCPSP with continuous

resources, Schramme (2014) proposed both an MILP formulation and GA with a

non-greedy SGS for the problem without a minimum block length. Most recently,

Tritschler et al. (2017) developed a hybrid metaheuristic for the full FRCPSP

with continuous resources. Their approach is based on a non-greedy parallel SGS

embedded in a GA, with an additional variable neighbourhood search improvement

step.
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2.4 The MRCPSP

The final extension of the classic RCPSP that we cover in this chapter on determin-

istic project scheduling is the multi-mode resource-constrained project scheduling

problem (MRCPSP). Of all the extensions and variants of the classic RCPSP, the

MRCPSP has been the subject of the most number of publications, especially in

the domain of metaheuristics and GAs. However, since the MRCPSP is only con-

sidered in the context of robust scheduling in Chapter 6, here we just state the

nominal version of the problem, and defer a review of the robust MRCPSP to

Chapter 6. For a survey of the various formulations and solution approaches for

deterministic MRCPSP, see Węglarz et al. (2011), or one of the books mentioned

in the introduction of this chapter.

Introduced by Talbot (1982), the MRCPSP generalises the RCPSP to include

multiple options for the processing of each activity, allowing the modelling of

situations in which there is more than one way of executing project activities, with

each option having its own duration and resource requirements. This approach is

frequently used to model trade-offs between the duration and resource consumption

of activities. Furthermore, the MRCPSP allows for the inclusion of non-renewable

resources, i.e. resources with an overall availability for the entire project horizon.

These features introduce a significant degree of flexibility for modelling and solving

many real-world scheduling problems. Subject to all the same precedence and

resource constraints of the standard RCPSP, a solution to the MRCPSP must

determine the start time and processing mode for each project activity with the

objective of minimising the project makespan. An example MRCPSP instance and

its corresponding optimal solution are given in Figures 2.9 and 2.10, respectively.
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Figure 2.9: An example MRCPSP involving seven non-dummy activities and one

renewable resource with R1 = 6. The first modes for each activity corresponds to

the data for the RCPSP instance given in Figure 2.1.
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Figure 2.10: An optimal solution to the MRCPSP instance given in Figure 2.9.

The activity mode choices are written in brackets.

Although the MRCPSP shares similarities with the FRCPSP, since the MR-

CPSP only considers a discrete number of activity processing modes with constant

resource requirements across the periods of its durations, the MRCPSP does not

offer the complete flexibility in the choice of resource profiles that is afforded by

the FRCPSP.



Chapter 3

Robust Optimisation

In preparation for the main contributions of this thesis, this chapter aims to serve

as a primer on the robust optimisation framework, with a particular focus on its

application to combinatorial optimisation.

3.1 Background and motivation

Almost all real-world optimisation problems are subject to some degree of uncer-

tainty. As mentioned in the introduction, given that the quantity and condition of

the waste in some of Sellafield’s oldest facilities can only be estimated, the decom-

missioning of Sellafield is certainly no exception to data uncertainty. Although by

no means the first to do so, Ben-Tal and Nemirovski (2000) convincingly motivated

the need for methods that are specifically designed to account for uncertain data

when they demonstrated how deterministic solutions to uncertain optimisation

problems can become catastrophically infeasible for even the smallest perturba-

tions to the input data.

Sensitivity analysis and stochastic optimisation are two traditional approaches

27
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that are often used in an attempt to account for uncertain data, however both these

approaches have major drawbacks. Sensitivity analysis is a tool for assessing the

response of the output solution to changes in the input data, rather than a method

for constructing a solution that is robust with respect to the input data. Further-

more, joint sensitivity analysis of multiple parameters quickly becomes impractical

when the number of uncertain parameters begins to grow. Stochastic optimisation

on the other hand is indeed an approach that considers the problem uncertainty in

its solution. However, it makes the assumption that the uncertain data follows a

known probability distribution, and most commonly formulates a problem which

aims to optimise the expected long-term performance of the solution, subject to

constraints that must be satisfied with a certain probability. Despite its success-

ful application of this approach to many problems, stochastic optimisation does

suffer some significant disadvantages. Firstly, accurate probabilistic knowledge of

the uncertain data is very rare for real-world problems. Moreover, even if the

distribution of the uncertain data is known, stochastic optimisation is typically

very computationally intensive, and often results in problem instances that are

too large to solve in practice.

Robust optimisation presents a different approach to accounting for uncer-

tainty. In particular, robust optimisation makes no assumptions about the prob-

ability distributions of the inputs, but instead assumes that the uncertain data

can lie anywhere inside a so-called uncertainty set. The problem then becomes

to find solutions that are feasible for all the inputs in the specified uncertainty

set, whilst optimising for some measure of the worst-case performance. As well

as circumventing the need for detailed probabilistic information about the input
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data, robust optimisation tends to produce computationally tractable problems in

many more cases than stochastic optimisation. Additionally, the worst-case per-

formance considered by robust optimisation is, in and of itself, a valuable objective

that is relevant in many contexts, particularly when a solution can only ever be

evaluated once, as is frequently the case for engineering and construction projects,

e.g. bridges, flood barriers, decommissioning schedules etc.

Although the first publication relating to robust optimisation dates back to

the 1970s (Soyster, 1973), the field has mostly been developed over the previous

25 years following the introduction of new approaches to control the risk appetite

of the robust solution, and the generalisation of robust optimisation to a range

of classes of optimisation problems. Notable works that led the way to robust

optimisation becoming a thriving field of research include Ben-Tal and Nemirovski

(1998, 1999, 2000); El Ghaoui and Lebret (1997); El Ghaoui et al. (1998); Kouvelis

and Yu (1997); Bertsimas and Sim (2004). For an extensive survey of robust

optimisation, the reader is referred to Ben-Tal et al. (2009). A list of more concise

survey papers include Bertsimas et al. (2011), Gabrel et al. (2014), Gorissen et al.

(2015) and Goerigk and Schöbel (2016).

In the two sections that follow, the main concepts with respect to single-stage

and multi-stage robust optimisation are outlined, with particular attention paid

to its application to combinatorial optimisation problems. Reviews of the existing

literature specifically relating to robust optimisation for project scheduling and

single machine scheduling are deferred to the relevant chapters later in the thesis.
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3.2 Single-stage robust optimisation

Also known as min-max, strict, absolute or static robustness, this is the classic

approach to robust optimisation first developed by Soyster (1973) and refined by

the works of Ben-Tal, Nemirovski, El Ghaoui and their co-authors. In this case, the

decision-maker must determine a complete solution under the problem uncertainty.

Consider the following general nominal optimisation problem:

min f(x)

s.t. g(x) ≤ 0

x ∈ X ,

(3.1)

where f : Rn → R defines the objective function, g : Rn → Rm define a set of m

constraints, and X ⊆ Rn is some general set of variables. Denoting the uncertainty

set of possible scenarios as U ⊆ Rℓ, the robust version of this optimisation problem

can be written as

min max
ξ∈U

f(x, ξ)

s.t. g(x, ξ) ≤ 0 ∀ξ ∈ U

x ∈ X ,

(3.2)

where f(·, ξ) : Rn → R and g(·, ξ) : Rn → Rm for a fixed scenario ξ ∈ Rℓ.

This problem aims to find a solution with the best performance in the worst-case

scenario, such that the solution is feasible in all possible scenarios ξ ∈ U . By

replacing the objective of (3.2) by a variable t ∈ R and adding the constraints

t ≥ f(x, ξ) ∀ξ ∈ U ,
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without loss of generality, it can be assumed that the problem uncertainty resides

entirely in the constraint coefficients (see Gorissen et al. (2015) for details). How-

ever, given our interest in problems with uncertain costs, for clarity of exposition,

we continue to write the uncertainty in both the objective function and constraints

as is the case in (3.2).

Although the approach defined in (3.2) finds a solution with the best per-

formance in the worst-case scenario, it fails to consider that this solution may

perform poorly in non-worst-case scenarios. When the problem uncertainty affects

the objective function, regret is commonly used to define an alternative measure

of robustness that attempts to account for this, thereby reducing the conservatism

of the robust formulation. Furthermore, regret can also serve as a useful indica-

tion of how much the performance of a solution could be improved if the problem

uncertainty were able to be removed. Regret robustness (also known as absolute

regret or absolute deviation) replaces the objective function in (3.2) with

f(x, ξ)− f ∗(ξ),

where f ∗(ξ) is defined to be the best possible objective value that can be achieved

in scenario ξ ∈ U . Another closely related measure of robustness is relative regret,

which uses the objective function

f(x, ξ)− f ∗(ξ)

f ∗(ξ)
,

that is, the absolute regret normalised by the best objective value in scenario ξ.

For a survey on regret and relative regret robustness in the context of discrete
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optimisation, see Kouvelis and Yu (1997) and Aissi et al. (2009).

3.2.1 Common uncertainty sets

The conservatism of the robust formulation (3.2), as well as its computational

tractability, is largely influenced by the choice of the uncertainty set U . For this

reason, considerable attention has been given to the development and analysis of

different types of uncertainty sets for many different problem classes. We examine

the most common of these here.

Discrete uncertainty. Discrete uncertainty sets are defined simply by a

finite set of possible scenarios U = {ξ1, . . . , ξk}. Although discrete uncertainty

sets are conceptually very simple and are an intuitive way to define uncertainty in

many problems, in practice they almost always lead to intractable robust problems.

For many well-known combinatorial optimisation problems that can be solved in

polynomial time, their robust counterparts are NP-hard even in the case of just two

scenarios. This is the case for all three measures of robustness mentioned above

for the robust assignment problem, the minimum spanning tree problem and the

robust shortest path problem, as well the single machine scheduling problem that

we consider in chapters 7 and 8, (see Kasperski and Zieliński (2016a) and Aissi

et al. (2009) for full references of these results in addition to a number of others).

Polyhedral uncertainty. Polyhedral uncertainty arises from the considera-

tion of convex combinations of discrete scenarios and can be written in its general

form as U =
{
ξ ∈ Rℓ : Aξ ≤ b

}
, where A ∈ Rp×ℓ and b ∈ Rp. For min-max ro-

bust optimisation, given that the optimal solution can be found by considering

one of the extreme vertices of the uncertainty set, it can be shown that replacing
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Figure 3.1: Common types of uncertainty set.

a discrete uncertainty set by its convex hull does not fundamentally change the

complexity of the problem. Hence, the (mostly negative) complexity results that

apply to problems under discrete uncertainty also hold in the case of general poly-

hedral uncertainty. It is worth noting that comment does not extend in general

to the two-stage problems that are the topic of the following section. Despite its

general complexity, there do exist a couple of important special cases of polyhedral

uncertainty for which analysis is more amenable, specifically interval uncertainty

and budgeted uncertainty.

Interval uncertainty. Another natural choice of uncertainty set is the inter-

val, or box, uncertainty set defined by the Cartesian product of intervals

U = {ξ ∈ [ξ
1
, ξ1]× · · · × [ξ

ℓ
, ξℓ]},
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where ξ
i
and ξi define lower an upper bounds on the range of interest of variable

ξi. In the case of min-max robustness, supposing that all variables are positive, the

worst-case scenario over U is simply given by the worst-case value ξi for each i =

1, . . . , ℓ. The robust problem can therefore be solved just by solving the underlying

nominal problem for this worst-case scenario, and as a result the robust problem

is just as simple as the nominal problem. For regret robustness however, it is not

so straightforward to compute the worst-case scenario. Although the worst-case

scenario is known to lie at one of the extreme points of U (Averbakh and Lebedev,

2004), since there are 2ℓ such points, to enumerate them all is intractable in general.

As a result, most regret-based problems of interest are NP-hard under interval

uncertainty, including those that are mentioned above in the context of discrete

uncertainty (again, see Kasperski and Zieliński (2016a) and Aissi et al. (2009) for

the detailed references of these results). A valid criticism of the use of interval

uncertainty is its strong pessimism that results from it covering scenarios in which

every single uncertain parameter attains its extreme value simultaneously. With

this in mind, Ben-Tal and Nemirovski (1998, 1999, 2000), El Ghaoui and Lebret

(1997) and El Ghaoui et al. (1998) developed the use of ellipsoidal uncertainty

sets.

Ellipsoidal uncertainty. A general ellipsoidal uncertainty set can be written

in the form

U =
{
ξ ∈ Rℓ : (ξ − ξ̂)⊺Σ−1(ξ − ξ̂) ≤ r2

}
,

where ξ̂ ∈ Rℓ defines the centre of the ellipsoid, and Σ ∈ Rℓ×ℓ is positive semi-

definite. Ellipsoidal uncertainty aims to reduce the conservatism of interval un-

certainty by excluding the most extreme scenarios. The size of the ellipsoid and
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therefore the conservatism of the resulting robust formulation can be controlled

by the parameter r. Furthermore, ellipsoidal uncertainty sets allow the modelling

of normally distributed uncertainty with mean ξ̂ and covariance matrix Σ. The

robust formulations that arise from the use of ellipsoidal uncertainty however are

conic optimisation problems, and therefore tend to be intractable for discrete op-

timisation problems. However, as pointed out by Buchheim and Kurtz (2018), the

complexity of robust combinatorial optimisation problems under the special case

of uncorrelated ellipsoidal uncertainty (where Σ is a diagonal matrix, resulting in

an ellipse that is parallel to the axes) is less known. Some complexity results for

a handful of problems involving regret robustness are presented by Chassein and

Goerigk (2017).

Budgeted uncertainty. Bertsimas and Sim (2004) proposed an alternative

approach to reducing the so-called ‘price of robustness’ that involves restricting

the number of parameters that can achieve their worst-case values simultaneously.

We refer to their approach as budgeted uncertainty, however it is also known as

cardinality-constrained uncertainty or Γ-robustness. Specifically, Bertsimas and

Sim (2004) propose the use of the following uncertainty set:

U(Γ) =
{
ξ ∈ Rℓ : ξi ∈ [ξ̂i, ξ̂i + δiξ̄i], 0 ≤ δi ≤ 1, i = 1, . . . , ℓ,

ℓ∑
i=1

δi ≤ Γ

}
.

When Γ = 0, each uncertain variable takes its nominal value and the resulting

robust counterpart reduces to the deterministic version of the problem. In the

other extreme, when Γ = ℓ, all the variables can take their worst-case values and

the budgeted uncertainty set becomes equivalent to interval uncertainty. Hence

the parameter Γ controls conservatism of the uncertainty set by determining the
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extent to which the outer regions of the interval uncertainty set are cut off. As

well as being intuitive to define and use, one of the major advantages of this

approach is that the resulting robust formulation shares the same computational

complexity as the underlying nominal problem. As a result, this approach can be

directly applied to discrete optimisation problems, as examined by Bertsimas and

Sim (2003). Subsequently, budgeted uncertainty has become the most widely used

and studied uncertainty set for a range of combinatorial optimisation problems.

3.3 Two-stage Robust Optimisation

Ben-Tal et al. (2004) were the first to extend the robust optimisation framework to

a two-stage setting. Following this, much of the research relating to robust optimi-

sation, including the primary contributions of this thesis, has been concerned with

the analysis and application of two-stage approaches for many different problem

types. This section summarises the main approaches in the literature to two-stage

robust optimisation. For a discussion on the extension of the robust optimisation

to more than two stages, see Delage and Iancu (2015).

3.3.1 Adjustable robustness

First introduced by Ben-Tal et al. (2004) for linear optimisation, adjustable ro-

bust optimisation (also known simply as two-stage robust optimisation) makes the

assumption that the problem decision variables can be split into two categories:

1. variables that must be determined under the problem uncertainty, i.e. here-

and-now variables, and 2. variables that can be decided once the actual scenario

ξ ∈ U becomes known, i.e. wait-and-see variables. By allowing a subset of the
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decision variables to be determined after the realisation of the uncertain data,

a greater degree of flexibility is offered compared to classic one-stage robust op-

timisation, resulting in a reduction in conservatism and an improvement in the

objective value of the robust solution. Furthermore, this two-stage approach mod-

els many real-world decision processes quite naturally, including the scheduling

process considered in Chapters 5 and 6 of this thesis. Denoting the feasible sets

of the first and second-stage variables by X 1 ⊆ Rn1 and X 2 ⊆ Rn2 respectively,

where n1 + n2 = n, the adjustable robust optimisation problem can be written as

min
x∈X 1

max
ξ∈U

min
y(ξ)∈X 2

f(x, y(ξ), ξ)

s.t. g(x, y(ξ), ξ) ≤ 0 ∀ξ ∈ U .
(3.3)

The first-stage variables x ∈ X 1 must be chosen such that for any possible sce-

nario ξ ∈ U there exists second-stage variables y ∈ X 2 such that the feasibility

constraints can be satisfied, whilst minimising the objective function.

Observe that the single-stage robust optimisation problem (3.2) is a special case

of this problem obtained simply by setting n2 = 0 and forcing all the second-stage

variables to be specified under the problem uncertainty in the first stage. Clearly

therefore, the adjustable robust problem is at least as hard as the single-stage

problem. Considering problems with uncertainty only in the objective function, if

the sets U , X 1 and X 2 are all convex, then by making use of the minimax theorem

it can be shown that the adjustable robust problem is equivalent to the min-max

problem. For problems that involve uncertainty in the constraints however, in

general, (3.3) is NP-hard, even if the corresponding min-max problem is polyno-

mially solvable. As a result, much of the research regarding adjustable robust
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optimisation has been focused on the development of approximations for solving

this problem.

Supposing that the second-stage recourse variables are continuous, Ben-Tal

et al. (2004) proposed an approximation to (3.3) based on assuming that the

second-stage variables are affine functions of the problem uncertainty, i.e. y = y0+

Qξ, where y0 ∈ Rn2 and Q ∈ Rn2×ℓ. In this case, the second-stage decision variables

y are replaced by y0 and Q and must be determined in the first-stage subject to the

problem uncertainty. Supposing fixed recourse, it is shown that this problem has

the same complexity as the single-stage min-max robust problem. Furthermore, it

has been shown that for many problems, these affine decision rules obtain optimal,

or near optimal results, encouraging the use of this approximation to solve a wide

range of problems. We note that there exist many alternative approaches for the

tractable approximation of (3.3), as well as a number of exact decomposition-based

approaches, including, most notably, a row-and-column generation approach for

the case of polyhedral uncertainty developed by Zeng and Zhao (2013).

Adjustable robust optimisation with integer recourse is of particular interest

with regards to combinatorial optimisation, however this setting has received con-

siderably less attention in the literature than the case of continuous recourse men-

tioned above. Kasperski and Zieliński (2011), Kasperski and Zieliński (2017),

Chassein et al. (2018), Goerigk et al. (2021a) and Goerigk et al. (2022a) all con-

sider this model for a range of combinatorial optimisation problems including se-

lection, spanning tree and shortest path problems and show that for discrete or

general convex uncertainty sets the resulting adjustable robust problem is hard.

Under interval and continuous budgeted uncertainty, a number of more positive
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complexity results are derived. Chapters 5 and 6 of this thesis consider adjustable

robustness for the RCPSP and MRCPSP with uncertain activity durations.

For a review of adjustable robust optimisation and its various approximations

and solution approaches, see Yanıkoğlu et al. (2019).

3.3.2 Recoverable robustness

Developed by Liebchen et al. (2009) for the problem of timetabling trains, re-

coverable robustness is an alternative approach to two-stage robust optimisation.

Instead of determining a partial solution under the problem uncertainty and then

completing the solution once the uncertain data becomes known, recoverable ro-

bustness constructs a complete solution under the problem uncertainty, whilst

accounting for a set of recovery actions that can be applied to the solution once

the uncertainty has been revealed.

Letting A denote the set of recovery actions, the general recoverable robust

optimisation problem can be written as

min
x∈X

f(x)

s.t. g(A(x, ξ), ξ) ≤ 0 ∀ξ ∈ U

A ∈ A.

(3.4)

That is, a solution x ∈ X and recovery action A ∈ A must be chosen such

that x minimises f and is feasible following its recovery after the realisation of

the actual scenario. In the case of objective uncertainty, the recoverable robust

approach can be reinterpreted as having the aim of finding a feasible solution

x ∈ X with the best possible performance in the nominal scenario, subject to being
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recovered to optimality once the uncertainty has been revealed. This model can

be extended to also include the cost of the recovery of the first-stage solution. For

any particular problem, clearly, the complexity of the recoverable robust version

very much depends on the specification of the set of recovery actions A, as well as

on the choice of uncertainty set U .

Given its generality, the recoverable approach to robust optimisation has seen

numerous applications in recent years to a range of problems including the knap-

sack problem (Büsing et al., 2011), shortest path problem (Büsing, 2012), travelling

salesman problem (Chassein and Goerigk, 2016), selection problem Chassein et al.

(2018); Kasperski and Zieliński (2017); Goerigk et al. (2022b) and assignment

problem (Fischer et al., 2020), among others. In chapters 7 and 8, recoverable

robustness is applied to the single machine scheduling problem for the first time.

3.3.3 K-adaptability

Bertsimas and Caramanis (2010) introduced an approach to approximating the

adjustable robust problem (3.3) based on the idea of determining K solutions

under the problem uncertainty in the first stage, before selecting the best of these

K options in the second stage, once the uncertain scenario becomes known. This

so-called K-adaptability problem can be written as

min
x∈X1

y1,...,yK∈X2

max
ξ∈U

min
i=1,...,K

f(x, yi, ξ)

s.t. g(x, yi, ξ) ≤ 0 ∀ξ ∈ U .

(3.5)

This approach of preparing K solutions subject to uncertainty is particularly well

suited to model many real-world decision problems and its application has been
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widespread. Example include hub location (Alumur et al., 2012) and parcel deliv-

eries (Eufinger et al., 2020).

Hanasusanto et al. (2015) apply the K-adaptability approach to two-stage ro-

bust binary optimisation, and show that if the problem uncertainty resides only in

the objective function, then an optimal solution can be found by using K = n+1

second-stage solutions. This result is used to derive one of the formulations pro-

posed for the recoverable robust single-machine scheduling problem considered in

Chapter 7 of this thesis. This result does not extend to the general two-stage ro-

bust binary problem where uncertainty is also present in the constraints, in which

case the problem is NP-hard. Recently Subramanyam et al. (2020) have extended

K-adaptability to mixed-integer programming and propose a branch-and-bound

scheme to solve the resulting problem.

As a special case of K-adaptability, Buchheim and Kurtz (2017) study two-

stage robust combinatorial optimisation problems of the form

min
x1,...,xK∈X

max
ξ∈U

min
i=1,...,K

f(xi, ξ) (3.6)

where there are no first-stage variables and all the problem uncertainty is con-

tained within the objective function. They refer to this approach as min-max-min

robustness. Buchheim and Kurtz (2017) show that when K ≥ n + 1, for convex

uncertainty sets, this problem has the same complexity as the underlying determin-

istic problem. As shown by Buchheim and Kurtz (2016), this result does not extend

to discrete uncertainty, because, unlike the case for min-max robustness, replacing

a discrete uncertainty set U by its convex hull in (3.6) fundamentally changes the

problem. Whilst proving that the min-max-min problem is NP-hard for discrete
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uncertainty, Buchheim and Kurtz (2016) also propose a pseudopolynomial-time al-

gorithm to reduce (3.6) to its min-max version, implying that pseudopolynomial-

time solution algorithms to (3.6) exist for a number of combinatorial problems.

In a series of recent papers Chassein et al. (2019); Goerigk et al. (2020); Chas-

sein and Goerigk (2021), the min-max-min problem has been studied under both

discrete and continuous budgeted uncertainty sets. For the continuous set, posi-

tive complexity results are proved for a range of optimisation problems, however,

unsurprisingly these do not extend to discrete budgeted uncertainty.



Chapter 4

The Generalised Flexible

Resource-Constrained Project Scheduling

Problem

4.1 Introduction

The decommissioning of the Sellafield nuclear site in North West England is one

of the largest and most complex ongoing engineering projects in Europe. It is ex-

pected to take in excess of 100 years to complete and cost a total of over £90 billion

(NDA, 2019). Given its scale and complexity, it is crucial that this project is chore-

ographed according to a carefully designed master schedule that fully accounts for

the network of logical precedence relationships between the decommissioning ac-

tivities, as well as the limited availability of the project resources. This chapter

introduces and solves a new project scheduling model designed to schedule this

project and others like it.

The resource-constrained project scheduling problem (RCPSP) has been thor-

43
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oughly studied since the introduction of a first model by Pritsker et al. (1969).

The RCPSP consists of scheduling a set of activities, subject to resource and

precedence constraints, in order to minimise the overall project duration, known

as the makespan. Although a very general scheduling model, the applicability of

the classical RCPSP to many real-world problems, including the Sellafield nuclear

decommissioning project, is limited by the following two assumptions: 1. only

finish-to-start, zero time-lag precedence relationships exist between activities, and

2. the resource requirements of the activities are fixed and constant throughout

their duration. This chapter introduces and solves an extension to the classical

RCPSP that allows for both of these assumptions to be relaxed, enabling the Sel-

lafield nuclear decommissioning project and other projects with similar features,

to be modelled and scheduled.

Extensions to the RCPSP that address one of these two limiting assump-

tions are well-studied. The addition of generalised precedence relationships to

the RCPSP addresses the first of these. Although a number of different names are

used to refer to this extenstion of the RCPSP, here we refer to it as the gener-

alised resource-constrained project scheduling problem (GRCPSP). More recently,

attention has turned to addressing the second limiting assumption of the classi-

cal RCPSP, with the introduction of the resource-constrained project scheduling

problem with flexible resource-profiles (FRCPSP) by Naber and Kolisch (2014).

In this problem, it is assumed only that the total amount of resource required to

complete each activity is known, and that, as well as the start time, the resource

allocation for each activity throughout its duration must be determined, subject

to a set of constraints on that allocation.
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To the best of our knowledge, up until now, no model has been introduced

that simultaneously relaxes both of these assumptions. By introducing the gen-

eralised flexible resource-constrained project scheduling problem (GFRCPSP) in

this chapter, we combine the two extensions mentioned above into a single model

capable of accurately capturing the features of a much wider range of real-world

projects than the standard RCPSP.

The GFRCPSP is a very challenging problem. In particular, due to the intro-

duction of generalised precedence constraints, the decision problem of determining

whether or not a feasible solution exists for a given GFRCPSP instance is an

NP-complete problem (Bartusch et al., 1988), and in practice, for many problem

instances, just finding a feasible solution is the primary difficulty. Hence, a solu-

tion approach must be designed to prioritise the finding of feasible solutions, before

it then works to improve upon these feasible solutions. Therefore, as well as in-

troducing a mixed-integer programming (MIP) formulation, we propose a genetic

algorithm for finding good solutions to production-sized instances. A computa-

tional study demonstrates the strong performance of the proposed metaheuristic

algorithm when compared with solving the proposed MIP using a state-of-the-art

solver, as well as four additional benchmarking heuristics. The applicability of this

newly developed model and the proposed metaheuristic is further demonstrated

by the modelling and scheduling of a decommissioning project from the Sellafield

site.

The remainder of this chapter is organised as follows: Section 4.2 formally intro-

duces the GFRCPSP. Section 4.3 presents an MIP formulation for the GFRCPSP,

before Section 4.4 details a genetic algorithm-based solution approach. Section
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4.5 presents and compares computational results from the proposed metaheuris-

tic algorithm, the MIP formulation and four additional benchmarking heuristics.

Section 4.6 applies the methods proposed in the earlier sections to the scheduling

of a Sellafield nuclear decommissioning project. Finally, concluding remarks are

given in Section 4.7.

4.2 Problem description

A project consists of a set of non-preemptive activities V = {0, 1, . . . , n, n + 1},

where activities 0 and n+1 are dummy project-start and project-end activities with

duration 0 and no resource requirements. We let N = {1, . . . , n} denote the set of

non-dummy activities. The start time and resource profile of each activity must

be determined over a planning horizon of discrete time periods t ∈ T , subject to a

set of precedence and resource constraints. We first detail the project precedence

constraints.

4.2.1 Precedence constraints

There are four possible types of generalised precedence relationship between two

activities: start-to-start, start-to-finish, finish-to-start and finish-to-finish, and

each generalised precedence relationship has an associated minimal or maximal

time-lag. For example, consider a finish-to-start type relationship between activ-

ities i and j. If this relationship has a minimal time-lag of length a ≥ 0, the

resulting constraint requires that sj ≥ fi + a, where sj and fi are the start and

finish times of activities j and i, respectively. That is, j cannot start until a

time periods after the finish of i. If there is also a maximal time-lag of length
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b ≥ a between the finish of i and the start of j, the resulting constraint requires

that sj ≤ fi + b, i.e. j must have started by b time periods after the finish of

i. These two precedence relationships combine to create a feasible time-window

{fi + a, . . . , fi + b} in which activity j must start, relative to the finish time of

activity i.

For the GRCPSP, since the duration of each activity is known, the four types

of generalised precedence constraints are in fact equivalent and any relationship

type can be transformed into any other (see Bartusch et al. (1988)). A standard

pre-processing step when solving the GRCPSP is therefore to transform all the

project precedence relationships into a single type, typically start-to-start. In our

setting however, to avoid time-lags depending on the variable activity durations,

these transformations are not applied and the different precedence relationships

types are considered separately.

It is important to recognise that maximal time-lags can be rewritten as negative

minimal time-lags going in the opposite direction. For example, again consider a

maximal time-lag of length b from fi to sj given by sj ≤ fi + b. This maximal

time-lag can be rewritten as fi ≥ sj−b; that is, as a minimal time-lag of length −b

from sj to fi. Having converted all maximal time-lags into minimal time-lags, we

can represent a finish-to-start precedence relationship of length a between i and j

as a tuple (i, j, a), where a may be either positive or negative. The other types of

generalised precedence relationship can also be represented in this way, resulting

in a set for each type of relationship, which we denote by ESS, ESF , EFS and EFF .

Additionally, once all maximal time-lags have been converted into minimal

time-lags, the project precedence constraints can be represented on a network.
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An example project network for a GFRCPSP instance involving five non-dummy

activities is shown in Figure 4.1. Note the occurrence of a cycle involving activ-

ities 2, 3 and 4. Although not the case with this example, if a cycle of positive

length exists in the network, it can immediately be determined that the project is

infeasible with respect to the precedence constraints.

wi
qr*i, qr*i

15
2, 5

12
2, 4

15
1, 5

12
2, 4

8
2, 2

Figure 4.1: An example GFRCPSP instance with five non-dummy activities and

a single resource r∗, with availability Rmax
r∗ = 6. For each activity i ∈ V , the total

principal resource requirement wi, and upper and lower bounds on its per-period

allocation q
r∗i

, qr∗i, are shown. Minimal time-lags are shown next to each arc in

the network.

Given a set of generalised precedence constraints, earliest and latest start and

finish times of each activity i ∈ N can be calculated using the pre-processing

step outlined in Appendix A. We denote these values by ESi, LSi, EFi, and

LFi, respectively. The sets of time periods in which an activity i ∈ V must
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start and finish are given by STi = {ESi, . . . , LSi} and FTi = {EFi, . . . , LFi},

respectively. A feasible time-window for the processing of activity i is given by

Ti = {ESi, . . . , LFi}. In addition to these time-windows, an upper bound on the

minimum project makespan, Tmax, is also computed in this pre-processing step.

4.2.2 Resource constraints

We now detail the resource constraints. We follow the definition of the resource

constraints of the FRCPSP as presented in Naber and Kolisch (2014) and assume

that each resource r ∈ R is renewable, continuously divisible, and has a limited

availability of Rmax
r at each time period t ∈ T . Furthermore, for each activity

i ∈ N , each resource r ∈ R is categorised into one of the following three types of

resource:

1. The principal resource r∗ of activity i is the main resource used by that

activity. The amount of principal resource allocated to i entirely determines

the amount of dependent resource allocated to i.

2. A dependent resource r of activity i is a resource for which the amount

allocated to i depends on the amount of principal resource allocated to i.

More specifically, if qr∗it is the amount of principal resource r∗ allocated to

activity i in time period t, qrit = αriqr∗it+βri gives the amount of dependent

resource r allocated to i at time t, where αri = (qri − q
ri
)/(qr∗i − q

r∗i
) and

βri = q
ri
−q

r∗i
αri are the coefficient and constant of the non-decreasing linear

resource function that links the dependent and principal resource allocations.

q
ri

and qri are lower and upper bounds on the allocation of resource r to

activity i in any given time period. The set of dependent resources of activity
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i is denoted by Rdep
i .

3. An independent resource r of activity i is a resource with allocation that

is independent from the allocated quantity of any other resources. The set

of independent resources of activity i is denoted by Rind
i .

For each activity i ∈ N , the allocation of each resource r ∈ R at each time

period t ∈ T must be determined. This forms the resource profile of activity i.

The resource profile of each activity i ∈ N is subject to the following constraints:

1. The total amount of principal resource allocated to activity i over its duration

must at least satisfy a required amount, denoted by wi.

2. There is an upper bound, qri, and lower bound, q
ri
, on the amount of re-

source r that can be allocated to i for each period in which activity i is being

processed. The upper bound on the principal resource allocation provides

a lower bound on the duration of activity i, given by di = ⌈wi/qr∗i⌉. Simi-

larly, the lower bound on the principal resource allocation provides an upper

bound, given by di = ⌈wi/qr∗i⌉. Note that since we allow the total resource

requirement of each activity to be exceeded, this upper bound is not strictly

necessary and may be chosen differently or omitted entirely. The minimum

and maximum duration of each activity i ∈ N can be represented as a min-

imal and a maximal time-lag from si to fi, respectively. Recall that the

maximal time-lag representing the maximum duration of i can be converted

into a negative minimal time-lag of length −di from fi to si.

3. There is a minimum number of consecutive time periods for which the re-

source allocation to an activity must be constant. This is known as the
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minimum block length and is denoted by lmin.

The GFRCPSP problem consists of finding a start time and resource profile

for each activity i ∈ N that is feasible with respect to the precedence and resource

constraints outlined above, to minimise the project makespan. Figure 4.2 shows

an optimal solution to the GFRCPSP represented by the network in Figure 4.1.

Table 4.1 provides a summary of the notation used throughout this chapter.
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Figure 4.2: An optimal solution to the GFRCPSP instance shown in Figure 4.1.

4.3 Mixed-integer programming formulation

Of the four MIP models for the FRCPSP introduced by Naber and Kolisch (2014),

the so-called variable-intensity-based model (Model FP-DT3), based on the RCPSP

model of Bianco and Caramia (2013), was shown to be the strongest. This section

details an extension to this model to include generalised precedence constraints.

This model uses ‘intensity’ variables νit to represent the proportion of the

required principal resource wi that has been allocated to activity i by time t.

These intensity variables are linked to variables qrit which track the allocation of
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Indices

i, j Activities

r Resource (of unspecified type)

t Time period

Parameters

ESi, LSi, EFi, LFi Earliest and latest start and finish times of activity i

r∗i Principle resource of activity i

Rmax
r Availability of resource r

q
ri

, qri Lower and upper bounds on per-period allocation of resource r

to activity i

wi Total amount of principal resource required by activity i

lmin Minimum block length

αri, βri Coefficient and constant of the linear resource function linking

qrit to qr∗it

di, di Minimum and maximum duration of activity i

Tmax Upper bound on the minimal project makespan

Variables

si, fi Start and finish time of activity i

qrit Amount of resource r allocated to activity i in time period t

Index sets

V = {0, 1, . . . , n, n+ 1} Set of activities (including dummy activities)

N = {1, . . . , n} Set of non-dummy activities

T = {0, 1, . . . , Tmax} Project planning horizon

Ti = {ESi, . . . , LFi} Feasible processing periods of activity i

STi = {ESi, . . . , LSi} Feasible starting periods of activity i

FTi = {EFi, . . . , LFi} Feasible finishing periods of activity i

R Set of resources

Rdep
i , Rind

i Sets of dependent and independent resources of activity i

ESS , ESF , EFS , EFF Set of start-to-start, start-to-finish, finish-to-start and finish-to-

finish minimum time-lag precedence relations, e.g. (i, j, a) ∈
EFS represents the constraint sj ≥ fi + a

Table 4.1: Summary of notation.
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resource r to activity i in time period t. Variables xit indicate whether activity i

has started by time period t, and similarly, variables yit indicate whether activity i

has finished by time period t. Consequently, the processing status of activity i can

be determined by xit−yit and the start and finish times of activity i can be written

as si = LFi −
∑

t∈Ti
xit and fi = LFi −

∑
t∈Ti

yit, respectively. Finally, in order

to satisfy the minimum block length condition, variables δit track the changes in

the quantity of principal resource allocated to activity i. Table 4.2 summarises the

decision variables used in this formulation.

Binary variables

xit


1, if activity i starts at or before time t,

0, otherwise,
∀i ∈ N, t ∈ Ti

yit


1, if activity i ends at or before time t,

0, otherwise,
∀i ∈ N, t ∈ Ti

δit


1, if qr∗i,t−1 ̸= qr∗it,

0, otherwise,
∀i ∈ N, t ∈ Ti ∪ {LFi + 1}

Continuous variables

Cmax Project makespan

qrit Quantity of resource r ∈ R allocated to activity i ∈ N in time period

t ∈ Ti ∪ {ESi − 1, LFi + 1}
νit Proportion of activity i ∈ N completed by time period t ∈ Ti

Table 4.2: Decision variables used in formulation (4.1)-(4.29).
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Using the notation and variables from Tables 4.1 and 4.2, respectively, an MIP

model for the GFRCPSP can be formulated as follows:

minCmax (4.1)

s.t. Cmax ≥ LFi −
∑
t∈Ti

yit + 1 ∀i ∈ N (4.2)

qrit − qri(xit − yit) ≤ 0 ∀r ∈ R, i ∈ N, t ∈ Ti (4.3)

qrit − q
ri
(xit − yit) ≥ 0 ∀r ∈ R, i ∈ N, t ∈ Ti (4.4)

qrit ≥ αriqr∗it + βri(xit − yit) ∀r ∈ Rdep
i , i ∈ N (4.5)

qr∗it ≥ wi(νi,t+1 − νit) ∀i ∈ N, t ∈ Ti (4.6)∑
{i∈N :t∈Ti}

qrit ≤ Rmax
r ∀r ∈ R, t ∈ T (4.7)

t+lmin−1∑
τ=t

δiτ ≤ 1 ∀i ∈ N, t ∈ {ESi, . . . , LFi − lmin + 2} (4.8)

qr∗it − qr∗i,t−1 − qr∗iδit ≤ 0 ∀i ∈ N, t ∈ Ti ∪ {LFi + 1} (4.9)

qr∗i,t−1 − qr∗it − qr∗iδit ≤ 0 ∀i ∈ N, t ∈ Ti ∪ {LFi + 1} (4.10)

qri,ESi−1 = qri,LFi+1 = 0 ∀r ∈ R, i ∈ N (4.11)

νit ≤ xit ∀i ∈ N, t ∈ STi (4.12)

νit ≥ yit ∀i ∈ N, t ∈ FTi (4.13)

xj,t+a ≤ xit ∀(i, j, a) ∈ ESS, t ∈ STi ∪ {ESj − a, . . . , LSj − a} (4.14)

yj,t+b ≤ xit ∀(i, j, b) ∈ ESF , t ∈ STi ∪ {EFj − b, . . . , LFj − b} (4.15)

xj,t+c ≤ yit ∀(i, j, c) ∈ EFS, t ∈ FTi ∪ {ESj − c, . . . , LSj − c} (4.16)

yj,t+d ≤ yit ∀(i, j, d) ∈ EFF , t ∈ FTi ∪ {EFj − d, . . . , LFj − d} (4.17)

νit ≤ νi,t+1 ∀i ∈ N, t ∈ Ti (4.18)

xi,t−1 ≤ xit ∀i ∈ N, t ∈ Ti \ {ESi} (4.19)
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yi,t−1 ≤ yit ∀i ∈ N, t ∈ Ti \ {ESi} (4.20)

νi,ESi
= 0 ∀i ∈ N (4.21)

νi,LFi
= 1 ∀i ∈ N (4.22)

xit = 1 ∀i ∈ N, LSi ≤ t ≤ LFi (4.23)

yit = 0 ∀i ∈ N, ESi ≤ t ≤ EFi − 1 (4.24)

qrit ≥ 0 ∀r ∈ R, i ∈ N, t ∈ Ti ∪ {ESi − 1, LFi + 1} (4.25)

0 ≤ νit ≤ 1 ∀i ∈ N, t ∈ Ti (4.26)

xit ∈ {0, 1} ∀i ∈ N, t ∈ Ti (4.27)

yit ∈ {0, 1} ∀i ∈ N, t ∈ Ti (4.28)

δit ∈ {0, 1} ∀i ∈ N, t ∈ Ti ∪ {LFj + 1} (4.29)

Constraints (4.2) define the makespan to be the latest completion time of an

activity in the project. Constraints (4.3) and (4.4) enforce the upper and lower

bounds on the resource allocation for each activity in the time periods that it is

being processed. Constraints (4.5) determine the allocation of each dependent re-

source according to the linear function of the allocation of principal resource. Con-

straints (4.6) link the resource allocation variables qrit to the intensity variables νit,

and constraints (4.7) ensure that the total amount of each resource used in each

period does not exceed the availability. Constraints (4.8) ensure that the minimum

block length is satisfied, whilst constraints (4.9) and (4.10) make sure that the δit

variables track changes in the resource allocation as intended. Constraints (4.11)

initialise the resource allocation variables to zero outside the feasible processing

time window of each activity. Constraints (4.12) and (4.13) ensure that the pro-
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cessing of an activity can only occur between its start and finish times. Constraints

(4.14)-(4.17) ensure that the generalised precedence constraints are satisfied. Note

that these constraints are the only significant difference between the MIP formula-

tion presented here, and the FP-DT3 formulation presented in Naber and Kolisch

(2014). Constraints (4.18)-(4.20) are non-preemption constraints, and constraints

(4.21)-(4.24) initialise the variables with known values. Finally, the variables are

defined by constraints (4.25)-(4.29).

4.4 Metaheuristic algorithm

In this section we present a scheduling heuristic and genetic algorithm to solve the

GFRCPSP. Section 4.4.1 outlines the proposed flexible schedule generation scheme,

before the genetic algorithm into which this scheduling heuristic is embedded is

detailed in Section 4.4.2.

4.4.1 A flexible schedule generation scheme

A new non-greedy flexible serial schedule generation scheme (FSGS) has been

developed specifically for GFRCPSP. This FSGS takes an activity list and con-

structs a complete solution by scheduling activities one at a time in the order

given by the activity list. Activities are scheduled to start as early as possible and

with as much resource allocated as possible, whilst respecting enforced delays on

start times, limits on resource allocations, and the project precedence constraints.

These delays and resource limits enable the FSGS to perform non-greedy schedul-

ing. The following three sections list the input parameters required by the FSGS,

detail the specific steps performed by the algorithm, and provide an example of
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its use, respectively.

Input parameters

The input parameters required by this FSGS are the same parameters used in the

FSGS developed by Tritschler et al. (2017) for the FRCPSP. These are:

1. Activity list λ. A precedence feasible permutation of the project activities

i ∈ V , specifying the order in which the activities are added to the schedule.

2. Greediness parameters ρ. A list ρ = (ρ1, . . . , ρn) of resource alloca-

tion limiting parameters for each non-dummy project activity i ∈ N . ρi ∈

{0, . . . , ρi}, where ρi = ⌈wi/qr∗i⌉−di. The resource allocation limit ρi deter-

mines the maximum principal resource allocation to activity i through the

function qr∗it = wi/(di + ρi).

3. Delay parameters σ. A list σ = (σ1, . . . , σn) of start delay parameters

for each non-dummy project activity i ∈ N . σi ∈ {0, . . . , σi}, where σi =

min(⌈wi/qr∗i⌉ − di, LFi − ESi). Delay parameter σi specifies the number of

time periods by which the start of activity i must be delayed beyond its

earliest feasible start time.

Algorithm

The FSGS we present here extends the serial SGS for application to the GFRCPSP.

Algorithm 3.1 shows the steps performed by the FSGS in scheduling a single

activity i ∈ N . For the purposes of this initial exposition, it is assumed that

the schedule produced by Algorithm 3.1 is time-feasible, and therefore that the

unscheduling step is not required.
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In Algorithm 3.1, ξi denotes the remaining principal resource requirement of

activity i, and φrt denotes the remaining availability of resource r ∈ R at time t.

lit denotes the time since the last change in resource allocation for activity i at

time t. Note that, for the sake of brevity, the parameter updates that occur at

the end of each while loop, as well as the allocation of independent resource, have

been omitted from Algorithm 3.1. Note also that for each i ∈ V , lit is initialised

to lmin. The steps of Algorithm 3.1 are outlined below.

Firstly, t is initialised in line 1. While either the current resource block of

activity i is incomplete or its resource requirement has not yet been met (line 2),

resource is allocated to activity i one period at a time. When determining the

amount of principal resource to allocate to activity i at time t, two situations may

occur. 1. If the current resource block has not yet satisfied the minimum block

length (line 3), the current resource block is extended into the next time period

by setting qr∗it = qr∗i,t−1. Alternatively, 2. if the minimum block length has been

met (line 5), a new block with a different level of resource allocation can begin. In

this situation, the following three cases are considered:

(i) (lines 6, 7) If there is sufficient resource availability, then the current re-

source block is extended by setting qr∗it = qr∗i,t−1.

(ii) (lines 8-16) If enough resource is available to satisfy the minimum resource

allocation to activity i for at least one minimum block length, then a new block

can be started. The maximum principle resource allocation to this block is limited

by the following considerations: 1. a new block must satisfy the minimum block

length, and hence principle resource allocation cannot exceed ξi/l
min; 2. the limited

resource availability during the time periods t, . . . , t+ lmin−1 cannot be exceeded;
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3. the greediness parameter ρi limits principle resource allocation through the

function wi/(di + ρi). Additionally, if t is before the earliest finish time of i, the

principle resource allocation is also limited by φi/(EFi − t) in order to reduce

unnecessary over-allocation. If a new block of increased resource allocation can

begin, an additional check is made in line 15 to ensure that the increased resource

allocation does actually speed-up processing. If not, then the current resource

block is continued.

(iii) (lines 17, 18) If there is not enough resource available to continue the

current block, nor satisfy the minimum resource allocation for one minimum block

length, then the activity can not be completed, and the activity is rescheduled to

start at the next resource feasible time period.

Having determined the principal resource allocation to activity i at time t, if

fewer than two minimum block lengths remain until activity i is completed under

the current resource allocation, over-allocation of resource to activity i is limited

by setting qr∗it = max
(
q
r∗i
, ξi/⌈ ξi

qr∗it
⌉
)

in line 20. Finally, in line 21, the dependent

resource allocation is updated based on the principal resource allocation.

The FSGS ensures that each activity is scheduled feasibly with respect to the

project resource constraints. This however may lead to violations of particular

maximal time-lags. In this case, an unscheduling step can be performed in an

attempt to restore feasibility. The unscheduling step shown in Algorithm 3.2 is

invoked if the latest start time of activity i is missed in line 1 of Algorithm . The

unscheduling step can easily be adapted for the alternative situation where it is

the latest finish of activity i that is missed.

In Algorithm 3.2, t denotes the time period in which the unscheduling step was
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invoked and S denotes the set of scheduled activities. The unscheduling step begins

by computing the sets of activities which have starts and finishes that determine

the latest start time of activity i in lines 1 and 2. These sets are denoted by U s
i and

U f
i respectively. The set of activities that must be unscheduled, denoted by Ui, is

computed in line 3 as the activities in U s
i and U f

i , plus any activities j ∈ S with a

start time later than the earliest start time of any activity in U s
i or U f

i . Following

the unscheduling of the activities in Ui, the earliest start times of the activities in

U s
i and the earliest finish times of the activities in U f

i , are increased by the amount

by which they were missed, and the activity time-windows are updated based on

the activities that remain in S. The unscheduled activities are then rescheduled

using Algorithm 3.1.
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We refer to the FSGS which makes use of the unscheduling step as the FSGS-

U. FSGS-U is a recursive and computationally expensive procedure and therefore

a maximum number of unscheduling attempts is specified upon implementation.

If this maximum is reached, then the schedule is completed without the use of

the unscheduling step. Hence, although the FSGS and FSGS-U always produce

resource feasible schedules, neither heuristic can guarantee that these schedules

are also time-feasible.

Example

To illustrate the FSGS and unscheduling step outlined above, we provide an ex-

ample of their application to the GFRCPSP instance shown in Figure 4.1. Fig-

ure 4.3 shows the schedule outputted by Algorithm 3.1 using the parameters

λ = (2, 1, 3, 5, 4), ρ = (0, 0, 0, 0, 1), and σ = (0, 0, 0, 0, 1) after performing the

following steps:

• Activity 2 (σ2 = 0, ρ2 = 0) is started at time 0 and allocated its maximum

resource limit of 4 units. It finishes at time 3.

• Activity 1 (σ1 = 0, ρ1 = 0) is started without delay at time 0 and allocated

the remaining 2 available units of resource. At time 3, its resource allocation

can be increased. The 9 units of resource it still requires are spread over the

2 periods to its earliest finish time of 5, resulting in an allocation of 9/2 units

per period.

• Activity 3 (σ3 = 0, σ3 = 0) is started at its earliest feasible start time of 5

and allocated its maximum of 4 units of resource. It finishes at time 8.
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• Activity 5 (σ5 = 1, ρ5 = 1) is scheduled with one period of enforced delay at

time 6 and the 2 remaining resource units at time 6 and 7 are allocated to

it. Its resource allocation can increase once activity 3 ends. Since activity

5’s earliest finish time is 11, 11/3 units of resource are allocated over the

remaining 3 time periods.

• Activity 4 (σ4 = 0, σ4 = 0) is attempted to be scheduled at its earliest start

time of 8. However, this violates its latest start time is 6, caused by the

maximum time-lag of length 3 from the finish of activity 2.
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Figure 4.3: Schedule to the GFRCPSP instance shown in Figure 4.1 generated by

Algorithm 3.1 with the input parameters λ = (2, 1, 3, 5, 4), ρ = (0, 0, 0, 0, 1), and

σ = (0, 0, 0, 0, 1). This schedule violates a maximum time-lag between the finish

of activity 2 and the start of activity 4.

Since a maximum time-lag has been violated at time t = 8, Algorithm 3.1

invokes the unscheduling step shown in Algorithm 3.2. Activity 2 is the only

activity with a precedence relationship that affects the latest start of activity 4

and so U s
4 = ∅ and U f

4 = {2}. All activities have start times greater than or equal
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to the start time of 2 and so U4 = {1, 2, 3, 4, 5}. These are unscheduled, and the

earliest start time of activity 2 is updated to ES2 = 0 + (8− 6) = 2. The earliest

and latest start and finish time of the other activities are reset to their original

values. Algorithm 3.1 is then used to reschedule all of these activities.

As before, activity 2 is scheduled first, although this time its earliest feasible

start time is ES2 = 2 and it finishes at time 5. Activity 1 can be started at time

0 with its maximum resource limit of 5. Its resource allocation is decreased to

its minimum required allocation of 2 units at time 2, and it finishes at time 5.

Activity 3 is started immediately after the finish of activity 2, at time 5 and it

finishes at time 8. Considering its enforced delay, activity 5 starts at time 6 and

uses the 2 available units of resource. At time 8, the resource allocation to activity

5 is increased to 11/3 and it finishes at time 11. Finally, activity 4 is scheduled

to start at time 8, and since activity 2 finishes at time 5 its maximum time-lag is

now satisfied. Activity 4 finishes at time 12. This schedule is now feasible, and is

shown in Figure 4.4.
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Figure 4.4: Schedule produced by applying the unscheduling step in Algorithm 3.2

to the schedule shown in Figure 4.3.
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4.4.2 Genetic algorithm

We propose the following genetic algorithm (GA) to search over the space of input

parameters to the FSGS described in the previous section. As explained above, an

individual solution consists of an activity list representation λ, a list of greediness

parameters ρ, and a list of delay parameters σ.

An initial population of solutions is constructed by generating activity list

representations λ randomly, subject to the topological ordering that results from

the project precedence constraints. The greediness and delay parameters for each

solution in the initial population are all set to zero. Hence, the FSGS will behave

greedily in the initial population.

The ‘fitness’ of a feasible solution is measured by its makespan, whilst the

fitness of an infeasible solution is measured as the total number of time periods by

which precedence relationships are missed in that schedule, i.e.
∑

i∈N max(0, si −

LSi) + max(0, fi − LFi), plus some fixed infeasibility penalty.

New individuals are obtained using the adapted two-point crossover of Franck

et al. (2001), which takes two parent solutions as input, i.e. a ‘father’ and ‘mother’,

and outputs two offspring solutions, i.e. a ‘son’ and a ‘daughter’. Considering the

son’s activity list, activities before the first randomly selected crossover point are

inserted in the order that they appear in the father’s activity list. Activities

between the first and second crossover points are inserted in the order that they

appear in the mother’s activity list, and the remaining activities after the second

crossover are taken again from the father’s activity list. If however, one of the

crossover points fall in the middle of a cycle structure, the remaining activities of

the cycle structure are inserted immediately into the son’s activity list in the order



66 4. The GFRCPSP

that they appear in the relevant parent’s activity list. This crossover is designed

to keep activities that are related by a maximal time-lag close together in the

resulting activity list, thus increasing the likelihood of generating feasible offspring.

On the greediness and delay parameter lists, this crossover simply behaves like

the standard two-point crossover of Hartmann (1998). The daughter solution is

produced by reapplying the crossover with the roles of father and mother reversed.

The mutation operator of Hartmann (1998) is applied to the activity of each

offspring solution. If feasible with respect to the project precedence relationships,

this operator swaps each activity with the activity that follows it with probability

pλ. For each i ∈ N , ρi is mutated with probability pρ, and σi is mutated with

probability pσ. When ρi is mutated, half of the time it is either increased or

decreased by one (with equal probability), and the other half of the time, a new

value for ρi is chosen randomly from within its bounds. When σi is mutated, it is

replaced by a random integer from within its bounds.

Having doubled the original population size, the top nelite solutions are carried

into the next generation. Following this, nrand randomly generated new solutions

are carried forward. The remaining spaces in the next generation are then chosen

using 3-tournament selection from the current generation. The next generation

has the same size as the initial population.

4.5 Computational study

This section compares the performance of the algorithms for solving the GFRCPSP

we have presented in this chapter. We begin by briefly summarising each of the

algorithms that have been included in this computational study:
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• MIP: The MIP presented in Section 4.3 and based on the FP-DT3 model

from Naber and Kolisch (2014).

• GGA: A greedy FSGS without the unscheduling step, embedded into the

GA from Section 4.4.2 which searches only over activity list representations.

• FGA: The FSGS from Section 4.4.1 without the unscheduling step, embed-

ded into the GA from Section 4.4.2.

• FURS: The full FSGS-U from Section 4.4.1, applied to randomly sampled

solutions.

• FUGA: The full FSGS-U as described in Section 4.4.1, embedded into the

GA from Section 4.4.2.

• FGAU: The same as FGA, however at the end of each generation, nreschedule

of the least infeasible solutions are rescheduled using the full FSGS-U. These

solutions are recorded but not added to the population.

By comparing the results of GGA, FGA and FUGA, the benefit of the FSGS and

the unscheduling step can be evaluated. Similarly, by comparing the results of

FURS and FUGA, the impact of the genetic algorithm can be assessed.

The population size for each metaheuristic algorithm was set to 500. The

selection parameters used by the GA were nelite = 10, and nrand = 30, leaving

500 − nelite − nrand = 460 individuals to be chosen from the previous generation

through 3-tournament selection. The mutation rates used by the GA were pλ =

5%, pρ = 5%, and pσ = 0.5%. Whenever the FSGS-U was used, the unscheduling

step was invoked up to a limit of 20 times, after which the remaining activities were

scheduled without the use of the unscheduling step. The metaheuristic algorithms
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were each given a limit of 50,000 schedules before their best found solutions were

reported, whilst the MIP was solved using a time limit of 2 hours. All of the

solution methods were written in Python 3.6.8 and run on a single thread of a

2.3GHz Intel Xeon E5-2699 v3 processor. The MIP was solved using Gurobi 8.1.0.

Before being solved by any of the methods, a basic pre-processing procedure

was applied to each instance to compute the earliest and latest start and finish

times of each activity. This procedure is outlined in detail in Appendix A.

4.5.1 Test instances

The six algorithms described in the previous section have been applied to five sets

of GFRCPSP test instances of differing size and difficulty. The instances in these

test sets have been created by extending the ProGen/max project generator of

Schwindt (1996) to generate instances that allow for flexible resource allocation to

activities.

The five developed test sets each contain 90 test instances, resulting in a total

of 450 instances. The instances in these five test sets contain 10, 20, 30, 50 and

100 activities respectively, and are correspondingly referred to as P10, P20, P30,

P50 and P100.

The order strength (OS), resource strength (RS) and resource factor (RF)

parameters (Kolisch and Sprecher, 1997) have been controlled when generating

these GFRCPSP instances. OS controls the number of precedence relationships in

the project network, RS measures the restrictiveness of the resource availability,

and RF indicates the average number of resources required by each activity. Since

RS has the largest effect on the difficulty of solving an instance, only this parameter



4. The GFRCPSP 69

has been varied across the instances generated in each test set, with 30 instances

being generated for each of the RS values 0.05, 0.15, 0.25. For every instance, OS

is set to 0.4, and RF is set to 0.75. Each instance involves five resources, and the

minimum block length is chosen randomly to be either 2, 3 or 4.

The five sets of test instances used in this computational study and the code

used to generate them can be found at https://github.com/boldm1/GFRCPSP_

instgen.

4.5.2 Computational results

This section reports and analyses the results from applying the six algorithms

listed above to the P10, P20, P30, P50, P100 test sets.

We first report the number of instances for which a feasible solution was found

by each algorithm. This is shown in Table 4.3 for each test set. Observe that

FUGA is the only algorithm to find a feasible solution to all 450 test instances.

Test set MIP GGA FSGA FURS FUGA FGAU
P10 90 90 90 90 90 90
P20 90 89 90 90 90 90
P30 87 86 90 90 90 90
P50 35 86 90 90 90 90
P100 32 60 75 73 90 89

Table 4.3: Number of instances for which a feasible solution was found.

We now examine the results shown in Figure 4.5. Each row of plots corre-

sponds to a different set of test instances, as labelled down the left-hand-side. The

left-most plots shows the average percentage gap to the best known solution for

each heuristic algorithm, as a function of the number of schedules that have been

https://github.com/boldm1/GFRCPSP_instgen
https://github.com/boldm1/GFRCPSP_instgen
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searched. When an algorithm failed to find a feasible solution to a given instance,

a ‘penalty gap’ of 50% was applied. If an algorithm fails to find a feasible so-

lution to at least one instance in a test set, its corresponding line is dashed to

emphasise that the plotted value is an estimate that is dependent on this choice

of penalty gap. The middle plots show the number of instances for which each

heuristic algorithm finds the best known solution, as a function of the number of

schedules that have been searched. Finally, the right-most plot of each row shows

the performance profile of each solution method; that is, a function showing the

proportion of instances solved to within τ of the best known solution.

Looking at the first two plots of each row, it is clear that FUGA is the strongest

performing heuristic algorithm across all test sets, with its superiority becoming

more pronounced as the instances become larger. Across all the test sets, the

algorithms that make use of the unscheduling step (FURS, FUGA and FGAU)

find the better solutions in the early generations than the algorithms that do not

(GGA and FGA). However, only the algorithms that also use the GA (FUGA and

FGAU) maintain this advantage over the 50,000 schedules.

Looking at the performance profiles, we can directly compare the MIP with

the heuristic algorithms. The MIP outperforms FUGA and the other heuristic

algorithms for the P10 test set, where it finds a provably optimal solution for all

90 instances. The MIP remains the best performing algorithm for P20, where it

solves 77/90 instances to optimality. Despite also finding an optimal solution to

77/90 instances for P30, the MIP fails to find a solution within 50% of the best

known solution for 9/90 instances, whereas FUGA finds a solution within 5% of

the best known solution for 86/90 instances. For P50 and P100, the performance
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Figure 4.5: Left-most plots show average percentage gap to best known solution
for each heuristic algorithm, as a function of the number of schedules searched.
Middle plots show the number of instances for which each heuristic algorithm finds
the best solution, as a function of the number of schedules searched. Right-most
plots show performance profile of each algorithm.
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of MIP dramatically worsens when compared with the heuristic algorithms.

Table 4.4 compares the average percentage gap to the critical-path-based lower

bound of solutions found by the MIP and the strongest performing heuristic al-

gorithm, FUGA, across the five test sets. The instances in each set have been

separated by their resource strength (RS). The instances with smaller RS values

have more restrictive resource availabilities and are therefore more challenging.

To enable a fair comparison of the solution methods, the instances for which both

algorithms found a feasible solution have been presented separately from the in-

stances for which only FUGA finds a feasible solution. There were no instances for

which only the MIP found a feasible solution. Looking at these results confirms

that the MIP found the better solutions over P10 and P20, but that its perfor-

MIP & FUGA Only FUGA
Test set RS # ∆MIP

lb ∆FUGA
lb # ∆FUGA

lb

P10
0.05 30 10.90 13.14 0 -
0.15 30 2.17 3.24 0 -
0.25 30 0.49 0.49 0 -

P20
0.05 30 19.37 19.65 0 -
0.15 30 0.25 0.49 0 -
0.25 30 0.00 0.00 0 -

P30
0.05 28 150.81 13.43 2 10.71
0.15 29 0.00 0.00 1 0
0.25 30 14.56 0.00 0 -

P50
0.05 0 - - 30 25.24
0.15 6 617.23 0.00 24 0.00
0.25 29 769.84 0.00 1 0.00

P100
0.05 0 - - 30 18.81
0.15 3 1029.66 0.00 27 0.00
0.25 29 1442.55 0.00 1 0.00

Table 4.4: Average percentage gap to the critical path-based lower bound of so-

lutions found by the MIP and FUGA. These values are denoted by ∆MIP
lb and

∆FUGA
lb , respectively.
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mance dramatically worsens over the larger test sets. In contrast, the quality of

the solutions found by FUGA remained roughly constant across all five sets.

We now consider the computational speed of the heuristic algorithms. Table

4.5 shows the average time required by each heuristic algorithm to generate 1000

schedules for each type of instance across the test sets. The average times over all

the instances in each test set are shown in bold. The two algorithms that do not

use the unscheduling step have computation times that scale at a constant factor

of roughly 2.5 as the instance size is doubled. The algorithms that do make use of

the unscheduling step scale less well. When RS = 0.05, the unscheduling step is

required far more frequently, and as a result the algorithms that use the unschedul-

Test set RS GGA FGA FURS FUGA FGAU

P10

0.05 4.8 2.9 11.4 5.0 2.9
0.15 4.9 2.7 7.9 5.4 2.8
0.25 5.9 2.8 5.7 4.0 2.8

5.2 2.8 8.3 4.8 2.8

P20

0.05 11.0 8.0 48.6 21.6 8.2
0.15 14.1 6.8 22.3 18.2 6.9
0.25 10.0 6.5 16.4 14.1 6.6

11.7 7.1 29.1 17.9 7.2

P30

0.05 16.9 16.9 69.8 24.1 15.1
0.15 16.5 18.2 41.8 22.5 16.4
0.25 16.5 18.6 29.3 15.3 14.2

16.6 17.9 47.0 20.7 15.2

P50

0.05 45.3 37.4 185.0 98.0 41.5
0.15 37.8 35.3 125.4 55.7 38.3
0.25 27.9 29.3 120.0 42.1 27.5

37.0 34.0 143.5 65.3 35.7

P100

0.05 96.3 87.4 567.9 469.3 123.2
0.15 92.5 88.4 527.0 331.1 102.4
0.25 101.3 95.9 503.3 157.6 100.2

96.7 90.6 532.8 319.3 108.6

Table 4.5: Average time to generate 1000 schedules in seconds.
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ing step run particularly slowly across these instances. The FGAU algorithm has

been developed in an attempt to make use of the benefits of the unscheduling step

whilst keeping computational times low. FGAU scales only slightly less well than

the algorithms without the unscheduling step and maintains solution quality to a

good extent, finding a feasible solution to all but one of the 450 instances.

4.6 Case Study: The Sellafield nuclear decommis-

sioning project

In this section we outline the application of the model and solution methods pre-

sented in this chapter to the Sellafield decommissioning project. Located on the

Cumbrian coastline in North-west England, the Sellafield nuclear site covers 6

square kilometers, contains more than 200 nuclear facilities, and is the location

of the world’s the largest inventory of untreated nuclear waste. Since the second

world war, the site has been a centre of the nuclear industry in the UK, being home

to the UK’s original nuclear weapons program, the world’s first commercial nuclear

power station, and the UK’s nuclear reprocessing operations. With Sellafield com-

ing to the end of its useful lifespan, focus is now turning to its decommissioning

and the safe clean-up of legacy nuclear waste. This is a project that is expected

to take in excess of 100 years to complete and cost over £90 billion (NDA, 2019).

Given the scale and complexity of the Sellafield decommissioning project, it

is essential that it is scheduled carefully and systematically. It is a requirement

that any decommissioning schedule is feasible with respect to the precedence rela-

tionships that exist between the site facilities, as well as with respect to limits on
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yearly budget, human resource, and the amount of waste material that can safely

be processed each year. In the following section, we present the decommissioning

problem in more detail, and explain how it can be modelled as a GFRCPSP.

4.6.1 Modelling the decommissioning problem

Having completed its operations, each nuclear facility on the Sellafield site must

go through a programme of decommissioning. In particular, there are three de-

commissioning stages that a building might have to complete: Post-Operation

Clean-Out (POCO), Interim Decommissioning (ID), and Final Decommissioning

(FD). Each building must complete some or all of these stages in order to be fully

decommissioned. Importantly, a number of new buildings need to be constructed

in order to support the decommissioning of certain existing facilities. For example,

over-structures must be built to contain the leakage of nuclear material from the

demolition of certain nuclear facilities. These supporting buildings must complete

an additional construction (Cons) phase before they become operational.

All activities require a total amount of money and man-hours to be completed.

In addition to this, the ID and FD activities also produce a total amount of waste

that must be processed. This waste is modelled as a resource that must be allocated

to these activities. Two types of waste are considered: Intermediate-Level Waste

(ILW) and Low-Level Waste (LLW). For each activity, man-hours is the principal

resource which determines the allocation of the other three resources.

The overall total cost, total number of man-hours required and total waste

produced by each activity are known. In addition to these overall resource require-

ments, upper and lower bounds on the yearly allocation of each of these resources
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Cons FDIDPOCO

Figure 4.6: The construction and decommissioning stages of a facility on the Sel-

lafield site. Note that, whilst not every facility must complete all of these stages,

the stages that a facility does need to complete must be executed in the order

dictated by this figure.

to each activity are specified. These upper and lower bounds usually arise due

to the physical constraints of the site which affect, for example, the maximum

number of workers that can safely fit into one facility, or the maximum amount of

waste that a single worker can remove from a given facility.

With some individual decommissioning activities expected to last upwards of

50 years, it is unrealistic to assume a fixed and unchanging resource allocation for

the entire duration of every activity. Instead, by modelling the decommissioning

project as a GFRCPSP we allow resources to be flexibly allocated to each activity,

subject to the upper and lower bounds on the annual resource allocation. Addi-

tionally, a minimum block length of 2 years is also enforced. In the absence of data

on resource availability, the availability of the principal ‘man-hours’ resource was

assumed to be equal to the maximum upper bound on its per period allocation

over all activities. The resource availability of each of the non-principal resources

was chosen to be non-limiting.

The activities associated with each building must be completed in the order

dictated by the decommissioning precedence relationships shown in Figure 4.6, as

well as a set of strict precedence relationships between facilities that result from

the physical layout of the site. Some examples of the types of relationship that
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exist between the different facilities on the site are as follows:

• Buildings A and B share a structural wall and therefore must start ID at the

same time. This is modelled as two zero time-lag start-to-start precedence

relationships going in opposite directions;

• Building C must have been operational for at least a year before it can begin

to process the waste produced by the ID phase of Building D. This is modelled

as a 1-year minimal time-lag relationship from the finish of Building C Cons

to the start of the Building D ID;

• The operation of Building E relies on the operation of Building F, and hence

Building F must have finished Cons before Building E finishes Cons. This is

modelled as a zero time-lag finish-to-finish relationship;

• Building F is structurally sound until 2050 and therefore must have com-

pleted ID by this date. This deadline is modelled as a maximum time-lag

between the dummy project-start activity, and the finish of Building F ID;

Note how these relationships require the use of generalised precedence relationships

in order to be accurately captured by the model.

The specific problem instance solved in this case study corresponds to a subset

of the Sellafield site involving 43 buildings and a total of 95 separate decom-

missioning activities. The largest connected component of the resulting project

precedence network is shown in Figure 4.7. The following section describes the

results of solving this problem using each of the solution approaches proposed in

this chapter.
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4.6.2 Results

Firstly, the instance was formulated using the MIP in Section 4.3 and passed to

the Gurobi 8.1.0 solver. As was the case for the harder instances from the P100

test set, this approach failed to find a feasible solution to the decommissioning

scheduling problem within the time limit of two hours.

In contrast, all five heuristic algorithms found a feasible decommissioning sched-

ule. Figure 4.8 shows the best solution found by each of the algorithms as a function

of time (in seconds). Each metaheuristic was given a search limit of 50,000 sched-

ules and the point at which each line stops in Figure 4.8 gives the time required

by the corresponding algorithm to reach this limit.
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Figure 4.8: Best found makespan for each metaheuristic algorithm, as a function

of time (in seconds). Each algorithm was used to generate 50,000 schedules.
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The quality of the solutions found by the different solution methods follows

the same order as the results presented in Section 4.5.2. FURS is the weakest

algorithm, finding a feasible schedule with makespan of 125 years, followed by

GGA, which finds a schedule with makespan of 117 years. The FGA and FGAU

algorithms both find schedules that complete in 113 years. As expected, FUGA

is the strongest performing algorithm, finding a schedule with a makespan of 111

years. It is also worth noting that, in this instance, the use of the unscheduling

step in FUGA does not dramatically affect its running time, with FUGA requiring

only 20.8% longer than FGA to generate 50,000 schedules. The reason for this is

that after the use of the unscheduling step in the early generations, the solution

population quickly fills with feasible solutions resulting in it being required much

less frequently throughout later generations.

This case study provides a practical motivation for the use of the GFRCPSP,

and further demonstrates the effectiveness of the proposed FUGA algorithm for

solving large-scale GFRCPSP instances.

4.7 Conclusion

Motivated by the need to model a real-world large-scale nuclear decommissioning

project, this chapter has introduced the GFRCPSP. This new project schedul-

ing model serves as an extension to the RCPSP that combines the inclusion of

both generalised precedence constraints and flexible resource allocation. Firstly,

an MIP formulation has been proposed to solve this problem. Following this, a

metaheuristic solution approach has been developed for solving larger instances

for which the MIP fails to find a solution. The proposed FUGA algorithm is based
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on a non-greedy flexible serial schedule generation scheme with an unscheduling

step, embedded in a genetic algorithm that searches over the space of inputs to

the scheduling heuristic. This heuristic approach produces the strong results when

compared with the MIP and four other benchmarking heuristics in a computational

study. Given the relatively slow computation time of proposed metaheuristic al-

gorithm, the FGAU variant has been suggested in an attempt to use the com-

putationally expensive unscheduling step more sparingly. FGAU retains a good

solution quality in most instances and significantly reduces computation times as

desired. Finally, the application of the GFRCPSP to model the Sellafield nuclear

decommissioning project highlights the relevance of this new model, and further

demonstrates the effectiveness of the FUGA algorithm.

In terms of further research directions, it seems worthwhile to investigate fur-

ther improvements to the metaheuristic algorithms proposed here. An improved

algorithm would likely employ a hybrid metaheuristic strategy, extending the pro-

posed genetic algorithm by including an additional local search heuristic.



Chapter 5

A Compact Reformulation of the

Two-Stage Robust Resource-Constrained

Project Scheduling Problem

5.1 Introduction

The resource-constrained project scheduling problem (RCPSP) consists of schedul-

ing a set of activities, subject to precedence constraints and limited resource avail-

ability, with the objective of minimising the overall project duration, known as the

makespan. Given its practical relevance to a number of industries, including con-

struction (Kim, 2013), manufacturing (Gourgand et al., 2008), R&D (Vanhoucke,

2006), and personnel scheduling (Drezet and Billaut, 2008), the RCPSP and many

of its variants have been widely studied since a first model was introduced by

Pritsker et al. (1969). The vast majority of this research, however, has examined

the RCPSP under the assumption that the model parameters are known deter-

ministically (for a survey of the deterministic RCPSP, see Artigues et al. (2008)),

82
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but clearly, in practice, large projects are subject to non-trivial uncertainties. For

instance, poor weather might delay construction times, uncertain delivery times of

parts may delay manufacturing activities, and the durations of research activities

are inherently uncertain. As a result, in recent years, increasing attention has been

given to the uncertain RCPSP, where scheduling decisions must be made whilst

activity durations are unknown.

There exist two main approaches for solving the uncertain RCPSP. The first is

to view the problem as a dynamic optimisation problem where scheduling decisions

are made each time new information becomes available according to a scheduling

policy (Igelmund and Radermacher, 1983a,b; Möhring and Stork, 2000). Most

recently, Li and Womer (2015) use approximate dynamic programming to find an

adaptive closed-loop scheduling policy for the uncertain RCPSP.

The second approach aims to proactively develop a robust baseline schedule

that protects against delays in the activity durations. Zhu et al. (2007) present a

two-stage stochastic programming formulation for building baseline schedules for

projects with a single resource. Bruni et al. (2015) present a chance-constraint-

based heuristic for constructing robust baseline schedules and Lamas and Demeule-

meester (2016) introduce a procedure for generating robust baseline schedules that

is independent of later reactive scheduling procedures. For a review of both dy-

namic and proactive project scheduling, see Herroelen and Leus (2005).

Although frequently referred to as robust, none of the scheduling methods

described above make use of robust optimisation in the sense of Ben-Tal and

Nemirovski (1998, 1999, 2000). Over the last 20 years, robust optimisation has

emerged as an effective framework for modelling uncertain optimisation problems.
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Unlike stochastic programming, robust optimisation does not require probabilistic

knowledge of the uncertain data. Instead, the robust optimisation approach only

assumes that the uncertain data lie somewhere in a given uncertainty set, and

then aims to find solutions that are robust for all scenarios that can arise from

that uncertainty set.

The applicability of robust optimisation as a method for solving uncertain op-

timisation problems has increased following the introduction of adjustable robust

optimisation (Ben-Tal et al., 2004; Yanıkoğlu et al., 2019). Adjustable robust

optimisation extends static robust optimisation into a dynamic setting, where a

subset of the decision variables must be determined under uncertainty, whilst other

variables can be adjusted following observations of the uncertain data. As well as

accurately modelling the decision process undertaken by many real-world decision-

makers, adjustable robust optimisation overcomes the over-conservativeness that

restricts the applicability of static robust optimisation models. For extensive sur-

veys on robust optimisation, see Ben-Tal et al. (2009); Bertsimas et al. (2011);

Gorissen et al. (2015); Goerigk and Schöbel (2016).

Despite the successful application of robust optimisation in many different fields

(see Bertsimas et al. (2011)), few papers have directly applied robust optimisation

in the construction of robust baseline project schedules. Balouka and Cohen (2021)

consider the multi-mode RCPSP under the framework of robust optimisation, and

present a solution approach based on Benders’ decomposition (Benders, 1962).

Artigues et al. (2013b) consider the RCPSP under uncertain activity durations and

present an iterative scenario-relaxation algorithm, with the objective of minimising

the worst-case absolute regret (Kouvelis and Yu, 1997).
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Bruni et al. (2017) introduce the two-stage adjustable robust RCPSP that

we consider in this chapter. For the case of budgeted uncertainty, they solve this

problem using a Benders’-style decomposition approach. Bruni et al. (2018) extend

this work and present a computational study of solution methods for solving the

two-stage adjustable RCPSP. An additional Benders’-style algorithm is compared

against a primal decomposition algorithm, as well as the algorithm presented in

Bruni et al. (2017). The primal decomposition algorithm is shown to be the best

performing algorithm for solving the two-stage adjustable RCPSP. At the same

time, only 767 of 1440 instances could be solved to optimality, which means that

a large gap of unsolved instances remains.

Simultaneously and independently of this work, Pass-Lanneau et al. (2020)

have studied a related problem known as the anchor-robust RCPSP, where baseline

schedules are developed such that the start times of the activities in a given subset

are guaranteed to remain unchanged upon the realisation of the uncertain data.

Examining their problem, they independently obtain a similar formulation to the

one we present in Section 5.3.2.

The contributions of this chapter are as follows. We present a new compact re-

formulation of the two-stage adjustable robust RCPSP with budgeted uncertainty.

This is the first compact formulation for this problem, allowing us to solve it di-

rectly using standard optimisation software. As a result, and as computational

experiments confirm, our compact reformulation can be solved significantly faster,

and for a much greater number of instances than the current best algorithm for

solving this problem.

The remainder of this chapter is organised as follows: Section 5.2 introduces the
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two-stage adjustable robust RCPSP in detail, before Section 5.3 derives a compact

reformulation of this problem and computational experiments are presented in

Section 5.4. Concluding remarks are made in Section 5.5.

5.2 The two-stage robust RCPSP

A project consists of a set V = {0, 1, . . . , n, n + 1} of non-preemptive activities,

where 0 and n + 1 are dummy source and sink activities with duration 0. Each

activity i ∈ V requires an amount rik ≥ 0 of resource k ∈ K, where K is the set

of project resource types. Each resource k ∈ K has a finite availability Rk in each

time period. Each activity i ∈ V has a nominal duration given by θ̄i, and a worst-

case duration given by θ̄i + θ̂i, where θ̂i is its maximum deviation. In addition

to resource constraints, the project activities must be scheduled in a manner that

respects a set E of strict finish-to-start precedence constraints, where (i, j) ∈ E

enforces that activity i must have finished before activity j can begin. A project

can be represented on a directed graph G(V,E). An example project involving

seven non-dummy activities and a single resource is shown in Figure 5.1.

We assume that the duration of each activity i ∈ V lies somewhere between its

nominal value θ̄i and its worst-case value θ̄i+ θ̂i. Additionally, we follow Bertsimas

and Sim (2004) and assume that only a subset of all activities can simultaneously

attain their worst-case values. Hence, the set in which we assume durations can

lie, known as the uncertainty set, is given by

U(Γ) =
{
θ ∈ R|V |

+ : θi = θ̄i + δiθ̂i, 0 ≤ δi ≤ 1 ∀i ∈ V,
∑
i∈V

δi ≤ Γ

}
,
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Figure 5.1: Example project involving seven non-dummy activities and a single

resource with R1 = 5.

where Γ determines the robustness of the solution by controlling the number of

activities that are allowed to reach their worst-case duration simultaneously. For

Γ = 0, each activity takes its nominal duration and the problem reduces to the

deterministic RCPSP. At the other extreme, when Γ = n, every activity can take

its worst-case duration, and this uncertainty set becomes equivalent to interval

uncertainty.

The robust RCPSP lends itself naturally to a two-stage decision process, where

resource allocation decisions need to be made at the start of the project before

the uncertain activity durations become known, but the activity start times can

be decided following the realisation of the activity durations. Hence, resource

allocation decisions constitute the set of first-stage decisions, whilst the activity

start times constitute the set of second-stage decisions.

More specifically, the first-stage resource allocation decisions consist of deter-

mining a feasible extension of the project precedence relationships E so that all re-
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source conflicts are resolved. A forbidden set (Igelmund and Radermacher, 1983a)

is any subset F ⊆ V of non-precedence-related activities such that
∑

i∈F rik > Rk

for at least one k ∈ K, i.e. the activities of F cannot be executed simultaneously

without violating a resource constraint. A minimal forbidden set is a forbid-

den set that does not contain any other forbidden set as a subset. We denote

the set of minimal forbidden sets by F . For the example project in Figure 5.1,

F =
{
{1, 5}, {2, 6}, {5, 6}, {6, 7}, {3, 4, 5}

}
. The resource conflict represented by

each minimal forbidden set can be resolved by adding an additional precedence

relationship to the project network. Bartusch et al. (1988) show that solving the

RCPSP is equivalent to finding an optimal choice of additional precedence relation-

ships X ⊆ V 2 \E, such that the extended project network G′(V,E ∪X) is acyclic

and contains no forbidden sets. Such an extension X to the project precedence

network is referred to as a sufficient selection. Hence, a solution to the first-stage

problem corresponds to the choice of a sufficient selection X. Figure 5.2 shows the

extended project network for a sufficient selection to the example project shown

in Figure 5.1 (arcs in X are dashed).

Given the extended project network resulting from the choice of sufficient se-

lection made in the first stage, the second stage problem consists of determining

activity start times in order to minimise the worst-case makespan in this extended

network. Since all resource conflicts have been resolved in the first-stage problem,

the second stage problem contains no resource constraints.

Hence, the two-stage robust RCPSP under budgeted uncertainty is given by:

min
X∈X

max
θ∈U(Γ)

min
S∈S(X,θ)

Sn+1 (5.1)
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Figure 5.2: An extension of the example project shown in Figure 5.1, corresponding

to the sufficient selection given by the dashed arcs.

where X is the set of sufficient selections, and S(X, θ) is the set of feasible activity

start times given the activity durations θ ∈ U(Γ) and choice of sufficient selection

X. That is,

S(X, θ) =

{
S ∈ R|V |

+ : S0 = 0, Sj − Si ≥ θi ∀(i, j) ∈ E ∪X

}
.

To solve this problem we propose a mixed-integer programming formulation, out-

lined in the following section.

5.3 A compact reformulation

In this section, we present a reformulation of the two-stage robust RCPSP. Unlike

existing formulations for the two-stage adjustable RCPSP, the formulation we

propose is compact, i.e. it contains polynomially many constraints and variables.

We begin by first examining the adversarial sub-problem of maximising the worst-

case makespan for a given sufficient selection.
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5.3.1 The adversarial sub-problem

Suppose the solution to the first-stage problem provides a sufficient selection X ∈

X , and is given by a vector y ∈ {0, 1}V×V where

yij =


1 if (i, j) ∈ E ∪X

0 otherwise.

The second-stage sub-problem that arises can be considered from the point of view

of an adversary who wishes to choose the worst-case scenario of delays for the given

first-stage solution. Following the adversary’s choice of delays, we can determine

the start time of each activity in order to minimise this worst-case makespan.

Let us assume a fixed scenario θ ∈ U(Γ) given by the vector δ ∈ [0, 1]|V |. In

this case, the inner minimisation problem becomes

minSn+1 (5.2)

s.t. S0 = 0 (5.3)

Sj − Si ≥ θ̄i + δiθ̂i −M(1− yij) ∀(i, j) ∈ V 2 (5.4)

Si ≥ 0 ∀i ∈ V, (5.5)

where M is some number greater than or equal to the maximum possible minimum

makespan. By taking the dual of (5.2)-(5.5), and then introducing the adversarial

delay variables δi, i ∈ V , we obtain the following non-linear mixed-integer pro-

gramming formulation for the adversarial sub-problem, first introduced in Bruni



5. A Compact Reformulation of the Two-Stage Robust RCPSP 91

et al. (2017):

max
∑

(i,j)∈V 2

(
θ̄i + δiθ̂i −M(1− yij)

)
αij (5.6)

s.t.
∑

(i,j)∈V 2

αij −
∑

(j,i)∈V 2

αji = 0 ∀j ∈ V (5.7)

∑
(0,i)∈V 2

α0i = 1 (5.8)

∑
(i,n+1)∈V 2

αi,n+1 = 1 (5.9)

∑
i∈V

δi ≤ Γ (5.10)

0 ≤ δi ≤ 1 ∀i ∈ V (5.11)

αij ∈ {0, 1} ∀(i, j) ∈ V 2. (5.12)

Observe that (5.6)-(5.9) correspond to the dual of (5.2)-(5.5), where the dual

variables αij are continuous. Note also how the delay variables δi, i ∈ V , are

related to the dual variables αij through the objective (5.6). The dual variables αij

determine a longest path through the network defined by the first-stage variables

yij. Hence, when αij = 1, edge (i, j) is included in this longest path, and the

duration of activity i, which determined by its delay variable δi, contributes to

its length. Therefore, with the addition of the delay variables δi, i ∈ V , this

adversarial sub-problem can be thought of as a non-linear longest-path problem

through the network determined in the first-stage problem, where up to Γ units of

delay can be distributed among activities in order to further maximise this longest

path. For fixed choice of δ, it is possible to find an optimal solution to this problem

where each αij is binary. The advantage of binary variables αij is that products
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δiαij can be easily linearised with the introduction of additional variables. As

shown by Bruni et al. (2017), this linearised model is given as follows:

max
∑

(i,j)∈V 2

(
θ̄iαij + θ̂iwij −M(1− yij)αij

)
(5.13)

s.t.
∑

(i,j)∈V 2

αij −
∑

(j,i)∈V 2

αji = 0 ∀j ∈ V (5.14)

∑
(0,i)∈V 2

α0i = 1 (5.15)

∑
(i,n+1)∈V 2

αi,n+1 = 1 (5.16)

wij ≤ δi ∀(i, j) ∈ V 2 (5.17)

wij ≤ αij ∀(i, j) ∈ V 2 (5.18)∑
i∈V

δi ≤ Γ (5.19)

0 ≤ δi ≤ 1 ∀i ∈ V (5.20)

αij ∈ {0, 1} ∀(i, j) ∈ V 2 (5.21)

wij ≥ 0 ∀(i, j) ∈ V 2. (5.22)

It is claimed in Proposition 4 of Bruni et al. (2017) that this problem is equivalent

to its linear relaxation, where αij ∈ [0, 1] for all (i, j) ∈ V 2. This, however, is not

the case, as the following counter-example demonstrates.

Figure 5.3 shows a project with three non-dummy activities, each with a nom-

inal duration of θ̄i = 1, and a maximum deviation of θ̂i = 1, i = 1, 2, 3. Suppose

a feasible first-stage solution has been found, resulting in the network shown in

Figure 5.3. We consider this problem from the point of view of the adversary, who

wishes to distribute up to Γ = 1 units of delay, in order to maximise the minimum
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makespan. If (5.13)-(5.22) is equivalent to its linear relaxation, then the adversary

gains no advantage by choosing α ∈ (0, 1) and splitting the unit flow on its route

from the source-node 0 to the sink-node 4. However, as can be seen with this

example, the adversary does in fact obtain an advantage.
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Figure 5.3: Counter-example showing that model (5.13)-(5.22) is not equivalent to

its linear relaxation.
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In Figure 5.3a, αij ∈ {0, 1} for each (i, j) ∈ V 2, and hence the adversary is

limited to routing the unit flow through the network via a single path. A worst-

case delay in this scenario is that the unit of available delay is entirely assigned to

activity 2. Hence, δ2 = 1, whilst δ1 = δ3 = 0. Minimising the worst-case makespan

in this scenario, we get (θ̄1α12 + θ̂1w12) + (θ̄2α24 + θ̂2w24) = (1 + 0) + (1 + 1) = 3.

In Figure 5.3b, αij ∈ [0, 1] for each (i, j) ∈ V 2, and the adversary is able to split

the unit flow into multiple fractional paths on its route through the network. In

this case, the adversary can distribute the unit of delay so that δ1 = 0.5, δ2 = 0.25,

and δ3 = 0.25. In this scenario, the minimum makespan is (θ̄1α12+θ̂1w12)+(θ̄1α13+

θ̂1w13)+(θ̄2α24+ θ̂2w24)+(θ̄3α34+ θ̂3w34) = (0.5+0.5)+(0.5+0.5)+(0.5+0.25)+

(0.5+0.25) = 3.5, showing that problem (5.13)-(5.22) is not equivalent to its linear

relaxation.

Note that Bruni et al. (2017) attempt to prove that model (5.13)-(5.22) is

equivalent to its linear relaxation, and therefore polynomially solvable, by showing

that the corresponding constraint matrix is totally unimodular. In Appendix B.1,

we identify an error with this proof and show that the constraint matrix is not

totally unimodular. This result is consistent with the above counter-example.

Since problem (5.13)-(5.22) is not equivalent to its linear relaxation, we can-

not apply strong-duality to get an equivalent minimisation problem. Therefore,

in order to obtain a compact reformulation of the two-stage robust RCPSP, an

alternative reformulation of the adversarial sub-problem is required.

A dynamic programming procedure for solving problem (5.13)-(5.22) when Γ ∈

Z is presented in Bruni et al. (2017). This procedure works by considering Γ +

1 paths from the source node 0 to node i, for each i ∈ V , where each path
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πγ
i , γ = 0, . . . ,Γ, is characterised by the inclusion of exactly γ delayed activities.

Given a path πγ
i , its extension to each successor node j ∈ Succi is evaluated by

considering two possibilities: either the successor activity j is delayed, resulting in

the path πγ+1
j , or it is not delayed, resulting in the path πγ

j . Hence, the dynamic

programming algorithm has a state ST (j, γ) for each node j at level γ, and the

value of each state V (ST (j, γ)) is computed through the following recursion:

V (ST (0, 0)) = 0 (5.23)

V (ST (j, γ)) = max
i:(i,j)∈E∪X

{
max

(
V (ST (i, γ)), V (ST (i, γ − 1)) + θ̄i + θ̂i

)}
∀j ∈ V \ {0}, γ = 1, . . . ,Γ (5.24)

V (ST (j, 0)) = max
i:(i,j)∈E∪X

{
V (ST (i, 0)) + θ̄i

}
. (5.25)

This dynamic programming algorithm can be viewed as finding the critical path

through the augmented project network built from Γ + 1 copies of the original

project network (an example of such a network is shown in Figure 5.4). The

inclusion of an inter-level arc, e.g. a dashed arc in Figure 5.4, in the critical path

corresponds to the delay of the activity at the origin of that arc.
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Figure 5.4: Example augmented graph for a project with four non-dummy activi-

ties, and where up to Γ = 2 activities can reach their worst-case durations.
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Since the second stage problem is simply a longest-path problem on this aug-

mented network, it can be recast into the following mixed-integer linear program:

max
∑

(i,j)∈V 2

Γ∑
γ=0

(θ̄i −M(1− yij))αijγ

+
∑

(i,j)∈V 2

Γ∑
γ=1

(θ̄i + θ̂i −M(1− yij))βijγ (5.26)

s.t.
∑

(j,i)∈V 2

αjiγ +
∑

(j,i)∈V 2

βji,γ+1 −
∑

(i,j)∈V 2

αijγ −
∑

(i,j)∈V 2

βijγ = 0

∀j ∈ V, γ = 1, . . . ,Γ− 1 (5.27)∑
(j,i)∈V 2

αji0 +
∑

(j,i)∈V 2

βji1 −
∑

(i,j)∈V 2

αij0 = 0 ∀j ∈ V (5.28)

∑
(j,i)∈V 2

αjiΓ −
∑

(i,j)∈V 2

αijΓ −
∑

(i,j)∈V 2

βijΓ = 0 ∀j ∈ V (5.29)

∑
(0,i)∈V 2

α0i0 +
∑

(0,i)∈V 2

β0i1 = 1 (5.30)

∑
(i,n+1)∈V 2

αi,n+1,Γ +
∑

(i,n+1)∈V 2

βi,n+1,Γ = 1 (5.31)

αijγ ∈ {0, 1} ∀(i, j) ∈ V 2, γ = 0, . . . ,Γ (5.32)

βijγ ∈ {0, 1} ∀(i, j) ∈ V 2, γ = 1, . . . ,Γ, (5.33)

where αijγ is the flow from node i to node j in level γ and βijγ is the flow from

node i in level γ−1 to node j in level γ. The constraints model a unit flow through

the augmented network from node 0 in level 0 (Constraint (5.30)) to node n + 1

in level Γ (Constraint (5.31)). Constraints (5.27) are flow-conservation constraints

that ensure that for each node in level γ = 1, . . . ,Γ − 1, the incoming flow from

levels γ and γ − 1 must be equal to the outgoing flow to levels γ and γ + 1.

Constraints (5.28) and (5.29) conserve flow over the nodes in the special cases of
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the first and last level, respectively.

Note that this formulation includes more αijγ and βijγ variables than indicated

in Figure 5.4, with the edges shown in Figure 5.4 corresponding to the edges for

which yij = 1. The edges that are not shown are penalised by constant M in the

objective (5.26) when yij = 0. To ensure that it is always possible to find a path

from node 0 in level 0 to node n + 1 in level Γ in the augmented network (if Γ is

larger than the number of activities included in the longest path from node 0 to

node n+ 1 in the original project network, such a path may not be possible), the

final sink nodes of each layer are connected by enforcing yn+1,n+1 = 1 (see dotted

arcs in Figure 5.4). Since θ̄n+1 + θ̂n+1 = 0 these additional edges can be traversed

at no extra cost to reach node n+ 1 in level Γ.

5.3.2 Compact reformulation

Since the second-stage problem (5.26)-(5.33) is simply a longest-path problem

over an augmented project graph, it is equivalent to its linear relaxation where

αijγ ∈ [0, 1] for all (i, j) ∈ V 2, γ = 0, . . . ,Γ, and βijγ ∈ [0, 1] for all (i, j) ∈

V 2, γ = 1, . . . ,Γ. Hence, we can take the dual of this problem to get an equivalent

minimisation problem.

The first-stage problem aims to determine a sufficient selection X ∈ X that

minimises the second-stage objective value. This first-stage problem can be mod-

elled with a flow-based formulation, as proposed by Artigues et al. (2003). This

formulation makes use of continuous resource flow variables fijk, which determine

the amount of resource type k ∈ K that is transferred upon the completion of

activity i to activity j. Additionally, binary variables yij capture the choice of suf-
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ficient selection by representing precedence relationships of the extended project

network.

Thus, having dualised the second-stage problem (5.26)-(5.33) into a minimisa-

tion problem, the first and second-stages can be combined to obtain the following

reformulation of the full two-stage robust RCPSP with budgeted uncertainty:

min Sn+1,Γ (5.34)

s.t. S00 = 0 (5.35)

Sjγ − Siγ ≥ θ̄i −M(1− yij) ∀(i, j) ∈ V 2, γ = 0, . . . ,Γ (5.36)

Sj,γ+1 − Siγ ≥ θ̄i + θ̂i −M(1− yij) ∀(i, j) ∈ V 2, γ = 0, . . . ,Γ− 1 (5.37)

yij = 1 ∀(i, j) ∈ E ∪ {(n+ 1, n+ 1)} (5.38)

fijk ≤ Nkyij ∀(i, j) ∈ V 2, ∀k ∈ K (5.39)∑
i∈V

fijk = rjk ∀j ∈ V, ∀k ∈ K (5.40)

∑
j∈V

fijk = rik ∀i ∈ V, ∀k ∈ K (5.41)

Siγ ≥ 0 ∀i ∈ V, γ ∈ 0, . . . ,Γ (5.42)

fijk ≥ 0 ∀(i, j) ∈ V 2, ∀k ∈ K (5.43)

yij ∈ {0, 1} ∀(i, j) ∈ V 2, (5.44)

where M , as before, is chosen to be greater than or equal to the maximum possi-

ble minimum makespan, and Nk is some number greater than or equal to Rk.

Constraints (5.35)-(5.37) are the dual constraints of the second-stage problem

(5.26)-(5.33), and correspond to makespan constraints that ensure that activity

start times respect the project precedence relationships. Constraints (5.38) cap-
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ture the original project precedences, whilst constraints (5.39)-(5.41) are resource

flow constraints. Constraints (5.39) ensure that the resource flows respect the

precedence relationships, and constraints (5.40) and (5.41) conserve flow into and

out of each node, respectively. Hence problem (5.34)-(5.44) can be seen as a ex-

tended makespan minimisation problem, in which a feasible project network must

be constructed with the objective of minimising the overall makespan on the cor-

responding augmented network.

With polynomially many constraints and variables (specifically, O(|V |2 · |K|+

|V | ·Γ) many variables and O(|V |2(|K|+Γ)+ |E|) many constraints), this formula-

tion can be passed directly to standard optimisation software for solving, and the

results of doing so are presented in the following section. This is the first formula-

tion of the two-stage adjustable RCPSP for which this is the case. In comparison,

the formulation from Bruni et al. (2018) makes use of O(|V |2|K| + |V |∆) many

variables and O(|V |3 + |V |2(|K|+∆) + |E|) many constraints, where ∆ =
(|V |

Γ

)
is

an exponential number in Γ.

It is important to note that this basic formulation does not enforce the tran-

sitivity of the y-variables. Instead, the formulation captures the extended project

network in terms of the y-variables with constraints (5.38) and (5.39), and en-

sures the feasibility of activity start-times with respect to this extended network

through constraints (5.36) and (5.37). In Section 5.4 the computational benefits

of extending model (5.34)-(5.44) to include explicit transitivity constraints on the

y-variables is examined.
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5.4 Computational experiments

This section compares results obtained by solving the compact robust counterpart

(5.34)-(5.44), and three slight extensions to this method, with the current state-

of-the-art approach to solve the two-stage robust RCPSP proposed in Bruni et al.

(2018). Before outlining the proposed extensions to the basic model detailed in

the previous section, we introduce the test instances used in this computational

study.

The complete sets of results from these experiments as well as Python im-

plementations of each of the four methods we propose can be found at https:

//github.com/boldm1/two-stage-robust-RCPSP.

5.4.1 Instances

The test instances used in this computational study have been converted from

deterministic RCPSP instances involving 30 activities, taken from the PSPLIB

(Kolisch and Sprecher (1997), http://www.om-db.wi.tum.de/psplib/). The dif-

ficulty of these instances is measured and controlled by the following three param-

eters:

1. Network complexity NC ∈ {1.5, 1.8, 2.1}. This measures the average number

of non-redundant (i.e. non-transitive) arcs per activity.

2. Resource factor RF ∈ {0.25, 0.5, 0.75, 1}. This measures the average pro-

portion of resource types for which a non-dummy activity has a non-zero

requirement.

3. Resource strength RS ∈ {0.2, 0.5, 0.7, 1}. This measures the restrictiveness

https://github.com/boldm1/two-stage-robust-RCPSP
https://github.com/boldm1/two-stage-robust-RCPSP
http://www.om-db.wi.tum.de/psplib/


102 5. A Compact Reformulation of the Two-Stage Robust RCPSP

of the availability of the resources, with a smaller RS value indicating a more

constrained project instance.

The PSPLIB contains a set of 10 instances for each of the 48 possible combinations

of instance parameters.

The maximum deviation of the duration of each activity is set to be θ̂ =
⌈
θ̄/2
⌉
,

where θ̄ is the nominal duration as specified in the original instance file. For each of

the 480 deterministic RCPSP instances in the PSPLIB, three robust counterparts

have been generated by considering Γ ∈ {3, 5, 7}, resulting in a total of 1440 test

instances. The sets of 30 robust counterparts for each combination of instance

parameters are labelled J301, J302, . . . , J3048. Note that the instances used in

this computational study are identical to the instances used in Bruni et al. (2017)

and Bruni et al. (2018).

5.4.2 Implementations

The following section compares the performance of model (5.34)-(5.44) with that

of three slight extensions. Here, we outline these extensions and clarify details

regarding the practical implementation of these models.

The first variant of the basic model (5.34)-(5.44) includes the following transi-

tivity constraints on the y-variables:

yij + yji ≤ 1 ∀(i, j) ∈ V 2 \ {(n+ 1, n+ 1)} (5.45)

yij ≥ yil + ylj − 1 ∀(i, l, j) ∈ V 3. (5.46)

As explained in Section 5.3.2, the transitivity of the y-variables is not strictly nec-
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essary to ensure the feasibility of the activity start-times. We include them as an

extension to model (5.34)-(5.44) in order to assess their impact on the computa-

tional performance.

The second extension involves the provision of a heuristic warm-start solu-

tion to the solver software. This heuristic solution is obtained with the following

procedure:

1. Given an uncertain RCPSP instance, a heuristic solution is found to the cor-

responding deterministic instance using the latest-finish-time (LFT) priority-

rule heuristic (Kolisch, 1996b).

2. From this solution, a feasible set of y-variables is obtained by setting

yij =


1 if sj ≥ fi

0 otherwise,

where sj is the start time of activity j, and fi is the finish time of activity i.

3. These y variables are passed to the basic model (5.34)-(5.44), which is solved

to provide a feasible warm-start solution.

A detailed example of this warm-start procedure is given in Appendix B.2.

This warm-start solution can be used to tighten the big-M constraints (5.36) and

(5.37), and thereby further improve the basic model. This is achieved by setting

Mij = LFi−ESj for each (i, j) ∈ V 2, where ESj is the earliest start time of activity

j, and LFi is the latest finish time of activity i, calculated relative to the makespan

of the warm-start solution. As before, these values are computed recursively via a

forward-pass and backward-pass of the project network, respectively.
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Note that, although the S-variables of formulation (5.34)-(5.44) are in general

continuous, for the purposes of this computational study, the S-variables have been

set to be integer. Since θ̂ =
⌈
θ̄/2
⌉
∈ Z for the instances solved in this study, the

correctness of the formulation is unaffected by this specification.

In summary, the following section presents results from the following five solu-

tion approaches:

1. Basic model (5.34)-(5.44),

2. Basic model with transitivity constraints, i.e (5.34)-(5.46),

3. Basic model with warm-start,

4. Basic model with warm-start and transitivity constraints,

5. Primal method from Bruni et al. (2018). This is the strongest existing ap-

proach for solving the two-stage robust RCPSP.

All the models proposed in this chapter have been solved using Gurobi 9.0.1,

running on 4 cores of a 2.30GHz Intel Xeon CPU, limited to 16GB RAM. Note

that the specifications of this machine have been chosen to be as similar as possible

to that of the CPU used in the experiments performed in Bruni et al. (2017) and

Bruni et al. (2018). A limit of 20 minutes was imposed on the solution time of

each model, the same as used for the experiments performed in Bruni et al. (2017)

and Bruni et al. (2018). Results for the primal method have been reproduced from

Bruni et al. (2018).



5. A Compact Reformulation of the Two-Stage Robust RCPSP 105

5.4.3 Results

In this section, we first present and analyse results from solving model (5.34)-(5.44)

and the three variants proposed in the previous section, before we compare these

results with those from the current best iterative algorithm presented in Bruni

et al. (2018).

We start by considering the performance profile (Dolan and Moré, 2002) plot

shown in Figure 5.5. The performance profile uses the performance ratio as a mea-

sure by which the different solution methods can be compared. The performance

ratio of method m ∈M for problem instance i ∈ I is defined to be

pim =
tim

minm∈M tim
,

where tim is the time required to solve instance i using method m. If method m

is unable to solve instance i to optimality within the 20 minute time-limit, then

pim = P , where P ≥ maxi,m tim. The performance profile of method m ∈ M is

defined to be the function

ρm(τ) =
|{pim ≤ τ : i ∈ I}|

|I| ,

i.e. the probability that the performance ratio of method m is within a factor τ of

the best performance ratio. The performance profile in Figure 5.5 has been plotted

on a log scale for clarity.

It is clear from Figure 5.5 that the provision of a heuristic warm-start solution

improves solution time, with the models that make use of a warm-start solution

being faster to solve for a greater proportion of instances than their respective
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Figure 5.5: Performance profile of relative solution times.

models without a warm-start. It can also be seen that the models that make use

of transitivity constraints are slower to solve to optimality for a greater proportion

of instances than their respective models that do not use transitivity constraints.

However, the inclusion of transitivity constraints does increase the proportion of

instances that can be solved to optimality, by 5.3% for the basic model, and by

5.2% for the model with warm-start.

Figure 5.6 plots the cumulative percentage of instances solved to within a

given optimality gap within the 20 minute time-limit. Note that the left-hand

y-intercept of this figure gives the same information as the right-hand y-intercept

in Figure 5.5, that is, the proportion of instances solved to optimality using each

method. Looking at Figure 5.6, it can be seen that as well as increasing the pro-

portion of instances that can be solved to optimality, the inclusion of transitivity

constraints increases the proportion of instances that can be solved to within a
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given optimality gap. Of the 255 instances for which an optimal solution was un-

able to be found with any model, but for which a feasible solution was found using

all models, the average optimality gap was 24.53% for the basic model, 22.80%

with the inclusion of transitivity constraints, 24.71% with the inclusion of a warm-

start solution, and 22.36% with the inclusion of both a warm-start solution and

transitivity constraints. Note however that the basic model fails to find a feasible

solution for only 3 instances, whilst the model that includes transitivity constraints

fails to find a feasible solution for 24 instances. The other two variants find feasible

solutions to all 1440 instances.
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Figure 5.6: Cumulative percentage of instances solved to within given gap of op-

timality within time-limit.

From Figures 5.5 and 5.6, we can see that the inclusion of a warm-start so-

lution and transitivity constraints in model (5.34)-(5.44) is the best performing

variant: it solves the greatest number of instances to optimality, is the strongest
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basic model (5.34)-(5.44) incl. trans

Γ time gap #solv time gap #solv

3 318.33 5.18 362 285.28 4.99 388

5 327.37 5.37 361 303.23 5.37 377

7 334.58 5.79 359 308.92 7.05 374

326.76 5.45 1082 299.14 5.80 1139

incl. warm-start incl. warm-start + trans.

Γ time gap #solv time gap #solv

3 312.77 5.29 366 283.74 4.49 386

5 319.83 5.22 361 292.14 4.60 383

7 329.24 5.49 359 310.07 4.87 373

320.61 5.33 1086 295.32 4.65 1142

Table 5.1: Comparison of the variants of model (5.34)-(5.44) for different values

of Γ.

performing model over the instances which no model can solve to optimality, and

is significantly faster to solve than the transitive model without a warm-start.

In Table 5.1, we consider the impact of the uncertainty budget Γ on the per-

formance of the basic model (5.34)-(5.44) and its three variants. For each method

we report the average CPU time in seconds (time), the average optimality gap in

percent (gap), and the number of instances solved to optimality (#solv). Note

that in the case where a method was unable to find a feasible solution to given

instance, an optimality gap of 100% has been reported. These results show that

although the effect is limited, instances do appear to get more difficult to solve as

Γ increases for all four methods.

In Table 5.2, we now compare the performance of the basic model (5.34)-(5.44)
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and its strongest extension, with the results of the strongest existing algorithm for

the two-stage robust RCPSP, the primal method (Bruni et al., 2018). For each

set of test instances, J301, . . . , J3048, Table 5.2 reports instance parameters (NC,

RF, RS), as well as the same measures that were reported in Table 5.1 (time, gap,

#solv).

Of the 1440 test instances, 1160 have been solved to optimality within the

time-limit by at least one of the four variants of model (5.34)-(5.44) proposed in

this chapter. As seen in Table 5.2, the primal method solves 767/1440 instance

to optimality, whilst the basic method solves 1082/1440 instances to optimality

(∼41% more than the primal method), and the strongest performing method,

which includes the warm-start and transitivity constraints, solves 1142/1440 in-

stances to optimality (∼49% more than the primal method). Furthermore, our

methods reduce the average gap (4.66% instead of 6.30%) and result in smaller

average solution times (295 seconds instead of 621 seconds).

There are only six out of 48 instance sets for which the primal method shows

a slightly better performance than the methods we propose (J309, J3013, J3025,

J3029, J3041, J3045). These contain some of the most difficult instances, for which

all the methods perform poorly. All three methods fail to find an optimal solution

to almost all of the instances in these sets, however the primal method achieves

a smaller optimality gap in the time limit. The iterative approach utilised by

the primal method incrementally improves upon a feasible solution by solving a

series of subproblems. For the most challenging instances, this iterative approach

is more effective at reducing the optimality gap earlier in the solution process than

the methods that we propose, which attempt to solve the full problem at once. It
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primal method
(Bruni et al., 2018) basic model incl. warm-start + trans.

NC RF RS time gap #solv time gap #solv time gap #solv

J301 1.50 0.25 0.20 497.83 1.66 21 6.96 0.00 30 19.69 0.00 30
J302 1.50 0.25 0.50 192.39 0.24 28 2.68 0.00 30 6.57 0.00 30
J303 1.50 0.25 0.70 52.61 0.15 29 1.11 0.00 30 2.42 0.00 30
J304 1.50 0.25 1.00 124.97 1.18 27 0.78 0.00 30 1.62 0.00 30
J305 1.50 0.50 0.20 1200.00 15.92 0 1182.58 16.32 1 1099.26 13.29 8
J306 1.50 0.50 0.50 1115.86 11.56 3 155.59 0.05 29 102.27 0.00 30
J307 1.50 0.50 0.70 605.15 3.01 19 8.10 0.00 30 10.74 0.00 30
J308 1.50 0.50 1.00 363.31 1.85 22 1.45 0.00 30 1.95 0.00 30
J309 1.50 0.75 0.20 1200.00 10.19 0 1200.00 35.81 0 1200.00 30.71 0
J3010 1.50 0.75 0.50 1140.87 20.71 2 791.62 2.04 13 646.61 1.86 20
J3011 1.50 0.75 0.70 974.32 9.84 7 167.99 0.10 28 130.60 0.09 28
J3012 1.50 0.75 1.00 272.53 0.65 26 1.89 0.00 30 2.38 0.00 30
J3013 1.50 1.00 0.20 1200.00 50.55 1 1200.00 40.09 0 1200.00 37.27 0
J3014 1.50 1.00 0.50 1149.39 18.94 2 988.55 4.40 7 853.59 3.44 12
J3015 1.50 1.00 0.70 853.66 5.60 12 129.14 0.37 27 132.07 0.37 27
J3016 1.50 1.00 1.00 207.71 0.74 27 1.33 0.00 30 2.79 0.00 30
J3017 1.80 0.25 0.20 227.35 0.15 28 4.20 0.00 30 7.47 0.00 30
J3018 1.80 0.25 0.50 18.26 0.00 30 1.31 0.00 30 2.20 0.00 30
J3019 1.80 0.25 0.70 65.78 0.35 29 0.80 0.00 30 1.59 0.00 30
J3020 1.80 0.25 1.00 87.68 0.38 28 0.40 0.00 30 1.28 0.00 30
J3021 1.80 0.50 0.20 1200.00 9.28 2 967.73 7.77 10 757.75 5.04 18
J3022 1.80 0.50 0.50 877.51 7.11 10 45.13 0.00 30 43.52 0.00 30
J3023 1.80 0.50 0.70 356.09 0.86 24 2.71 0.00 30 4.65 0.00 30
J3024 1.80 0.50 1.00 201.76 1.13 26 0.95 0.00 30 1.75 0.00 30
J3025 1.80 0.75 0.20 1200.00 13.15 0 1200.00 31.71 0 1200.00 29.77 0
J3026 1.80 0.75 0.50 987.24 6.64 9 271.10 0.39 26 155.52 0.05 29
J3027 1.80 0.75 0.70 628.61 3.51 16 3.29 0.00 30 4.15 0.00 30
J3028 1.80 0.75 1.00 177.53 0.61 27 0.91 0.00 30 1.28 0.00 30
J3029 1.80 1.00 0.20 1200.00 10.5 1 1200.00 42.12 0 1200.00 39.23 0
J3030 1.80 1.00 0.50 1200.00 19.98 0 1158.57 4.51 3 1086.47 3.73 8
J3031 1.80 1.00 0.70 866.16 7.94 9 245.13 0.96 24 236.46 0.63 25
J3032 1.80 1.00 1.00 199.45 1.47 26 1.00 0.00 30 1.16 0.00 30
J3033 2.10 0.25 0.20 28.35 0.00 30 1.58 0.00 30 2.01 0.00 30
J3034 2.10 0.25 0.50 50.02 0.08 29 0.66 0.00 30 0.79 0.00 30
J3035 2.10 0.25 0.70 144.88 1.10 27 0.54 0.00 30 0.65 0.00 30
J3036 2.10 0.25 1.00 20.52 0.00 30 0.29 0.00 30 0.44 0.00 30
J3037 2.10 0.50 0.20 1131.60 5.59 7 634.14 6.69 18 523.56 2.31 23
J3038 2.10 0.50 0.50 463.92 1.59 23 11.63 0.00 30 12.53 0.00 30
J3039 2.10 0.50 0.70 268.81 0.78 27 3.55 0.00 30 2.56 0.00 30
J3040 2.10 0.50 1.00 257.42 1.66 24 1.29 0.00 30 1.14 0.00 30
J3041 2.10 0.75 0.20 1200.0 7.12 1 1200.00 26.73 0 1193.00 20.67 1
J3042 2.10 0.75 0.50 886.16 7.42 10 282.54 1.43 26 169.89 0.38 27
J3043 2.10 0.75 0.70 823.56 4.69 12 171.58 0.13 27 30.39 0.00 30
J3044 2.10 0.75 1.00 481.39 3.38 19 1.56 0.00 30 1.44 0.00 30
J3045 2.10 1.00 0.20 1164.00 8.10 2 1200.00 34.92 0 1200.00 31.91 0
J3046 2.10 1.00 0.50 1200.00 16.45 0 971.15 4.47 7 836.19 2.79 16
J3047 2.10 1.00 0.70 866.38 7.79 9 259.45 0.35 26 80.91 0.00 30
J3048 2.10 1.00 1.00 181.33 0.83 26 1.33 0.00 30 1.59 0.00 30

621.09 6.30 767 326.76 5.24 1082 295.32 4.66 1142

Table 5.2: Comparison of primal method (Bruni et al., 2018), basic model (5.34)-(5.44),

and extended model including warm-start and transitivity constraints.
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is important to note however that this does not necessarily mean that the primal

method is able to solve these instances more quickly than the methods we propose,

and that the overall solution times of all three methods on these instances remain

unknown. Note also that the primal method solves some instances to optimality

whilst simultaneously reaching the maximum time-limit of 1200 seconds. It is

unclear whether or not this is a numerical inaccuracy in the results presented in

Bruni et al. (2018).

Overall, we find that the methods proposed in this chapter considerably out-

perform the previous best approach, solving almost 50% more instances in a con-

siderably shorter computation time. While the primal method has the drawback

that several models have to be solved subsequently in an iterative process, our

reformulation makes it possible to solve the two-stage adjustable RCPSP with

a single mixed-integer program, utilising the strength of current solvers such as

Gurobi.

5.5 Conclusion

This chapter has introduced a new mixed-integer linear programming formulation

for the robust counterpart to the two-stage adjustable robust RCPSP. This new

compact formulation has been derived by considering a reformulation of the second-

stage adversarial sub-problem of maximising the worst-case delayed makespan for a

project without resource conflicts. The reformulation of this sub-problem is equiv-

alent to a longest-path problem over an augmented project network made from

multiple copies of the original project network. Hence, the dual of this longest-

path problem can be inserted into the first-stage resource allocation problem to
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obtain a compact minimisation problem for the full two-stage robust RCPSP.

The performance of this new formulation has been examined over 1440 in-

stances of varying characteristics and difficulty. Results show that the proposed

formulation can be solved by standard optimisation software significantly faster

than the current best algorithm for solving this problem. Using our approach, al-

most 50% more instances can be solved to optimality within the same time-limit,

while also achieving a smaller average gap and a smaller average solution time.

Regarding future research on the two-stage robust RCPSP, the development

of heuristic approaches for solving larger and more-challenging instances of this

problem would seem to be a natural and worthwhile objective.



Chapter 6

A Faster Exact Method for Solving the

Robust Multi-Mode Resource-Constrained

Project Scheduling Problem

6.1 Introduction

The multi-mode resource-constrained project scheduling problem (MRCPSP) is a

generalisation of the widely-studied resource-constrained project scheduling prob-

lem (RCPSP) to include multiple processing modes for each activity. The inclusion

of these modes allows the modelling of situations in which there is more than one

way of executing project activities, with each option having its own duration and

resource requirements. The MRCPSP consists of selecting the processing modes

and start times for a given set of activities, subject to a set of precedence con-

straints and limited resource availability, with the objective of minimising the

overall project duration, known as the makespan.

In this chapter we consider the MRCPSP under uncertain activity durations

113
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and model it using a two-stage adjustable robust optimisation framework. In this

setting, a first-stage problem is solved to determine activity mode selections and

make activity sequencing decisions to resolve resource conflicts. Following this, the

actual activity durations are realised and a complete schedule is computed. The

aim of the two-stage adjustable robust MRCPSP is to find a feasible first-stage

solution (i.e. mode selection and sequencing decisions) in order to minimise the

realised worse-case makespan, as computed in the second-stage. We refer to this

problem as the robust MRCPSP.

A number of papers in recent years have applied this two-stage robust opti-

misation approach to the RCPSP. First to use this approach were Artigues et al.

(2013b), who presented an iterative scenario-relaxation algorithm for this problem

with the objective of minimising the worst-case absolute regret. More recently,

Bruni et al. (2017) introduced a Benders’-style decomposition approach for solv-

ing the robust RCPSP with the objective of minimising the worst-case project

makespan. This work was extended in Bruni et al. (2018), which presented a

computational study comparing an additional Benders’ decomposition approach

against a primal decomposition algorithm. Most recently, the work presented in the

previous chapter (Bold and Goerigk, 2021) introduced a compact reformulation of

the robust RCPSP and presented results which showed the superior computational

performance of that formulation over the iterative decomposition-based methods

developed in the two preceding papers.

The application of this two-stage robust optimisation approach for the MR-

CPSP is a very recent development. To the best of our knowledge, the only existing

paper to consider this problem is Balouka and Cohen (2021), in which the Benders’



6. A Faster Exact Method for Solving the Robust MRCPSP 115

decomposition approach introduced by Bruni et al. (2017) for the robust RCPSP

has been extended for application to the MRCPSP. Mirroring that extension, this

chapter adapts the compact formulation developed in the previous chapter (Bold

and Goerigk, 2021) to the MRCPSP, with the aim of achieving similarly superior

computational performance over the Benders’ solution approach.

Following a formal description of the two-stage robust MRCPSP in Section 6.2,

we outline the proposed compact formulation for this problem in Section 6.3 and

present a strengthened version of the Benders’ decomposition solution approach

from Balouka and Cohen (2021) in Section 6.4. Results from a computational

comparison of these two approaches are detailed in Section 6.5.

6.2 Problem description

A project consists of a set of non-preemptive activities V = {0, 1, . . . , n, n + 1},

where 0 and n+1 denote the dummy source and sink activities respectively. Each

activity i ∈ V has a set of available processing modes given by Mi = {1, . . . , |Mi|}.

The nominal duration of activity i when executed in mode m ∈ Mi is given by

d̄im, whilst its worst-case duration is given by d̄im + d̂im, where d̂im is its maxi-

mum durational deviation. Each mode for activity i, m ∈ Mi, has an associated

renewable resource requirement of rimk for each k ∈ K, where K is the set of

renewable resource types involved in the project. Each renewable resource k ∈ K

has an availability of Rk at each time period in the project horizon. As well as

renewable resource requirements, mode m of activity i also has a non-renewable re-

source requirement of r′

imk for each non-renewable resource type k ∈ K
′ , with each

non-renewable resource having an overall availability of R′

k for the entire project
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horizon. Additionally, the project is subject to a set of strict finish-to-start prece-

dence constraints given by E, where (i, j) ∈ E enforces that activity i must finish

before activity j can begin. These form a project network that can be represented

using a directed graph G(V,E). Figure 6.1 shows an example instance involving

five non-dummy activities and a single renewable resource.
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1;3;1
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rim;dim;dim

Figure 6.1: An example instance involving five non-dummy activities and a single

renewable resource with availability R1 = 4. Activities 2 and 5 each have two

available processing modes, whilst the other activities have only a single mode.

For a given choice of processing modes for each activity m = (m1, . . . ,mn), we

assume that the activity durations lie somewhere in a budgeted uncertainty set of

the form

Um(Γ) =

{
dm ∈ R|V |

+ : dimi
= d̄imi

+ ξid̂imi
, 0 ≤ ξi ≤ 1, ∀i ∈ V,

∑
i∈V

ξi ≤ Γ

}
.

Introduced by Bertsimas and Sim (2004), the motivation of the budgeted uncer-

tainty set is to control the pessimism of the solution by introducing a robustness
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parameter Γ to limit the number of jobs that can simultaneously achieve their

worst-case durations. Observe that when Γ = 0, each activity takes its nominal

duration and the resulting problem is the deterministic MRCPSP. At the other

extreme, when Γ = n, every activity takes its worst-case duration, in which case

the uncertainty set becomes equivalent to an interval uncertainty set. In this case

the problem can again be solved as a deterministic MRCPSP instance considering

only worst-case durations.

For a given set of activity modes m, a forbidden set is defined to be any subset

of activities Fm ⊆ V that are not precedence-related, such that
∑

i∈Fm
rimik > Rk

for at least one resource k ∈ K. That is, a forbidden set is a collection of activities

that cannot be executed in parallel only because of resource limitations. Applying

the main representation theorem of Bartusch et al. (1988), for a particular choice of

activity modes m, a solution to the MRCPSP can be defined by a set of additional

precedences Xm ⊆ V 2\E such that the extended precedence network G(V,E∪Xm)

is acyclic and contains no forbidden sets. Such an extension to the project network

is referred to as a sufficient selection.

The aim of the two-stage robust MRCPSP is therefore to determine activity

modes and a corresponding sufficient selection in order to minimise the worst-

case project makespan. For the case where activity durations lie in a budgeted

uncertainty set that we consider in this chapter, this problem can be written as

min
m∈M, Xm∈Xm

max
d∈Um(Γ)

minSn+1 (6.1)

s.t. S0 = 0 (6.2)

Sj − Si ≥ dimi
∀(i, j) ∈ E ∪Xm (6.3)
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Si ≥ 0 ∀i ∈ V, (6.4)

whereM⊆ Nn represents the set of all possible combinations of activity processing

mode selections, and Xm is the set of all possible sufficient selections for the choice

of processing modes given by m.

An optimal solution to the instance shown in Figure 6.1 is given by Figure 6.2,

where the mode choices are shown in bold, and the sufficient selection is given by

{(3, 2)}. The worst-case schedule for this optimal solution is shown in Figure 6.3,

where activities 1 and 3 have been delayed to achieve a worst-case makespan of 15

(note that delaying a combination of activity 1 and any other activity results in

the same worst-case makespan).
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Figure 6.2: Optimal solution to the example instance in Figure 6.1. Activity mode

choices are highlighted in bold and the sufficient selection is given by dashed arc

{(3, 2)}.



6. A Faster Exact Method for Solving the Robust MRCPSP 119

1

2

3

4

0
0 5 10 15

1

2
3 4

5

time

re
so

ur
ce

 R
1

Figure 6.3: Worst-case schedule corresponding to optimal robust solution in Figure

6.2, where activities 1 and 3 have been delayed.

6.3 A compact formulation

We propose solving the robust MRCPSP using an extended version of the mixed-

integer programming formulation developed by Bold and Goerigk (2021) for solving

the two-stage adjustable robust RCPSP. This formulation combines the first and

second-stage problems into a single compact formulation and was shown to signif-

icantly outperform the strongest iterative decomposition-based methods for that

problem.

This formulation is constructed by recasting the adversarial subproblem of de-

termining the worst-case activity durations for a given set of mode choices and

sufficient selection as a longest path problem on an augmented project network.

This directed acyclic graph is formed of Γ + 1 connected copies of the original

project network, with each level being used to account for a delay to a single ac-

tivity in the project (a similar construction has also been applied in Bendotti et al.

(2019)). Having reformulated the adversarial subproblem as a longest-path prob-

lem, strong duality can be employed to enable its insertion into a formulation for
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the first-stage problem, and ultimately arrive at a complete compact formulation

for the full problem. Given that the derivation of this formulation is more or less

identical to the derivation of the corresponding formulation for the robust RCPSP,

we omit it here and instead refer the reader to Bold and Goerigk (2021).

In the resulting compact formulation, yij variables are used to define a complete

set of transitive precedences between the project activities that are formed by the

original project precedence constraints and the additional precedences introduced

to resolve resource conflicts, i.e. {(i, j), i, j ∈ V : yij = 1} = T (E ∪ Xm), where

T (·) is used to denote the transitive closure of a set. Variables xim determine

the processing mode for each activity, whilst resource flow variables fijk track

the amount of renewable resource k that is transferred from activity i to activity

j upon its completion. The Siγ variables are dual variables associated with the

longest-path subproblem, which in this formulation are used to track the start

time of activities under the worst-case activity durations. Using these variables,

the compact formulation for the robust MRCPSP can be written as

min Sn+1,Γ (6.5)

s.t. S00 = 0 (6.6)

Sjγ − Siγ ≥ d̄imxim −N(1− yij)

∀(i, j) ∈ V 2, ∀m ∈Mi, γ = 0, . . . ,Γ (6.7)

Sj,γ+1 − Siγ ≥ (d̄im + d̂im)xim −N(1− yij)

∀(i, j) ∈ V 2, m ∈Mi, γ = 0, . . . ,Γ− 1 (6.8)

yij = 1 ∀(i, j) ∈ E ∪ {(n+ 1, n+ 1)} (6.9)

yij + yji ≤ 1 ∀i, j ∈ V, i < j (6.10)
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yij = yip + ypj − 1 ∀i, j, p ∈ V, i ̸= j ̸= p (6.11)

fijk ≤ Pijkyij ∀(i, j) ∈ V 2, i ̸= n+ 1, j ̸= 0, ∀k ∈ K (6.12)∑
i∈V \{n+1}

fijk =
∑
m∈Mj

rjmkxjm ∀j ∈ V \ {0}, ∀k ∈ K (6.13)

∑
j∈V \{0}

fijk =
∑
m∈Mi

rimkxim ∀i ∈ V \ {n+ 1}, ∀k ∈ K (6.14)

∑
m∈Mi

xim = 1 ∀i ∈ V (6.15)

∑
m∈Mi

r
′

imkxim ≤ R
′

k ∀i ∈ V, k ∈ K
′

(6.16)

Siγ ≥ 0 ∀i ∈ V, γ ∈ 0, . . . ,Γ (6.17)

yij ∈ {0, 1} ∀(i, j) ∈ V 2 (6.18)

fijk ≥ 0 ∀(i, j) ∈ V 2, ∀k ∈ K (6.19)

xim ∈ {0, 1} ∀i ∈ V, m ∈Mi, (6.20)

where N =
∑

i∈V maxm∈Mi
(d̄im+d̂im) is an upper bound on the minimum makespan,

and Pijk = min{maxm∈Mi
rimk, maxm∈Mj

rjmk} is the maximum possible flow of re-

source k from i into j.

Constraints (6.6)-(6.8) are the dual constraints corresponding to the longest-

path variables in the adversarial subproblem, and serve to ensure that the activity

start times respect the project precedences as well as any delays to activity du-

rations. Constraints (6.9) capture the original project precedence relationships.

Although not required for the correctness of the model, constraints (6.10) and

(6.11) are additional transitivity constraints that have been included because they

were shown in Bold and Goerigk (2021) to provide significant improvements to the

computational performance of the model. Constraints (6.12)-(6.14) are resource
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flow constraints which ensure that the transfer of resources between activities fol-

lows precedence constraints and that resources are conserved as they flow into and

out of each activity in the network. Constraints (6.15) allows only one processing

mode to be selected for each activity. Finally, non-renewable resource constraints

are enforced by (6.16).

With polynomially many variables and constraints this formulation can be

implemented straightforwardly using standard mathematical optimisation software

such as Gurobi or CPLEX.

6.4 A Benders’ decomposition approach

In this section we outline an alternative approach to solving the robust MRCPSP

based on Benders’ decomposition. A Benders’-type approach for solving the robust

MRCPSP was first presented in Balouka and Cohen (2021), and as mentioned

previously, this itself was based on the approach for solving the robust RCPSP

used in Bruni et al. (2017).

The main idea behind this approach is to decompose the full problem into its

two stages: 1. a master problem that determines activity processing modes and

resolves resource conflicts, and 2. a subproblem that takes the solution from the

master problem and evaluates it by finding the worst-case makespan for the result-

ing network by solving a longest path problem. Since the master problem does not

account for all the problem uncertainty at once, its solution forms a lower bound

to the optimal objective value of the original problem. Meanwhile, the solution

to the subproblem is feasible to the original problem, and therefore provides an

upper bound. These two problems are solved iteratively, with optimality cuts be-
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ing added to the master problem at each iteration based on the solution to the

subproblem until the lower and upper bounds meet.

After initially implementing the Benders’ algorithm as it is presented in Balouka

and Cohen (2021), it was discovered that its performance could be strengthened

by replacing the master problem formulation used in that implementation with a

stripped-down version of the compact formulation (6.5)-(6.20) in which the un-

certainty is removed. In this section we present our strengthened implementation

of the Benders’ approach for solving the robust MRCPSP. A comparison of these

two Benders’ implementations is included in the results in Section 6.5. For the

details of the original implementation of the Benders’ decomposition algorithm for

the robust MRCPSP, see Balouka and Cohen (2021).

6.4.1 The master problem

The role of the master problem is to determine a choice of activity processing

modes m, as well as a sufficient selection Xm to resolve any resulting resource

conflicts. This problem is solved without the direct consideration of the uncertain

activity durations, and instead, uncertainty is accounted for in the subproblem and

communicated back to the master problem with the use of optimality cuts. Hence,

to remove the uncertainty from the model, (6.5)-(6.20) is modified by considering

only a single level of the augmented project network. Using this formulation, the

master problem at iteration t can be written as

min η (6.21)

s.t. η ≥ Sn+1 (6.22)



124 6. A Faster Exact Method for Solving the Robust MRCPSP

S0 = 0 (6.23)

Sj − Si ≥ d̄imxim −N(1− yij) ∀(i, j) ∈ V 2, ∀m ∈Mi (6.24)

η ≥ λ(x,y, V ∗ℓ) ∀ℓ = 1, . . . , t− 1 (6.25)

(6.9)-(6.16), (6.18)-(6.20) (6.26)

Si ≥ 0 ∀i ∈ V, (6.27)

where (6.25) are the optimality cuts generated from the solutions of the resulting

subproblems at each of the previous iterations.

The optimal objective value of the master problem (6.21)-(6.27), denoted by

η∗, forms a lower bound to the original robust MRCPSP problem. Note that for

the first iteration, the solution to the master problem corresponds to an optimal

solution to the MRCPSP with nominal activity durations.

6.4.2 The subproblem

The subproblem at iteration t computes the worst-case makespan for the mode

choices and sufficient selection from the master problem at iteration t, denoted by

m∗t and Xm∗t respectively. This is done by solving a longest-path problem through

the extended project network T (E∪Xm∗t), in which the activity durations (i.e. arc

lengths) can be chosen from the budgeted uncertainty set Um∗t(Γ). This problem

can be formulated as

V ∗t =max
∑

(i,j)∈T (E∪Xm∗t )

d̄im∗t
i
αij + d̂im∗t

i
wij (6.28)

∑
(i,n+1)∈T (E∪Xm∗t )

αi,n+1 = 1 (6.29)
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∑
(0,i)∈T (E∪Xm∗t )

α0,i = 1 (6.30)

∑
(i,j)∈T (E∪Xm∗t )

αij −
∑

(j,i)∈T (E∪Xm∗t )

αji = 0 ∀i ∈ V \ {0, n+ 1} (6.31)

wij ≤ ξi ∀(i, j) ∈ T (E ∪Xm∗t) (6.32)

wij ≤ αij ∀(i, j) ∈ T (E ∪Xm∗t) (6.33)∑
i∈V

ξi ≤ Γ (6.34)

αij ∈ {0, 1} ∀(i, j) ∈ T (E ∪Xm∗t) (6.35)

wij ≥ 0 ∀(i, j) ∈ T (E ∪Xm∗t) (6.36)

0 ≤ ξi ≤ 1 ∀i ∈ V. (6.37)

Variables αij define the longest path through the network, which we denote as

π∗t = {(i, j), i, j ∈ V : αij = 1}, and has length V ∗t. Variables ξi are the activity

delay variables, whilst wij are used to linearise the formulation. Note that this

formulation of the subproblem is identical to the one implemented by Balouka and

Cohen (2021).

6.4.3 Optimality cuts

Following the solution to the subproblem, a valid cut is generated and added to

the master problem for the next iteration. This cut simply forces an alternative

solution in the master problem if it is to achieve a better objective value in the

next iteration.

Given the current best lower bound for the original problem, LB, the mode

selection from the master problem, m∗t, and the optimal objective value of the
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subproblem, V ∗t, the cut at iteration t can be written as

η ≥ (V ∗t − LB) ·
∑

(i,j)∈π∗t

(
1/3(yij + xi,m∗t

i
+ xj,m∗t

j
)− (3− yij − xi,m∗t

i
− xj,m∗t

j
)

)

− (V ∗t − LB) · (|π∗t| − 1) + LB. (6.38)

Balouka and Cohen (2021) show that this constraint is a valid optimality cut for

the problem, and that the number of these cuts that need to be added to the

master problem before finding an optimal solution is finite.

An overview of the implementation of the Benders’ solution approach outlined

in this section is presented in Algorithm 6.1.

Algorithm 6.1 Benders’ decomposition algorithm.

1: Initialise: Set LB = −∞, UB = +∞ and t = 1.

2: while UB > LB do

3: Solve master problem (6.21)-(6.27)

4: Get objective value η∗t, processing modes m∗t and precedences ym∗t

5: If η∗t > LB, update LB ← η∗t

6: Solve subproblem (6.28)-(6.37)

7: Get objective value V ∗t and longest path π∗t

8: If V ∗t < UB, update UB ← V ∗t

9: Add cut (6.38) to master problem

10: Update t← t+ 1

11: end while

12: return UB
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6.4.4 Example

To demonstrate its implementation, we use the Benders’ decomposition approach

to solve the example shown in Figure 6.1 with R1 = 4 and Γ = 2. The algorithm

solves this instance in 6 iterations, and the solution information from the master

and subproblem at each of these iterations is shown in Table 6.1.

The first iteration of the master problem solves the nominal instance, assuming

no delays to the activity durations. This solution opts to schedule activities 2 and 3

in parallel, which can be achieved by setting m2 = 2, and the sufficient selection is

given by {(4, 5)}. This first solution is evaluated in the subproblem to have a worst-

case makespan of 16. In the second iteration, having added the first optimality

cut, the master problem finds the solution shown in Figure 6.2. By calculating

the schedule shown in Figure 6.3, the subproblem evaluates the objective value of

this solution to be 15. Although this solution is optimal, the algorithm requires a

further four iterations to prove that this is the case. Note that there is no need to

solve the subproblem in the final iteration since after solving the master problem

and updating UB, we have that LB = UB.

t LB UB η∗t V ∗t m∗t π∗t

1 11 16 11 16 1,2,1,1,2 0,1,2,5,6
2 12 15 12 15 1,1,1,1,1 0,1,3,2,4,6
3 12 15 12 15 1,1,1,1,1 0,1,2,3,4,6
4 13 15 13 18 1,2,1,1,1 0,1,2,5,6
5 13 15 13 16 1,1,1,2,1 0,1,3,4,2,5,6
6 15 15 15 - 1,1,1,1,1 -

Table 6.1: Solution information at each of the six iterations of the Benders’ algo-

rithm required to solve example instance in Figure 6.1.
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6.5 Computational experiments and results

In this section we compare results from using the compact formulation and the

Benders’ decomposition approach to solve uncertain MRCPSP instances. A com-

plete set of the raw results used to generate the tables and plots presented here,

in addition to the source code used to implement these experiments, can be found

at https://github.com/boldm1/robust-mrcpsp.

The instances used in this computational study have been created from the

deterministic j10, and j20 MRCPSP instances from the PSPLIB (Kolisch and

Sprecher (1997), https://www.om-db.wi.tum.de/psplib/). Note that these are

the same instance sets as used for the experiments in Balouka and Cohen (2021).

The j10 set contains a total of 536 instances each involving 10 activities, and

the j20 set contains a total of 554 instances each involving 20 activities. We

introduce uncertainty into these deterministic instances by setting the maximum

durational deviation for each activity to be d̂im = ⌊0.7 × d̄im⌋ for each mode

m ∈ Mi. These uncertain instances have then been solved using both methods

for a range of robustness levels Γ. In particular we solve the j10 instances for

Γ ∈ {0, 3, 5, 7} and the j20 instances for Γ ∈ {0, 5, 10, 15}.

Both the compact reformulation and Benders’ decomposition approach have

been implemented in Python 3.9.2 and solved using Gurobi 9.0.1 running on a

single core of a 2.30 GHz Intel Xeon CPU. A time limit of 2 hours per instance

was imposed on each of the solution methods.

We begin by observing the effect of the robustness parameter Γ on the average

optimal objective values shown in Tables 6.2a and 6.2b. The values in these tables

have been computed only over the instances for which an optimal solution was

https://github.com/boldm1/robust-mrcpsp
https://www.om-db.wi.tum.de/psplib/
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found for all the values of Γ (i.e. all 536 instances in the j10 set, and 477 instances

of the j20 set). As we would expect, the solution cost increases in a concave

manner as Γ increases.

Γ 0 3 5 7

obj. 16.84 25.34 26.35 26.46

(a) j10

Γ 0 5 10 15

obj. 24.61 37.89 38.69 38.69

(b) j20

Table 6.2: Average optimal objective values across instances in the j10 and j20

instance sets for different values of Γ.

Table 6.3 reports the percentage of instances solved to optimality (%sol.), the

average percentage optimality gap over instances for which a feasible solution was

found (gap), and the average solution time in seconds (sol. time) for the different

choices of Γ across the two instance sets, for both the Benders’ decomposition

approach and the compact formulation. Note that if no optimal solution was

found within the time limit by one of the solution methods, the solution time was

recorded as the time limit value of 7200 seconds. Additionally, for the Benders’

approach, the average number of (completed) iterations (it.) and the average time

per (completed) iteration (it. time) are also reported. The average of the reported

values across the different values for Γ are also given for each instance set.

Firstly, the results in Table 6.3 show that for both methods, the instances tend

to increase in difficulty as Γ increases. We can also see that for the nominal prob-

lems, i.e. when Γ = 0, the Benders’ approach has a slight edge on the compact

formulation. This is what we would expect given the relationship between the

Benders’ master problem formulation and the compact formulation. However, for
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all the non-zero values of Γ across both instance sets, the compact formulation per-

forms significantly better than the Benders’ approach, solving a greater proportion

of instances with dramatically reduced computation times.

Benders’ Compact formulation

Γ %sol. gap its. it. time sol. time %sol. gap sol. time

j10

0 100.0 0.00 1 0.96 1.1 100.0 0.00 1.8

3 81.7 3.13 67 3.76 1551.4 100.0 0.00 5.0

5 79.7 4.20 76 3.89 1688.4 100.0 0.00 4.6

7 79.5 4.52 78 3.98 1701.1 100.0 0.00 6.5

85.2 2.96 56 3.15 1235.5 100.0 0.00 4.47

j20

0 89.9 0.00 1 171.08 885.5 89.5 1.89 925.1

5 50.9 10.21 220 133.32 4169.3 88.6 1.87 1041.5

10 50.4 10.99 225 138.49 4244.6 87.9 2.58 1118.5

15 49.5 11.21 216 146.26 4300.3 86.3 2.91 1260.6

60.2 8.10 165 147.28 3399.9 88.1 2.31 1086.4

Table 6.3: Comparison of the Benders’ decomposition approach and the compact

reformulation across the j10 and j20 instance sets and for different values of Γ.

Figures 6.4 and 6.5 show performance profiles and optimality gap plots for the

compact formulation and both implementations of the Benders’ decomposition

solution approach (Algorithm 6.1 and Balouka and Cohen (2021)), across the j10

and j20 sets respectively. Note that only the results for the instances with non-

zero values for Γ were used to generate these plots, resulting in a total of 1608 j10

instances and 1664 j20 instances.

Performance profiles (Dolan and Moré (2002)) provide a visual comparison of

competing solution approaches using their performance ratios. The performance
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Figure 6.4: Comparison of the Benders’ approaches and compact formulation over

instances in the j10 set.

ratio of algorithm a ∈ A for instance i ∈ I is defined to be

ria =
tia

mina∈A tia
,

where tia is the time required to solve instance i using algorithm a. If method

a is unable to solve an instance i within the 2-hour time limit, then ria = R,

where R ≥ maxi,m rim. The performance profiles in Figures 6.4a and 6.5a show

the percentage of instances that have a performance ratio within a factor of τ of

the best algorithm. These are plotted using a log scale for clarity. The y-intercepts

of each method give the percentage of instances for which that method found the

optimal solution in the fastest time, whereas the right-most value gives the overall

percentage of instances that were solved to optimality within the time limit by
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Figure 6.5: Comparison of the Benders’ approaches and compact formulation over

instances in the j20 set.

that method.

These performance profiles show that whenever an instance was able to be

solved to optimality by either solution approach, the compact formulation was

always the faster method. If we specifically compare the solution times of the

compact formulation with the stronger of the two Benders’ implementations, across

the instances in j10 for which both methods found the optimal solution, the average

solution time of the compact formulation (1.4s) was almost 200 times faster than for

the Benders’ approach (283.5s). When both methods found the optimal solution

for instances in the j20 set, the average solution time of the compact formulation

(13.7s) was almost 100 times faster than for the Benders’ approach (1304.5s).

Figures 6.4b and 6.5b show the percentage of instances solved by each method

to within a given optimality gap within the 2-hour time limit. These plots serve
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as a continuation of the performance profiles beyond just the instances that were

solved to optimality. Summarising the data from these plots across both the j10

and j20 instance sets, the Balouka and Cohen (2021) Benders’ implementation

solves 55.1% of instances to optimality and finds feasible solutions for a further

35.6% of instances. Our Benders’ implementation solves 65.0% of instances to op-

timality and finds feasible solutions for a further 30.0% of instances. The compact

formulation on the other hand finds a feasible solution to every instance, solving

93.1% these to optimality.

The results presented here show the clear improvements to the Benders’ al-

gorithm afforded by amending the master problem to use the formulation (6.21)-

(6.27). More significantly however, these results demonstrate the complete domi-

nance of the compact formulation over both Benders’ methods.

6.6 Conclusions

The work presented in this chapter extends the compact mixed-integer program-

ming formulation introduced in the previous chapter (Bold and Goerigk, 2021), for

application to the two-stage adjustable robust MRCPSP with uncertain activity

durations. The computational performance of this formulation has been examined

over a total of 3270 uncertain MRCPSP instances of varying size and difficulty, and

compared against an improved version of the current state-of-the-art for solving

this problem, based on a Benders’ decomposition approach. The improved Ben-

ders’ approach is the result of replacing the original master problem with a new

formulation based on a simplified version of the compact formulation we present

for the full problem.
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Results presented in Section 6.5 show that the compact formulation completely

dominates the enhanced Benders’ approach, solving over 43% more instances to

optimality, and doing so with dramatically reduced computation times. In addition

to these strong computational improvements, the proposed compact formulation

has the significant added benefit of being simpler to implement than the iterative

Benders’ approach.

Despite these strong results, the instances used in these experiments contain

only up to 20 activities. To enable the solving of larger scale instances, the de-

velopment of heuristic solution approaches should be a primary focus of future

research on this problem.



Chapter 7

Recoverable Robust Single Machine

Scheduling with Polyhedral Uncertainty

7.1 Introduction

We consider a scheduling problem where n jobs must be scheduled on a single

machine without preemption, such that the total flow time, i.e. the sum of com-

pletion times, is minimised. This problem is denoted as 1||∑Ci under the α|β|γ

scheduling problem notation introduced by Graham et al. (1979). In practice,

job processing times are often subject to uncertainty, and when this is the case

it is important to find robust solutions that account for this uncertainty. In this

paper, we propose a recoverable robust approach (Liebchen et al., 2009) to this

uncertain single machine scheduling problem. In this recoverable robust setting,

we determine a full solution in a first-stage, before an adversarial player chooses

a worst-case scenario of processing times from an uncertainty set, and then in

response to this, we allow the first-stage solution to be adjusted in a limited way.

The deterministic single machine scheduling problem (SMSP) is one of the sim-

135



136 7. Robust Single Machine Scheduling with Polyhedral Uncertainty

plest and most studied scheduling problems, and can be solved easily in O(n log n)

time by ordering the jobs according to non-decreasing processing times, i.e. by

using the shortest processing time (SPT) rule. However, despite the simplicity of

the nominal problem, the robust problem has been shown to be NP-hard for even

the most basic uncertainty sets (Daniels and Kouvelis, 1995).

In fact, the majority of research to date regarding robust single machine schedul-

ing has been concerned with the presentation of complexity results for a number

of different SMSPs. First discussed by Daniels and Kouvelis (1995), Kouvelis and

Yu (1997) and Yang and Yu (2002), these papers study the problem with the total

flow time objective, and show that it is NP-hard even in the case of two discrete

scenarios, for min-max, regret and relative regret robustness. Robust single ma-

chine scheduling for discrete uncertain scenarios has been examined extensively.

Aloulou and Della Croce (2008) present algorithmic and complexity results for a

number of different SMSPs under min-max robustness. Aissi et al. (2011) show

that the problem of minimising the number of late jobs in the worst-case scenario,

where processing times are known but due dates are uncertain is NP-hard. Zhao

et al. (2010) consider the objective of minimising the weighted sum of completion

times in the worst-case scenario, and propose a cutting-plane algorithm to solve

the problem. Mastrolilli et al. (2013) study this same problem and show that no

polynomial-time approximation scheme exists for the unweighted version. Kasper-

ski and Zieliński (2016b) apply the ordered weighted averaging (OWA) criterion,

of which classical robustness is a special case, to a number of different SMSPs

under discrete uncertainty. The consideration of SMSPs under novel optimality

criteria has been continued most recently by Kasperski and Zieliński (2019), where
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a number of complexity results are presented for the SMSP with the value at risk

(VaR) and conditional value at risk (CVaR) criteria.

Robust single machine scheduling in the context of interval uncertainty has

also received considerable attention. Daniels and Kouvelis (1995) address interval

uncertainty, and describe some dominance relations between the jobs in an opti-

mal schedule based on their processing time intervals. Kasperski (2005) considers

an SMSP with precedence constraints, where the regret of the maximum lateness

of a job is minimised. A polynomial-time algorithm is presented. Lebedev and

Averbakh (2006) show that the SMSP with the total flow time objective is NP-

hard in the case of regret robustness. Montemanni (2007) presents a mixed-integer

program (MIP) for this same problem, and use it to solve instances involving up

to 45 jobs. Kasperski and Zieliński (2008) also consider this problem, and show

that it is 2-approximable when the corresponding deterministic problem is polyno-

mially solvable. Lu et al. (2012) present an SMSP with uncertain job processing

and setup times, show this problem is NP-hard, and design a simulated annealing-

based algorithm to solve larger instances. Chang et al. (2017) apply distributional

robustness to an SMSP, and make use of information about the mean and covari-

ance of the job processing times to minimise the worst-case CVaR. Most recently,

Fridman et al. (2020) consider an SMSP with uncertain job processing times and

develop polynomial algorithms for solving the min-max regret problem under cer-

tain classes of cost functions. For a survey of robust single-machine scheduling in

the context of both discrete and interval uncertainty, see Kasperski and Zielinski

(2014).

A criticism of classical robustness is that the solutions it provides are overly
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conservative and hedge against extreme worst-case scenarios that are very unlikely

to occur in practice. To reduce the level of conservatism, a restriction to interval

uncertainty was introduced by Bertsimas and Sim (2004), known as budgeted

uncertainty, in which the number of jobs that can simultaneously achieve their

worst-case processing times is restricted. Budgeted uncertainty is a special case

of the general compact polyhedral uncertainty that is considered in this paper.

Robust single machine scheduling under budgeted uncertainty was first considered

by Lu et al. (2014), who present both an MIP and a heuristic to solve the problem.

Following this, Tadayon and Smith (2015) study different versions of the min-

max robust SMSP under three different uncertainty sets, including a budgeted

uncertainty set. Recently, Bougeret et al. (2019) present complexity results and

approximation algorithms for a number of different min-max robust scheduling

problems under budgeted uncertainty.

To the best of our knowledge, the work presented in this chapter constitutes

the first time a single-machine scheduling problem has been solved in a recover-

able robust setting. However, recoverable robustness has had recent application to

a number of closely related matching, assignment and scheduling problems. Fis-

cher et al. (2020) consider a recoverable robust assignment problem, in which two

perfect matchings of minimum costs must be chosen, subject to these matchings

having at least k edges in common. If the cost of the second matching is evaluated

in the worst-case scenario, we arrive in the setting of recoverable robustness with

interval uncertainty. Hardness results are presented, and a polynomial-time algo-

rithm is developed for the restricted case in which one cost function is Monge. The

work presented in Chapter 8 of this thesis (published as Bold and Goerigk (2022a))
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also considers recoverable robust scheduling problems under interval uncertainty,

deriving a 2-approximation algorithm for that setting.

Regarding project scheduling, Bendotti et al. (2019) introduce the so-called

anchor-robust project scheduling problem in which a baseline schedule is designed

under the problem uncertainty, such that the largest possible subset of jobs have

their starting times unchanged following the realisation of the activity processing

times. This problem is shown to be NP-hard even for budgeted uncertainty. In

a series of papers Bruni et al. (2017, 2018); Bold and Goerigk (2021), a two-

stage resource-constrained project scheduling problem with budgeted uncertainty

is introduced and solved.

The contributions of this chapter are as follows. In Section 7.2 we formally

define the recoverable robust scheduling problem that we consider in this chap-

ter. In Section 7.3 we present a general result that enables the construction of

compact formulations for a wide range of recoverable robust problems, and ap-

ply this in the context of the scheduling problem at hand. We then analyse the

stages of the recoverable robust scheduling problem in detail and show that the

incremental problem can be solved using a simple linear programming formulation

in Section 7.4. To this end, we prove a general result for max-weight matching

problems, arguing that odd-cycle constraints are not required in problems with

weights of a specific form. This formulation of the incremental problem then leads

to an alternative matching-based compact formulation. Additionally, we trans-

fer the matching result to an assignment-based formulation for the incremental

problem, which results in a third compact model. In Section 7.6, computational

experiments are presented, showing the benefits of a recourse action, the effects of
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the uncertainty on the model, and the strength of the assignment-based formula-

tion. Finally, some concluding remarks and potential directions for future research

are given in Section 7.7.

7.2 Problem definition

We consider a single machine scheduling problem with the objective of minimising

the sum of completion times. Given a set of jobs N = {1, . . . , n} with processing

times p = (p1, . . . , pn), we aim to find a schedule, i.e. an ordering of the jobs i ∈ N ,

that minimises the sum of completion times. This nominal problem is denoted

by 1||∑Ci under the α|β|γ scheduling problem notation introduced by Graham

et al. (1979). Recall that this problem is easy to solve; the shortest processing time

(SPT) rule of sorting jobs by non-decreasing processing times results in an optimal

schedule. This problem can be modelled as the following assignment problem with

non-general costs:

min
∑
i∈N

∑
j∈N

pi(n+ 1− j)xij (7.1)

s.t.
∑
i∈N

xij = 1 ∀j ∈ N (7.2)

∑
j∈N

xij = 1 ∀i ∈ N (7.3)

xij ∈ {0, 1} ∀i, j ∈ N , (7.4)

where xij = 1 if job i is scheduled in position j, and xij = 0 otherwise.

We assume the job processing times pi, i ∈ N are uncertain, but are known to

lie within a given uncertainty set U . In this paper, we consider a general polyhedral
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uncertainty set given by

U =
{
p ∈ Rn

+ : Ap ≤ b
}
,

where A ∈ RM×n and b ∈ RM , consisting of M linear constraints am1p1+ am2p2+

· · · + amnpn ≤ bm for m ∈ M = {1, . . . ,M} on the set of possible processing

times p. Throughout this paper, we assume U to be compact. It is also possible

to include auxiliary variables in the definition of U ; for ease of presentation, such

variables have been omitted.

We consider this uncertain single machine scheduling problem in the context

of a two-stage decision process, where, having decided on a first-stage schedule

x under the problem uncertainty, the decision-maker is given the opportunity to

react to the realisation of the uncertain data by choosing up to ∆ distinct pairs of

jobs and swapping their positions, to obtain a second-stage schedule y.

This recoverable robust problem can be written as follows:

min
x∈X

max
p∈U

min
y∈X (x)

∑
i∈N

∑
j∈N

pi(n+ 1− j)yij, (RRS)

where X = {x ∈ {0, 1}n×n : (7.2), (7.3)} is the set of feasible schedules, and

X (x) ⊆ X is the set of feasible second-stage assignments given x. That is,

X (x) = {y ∈ X : d(x,y) ≤ ∆},

where d(x,y) is some measure of the distance between the first and second-stage

schedules.
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In this paper, we restrict our attention to the case where the recourse action

consists of disjoint pairwise swaps to the first-stage positions of the jobs. This

choice of recourse can be motivated with an example. Consider a nuclear storage

silo full of ageing containers of untreated nuclear waste that each must undergo

a reprocessing procedure to treat the waste and place it into new, safe long-term

storage containers. This process is scheduled in advance of its execution and its

management is allocated among a number of different store managers. For many

of the old waste containers, it is unclear which grade of waste they contain and

therefore how extensive their reprocessing procedure will be. After the creation

of the preliminary schedule, the nuclear material in each container is examined in

detail and the reprocessing time estimates are improved. Having obtained these

improved estimates, the reprocessing schedule can be updated. If the tasks that a

store manager is responsible for change in the updated schedule, they must meet

with the manager that was previously responsible for those tasks in order to be

briefed about their technical requirements. To simplify the arrangements of such

meetings so that store managers only have to swap briefings with a single other

store manager, we restrict schedule updates to disjoint pairwise swaps of waste

processing jobs.

In addition to this motivation, the restriction to disjoint pairwise swaps im-

proves the tractability of the problem and leads to the results that we present and

analyse in this paper.

Hence, in this case we define d(x,y) to be the minimum number of pairwise

distinct swaps required to transform x into y, if this number exists; otherwise, we

set it to ∞. Observe that the value d(x,y) can be calculated using the following
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approach. Let Ex be the edges chosen by x in the corresponding bipartite graph,

oriented towards the right, and let Ey be the edges chosen by y, oriented towards

the left, i.e. (j, i) ∈ Ey corresponds to assigning job i to position j. If and only

if the edges Ex ∪ Ey decompose into 2-cycles and 4-cycles, we have d(x,y) < ∞,

in which case d(x,y) is equal to the number of 4-cycles. This is because a 2-cycle

corresponds to a job with an unchanged position, whilst 4-cycles represent a swap

of positions of two jobs. An example is given in Figure 7.1.

1

2

5

4

3

1

2

5

4

3

Jobs, i Positions, j

Figure 7.1: An example first and second-stage solution. The first-stage assign-

ment is given by the solid arcs oriented towards the right, and corresponds to the

schedule (1,2,4,5,3). The second-stage assignment is given by the dashed arcs ori-

ented towards the left, and corresponds to the schedule (1,4,2,3,5). There are two

4-cycles corresponding to the switching of positions of jobs 2 and 4, and 3 and 5.

Hence d(x,y) = 2.

We define the adversarial and incremental problems of (RRS) as follows. Given

both a first-stage solution x ∈ X and a scenario p ∈ U , the incremental problem
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consists of finding the best possible second-stage solution y ∈ X (x). That is,

Inc(x,p) = min
y∈X (x)

∑
i∈N

∑
j∈N

pi(n+ 1− j)yij.

The adversarial problem is to find a worst-case scenario p ∈ U for a given first-stage

schedule x ∈ X . That is,

Adv(x) = max
p∈U

min
y∈X (x)

∑
i∈N

∑
j∈N

pi(n+ 1− j)yij = max
p∈U

Inc(x,p).

Observe that for the case of general polyhedral uncertainty that we consider

here, (RRS) is NP-hard. To see this, suppose that ∆ = 0, i.e. there is no recovery

option and the second-stage variables are fixed to the corresponding first-stage

values. Then the problem reduces to a standard robust single machine scheduling

problem of the form

min
x∈X

max
p∈U

∑
i∈N

∑
j∈N

pi(n+ 1− j)xij.

Note that a general polyhedral uncertainty set can be used to construct a problem

involving only two discrete scenarios. This can be done by simply defining the

uncertainty set to be the linear combination of the two discrete points, since the

worst-case scenario must lie at a vertex of the polyhedron, i.e. at one of the

two discrete scenarios. Since the robust scheduling problem with two scenarios is

already NP-hard (see Kouvelis and Yu (1997)), this hardness result also extends

to our setting.

Finally, note that in problem (RRS) we aim to minimise the worst-case costs
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of the resulting recovery solutions. If the first-stage costs are also relevant, all the

results presented in this paper can be adjusted trivially.

7.3 A general model for recoverable robustness

In this section we present a general model for recoverable robust optimisation prob-

lems, and apply this method to the uncertain single machine scheduling problem

(RRS). Our approach is to determine a first-stage solution x ∈ X as well as a

finite set of candidate recovery solutions y1, . . . ,yK ∈ X (x).

The following result shows that K = n2 + 1 is sufficient to guarantee that this

approach provides an exact solution to the problem.

Theorem 7.1. Let a recoverable robust problem of the form

min
x∈X

max
c∈U

min
y∈X (x)

f(y, c)

be given, where X ,X (x) ⊆ {0, 1}n, U is a compact convex set, f is linear in y,

and concave in c. Then this problem is equivalent to

min
x∈X ,

y(1),...,y(n+1)∈X (x)

max
c∈U

min
i=1,...,n+1

f(y(i), c).

Proof. The idea of the proof is similar to models developed for K-adaptability

(see Hanasusanto et al. (2015, Theorem 1) and Buchheim and Kurtz (2017, Corol-

lary 1)). Recall both Carathéodory’s theorem and the minimax theorem. Carathéodory’s

theorem states that any point x ∈ Rn lying in conv(X) can be written as a convex

combination of n+1 points from X. The minimax theorem states that if X and Y
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are two compact, convex sets, and f : X×Y → R is a continuous compact-concave

function (i.e. f(·, y) is concave for fixed values of y and f(x, ·) is convex for fixed

values of x), then

max
x

min
y

f(x, y) = min
y

max
x

f(x, y).

We make use of both of these results in the following:

min
x∈X

max
c∈U

min
y∈X (x)

f(y, c)

= min
x∈X

max
c∈U

min
y∈conv(X (x))

f(y, c)

= min
x∈X

min
y∈conv(X (x))

max
c∈U

f(y, c) (by the minimax theorem)

= min
x∈X

min
y(1),...,y(n+1)∈X (x)

min
λ1,...,λn+1≥0∑n+1

i=1
λi=1

max
c∈U

f(
n+1∑
i=1

λiy(i), c) (by Carathéodory’s theorem)

= min
x∈X

min
y(1),...,y(n+1)∈X (x)

max
c∈U

min
λ1,...,λn+1≥0∑n+1

i=1
λi=1

f(
n+1∑
i=1

λiy(i), c) (by the minimax theorem)

= min
x∈X

min
y(1),...,y(n+1)∈X (x)

max
c∈U

min
λ1,...,λn+1≥0∑n+1

i=1
λi=1

n+1∑
i=1

λif(y(i), c)

= min
x∈X ,

y(1),...,y(n+1)∈X (x)

max
c∈U

min
i=1,...,n+1

f(y(i), c).

This approach can be used to derive a compact formulation to the uncertain

single machine scheduling problem (RRS). To this end, we first consider the in-

ner selection problem, given a first-stage solution x and set of recovery solutions

y1, . . . ,yK , and a scenario p. This is given by

min
∑
k∈K

(∑
i∈N

∑
j∈N

pi(n+ 1− j)ykij

)
λk
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s.t.
∑
k∈K

λk = 1

λk ≥ 0 ∀k ∈ K,

where K = {1, . . . , K}. The problem of finding the worst-case scenario p ∈ U for

the choice of first-stage solution x and recovery solutions y1, . . . ,yK is therefore:

max t

s.t. t ≤
∑
i∈N

∑
j∈N

pi(n+ 1− j)ykij ∀k ∈ K

∑
i∈N

amipi ≤ bm ∀m ∈M

pi ≥ 0 ∀i ∈ N .

Dualising this problem then gives the following formulation for (RRS):

min
∑
m∈M

bmqm (7.5)

s.t.
∑
k∈K

µk = 1 (7.6)

∑
m∈M

amiqm ≥
∑
k∈K

(∑
j∈N

(n+ 1− j)ykij

)
µk ∀i ∈ N (7.7)

d(x,yk) ≤ ∆ ∀k ∈ K (7.8)

x ∈ X (7.9)

yk ∈ X ∀k ∈ K (7.10)

µk ≥ 0 ∀k ∈ K (7.11)

qm ≥ 0 ∀m ∈M, (7.12)
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where d(x,yk) is some measure of distance between the first-stage solution and

the k-th recovery solution. Note that this model is not restricted to any particular

choice of distance measure d(x,yk).

However, if we opt to calculate the distance between two schedules as the

minimum number of disjoint pairwise swaps required to transform one schedule

into the other, this can be modelled as follows. Let zk
ii′

denote the whether or

not jobs i and i
′ have swapped positions in recovery solution yk, relative to the

first-stage schedule x. In this case, we have that

ykij =
∑
i′∈N

zkii′xi′j.

Hence, yk can be removed from the model, and replaced by zk with the inclusion

of the following constraints:

∑
i′∈N

zk
ii′

= 1 ∀i ∈ N , k ∈ K

∑
i∈N

zk
ii′

= 1 ∀i′ ∈ N , k ∈ K

zk
ii′

= zk
i′ i

∀i, i′ ∈ N , k ∈ K∑
i∈N

zkii ≥ n− 2∆ ∀k ∈ K.

To arrive at a mixed-integer linear program, the products zkii′ · xi′j · µk need to

be linearised using standard techniques. The full linearised formulation contains

O(n3K) constraints and variables and is shown in Appendix C.2.1.
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7.4 Complexity of subproblems and compact for-

mulations

In this section, we examine the incremental and adversarial problems of (RRS) in

more detail and subsequently derive two additional compact formulations.

7.4.1 Matching-based formulation

We first consider a matching-based formulation for the incremental problem. For

the ease of presentation, we assume for now that xii = 1 for all i ∈ N , i.e. the

first-stage solution is a horizontal matching. Note a change in notation for this

section where now the indices i and j are both used to refer to jobs, and ℓ denotes a

position in the schedule. Supposing that the positions of jobs i and j are switched

in the recovery schedule, the reduction in cost of making this switch is given by

pi(n+ 1− i) + pj(n+ 1− j)− pi(n+ 1− j)− pj(n+ 1− i) = (pi − pj)(j − i).

Letting zij indicate whether or not jobs i and j swap positions in the schedule,

the incremental problem can be formulated as:

min
∑
i∈N

pi(n+ 1− i)−
∑

e={i,j}∈E

(pi − pj)(j − i)ze (7.13)

s.t.
∑
e∈δ(i)

ze ≤ 1 ∀i ∈ N (7.14)

∑
e∈E

ze ≤ ∆ (7.15)

ze ∈ {0, 1} ∀e ∈ E , (7.16)
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where E = {{i, j} : i, j ∈ N , i ̸= j} is the set of unique swaps, and δ(i) is the set

of edges incident to vertex i. This is a cardinality-constrained matching problem

on a complete graph with one node for each job i ∈ N .

We examine this matching-based formulation in further detail. First, consider

the maximum weight matching problem on a general graph G = (V , E). This

problem can be formulated as the following linear program:

max
∑
e∈E

wexe (7.17)

s.t.
∑
e∈δ(i)

xe ≤ 1 ∀i ∈ V (7.18)

∑
e∈E(W)

xe ≤
|W| − 1

2
∀W ⊆ V , |W| odd (7.19)

xe ≥ 0 ∀e ∈ E , (7.20)

where E(W) is the set of edges in the subgraph induced on W . Edmonds (1965)

showed that constraints (7.19), known as odd-cycle constraints or blossom con-

straints, are required to fully characterise the matching polytope.

In the following theorem, we show that for a matching problem with the same

cost structure as (7.13), odd-cycle constraints are not required.

Theorem 7.2. For any a, b ∈ R|V|
+ , the problem

max
∑

e={i,j}∈E

(ai − aj)(bi − bj)xe (7.21)

s.t.
∑
e∈δ(i)

xe ≤ 1 ∀i ∈ V (7.22)

xe ≥ 0 ∀e ∈ E (7.23)
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has an optimal solution with xe ∈ {0, 1} for all e ∈ E.

Proof. Schrijver (2003, Theorem 30.2, page 522) states that each vertex of the

matching polytope described by (7.22) and (7.23) is half-integer, i.e. xe ∈ {0, 12 , 1}

for all e ∈ E in an optimal solution. Additionally, as observed by Balinski (1965),

the vertices of the matching polytope can be partitioned into a matching P , where

xe = 1 for each e ∈ P , and a set of 1/2-fractional cycles of odd length, where

xe =
1
2

for each e in the odd cycles. Hence, we can restrict our attention only to

1/2-fractional odd cycles, and show that there is an optimal solution where such

cycles do not exist.

Suppose we are given an optimal solution containing a 1/2-fractional odd cy-

cle, consisting of edges C = {ei1,i2 , ei2,i3 , . . . , eiq−1,iq , eiq ,i1}, with weights given by

wij = (ai − aj)(bi − bj). Without loss of generality, we assume an orientation in

the cycle, where edges are directed as (ij, ij+1) for j = 1, . . . , q, where iq+1 = i1.

Note that if we ≤ 0 for some edge e, it can be removed from E , as such an

edge will never be selected in an optimal matching. Hence, we may assume that

we > 0 for all e ∈ C. Since wij = (ai− aj)(bi− bj) > 0 for all eij ∈ C, (ai− aj) and

(bi − bj) must have the same sign. That is, either ai > aj and bi > bj, in which

case we refer to eij as a decreasing edge, or ai < aj and bi < bj, in which case we

refer to eij as an increasing edge.

We show that there is an optimal 1/2-fractional cycle that alternates between

increasing and decreasing edges. Suppose that there are p < q consecutive de-

creasing edges in C, ej1,j2 , ej2,j3 , . . . , ejp−1,jp , i.e. aj1 > aj2 > · · · > ajp and
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bj1 > bj2 > · · · > bjp . In this case

wj1,jp = (aj1 − ajp)(bj1 − bjp)

=
(
(aj1 − aj2) + (aj2 − aj3) + · · ·+ (ajp−1 − ajp)

)
·
(
(bj1 − bj2) + (bj2 − bj3) + · · ·+ (bjp−1 − bjp)

)
= wj1,j2 + wj2,j3 + · · ·+ wjp−1,jp + (aj1 − aj2)

(
(bj2 − bj3) + · · ·+ (bjp−1 − bjp)

)
+ (aj2 − aj3)

(
(bj1 − bj2) + · · ·+ (bjp−1 − bjp)

)
+ . . .

+ (ajp−1 − ajp)
(
(bj1 − bj2) + · · ·+ (bjp−2 − bjp−1)

)
> wj1,j2 + wj2,j3 + · · ·+ wjp−1,jp ,

which means that replacing the p consecutive decreasing edges in C by the edge

ej1,jp would lead to an even better objective value (see Figure 7.2 for an illus-

tration). The same argument can be used to show that there also cannot be p

consecutive increasing edges in an optimal 1/2-fractional cycle.

We have therefore constructed an optimal 1/2-fractional cycle that strictly

alternates between increasing and decreasing edges. Clearly, this is only possible if

q is even. Since a 1/2-fractional even cycle can be written as a convex combination

of two feasible matchings, this proves that there exists an optimal solution without

any 1/2-fractional cycles.
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1

2
5

4 3

Figure 7.2: An example of a 1/2-fractional cycle involving q = 5 nodes. Up and

down arrows indicate increasing and decreasing edges respectively. It is optimal

to replace the two consecutive decreasing edges (3, 4) and (4, 5) with the dashed

edge (3, 5), i.e. w35 > w34 + w45.

The following result, presented in Schrijver (2003) (Corollary 18.10a, page 331),

states that the integrality of the vertices of the matching polytope is unaffected

by the addition of a cardinality constraint.

Theorem 7.3. Let G = (V , E) be an undirected graph and let k, l ∈ Z+ with

k ≤ l. Then the convex hull of the incidence vectors of matchings P satisfying

k ≤ |P| ≤ l is equal to the set of those vectors x in the matching polytope of G

satisfying k ≤ 1⊤x ≤ l.

This result, in combination with Theorem 7.2, provides us with the following

corollary:

Corollary 7.4. For any a, b ∈ R|V|
+ , the problem

max
∑

e={i,j}∈E

(ai − aj)(bi − bj)xe (7.24)
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s.t.
∑
e∈δ(i)

xe ≤ 1 ∀i ∈ V (7.25)

∑
e∈E

xe ≤ ∆ (7.26)

xe ≥ 0 ∀e ∈ E (7.27)

has an optimal solution with xe ∈ {0, 1} for all e ∈ E.

Hence, given a first-stage solution x and scenario p, we can formulate the

incremental problem as a linear program with polynomially many constraints. We

use this result to derive a compact formulation for the full uncertain single machine

scheduling problem (RRS).

We begin by formulating the incremental problem Inc(x,p) according to Corol-

lary 7.4. Note that we now consider a general first-stage assignment that is not

necessarily horizontal, and therefore introduce terms
∑

ℓ∈N ℓ · xiℓ to track the po-

sition in which job i is scheduled in the first-stage schedule. We fix an arbitrary

orientation of edges, using E = {(i, j) ∈ N ×N : i < j} in the following.

min
z

∑
i∈N

pi

(
n+ 1−

∑
ℓ∈N

ℓ · xiℓ

)
−
∑

(i,j)∈E

(pi − pj)

(∑
ℓ∈N

ℓ · xjℓ −
∑
ℓ∈N

ℓ · xiℓ

)
zij

s.t.
∑

(i,j)∈E

zij +
∑

(j,i)∈E

zji ≤ 1 ∀i ∈ N

∑
(i,j)∈E

zij ≤ ∆

zij ≥ 0 ∀(i, j) ∈ E .

Taking the dual of this, we get the following formulation for the adversarial problem
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Adv(x):

max
p,α, γ

∑
i∈N

pi

(
n+ 1−

∑
ℓ∈N

ℓ · xiℓ

)
−
∑
i∈N

αi − γ∆

s.t. αi + αj + γ ≥ (pi − pj)

(∑
ℓ∈N

ℓ · xjℓ −
∑
ℓ∈N

ℓ · xiℓ

)
∀(i, j) ∈ E

∑
i∈N

amipi ≤ bm ∀m ∈M

pi ≥ 0 ∀i ∈ N

αi ≥ 0 ∀i ∈ N

γ ≥ 0.

Since this is a linear program, we immediately obtain following result:

Corollary 7.5. The adversarial problem can be solved in polynomial time.

Finally, dualising the above adversarial formulation, we get the following com-

pact formulation for problem (RRS):

min
x,z, q

∑
m∈M

bmqm (7.28)

s.t.
∑
m∈M

amiqm +
∑

(i,j)∈E

(∑
ℓ∈N

ℓ · xjℓ −
∑
ℓ∈N

ℓ · xiℓ

)
zij

−
∑

(j,i)∈E

(∑
ℓ∈N

ℓ · xiℓ −
∑
ℓ∈N

ℓ · xjℓ

)
zji

≥ (n+ 1−
∑
ℓ∈N

ℓ · xiℓ) ∀i ∈ N (7.29)

∑
(i,j)∈E

zij +
∑

(j,i)∈E

zji ≤ 1 ∀i ∈ N (7.30)

∑
(i,j)∈E

zij ≤ ∆ (7.31)
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x ∈ X (7.32)

qm ≥ 0 ∀m ∈M (7.33)

zij ≥ 0 ∀(i, j) ∈ E . (7.34)

Upon linearising the quadratic xiℓ · zij and xjℓ · zij terms, this model becomes

a mixed-integer linear program. The fully linearised model contains O(n3) con-

straints and variables and is presented in full in Appendix C.2.2.

7.4.2 Assignment-based formulation

We now consider an alternative formulation for the incremental problem. Again,

for the purposes of examining the incremental problem, we initially consider the

first-stage schedule to be a horizontal assignment, i.e. xii = 1 for all i ∈ N . By

letting variables yij represent a second-stage assignment (we now return to the

convention where the index i is used to denote a job and the index j is used to

denote a position in the schedule), we can formulate the incremental problem as

follows:

min
∑
i∈N

∑
j∈N

pi(n+ 1− j)yij (7.35)

s.t.
∑
i∈N

yij = 1 ∀j ∈ N (7.36)

∑
j∈N

yij = 1 ∀i ∈ N (7.37)

yij = yji ∀i, j ∈ N (7.38)∑
i∈N

yii ≥ n− 2∆ (7.39)
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yij ∈ {0, 1} ∀i, j ∈ N . (7.40)

Constraints (7.38) and (7.39) ensure that the second-stage assignment is a fea-

sible recovery to the first-stage solution, that is, the second-stage assignment is

constructed by swapping the first-stage positions of up to ∆ disjoint pairs of jobs.

Note that this is a level-constrained symmetric perfect matching problem, which

can be solved in polynomial time (Thomas, 2015, Theorem 2.28).

We show that problem (7.35)-(7.40) can be solved as a linear program as a

result of its non-general cost structure. As the proof is technical and based on a

reduction to the corresponding maximum weight matching problem, it is omitted

here and can be found in Appendix C.1.1.

Theorem 7.6. For any a, b ∈ Rn
+, the problem

min
∑
i∈N

∑
j∈N

aibjyij (7.41)

s.t. (7.36)− (7.39) (7.42)

yij ≥ 0 (7.43)

has an optimal solution with yij ∈ {0, 1} for all i, j ∈ N .

We now use this result to find an assignment-based formulation for (RRS). We

first write the incremental problem in the form given by (7.41)-(7.43). Since we

are now considering the case where x is not necessarily a horizontal matching, we

rearrange the indices accordingly.

min
∑
i∈N

∑
j∈N

pi(n+ 1−
∑
ℓ∈N

ℓ · xjℓ)yij
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s.t.
∑
i∈N

yij = 1 ∀j ∈ N

∑
j∈N

yij = 1 ∀i ∈ N

yij = yji ∀i, j ∈ N∑
i∈N

yii ≥ n− 2∆

yij ≥ 0 ∀i, j ∈ N .

Taking the dual of this, the adversarial problem can be formulated in the following

way:

max
α,β,γ,τ,p

∑
i∈N

(αi + βi) + (n− 2∆)τ

s.t. αj + βi + γij ≤ (n+ 1−
∑
ℓ∈N

ℓ · xjℓ)pi ∀i, j ∈ N : i < j

αj + βi − γji ≤ (n+ 1−
∑
ℓ∈N

ℓ · xjℓ)pi ∀i, j ∈ N : i > j

αi + βi + τ ≤ (n+ 1−
∑
ℓ∈N

ℓ · xjℓ)pi ∀i ∈ N

∑
i∈N

amipi ≤ bm ∀m ∈M

pi ≥ 0 ∀i ∈ N

τ ≥ 0.

Finally, we dualise this adversarial formulation to derive the following formulation

for the recoverable problem:

min
x,y, q

∑
m∈M

bmqm (7.44)
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s.t.
∑
i∈N

yij = 1 ∀j ∈ N (7.45)

∑
j∈N

yij = 1 ∀i ∈ N (7.46)

∑
i∈N

yii ≥ n− 2∆ (7.47)

yij = yji ∀i, j ∈ N (7.48)∑
m∈M

amiqm ≥
∑
j∈N

(n+ 1−
∑
ℓ∈N

ℓ · xjℓ)yij ∀i ∈ N (7.49)

x ∈ X (7.50)

qm ≥ 0 ∀m ∈M (7.51)

yij ≥ 0 ∀i, j ∈ N (7.52)

As before, products xjℓ · yij can be linearised using standard techniques. The

resulting mixed-integer linear program contains O(n3) constraints and variables

and can be found in Appendix C.2.3.

7.5 Comparison of formulations

This section presents a brief investigation into the linear relaxations of the three

formulations derived above in order to compare their relative theoretical strengths.

We begin by showing that no comparisons can be made between the general for-

mulation and the other two formulations.

In preparation of the proof of this result we introduce budgeted uncertainty

as a special case of polyhedral uncertainty. A budgeted uncertainty set can be
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defined as

UB =

{
p ∈ Rn

+ :
∑
i∈N

pi − p̂i
p̄i

≤ Γ, pi ∈ [p̂i, p̂i + p̄i], i ∈ N
}
,

where p̂i is the nominal processing time of job i and p̄i is the worst-case delay to the

processing time of job i. Introduced by Bertsimas and Sim (2004), its motivation

is to exclude unrealistically pessimistic worst-case scenarios from the uncertainty

set and thereby avoid overly conservative and highly-expensive solutions. This is

achieved by assuming that at most Γ jobs can simultaneously reach their maximum

delays. Note that when Γ = 0, each job assumes its nominal processing time

and the UB reduces to a single scenario. Additionally, observe that as Γ → n,

this budgeted uncertainty set becomes an interval. When Γ = n the worst-case

scenario is known a priori to be when all jobs achieve their worst-case processing

times p̂i + p̄i. In this case the problem can be solved by simply ordering the

jobs according to their worst-case processing times, and no recourse action will be

required. The proof of the following proposition makes use of an instance involving

a budgeted uncertainty set.

Theorem 7.7. The general formulation (C.5-C.25) is incomparable with both

the matching-based formulation (C.26-C.42) and the assignment-based formulation

(C.43-C.57).

Proof. First consider a problem with two jobs with processing times that lie in the

uncertainty set U = {(p1, p2) : p1 ≤ 3, p2 ≤ 3, p1 + 2p2 ≤ 7}. Suppose also that

∆ = 1, i.e. one swap can be made to amend the first-stage schedule. In this case,

the linear relaxation of the matching-based formulation has an objective value of 7,



7. Robust Single Machine Scheduling with Polyhedral Uncertainty 161

whilst the linear relaxation of the assignment-based formulation has an objective

value of 5.

Now consider an instance involving jobs with p̂ = (10, 8, 9, 4, 1, 5, 7, 1) and

p̄ = (9, 7, 5, 4, 1, 3, 6, 1) lying in the budgeted uncertainty set UB, and set Γ = 1

and ∆ = 1. The linear relaxation of the matching-based formulation for this

instance has an optimal objective value of -9.2 (to 1 decimal place), whilst the

linear relaxation of the assignment-based formulation has an objective value of

-285.4 (to 1 decimal place).

For both of these instances, the linear relaxation of the general formulation

attains an objective value of 0. (In fact, for any polyhedral uncertainty set in

which ami ≥ 0 and bm ≥ 0 for all i ∈ N , the linear relaxation of the general

formulation will be 0, since it is free to set hk
ii′j = 0 for all i, i′, j ∈ N , k ∈ K and

therefore qm = 0 for all m ∈M.)

These examples show that the matching and assignment-based formulations

are tighter than the general formulation for some instances, but less tight for other

instances. Hence the general formulation is incomparable with the matching and

assignment-based formulations.

It is the case however that the objective value of the linear relaxation of the non-

linear matching-based formulation is always greater than or equal to the objective

value for the linear relaxation of the non-linear assignment-based formulation.

That is, the non-linear matching formulation dominates the non-linear assignment

formulation.

Theorem 7.8. The non-linear matching-based formulation (7.28)-(7.34) domi-

nates the non-linear assignment-based formulation (7.44)-(7.52).
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The proof of this statement involves the construction of a transformation ϕ to

show that any feasible solution to the matching formulation can be transformed

into a feasible solution to the assignment problem. The proof can be found in

Appendix C.1.2. It does however remain open as to whether this result can be

extended to the linearised versions of these formulations given by (C.26)-(C.42)

and (C.43)-(C.57), respectively.

7.6 Computational experiments

This section presents and compares results from solving the three compact models

introduced in this paper, as well as three additional heuristic solution methods.

As a particular example of a general polyhedral uncertainty, here we consider

budgeted uncertainty as outlined in the previous section. Before introducing three

heuristics for solving this problem and examining their performance, we comment

on the test instances and computational hardware used for these experiments.

Instances have been generated by randomly sampling both p̂i and p̄i from the set

{1, 2, . . . , 100}. 20 instances of sizes n ∈ {10, 15, 20} have been generated, resulting

in a total of 60 deterministic test instances. For each deterministic instance, three

uncertain instances have been generated by setting Γ ∈ {3, 5, 7}, resulting in a total

of 180 uncertain instances. These instances, as well as the complete results data,

can be found at https://github.com/boldm1/RR-single-machine-scheduling.

All methods have been run on 4 cores of a 2.30GHz Intel Xeon CPU, limited to

16GB RAM. The exact models have been solved using Gurobi 9.0.1, with a time

limit of 10 minutes.

https://github.com/boldm1/RR-single-machine-scheduling
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7.6.1 Heuristics

The three heuristic methods we consider are as follows:

1. Sorting. Obtain a schedule by ordering the jobs i ∈ N according to non-

decreasing p̂i+p̄i, i.e. a schedule that performs best in the worst-case scenario

when Γ = n, and evaluate by solving Adv(x).

2. Max-min. Solve the max-min problem

max
p∈UB

min
x∈X

∑
i∈N

∑
j∈N

pi(n+ 1− j)xij

to obtain a worst-case scenario p ∈ UB. Find a schedule x that performs

best in this worst-case scenario and evaluate by solving Adv(x).

3. Min-max. Solve the problem without recourse, i.e. with ∆ = 0.

Each heuristic method has been used to find a feasible solution to all 180

uncertain test instances. Figure 7.3 shows the cumulative percentage of instances

solved by each of the heuristics to within a given gap to the best solution found by

any method, including the exact models, which have been solved with ∆ = 2. It is

clear from this plot that min-max is the strongest of the three proposed heuristics,

solving all 180 instances to within 3.2% of the best solution. This gap increases to

8.8% for sorting, whilst max-min solves all but one instance to within 15%. The

averages of these gaps across all instances for min-max, sorting and max-min are

0.9%, 3.1% and 4.1% respectively.

Given its strong performance, we propose using min-max to provide a warm-

start solution to the exact models. The benefits of this are assessed in the next

section.
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Figure 7.3: Cumulative percentage of instances solved to within a given gap of the

best known solution.

7.6.2 Exact models

We now examine the results of solving the three exact models proposed in this

paper and their warm-start variants. The 180 uncertain instances have been solved

by each model and its warm-start variant for ∆ ∈ {0, 1, 2, 3}. Note that the general

model has been implemented with K = 2. This has been chosen to make the

general model as computationally efficient to solve as possible, whilst actually still

providing an advantage over the min-max model, i.e. for K = 1 the general model

corresponds to the min-max model.

Tables 7.1 and 7.2 compare the performance of these exact models for differ-

ent values of Γ and ∆ respectively. For each set of 20 instances with the same

combination of instance parameters, Tables 7.1 and 7.2 report the following:
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• time - Average CPU time (secs) required to solve the instances that were

solved to optimality within the time limit.

• LBgap - Average gap (%) between the best objective bound and the best

known feasible solution found by any method, over the instances not solved

to optimality within the time limit.

• UBgap - Average gap (%) between the best feasible solution found within

the time limit and the best known feasible solution found by any method,

over the instances not solved to optimality within the time limit.

• #solv - Number of instances solved to optimality within the time limit.

From Tables 7.1 and 7.2, it is clear that the general model is by far the weakest

of the three proposed models. Other than for ∆ = 0, no instances are solved to

optimality. The general model is able to find near-optimal feasible solutions, but

fails to begin closing the optimality gap in most instances. The matching-based

model improves considerably on the general model, whilst the assignment model

is the strongest performing of the three exact models, solving the most number

of instances to optimality and having the smallest gaps over those instances that

cannot be solved to optimality. The addition of a warm-start solution is clearly

beneficial only for the assignment-based model, where the addition solves more

instances to optimality in less time.

From Table 7.1 it can be seen that instances tend to become harder to solve as

Γ increases from 3 to 7. From Table 7.2 we observe that, unsurprisingly, instances

are easiest to solve to solve when ∆ = 0 (this corresponds to solving the min-

max model). Interestingly however, when n = 15 and n = 20, instances are most
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difficult when ∆ = 1, and become easier to solve as the number of recovery swaps

allowed, ∆, increases, i.e. the second stage-solution becomes less constrained by

the first-stage solution.

Figure 7.4 shows performance profiles (Dolan and Moré, 2002) of the relative

solution times of the matching and assignment-based models and their warm-start

variants, for different instance sizes. The general model and its warm-start variant

is excluded from these plots given its poor performance. A performance profile is

a graphical comparison of the performance ratios. The performance ratio of model

m ∈M for instance i ∈ I is defined as

pim =
tim

minm∈M tim
,

where tim is the time required to solve instance i using model m. If model m

fails to find an optimal solution to instance i within the given time-limit, then

pim = P , for some P > maxi,m rim. The performance profile of model m ∈ M is

then defined to be the function

ρm(τ) =
|{pim ≤ τ : i ∈ I}|

|I| ,

that is, the probability that model m is within a factor τ of the best performing

model. The performance profiles in Figure 7.4 have been plotted on the log-scale

for clarity.

The top-left performance profile in Figure 7.4 includes data from all instances,

whilst the three other performance profiles consider the three sizes of instance

separately. We see that for n = 10, the matching-based model performs slightly
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General General + warm-start
n Γ ∆ time LBgap UBgap #solv time LBgap UBgap #solv

10 3 2 - 100.0 0.2 0 - 100.0 0.2 0
10 5 2 - 100.0 0.1 0 - 100.0 0.1 0
10 7 2 - 100.0 0.1 0 - 100.0 0.0 0
15 3 2 - 100.0 0.4 0 - 100.0 0.3 0
15 5 2 - 100.0 0.6 0 - 100.0 0.3 0
15 7 2 - 100.0 0.4 0 - 100.0 0.3 0
20 3 2 - 100.0 0.8 0 - 100.0 0.3 0
20 5 2 - 100.0 0.9 0 - 100.0 0.4 0
20 7 2 - 100.0 1.2 0 - 100.0 0.5 0

0 0
Matching Matching + warm-start

n Γ ∆ time LBgap UBgap #solv time LBgap UBgap #solv

10 3 2 2.6 - - 20 2.6 - - 20
10 5 2 4.1 - - 20 4.1 - - 20
10 7 2 2.1 - - 20 3.4 - - 20
15 3 2 110.9 0.0 0.0 19 110.0 - - 20
15 5 2 132.4 0.2 0.0 17 110.0 0.1 0.0 18
15 7 2 111.7 0.2 0.0 16 97.6 0.2 0.0 16
20 3 2 540.7 0.9 0.0 3 463.7 0.9 0.0 2
20 5 2 598.6 0.5 0.0 1 - 0.6 0.0 0
20 7 2 - 0.5 0.0 0 - 0.4 0.0 0

116 116
Assignment Assignment + warm-start

n Γ ∆ time LBgap UBgap #solv time LBgap UBgap #solv

10 3 2 8 - - 20 8.2 - - 20
10 5 2 6.8 - - 20 5.1 - - 20
10 7 2 3.4 - - 20 3.0 - - 20
15 3 2 50.9 - - 20 55.4 - - 20
15 5 2 62.6 - - 20 59.3 - - 20
15 7 2 59.1 - - 20 64.3 - - 20
20 3 2 344.0 - - 20 223.7 0.9 0 19
20 5 2 377.7 - - 20 276.0 0.0 0 19
20 7 2 445.5 0.0 0.0 19 321.3 - - 20

179 178

Table 7.1: Comparison of the three exact models proposed in this paper and their

warm-start variants, for different values of Γ.
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General General + warm-start
n Γ ∆ time LBgap UBgap #solv time LBgap UBgap #solv
10 7 0 0.3 - - 20 0.3 - - 20
10 7 1 - 100.0 0.0 0 - 100.0 0.0 0
10 7 2 - 100.0 0.1 0 - 100.0 0.0 0
10 7 3 - 100.0 0.0 0 - 100.0 0.0 0
15 7 0 3.3 - - 20 3.0 - - 20
15 7 1 - 100.0 0.4 0 - 100.0 0.3 0
15 7 2 - 100.0 0.4 0 - 100.0 0.3 0
15 7 3 - 100.0 0.5 0 - 100.0 0.3 0
20 7 0 69.5 0.8 0.0 18 81.1 0.9 0.0 18
20 7 1 - 100.0 1.1 0 - 100.0 0.7 0
20 7 2 - 100.0 1.2 0 - 100.0 0.5 0
20 7 3 - 100.0 1.6 0 - 100.0 0.5 0

58 58
Matching Matching + warm-start

n Γ ∆ time LBgap UBgap #solv time LBgap UBgap #solv
10 7 0 0 - - 20 0.0 - - 20
10 7 1 2.1 - - 20 2.2 - - 20
10 7 2 2.1 - - 20 3.4 - - 20
10 7 3 5.3 - - 20 5.9 - - 20
15 7 0 0.2 - - 20 0.2 - - 20
15 7 1 207 0.2 0.0 11 162.7 0.2 0.0 12
15 7 2 111.7 0.2 0.0 16 97.6 0.2 0.0 16
15 7 3 66.1 0.2 0.0 17 72.7 0.2 0.0 16
20 7 0 1.6 - - 20 1.6 - - 20
20 7 1 - 0.9 0.0 0 - 0.9 0.0 0
20 7 2 - 0.5 0.0 0 - 0.5 0.0 0
20 7 3 395.3 0.3 0.0 8 490.9 0.3 0.0 8

172 172
Assignment Assignment + warm-start

n Γ ∆ time LBgap UBgap #solv time LBgap UBgap #solv
10 7 0 0.0 - - 20 0.0 - - 20
10 7 1 2.8 - - 20 2.0 - - 20
10 7 2 3.4 - - 20 3.0 - - 20
10 7 3 5.7 - - 20 4.1 - - 20
15 7 0 0.2 - - 20 0.1 - - 20
15 7 1 71.1 0.0 0.0 19 86.8 - - 20
15 7 2 59.1 - - 20 64.3 - - 20
15 7 3 42.4 - - 20 50.3 - - 20
20 7 0 1.5 - - 20 1.3 - - 20
20 7 1 433.5 0.4 0.0 2 523.5 0.3 0.0 6
20 7 2 445.5 0.0 0.0 19 321.3 - - 20
20 7 3 435.2 0.3 0.0 19 312.0 - - 20

219 226

Table 7.2: Comparison of the three exact models proposed in this paper and their

warm-start variants, for different values of ∆.
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better than the assignment-based model, however the inclusion of a warm-start

does not seem to improve the matching model. For n = 15 and n = 20 however,

the assignment model is stronger than the matching model. The benefits of a

warm-start solution become most apparent when solving the largest instances,

where a warm-start increases both solution times and the number of instances

solved to optimality of both the matching and assignment model.

n=10

n=15 n=20

n {10,15,20}

Figure 7.4: Performance profiles of relative solution times for different instance

sizes.
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7.6.3 Model parameters

We now examine the impact of the model parameters Γ and ∆ on the objective

value. For each set of instances, Tables 7.3 and 7.4 report the average objective

value of the best known feasible solutions found by any method for different values

of Γ and ∆ respectively, as well as the relative percentage difference in this average

from the sets of instances where Γ = 3 and ∆ = 0, respectively.

n Γ ∆ avg. best %diff.
10 3 2 3946.5 0.0
10 5 2 4578.0 14.1
10 7 2 5053.0 22.1
15 3 2 7164.9 0.0
15 5 2 8177.5 12.7
15 7 2 9002.1 20.7
20 3 2 11814.3 0.0
20 5 2 13317.8 11.5
20 7 2 14582.5 19.3

Table 7.3: The effects of increasing Γ

on the average objective value of the

best known solution.

n Γ ∆ avg. best %diff.
10 7 0 5079.7 0.0
10 7 1 5053.0 -0.5
10 7 2 5053.0 -0.5
10 7 3 5053.0 -0.5
15 7 0 9093.8 0.0
15 7 1 9002.2 -1.0
15 7 2 9002.1 -1.0
15 7 3 9002.1 -1.0
20 7 0 14735.6 0.0
20 7 1 14583.7 -1.0
20 7 2 14582.5 -1.0
20 7 3 14582.5 -1.0

Table 7.4: The effects of increasing

∆ on the average objective value of

the best known solution.

The results in Table 7.3 show that, as we would expect, increasing the Γ in-

creases the average objective value in a concave manner. Table 7.4 shows that the

inclusion of a second-stage recourse solution provides an improvement in objective

value. However we also see that beyond ∆ = 1, increasing ∆ provides little ad-

ditional benefit. That is, the vast majority of the benefit of allowing a recourse
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solution can be captured by allowing just a single swap to the first-stage schedule.

However, it is important to note the effect of having been limited to instances sizes

of 20 and less by the computational intensity of solving the proposed exact models.

We expect that for larger instance sizes, a less restricted and more powerful re-

course action, i.e. increasing ∆, would become more advantageous. Additionally,

for a discrete budgeted uncertainty set where pi ∈ {p̂i, p̂i + p̄i} for each i ∈ N ,

we might expect the benefits of increasing ∆ to be more apparent, since in this

case the adversary is unable to spread the delay across multiple jobs in an attempt

to preempt the recourse response, as is currently the case under the continuous

budgeted uncertainty set that we consider. The impact of discrete budgeted un-

certainty is an interesting possibility for future research on this problem.

7.7 Conclusions

This paper has introduced a recoverable robust model for the single machine

scheduling problem with the total flow time criterion. A general result that allows

for the construction of compact formulations for a wide range of recoverable robust

problems has been presented, and this approach has been applied to the specific

scheduling problem we consider. We have analysed the incremental subproblem of

the robust scheduling problem in detail in an attempt to develop more tailored and

effective compact formulations for this problem. Specifically, we have proved that

matching problems with edge weights of the form of (7.21) have integral solutions,

and therefore the inclusion of the odd-cycle constraints of the standard matching

polytope is unnecessary. This result allows us to derive a matching-based compact

formulation for the full recoverable robust single machine scheduling problem. A
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symmetric assignment-based formulation has also been presented, and we show

how the integral matching result can be transferred to this alternative formulation

to enable the derivation of a third compact model for this problem. Computational

results show that this assignment-based model is the strongest of the three exact

models.

There remain a number of promising directions in which future research on this

problem can develop. Firstly, in this work we have considered a limited recourse

action of allowing ∆ disjoint swaps to be made to the first-stage schedule. Other

measures of distance between the first and second-stage solution are certainly pos-

sible and worth investigating, especially if the restriction that the swapped pairs

be disjoint could be relaxed, and interchanges between the positions of three or

more jobs simultaneously can be factored into a recourse action. Another obvious

avenue for future research is the analysis of this problem in the context of uncer-

tainty sets different from polyhedral and budgeted uncertainty. Given the vast

number of different objectives that have been used for single-machine scheduling

problems and the unique properties of each, it would be interesting and worthwhile

to investigate the application of this recoverable robust model to some of these. As

a final suggestion, given the limited size of instance that have been solved by the

exact models we propose, an accurate and effective heuristic approach for solving

large-scale instances of this problem would certainly be a valuable development.



Chapter 8

Investigating the Recoverable Robust

Single Machine Scheduling Problem Under

Interval Uncertainty

8.1 Introduction

In this chapter, we consider a recoverable robust version of a single machine

scheduling problem in which n jobs must be scheduled on a single machine without

preemption, such that the total flow time, i.e. the sum of job completion times,

is minimised. Under the α|β|γ scheduling notation introduced by Graham et al.

(1979), the nominal problem is denoted as 1||∑Ci. In reality, job processing

times are usually subject to some degree of uncertainty. When this is the case, it

is important to account for this uncertainty when constructing solution schedules.

Here, we consider the case where the job processing times are assumed to lie within

specified intervals and examine the recoverable robust optimisation problem that

arises from assuming a two-stage decision process.

173
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The nominal problem can be stated as follows. Given a set of jobs N =

{1, . . . , n} with processing times p = (p1, . . . , pn), find an ordering of the jobs

j ∈ N such that the sum of completion times is minimised. In other words, we want

to find a permutation σ of the set N , such that
∑

i∈N(n+1− i)pσ(i) is minimised.

This nominal problem is easy to solve using the shortest processing time (SPT)

rule of sorting the jobs by non-decreasing processing times. This problem can also

be modelled as the following assignment problem with non-general cost structure:

min
∑
i∈N

∑
j∈N

pj(n+ 1− i)xij (8.1)

s.t.
∑
i∈N

xij = 1 ∀j ∈ N (8.2)

∑
j∈N

xij = 1 ∀i ∈ N (8.3)

xij ∈ {0, 1} ∀i, j ∈ N, (8.4)

where xij = 1 if job j is scheduled in position i, and xij = 0 otherwise.

In this chapter we consider a two-stage decision process. Suppose that in the

first-stage, the jobs j ∈ N have processing times given by p = (p1, . . . , pn), and

in the second-stage they have different processing times given by q = (q1, . . . , qn).

We aim to find a first-stage schedule and second-stage schedule with minimum

combined cost, such that the position of at least ∆ jobs remain unchanged between

the two schedules, i.e. only up to n −∆ jobs change position. This problem can

be written as

min
∑
i∈N

∑
j∈N

pj(n+ 1− i)xij +
∑
i∈N

∑
j∈N

qj(n+ 1− i)yij (RecSMSP)
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s.t. |X ∩ Y | ≥ ∆

x, y ∈ X

where X = {(i, j) ∈ N ×N : xij = 1} is the assignment corresponding to the first-

stage schedule, Y = {(i, j) ∈ N × N : yij = 1} is the assignment corresponding

to the second-stage schedule, and X = {x ∈ {0, 1}n×n : (8.2), (8.3)} is the set of

feasible schedules. The condition |X ∩ Y | ≥ ∆ is equivalent to demanding that

∑
i∈N

∑
j∈N

xijyij ≥ ∆.

(RecSMSP) can be modelled as a mixed-integer program (MIP) following the lin-

earisation of this constraint. This is achieved with the introduction of an additional

set of z variables, and the following constraints:

zij ≤ xij ∀i, j ∈ N

zij ≤ yij ∀i, j ∈ N∑
i∈N

∑
j∈N

zij ≥ ∆

zij ∈ {0, 1} ∀i, j ∈ N

Observe how the z variables represent the shared assignments of the first and

second-stages, i.e. zij = 1 if job j is assigned to position i in both the first and

second-stage schedules.

This problem can be considered to be a recoverable robust optimisation prob-

lem with interval uncertainty (see Liebchen et al. (2009)). A recoverable robust
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optimisation problem consists of two-stages. A full first-stage solution must be

determined under the problem uncertainty, before an adversary chooses a worst-

case realisation of the uncertain data. Then, in response to this realisation, the

first-stage solution can be recovered, i.e. amended in some limited way, to ob-

tain a second-stage solution. For a general survey on robust discrete optimisation

problems, we refer the reader to Kasperski and Zieliński (2016a).

We consider exactly this recoverable robust problem in the setting where the

second-stage job processing times q, are uncertain, but known to lie within an

interval (or box) uncertainty set given by

U =
{
q ∈ Rn

+ : qj ∈ [q̂j − q̄j, q̂j + q̄j], j ∈ N
}
.

That is, each job j ∈ N has a nominal second-stage processing time given by q̂j,

but can deviate from this nominal value by up to q̄j. The worst-case scenario for

this uncertainty set occurs when each job simultaneously achieves its worst-case

processing time, i.e. q̂j + q̄j for each j ∈ N . Denoting the first-stage duration of

j ∈ N as pj, and its worst-case second-stage duration as qj, we get (RecSMSP).

There exists a number of papers that consider various discrete optimisation

problems in the setting of recoverable robust optimisation with interval uncer-

tainty. The resulting problems they study therefore also contain the same in-

tersection constraints that we consider here. Our work in this chapter extends

this framework to the context of single-machine scheduling. Büsing (2012) stud-

ies recoverable robust shortest path problems, whilst Hradovich et al. (2017a,b)

investigate the recoverable robust spanning tree problem. Kasperski and Zieliński

(2017) consider the recoverable robust selection problem under both discrete and
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interval uncertainty and, most recently, Goerigk et al. (2021b) consider the recov-

erable robust travelling salesman problem. The single-machine scheduling problem

we consider is an assignment problem with a specific cost structure, and therefore

Fischer et al. (2020) is the paper that is most closely related to our work. In this

paper, the authors examine the complexity of the recoverable robust assignment

problem with interval uncertainty. Amongst other results, they show that this

problem is W[1]-hard with respect to ∆ and n − ∆. Even though they use only

0-1 costs for this reduction, note that this hardness result does not extend to the

scheduling cost structure that we consider here.

As a brief comment on other papers that consider robust assignment problems,

Děıneko et al. (2006) study the problem in the context of discrete scenarios and

Pereira and Averbakh (2011) considers interval uncertainty in combination with

the regret criterion.

The single machine scheduling problem with the objective of minimising the

(weighted) sum of completion times under uncertain job processing times is well-

studied, particularly for the case of discrete uncertain scenarios. Daniels and

Kouvelis (1995), Kouvelis and Yu (1997), Yang and Yu (2002) and Aloulou and

Della Croce (2008) show that even for just two discrete scenarios, robust versions of

this problem are NP-hard, whilst Mastrolilli et al. (2013) show that no polynomial-

time approximation algorithm exists. Zhao et al. (2010) propose a cutting plane

algorithm to solve the problem. More recently, Kasperski and Zieliński (2016b)

considered the problem for the ordered weighted averaging (OWA) criterion, of

which classical robustness is a special case, and Kasperski and Zieliński (2019)

considered the problem for the value at risk (VaR) and conditional value at risk
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(CVaR) criteria.

The case of interval uncertainty has also received a lot of attention. Daniels

and Kouvelis (1995) characterised a set of dominance relations between jobs in an

optimal schedule in the case of interval uncertainty. Lebedev and Averbakh (2006)

showed that the problem is NP-hard for regret robustness, whilst Montemanni

(2007) presented a compact MIP that was shown to be able to solve instances

involving up to 45 jobs. Kasperski and Zieliński (2008) showed that the regret

problem is 2-approximable when the corresponding nominal problem is solvable

in polynomial time. For a survey of robust single machine scheduling for both

discrete and interval uncertainty, see Kasperski and Zielinski (2014).

For robust single machine scheduling in the context of budgeted uncertainty,

Lu et al. (2014) presented an MIP and a heuristic to solve the problem, before

Bougeret et al. (2019) examined its complexity. The work presented in the previous

chapter of this thesis (Bold and Goerigk, 2022b) considered the recoverable robust

problem under a different similarity measure to the one considered in this chapter.

The structure and contributions of this chapter are as follows. Section 8.2

presents a number of positive results for the problem, including an efficient method

for optimal scheduling when a set of jobs which must have the same first and

second-stage positions is given. Section 8.3 then presents a 2-approximation al-

gorithm and greedy heuristic for the full problem. The performance of the exact

MIP formulation as well as the heuristics we present are examined experimentally

in Section 8.4, before concluding remarks are made in Section 8.5.
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8.2 Problem properties

We begin our analysis of the recoverable robust single machine scheduling problem

by considering the following question: Given a set M ⊆ N of jobs that must be

scheduled in the same position in both the first and the second stage, what is the

best possible solution? That is, we consider the problem of calculating

f(M) = min
∑
i∈N

∑
j∈N

pj(n+ 1− i)xij +
∑
i∈N

∑
j∈N

qj(n+ 1− i)yij (RecFix)

s.t. xij = yij ∀i ∈ N, j ∈M

x, y ∈ X

Note that a solution (x,y) of (RecFix) may intersect on more jobs than just those

in the set M . Also note that if |M | ≥ ∆, then the solution to this problem is

feasible to (RecSMSP). Therefore, the optimal objective value of (RecSMSP) is

equal to min{f(M) : |M | ≥ ∆}. In Algorithm 8.1, we show how to calculate the

value f(M) in polynomial time.

The following example demonstrates the implementation of this ordering rule.

Consider the data shown in Table 8.1 and suppose that M = {3, 4}, i.e. jobs 3

and 4 must share the same position in the first and second-stage schedules. Then

N \M = {1, 2, 5}, i.e., jobs 1, 2 and 5 can be assigned different positions in the two

schedules. The sorted first and second-stage processing times of jobs in N \M are

a = (2, 3, 5) and b = (1, 4, 6) respectively, and the joint processing times for the

jobs in M are c = (14, 6). Then d = a + b = (3, 7, 11) and e = (3, 6, 7, 11, 14) as

the merged and sorted vector processing times. This corresponds to the first-stage

schedule σ1 = (5, 4, 2, 1, 3), and the second-stage schedule σ2 = (2, 4, 1, 5, 3). Note
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that, as required, jobs 3 and 4 are placed in the same position in both the first

and second-stage schedules.

Algorithm 8.1 Evaluation method for f(M)

1: procedure Eval(p, q,M)

2: Set a = (aj)j∈N\M to be the vector of values pj, j ∈ N \M , sorted by

non-decreasing values

3: Set b = (bj)j∈N\M to be the vector of values qj, j ∈ N \M , sorted by

non-decreasing values

4: Set c = (cj)j∈M to be the vector of values pj + qj, j ∈M

5: Set d = a+ b = (a1 + b1, . . . , aN\M + bN\M)

6: Let e = (ej)j∈N be the vector found by concatenating vectors c and d

and sorting by non-decreasing values

7: return
∑

i∈N(n+ 1− i)ei

8: end procedure

j 1 2 3 4 5
pj 5 3 5 1 2
qj 4 1 9 5 6

pj + qj 9 4 14 6 8

Table 8.1: Example problem data. Columns of M = {3, 4} are in bold.

We now show that Algorithm 8.1 does indeed give an optimal solution to prob-

lem (RecFix).

Theorem 8.1. Algorithm 8.1 calculates f(M) for any M ⊆ N .

Proof. Let any M ⊆ N be given. We denote these jobs as M = {j1, . . . , jm}

with m = |M |. Let us first assume that we already know the set of slots K =

{i1, . . . , im} ⊆ N into which the jobs will be scheduled. We will then show how
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to find such a set. We further denote by N \M = {j′1, . . . , j′n−m} and N \ K =

{i′1, . . . , i′n−m} the sets of jobs and slots that are not part of M and K, respectively.

Without loss of generality, we assume that i1 < i2 < . . . < im and i′1 < i′2 < . . . <

i′n−m. The resulting problem thus decomposes into the two subproblems

min
z∈X

m∑
k=1

m∑
ℓ=1

(n+ 1− ik)(pjℓ + qjℓ)zkℓ + min
x,y∈X

n−m∑
k=1

n−m∑
ℓ=1

(n+ 1− i′k)(pj′ℓxkℓ + qj′ℓykℓ),

where with slight abuse of notation, X denotes the set of assignments with suitable

dimension. Note that independent of the choice of K, we can find optimal solutions

z∗, x∗ and y∗. Sorting jobs j ∈M by non-decreasing joint processing times pj+qj

gives z∗. We denote the resulting vector of joint processing times as c = (cj)j∈M .

Sorting jobs j ∈ N \M by non-decreasing pj gives x∗, and by non-decreasing qj

gives y∗. We denote the resulting vector of sums of the sorted processing times as

d = (dj)j∈N\M .

Let us fix these assignments accordingly and consider how to find set K. This

is equivalent to assigning the positions i1, . . . , im and i′1, . . . , i
′
n−m to slots in N .

Hence, the value f(M) is equal to

min
τ∈X

∑
i∈N

m∑
ℓ=1

(n+ 1− iτiℓ)cℓ +
∑
i∈N

n−m∑
ℓ=1

(n+ 1− iτi,ℓ+m)dℓ

An optimal solution to this problem can be found by assigning the positions

according to non-decreasing processing times of their associated jobs, i.e., to sort

the concatenated vector of processing times consisting of c and d. Algorithm 8.1

is exactly this solution procedure.

Therefore, if it is known which set of jobs M with cardinality ∆ must share
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a position in the first and second-stage schedule, the remaining problem can be

solved in O(n log n) time. This immediately gives the following result.

Corollary 8.2. For a constant value of ∆, (RecSMSP) can be solved in polynomial

time O(n∆+1 log n).

Proof. This can be seen by simply enumerating the
(
n
∆

)
∼ O(n∆) possible ways

of choosing a set of ∆ jobs to share first and second-stage assignments. For each

of the O(n∆) ways of fixing ∆ jobs, the remaining problem can be solved us-

ing Algorithm 8.1 in O(n log n) time. Hence, the overall complexity is given by

O(n∆+1 log n), i.e. polynomial for fixed ∆.

As observed in Fischer et al. (2020), it is straightforward to see that prob-

lem (RecSMSP) can be solved in polynominal time for constant value of ∆ by

enumerating all possibilities for the intersection set |X ∩ Y |. Note that whilst

this approach would require us to check
(
n2

∆

)
many candidates for general cost

functions, this number is reduced to
(
n
∆

)
in our case.

We now consider a special case of (RecSMSP) where there are a constant

number k of possible job processing times, i.e. pj, qj ∈ {d1, . . . , dk}, where

d1, . . . , dk ∈ R for constant k. Note that this results in at most k2 possible com-

binations of first and second-stage costs pj and qj, that is k2 possible job types.

Furthermore, f(M) = f(M ′) for any two choices M,M ′ ⊆ N that contain the

same number of each job type. We can conclude the following result.

Corollary 8.3. Let pj, qj ∈ {d1, . . . , dk} for a constant value of k. Then, (Rec-

SMSP) can be solved in polynomial time O(nk2)

Proof. We consider the number of ways there are to choose ∆ jobs from k2 different

job types. Observe that for all but the final job type, there are ∆ + 1 ways of
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choosing up to ∆ jobs of that type. Having chosen the number of jobs from the

first k2 − 1 job types, the number of jobs of the final type is simply equal to

the number of jobs remaining. Hence there are O((∆ + 1)k
2−1) ways to choose

the ∆ jobs. For each of these choices, we can use the ordering rule presented in

Algorithm 8.1 to solve the resulting problem. Note that sorting n bounded values

is possible in O(n) time. Hence (RecSMSP) with k possible job processing times

is solvable in O((∆ + 1)k
2−1 · n) ∼ O(nk2) time.

8.3 A 2-approximation algorithm

In this section, we present an approximate solution to (RecSMSP) and prove that

this solution has a guaranteed worst-case approximation ratio of 2.

Theorem 8.4. A solution to the problem

f(N) = min
∑
i∈N

∑
j∈N

pj(n+ 1− i)xij +
∑
i∈N

∑
j∈N

qj(n+ 1− i)yij (UB-SMSP)

|X ∩ Y | = n

x, y ∈ X

provides a 2-approximation to (RecSMSP).

Observe that (UB-SMSP) is equivalent to (RecSMSP) with complete intersec-

tion of the first and second-stage solutions. It can thus be simplified to

min
x∈X

∑
i∈N

∑
j∈N

(pj + qj)(n+ 1− i)xij

Note that (UB-SMSP) can be solved in O(n log n) time by simply ordering the
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jobs j ∈ N according to non-decreasing pj + qj values.

In the following, we provide a proof for Theorem 8.4. To this end, we consider

a lower bound to (RecSMSP), which is provided by a solution to the problem

(
min
x∈X

∑
i∈N

∑
j∈N

pj(n+ 1− i)xij

)
+

(
min
y∈X

∑
i∈N

∑
j∈N

qj(n+ 1− i)yij

)
, (LB-SMSP)

that is, (RecSMSP) without the intersection constraint. Suppose σp and σq are

orderings of jobs j ∈ N by non-decreasing first-stage costs pj and non-decreasing

second-stage costs qj, respectively. Then (LB-SMSP) has objective value equal to

∑
j∈N

(pσp(j) + qσq(j))(n+ 1− j).

We compare the upper bound provided by (UB-SMSP) with the lower bound

provided by (LB-SMSP) and refer to the values of these upper and lower bounds

as UB and LB, respectively.

By sorting items by σp and σq and considering the different positions of specific

items between these two sortings, we get a different perspective on what constitutes

an instance of (RecSMSP). Specifically, we can consider sorted processing times

p1 ≤ p2 ≤ . . . ≤ pn and q1 ≤ q2 ≤ . . . ≤ qn, and a permutation π, such that

the processing times pj and qπ(j) belong to the same job. Figure 8.1 provides an

example of a (RecSMSP) considered in this way.

Using this description of an instance, we begin by first proving the following

structural lemma, which shows that a worst-case instance is of a form where the

smallest value of p is matched with the largest value of q, the second smallest

value of p is matched with the second-largest value of q, and so on.
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1 2 3 4

3 3 4 5

p

q

Figure 8.1: An example instance of (RecSMSP) involving four jobs. First-stage

processing times are shown in the top row and second-stage processing times are

shown in the bottom row. An edge between first-stage node and second-stage node

indicates that these processing times belong to a single job.

Lemma 8.5. Let any instance of (RecSMSP) be given, consisting of sorted vectors

p, q and a permutation π. Then the ratio UB
LB

for this instance is less or equal to

the ratio for the instance where π is replaced by π′, where π′ = (n, n − 1, . . . , 1),

i.e., π′ is a sorting of indices from largest to smallest. We refer to such an instance

as being ‘fully-crossed’.

Proof. Matching a first-stage cost to a second-stage cost represents a job having

those respective processing times. Here, we match first and second-stage costs

with the objective of maximising the ratio UB
LB

. To this end, observe that LB is

the same for all possible matchings π as the intersection constraint is ignored,

and hence finding a matching to maximise the ratio UB
LB

is equivalent to finding a

matching that maximises UB.

Let us consider the dual problem of UB, given by

max
∑
i∈N

ui + vi

s.t. uj + vi ≤ (n+ 1− i)(pj + qπ(j)) ∀i, j ∈ N
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Consider any two jobs, and suppose that first and second-stage costs are labelled

so that p1 ≤ p2 and q1 ≤ q2. We compare the objective values between the case

when p1 is matched to q1 and p2 is matched to q2, i.e. the two jobs are uncrossed

(see Figure 8.2a), and the case when p1 is matched to q2 and p2 is matched to q1,

i.e. the two jobs are crossed (see Figure 8.2b).

p1 p2

q1 q2
(a) Uncrossed matching.

q1 q2

p1 p2

(b) Crossed matching.

Figure 8.2: Uncrossed and crossed instances.

Let (u∗,v∗) be an optimal solution to the dual of (UB-SMSP) for the instance

in which the two jobs are uncrossed, and let us denote its objective value as

UBuncrossed. Note that

u∗
1 = min

i∈N
{(n+ 1− i)(p1 + q1)− v∗i }

u∗
2 = min

i∈N
{(n+ 1− i)(p2 + q2)− v∗i } .

Now consider the dual of (UB-SMSP) for the instance in which the two jobs are

crossed. We denote its objective value as UBcrossed and construct a feasible solution

(u,v) by setting v = v∗,

u1 = min
i∈N
{(n+ 1− i)(p1 + q2)− v∗i }
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u2 = min
i∈N
{(n+ 1− i)(p2 + q1)− v∗i }

and uj = u∗
j for all other jobs j. Since this is a feasible solution, we have UBcrossed ≥∑

i∈N ui + vi.

Now for λ ∈ [0, 1], we consider the function fi(λ) = (n + 1 − i)(λ(p1 + q1) +

(1 − λ)(p2 + q2)) − v∗i and define g(λ) = mini∈N fi(λ) + mini∈N fi(1 − λ). The

minimum of concave functions is concave, and the sum of concave functions is

concave, and therefore function g is concave. Furthermore, it is symmetric with

respect to λ = 0.5. Hence, g is minimised for λ = 0 and λ = 1, and thus for all

λ ∈ [0, 1], g(λ) ≥ g(0) = g(1).

We therefore conclude that

UBcrossed − UBuncrossed ≥
∑
i∈N

ui + vi −
∑
i∈N

u∗
i + v∗i

= u1 + u2 − u∗
1 − u∗

2

= g(λ)− g(0) ≥ 0

where λ = (p2 − p1)/(p2 + q2 − p1 − q1). Hence, by changing the matching π as

described, the value of the upper bound is not decreased. Repeating this process,

we find that there is always a fully-crossed worst-case instance as claimed.

We are now in a position to prove Theorem 8.4.

Proof of Theorem 8.4. We suppose that the first and second-stage costs are or-

dered so that p1 ≤ p2 ≤ · · · ≤ pn and q1 ≤ q2 ≤ · · · ≤ qn, and that the jobs are

labelled in order of their first-stage costs. Making use of Lemma 8.5, we restrict

our consideration to instances where the matching of first and second-stage costs
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is fully crossed, i.e. job j has the j-th largest first-stage cost pj, and the (n− j)-th

largest second-stage cost qn−j.

We examine the problem of choosing values p and q to maximise UB
LB

, i.e.

max
(p,q)∈PQ

min
π∈Π

∑
i∈N(n+ 1− i)(pπ(i) + qn−π(i))∑

i∈N(n+ 1− i)(pi + qi)
, (8.5)

where π ∈ Π is a permutation of the positions i ∈ N such that π(i) is the job

scheduled in position i, and PQ = {(p, q) ∈ Rn+n
+ : p1 ≤ p2 ≤ · · · ≤ pn, q1 ≤ q2 ≤

· · · ≤ qn}.

Normalising the objective function we get

max
(p,q)∈PQ

min
π∈Π

∑
i∈N

(n+ 1− i)(pπ(i) + qn−π(i)),

where PQ = {(p, q) ∈ PQ :
∑

i∈N(n+ 1− i)(pi + qi) = 1}. For fixed p and q, the

inner minimisation problem over the set of permutations π ∈ Π can be written as

the following assignment problem

min
∑
i∈N

∑
j∈N

(n+ 1− i)(pj + qn−j)xij

s.t.
∑
i∈N

xij = 1 ∀j ∈ N

∑
j∈N

xij = 1 ∀i ∈ N

xij ∈ {0, 1} ∀i, j ∈ N,

where xij = 1 indicates that job j is scheduled in position i, and xij = 0 otherwise.

Note that the binary constraints on the xij variables can be relaxed to xij ≥ 0 for
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all i, j ∈ N . Hence, taking the dual of this linear program, we get

max
∑
i∈N

ui + vi

s.t.uj + vi ≤ (n+ 1− i)(pj + qn−j) ∀i, j ∈ N,

and therefore the full problem (8.5) can be written as

max
∑
i∈N

ui + vi

s.t.
∑
i∈N

(n+ 1− i)(pi + qi) = 1 (γ)

uj + vi ≤ (n+ 1− i)(pj + qn−j) ∀i, j ∈ N (x)

pi ≤ pi+1 ∀j ∈ N \ {n} (α)

qi ≤ qi+1 ∀j ∈ N \ {n} (β)

pi, qi ≥ 0 ∀i ∈ N.

Dualising this problem (the corresponding dual variables are shown to the right of

each of the above constraints) gives

min γ

s.t.
∑
i∈N

xij = 1 ∀j ∈ N (u)

∑
j∈N

xij = 1 ∀i ∈ N (v)
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nγ −
∑
i∈N

(n+ 1− i)xi1 + α1 ≥ 0

(n+ 1− j)γ −
∑
i∈N

(n+ 1− i)xij − αj + αj+1 ≥ 0 ∀j ∈ N \ {1, n}

γ −
∑
i∈N

(n+ 1− i)xin − αn ≥ 0


(p)

nγ −
∑
i∈N

(n+ 1− i)xin + β1 ≥ 0

(n+ 1− j)γ −
∑
i∈N

(n+ 1− i)xi,n+1−j − βj + βj+1 ≥ 0

∀j ∈ N \ {1, n}

γ −
∑
i∈N

(n+ 1− i)xi1 − βn ≥ 0



(q)

xij ≥ 0 ∀i, j ∈ N

αi, βi ≥ 0 ∀i ∈ N

(again, the corresponding primal variables are shown to the right of each of the

above constraints).

We now proceed to show that there is a feasible solution to this dual prob-

lem with an objective value of 2. Since a feasible solution to the dual problem

provides an upper bound to the primal problem, finding a feasible dual solution

with an objective value of 2 guarantees that the ratio UB
LB

is bounded above by 2,

and therefore proves that (UB-SMSP) does indeed provide a 2-approximation to

(RecSMSP).

Setting αi = βi = 0 for all i ∈ N , the dual problem becomes

min γ
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s.t.
∑
i∈N

xij = 1 ∀j ∈ N

∑
j∈N

xij = 1 ∀i ∈ N

(n+ 1− j)γ ≥
∑
i∈N

(n+ 1− i)xij ∀j ∈ N (∗)

(n+ 1− j)γ ≥
∑
i∈N

(n+ 1− i)xi,n+1−j ∀j ∈ N (∗∗)

xij ≥ 0 ∀i, j ∈ N.

Observe that constraint (∗∗) can be rewritten as

jγ ≥
∑
i∈N

(n+ 1− i)xij ∀j ∈ N.

Suppose that γ = 2. Then constraints (∗) and (∗∗) enforce that

2(n+ 1− j) ≥ n+ 1−
∑
i∈N

ixij ∀j ∈ N

2j ≥ n+ 1−
∑
i∈N

ixij ∀j ∈ N,

that is ∑
i∈N

ixij ≥ max{2j − n− 1, n+ 1− 2j} ∀j ∈ N (†)

By considering the above constraint, we can determine an approach for generating

a feasible dual solution with objective value γ = 2. This approach works as follows:

take the positions i = n, n − 1, . . . , 1 in decreasing order, and assign jobs j ∈ N

to them, alternating between the unassigned job with the largest index and the

unassigned job with the smallest index.

We illustrate this approach with an example for n = 6. Table 8.2 shows
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j 1 2 3 4 5 6
max{2j − n− 1, n+ 1− 2j} 5 3 1 1 3 5

Table 8.2: Right-hand side of constraint (†) for each j ∈ N when n = 6.

constraint (†) for each j ∈ N .
∑

i∈N ixij is the position in the schedule that job j

is assigned to, and hence these constraints enforce that jobs 1 and 6 are scheduled in

the final two positions, jobs 2 and 5 are scheduled in the two positions before that,

and jobs 3 and 4 are scheduled in the first two positions. Thus there are two feasible

positions for each job. Following the proposed approach for generating a feasible

solution, we get that x6,6 = 1, x5,1 = 1, x4,5 = 1, x3,2 = 1, x2,4 = 1, x1,3 = 1.

For any given instance, this approach can be used to generate a UB solution

with objective value no worse than twice the LB solution provided by (LB-SMSP).

We next consider the value of UB
LB

as a function of n and show that the 2-

approximation provided by the solution (UB-SMSP) becomes tight as n→∞.

First, consider the case in which n is even. We construct a fully-crossed instance

with pi = qi = 0 for i ≤ n/2 and pi = qi = 1 for i ≥ n/2 + 1 (which we refer to as

a fully-crossed 0-1 instance). Such an instance for n = 4 is shown in Figure 8.3a.

The value of UB is given by
∑

i∈N(n + i− 1) = (n+1)n
2

, whilst the value of LB is

given by ∑
i∈N, i≥n

2

2(n+ 1− i) =
2(n/2 + 1)n/2

2
=

(n/2 + 1)n

2
,

and hence when n is even, we have that

UB

LB
=

n+ 1

n/2 + 1
=

2n+ 2

n+ 2
≤ 2.
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Now consider the case in which n is odd. We slightly change the construction

of this instance by setting pi = qi = 0 for i ≤ (n − 1)/2 and pi = qi = 1 for

i ≥ (n+ 1)/2 + 1 and pi = 0, qi = 1 for i = (n+ 1)/2. This instance, for n = 5, is

shown in Figure 8.3b. Again, the value of UB is given by
∑

i∈N(n+i−1) = (n+1)n
2

.

However, when n is odd, the value of LB is given by

n+ 1

2
+

∑
i∈N, i≥n−1

2

2(n+ 1− i) =
n+ 1 + 2(n−1

2
+ 1)(n−1

2
)

2
=

(n+ 1)2

4
,

and therefore, when n is odd, we have that

UB

LB
=

2n(n+ 1)

(n+ 1)2
=

2n

n+ 1
≤ 2.

Thus, as n→∞, UB
LB
→ 2.

p

q

0 0 1 1

0 0 11

(a) n = 4

p

q

0 0 1

0 0 11

1

1

0

(b) n = 5

Figure 8.3: Examples showing the constructed instances for n = 4 and n = 5.

We continue this analysis by looking at the range in which the true approxi-

mation ratio lies, as a function of ∆/n. In Figure 8.4, the line in blue shows the

upper bound of 2 as stated by Theorem 8.4. The line in orange shows a lower

bound of the approximation ratio, calculated as the actual approximation ratio for

a specific instance, namely, a fully-crossed 0-1 instance with n = 100. The true
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approximation ratio is known to lie between these upper and lower bounds, where

we already know that for ∆ = 0, the ratio 2 is tight, and for ∆ = n, (UB-SMSP)

provides an optimal solution, i.e. the approximation guarantee becomes 1.

0.0 0.2 0.4 0.6 0.8 1.0

∆/n

0.0

0.5

1.0

1.5

2.0

ap
p

ro
x
.

ra
ti

o

Figure 8.4: The upper bound on the approximation ratio of (UB-SMSP), as proved

in Theorem 8.4, is shown in blue. A lower bound on the approximation ratio as

a function of ∆/n, computed using a fully-crossed 0-1 instance with n = 100 is

shown in orange. The lower bound as a function of ∆/n for fully-crossed 0-1

instances as n→∞ is shown in red.

Observe that an optimal solution to a fully-crossed 0-1 instance will always

use the available ⌊n−∆
2
⌋ swaps on the outer-most jobs. See Figure 8.5 for an

illustration of this. Knowing this, it becomes straightforward to compute the

objective function of an optimal solution to such an instance. For example, in the
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case where n−∆ is even, the optimal objective value, v∗, is given by

v∗ =
2
(

n−∆
2

+ 1
)

n−∆
2

2︸ ︷︷ ︸
outer (n−∆)/2 swaps

+

((
n−∆
2

+∆
)
+
(
n−∆
2

+ 1
))

∆

2︸ ︷︷ ︸
inner ∆ fixed jobs

=
n2 +∆2 + 2n

4
.

Therefore, when n−∆ is even, the true approximation ratio can be computed as

UB

v∗
=

2n(n+ 1)

n2 +∆2 + 2n

=
2n2 + 2n

(1 + γ2)n2 + 2n
→ 2

1 + γ2

as n→∞, where γ = ∆/n. Note that a very similar analysis arrives at the same

result for the case where n −∆ is odd. In Figure 8.4, we plot this limiting curve

in red. Looking at the plot we see that for ∆ = 0, when the first and second

solutions require no intersection, the upper and lower bounds converge as n→∞,

confirming that the 2-approximation is tight. For ∆ > 0, it remains possible that

still stronger guarantees can be found.

(UB-SMSP) is found by forcing the first and second-stage schedules to be the

same. Clearly, this approach is overly conservative, and in practice it is beaten

by solutions in which only a subset of jobs share a position across the two stages.

The following result shows that the 2-approximation guarantee still holds for such

solutions.

Lemma 8.6. Function f(M) is monotonically non-decreasing, i.e., f(M) ≤ f(M∪

{i}) for any i ∈ N \M .

Proof. The optimisation problem (RecFix) has constraints for all j ∈ M . The
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p

q

0 0

1

1 1 1

0 0

0

1 10

1

0

Figure 8.5: Optimal solution for a fully-crossed 0-1 instance where n = 7 and

∆ = 3. The ⌊n−∆
2
⌋ = 2 available swaps are applied to the outer-most jobs. This

structure is shared by the optimal solutions to all fully-crossed 0-1 instances.

problem of solving (RecFix) for M is therefore a relaxation of the problem of

solving (RecFix) for M ∪ {i}, and the claim follows.

This means that any heuristic that gives a feasible pair of schedules based on

Algorithm 8.1 is a 2-approximation as well.

Corollary 8.7. For any M ⊆ N with |M | ≥ ∆, the solution generated by Algo-

rithm 8.1 gives a 2-approximation for (RecSMSP) in polynomial time.

Corollary 8.7 suggests a natural greedy heuristic for solving (RecSMSP). This is

outlined in Algorithm 8.2. The procedure begins by setting M = ∅ and iteratively

adds to it the element i ∈ N \M with the smallest objective value f(M ∪ {i}) to

the set M , until |X ∩ Y | ≥ ∆.

Due to Corollary 8.7, this greedy heuristic is ensured to be a 2-approximation.

And due to Lemma 8.6, we also know that its objective value can be no worse

than (UB-SMSP). Each iteration of the greedy heuristic takes O(n2 log n) time

and there are O(∆) iterations, hence the heuristic runs in O(n3 log n).
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Algorithm 8.2 Greedy heurstic for (RecSMSP)
1: procedure Greedy(p, q,∆)
2: initialise M,X, Y = ∅
3: while |X ∩ Y | < ∆ do

4: Set v =∞
5: for j

′ ∈ N \M do

6: M
′ ←M ∪ {j ′}

7: v
′
, X, Y ← Eval(p, q,M

′
) ▷ Solve (RecFix) using Eval

8: if v
′
< v then

9: v ← v
′

10: j ← j
′

11: end if

12: end for

13: M ←M ∪ {j}
14: end while

15: return v, X, Y

16: end procedure

8.4 Computational experiments

In this section, we compare results from solving the exact MIP formulation of

(RecSMSP) with those of the 2-approximation provided by solving (UB-SMSP),

as well from the greedy heuristic outlined at the end of the previous section.

Before presenting these results in detail, we outline the test instances used for

these experiments and the computational hardware on which these experiments

were performed. Section 8.4.1 investigates the performance of the MIP, focussing

on its solution times and the gap to its linear relaxation. Following this, Sec-

tion 8.4.2 looks at the 2-approximation and shows that in practice it considerably

outperforms its theoretical worst-case performance. Finally, Section 8.4.3 presents

results from the greedy heuristic.

For each value of n ∈ {10, 20, 50, 100}, 100 instances have been generated by
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randomly sampling pi and qi, i ∈ N , from the set {1, 2, . . . , 100}. Experiments have

been performed on these four instance sets for values of ∆ ∈ {0, 1, 2, . . . , n}. These

problem instances, in addition to the complete results data, can be downloaded

from https://github.com/boldm1/recoverable-robust-interval-SMSP.

All the experiments have been run on 4 cores of a 2.30GHz Intel Xeon CPU,

limited to 16GB RAM. The exact model has been solved using Gurobi 9.0.1, with

a time limit of 20 minutes. The optimality gap tolerance (MIPGap) was changed

to 1× 10−6; all other parameters were set to their default values.

8.4.1 MIP

We begin by considering the performance of the MIP formulation for (RecSMSP).

Unsurprisingly, its performance depends on the size of n. However, more inter-

estingly, it also depends on the number of free assignments across the first and

second-stages, given by n−∆, and in particular whether this value is even or odd.

We first present results that show the limitations of the MIP and demonstrate this

dependence on the value of n − ∆, before we then investigate the causes of this

dependence by examining illustrative examples.

Note that since n is even for each of the instance sets we consider, even and odd

values of ∆ correspond to even and odd values of n−∆, respectively. Therefore,

for ease of presentation, throughout this section we refer to the problem in terms

of even and odd ∆, rather than in terms of even and odd n−∆.

For n = 10 and n = 20, the MIP was solved to optimality within the 20 minute

time limit for all values of ∆ for all instances. For n = 50, however, 5 instances for

∆ = 47 and 47 instances for ∆ = 49 were not solved to optimality within the time

https://github.com/boldm1/recoverable-robust-interval-SMSP
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limit. And for n = 100, the number of instances that were not solved to optimality

within the time limit for the values of ∆ are shown in the Table 8.3. Note how it

is only for certain odd values of ∆ (and therefore odd values of n − ∆) that the

MIP cannot solve all instances.

∆ 85 87 89 91 93 95 97 99

# non-opt. 2 3 9 17 43 57 83 100

Table 8.3: Number of instances with n = 100 for which the MIP could not be

solved to optimality within 20 minutes, for different values of ∆. All instances

were solved to optimality for the values of ∆ not present in the table.

Figure 8.6 shows the average time to solve the MIP for even and odd values

of ∆ as a percentage of n, for n ∈ {10, 20, 50, 100}. A log-scale has been used for

clarity. These plots show that solution times scale with n as expected. However,

for odd values of ∆ we see that solution times increase considerably for large ∆,

whereas when ∆ is even, it has little impact on solution times.

Clearly, the MIP cannot be easily solved for n ≥ 50 for certain large values

of ∆, and therefore the performance of the approximate solution approaches we

propose are of genuine interest. Before we examine their performances over the

following two sections, we investigate the marked difference in difficultly between

instances with even and odd ∆.

We first consider the tightness of the MIP formulation by looking at the average

gap between its solutions and the solutions of its linear relaxation (i.e. the average

LP gap) in Figure 8.7. Observe that the average LP gaps for instances where ∆

is even are orders of magnitudes smaller than for instances where ∆ is odd; the
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Figure 8.6: Average time to solve the MIP for even and odd values of ∆ as a

percentage of n, for n ∈ {10, 20, 50, 100}. Line becomes dotted when not all

instances were solved to optimality within the 1200s (20 minute) time limit.

largest single LP gap for an even-∆ instance and an odd-∆ instance for each of

the instance sets are given in Table 8.4.

Figure 8.8 shows the percentage of instances for which the LP gap is non-zero,

for even and odd values of ∆ as a percentage of n, for n ∈ {10, 20, 50, 100}. Looking

at this figure, we see that the proportion of instances with non-zero LP gaps is

broadly similar for each of the four instance sets over the values of ∆. Therefore,

to explain the results seen in Figure 8.7, it must be the case that the LP gaps

become smaller as n increases. Figure 8.8 also shows that for larger values of ∆,

the frequency of non-zero LP gaps increases dramatically for instances with odd

values of ∆, but not for instances with even values of ∆.

In an attempt to shed light on this distinction, we consider the example with

n = 4 jobs with binary processing times given in Figure 8.3a. Given ∆, we are

free to allow up to n − ∆ assignments to differ between the first and second-
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LP gap (%)

n even-∆ odd-∆

10 0.20 (∆ = 4) 5.66 (∆ = 9)

20 0.17 (∆ = 14) 2.89 (∆ = 19)

50 0.07 (∆ = 38) 1.77 (∆ = 49)

100 0.03 (∆ = 82) 0.89 (∆ = 99)

Table 8.4: Largest LP gap for a single even-∆ instance and odd-∆ instance for

each of the instance sets.

stage schedules. For clarity of presentation, in the following we assume that the

first-stage schedule is a fixed horizontal assignment, and make changes to the

assignments in the second-stage only.

Observe that for a given ∆, the best integral solution is found by swapping

the positions of the jobs scheduled first and last, then swapping the positions of

the jobs scheduled second and second-last, and so on, until no more swaps can

be made without exceeding the n−∆ available free assignments. When n−∆ is

even, the integral solution is able to change the assignments of exactly n−∆ jobs,

and its linear relaxation finds the same solution and gains no advantage. When

n−∆ is odd however, the integral solution is only able to change the assignments

of n−∆−1 jobs. In this case, the linear relaxation is able to make use of fractional

assignments to beat the integral solution.

For example, when ∆ = 1, the MIP swaps the positions of only two jobs (Figure

8.9a). The linear relaxation gains an advantage over the integral solution since it

can fractionally swap a further two jobs to make use of the last remaining free

assignment (Figure 8.9b). In this instance the LP gap is given by 7−6.5
6.5
≈ 7.7%.
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Figure 8.7: Average LP gap for even and odd values of ∆ as a percentage of n, for

n ∈ {10, 20, 50, 100}. Line becomes dotted when not all instances were solved to

optimality within the 20 minute time limit.

Similarly, when ∆ = 3, the integral solution cannot feasibly swap the positions

of any jobs (Figure 8.10a), whereas its linear relaxation is able to fractionally swap

the positions of the first and last jobs (Figure 8.10b). The LP gap in this case is

given by 10−8.5
8.5
≈17.6%.

Experimental results seem to suggest that the maximum LP gap that can be

achieved is 20%, which occurs for a fully-crossed instance with binary processing

times when n = 2 and ∆ = 1 and when n = 3 and ∆ = 2.

8.4.2 UB-SMSP

As the results in the previous section demonstrate, large instances of (RecSMSP)

cannot be solved within a reasonable time limit by the MIP. Therefore, accurate

heuristic approximations are valuable for solving this problem. In this section,

we look at the quality of the solutions to (UB-SMSP) in practice, to compare
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Figure 8.8: Percentage of instances for which the LP gap is non-zero, for even and

odd values of ∆ as a percentage of n, for n ∈ {10, 20, 50, 100}.

them against their theoretical worst-case performance ratio of 2. Recall that (UB-

SMSP) can be solved trivially by ordering the jobs j ∈ N by non-decreasing pj+qj

values. In our experiments, (UB-SMSP) was solved in less than 0.01 seconds for

every instance.

Figure 8.11 shows the average relative gap between the solution to (UB-SMSP)

and the solution to (RecSMSP) found by solving the MIP, plotted for values of

∆ as a percentage of n, for n ∈ {10, 20, 50, 100}. A dotted line has been used to

indicate the range of ∆ values for which the MIP was not solved to optimality

for all instances within the 20 minute time limit for the odd values of ∆ within

this range. The average gaps displayed for the odd values of ∆ in this range are

therefore estimates of the true average gap.

For all problem sizes the average gap decreases as ∆ increases, reaching 0 when

∆ = n, where (RecSMSP) and (UB-SMSP) become equivalent. For n = 10, the

largest gap for any single instance was 21.7%; for n = 20 the largest single gap was
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(a) Solution found by MIP for ∆ = 1 and ∆ = 2

and by linear relaxation for ∆ = 2. Objective

value is v = 3 + 4 = 7.

0

0

1

1

4

3

2

1

pj

1

1

0

0

4

3

2

1

qj

(b) Solution found by linear relaxation for ∆ = 1.

Objective value is v = 3 + 3.5 = 6.5.

Figure 8.9: Solutions to instance shown in Figure 8.3a, found by MIP and its linear

relaxation for ∆ = 1 and ∆ = 2.
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(a) Solution found by MIP for ∆ = 3 and ∆ = 4

and by linear relaxation for ∆ = 4. Objective

value is v = 3 + 7 = 10.
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(b) Solution found by linear relaxation for ∆ = 3.

Objective value is v = 3 + 5.5 = 8.5.

Figure 8.10: Solutions to instance shown in Figure 8.3a, found by MIP and its

linear relaxation for ∆ = 3 and ∆ = 4.
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18.2%, for n = 50 it was 23.0%, and for n = 100 it was 21.1%. For each value of

n, this largest single gap was attained when ∆ = 0. Clearly, the worst-case gaps

we see in practice are considerably smaller than the theoretical worst-case gap of

100%.

Figure 8.11: Average gap between solution to (UB-SMSP) and the solution to

(RecSMSP) for values of ∆ as a percentage of n, for n ∈ {10, 20, 50, 100}. Line

becomes dotted for the range of ∆ values for which not all instances were solved

to optimality by the MIP within its 20 minute time limit for the odd values of ∆

within this range.

8.4.3 Greedy heuristic

Finally, we examine the performance of greedy heuristic presented in Algorithm

8.2 for solving (RecSMSP). Recall that, as a result of Corollary 8.7, the objective

value of solutions found by the greedy heuristic can be no worse than the solutions

to (UB-SMSP), and as these results show, in practice they are considerably better
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than this.

We first look at the average run time of the greedy heuristic, shown in Figure

8.12 for values of ∆ as a percentage of n, for each of the four instance sets. As

expected, we see that the average run time grows with n and with ∆. The longest

run time of any single instance was 4.72 seconds, which occurred for an instance

with n = 100, ∆ = 95.

Figure 8.12: Average greedy heuristic run time for values of ∆ as a percentage of

n, for n ∈ {10, 20, 50, 100}.

Figure 8.13 shows the average relative gap between the solution found by the

greedy heuristic and the solution to the MIP for values of ∆ as a percentage of n,

for n ∈ {10, 20, 50, 100}. A dotted line connects the data points at each value of

∆, whilst a solid line connects the data points corresponding to odd values of ∆

only. The figure shows that the accuracy of the greedy heuristic varies depending

on whether ∆ is odd or even, demonstrated by the characteristic zig-zagging of

the dotted line.
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Even as the average gap between the greedy heuristic and the MIP increases

with ∆, this gap is bounded above by the average gap between the solutions to

(UB-SMSP) and the MIP, which sharply decreases with ∆ (see Figure 8.11). The

greedy heuristic finds solutions that are an order of magnitude closer to optimal

than the solutions to (UB-SMSP). For n = 10 the maximum gap between the

solution found by the greedy heuristic and the MIP solution for a single instance

is 0.55%, for n = 20 it is 0.59%, for n = 50 it is 0.33%, and for n = 100 it is 0.18%.

Hence, solutions found by the greedy heuristic are nearly optimal.

Figure 8.13: Average gap between greedy and MIP solution for values of ∆ as a

percentage of n, for n ∈ {10, 20, 50, 100}, plotted as a dotted line. Odd-∆ data

points are connected with a solid line.

8.5 Conclusions

This chapter has presented a theoretical and computational investigation of the

recoverable robust single machine scheduling problem under interval uncertainty
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with the objective of minimising the sum of completion times, (RecSMSP). Firstly,

a number of positive complexity results have been produced for key subproblems.

Specifically, we present a polynomial time sorting algorithm in Algorithm 8.1 which

can optimally solve the case where a subset of jobs that must share a first and

second-stage assignment is given. Using this result, we show that the special cases

of (RecSMSP) with a constant value of ∆ and with a constant number of possible

processing times are solvable in polynomial time. We then introduce the prob-

lem (UB-SMSP) in which the first and second-stage assignments are forced to be

identical, and prove that the solution to this problem provides a 2-approximation

of (RecSMSP). This guarantee extends to the solutions found by a simple and

fast greedy heuristic. A set of extensive computational experiments investigate

the limitations of an exact mixed-integer programming approach to solving the

problem, show that the solutions of (UB-SMSP) significantly outperform their

worst-case guarantee in practice, and demonstrate the strength of the proposed

greedy heuristic.

Note that the computational complexity of (RecSMSP) has yet to be char-

acterised and remains unknown. In addition to investigating this, a promising

direction for future research on this problem would be to consider the impact of

alternative uncertainty sets on its complexity. Finally, another possibility for fu-

ture research would be to look at this recoverable robust model for single machine

scheduling problems with objective criteria different to the sum of completion times

that we consider here.



Chapter 9

Conclusions

This thesis has focused on the development and analysis of new models and solution

approaches for a range of different deterministic and uncertain scheduling prob-

lems. The main content in chapters 4-8 can be broadly grouped by the three cate-

gories of problem that they consider, relating to deterministic project scheduling,

two-stage robust project scheduling, and two-stage robust single machine schedul-

ing, respectively. In this concluding chapter, the contributions made in this thesis

to each of these domains are reiterated and some of the most promising directions

for future research that would build upon this work are highlighted.

We first summarise the contributions of Chapter 4, in which a new deterministic

resource-constrained project scheduling model is proposed. This chapter, for the

first time, combines generalised precedence constraints and flexible resource alloca-

tion into a single model, referred to as the generalised flexible resource-constrained

project scheduling problem. The creation of this new model is directly motivated

by the need to schedule the decommissioning of the Sellafield nuclear site in North

West England. The complex inter-dependencies between the site facilities require

the consideration of generalised precedence constraints, whilst the very long du-

209
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rations of some of the decommissioning activities prompts the inclusion of flexible

resource allocation. As well as presenting a MILP formulation to solve this model,

a genetic algorithm built upon a non-greedy flexible schedule generation scheme

with an unscheduling step is also proposed. A series of computational experi-

ments assess the contributions of the different components of the proposed genetic

algorithm, and show that it performs competitively with the MILP on small test

instances and outperforms it on larger instances. Chapter 4 concludes by mod-

elling and solving a version of the Sellafield decommissioning scheduling problem,

highlighting the relevance of the developed model and further demonstrating the

strength of the proposed metaheuristic algorithm.

Given the severe complexity of this problem, the development of further im-

provements to the metaheuristic approaches proposed in Chapter 4 would be of

significant value. Such improvements would likely employ a hybrid metaheuristic

strategy that might, for example, include an additional local search heuristic, as

has been repeatedly used to great effect for solving more classical project schedul-

ing problems.

Regarding two-stage robust project scheduling, Chapters 5 and 6 develop and

implement the first compact MILP formulations for the two-stage robust RCPSP

and MRCPSP under uncertain activity durations. The specific model that is con-

sidered in these chapters assumes that activity durations lie in a budgeted uncer-

tainty set and follows a two-stage decision process in which a decision maker must

resolve resource conflicts subject to the problem uncertainty, but can determine

activity start times after the uncertain activity durations become known. Chap-

ter 5 applies this model to the RCPSP and compares the results of solving this
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model against the current state-of-the-art decomposition-based method proposed

by Bruni et al. (2018). Chapter 6 extends the formulation to consider multiple

activity processing modes and compares its performance against the Benders’-style

approach of Balouka and Cohen (2021). In both cases, results show that the newly

developed compact robust formulation can be implemented and solved straight-

forwardly using off-the-shelf optimisation software considerably faster than the

previous state-of-the-art decomposition-based solution approaches, whilst signifi-

cantly extending the range of instances that can be solved to optimality.

A number of possibilities to build on the research in Chapters 5 and 6 come

to mind. Firstly, it would be of great interest to apply this approach in a real-

world setting and demonstrate the practical importance of this two-stage robust

scheduling approach. However, despite the dominance of the new compact for-

mulations, they can only be solved for moderately-sized instances, limiting their

application to real-world problems. As it stands, no heuristic approach of any kind

has been proposed to solve the two-stage robust RCPSP or MRCPSP. Therefore,

research into the development of heuristic approaches for solving these problems

may prove very fruitful, and importantly would enable their solution on a larger

and more realistic scale. Furthermore, the two-stage robust RCPSP and MRCPSP

problems have only ever been considered in the context of continuous budgeted

uncertainty. It would therefore be of significant interest to consider some alter-

native models of uncertainty, such as ellipsoidal, general polyhedral, or discrete

scenario uncertainty. However, given that the reformulation derived in Chapter 5

relies on the linearity of the adversarial subproblem resulting from the budgeted

uncertainty set, inevitably this would require the development of an alternative



212 9. Conclusions

solution approach to the one proposed in this thesis.

Finally, Chapter 7 and 8 extend the recoverable robust optimisation framework

to single machine scheduling for the first time. In the problems considered in

both chapters, a first-stage schedule must be determined subject to uncertain job

processing times, but following the realisation of the actual data, the schedule can

be amended in some limited fashion. These two chapters differ in their choice of

uncertainty set, as well as in the limitations placed on the recovery action.

Chapter 7 considers the case of general polyhedral uncertainty and allows a

limited number of disjoint pairs of activities to be swapped to obtain a second-

stage schedule. This problem is analysed in detail leading to a general result for

matching problems with a specific cost structure, and three compact MILP formu-

lations. These formulations are compared computationally for the case of continu-

ous budgeted uncertainty and the superior strength of one of them is demonstrated.

Regarding future research on this problem, the most pressing extension would be

the relaxation of the recourse action to allow for the interchanging of three or

more jobs. However, much of the analysis in this chapter relies on the specific

choice of recourse action, and so an approach to the analysis of this problem is not

immediately clear.

One such attempt is made in Chapter 8, however in this case the complexity

of the problem is reduced by considering interval uncertainty. The more general

recovery action considered in this chapter simply requires a certain number of

jobs to share the same position in the first and second-stage schedule. Chapter

8 provides positive complexity results for some important special cases for this

problem, and a 2-approximation is presented for the full problem. Computational
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experiments demonstrate the strong performance of a proposed polynomial-time

greedy heuristic. However, it is important to highlight that the computational

complexity of the full problem remains unknown. Hence an obvious avenue for

future work would be the characterisation of the complexity of this problem, and

others similar to it. Furthermore, both of the robust single machine scheduling

problems that have been analysed in Chapters 7 and 8 consider the total sum of

completion times objective function. In the context of single-stage robust opti-

misation, numerous other objective functions have received significant attention,

so it would seem quite natural to extend the analysis of these problems to the

two-stage recoverable robust setting. Such objective functions include weighted

sum of completion times, number of late jobs and maximum tardiness. Simply

put, the huge range of possibilities for combining alternative objective functions,

recovery actions and uncertainty sets should serve to produce an abundance of

interesting recoverable robust single machine scheduling problems, and two-stage

robust scheduling problems more generally, for a long time come.
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GFRCPSP Pre-processing Procedure

The following pre-processing procedure was applied to each instance before it was

solved by any of the solution methods. This procedure makes a basic check regard-

ing the feasibility of the instance with respect to the project precedence constraints,

calculates the earliest and latest start and finish times of each activity i ∈ N , as

well as an upper bound on the minimum project makespan, and records all the

cycles in the project precedence network. The calculation of these parameters sig-

nificantly reduces the number of variables required by the MIP, as well as reduces

the number of iterations required by the FSGS in Algorithm 3.1.

The basis of this pre-processing procedure is the propagation of the individual

precedence constraints across the project network to find the tightest constraint

between each pair of activities. This information is contained in a distance matrix

D = (dkl) ∈ R|K|×|K|, where K = {0, 1, . . . , 2n, 2n+1} is the set of start and finish

events of the project activities, and where dkl is the largest minimum time-lag

between the events k and l. Matrix D is initialised to contain the information in

the project network by setting dkk = 0 for each k ∈ K, setting dkl = akl if there is

a minimum time-lag of length akl from event k to event l, and setting dkl = −M

214
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otherwise, where M is some number larger than Tmax. Having initialised matrix

D in this way, the Floyd-Warshall algorithm is applied to compute the tightest

minimum time-lag between each pair of events. This runs in O(n3) time.

Having applied the Floyd-Warshall algorithm to matrix D, it can be immedi-

ately determined whether or not the project is feasible with respect to the project

precedence constraints by looking at the diagonal elements of D. If any diagonal

element is positive, the project contains a cycle of positive length and is therefore

infeasible.

The earliest and latest start and finish times of each activity i ∈ N can easily

be obtained from matrix D since ESi = d0,Si
, LSi = −dSi,0, EFi = d0,Fi

, and

LFi = −dFi,0, where Si and Fi are the indices of matrix D that represent the start

and finish events of activity i, respectively.

Following the computation of the distance matrix D, an upper bound on the

project makespan is calculated as:

Tmax =
∑
i∈N

max

{
di, max

(i,j,a1)∈ESS

a1, max
(i,j,a2)∈ESF

(
a2 − dj

)
,

max
(i,j,a3)∈EFS

(
di + a3

)
, max
(i,j,a4)∈EFF

(
di + a4 − dj

)}
.

In the final step of the pre-processing procedure, the cycles in the project

network are found and recorded using a depth-first search approach in O(n+ |E|)

time, where E = ESS ∪ ESF ∪ EFS ∪ EFF .
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Supplementary Material for Chapter 5

B.1 Non-integrality of the adversarial sub-problem

Here, we show that the constraint matrix of model (5.13)-(5.22) is not totally

unimodular, contrary to the claim made in Bruni et al. (2017). In the following,

we define E := E ∪ X. The constraint matrix of (5.13)-(5.22) can be written in

matrix notation as:

C =

α w δ



A 0 0 Group 1 (5.14)-(5.16)

0 IE −B Group 2 (5.17)

−IE IE 0 Group 3 (5.18)

0 0 eTV Group 4 (5.19)

0 0 IV Group 5 (5.20)

where A is a |V | × |E| arc-node incidence matrix, B is a |E| × |V | matrix where

B(i,j),i = 1 for each (i, j) ∈ E , and 0 otherwise, IV and IE are identity matrices of

216
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dimension |V | and |E| respectively, and eV is a |V | × 1 vector of 1’s. The rows of

this matrix have been grouped according to the constraints that they represent,

and similarly, the columns have been grouped by the variables that they represent.

Ghouila-Houri (1962) showed that a matrix A is totally unimodular if and only

if for every subset of rows R, there exists a partition of R into two disjoint subsets

R1 and R2 such that

∑
i∈R1

aij −
∑
i∈R2

aij ∈ {−1, 0, 1}, ∀j = 1, . . . , n.

Therefore, finding a subset of rows of matrix C for which this condition cannot

hold will prove that C is not totally unimodular.

Consider the constraint matrix of the example shown in Figure 5.3:

α δw

Group 1

Group 2

Group 3

Group 4 + Group 5

Take R to be the subset of rows consisting of the first row of Group 1, and first

two rows of Groups 2 and 3. We will refer to these rows as R1, . . . , R5. To ensure

that the sum of column C9 is in {−1, 0, 1}, R2 and R3 must be assigned opposite

signs. R4 and R5 must have opposite signs to R2 and R3, respectively to ensure

that the sum of columns C5 and C6 are in {−1, 0, 1}. Then, whatever the choice
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of sign for R1, the sum of column C1 and the sum of column C2 cannot both be

in {−1, 0, 1}. Hence, there exists a subset of rows for which the Ghouila-Houri

characterisation of total unimodularity does not hold, thus proving that matrix

C is not totally unimodular, and that model (5.13)-(5.22) is not equivalent to its

linear relaxation.

B.2 Example of the warm-start procedure

As an example, we apply the warm-start procedure from Section 5.4.2 to the

project given in Figure 5.1. We set Tmax = 20 as an arbitrary upper bound on

the minimum makespan of the corresponding deterministic project. The earliest-

start-times ESi, i ∈ V are calculated via a forward-pass of the project precedence

network, whilst the latest-finish-times LFi, i ∈ V are calculated relative to Tmax

via a backward-pass of the project precedence network. These values are shown

in Figure B.1.

The LFT priority-rule heuristic orders the project activities according to in-

creasing latest-finish-times to get σ = (0, 2, 1, 4, 5, 3, 6, 7, 8), and then obtains a

feasible schedule by scheduling these activities one-at-a-time in the order that

they appear in σ using the serial schedule generation scheme (Kolisch, 1996b).

This results in the following feasible schedule: S0 = 0, S1 = 0, S2 = 0, S3 = 6,

S4 = 3, S5 = 3, S6 = 11, S7 = 12, S8 = 16.

From this schedule, the set of feasible y-variables obtained is shown in Table

B.1. Formulation (5.34)-(5.44) is solved with y-variables fixed to these values to

obtain feasible values for the S-variables and f -variables. The resulting solution

is the feasible warm-start solution we use.
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ES2=0
LF2=12
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Figure B.1: Earliest start times and latest finish times for the deterministic project

corresponding to the example project shown in Figure 5.1. Latest start times have

been calculated relative to an arbitrary upper bound on the minimum project

makespan given by Tmax = 20.

j
0 1 2 3 4 5 6 7 8

i

0 1 1 1 1 1 1 1 1 1
1 0 0 0 1 1 1 1 1 1
2 0 0 0 1 1 1 1 1 1
3 0 0 0 0 0 0 1 1 1
4 0 0 0 0 0 0 1 1 1
5 0 0 0 1 0 0 1 1 1
6 0 0 0 0 0 0 0 1 1
7 0 0 0 0 0 0 0 0 1
8 0 0 0 0 0 0 0 0 1

Table B.1: The set of feasible y-variables corresponding to the solution found by

the LFT priority-rule heuristic for the example project in Figure B.1. The ij-th

element of this table gives the value of variable yij.
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C.1 Omitted proofs

C.1.1 Proof of Theorem 7.6

Let an instance I of problem (7.41)-(7.43) be given, and define

P = {y ∈ Rn×n
+ : (7.36)− (7.39)}.

To solve I, we construct a graph with a single node for each job i ∈ N , where

an edge between nodes i and j indicates that jobs i and j swap their positions

from the first-stage schedule. Since edges correspond to unique swaps, the set of

edges in this graph is given by E = {(i, j) : i, j ∈ N , j > i}. The weight of an

edge (i, j) in this graph is equal to the reduction in objective cost from making

the corresponding swap, i.e. aibi+ajbj−aibj−ajbi = (ai−aj)(bi− bj). We aim to

choose up to ∆ edges from this graph to maximise the reduction in objective cost.

That is, given I, we construct an instance J of the following cardinality-constrained

220
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matching problem:

min
∑
i∈N

aibi −
∑

(i,j)∈E

(ai − aj)(bi − bj)zij (C.1)

s.t.
∑

(i,j)∈E

zij +
∑

(j,i)∈E

zij ≤ 1 ∀i ∈ N (C.2)

∑
(i,j)∈E

zij ≤ ∆ (C.3)

zij ≥ 0 ∀(i, j) ∈ E . (C.4)

As stated in Corollary 7.4, this problem has an integral optimal solution. Hence,

letting P ′ = {z ∈ R|E|
+ : (C.2) − (C.4)}, we construct mappings ϕ : P → P

′ and

ϕ−1 : P
′ → P which preserve objective value and integrality, showing problems I

and J are indeed equivalent. To this end, we define ϕ(y) = z by zij = yij for all

(i, j) ∈ E . Observe that

objI(y) =
∑
i∈N

∑
j∈N

aibjyij

=
∑
i∈N

aibiyii +
∑
i∈N

∑
j∈N :j ̸=i

aibjyij

=
∑
i∈N

aibiyii +
∑
i∈N

∑
j∈N :j>i

(aibj + ajbi)yij

=
∑
i∈N

aibi

(
1−

∑
j∈N :j ̸=i

yij

)
+
∑
i∈N

∑
j∈N :j>i

(aibj + ajbi)yij

=
∑
i∈N

aibi −
∑
i∈N

∑
j∈N :j ̸=i

aibiyij +
∑
i∈N

∑
j∈N :j>i

(aibj + ajbi)yij

=
∑
i∈N

aibi −
∑
i∈N

∑
j∈N :j>i

(aibi + ajbj)yij +
∑
i∈N

∑
j∈N :j>i

(aibj + ajbi)yij

=
∑
i∈N

aibi −
∑
i∈N

∑
j∈N :j>i

(aibi + ajbj − aibj − ajbi)yij
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=
∑
i∈N

aibi −
∑

(i,j)∈E

(ai − aj)(bi − bj)zij

= objJ(z).

Conversely, we define ϕ−1(z) = y with yij = yji = zij for each (i, j) ∈ E , and

yii = (1−∑j∈N :j>i zij)(1−
∑

j∈N :j<i zji) for each i ∈ N . Then

objJ(z) =
∑
i∈N

aibi −
∑

(i,j)∈E

(ai − aj)(bi − bj)zij

=
∑
i∈N

aibi −
∑
i∈N

∑
j∈N :j>i

(aibi + ajbj)zij +
∑
i∈N

∑
j∈N :j>i

(aibj + ajbi)zij

=
∑
i∈N

aibi −
∑
i∈N

aibi
∑

j∈N :j>i

zij −
∑
i∈N

aibi
∑

j∈N :j<i

zji

+
∑
i∈N

aibi
∑

j∈N :j>i

zij
∑

j∈N :j<i

zji︸ ︷︷ ︸
= 0

+
∑
i∈N

∑
j∈N :j>i

(aibj + ajbi)zij

=
∑
i∈N

aibi

(
1−

∑
j∈N :j>i

zij

)(
1−

∑
j∈N :j<i

zji

)
+
∑
i∈N

∑
j∈N :j>i

(aibj + ajbi)zij

=
∑
i∈N

aibiyii +
∑
i∈N

∑
j∈N :j>i

aibjyij +
∑
i∈N

∑
j∈N :j>i

ajbiyji

=
∑
i∈N

aibiyii +
∑
i∈N

∑
j∈N :j ̸=i

aibjyij

=
∑
i∈N

aibjyij

= objI(y).

Therefore miny∈P objI(y) = minz∈P ′ objJ(z). Since problem (7.24)-(7.27) has an

optimal integral solution, there must also be an optimal integral solution to I via

the mapping ϕ−1, proving the claim.
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C.1.2 Proof of Theorem 7.8

To prove this, it will suffice to show that P (Fm) ⊊ P (Fa), where P (Fm) and

P (Fa) denote the sets of feasible solutions to the linear relaxations of the non-

linear matching-based and assignment-based formulations respectively, i.e. that

for each (x, z, q) ∈ P (Fm), there exists a y such that (x, y, q) ∈ P (Fa). Note

that the same vector q is used in both formulations, which results in the objective

values being the same. To this end, let z be part of a feasible solution to the

matching formulation, and define the transformation ϕ(z) = y by yij = yji = zij

for (i, j) ∈ E = {(i, j) ∈ N ×N : i < j} and yii = 1−∑j∈N :j>i zij −
∑

j∈N :j<i zji

for i ∈ N .

Firstly, observe that the assignment constraints (7.45) and (7.46) are satisfied

by this definition of y. For each j ∈ N we have that

∑
i∈N

yij =
∑

i∈N :i<j

yij +
∑

i∈N :i>j

yji + yii

=
∑

i∈N :i<j

zij +
∑

i∈N :i>j

zji + 1−
∑

i∈N :i<j

zij −
∑

i∈N :i>j

zji = 1.

The same can be shown for the ‘incoming’ assignment constraints for each i ∈ N .

Now observe that constraint (7.31) states that

∑
i∈N

∑
j∈N :j>i

zij ≤ ∆,

or equivalently ∑
i∈N

∑
j∈N :j>i

yij ≤ ∆.
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Since, yij = yji for all i, j ∈ N , we have that

∑
i∈N

( ∑
j∈N :j>i

yij +
∑

j∈N :j<i

yij

)
≤ 2∆,

and therefore as a consequence of the assignment constraints, which imply

∑
i∈N

∑
j∈N

yij =
∑
i∈N

( ∑
j∈N :j>i

yij +
∑

j∈N :j<i

yij + yii

)
= n,

we have that

∑
i∈N

yii = n−
∑
i∈N

( ∑
j∈N :j>i

yij +
∑

j∈N :j<i

yij

)
≥ n− 2∆.

This is exactly constraint (7.47) from the assignment-based formulation.

Finally, consider constraints (7.29):

∑
m∈M

amiqm+
∑

j∈N :j>i

(∑
ℓ∈N

ℓ · xjℓ −
∑
ℓ∈N

ℓ · xiℓ

)
zij

−
∑

j∈N :j<i

(∑
ℓ∈N

ℓ · xiℓ −
∑
ℓ∈N

ℓ · xjℓ

)
zji ≥ (n+ 1−

∑
ℓ∈N

ℓ · xiℓ) ∀i ∈ N .

These can be rewritten as

∑
m∈M

amiqm ≥ (n+ 1−
∑
ℓ∈N

ℓ · xiℓ) +
∑

j∈N :j<i

zji
∑
ℓ∈N

ℓ · xiℓ +
∑

j∈N :j>i

zij
∑
ℓ∈N

ℓ · xiℓ

−
∑

j∈N :j<i

zji
∑
ℓ∈N

ℓ · xjℓ −
∑

j∈N :j>i

zij
∑
ℓ∈N

ℓ · xjℓ

= (n+ 1−
∑
ℓ∈N

ℓ · xiℓ) +
∑

j∈N :j<i

yij
∑
ℓ∈N

ℓ · xiℓ +
∑

j∈N :j>i

yij
∑
ℓ∈N

ℓ · xiℓ

−
∑

j∈N :j<i

yij
∑
ℓ∈N

ℓ · xjℓ −
∑

j∈N :j>i

yij
∑
ℓ∈N

ℓ · xjℓ
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= (n+ 1−
∑
ℓ∈N

ℓ · xiℓ) +
∑

j∈N :j ̸=i

yij
∑
ℓ∈N

ℓ · xiℓ −
∑

j∈N :j ̸=i

yij
∑
ℓ∈N

ℓ · xjℓ

= n+ 1−
(
1−

∑
j∈N :j ̸=i

yij

)∑
ℓ∈N

ℓ · xiℓ −
∑

j∈N :j ̸=i

yij
∑
ℓ∈N

ℓ · xjℓ

= n+ 1− yii
∑
ℓ∈N

ℓ · xiℓ −
∑

j∈N :j ̸=i

yij
∑
ℓ∈N

ℓ · xjℓ

= n+ 1−
∑
j∈N

yij
∑
ℓ∈N

ℓ · xjℓ

= (n+ 1)
∑
j∈N

yij −
∑
j∈N

yij
∑
ℓ∈N

ℓ · xjℓ

=
∑
j∈N

(
n+ 1−

∑
ℓ∈N

ℓ · xjℓ

)
yij,

for each i ∈ N , which are constraints (7.49) from the assignment formulation.

Hence, every feasible solution to the non-linear matching-based formulation

has a corresponding feasible solution for the non-linear assignment-based formu-

lation, i.e. P (Fm) ⊆ P (Fa). The examples used in the proof of Theorem 7.7

show that there exist instances for which the LP bound of the matching formula-

tion is strictly larger than that of the assignment formulation, demonstrating that

P (Fm) ⊂ P (Fa).

C.2 Complete formulations

C.2.1 General model

The complete linear compact formulation for the general recoverable robust model

presented in Section 7.3 is as follows:

min
∑
m∈M

bmqm (C.5)
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s.t.
∑
k∈K

µk = 1 (C.6)

∑
m∈M

amiqm ≥
∑
k∈K

(∑
j∈N

(n+ 1− j)
∑
i′∈N

hk
ii′j

)
∀i ∈ N (C.7)

∑
i′∈N

zkii′ = 1 ∀i ∈ N , k ∈ K (C.8)

∑
i∈N

zkii′ = 1 ∀i′ ∈ N , k ∈ K (C.9)

zkii′ = zki′i ∀i, i′ ∈ N , k ∈ K (C.10)∑
i∈N

zkii ≥ n− 2∆ ∀k ∈ K (C.11)

∑
j∈N

xij = 1 ∀i ∈ N (C.12)

∑
i∈N

xij = 1 ∀j ∈ N (C.13)

wk
ii′j ≤ zkii′ ∀i, i′, j ∈ N , k ∈ K (C.14)

wk
ii′j ≤ xi′j ∀i, i′, j ∈ N , k ∈ K (C.15)

wk
ii′j ≥ zkii′ + xi′j − 1 ∀i, i′, j ∈ N , k ∈ K (C.16)

hk
ii′j ≤ wk

ii′j ∀i, i′, j ∈ N , k ∈ K (C.17)

hk
ii′j ≤ µk ∀i, i′, j ∈ N , k ∈ K (C.18)

hk
ii′j ≥ µk + wk

ii′j − 1 ∀i, i′, j ∈ N , k ∈ K (C.19)

wk
ii′j ∈ {0, 1} ∀i, i′, j ∈ N , k ∈ K (C.20)

hk
ii′j ≥ 0 ∀i, i′, j ∈ N , k ∈ K (C.21)

µk ≥ 0 ∀k ∈ K (C.22)

qm ≥ 0 ∀m ∈M (C.23)

zkii′ ∈ {0, 1} ∀i, i′ ∈ N , k ∈ K (C.24)

xij ∈ {0, 1} ∀i, j ∈ N . (C.25)



Appendix C. Supplementary Material for Chapter 7 227

C.2.2 Matching-based model

The fully-linearised formulation of the matching-based model presented in Section

7.4.1 is as follows:

min
x,z,u,v, q

∑
m∈M

bmqm (C.26)

s.t.
∑

(i,j)∈E

zij +
∑

(j,i)∈E

zji ≤ 1 ∀i ∈ N (C.27)

∑
(i,j)∈E

zij ≤ ∆ (C.28)

∑
m∈M

amiqm +
∑

(i,j)∈E

(∑
ℓ∈N

ℓ · vijℓ −
∑
ℓ∈N

ℓ · uijℓ

)

−
∑

(j,i)∈E

(∑
ℓ∈N

ℓ · vjiℓ −
∑
ℓ∈N

ℓ · ujiℓ

)

≥ (n+ 1−
∑
ℓ∈N

ℓ · xiℓ) ∀i ∈ N (C.29)

∑
i∈N

xiℓ = 1 ∀ℓ ∈ N (C.30)

∑
ℓ∈N

xiℓ = 1 ∀i ∈ N (C.31)

uijℓ ≤ xiℓ ∀(i, j) ∈ E , ℓ ∈ N (C.32)

uijℓ ≤ zij ∀(i, j) ∈ E , ℓ ∈ N (C.33)

uijℓ ≥ zij + xiℓ − 1 ∀(i, j) ∈ E , ℓ ∈ N (C.34)

vijℓ ≤ xjℓ ∀(i, j) ∈ E , ℓ ∈ N (C.35)

vijℓ ≤ zij ∀(i, j) ∈ E , ℓ ∈ N (C.36)

vijℓ ≥ zij + xjℓ − 1 ∀(i, j) ∈ E , ℓ ∈ N (C.37)

uijℓ ≥ 0 ∀(i, j) ∈ E , ℓ ∈ N (C.38)

vijℓ ≥ 0 ∀(i, j) ∈ E , ℓ ∈ N (C.39)
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qm ≥ 0 ∀m ∈M (C.40)

zij ≥ 0 ∀(i, j) ∈ E (C.41)

xiℓ ∈ {0, 1} ∀i, ℓ ∈ N . (C.42)

C.2.3 Assignment-based model

The fully-linearised formulation of the assignment-based model derived in Section

7.4.2 is as follows:

min
x,y,w, q

∑
m∈M

bmqm (C.43)

s.t.
∑
i∈N

yij = 1 ∀j ∈ N (C.44)

∑
j∈N

yij = 1 ∀i ∈ N (C.45)

∑
i∈N

yii ≥ n− 2∆ (C.46)

yij = yji ∀i, j ∈ N (C.47)∑
m∈M

amiqm ≥
∑
j∈N

(
(n+ 1)yij −

∑
ℓ∈N

ℓ · wijℓ

)
∀i ∈ N (C.48)

∑
i∈N

xiℓ = 1 ∀ℓ ∈ N (C.49)

∑
ℓ∈N

xiℓ = 1 ∀i ∈ N (C.50)

wijℓ ≤ xjℓ ∀i, j, ℓ ∈ N (C.51)

wijℓ ≤ yij ∀i, j, ℓ ∈ N (C.52)

wijℓ ≥ xjℓ + yij − 1 ∀i, j, ℓ ∈ N (C.53)

wijℓ ≥ 0 ∀i, j, ℓ ∈ N (C.54)
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qm ≥ 0 ∀m ∈M (C.55)

yij ≥ 0 ∀i, j ∈ N (C.56)

xiℓ ∈ {0, 1} ∀i, ℓ ∈ N . (C.57)
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