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Abstract

We study the strange nature of low-dimensional quantum systems in the presence of dis-

order, with a particular focus on a broad class of closed quantum system that fails to equi-

librate under its own dynamics; so-called many-body localised systems. These systems

comprise particles that are subject to disorder—usually introduced via an inhomogeneous

magnetic field—which localise in real space as disorder passes a critical threshold. The

transition into this localised regime is characterised by the spontaneous emergence of an

extensive set of local conserved quantities, leading to the notion of emergent integrability.

It is precisely the nature of these conserved quantities that we tackle first. The emer-

gence of these conserved quantities is mathematically undeniable; however, there still lies

the question of what form these conserved quantities take, and moreover, how should they

be constructed? In the literature, attempts to construct conserved quantities via perturb-

ative methods are common; and rightfully so, as it is natural to attempt to extend the

notion of single-particle Anderson localisation—which has been analytically solved—to

the many-body regime. This involves “dressing” the single-particle operators of the non-

interacting case with extra terms, thus creating a complete single-quasiparticle basis of

the interacting system. Despite the convenience, however, such perturbative constructions

depend upon assumptions that are not necessarily guaranteed. We attack these assump-

tions directly, and show—both analytically and numerically—that conserved quantities

are distinctly nonperturbative in a paradigmatic model of many-body localisation.

Next, we consider the effect of global symmetries on the nature of many-body loc-

alisation; in particular, chiral symmetry. By definition, chiral symmetry produces a

eigenspectrum that is symmetrical about zero, thus “pairing” each eigenstate with an-

other of mirrored eigenenergy; however, that is only true if there exists an even number

of eigenstates—what of an odd number? It is this question that motivates our use of

spin-1 particles, as their odd number of spin-degrees of freedom produce a many-body
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Abstract 5

Hilbert space that is, by necessity, odd-dimensioned. The joint constraints of chiral sym-

metry and an odd number of eigenstates produce at least one state that is pinned to zero

eigenenergy—a zero mode robust to all parameter variation. We explore the phenomeno-

logy of this zero mode in the context of many-body localisation, and find that it possesses

fragmented correlations that clearly distinguish it from nonzero modes that localise in a

more typical fashion.

Finally, we conclude this work with an initial study into the nature of entanglement

transitions in general, via the consideration of new, more-recent models. A well-known

consequence of the emergent integrability central to many-body localised systems is a stark

shift in the entanglement of eigenstates. Whereas, in the ergodic regime, entanglement

spreads ballistically and scales extensively with the volume of the system—a so-called

volume law—the localised regime is characterised by entanglement that spreads logar-

ithmically, with a subextensive area-law scaling. This area-law scaling is not unique to

many-body localised systems, as we also see it emerge in quantum circuit models with

“brick-layer” structure. We compare these two different types of entanglement transition

directly using entropy-like quantities, and attempt to map their behaviour onto random-

matrix models (that are more easily understood from an analytical standpoint).
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Introduction

Many-body localisation is a curious phenomenon that occurs in a broad class of closed

many-body quantum systems. These systems start failing to equilibrate under their own

dynamics as a consequence of increasing disorder past a threshold point [2–7]. It is an

extension of Anderson localisation [8] into interacting systems, and thus shares many of

its unique properties—properties such as zero direct-current conductivity, a discrete local

eigenspectrum [6,9–11], and eigenstates with a so-called area-law entanglement [5, 6]. All

of these properties can be thought of as specific instances of a general phenomenon: local-

ised systems exhibit some memory of their initial conditions, which are preserved in local

observables at long—theoretically infinite—times. So what are the key differences between

the noninteracting and interacting case? Whereas the noninteracting case trivially has no

spreading of entanglement, alongside zero dephasing and dissipation, the introduction of

interactions produces, instead, a logarithmic spreading of entanglement and finite dephas-

ing (zero dissipation remains). Overall, both forms of localisation share many similarities,

and starkly differ from the, more common, thermal regime with its definitive erasure of

initial conditions [2, 4, 12].

Anderson localisation has been well-studied since the mid-20th century; however, re-

search on many-body localisation has had a comparatively recent debut. This is a direct

result of the vast, exponential increase in computational power we have been privy to in the

last few decades, which was necessary to match the exponentially increasing complexity

of many-body quantum systems when interactions become finite. These unique properties

ultimately stem from a violation of the eigenstate thermalisation hypothesis [13, 14]—a

quantum analogue to the thermalisation we see in the majority of classical interacting

systems. This violation implies a lack of thermalisation, which means that these systems

fail to equilibrate under their own dynamics, even in the limit of infinite temperature.

It is perhaps of little surprise, then, that this nonequilibrity would render null the naive
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Introduction 11

assumptions that one would usually be tempted to make.

In particular, we should note a theoretically rich consequence of the many-body loc-

alisation transition—namely, the spontaneous emergence of a complete set of extensive,

conserved quantities [15–21]. Such conserved quantities can be thought of as constants of

motion which encapsulate the full dynamical behaviour of a system, and lead to the notion

of emergent integrability [15–18]. It is not hard to see why construction of these quantities

is highly sought after, but there still lies the question of how to obtain them in practice.

Since they are easily constructed in the noninteracting case of Anderson localisation, it is

quite natural to utilise perturbation theory to adiabatically extend them into the regime

of finite interactions. However, what seems natural does not always align with reality, and

we should check our assumptions thoroughly. This is the key premise of chapter 2, which

yields solution via the consideration of Brueckner orbitals [22–24]—a never-before utilised

technique in the context of many-body localisation (despite its prevalence in quantum

chemistry).

Next, we consider that the aforementioned set of conserved quantities map bijectively

onto a set of single-particle orbitals which are accessible via numerical methods. How

exactly should we define these orbitals? In the case of fermionic many-body systems,

we have the well-studied one-particle density matrix [25–35]—the eigenstates form an

orthogonal basis of so-called natural orbitals, from which we can (in theory) construct the

many-body eigenstates of our full system. The truth of this statement is linked directly to

the validity of perturbative methods in constructing the conserved quantities, and thus is

also addressed in chapter 2. However, the issue of what to do with non-fermionic systems

still remains. Thankfully, one can map any spin-1/2 system directly onto a system of

spinless fermions via Jordan-Wigner transformation; but what of higher-spin systems—is

there an analogue to the one-particle density matrix in this context? This question is

addressed, amongst other things, in chapter 3.

It is also of interest to consider the effects of global symmetries on the nature of many-

body localisation; in particular, chapter 3 considers the effect of chiral symmetry on a

system of spin-1 particles. The reason we consider spin-1—and not spin-1/2—particles

is due to the joint effect of chiral symmetry combined with an odd-dimensioned Hilbert

space. In combination, these two properties necessarily produce at least one eigenen-

ergy that is pinned to zero, regardless of parameter variation. This allows us to explore
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the nature of many-body localisation in the context of zero modes; a largely unstudied

premise until recently. We characterise the nature of the transition—both numerically

and analytically—through the use of density-matrix-like correlators that aim to provide a

single-particle basis for systems of arbitrary spin.

To close this work, we explore the general nature of ergodicity and area-law trans-

itions in chapter 4. We do this by comparing dynamical behaviour across four differ-

ent disordered models: the random-field Heisenberg model [36, 37], a random quantum

circuit model [38–41], and two variants of random matrix models (structured and un-

structured) [1]. We focus on the relation between two quantities in particular—the well-

established bipartite entanglement entropy, and the useful (but less-often considered) tri-

partite mutual information. A convenient property of these two quantities is that they are

of comparable magnitude in all four models, and thus we do not need to enact any form of

scaling to compare them. These comparisons are primarily motivated by the question: can

we accurately approximate the dynamical properties of well-studied models with random

matrix models? This is an instructive question due to our analytical knowledge of random

matrix models, which may aid our understanding of entanglement transitions in general.

Finally, it would also be remiss to not make a special mention of the recent debate

over the existence of a true many-body localised phase at all. This has been a lurking

proposition in the field; but has only very recently come to great attention, with the

publication of several notable papers on the topic. For example, there have been claims

that chaos could destroy many-body localisation in the thermodynamic limit [9]; but

careful analysis of [42] suggests that finite-size effects may prevent these arguments from

being viable—and in the same vein—it has also been argued that so-called avalanche

instabilities would be invisible in the system sizes accessible to us numerically [43]. There

are also indications that the many-body localisation phase transition may indeed exist,

but only at much higher disorder values than previously thought typical [44]—or perhaps

that many-body localisation could, at least partially, belong to the Berezinskii-Kosterlitz-

Thouless (BKT) universality class [45]; thus meaning that we have a slowly diverging

correlation length, which usually implies that the transition is very hard to pinpoint.

However, despite this active debate, the many-body localised regime, even if not a “true”

phase transition, still has undeniably robust dynamical properties which are very much

worth exploring.



Chapter 1

Theoretical Background

1.1 The Paradox of Quantum Thermalisation

When we say that a system thermalises, what do we precisely mean by that? For classical

systems, the concept is very clearly defined; it means that a system gradually, over fi-

nite time, approaches its most entropically stable state—thermal equilibrium. In classical

thermodynamics (and statistical mechanics in general), we make use of various statistical

ensembles depending on what kind of system is involved; one such ensemble being the mi-

crocanonical ensemble. This ensemble is a specific statistical ensemble which is utilised to

describe the mechanics of classical systems, with known total energy, which are assumed to

be in thermal equilibrium. This ensemble hinges on the idea that all microstates with the

same total energy are equally probable for systems in thermal equilibrium, and allows one

to calculate an ensemble average by simply averaging over all accessible microstates—i.e.

microstates with the correct total energy E. In practice, mathematically speaking, this

can be done by assuming all states within a width W of a given energy E are equally

likely, and then taking the limit of W → 0. However, the validity of the microcanonical

ensemble relies on the assumption of ergodicity: the idea that all accessible microstates

are equally probable over arbitrarily long periods of time [46]. While the assumption of

ergodicity is reasonable in classical equilibrium mechanics, due to the dynamical chaos

inevitably present during equilibration, the assumption is not so reasonable when con-

sidering a quantum system; especially closed quantum systems. This is because—due to

the strictly linear time evolution of the Schrödinger equation i~ d
dt |ψ(t)〉 = H |ψ(t)〉—the

unitary time evolution of any given quantum state lacks the presence of any clear dy-

13
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namical chaos. From this fact, one would naively assume that thermalisation of closed

quantum systems is therefore impossible; however, more recent experiments in the labor-

atory, involving ultracold atomic gases, have managed to reasonably approximate such

“impossible” closed quantum systems. These experiments highlight that, in reality, these

systems do indeed thermalise in some sense [47, 48] via a process we refer to as quantum

thermalisation.

In an open thermalising system, the majority of information relating to initial con-

ditions is quickly lost over time as it approaches thermal equilibrium—although, certain

quantities, such as temperature and chemical potential (alongside many others), do re-

main realistically observable for arbitrarily long periods of time. This is because an open

system thermalises via the exchange of extensive quantities, such as energy or number of

particles, between the system itself and some external reservoir1 it is coupled to. This

process continues until, eventually, the system achieves a stable thermal equilibrium. The

quantum description of this involves the conceptual introduction of information, which

can be abstractly thought of as being encoded within patterns of observable quantities.

It is therefore an umbrella term, as the exchange of any quantity, physical or potential,

necessitates an exchange of information. In the context of open quantum systems, the

external reservoir acts as a detector of sorts, performing random chaotic measurements on

the system, and thus leading to the transfer of information from system to environment—

the system loses its finite degrees of freedom to the reservoir’s, essentially infinite, degrees

of freedom. However, this loss of information would be impossible in a closed quantum

system since, by definition, the unitary time evolution of a quantum state cannot erase

information—all information regarding the initial conditions of a closed quantum system

must be forever preserved within the system itself. This is the origin of the perceived

paradox of quantum thermalisation; however, it is not actually a paradox, since it can be

resolved without the true erasure of quantum information. In actuality, the information

is not being erased, but rather, it is being “hidden”. In an interacting closed quantum

system, the movement of information occurs when entanglement spreads throughout the

system; after long times, most of this information becomes inaccessible, since the recov-

ery of said information would require the measurement of global operators, and only local

operators can be feasibly measured and analysed. This is the process of quantum decoher-

1For thermalising systems, the terms “reservoir” and “heat bath” are typically used interchangeably.
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ence. To understand why the measurement of global operators is a difficult procedure, we

must first define what global and local operators are, along with a basis on which these

operators can act.

States within a closed quantum system can be represented using the density matrix

formalism—these matrices are essentially probability operators which inform us of inform-

ation held within the eigenstate of a system, and take the form ρ =
∑

j pj |ψj〉〈ψj |, where

pj represents the probability of the system being prepared in state |ψj〉. We will hence-

forth refer to such operators as density operators. They can be considered an extension

of wavefunctions and eigenstates, in that they can not only capture the dynamics of pure

states, but also mixed states—states that are either prepared with unknown initial con-

ditions, or that are subject to interentanglement with other states. If we work in the

Schrödinger representation—in which quantum states evolve in time and operators are

constant in time—for a given Hamiltonian H, the unitary time evolution of a density

operator’s initial state ρ(0) is described by

ρ(t) = exp

(
−iHt

~

)
ρ(0) exp

(
i
Ht

~

)
, (1.1)

subject to

[H, ρ] = i~
dρ

dt
, (1.2)

along with the basis-invariant quantity

Tr (ρ) = 1. (1.3)

Additionally, this means that all other operators Ô are time-independent, and produce

corresponding observables O. The expectation value of such observables, at a given time

t, is given by

〈Ô〉t = Tr
{
Ôρ(t)

}
. (1.4)

We must also be careful when constructing these density matrices, since we must ensure

that the resulting matrix is positive semi-definite and obeys Eq. (1.3).

Since we are considering an interacting many-body system, the dimensionality of our

state space will grow exponentially with the size of the system for even small spin-degrees

of freedom. Therefore, to simplify things, we will consider a system composed of N

two-state subsystems which will be referred to as spins for the remainder of this chapter.

These spin systems need not necessarily be composed of physical spin-1/2’s, and are called
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Figure 1.1: Diagram depicting the Bloch sphere for a two-state quantum system.

spins simply out of convenience. Each spin is treated as a zero-dimensional point in real

space and local pure state space—each consisting of two states and all of their complex

linear combinations—and can exist in one, two, or three spatial dimensions. The local

pure-state space of each of these spins consists of two states and all of their complex linear

combinations, which can be represented quite simply on a Bloch sphere (see Fig. 1.1). Since

each of these spins is a two-state system, we represent each one as a two-dimensional

spinor. Any spinor, representing a spin i, is subject to transformation by any linearly

independent group of two-dimensional matrices—in particular, a convenient choice is the

group of determinant-1 unitary matrices SU(2), the generators of which are the set of

Pauli matrices {σxi , σyi , σzi }. We henceforth denote the union of the Pauli matrices with

the identity operator σ0
i ≡ 1 as the set {σai }. By construction, any two-dimensional

Hermitian matrix can be represented as a linear combination of the {σai }, thus we can

conveniently represent a complete basis of many-body operators (of the full system) as

outer-product states of the form

K̂a1,a2,...,aN =

N⊗
i=1

σaii ; (1.5)

the structure of which immediately implies that the full system possesses 4N linearly
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independent operators K̂a1,a2,...,aN , corresponding to the number of unique permutations

of the set {a1, a2, . . . , aN} given that ai ∈ {0, x, y, z}. In the general case, where we

consider the introduction of local spins {i} with local Hilbert space dimension qi > 2, we

can surmise that each spin contributes a factor of q2
i to the number of operators [2].

The form of operator K̂, as defined in Eq. (1.5), determines its classification: global,

local, or “k-local”. A k-local operator is one where k of the individual σai terms in Eq. (1.5)

are not identity operators, and as such, only acts non-trivially on k of the N spins. If

we map each of the 2N many-body basis states onto the 2N vertices of an N -dimensional

hypercube, then we can interpret these k-local operators as representative of hoppings of

length k on this hypercube—they connect vertices with k−2 intermediate vertices. Global

and local operators are simply the most extreme limiting cases of a k-local operator—K̂

is a global operator when k is of order N , whereas K̂ is a local operator when k is of

order one and the few nonidentity Pauli operators act on spins with real-space separation

of order one.

Since most of the σai terms in a local operator are identity operators, and thus act

trivially on the spins in our system, measuring such an operator is relatively feasible.

However, conversely, we can also see why measuring a global operator—by which we

retrieve all extensive conserved quantities, such as total energy or number of particles—is

incredibly non-trivial, since most of the σai terms in a global operator are Pauli operators,

and thus act non-trivially on the spins in our system. It is therefore reasonable to say

that information “hidden” in these global operators can essentially be treated as “lost”

due to quantum thermalisation—retrieving this information becomes increasingly more

demanding as the many-body operators become less local.

1.2 Modelling Quantum Thermalisation

In the previous section, we explained why thermalisation in a closed quantum system is not

necessarily paradoxical, provided we expand our definition of information loss. However,

what exactly are the mechanics behind quantum thermalisation? The process of thermal

equilibration in classical systems generically involves the exchange of extensive quantities

between a system and the reservoir it is coupled to; however, there is no external reservoir

to couple to in the case of a closed quantum system. We can, however, produce a model
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that imitates this system-reservoir coupling. We begin by partitioning our system into two

subsystems—subsystem A, the smaller of the two, and subsystem B, the environment-like

complement. By modelling our system in this way, we can treat subsystem A as if it

were a system coupled to an external reservoir B, thus implying that our system can,

in a sense, act as its own reservoir (see Fig. 1.2). Considering the exchange of extensive

quantities between subsystems A and B allows us to define a “self-temperature” for our

closed system, which we will henceforth refer to simply as temperature T for brevity. The

choice of subsystem A is arbitrary, and as such, the exact size or location (regardless of

which space we work in) does not matter too much, as long as the degrees of freedom

within A can be described by k-local operators with finite k. We also require the number

of degrees of freedom in subsystem A to be negligible compared to B, but we can resolve

this by adding more degrees of freedom to B in a specific way, which we now discuss.

For convenience, let us consider the case where subsystem A is a compact region in

real space. In this case, the addition of degrees of freedom to our system will result

in an increase in the volume of B. If we add degrees of freedom to our system that are

arbitrarily far from subsystem A, we can ensure that the volume of B will increase without

limit—all while also ensuring that the physical properties of A, such as its volume, remain

unaltered. In addition, if we change our system’s Hamiltonian in said locations—that is,

arbitrarily far from A—where the degrees of freedom are being added, we can also ensure

that, as we take the thermodynamic limit, we are not directly altering the thermodynamic

properties of A. By repeatedly adding of degrees of freedom, while simultaneously taking

the thermodynamic limit, we iteratively produce a series of larger and larger systems, each

with their own Hamiltonians. We continue this process indefinitely, so that the number of

degrees of freedom increases without limit (see Fig. 1.2(b)). For the initial state ρ(t = 0) of

each system in this iterative sequence, we need to ensure that the equilibrium expectation

value of the total energy 〈H〉T , at temperature T , is such that the energy density of the

system is fixed at its equilibrium value. Note that, although we fix the energy density, the

extensive energy within the system can be distributed freely. We can express the density

operator of subsystem A as a reduced density matrix ρA, which is expressed as a partial

trace over the full system ρAB, and takes the form

ρA(t) = TrB{ρAB(t)}, (1.6)
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Figure 1.2: A diagram illustrating a closed quantum system partitioned into a subsystem

A, and its larger, environment-like, complement B. The mechanics of quantum thermal-

isation are underpinned by a closed quantum system’s ability to, in a sense, couple to itself

and act as its own reservoir. Panel (a) depicts the initial setup, and panel (b) illustrates

the iterative process of taking the infinite size limit m→∞ by adding degrees of freedom

to the system, while simultaneously taking the thermodynamic limit. Each iteration of

this process produces a new system (shown by the dotted lines), with a new Hamiltonian

Hm. By necessity, the interactions in the Hamiltonian must “connect” all of its degrees of

freedom.

where the partial trace TrB{...} is explicitly defined as

TrB{ρA ⊗ ρB} ≡ ρA Tr{ρB}, (1.7)

provided that ρAB can be expressed as the outer product of its subsystems ρA and ρB. If

ρAB cannot be written as such an outer product, as is the case for mixed states, we can

explicate the partial trace via a Schmidt decomposition, which we explain thoroughly in

section 3.4.1. For the same subsystem A, that is expressed in Eq. (1.6), we can also write

down an operator that is valid only for systems in equilibrium—the Boltzmann density

operator

ρ
(eq)
A (T ) = TrB

{
1

Z(T )
exp

(
− H

kBT

)}
, (1.8)

where Z(T ) is the partition function at temperature T , and kB is the Boltzmann constant.

If a given quantum system does indeed thermalise, then as we take the large system and

high temperature limit simultaneously, the reduced density matrix given by quantum

statistical mechanics (1.6), and equilibrium thermodynamics (1.8), should be consistent
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with each other, such that ρA(t) = ρ
(eq)
A (T ) for all possible choices of subsystem A. This is

the basic idea behind the concept of quantum thermalisation; however, we have implicitly

assumed that all systems, in our iterative application of the thermodynamic limit, have

initial states that are prepared in, or near, equilibrium. What if we were to consider an

initial state far from equilibrium? In this case, we would need to look at its unitary time

evolution to confirm or deny the prospect of thermal equilibrium in the long-time limit.

1.3 The Eigenstate Thermalisation Hypothesis

For systems that successfully thermalise under their own dynamics, we can say that the

many-body eigenstates of their Hamiltonians will generically obey a set of ideas known

as the eigenstate thermalisation hypothesis (ETH). The purpose of the ETH is to explain

when, and why, a quantum-mechanical system in isolation can be accurately described

using the more traditional laws of statistical mechanics. It is especially useful for explaining

how systems prepared in far-from-equilibrium initial states can evolve in time, via unitary

time evolution, to a final state that resembles thermal equilibrium. The phrase “eigenstate

thermalisation”, in this context, was coined by Mark Srednicki in 1994 [14], after similar

ideas had been introduced by Josh Deutsch in 1991 [13].

The primary purpose of the ETH is to explain the phenomenon of thermalisation in

closed quantum systems—in a sense, it attempts to extend the notion of the microcanonical

ensemble towards a more canonical description, where concepts such as thermalisation

are rendered more explicitly. The ETH motivates the introduction of a new type of

quantum statistical ensemble—a so-called single-eigenstate ensemble, which gets its name

from the fact that each such ensemble consists of a single eigenstate of a given system’s

Hamiltonian. This ensemble can be thought of as an extreme limiting case of the more

traditional microcanonical ensemble, where the range of eigenenergies has been decreased

such that it contains only one eigenstate. The usefulness of such an ensemble becomes

more clear when one considers a system that violates the ETH; however, we should first

explain what the ETH is, and it is useful to do so via the formalism of density matrices

that was introduced in section 1.1.

If we initialise our system—represented by a density matrix denoted ρ—in a pure state

that is also one of the eigenstates of the Hamiltonian, then the time evolution of the system
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is simply

ρ(t) = ρ(0) (1.9)

for all times t [2]. Therefore, if there is thermalisation of initial states, then this implies

that all the eigenstates of the Hamiltonian are “thermal”. We should now define a complete

set of basis states for our system—the eigenstates of the Hamiltonian H, which obey the

relation

H |ψn〉 = En |ψn〉 (1.10)

where En is the eigenenergy associated with eigenstate |ψn〉. Since we work in the energy

eigenbasis, we can state En = 〈H〉Tn , where 〈H〉Tn is the thermal equilibrium energy at

temperature Tn—obtained from a weighted average over a range of eigenenergies. By rep-

resenting our system as a density matrix ρ, and using the eigenbasis defined in Eq. (1.10),

our system will have the following dynamical properties: the diagonal matrix elements

ρnn = 〈ψn|ρ|ψn〉 will be constant, and the off-diagonal matrix elements ρnm = 〈ψn| ρ |ψm〉

will precess in the complex plane at a constant rate given by

ρnm = ρ(0) exp

[
i(Em − En)t

~

]
. (1.11)

If the entire system is in a particular energy eigenstate |ψn〉, then its density matrix can

be written as ρn = |ψn〉〈ψn|, thus allowing us to write the density matrix of subsystem

A as ρ
(n)
A = TrB{|ψn〉〈ψn|}, as previously explained in Eq. (1.6). The ETH makes the

following assertion: if the thermodynamic limit has been taken, then the system is in

thermal equilibrium. This can be expressed as

ρ
(n)
A = ρ

(eq)
A (Tn). (1.12)

One consequence of this is that the entanglement entropy between A and B in a particular

eigenstate, given by

SAB = −kB TrA

{
ρ

(n)
A log ρ

(n)
A

}
, (1.13)

will be equal to the thermodynamic entropy of subsystem A. Eq. (1.12) establishes con-

sistency between the different techniques used to calculate the properties of thermalisa-

tion in different circumstances. The entanglement entropy, shown in Eq. (1.13), exhibits

volume-law scaling for eigenstates with nonzero temperature Tn. This means that, if the

d-dimensional system is attributed with a length L, then the entanglement entropy will
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scale as Ld. In addition to the earlier statement, encompassed by Eq. (1.12), the ETH also

requires that the difference between the matrix elements of any subsystem operators ρ
(n)
A ,

that belong to distinct eigenstates, becomes exponentially small when the thermodynamic

limit is taken [48]. This ensures that any temporal fluctuations in such an operator will

vanish, in accordance with what is expected from a system in thermal equilibrium. If all of

the assertions of the ETH are true for all of the eigenstates of a system, then we say that

the system successfully thermalises; however, it seems there is some evidence to suggest

that a system can be classified as thermal as long as almost all of its eigenstates obey the

ETH [14]. A useful diagnostic for checking if the ETH is true or false in a given system

is to consider the form of a given few-body (i.e. local) quantum-mechanical observable Â,

with matrix representation Anm = 〈ψn|Â|ψm〉 in the energy eigenbasis. If A is diagonal

in the energy eigenbasis, then all of its subsystems are in thermal equilibrium, and thus

its eigenstates obey the ETH.

In order to apply the ETH to a system with far-from-equilibrium eigenstates, we

must first define what the structure of these states should be. The matrix A, for a

generic out-of-equilibrium state, will have a specific off-diagonal structure, in which the

off-diagonal elements Anm will possess a so-called “coherence pattern” between eigenstates

with different eigenenergies. The structure of this coherence pattern can be described by

the following two conditions imposed on the structure of the matrix:

1. The diagonal matrix elements Ann will vary smoothly as a function of energy, with

the difference between adjacent eigenstates An+1,n+1−An,n, becoming exponentially

small for larger systems.

2. The off diagonal elements Anm will be much smaller than the diagonal matrix ele-

ments Ann, and should themselves be exponentially small for larger systems [47].

However, the more general requirements for this coherence pattern are manifested in the

following properties of the matrix: the diagonal terms Ann will be time-independent, while

the off-diagonal terms Anm will precess, according to Eq. (1.11), such that the phases of

these off-diagonal elements will become “scrambled” by unitary time evolution. Thus, their

contributions to local observables will possess random phases which will cancel. This is a

process referred to as dephasing, and is essentially equivalent to equilibration, provided we

work in the energy eigenbasis. Therefore, if we consider a finite system with no degeneracy
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in its energy eigenvalues, then it will possess a discrete, nondegenerate energy spectrum,

and the rate of precession, as shown in Eq. (1.11), will always vary in time—i.e. any initial

conditions that manifested themselves in off-diagonal elements will change with time, and

thus are not “stored” by the system, implying thermalisation. This allows us to label the

full set of eigenstates in ascending order, with respect to their energy eigenvalues, which

may be convenient for analysis. This assumption is not wildly unreasonable, as most

realistic physical systems will have sufficient disorder and interaction strength as to make

almost all degeneracies vanish [49].

We now know what the ETH is, and what it tries to accomplish; however, it is im-

portant to remember that the ETH is a hypothesis, and thus it is not necessarily unfailing

in all cases. The best we can say is that it appears to be true for many classes of system;

however, even for systems where it appears to hold true, thoroughly testing whether or

not it actually does is a difficult process numerically speaking. This is because testing its

validity generally requires exact diagonalisation2 of the Hamiltonian and extrapolation to

the thermodynamic limit, which has a high computational “cost” for systems with many

degrees of freedom. Models that showcase both agreement and violation of the ETH will

be covered explicitly in later chapters. For now, however, we move onto an important

point of discussion: a phenomenological description of localised systems, which belong to

a broad class of system that violates the ETH.

1.4 Many-body Localisation in a Phenomenological Model

Initially, the study of localisation was restricted to near-ground-state regimes or nonin-

teracting particles in a random potential; however, there is now more-recent focus on

the study of interacting many-body localised (MBL) systems in highly excited states far

from the ground state. These higher-energy localised systems possess an energy density

that corresponds to nonzero temperature; in theory, such localised systems can maintain

their robust nonequilibrium nature for arbitrarily high temperatures—even temperatures

approaching infinity [5]. Since the recent focus is on said “high-temperature” MBL sys-

tems, that is what we will focus on in this chapter. Although phenomenologically similar

to single-particle localisation (SPL)3 in many ways, MBL has a key difference—whereas

2By which we simply mean diagonalisation that acquires accurate eigenvalues and eigenvectors.
3See [50] for a detailed review, and see [8] for the original paper by P. W. Anderson.
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Thermal phase Single-particle localised Many-body localised 

Memory of initial conditions 
‘hidden’ in the global operators

at long times 

Some memory of local initial
conditions preserved

in local observables at long times 

Some memory of local initial
conditions preserved

in local observables at long times 

ETH true ETH false ETH false 

May have non-zero DC conductivity Zero DC conductivity Zero DC conductivity

Continuous local spectrum Discrete local spectrum Discrete local spectrum

Eigenstates with
volume-law entanglement 

Eigenstates with
area-law entanglement 

Eigenstates with
area-law entanglement 

Power-law spreading of 
entanglement from

non-entangled initial condition 
No spreading of entanglement

Logarithmic spreading of 
entanglement from

non-entangled initial condition 

Dephasing and dissipation No dephasing, no dissipation Dephasing but no dissipation

Figure 1.3: A table comparing the key differences between the ergodic thermal phase and

both variants of localised phase.

SPL deals with the concept of a noninteracting localised system, MBL introduces interac-

tions into the fray. This results in differing properties, including, but not limited to, the

logarithmic spreading of entanglement and the dephasing of spins, amongst others (see

Fig. 1.3). Both of the aforementioned phenomena are absent in SPL, but all MBL systems

that we know of exhibit them. In order to understand why these properties exist in MBL

systems, we proceed with a model that can capture this strange phenomenology.

For simplicity, let us assume we have a system composed of N local two-state systems.

The two degrees of freedom in these two-state systems will be labelled by the set of Pauli

operators {σai } (where a ∈ {x, y, z}), and will be referred to as p-bits, where “p” stands

for “physical”. These p-bits could be physical spin-1/2’s, but this is an arbitrary choice

as they could just as easily be modelled in an alternative way (which we exploit in later

chapters). We now define a Hamiltonian involving these p-bits, which we assume to have

quenched disorder—referring to the disorder of an out-of-equilibrium state, such as a spin

glass [51], with strictly short-range interactions. If we introduce high levels of disorder

into our system—generally onsite disorder via some inhomogeneous random field—then

such a Hamiltonian could potentially transition into a fully many-body localised (FMBL)

regime where all of its many-body eigenstates violate the ETH, and are thus localised

by definition. In this FMBL regime, we can now introduce localised two-state systems—

argued in [52], [15], [16] (amongst others), and explicated further in chapter 2—which are
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analogous to the introduction of pseudoparticles, henceforth referred to as pseudospins.

The two degrees of freedom in these localised two-state systems will be labelled by a set

of localised Pauli operators {τai } (where a ∈ {x, y, z})—we will refer to these as l-bits,

where “l” stands for “localised”. Using these l-bits, we can construct a phenomenological

Hamiltonian in the FMBL regime

H = E0 +
∑
i

hiτ
z
i +

∑
i,j

Jijτ
z
i τ

z
j +

∞∑
n=1

∑
i,j,{k}

K
(n)
i{k}jτ

z
i

(
n∏

m=1

τ zkm

)
τ zj , (1.14)

where E0 is a constant energy offset, hi represents the on-site potential at l-bit i, Jij

represents the direct interaction between two l-bits, i and j, and K
(n)
i{k}j represents the

indirect interaction between two l-bits, i and j—due to the many-body interactions of

(n + 2) l-bits—which are represented by the {τ zk} in the sum. It is important to note

that each interaction term in this many-body sum is counted only once. E0 exists simply

to ensure that the trace of the Hamiltonian vanishes, and as such, does not affect the

dynamics of the l-bit system whatsoever. Also note that all of the {τ zi } are mutually

commuting with each other, and with the Hamiltonian; in other words, the eigenstates

of the Hamiltonian are simultaneous eigenstates of all of the {τ zi }, leading to completely

nonentangled l-bits [15].

Although we are considering FMBL systems in the case of Eq. (1.14), this does not

necessarily have to be true in general. It has been argued that there may exist a mobility

edge within some MBL systems at some system-specific extensive energy [53]. It was sug-

gested that eigenstates would be thermal if their energy density was above the mobility

edge, and would be localised if their energy density was below it; however, it has been

suggested this mobility edge could possibly be “inverted” by considering a model where

the single-particle level spacing increases with energy [54]. The consequences of this “in-

version” would be that eigenstates would only become localised above a certain critical

energy, as opposed to below. In principle, there is nothing forbidding a model with mul-

tiple mobility edges, although this has currently not been explored too deeply as of yet.

Modelling an MBL system that has a mobility edge is significantly harder than modelling

an FMBL system; this is partially due to the fact that there can exist rare regions where

the energy density of a localised eigenstate lies arbitrarily close to the mobility edge—a

new type of Griffiths singularity [15]. The treatment of these rare regions, along with the

exact nature of the transition that occurs at the mobility edge, remains an open problem.
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By looking at the structure of Eq. (1.14), we can intuit some of the properties it should

have, which in turn determine the phenomenological properties of the localised regime. As

mentioned previously, the many-body eigenstates of a Hamiltonian in the localised regime

violate the ETH, thus forbidding any transport of conserved quantities. This leads us to

deduce that there should exist a set of localised conserved “charges”4 {τ zi }, which remain

invariant under the dynamics of the system—these charges can be thought of as constants

of motion. Since the l-bits are localised in real space, they can be written as a sum of

p-bit operator products
∏
i σ

a
i (where a ∈ {x, y, z}), where each of these p-bit operators

σai describe p-bits that are all on nearby sites i, and are thus localised around a particular

region in real space.

With the way we have constructed these l-bits, each many-body term in Eq. (1.14) has

a weight which typically falls off exponentially with the distance to the farthest p-bit oper-

ator σai in the product. This is due to the exponentially decreasing values of the interaction

strengths, Jij and K
(n)
i{k}j , as one moves away from the aforementioned localised region of

p-bits. This produces exponentially decreasing “tails”, in their real-space distributions,

which stretch off to infinity, mimicking an extremely narrow Gaussian distribution. Due to

the finite coupling strength between them, these tails mediate the long-range interaction

between l-bits, thus implying that these long-range interactions also fall off exponentially

with distance. For weakly interacting systems, the l-bits are presumed to have significant

overlap with the bare p-bits; therefore, in the regime of weak interactions, we should be

able to perturbatively “dress” the p-bits to produce our constants of motion {τ zi }—this

“dressing” also falls off exponentially with distance. However, this has recently proved to

be a naive general presumption, as the l-bits of the paradigmatic spinless fermion model

have been shown to possess a distinctly nonperturbative nature5 [55]. Nevertheless, we

maintain this assumption here, for the sake of simplicity.

The existence of long-range interactions between l-bits may seem counter-intuitive—

since we previously stated that the p-bit Hamiltonian only accounts for strictly short-range

interactions, and thus only couples p-bits which are nearby in real space—however, due to

the way we have dressed the p-bits to form l-bits, each p-bit has a non-zero coupling to each

l-bit, regardless of their real-space separation. This is because, when expanded in terms of

4These conserved charges will vary depending on the choice of system. For example, in a system of
noninteracting fermions subject to a disordered potential, the charges would be the occupation numbers
of each of the localised single-particle orbitals [15], which we also consider explicitly in chapter 2.

5This was one our significant findings, and is the focus of chapter 2.
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l-bits, a p-bit consists of an infinite sum of l-bit operators, where the weight of the long-

range terms falls off exponentially with range, thus producing the exponentially decreasing

tails which stretch off to infinity. This means that, while exponentially decreasing, the

long-range terms are nonzero, and will thus couple l-bits regardless of distance, albeit

negligibly for extremely long ranges. The fact that these l-bits interact with each other

inevitably leads to dephasing between these initial p-bit product states, which consequently

means that there will be no local observables that show persistent oscillations, according

to Eq. (1.11), in the long-time limit.

The p-bits and l-bits possess vastly different dynamics; whereas the dynamics of en-

tangled p-bits leads to dissipation due to spin “flips”, there is no such dissipation regarding

l-bits due to the lack of any spin flips. When these dynamics are represented on a Bloch

sphere (see Fig. 1.1), the l-bits will still precess in the xy-plane, but their z-components

will remain fixed at a certain value—the z-components are “frozen” and no spin flips oc-

cur. The lack of dissipation must mean that the spreading of entanglement in the thermal

phase, composed of p-bits, must behave differently in comparison with the FMBL phase,

composed of l-bits. Therefore, it is useful to highlight the key points regarding the spread-

ing of entanglement in each of these phases, in order to better grasp the reasoning behind

their respective dynamics.

1.5 Entanglement Behaviour

Previously, in section 1.3, we introduced the concept of the volume-law, wherein the

entanglement entropy of a given many-body eigenstate scales with the size of the system.

The reason for this scaling can be explained quite simply using an example: Say we had

a traditional d-dimensional thermalising system of length L, composed of an ensemble

of spins, or—to use our previously-established vernacular—p-bits. The direct interaction

between two p-bits, A and B, produces entanglement between A and B, and thus results in

the precession of each of these individual p-bits in the xy-planes of their respective Bloch

spheres (see Fig. 1.1). As their xy-components become coupled with each other, signifying

entanglement between the p-bits, this results in dephasing and decoherence. If B was to

subsequently interact with another p-bit C, then C would not only become entangled

with B, via direct interaction, but also with A, via indirect interaction. This spreading of
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entanglement is ballistic in nature, and the speed at which entanglement spreads in such

a system is of the order of the Lieb-Robinson velocity—a theoretical finite upper bound

on the speed at which quantum information can travel [56]. The larger the volume of

the thermalising system, the faster entanglement will spread, simply due to the greater

number of particles leading to a greater number of interactions—both direct and indirect.

This is what leads to the so-called volume-law, where the entanglement entropy scales as

Sthermal ∼ Ld.

However, entanglement spreads very differently in FMBL systems, where the spreading

of entanglement is no longer ballistic. As we can see from our FMBL Hamiltonian in

Eq. (1.14), the interactions between two pseudospins, A and B, which we call l-bits, are

determined only by the projective measurement τ zi on each individual l-bit. Since, as

we stated previously, these operators {τ zi } are constants of motion, this means that any

subsequent interactions between B and another l-bit C will not produce entanglement

between A and C—entanglement can only occur through direct interaction. Increasing

the size of a system in the FMBL regime will still increase the rate at which entanglement

spreads, due to the greater number of direct interactions; however, due to the lack of

indirect interactions, we can deduce that the spreading of entanglement in the FMBL

regime must be much slower than in a thermalising system of the same size. Therefore,

FMBL systems will not possess a volume-law, and will instead possess an area-law, where

the entanglement entropy scales as SFMBL ∼ Ld−1—sometimes possessing a logarithmic

correction of the form SFMBL ∼ Ld−1 lnL [3].

By making use of the Heisenberg uncertainty principle ∆E∆t ∼ 1 (~ = 1), we can say

that the interactions Jij within our FMBL system will have a noticeable impact on the

phase of a precessing l-bit once Jt is of order one. Using this fact, we can now say that the

time taken for two l-bits, separated by distance R, to become entangled with each other

is approximated by

t ∼ 1

J(R)
, (1.15)

where J(R) is the total interaction strength between two l-bits separated by a distance R,

and is thus composed of a sum of the individual terms Jij . Since the individual terms Jij

decrease exponentially with range, this means that J(R) must also decrease exponentially

with range, albeit at a slightly slower rate. This exponential fall-off can be approximated
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as

J(R) = J [V (R)] ∝ exp
[
−V 1

d (R)
]
, (1.16)

where V (R) is the finite-interaction volume around a given l-bit with radius ∼ R, and

V 1/d(R) ∼ R. By solving Eqs. (1.15) and (1.16) simultaneously, we can obtain

V (t) ∼ lnd(t), (1.17)

which tells us that after time t has passed, a given l-bit will become entangled with all

other l-bits within a volume V (t) around it. In order to more accurately model the effective

interaction between two l-bits, we can rewrite the Hamiltonian in Eq. (1.14) as

H = E0 +
∑
i

hiτ
z
i +

∑
i,j

τ zi J
eff
ij τ

z
j , (1.18)

where the individual effective interaction terms between two l-bits, i and j, in a particular

many-body eigenstate are given by

Jeff
ij = Jij +

∑
n,{k}

K
(n)
i{k}j

(
n∏

m=1

τ zkm

)
. (1.19)

The effective interaction, defined in Eq. (1.19), is useful for explaining the behaviour of the

multispin terms, which dominate the effective interaction at long range. The dominant

multispin terms, with comparatively high values of K
(n)
i{k}j , will have all of their sites km

near the straight line that connects sites i and j. Flipping a single spin k will change

the expectation value of every τ zk from one to minus one (or vice versa), and thus change

the sign of every multispin term containing this spin. If a spin far from the straight line

connecting sites i and j is flipped, it will have little effect on the overall sum; however,

flipping a spin that lies directly on the straight line between i and j will change the sign

of a significant number of the dominant multispin terms. This cancellation of multispin

terms leads to dramatic differences between different many-body eigenstates of Eq. (1.14).

In the context of our model, this is the reasoning behind spin flips leading to dissipation.

While spin flips may occur in thermalising systems, they will not occur in MBL systems,

since all of the {τ zk} within the l-bit Hamiltonian are constants of motion. Also, since

both Jij and K
(n)
i{k}j decrease exponentially with range, this leads to Jeff

ij also decreasing

exponentially with range; therefore, the total effective interaction between two l-bits, i
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and j, can be approximated as

Jeff(R) ∼ J0 exp

(
−R
ξ̃

)
, (1.20)

where ξ̃ defines a quantity which will be referred to as the interaction decay length—

henceforth referred to simply as the interaction length for brevity. Jeff(R) is composed of a

sum of 2R individual terms Jeff
ij ; therefore, since the Jeff

ij terms also decrease exponentially

with range, this means that the interaction lengths ξ̃ij of the individual terms will be

shorter than the full interaction length ξ̃6. We can now attempt to obtain the entanglement

entropy as a function of time; but first, we must define a system, and an initial state, to

work with. If we initialise our FMBL system in a nonentangled pure state—and consider

the long-time growth of the bipartite entanglement entropy between two semi-infinite spin

chains [5]—then the distance R that the entanglement entropy spreads in time t is given

simply by rearranging Eq. (1.20) for R and substituting Jeff(R) ∼ 1/t. Performing these

manipulations, we obtain

R(t) ∼ ξ̃ ln (J0t) . (1.21)

In the long-time limit, the initial state eventually dephases due to interactions, and pro-

duces a von Neumann entropy [57] given by

s(ξ̃) = s[ρ(ξ̃)] ≡− Tr
[
ρ(ξ̃) log2 ρ(ξ̃)

]
=−

∑
i

λi(ξ̃) log2 λi(ξ̃),
(1.22)

where ρ(ξ̃) is the density matrix of our system as a function of the interaction length ξ̃

and the {λi(ξ̃)} are the eigenvalues of ρ(ξ̃). The Boltzmann constant kB is set to one for

convenience. We also define 0 log2 0 ≡ 0 [57], thus avoiding any potential singularities that

could arise. The von Neumann entropy, as shown in Eq. (1.22), is sometimes referred to

as the diagonal entropy, since the only the diagonal elements of ρ(ξ̃) log2 ρ(ξ̃) contribute

to the trace. The resulting entanglement entropy of our system is obtained by multiplying

Eqs. (1.21) and (1.22) together, producing

SEE = s(ξ̃)ξ̃ ln (J0t) . (1.23)

Note that different eigenstates will have varying interaction lengths ξ̃, and will thus pro-

duce different diagonal entropies, since the diagonal entropy is the measure of entropy

6The existence of differing interaction lengths, which may behave differently from each other, emphasises
the need to carefully define which interaction length we are considering at any given time.
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for a particular quantum state. The entanglement entropy is therefore dominated by the

eigenstates which maximise the quantity s(ξ̃)ξ̃, as can be seen in Eq. (1.23). Recalling that

p-bits can be expressed as an infinite sum of l-bits, this means that their entanglement

will also grow logarithmically with time, in accordance with Eq. (1.23), in the long-time

limit. This is consistent with the results found in [7] and [58].

1.6 Conserved Quantities and Localisation Length

We have casually mentioned “dressing” the bare p-bits to form l-bits, but how exactly is

this done? Unfortunately, there is no single answer to this question. A given system of

spin-s particles system possesses (2s + 1)N degrees of freedom, resulting in a staggering

[(2s+1)N ]! discretely different ways of constructing a set of operators with a unique biject-

ive mapping to each of the (2s+ 1)N many-body eigenstates of a given Hamiltonian. We

will henceforth call these unique bijective mappings “assignments”. Each assignment will

produce a different definition of l-bits; therefore, in order to fully enumerate a particular

assignment, we need to set the (2s + 1)N − 1 relative phases, quantified by Eq. (1.11),

between each of the (2s+ 1)N eigenstates. As previously discussed in section 1.3, systems

that obey the ETH will have their phases set in a particular way, so as to cancel off any

long-time contributions to local observables; however, these contributions to local observ-

ables should not cancel off in the localised regime, and should thus preserve information

about the initial state of the system. Setting an assignment where the (2s+1)N−1 relative

phases do not cancel off in the long-time limit turns out to be quite difficult, as almost

all of these assignments will result in eigenstate thermalisation, and thus fail to produce

l-bits in the localised regime.

Nonetheless, a relatively convenient way of doing this is to start with the bare p-bits—

which, by definition, mutually commute with each other and the Hamiltonian—and “dress”

them iteratively, order by order in perturbation theory, necessitating order n in perturb-

ation theory when involving any p-bit a distance n away. At each step along the way,

we ensure that the l-bits retain the same commutation relations that the p-bits possess—

their mutual commutativity with each other and the Hamiltonian. This approach, while

convenient, has its limitations. One such limitation is the fact that it will fail to produce

unique l-bits outside of the weak-interaction limit, due to degeneracies involved with the
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use of perturbation theory, inevitably resulting in an ambiguous definition of l-bits [18].

Another such limitation is the assumption that the p-bits adiabatically connect to the

l-bits at all—while a seemingly innocent assumption, it is by no means guaranteed, as we

will discuss in chapter 2.

In spite of these limitations, there do exist ways to present a more complete, and

nonperturbative, definition of l-bits that possess the properties we wish them to have [59].

One possible way is to construct the l-bits using projection operators [15]. In order to

simplify things, let us construct the l-bit operators for a particular site k, located in

real space. We do this for a particular assignment where the many-body eigenstates

of Eq. (1.14)—simultaneous eigenstates of all of the τ zk—have relative phases which are

implicitly assumed. Half of the many-body eigenstates {|α〉} will have 〈τ zk 〉α = +1, and

can be “flipped” in order to create |ᾱ〉 = τxk |α〉, which has 〈τ zk 〉ᾱ = −1. There will exist

2N/2 = 2(N−1) of these states {|α〉}, and all other τ zl ’s will have the same value in |α〉 and

|ᾱ〉. Using these constraints, we can now define the l-bits via localised Pauli operators [15],

which take the form:

τxk =
∑
α

(|α〉〈ᾱ|+ |ᾱ〉〈α|) , (1.24)

τyk = −i
∑
α

(|α〉〈ᾱ| − |ᾱ〉〈α|) , (1.25)

τ zk =
∑
α

(|α〉〈α| − |ᾱ〉〈ᾱ|) . (1.26)

We can easily confirm that these l-bit Pauli operators obey the same commutation relations

as the more traditional p-bit Pauli operators {σai } (where a ∈ {x, y, z}), and are thus

suitable definitions of l-bits in the localised regime.

Now, in order to be able to analyse our system more readily, we set a unique assign-

ment between the 4N many-body p-bit operators and the set of all operators that can be

written as outer products of the form depicted in Eq. (1.5). The l-bit operators defined by

Eqs. (1.24), (1.25), and (1.26) can therefore be expanded as a function of these many-body

p-bit operators. By looking at the form of these many-body p-bit operators, we can define

a range r as the distance between the two farthest-apart non-identity p-bit Pauli operators

contained within the outer product. By taking the weighted average (using the norm of

the operators) over the values of r for a particular l-bit k, we can obtain the mean range rk

for that l-bit. This mean range rk gives us an indication of the maximum distance between
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coupled l-bits, before the interaction terms in the Hamiltonian start becoming insignific-

ant. By averaging over all of the {rk} in our system, we can obtain a characteristic mean

range R for our entire system of l-bits. It is important to note that the definitions stem-

ming from these weighted averages are arbitrary, and a more convenient definition may

exist depending on the circumstance. For a given FMBL system, provided we have chosen

an appropriate assignment, we can make the hopeful prediction that this mean range R

is finite and robust to the thermodynamic limit, where the energy density corresponds to

infinite temperature. The optimal assignment is defined as the one that minimises this

mean range R, thus providing one possible measure of the so-called localisation length ξ,

which is expected to diverge at the transition between the ergodic and localised regimes.

Speaking in a general sense, localisation implies that quantum correlations, such as en-

tanglement, between our l-bits should have a finite extent set by this localisation length

ξ; therefore, the localisation length ξ makes an appearance in the area-law described in

section 1.5—approximated by SFMBL ∼ ξLd−1 [3].

By using the aforementioned optimal assignment, the l-bits will generically consist of

an infinite sum of many-body p-bit operators. Although, similarly to the reverse—i.e. p-

bits expanded in terms of l-bits—the weight of each of these terms will fall off exponentially

with range. It is also worth noting that, while most of l-bits will have ranges which lie

fairly close to the mean range L, some of them will possess a range much greater than L

due to resonances within the system. These l-bits are fairly uncommon in most systems,

and the probability of them occurring will fall off exponentially with range [15].

1.7 The Notion of Integrability

For dynamical quantum systems governed by a Hamiltonian, there exists the notion of

quantum integrability, which essentially means the model in question is solvable via the

Bethe ansatz7—an ansatz method for finding the exact wavefunctions of certain one-

dimensional quantum many-body models, including the Anderson impurity model. The

methodology behind this relates to the Yang-Baxter equation, which is used to obtain

the so-called transfer matrix of a particular quantum system—this is used to generate

an infinite set of conserved quantities that commute with the Hamiltonian, including the

Hamiltonian itself. Therefore, if we can construct a transfer matrix that satisfies the

7See Refs. [60] and [61] for an introductory overview of the Bethe ansatz and the Yang-Baxter equation.
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Yang-Baxter equation, and also generates the Hamiltonian, then we deem this particular

quantum system to be integrable.

Using the aforementioned methodology, we can argue that the Hamiltonian in Eq. (1.14)

can be classified as integrable in certain regimes. Turning to the phenomenological fea-

tures of one-dimensional integrable systems, we find useful markers of integrability; for

example, systems comprising a one-dimensional, translationally invariant chain of N spins,

will typically possess N conserved densities8 that we denote {n̄i}. Interestingly, it seems

that FMBL systems can, in a sense, possess many more conserved densities than this due

to the nature of the l-bits we have constructed—if we consider n l-bits near site k, then

we can create 2n independent conserved quantities, all localised around k, by making l-bit

product states of the form
⊗n

k=1 τ
a
k (where a ∈ {0, x, y, z}) [15]. Another notable property

is the fact that the Hamiltonian in Eq. (1.14) will retain its integrable structure even when

weakly perturbed—it is robust to small parameter variations. This stems from the no-

tion that the constants of motion {τ zk} can simply be redefined under weak perturbations.

Note, however, that a Hamiltonian robust to weak perturbation need not always possess

l-bits which are straightforwardly redefined in perturbation theory—the latter implies the

former, but the former does not imply the latter.

1.8 Spin Echo and Potential Applications

Having explored the unique phenomenology of many-body localised systems—such as log-

arithmic spreading of entanglement, finite dephasing (despite zero dissipation), and emer-

gent integrability—it is natural to ponder whether or not these novel properties have any

potential applications. Perhaps unsurprisingly, the answer is a resounding yes. It turns

out that the lack of dissipation, due to the lack of any l-bit spin flips, enables dephas-

ing to potentially be reversed via spin echo procedures9. The basic concept underlying

a spin echo measurement is best described using an example: Say we were to set up a

weakly interacting system consisting of two spins, A and B. The precession of spin A

will be affected by the precession of spin B, and vice versa, thus generating mutual en-

tanglement. Eventually, the different precession speeds of spins A and B will result in

dephasing between the two; however, we can “refocus” the phase of spins A and B via a

8If one tries to create additional conserved densities by forming a so-called composite density of the
form n̄i ⊗ n̄j , then it appears that these will be non-local operators with an approximate range N [15].

9See [3] for a more detailed explanation of spin echo.
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pulse of electromagnetic radiation at some resonant frequency—essentially reversing the

dephasing between the two spins—and subsequently leaving a so-called spin echo which

can be measured.

In theory, there is nothing preventing us from using MBL systems to store quantum

information to be retrieved later via spin-echo procedures; however, there is a limita-

tion that prevents us from doing so using generic spin-echo procedures. This limitation

originates from the fact that l-bits are pseudospins that relate to p-bits via local unit-

ary transformations of varying complexity, which are also often dependent on parameters

such as disorder and interaction strength. This makes accessing l-bits experimentally a

distinctly nontrivial task; at least, when compared to the generic procedures that exist

for accessing p-bits. Therefore, while we can directly manipulate p-bits using standard

spin-echo procedures, direct manipulation of l-bits is much more difficult since each one

comprises a sum of p-bit product states. If we cannot directly manipulate a single l-bit,

we will be unable to fully reverse the dephasing of this l-bit; thus, we do not have access

to its spin echo. However, not all hope is lost. Promising work has suggested that “high-

fidelity” spin echo measurements can be made [62,63], despite the fact that only p-bits are

accessible; however, this is only strictly true in the “perturbative” regime [2], where l-bits

are simply p-bits with very weak “dressing”. As of yet, we are uncertain about what kind

of spin-echo procedure is required to fully dephase an l-bit far outside of this perturbative

regime; however, the revival probability of retrieving an initial state is large for strong

enough disorder [4].

In addition to these spin-echo procedures, there exist other closely-related experimental

signatures of dephasing dynamics. One such signature involves temporal revivals of local

observables [64], and another concerns double-electron resonance—a modification of the

aforementioned spin-echo procedures—allowing one to probe the dephasing of a given spin

via the probing of distant spins [62]. Furthermore, power-law decays of various quantities

have been identified for systems in the many-body localised regime—quantities includ-

ing mutual information [65], fluctuations of the out-of-time-order correlation functions

(OTOCs) [66], and fluctuations of the Loschmidt echo [67]. Each of these three power-law

decays were found to stem from a common dynamical dephasing mechanism, indicating

some universality in dephasing behaviour of many-body localised systems.
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Orbital Structure

2.1 Context and Background

Many-body localised (MBL) systems constitute a broad class of closed quantum systems

that fail to equilibrate under their own dynamics [2–7]. This behaviour manifests itself as

a violation of the eigenstate thermalisation hypothesis [13,14], a hypothesis that more con-

ventional, ergodic systems obey. A pressing question [42] is whether the MBL phase can

be explored equally well via features of the wavefunctions, such as in the area law of en-

tanglement [5,6], and via energy-level statistics [9], as well as how firmly these approaches

tie into key theoretical concepts. In particular, wavefunction-based characterisations so

far approach each eigenstate individually, while energy-level statistics are generally based

on energy-level spacings, and thereby involve the interplay of several states [6, 10, 11].

This leaves a conceptual gap between the most reliable characterisations of MBL and

the most influential theoretical framework, the concept of robust emergent integrabil-

ity [15–18], which ties the MBL phase transition to the emergence of an extensive set of

local conserved quantities that are commonly referred to as l-bits [15–21]. These l-bits can

be seen as highly structured constraints on the complete set of eigenstates of any given

system, both energetically as well as in terms of their wavefunctions. In principle, an

all-encompassing description of MBL should therefore also allow to develop expectations

for the joint characteristics of the wavefunctions of a given system.

In this work, we set out a framework to formulate and verify such expectations for

the paradigmatic case of fermionic systems, and use this to uncover their strongly cor-

related nature from a transparent geometric perspective. Our framework rests on the

36
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observation that for these systems, the MBL wavefunctions are closely approximated by

Slater determinants, a realisation that previously proved useful to lift Fock-space localisa-

tion [68,69] into real space by means of the one-particle density matrix [25–35]. Here, we

propose to capture this structure by considering the span of single-particle orbitals whose

Slater determinant provides the largest overlap to a given eigenstate—known in quantum

chemistry as Brueckner orbitals [22–24]—and show that this indeed provides a natural

avenue to study the unexplored geometric interrelations between the wavefunctions of a

given system.

Our key insights are the following: While individual MBL wavefunctions are indeed

well approximated by a single Slater determinant, when comparing different eigenstates

of the same system the underlying orbitals are generally mutually incompatible with each

other. We define and quantify this mutual incompatibility precisely using a natural geo-

metric measure, based on the projection operators of the occupied Brueckner orbitals from

different eigenstates. We then establish the finite extent of this incompatibility in a model

system, use random-matrix theory as a benchmark to show that it scales systematically

with system size, and develop this picture further by varying the disorder and interaction

strength. Finally, we relate the observed incompatibility to features of the aforementioned

l-bit operators, whose systematical dressing is revealed by geometric correlations of states

with different particle numbers. The proposed framework therefore provides a natural

perspective on the emergence of MBL that complements traditional insights, revealing

strongly correlated features that can be precisely quantified.

2.2 A Curious Question

As we discussed in the introduction, systems in the many-body localised regime are char-

acterised by distinctive dynamical properties that are reminiscent of a phase transition

into a non-thermal regime. Chief amongst these is the spontaneous emergence of an ex-

tensive set of conserved quantities which are invariant under the dynamics of the system.

In the noninteracting case, we see individual physical particles—hereby referred to as p-

bits—localise around specific positions in real space, as shown in Fig. 2.1(b). However, as

we introduce finite interactions into the system—as shown in Fig. 2.1(c)—it is natural to

wonder if there exists a many-body analogue to these p-bits which maintain the necessary
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Figure 2.1: (a) In a typical non-disordered system—a clean crystal, for example—the

eigenstates spread throughout the system in a Bloch-wave-like manner. The single-particle

orbitals associated with such an eigenstate will all be occupied to roughly the same degree,

signifying thermal equilibrium. (b) The distinguishing property of Anderson localisation

is that, for sufficiently strong disorder, there is a vanishing probability that any given

particle will make a resonant transition from one site to another spatially separated from

it. The particles are thus spatially localised, with exponentially decaying presence as one

moves away from it. The single-particle orbitals will therefore be distinctly occupied or

unoccupied—their wave-like nature is lost. (c) It is instructive to ask what happens when

one introduces finite interactions into an Anderson-localised system. To first order, this

means the introduction of pairwise hoppings of particles between localised single-particle

orbitals. It is natural to question if the localised phase is robust to such a process.

dynamical invariance. Let us hereby refer to these quasiparticle-like conserved quantities

as localised bits, or l-bits. Of course, in the noninteracting case, l-bits simply take the

form of p-bits; therefore, a natural construction of l-bits involves the adiabatic extension

of these p-bits into the interacting regime via perturbative expansion. Such an expansion

can be written as

q†i = p†i +
∑
l,m,n

Klmnp
†
l p
†
mpn + . . . . (2.1)
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Note that the form of Eq. (2.1) implies that the l-bit operator q†i simply collapses to a bare

p-bit operator p†i in the absence of interactions, where all the interaction constants {Klmn}

are zero and we have perfect Fock-space localisation. It is not hard to see why such an l-bit

construction is a highly attractive prospect, as it allows us to account for interactions via

an iterative process, by which we gradually add terms that obey the same commutation

relations as the p-bits; namely, that {q†i , qj} = δij , {qi, qj} = 0, and [q†i qi, H] = 0 for all i

and j1. In addition, the l-bit operators must also generate a complete orthogonal set of

single-quasiparticle orbitals which span the space of the single-quasiparticle sector2; thus,

they should be able to identify all eigenstates of the Hamiltonian via some action on the

vacuum state.

An instructive question arises: what is the minimum number of unique orbitals re-

quired to span a many-body localised system? Let us begin with the noninteracting

case. Since, by definition, there is a bijective mapping between single-particle orbitals

and p-bit operators p†i , this question is equivalent to: how many p-bit operators p†i are

required to form a complete basis of many-body eigenstates with the form (
∏
i p
†
i ) |vac〉?

Say we have a system composed of N particles confined to a one-dimensional lattice of

L atomic sites; the basis of such a system will be spanned by a number of eigenstates

equal to the binomial coefficient
(
L
N

)
= L!/N !(L−N)!. Therefore, we can simply surmise

that we require L p-bit operators p†i , with each eigenstate being a unique product state

of N of them (
∏N
i p
†
xi) |vac〉. This is simply a restatement of the Slater determinant in

second quantisation notation3 (see appendix A.1). If it is truly the case that extending

this notion into the regime of finite interactions simply requires that we evolve our p-bit

single-particle operators p†i into l-bit quasiparticle operators q†i , this means that, analog-

ous to the noninteracting case, we will require L quasiparticle orbitals to span a general

many-body localised system. These quasiparticle orbitals will map onto l-bit operators,

but what form should these l-bit operators take?

On the face of it, the assumptions made in the perturbative construction of Eq. (2.1)

are not at all outlandish; however, have they ever been verified? To make things as explicit

as possible, we can summarise the purpose of this chapter with the exploration of two very

1In the case of bosonic p-bits, we need simply replace the anticommutation relations {a, b} with com-
mutation relations [a, b].

2We will henceforth refer to single-quasiparticle orbitals simply as quasiparticle orbitals for brevity.
3There are many detailed sources which explain second quantisation notation in great depth, such as

Ref. [78].
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simply stated questions:

1. Are the eigenstates of a given many-body localised system well-approximated by

Slater determinants?

2. If so, are these Slater determinants constructed from a common set of single-particle

orbitals?

The former question pertains to a more general property of many-body localised sys-

tems; namely, that strongly localised eigenstates should be close to Slater determinants

of quasiparticle orbitals. The entire premise of emergent integrability—in the context of

low-to-moderate interaction strength—rests upon the answer to the former question being

“yes”. The latter question is more nuanced, and concerns what form l-bits should take.

The validity of the perturbative expansion outlined in Eq. (2.1) rests upon the assump-

tion that all eigenstates are constructed from a common set of L quasiparticle orbitals,

thus immediately implying that the answer to the latter question is “yes”. If the answer

to this question is no, then we have identified an important flaw in considering l-bits as

perturbative in nature.

2.3 Constructing Single-Particle Orbitals

2.3.1 The One-Particle Density Matrix

In order to quantify the extent to which defined l-bits manifest themselves in individual

many-body localised eigenstates, we make use of the one-particle density matrix (OPDM),

defined as

ρ
(n)
ij ≡ 〈ψn| c

†
icj |ψn〉 , (2.2)

where |ψn〉 represents the nth many-body eigenstate. Note that we have also made the

switch from generic p-bit operators pi to explicit fermion creation and annihilation oper-

ators, denoted by c†i and ci respectively. The OPDM is normalised differently to the more

traditional density matrix, with tr{ρ} = 1, in that it obeys the condition tr {ρ} = N .

Therefore, we can interpret its eigenvalues as single-particle occupations, as the L eigen-

values will conveniently sum to N . From each of these OPDMs, we can also obtain a set

of L natural orbitals {|φα〉}, defined by the eigenvalue-eigenvector relationship

ρ |φα〉 = nα |φα〉 , (2.3)
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where nα represents the occupation associated with the αth natural orbital |φα〉, which

is subject to 〈φα|φβ〉 = δαβ. In the case of perfect Fock-space localisation, where all

states are constructed from Slater determinants, the occupation spectrum of the OPDMs

will be degenerate, and all occupations will be either one or zero exactly. In this case,

the N natural orbitals with eigenvalue nα = 1 will span the space of the single-particle

sector used in the relevant Slater determinant. However, this exact case is generally only

guaranteed in the case of noninteracting systems, and it is more likely that the occupation

spectrum will be non-degenerate in the case of non-zero interactions. In this case, there

is no choice of N orbitals that will span the space of the entire single-particle sector, and

thus all L orbitals are required.

The occupation spectrum of the OPDMs provides a useful diagnostic regarding the

transition into the fully many-body localised regime: whereas systems in the ergodic

phase will exhibit many-body-like occupations where 0 < nα < 1, we expect systems in

the localised phase to have well-defined occupations, such that nα = 1 or nα = 0. This

behaviour signifies the suppression of Fock-space delocalisation in the many-body localised

phase, while it is pronounced in the ergodic phase.

Therefore, in the many-body localised regime, the L natural orbitals serve as perfect

candidates for the single-particle orbitals supposed in section 2.2, with the N occupied or-

bitals for a given eigenstate mapping directly onto the N single-particle operators required

to build that eigenstate. However, this indeed presumes the answer to both questions in

section 2.2 being “yes”, which we have yet to verify. The answer to question 2 depends

upon further numerical analysis; we can, however, remove the necessary presumption of

question 1 by creating so-called best-fit Slater determinants that approximate a given

eigenstate, which will be discussed in section 2.3.3.

2.3.2 Measures of Localisation

There exist typically utilised scalar measures that gauge the closeness of a given state to

a Slater determinant; namely, the occupation entropy of a state’s corresponding OPDM,

given by

Sn = − tr ρn ln ρn, (2.4)
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along with its purity:

Pn = tr (ρn)2 , (2.5)

where ρn is the OPDM associated with the nth many-body eigenstate, and 0 ln0 ≡ 0.

From the form of Eq. (2.4), it can be seen that the occupation entropy will only be zero

when all eigenvalues of the OPDM are either one or zero; therefore, states with a low

occupation entropy will be close to a Slater determinant, and these states will also possess

a high purity of order Pn ∼ N .

However, while the aforementioned measures are relatively quick to calculate, and

provide reasonable qualitative evidence indicating closeness to a Slater determinant, we

can utilise a more direct measure involving Brueckner orbitals, which we will now discuss.

2.3.3 Brueckner Orbitals

Brueckner orbitals are the name given to a set of N single-particle orbitals, each with

dimension L, which maximise the overlap between a single Slater determinant constructed

from these orbitals (optimal Slater determinant), and a given eigenstate of our system.

To phrase this more mathematically, the Brueckner orbitals maximise the overlap

In ≡ |〈ψn|Sn〉|2, (2.6)

between eigenstate |ψn〉 and its corresponding optimal Slater determinant |Sn〉. Therefore,

this allows us to accurately quantify how well a given eigenstate can be approximated by

a single Slater determinant. These orbitals enjoy a wide range of applications in quantum-

chemical approaches to interacting quantum systems [22–24,70], and their use can also be

extended to a systematic approximation by a series of Slater determinants [71,72].

While it may be possible to utilise analytical methods to construct these orbitals

for smaller systems with fewer fermions, this becomes an impossibly difficult task for

even slightly larger systems where N > 2. There is more than one way to construct

these orbitals numerically; however, we should turn our attention to methods in which

the overlap increases monotonously with the number of iterations in order to be sure

that the Brueckner orbitals are at least close to optimal. One possible way of doing this

involves the optimisation of one single-particle orbital at a time, thus ensuring monotonous

improvement of the overlap as the number of iterations is increased. A detailed review

of a generalised process for constructing M orbitals which maximise the overlap In can
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be found in Ref. [71] and also appendix A.2; however, it should be noted that we solely

concern ourselves with the special case of M = N here.

2.3.4 Projecting onto a Single-Particle Space

We have now defined two types of candidate single-particle orbitals in the form of the

natural orbitals of the OPDM, and also the Brueckner orbitals which maximise overlap

with a single Slater determinant. In general, these two sets of single-particle orbitals can

be very different to one another. In particular, when the overlap is moderate or small,

the differences are very easily seen by noting that—for a given many-body eigenstate

|ψn〉—there are L corresponding natural orbitals {φ(n)
α }Lα=1, whereas there are only N

Brueckner orbitals {χ(n)
α }Nα=1. The two sets of orbitals can be so different, that constructing

the Bruckner orbitals from the—more easily obtained—OPDMs can prove to be a very

numerically unfavourable task [70–72].

We can therefore surmise that the natural orbitals span a larger space, and this is

relatively unsurprising, as the natural orbitals can be thought of as a many-body extension

of the noninteracting case where all states are exactly representable as Slater determinants.

However, as we discussed in section 2.2, the many-body localised regime is characterised

by a spontaneous emergent integrability, and this has dramatic consequences on the nature

of natural orbitals. In particular, as stated in section 2.3.1, the natural orbitals will start

to reflect single-particle-like behaviour in the localised regime, and will thus display more

defined occupations nα → 0 or 1. This emergent order out of chaos reduces the span

of the single-particle sector, and results in a reduction in the number of natural orbitals

L→ N , which signals the formation of a distinct basis of l-bit quasiparticle operators. As

the natural orbitals undergo a notable transformation, so do the Brueckner orbitals, in

that they will increasingly become better approximations of the many-body eigenstates,

signified by a unity-approaching overlap Im → 1. Concurrently, the OPDMs will become

more projector-like in nature ρm → Pm, where the projectors can be explicitly written

as (Pm)ij = 〈Sm|c†icj |Sm〉. These general observations indeed apply well to individual

eigenstates inside the many-body-localised regime [25–27], which we will expand on in

later sections.

If we observe the new emergent structure of many-body localised natural orbitals

and compare them to the, now more accurate, Brueckner orbitals, we can see that they
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now span the same single-particle space, as they are now both sets of N L-dimensional

orbitals which must uniquely characterise a given many-body eigenstate. In fact, in the

case of perfect localisation nα ∈ {0, 1}, the natural orbitals are completely identical to

the Brueckner orbitals, provided that the Brueckner orbitals are properly orthogonalised.

In noninteracting systems, the single-particle eigenstates are known to provide a joint

set from which one can choose the Brueckner orbitals; however, it is presumptuous to

assume the same for the case of finite interactions. In general, such a single-particle

basis is not at all guaranteed by the mere requirement that the corresponding many-

body Slater determinants are orthogonal to each other. This can be summarised by the

following statement: Even when two (or perhaps all) eigenstates of an interacting system

are exact Slater determinants, this does not guarantee that there is a common single-

particle basis from which one can form the Brueckner orbitals of these eigenstates. This

is the observation that gave rise to question 2 in section 2.2.

Indeed, it is easy to quantify and detect this orbital incompatibility, as it can be

established already on the level of pairs of many-body eigenstates |ψl〉 and |ψm〉. When

the orbitals of both states are compatible with each other, their projectors, Pl and Pm,

commute. We therefore introduce the following incompatibility measure,

Cml ≡
√

tr [Pl, Pm][Pm, Pl] =
√

2tr (PlPm − (PlPm)2), (2.7)

which mathematically corresponds to the Frobenius norm of the commutator of both

projectors. As the projectors Pm characterise N -dimensional subspaces in the single-

particle Hilbert space H1—mathematically, the Grassmannian G(H1, N)—this provides

us with a simple geometric picture of the interrelation between different wavefunctions of

a given MBL system.

2.4 A Deeper Look into Orbital Incompatibility

Previously, in section 2.3.4, we established a measure of incompatibility between two pro-

jectors; however, the incompatibility measure is also applicable directly to the OPDM cor-

responding to a many-body eigenstate. The general incompatibility measure will therefore

be defined as

‖[ρn, ρm]‖ ≡
√

tr [ρn, ρm][ρm, ρn]. (2.8)
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The reason Eq. (2.8) can be used as a measure of incompatibility can be seen more

clearly by explicitly presenting the OPDM in its diagonal basis ρn = UnDnU
†
n, where Dn

is the diagonal matrix of occupations, and Un is the matrix of natural orbitals fulfilling

U †nUn = 1. If we assume that any given pair of OPDMs are constructed from the same

natural orbitals, then this allows us to set Un = Um = U and thus rewrite Eq. (2.8) as

[ρn, ρm] =
[
UDnU

†, UDmU
†
]

= U [Dn, Dm]U †

= 0. (2.9)

It is clear from Eq. (2.9) that any two OPDMs which share the same natural orbitals will

commute, resulting in an incompatibility measure of zero. Such orbitals are said to be

“compatible”. Conversely, if the compatibility measure is non-zero, then the orbitals are

said to be “incompatible”. If all OPDMs were to be constructed from the same basis of

natural orbitals, then it would follow that the compatibility measure would be zero for all

pairs of eigenstates, thus immediately affirming both questions asked in section 2.2 with a

resounding “yes”; however, there is no reason to believe that this is necessarily the case.

2.4.1 A Tight Lower Bound

We justify our compatibility measure by establishing that it possesses a strict lower bound

of zero. From our definition of the OPDM in Eq. (2.2), it is readily seen that the OPDM

is Hermitian, which is to say that ρn = (ρn)†. Using this property, we find that

[ρn, ρm]† = (ρnρm)† − (ρmρn)†

= (ρm)†(ρn)† − (ρn)†(ρm)†

= ρmρn − ρnρm

= −[ρn, ρm], (2.10)

and thus is anti-Hermitian. Therefore, the product of commutators in Eq. (2.8) can also

be written as

[ρn, ρm][ρm, ρn] = −[ρn, ρm][ρn, ρm]

= [ρn, ρm]†[ρn, ρm]

≡ A†nmAnm. (2.11)
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Eq. (2.11) informs us that Eq. (2.8) is simply the Frobenius norm of [ρn, ρm]. It is read-

ily seen that Eq. (2.11) is Hermitian, since (A†nmAnm)† = A†nmAnm. Moreover, we can

conclude that

v†A†nmAnmv = (Anmv)† (Anmv) ≥ 0 ∀ v. (2.12)

Since Eq. (2.12) is true for all vectors, including eigenvectors, this signifies that all of

the eigenvalues of A†nmAnm are non-negative, and thus trA†nmAnm ≥ 0. By substituting

Eq. (2.11) into Eq. (2.8), and imposing the condition described in Eq. (2.12), we can now

state

‖[ρn, ρm]‖


= 0 if ρn = UDnU

† ∀ n

≥ 0 otherwise

(2.13)

We have now proven that the compatibility measure described in Eq. (2.8) is greater than

or equal to zero, and is always exactly zero when the OPDMs are constructed from the

same single-particle orbitals; therefore, Eq. (2.8) is a valid measure of compatibility.

2.4.2 A Naive Upper Bound

The compatibility measure is also subject to a mathematical upper bound, implying that

there exists a theoretical maximal incompatibility. In order to derive such a bound, we

begin by rewriting the definition of the compatibility measure as

‖[ρn, ρm]‖ ≡
√

tr [ρn, ρm][ρm, ρn]

=

√
2 tr(ρn)2(ρm)2 − 2 tr(ρnρm)2. (2.14)

We note that tr(ρn)2(ρm)2 belongs to an inner product space. This is easily confirmed

by verifying the following properties for all n and m:

1. tr(ρn)2(ρm)2 = tr∗(ρn)2(ρm)2,

2. tr
[
(ρn)2 + C

]
(ρm)2 = tr(ρn)2(ρm)2 + trC(ρm)2,

3. tr(ρn)2(ρn)2 > 0.

The first point can be proved by noting that the {ρn} are real matrices, thus the trace

of products of them will always be a real number. The second point is automatically

satisfied by the properties of the trace. The third point can be addressed by recalling

that tr ρn = N > 0, thus immediately implying that tr(ρn)4 > 0 since the {ρn} are real

matrices.



Chapter 2. Orbital Structure 47

Since we are dealing with an inner product space, we can now use the Cauchy-Schwarz

identity to place an upper bound on the quantity

tr(ρn)2(ρm)2 ≤
√

tr(ρn)4 tr(ρm)4

≤
√

tr(ρn)2 tr(ρm)2

=
√
PnPm. (2.15)

If we additionally note that tr(ρnρm)2 > 0, then, by making use of Eq. (2.15), we can

reformulate Eq. (2.14) as

‖[ρn, ρm]‖ ≤
√

2 (PnPm)
1
4 ≤
√

2N. (2.16)

The minimal purity of a given OPDM is given by N2/L; therefore, provided that N2/L >

1, Eq. (2.16) will be stronger than the Böttcher-Wenzel inequality, which produces an

upper bound of
√

2PnPm ≤
√

2N .

2.4.3 Justifying the Compatibility Measure

Thus far, we have provided convincing arguments that our choice of compatibility measure

fulfils its purpose in the most extremal cases, in that it is bounded by zero for perfect

compatibility and possesses a finite mathematical upper bound. However, we have yet

to expound on a necessary critique: is it a viable measure of compatibility between the

extremal cases of perfect localisation and total ergodicity?

A convincing argument can be formulated as follows. We know from section 2.4.1 that

the compatibility measure can be written compactly as ‖[ρn, ρm]‖ =
√
− tr [ρn, ρm]2, where

we proved [ρn, ρm] to be an anti-Hermitian matrix. For convenience, let us use the notation

[ρn, ρm] |φnmi 〉 = iλnmi |φnmi 〉, where λnmi ∈ R as the eigenvalues of an anti-Hermitian matrix

are necessarily purely imaginary. It is then trivially seen that the compatibility measure

can be written as

‖[ρn, ρm]‖ =

√√√√ L∑
i=1

(λnmi )2. (2.17)

It is readily seen that if there exists a shared natural orbital |φnmi 〉 between two given

OPDMs, then it is also an eigenvector of the commutator between them, subject to

[ρn, ρm] |φnmi 〉 = 0, and thus directly implying λnmi = 0 for each shared natural orbital

between ρn and ρm. Turning our attention back to Eq. (2.17), we can see that applying



Chapter 2. Orbital Structure 48

this implies that the compatibility measure will fall precipitously to zero as more and

more orbitals are shared between any two given OPDMs. By the simple reversal of this

statement, we can also say that the compatibility measure will rise as fewer orbitals are

shared.

2.4.4 A Random Matrix Benchmark

To provide further insight, we now turn to the special case of incompatible projectors

in the ergodic regime—a regime in which the OPDMs ρ typically differ greatly from the

projectors P . To determine how sizeable the numerically observed orbital incompatibility

of MBL states is, we compare it to the extreme case of two random Slater determinants,

|Sm〉 and |Sl〉, with mutually uncorrelated projectors, Pm and Pl, admitting for additional

generality that they may represent states of possibly different particle number, N and N ′.

As before, we denote the dimensionality of the single-particle Hilbert space as L.

We set out to obtain a compact result for the averaged4 squared incompatibility,

C2
ml = 2 trPmPl − 2 trPmPlPmPl (2.18)

= 2 tr (PlPmPl)− 2 tr (PlPmPl)2, (2.19)

where the expression in the second line exploits that any projector fulfils P 2
l = Pl. This is

useful, as for any pair of states, we can adopt a single-particle basis in which Pl is diagonal

and projects onto the first N states of the basis. In this basis, the combination

PlPmPl =

X 0

0 0

 (2.20)

appearing in Eq. (2.19) has a finite subblock X of size N ×N , and in terms of this

C2
ml = 2 trX − 2 trX2, (2.21)

where the trace is now of matrices of size N .

Diagonalising Pm in this basis, we can further write (Pm)rs =
∑N ′

n=1 UrnU
∗
sn, where

the columns of the unitary matrix U are the orthonormalised eigenstates of Pm, and the

sum runs over the N ′ eigenstates with eigenvalue 1 (the remaining eigenvalues vanish).

Therefore, X = uu† be further written in terms of a rectangular N × N ′-dimensional

4All disorder-averaged quantities are indicated with overbar notation i.e. A is the mean average of A
from many disorder realisations.
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subblock u of the L× L-dimensional unitary matrix U . We then have to calculate

C2
ml = 2 truu† − 2 tr (uu†)2. (2.22)

In random-matrix theory, we can evaluate these averages using a standard ensemble.

Here we consider two cases, systems with real orbitals and systems with complex orbitals.

For the case of real orbitals, we take U to be uniformly distributed over the orthogonal

group O(L), which is also known as the circular real ensemble (CRE; distinct from the

circular orthogonal ensemble in which U = UT is still complex) [73]. For the case of

complex orbitals, we take U to be uniformly distributed over the unitary group U(L),

which corresponds to the standard circular unitary ensemble (CUE). In both ensembles,

all matrix elements of U are equivalent, which allows us to decompose the averaged traces

truu† = NN ′A, (2.23)

tr (uu†)2 = NN ′[B + (N +N ′ − 2)C + (N − 1)(N ′ − 1)D] (2.24)

of the truncated matrices into a small number of fundamental terms,

A ≡ |urs|2, B ≡ |urs|4, (2.25)

C ≡ |urs|2|urt|2 = |usr|2|utr|2 (s 6= t), (2.26)

D ≡ ursu∗psuptu∗rt (r 6= p, s 6= t), (2.27)

where unspecified indices are unconstrained. The same equivalence of matrix elements

also implies the following sum rules,

trUU † = L2A = L, (2.28)

tr (UU †)2 = L2B + 2L2(L− 1)C + L2(L− 1)2D = L, (2.29)

[(UU †)11]2 = LB + L(L− 1)C = 1. (2.30)

These expressions can all be combined to express the desired average as

C2
ml|RMT = −2DNN ′(L−N)(L−N ′). (2.31)

Averages such as the ones presented above also appear in quantum transport, where u

would be interpreted as a block of a scattering matrix and the given combinations determ-

ine, for instance, universal conductance fluctuations and shot noise [74]. Furthermore,

such averages also appear in the dynamics of quantum-chaotic systems, where U repres-

ents a time-evolution operator [75], while truncated versions appear in the description of
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leaky systems [76] and in Floquet-descriptions of quantum transport [77]. Here, A and

B can be worked out by interpreting them as moments of a coordinate from a random

L-dimensional unit vector, parametrised in hyperspherical coordinates, thereby relating it

to integrals of the form

In,m =

∫ π

0
cosn(ϕ) sinm(ϕ)dϕ, (2.32)

while C and D then follow from the given sum rules. In the CRE, we then have

A =
I2,L−2

I0,L−2
=

1

L
, (2.33)

B =
I4,L−2

I0,L−2
=

3

L(L+ 2)
, (2.34)

C =
1

L(L+ 2)
, (2.35)

D = − 1

(L− 1)L(L+ 2)
, (2.36)

while in the CUE we have

A = 2
I2,2L−2

I0,2L−2
=

1

L
, (2.37)

B = 2
I4,2L−2

I0,2L−2
+ 2

I2,2LI2,2L−3

I0,2L−2I0,2L−3
=

2

L(L+ 1)
, (2.38)

C =
1

L(L+ 1)
, (2.39)

D = − 1

L(L2 − 1)
. (2.40)

(In both cases, A also follows from the given sum rule, and they can be related to each

other using B|CUE(L) = 2[B|CRE(2L) + C|CRE(2L)].)

Therefore, as our final results, we obtain

C2
ml|RMT =

2NN ′(L−N)(L−N ′)
(L− 1)L(L+ 2)

(CRE) (2.41)

for the averaged squared incompatibility of random Slater determinants with real orbitals,

and

C2
ml|RMT =

2NN ′(L−N)(L−N ′)
L(L2 − 1)

(CUE) (2.42)

for the case of complex orbitals. For large systems near half filling, both expressions

approach C2
ml|RMT ∼ L/8 ≡ C2

0 . Level repulsion between the eigenvalues of X then

guarantees that fluctuations about this value are suppressed [74]. Therefore, C0 not only

characterises the squared incompatibility, but can be used as a benchmark for the incom-
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patibility Cml itself.

2.5 A Paradigmatic Model

Due to the necessity of accurate eigendecompositions for dynamical analysis, we are typ-

ically constrained to one-dimensional lattice models. In particular, there is a notable

choice that has become a well-studied model in the study of many-body localisation: the

random-field Heisenberg spin chain. However, since our key questions revolve around the

connection between noninteracting localised particles and l-bits—the many-body analogue

spontaneously emergent in the many-body localised regime—it makes sense to choose a

model that allows for the continuous introduction of finite interactions. Taking this need

into account, this leaves us with a paradigmatic model5 that is closely related to the

aforementioned random-field Heisenberg model: the S = 1/2 XXZ spin chain in a random

field

HXXZ = t

[
L∑
i=1

(
Sxi S

x
i+1 + Syi S

y
i+1 + ∆Szi S

z
i+1

)
−

L∑
i=1

hiS
z
i

]
, (2.43)

where ∆ allows for the continuous addition of finite density-density interactions and h

represents onsite interactions which can be chosen randomly to introduce disorder into

the model. The entire Hamiltonian is expressed in units of the nearest-neighbour hopping

constant t; therefore, all other parameters are defined to be unitless [25]. We can therefore,

with no loss of generality, set t = 1 for convenience, thus simplifying the form of the

Hamiltonian.

In order to explore the various properties of the many-body localised phase from a

single-particle perspective, we can apply a Jordan-Wigner transformation to Eq. (2.43),

thus producing a model consisting of N spinless fermions confined to a one-dimensional

lattice with L atomic sites. This new formulation will possess N =
(
L
N

)
uniquely distinct

states, which is used to form a basis labelled according to the configuration of occupied

and unoccupied sites. Each basis state is labelled as |X〉 ≡ |n1, n2, . . . , nL〉, where each

given ni represents the occupation of site i, and can be either one or zero, representing an

occupied or unoccupied atomic site respectively.

In the system we have described, we set the energy scale by introducing a shift, ni →

ni− 1/2, thus ensuring that partial filling of atomic sites will centre the spectrum roughly

5It is worth noting that Eq. (2.43) is actually a generalisation of the random-field Heisenberg model,
as the latter is retrieved simply by setting interactions to ∆ = 1.
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about E = 0. Since the occupation of each site can only be one or zero in our model, this

produces the more specific properties: ci |0i〉 = 0, and c†i |1i〉 = 0. Using this notation, our

Hamiltonian will take the form:

H = −1

2

L∑
i=1

(
c†ici+1 + h.c.

)
+

L∑
i=1

εi

(
ni −

1

2

)
+ V

L∑
i=1

(
ni −

1

2

)(
ni+1 −

1

2

)
. (2.44)

where ni = c†ici denotes the number operator6 for site i. The parameters, εi and V ,

respectively denote the on-site potential at site i, and the repulsive interaction strength

between adjacent sites. From the form of the Hamiltonian, we can see that only nearest-

neighbour “hoppings” are allowed (e.g. |1000〉 → |0100〉 is allowed, whereas |1000〉 →

|0010〉 is forbidden); and in addition, we employ periodic conditions, such that ci+1 ≡

c(imodL)+1, therefore allowing transitions from the last atomic site to the first atomic site

and vice-versa7.

It can be seen from the Hamiltonian defined in Eq. (2.44) that the interaction term

(with prefactor V ) is dependent on the occupations of adjacent atomic sites and explicitly

connects the model with Anderson localisation—as the noninteracting case V = 0 corres-

ponds to a free-particle model in a random potential. However, the on-site potentials {εi},

can be chosen freely. The importance of the onsite potentials cannot be overstated, since

the entire many-body localisation transition is encoded into the way we introduce disorder

into said onsite potentials. There exist a few different studies into various forms of disorder;

the most-studied distributions of the {εi} being: the box distribution with εi uniformly

distributed in the range [−W,W ], the bimodal distribution εi ∈ {−W,W} with corres-

ponding probabilities {P, (1 − P )} [79, 80], and the quasi-periodic case εi = ε cos(2βπi)

where β is an irrational number8 [82–84]. Here, we choose to study our questions using

the most general of the disorder distributions: the uniform box distribution.

2.5.1 Making the Basis Explicit

Since we have utilised second quantisation notation to construct the Hamiltonian, we must

explicitly represent our basis states using the same notation in order to avoid ambiguity.

6One could also make the transformation ni → ni + nshift where nshift ∈ R with no loss of generality.
This is because we can arbitrarily shift the zero of the Hamiltonian without affecting the relative differences
between quantities.

7It is worth noting that the choice of boundary condition can be tailored to our needs; for example, we
could also consider “open” boundary conditions where cL+1 |X〉 = 0.

8This model—in the special case of zero interactions V = 0—corresponds to the well-studied Aubry-
André model [81].
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Let X ≡ (x1, x2, . . . , xN ) denote an ordered N -tuple subject to the constraint (1 ≤ x1 <

x2 < . . . < xN ≤ L) where {xi ∈ Z|1 ≤ xi ≤ L}. Using this notation, we can uniquely

define a given basis state as

|X〉 ≡ c†x1c†x2 . . . c†xN |vac〉 , (2.45)

and a given many-body eigenstate can be written as

|ψn〉 ≡
∑

x1<x2<...<xN

ψn(x1, x2, . . . , xN )c†x1c
†
x2 . . . c

†
xN
|vac〉 , (2.46)

where |ψn〉 represents the nth many-body eigenstate, and ψ(x1, x2, . . . , xN ) ≡ ψ(X) rep-

resents the amplitude of a particular basis state. Note that Eqs. (2.45) and (2.46) are also

subject to the normalisation conditions 〈n|m〉 = δnm and 〈ψn|ψm〉 =
∑N

X=1 ψ
∗
n(X)ψm(X) =

δnm respectively.

In order to maintain consistency, the {xi} in c†x1c
†
x2 . . . c

†
xN can be interpreted as the

exponents of a base-2 (binary) number, written as 2x1−1 + 2x2−1 + . . . + 2xN−1. This

interpretation allows one to order the basis states in ascending order, which will be utilised

here9. For example, |1〉 ≡ c†1c
†
2 . . . c

†
N |vac〉 and |N 〉 ≡ c†L−N+1c

†
L−N+2 . . . c

†
L |vac〉. Using

the ordering system defined here, we can explicitly write the Hamiltonian operator as an

N ×N matrix, and the unitary transformation which diagonalises the Hamiltonian matrix

as H = ΨDHΨ† can be written as

Ψ =



ψ1(1) ψ2(1) . . . ψN (1)

ψ1(2) ψ2(2) . . . ψN (2)

...
...

. . .
...

ψ1(N ) ψ2(N ) . . . ψN (N )


, (2.47)

where each column corresponds to a given many-body eigenstate, and each row corres-

ponds to particular basis state. This matrix of eigenvectors, along with the corresponding

diagonal matrix of eigenvalues, can be obtained numerically via the exact diagonalisation

of the Hamiltonian matrix.

9Note that either descending or ascending order is acceptable, the latter of which is known as lexographic
ordering.
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2.6 An Illustrative Analytical Solution

2.6.1 A Minimal Special Case

To explain how the quasiparticle dressing arises, we provide a complete analytical solution

of a minimal model, representing on a small system of L = 4 sites with a particular disorder

configuration ε1 = ε3, ε2 = ε4 (approximate disorder configurations of this type will be

present generically in sufficiently long systems; however, for the analytical treatment we

apply periodic boundary conditions). Shifting energies such that ε ≡ ε1 = ε3 = −ε2 =

−ε4, we can rewrite the Hamiltonian as

H =− (d†1d2 + d†2d1) + ε[n′1 − n′2 + n′3 − n′4]

+ V [(n′1 + n′3)(n′2 + n′4)−
∑
i

n′i + 1], (2.48)

where we change the single-particle basis to

d†1 =
c†1 + c†3√

2
, d†2 =

c†2 + c†4√
2

, d†3 =
c†1 − c†3√

2
, d†4 =

c†2 − c†4√
2

(2.49)

and denote the corresponding densities as n′i = d†idi.

One wonderful property that makes this construction an instructive special case, is that

while there are L single-quasiparticle operators, only L/2 are required to fully represent the

hopping part of the Hamiltonian. Since this part comprises the only non-diagonal terms,

then this allows us to trivially deduce—in the subspace of N = 2 particles—the form of

two of the Hamiltonian’s eigenvectors immediately, as they send the hopping term to zero.

These two eigenvectors are of the form |1〉 = d†1d
†
2 |vac〉 and |2〉 = d†3d

†
4 |vac〉. These are

simply deduced as (d†1d2 +d†2d1)d†1d
†
2 |vac〉 = (d†1d2 +d†2d1)d†3d

†
4 |vac〉 = 0 due to the number

of creation and annihilation operators in each product state differing by more than one

for at least one site. In addition to this, the rest of the Hamiltonian being diagonal means

that we can easily confirm, without much calculation, that Hd†1d
†
2 |vac〉 = Hd†3d

†
4 |vac〉 = 0.

We also note that the product-state form of these eigenvectors also implies that they are

exact Slater determinants.

The other eigenvectors, however, are not as easily deduced, but they turn our to be

exact Slater determinants also. We can make their calculation simple and explicit by

defining a basis and representing Eq. (2.48) as a matrix. As in section 2.5.1, we order the

basis states in the standard computational way, by ordering them in ascending order as if
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they were binary numbers. Utilising this ordering, we can write the matrix representation

S(X) =


0

0

0

0

0

0

0

0

−1

0

−(2ε+ V )

0

0

−1

0

0

0

0

0

0

0

0

−1

0

0

2ε− V

0

−1

0

0

0

0

0

0

0

0


(2.50)

A notable property of the matrix above is the fact that two of the rows and columns

contain only zeroes. These are a direct result of the two zero-eigenvalue eigenvectors that

we previously deduced. We can therefore, without loss of generality, reduce our matrix to

a smaller one of the form

S(X) =


0

−1

0

−(2ε+ V )

−1

0

0

0

0

0

0

−1

2ε− V

0

−1

0


(2.51)

The eigenvectors of this matrix can be formulated as ansatzes that exploit its simple

structure. Namely, the eigenvectors will be four-dimensional vectors with exactly two

nonzero elements. If we delay normalisation until the final analysis, we can write these

eigenvectors quite simply as

|3〉 ∼= (0,−1, 0, α),

|4〉 ∼= (0, α, 0, 1),

|5〉 ∼= (−1, 0, β, 0),

|6〉 ∼= (β, 0, 1, 0), (2.52)

It is trivial to verify that these vectors are indeed orthogonal to each other, and thus

satisfy the necessary conditions for them to be suitable candidate eigenvectors. The next

task is a purely algebraic one, in that we can calculate the values of α and β by simply sub-

jecting them to the definition of an eigenvector, H |ψ〉 = E |ψ〉, and solving the resulting

simultaneous equations that arise. It is perhaps of little surprise that the form of α and

β are reminiscent of the solutions to a quadratic equation. The full set of eigenstates and
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associated eigenenergies , normalised and rewritten in second quantisation notation—in

the interacting subspace of N = 2 particles—are thus of the form

|1〉 = d†1d
†
2|vac〉, |2〉 = d†3d

†
4|vac〉 (E1,2 = 0),

|3〉 =
1√

1 + α2
(αd†1 − d†2)d†3|vac〉 (E3 = α),

|4〉 =
1√

1 + α2
(d†1 + αd†2)d†3|vac〉 (E4 = −1/α),

|5〉 =
1√

1 + β2
(βd†1 − d†2)d†4|vac〉 (E5 = 1/β),

|6〉 =
1√

1 + β2
(d†1 + βd†2)d†4|vac〉 (E6 = −β), (2.53)

where |vac〉 denotes the state without any particles and

α = (ε− V/2) +
√

1 + (ε− V/2)2,

β = (ε+ V/2) +
√

1 + (ε+ V/2)2. (2.54)

Notably, these states are all exact Slater determinants, but their form already suggests

that they cannot be created from a common set of single-particle orbitals. To verify this

feature, we identify the subspace of occupied orbitals in terms of the projectors Pm. In

the single-particle basis (2.49), where (Pm)ij = 〈m|d†idj |m〉, this gives

P1 =



1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0


, P2 =



0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1


P3 =



α2

1+α2 − α
1+α2 0 0

− α
1+α2

1
1+α2 0 0

0 0 1 0

0 0 0 0



P4 =



1
1+α2

α
1+α2 0 0

α
1+α2

α2

1+α2 0 0

0 0 1 0

0 0 0 0


P5 =



β2

1+β2 − β
1+β2 0 0

− β
1+β2

1
1+β2 0 0

0 0 1 0

0 0 0 0


P6 =



1
1+β2

β
1+β2 0 0

β
1+β2

β2

1+β2 0 0

0 0 1 0

0 0 0 0


.

(2.55)

We now see that the projectors, P3 and P4, do not commute with the projectors, P5

and P6. The same is true in the original single-particle basis associated with the operators
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c†i , for which the projectors follow from a unitary transformation UPlU
† with

U =
1√
2



1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1


. (2.56)

In particular, any such single-particle basis change leaves the incompatibility measure (2.7),

invariant.

Therefore, this minimal model provides an exact realisation of orbital incompatibility.

Each projector uniquely identifies the corresponding Slater-determinant eigenstate up to

an overall phase factor, but as the projectors do not commute, these Slater determinants

cannot be built from a common set of single-particle orbitals 10.

Notably, despite the described orbital incompatibility, we can still identify mutually

commuting conserved quantities, beyond the number operator I0 = n1 +n2 +n3 +n4, that

provide a complete set of quantum numbers to uniquely discriminate all states. Within

the two-particle sector, a possible choice is

I1 = d†3d3, I2 = d†4d4,

I3 =
1

1 + α2
d†3d3(αd†1 − d†2)(αd1 − d2) +

1

1 + β2
d†4d4(βd†1 − d†2)(βd1 − d2), (2.57)

each of which have eigenvalues 0 and 1, and thus qualify as bit-like conserved quantities.

We note that I3 displays explicit dressings with occupations d†idi. These considerations can

be extended to explicitly formulate such bit-like conserved quantities that are valid in all

particle-number sectors, which exhibit an analogous dressing with occupation operators of

single-particle orbitals. But before we explore this, we can squeeze more information out

of our existing formulations by simply considering the effect of the many-body localisation

transition on the l-bits.

2.6.2 The High-Disorder Limit

We can extend our understanding of the many-body localised case by taking the limit of

large disorder in our minimal model—specifically, we take the limit of large ε. Applying

the limit of large epsilon to Eq. (2.54), we find that the high-disorder limit produces simple

linear behaviour α ≈ β ∼ 2ε. If we now apply this to the eigenstates in Eq. (2.53), we

10The states, |1〉 and |2〉, are degenerate, but this cannot be used to remove this feature.
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find that our alternate single-particle basis simply becomes the quasiparticle basis

|1〉 = d†1d
†
2|vac〉, |2〉 = d†3d

†
4|vac〉 (E1,2 = 0),

|3〉 ∼ d†1d†3|vac〉 (E3 ∼ 2ε),

|4〉 ∼ d†2d†3|vac〉 (E4 ∼ −1/2ε),

|5〉 ∼ d†1d†4|vac〉 (E5 ∼ 1/2ε),

|6〉 ∼ d†2d†4|vac〉 (E6 ∼ −2ε). (2.58)

From Eq. (2.58), we also see level repulsion weaken as the eigenvalues start to become more

degenerate. We can also apply this very same large limit to the conserved quantities, which

produces

I1 = d†3d3, I2 = d†4d4,

I3 ∼ (d†3d3 + d†4d4)d†1d1. (2.59)

The conserved quantities are very clearly many-body-like in that at least one of them—

namely, I3—involves a sum of different quasiparticle densities. However, it is worth ex-

ploring the persistence of the quasiparticle transformation in the most general case, to

which we now turn.

2.6.3 Explicit Construction of Quasiparticles

We here identify the exact form of quasiparticles for the minimal model of Sec. 2.6.1 across

all particle-number sectors. These can be obtained by a unitary transformation

q†i = Ud†iU
†, (2.60)

constrained by the requirement that the eigenstates in all particle-number sectors (includ-

ing the vacuum state) can be written as

|n〉 =
∏
i∈In

q†i |vac〉, (2.61)

where {q†i , qj} = δij .

Using the exact form (2.53) of the eigenstates and eigenenergies, this unitary trans-
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formation can be identified as

U = n′1n
′
2 + n̄′1n̄

′
2

+ (D†1d1n̄
′
2 +D†2d2n̄

′
1)n̄′3n̄

′
4

+ (D1d
†
1n
′
2 +D2d

†
2n
′
1)n′3n

′
4

+ (D†13d1n̄
′
2 +D†23d2n̄

′
1)n′3n̄

′
4

+ (D†14d1n̄
′
2 +D†24d2n̄

′
1)n̄′3n

′
4, (2.62)

which features occupations n′i = 1−n̄′i = d†idi, as well as additional single-particle operators

D†1 =
1√

1 + γ2
(γd†1 − d†2), (2.63)

D†2 =
1√

1 + γ2
(d†1 + γd†2) (2.64)

with γ = ε+
√

1 + ε2, and

D†13 =
1√

1 + α2
(αd†1 − d†2), (2.65)

D†23 =
1√

1 + α2
(d†1 + αd†2), (2.66)

D†14 =
1√

1 + β2
(βd†1 − d†2), (2.67)

D†24 =
1√

1 + β2
(d†1 + βd†2) (2.68)

with α and β as given in Eq. (2.54).

Utilising also the corresponding occupations, Ni = 1 − N̄i = D†iDi, the quasiparticle

operators (2.60) follow as

q†1 = (n′3n
′
4 + n̄′3n̄

′
4)D†1 + n′3n̄

′
4D
†
13 + n̄′3n

′
4D
†
14; (2.69)

q†2 = (n′3n
′
4 + n̄′3n̄

′
4)D†2 + n′3n̄

′
4D
†
23 + n̄′3n

′
4D
†
24 (2.70)

q†3 = [n′1n
′
2 + n̄′1n̄

′
2 + (D†23D2N̄1 +D†13D1N̄2)n̄′4

+ (N̄2D
†
1D14 + N̄1D

†
2D24)n′4]d†3; (2.71)

q†4 = [n′1n
′
2 + n̄′1n̄

′
2 + (D†24D2N̄1 +D†14D1N̄2)n̄′3

+ (N̄2D
†
1D13 + N̄1D

†
2D23)n′3]d†4. (2.72)

From these expressions, the densities Ii = q†i qi then deliver the desired bit-like con-
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served quantities. The two densities

I1 = q†3q3 = d†3d3, I2 = q†4q4 = d†4d4 (2.73)

take the simple form of a one-particle density. We furthermore have I3 + I4 = d†1d1 +d†2d2,

so that I1 + I2 + I3 + I4 = I0 is the number operator. The remaining combination reads

I3 − I4 = (N1 −N2)(n′3n
′
4 + n̄′3n̄

′
4) + (N13 −N23)n′3n̄

′
4 + (N14 −N24)n̄′3n

′
4. (2.74)

As anticipated, this is manifestly many-body-like, and displays a strong dressing with the

particle-number occupations in various orbitals of the system. We refer to this as many-

body-like since it is not the case that the quasiparticle densities are conserved; but rather,

it is a sum of them that is conserved in the case of Eq. (2.74).

2.7 Numerical Results

2.7.1 Systematic Orbital Incompatibility

To establish the incompatibility of MBL states numerically, we first calculate the Brueckner

orbitals for each many-body eigenstate in a given realisation 11, and determine from these

the overlaps Im. We then order the states either by overlap Im or energy Em, and next

perform the disorder averages of these quantities, as well as of the incompatibility measures

Cml for all pairs of eigenstates. All averages are carried out over 103 realisations.

The results of this procedure in a many-body localised system (V = 1.5, W = 8) of

length L = 14 at half filling (N = 7) are shown in Fig. 2.2. In panels (a-c) the states are

ordered by overlap. The averaged overlaps in panel (b) confirm that, as anticipated, a

large fraction of states are exceedingly well approximated by a Slater determinant. Panel

(a) then verifies that nonetheless, these states generically have noticeably incompatible

orbitals, with the incompatibility roughly constant along the antidiagonal. The incom-

patibility is less pronounced for the states with the very largest overlaps, which as seen in

panel (c) arise from the edge of the energy spectrum. Panels (d) and (e) show that these

features are otherwise roughly independent of energy, provided again that we avoid the

edges of the energy spectrum, according to which the states are ordered there [see panel

11Brueckner orbitals can be constructed systematically in several ways. Here, we adopt the method of
Ref. [71], where one starts from a set of trial orbitals and updates these iteratively one at a time, by which
Im increases monotonously. This method can also be extended to approximate the state using M > N
orbitals entering several Slater determinants.
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Figure 2.2: Geometric features of eigenstates in the many-body localised system (2.44)

(half-filled system of size L = 14, with V = 1.5, W = 8; total number of states denoted as

N ). In the left column, states are ordered by descending overlap Im with a single Slater

determinant, while in the right column they are ordered by ascending energy Em; see panels

(b,c,f,g) for the averaged behaviour of these quantities. The observed large overlaps Im
show that a large fraction of states are well approximated by a single Slater determinant.

Panels (a,d) show the averaged incompatibility Cml defined in Eq. (2.7), which quantifies

the geometric interrelation of the states. This incompatibility is appreciable even for states

with Im ≈ 1, which are very precisely approximated by a single Slater determinant.

(f)].

As shown in Fig. 2.3, the observed incompatibility is indeed sizable and scales system-

atically with the system size. As a benchmark, we consider the extreme case of a pair of

states with randomly incompatible orbitals, and hence mutually uncorrelated projectors.

Applying random-matrix theory (RMT; see section 2.4.4), we find that for such a pair of

states, the squared incompatibility averages to C2
ml|RMT = 2N2(L−N)2/(L− 1)L(L+ η),
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Figure 2.3: Panel (a) shows the orbital incompatibility Cml for half-filled systems as in

Fig. 2.2, but for different sizes L = 8, 10, 12, 14 and additionally averaged over pairs with

fixed l + m (states are ordered by descending overlap Im). The collapse of data in units

of the random-matrix benchmark C0 =
√
L/8 reveals that this incompatibility scales

systematically as in a random system, and takes appreciable values. Panel (b) shows that

the overlap Im itself only weakly depends on the system size.

where η = 1 for complex orbitals and η = 2 for real orbitals. Hence, as self-averaging

suppresses statistical fluctuations, for a half-filled large system Cml|RMT ∼
√
L/8 ≡ C0.

To compare the MBL system with this benchmark, we take the result from Fig. 2.2(a)

averaged over the antidiagonals, and supplement this with the corresponding results for

half-filled systems of size L = 8, 10, 12. Figure 2.3(a) then confirms that the incompatibil-

ity in the MBL system is indeed sizeable, and in particular scales reliably as Cml = O(L1/2),

with a slight tendency to flatten out for larger systems.

Figure 2.4 illuminates how these characteristic features develop as a function of the

disorder strength, where we focus on states from the central 10% of the energy spectrum.

At values of W & 4, where many-body localisation sets in, a noticeable fraction of these

states become very well approximated by a single Slater determinant. This occurs roughly

independently of the system size, as can be seen both from the averages shown in panel (b)

as well as, in particular, in the colour-coded probability-density functions (pdfs) P (Im) in

panels (c,d). For smaller values of W , hence, in the ergodic phase, such well-approximated

states are rare, and the pdf is strongly size dependent. On the other hand, the incompat-

ibility measure Cml retains its systematic scaling for all disorder strengths, approaching its

RMT limiting value C0 for very weak disorder. Most importantly, this measure is again
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Figure 2.4: Dependence of (a) the averaged incompatibility Cml and (b) the overlap Im on

the disorder strength W (half-filled systems of size L = 8, 12 at fixed V = 1.5, obtained

from eigenstates from the middle 10% of the energy spectrum). Panels (c,d) display the

colour-coded probability density function of Im for both system sizes.

still sizeable deep in the MBL phase, dropping only gradually to ≈ C0/2 at W = 8.

Figure 2.5 further explores how the incompatibility develops as interactions V are

switched on when one moves from Anderson localisation to many-body localisation (W =

8, thick curve), and contrasts this with systems developing ergodic many-body dynamics

(W = 2, 3, 4, thin curves). In the ergodic systems, the overlaps Im drop significantly with

increasing interactions, and depend noticeably on system size. In contrast, in the cross-

over to the MBL regime for W = 8, the overlaps Im remain high while the incompatibility

Cml increases, with both quantities being only weakly dependent on the system size.

2.7.2 Numerical Evidence for Quasiparticle Dressing

So far, we have used the Brueckner orbitals to provide a direct geometric view of the

relation between different many-body localised eigenstates. In the remainder, we highlight

the utility of this framework to further illuminate the general phenomenology of these
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Figure 2.5: Dependence of (a) the averaged incompatibility Cml and (b) the overlap Im on

the interaction strength V (half-filled systems of size L = 12, solid lines, and L = 8, dashed

lines, obtained from eigenstates from the middle 10% of the energy spectrum). The thick

lines show data for W = 8, where the system crosses over from Anderson localisation to

many-body localisation. The thin lines contrast this to cases where the system transitions

towards ergodic behaviour.

systems, and formulate new questions. This applies particularly to the notion of emergent

integrability involving an extensive set of local conserved quantities, the aforementioned

l-bits. In the present work, these l-bits provide useful context when one interprets them

as quasiparticle densities Qi = q†i qi, and seeks to construct the quasiparticle operators in

the form displayed in Eq. (2.1) [26].

In the noninteracting case, where q†i = p†i , all eigenstates are Slater determinants con-

structed from a shared set of single-particle orbitals. In a many-body localised system,

higher-order terms must be taken into account, and a key guiding question is then whether

this expansion is perturbative in nature. Focusing on the first term in the series and as-

suming that it dominates, this would require the eigenstates of the system to be well

approximated by Slater determinants. But as we have seen, this is not a sufficient condi-

tion: even though the eigenstates are all well approximated by Slater determinants, these

Slater determinants cannot be constructed from a common set of single-particle orbitals,

revealing that the construction of the l-bits is of a nonperturbative nature.

To further quantify this, we consider the relation of eigenstates |ψm〉 with N = L/2

particles to eigenstates |ψl〉 with N = L/2− 1 particles. Some of these eigenstates should

be related by the application of a single quasiparticle operator |ψm〉 = q†i |ψl〉. In terms
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Figure 2.6: (a) Overlap Im,l in individual realisations and (b) averaged orbital incom-

patibility in the system of Fig. 2.2, but with states taken from half-filling (solid curves,

N = 7, index m) and from the sector with a particle removed (dashed curves, N = 6,

index l; total number of states denoted as N ′). See the text for an interpretation of the

systematic correlations in (a) and reduced incompatibility along the diagonal of (b) in

terms of emergent integrability.

of the projectors, Pm and Pl, the compatibility of these states will then depend on how

much the higher-order dressing terms in q†i fall into the space of orbitals that are already

occupied in |ψl〉. If they fully do, the two states will have the same overlap with a single

Slater determinant Im = Il, and be highly compatible.

As shown in Fig. 2.6, this feature is indeed present in the numerical data, and manifests

itself both on the level of individual realisations as well as in the statistical averages.

Firstly, as shown in panel (a), in individual realisations, hence, for fixed given systems,

the overlaps Im of states with different particle number follow each other closely. Secondly,

as shown in panel (b), for pairs of states between which the generic compatibility is not

already high, this interrelation shows up as a reduced averaged incompatibility of states

along the diagonal. The threshold value Cml ≈ 0.5 at the boundary of the region where

this effect is visible reveals the residual incompatibility of the described pairs of states.

These geometric observations give quantitative insights into emergent integrability

down to the level of individual systems, circumventing the challenging task of directly

constructing the underlying quasi-particle operators.
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2.8 Conclusions

In summary, we established a geometric framework to describe the interrelation of ei-

genstates in fermionic many-body localised systems, unraveling the intriguing structure

and correlations exhibited by these paradigms of constrained complex quantum dynamics.

Applied to a paradigmatic model system, this approach reveals that while individual eigen-

states are well approximated by single Slater determinants, they collectively depart from a

uniquely-defined single-particle picture. This supports the notion of strongly dressed qua-

siparticle excitations residing behind the local conserved quantities that characterise the

emergent integrability of these systems. The results complement the existing phenomeno-

logy based on individual eigenstates, such as the emergence of an area law of entanglement,

both on the level of individual realisations as well as in statistical averages.

These considerations can also be usefully extended in a number of directions. For

instance, based on our approach, one could inquire how well a single basis of orbitals can

approximate a larger number of eigenstates, if not all of them. For this, the geometric

perspective could be deepened by exploiting the general mathematical properties of the

projectors Pm, hence, the structure of the Grassmannian G(H1, N) defined by the N

dimensional subspaces in the single-particle Hilbert space H1. Furthermore, to obtain

additional insights into the ergodic phase and transition region, one could make use of the

fact that the notion of Brueckner orbital could be extended to systematically approximate

states by multiple Slater determinants. Finally, the described connection of our approach

to the ubiquitous notion of l-bits, as well as generalisations of the one-particle density

matrix [31,33], could be explored to extend these considerations to non-fermionic systems,

such as bosonic systems and spin chains.



Chapter 3

Chiral Symmetry and Zero Modes

3.1 Context and Background

Complex quantum systems owe their rich physical properties to the intricate interplay

of symmetries, disorder, and interactions. This interplay is mirrored by the intertwined

concepts and frameworks which have been developed to capture these aspects. Symmetry-

reduced representations of quantum systems were established at the beginning of quantum

mechanics [85], while the absence of unitary symmetries allows for complex wave dynamics

even for low numbers of degrees of freedom [86]. This ties both to semiclassical descriptions

of classically chaotic systems as well as to statistical descriptions of structureless noninter-

acting disordered systems, whose properties are captured by random-matrix theory [87].

The latter provides a natural framework to classify complex quantum systems also in

accordance with their invariance under antiunitary symmetries, as pioneered by Wigner

and Dyson [88,89] and completed with the ten Altland-Zirnbauer universality classes [90].

This ten-fold way also underpins the topological classification of electronic band struc-

tures in periodic systems of different spatial dimensionality [91]. Besides time-reversal

symmetry, this classification also accounts for antiunitary charge-conjugation symmetries

and the combination of the two into a unitary chiral symmetry, as originally encountered

in random-matrix descriptions of Dirac systems [92].

For structureless systems, random-matrix theory describes wave functions ergodically

spreading across the whole system, but this can be amended to also provide statistical

descriptions of Anderson-localised systems, in particular in one-dimensional or quasi-one-

dimensional geometries [74]. Again, these descriptions can be organised according to

67
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the universality classes of the ten-fold way [93], and then account for topological phe-

nomena in nonperiodic, disordered settings. The most striking effect amongst these is

the possibility of such systems to be less localised near spectral symmetry points. This

phenomenon was first realised by Dyson [94], who noted that a one-dimensional system

with hopping disorder develops a logarithmically diverging density of states around the

band centre—the so-called Dyson singularity, which goes along with anomalously local-

ised states that exhibit a stretched-exponential spatial profile. Within the classification

framework described above, this relative delocalisation phenomenon becomes tied to the

existence of a topologically protected zero mode in a chirally symmetric system with an

odd-dimensional Hilbert space [95], and also occurs in higher-dimensional systems, where

the anomalously localised states can resemble those at a metal-insulator transition [96,97].

Weaker analogues of such anomalous localisation characteristics also occur in absence of

spectral symmetries [98, 99]. Such robust features deserve attention as they significantly

broaden the scope for topologically protected quantum phenomena to realistic, disordered

systems, both conceptually as well as in practical terms.

For many-body systems, interactions provide a significant complication of all of these

aspects, with much recent effort devoted to the question of ergodic versus many-body

localised behavior [2, 3, 100]. The ergodic phase is again well captured by random-matrix

theory [101], reflecting its original setting of nuclear physics [102]. Topological aspects

have been extensively studied for gapped ground-state physics [103], but topological order

can also emerge in excited states, where it competes with the many-body localised phase

[104, 105]. In particular, it has been found that such novel phases can be induced by a

particle-hole symmetry that pairs up excited states around the centre of the spectrum

[105–107]. However, the role of many-body zero modes pinned to such spectral symmetry

points is much less understood, both conceptually as well as concerning the identification

of concrete phenomena.

Here, we clarify this role by drawing motivation from the Dyson singularity. We first

identify a natural disordered many-body system displaying an analogous chiral many-body

zero mode, consisting of a simple spin-1 Ising chain with a random transverse field. We

then address the question of its localisation properties both in real space and in Fock

space, where we identify two localisation phenomena that characterise the zero mode. (i)

In real space the spin correlations of the zero mode fragment into 5 independent sectors.
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This fragmentation occurs both with respect to the even and odd sublattice, which gen-

eralises the sublattice polarisation of chiral zero modes in noninteracting systems, as well

as with respect to the orientations of the correlated spin, which is specific to the chosen

many-body context. This phenomenon holds at all disorder strengths. (ii) In contrast to

the noninteracting case, the zero mode still localises at strong disorder, both in real space

as well as in Fock space, as indicated, e.g., by an area law for the entanglement entropy,

a large inverse participation ratio, and short-ranged spatial correlations. However, these

measures also indicate that quantitatively, the zero mode is noticeably less localised than

the nonzero modes—a phenomenon that for brevity we refer to as ‘relative delocalisation’

in the remainder of this work. In particular, the bipartite entanglement entropy is signi-

ficantly enhanced for the zero mode by a system-size-independent factor of order unity,

while the inverse participation ratio is correspondingly reduced. Thereby, the zero mode

attains characteristics that set it apart from all other states in the system, even if they

may be very close in energy.

In Sec. 3.2, we describe the spin-1 Ising chain, which provides a natural model for the

described phenomena as it combines a chiral symmetry with an odd-dimensional Hilbert

space, and always features a zero mode in one of the two spin-parity sectors. In Sec. 3.3 we

first discuss the real-space fragmentation of the spin correlations, as this follows directly

from the symmetry constraints and holds at all disorder strengths, which we show analyt-

ically and illustrate numerically. In this section we also identify the spin correlations that

are most characteristic to quantify the localisation properties of zero modes and nonzero

modes, to which we then turn to in Secs. 3.4 and 3.5. In Sec. 3.4 we demonstrate the rel-

ative delocalisation of the zero mode numerically based on both Fock-space and real-space

measures. The analytical explanation of this relative delocalisation is provided in Sec. 3.5,

where we identify the dominant hybridisation patterns of zero modes and nonzero modes.

Enforced by the chiral-symmetry constraints, the dominant zero-mode hybridisation con-

figurations involve three spin states on neighbouring spins, while those of nonzero modes

only involve two spin states, so that the Fock-space localisation characteristics of these

modes fundamentally differ. In Sec. 3.6 we summarise and discuss the results and put

them into further context.
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3.2 Background

3.2.1 Model

To demonstrate the effects outlined in this work, we require a many-body system in which

a chiral symmetry is manifest for a system with an odd-dimensional Hilbert space. This

is naturally provided by a spin-1 Ising chain with a transverse magnetic field, given by the

Hamiltonian

H =

N∑
n=1

hnS
z
n + J

N∑
n=1

SxnS
x
n+1. (3.1)

Here J is the coupling strength between adjacent spins, described by the matrices

Sx =
1√
2


0 1 0

1 0 1

0 1 0

 , Sy =
1√
2i


0 1 0

−1 0 1

0 −1 0

 , Sz =


1 0 0

0 0 0

0 0 −1

 , (3.2)

while disorder of strength W is introduced via the on-site potentials, chosen independently

from uniform box distributions hn ∈ [−W,W ]. While the 2-dimensional Pauli matrices

are very well-known due to their exceedingly frequent use in the description of spin-1/2

systems, spin operators for higher spins are less commonly expressed. For this reason, it

makes sense to define the function of spin operator for any arbitrary spin before proceeding

with any specific matrix representations.

First of all, we should define the spin vector, which is commonly represented as:

S =


Sx

Sy

Sz

 . (3.3)

Each of the {Si} in Eq. (3.3) have commutation relations which hold regardless of spin,

which are as follows: [
Sa, Sb

]
= iεabcS

c, (3.4)

where a, b, c ∈ {x, y, z}, and εabc is the Levi-Civita symbol. In addition to the {Si} in

Eq. (3.4), we can also define ladder operators of the form:

S+ = Sx + iSy,

S− = Sx − iSy.
(3.5)

We can now define general properties for each of these operators. For a given spin-s,
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the generalised form of its spin operators {Si}, in the Zeeman basis |s,m〉 ≡ |m〉, are:〈
m′
∣∣Sx∣∣m〉 = (δm′,m+1 + δm′+1,m)

1

2

√
s(s+ 1)−m′m,〈

m′
∣∣Sy∣∣m〉 = (δm′,m+1 − δm′+1,m)

1

2i

√
s(s+ 1)−m′m,〈

m′
∣∣Sz∣∣m〉 = δm′,mm,〈

m′
∣∣S+

∣∣m〉 = δm′,m+1

√
s(s+ 1)−m′m,〈

m′
∣∣S−∣∣m〉 = δm′+1,m

√
s(s+ 1)−m′m,〈

m′
∣∣Ŝ2
∣∣m〉 = δm′,ms(s+ 1).

(3.6)

Considering the spin-1 case specifically, the action of the spin operators, defined in

Eq. (3.6), on a given single-spin basis state are as follows:

Sx |0〉 =
1√
2

(|+1〉+ |−1〉) , Sx |±1〉 =
1√
2
|0〉 ,

Sy |0〉 =
1√
2i

(|+1〉 − |−1〉) , Sy |±1〉 = ∓ 1√
2
|0〉 ,

Sz |0〉 = 0 |0〉 , Sz |±1〉 = ± |±1〉 .

(3.7)

From this point, if we define a single-spin basis in vector form like so:

|+1〉 =


1

0

0

 , |0〉 =


0

1

0

 , |−1〉 =


0

0

1

 , (3.8)

then we can proceed to build matrix representations of each of the primary spin operators

of the form presented in Eq. (3.2). Along with ladder operators of the form:

S+ =
√

2


0 1 0

0 0 1

0 0 0

 , S− =
√

2


0 0 0

1 0 0

0 1 0

 . (3.9)

The length of the chain is denoted as N , and in our general discussion below the size of

the individual spins is denoted as S. The Hilbert space then has dimension N = (2S+1)N ,

and is conveniently spanned by the joint eigenbasis

|s〉 =
⊗
n

|szn〉 (3.10)

of all operators Szn, where we label the states by the vector s of components szn ∈ {−S,−S+

1, . . . , S}.
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3.2.2 Symmetries

The primary reason we choose to study the transverse Ising model owes to the fact that

it possesses a chiral symmetry

XHX = −H, (3.11)

with a unitary involution fulfilling XX † = X 2 = 1. To see that this chiral symmetry is

manifest for all sizes of spin, consider the spin rotation operator

X = i2SN
∏

n even

Uxn (π)
∏
n odd

Uyn(π), (3.12)

or, more generally

Uab(π) = i2SN
∏

n even

Uan(π)
∏
n odd

U bn(π), (3.13)

with individual rotation matrices

Uan(ϕ) = exp (iϕSan) . (3.14)

It is easy enough to see that Uab(π)—via unitary transformation Uab(π)HU−1
ab (π)—reverses

the sign of all Hamiltonians of the general form

Hab =
N∑
i=1

hciS
c
i +

N∑
i=1

Jai S
a
i S

a
i+1 +

N∑
i=1

Jbi S
b
iS

b
i+1, (3.15)

provided that a 6= b 6= c, where a, b, c ∈ {x, y, z}.

The operator (3.12) is well-defined in infinite chains and finite chains with open bound-

ary conditions, while periodic boundary conditions require that the chain consists of an

even number of spins. This is easiest to highlight via examples.

The mathematical difference between open and periodic boundary conditions is the

spin-spin interaction term between the first and N -th spin in the chain, in other words:

Hab
op =

N∑
n=1

hnS
c
n +

N−1∑
n=1

JanS
a
nS

a
n+1 +

N−1∑
n=1

JbnS
b
nS

b
n+1,

Hab
per = Hab

op + JaNS
a
NS

a
1 + JbNS

b
NS

b
1.

(3.16)

From Eq. (3.16), one can see that the SaNS
a
1 term only exists in the case of periodic

boundary conditions. If we now turn our attention to the structure of Eq. (3.12), we can

see that both of the possible chiral symmetry operators, Uab and U ba, both apply distinct

operations to the even and odd sites of the spin chain. If we perform a chiral symmetry
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transformation on our Hamiltonian with each boundary condition, we find that:

UabH
ab
opUab = −Hab

op ∀ N

UabH
ab
perUab =


−Hab

op + JaNS
a
NS

a
1 + JbNS

b
NS

b
1 if N is odd

−Hab
op − JaNSaNSa1 − JbNSbNSb1 if N is even

(3.17)

From Eq. (3.17), we can see that open boundary conditions preserve the chiral symmetry

of the Hamiltonian for any number of spins; however, periodic boundary conditions only

preserve the chiral symmetry if, and only if, the number of spins is even. Since we use

periodic boundary conditions in our model, this restricts us to the study of even-length

spin chains if we wish to study the effects of this chiral symmetry. This is what we will

henceforth assume.

The operator X rotates all spins by π, about axes alternatingly aligned with x and

y, thus inverting the sign of all on-site terms ∼ Szn, as well as exactly one of the two

spin operators in the interaction terms ∼ SxnSxn+1, in accordance with the requirements of

Eq. (3.11). The factor i2SN in the definition (3.12) makes sure that X 2 = 1 holds for all

system lengths and arbitrary spin.

The assignment of sites as even or odd provides a gauge freedom, allowing the definition

of an alternative chiral symmetry operator

X̃ = i2SN
∏

n even

Uyn(π)
∏
n odd

Uxn (π). (3.18)

It follows that the system also possesses an ordinary symmetry [P, H] = 0, arising from

XX̃ ∝ P ≡
∏
n

U zn(π), (3.19)

which inverts the sign of all operators Sxn in the Hamiltonian and leaves the operators Szn

invariant. In the basis (3.10),

P|s〉 = exp

(
iπ
∑
n

szn

)
|s〉 = (−1)

∑
n s

z
n |s〉, (3.20)

so that P represents the total spin parity of the system. Therefore, we can divide the

Hilbert space into sectors of even and odd parity, which are of size N+ = N− = N/2 for

half-integer spins, while

N± = (N ± (−1)N )/2 (3.21)
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for integer spins. A partition into separate symmetry sectors would take the form:

H = H+ ⊕H− ∼=


H+ 0

0 H−

 , (3.22)

where the basis of H± includes all basis states that fulfil 〈X|P|X〉 = ±1 for any given basis

state |X〉. All numerical data in this report looks at the data collected from one of these

symmetry sectors—never the total Hamiltonian—as we see extreme degeneracy-related

effects in the eigenvalues if we do not discriminate between symmetry sectors.

Finally, as Sxn and Szn can always be represented by real matrices, the Hamiltonian

displays a time-reversal symmetry T HT ≡ H∗ = H, where T is antiunitary and ful-

fills T 2 = 1. Therefore, the system also possesses a charge-conjugation (particle-hole)

symmetry CHC = −H, where C = T X is an antiunitary operator with C2 = 1.

For spins of size 1/2, it is well known that the rotations defined in Eq. (3.14) can

be written as Ua(π) = iσa with the usual 2 × 2-dimensional Pauli matrices σa, where

one exploits the fact that σ2
a = 1. Note that Ua denotes a single-site operation, but the

subscript is dropped simply for brevity. In the case of spin 1, where the spin operators

are given by Eq. (3.2), we obtain in contrast

Ua(π) = 1− 2(Sa)2, (3.23)

where

Ua(π)U b(π) = U c(π) ∀ a 6= b 6= c 6= a, (3.24)

with corresponding matrix representations

Ux =


0 0 −1

0 −1 0

−1 0 0

 , Uy =


0 0 1

0 −1 0

1 0 0

 , U z =


−1 0 0

0 1 0

0 0 −1

 . (3.25)

It is easy enough to see from Eq. (3.25) that each of these operators is indeed Hermitian

and squares to unity, which immediately implies unitarity.

In other words, the set of these chiral symmetry operators, with the identity operator,

is isomorphic to the Klein four-group, which describes the symmetries of a nonsquare

rectangle. We can also exploit the relations [Ua, Sa] = 0 and
{
Ua, Sb

}
= 0, provided that

a 6= b. Also, while the spin-1 case is not as trivial as the spin-1/2 case, as many of the
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convenient properties of the Pauli matrices do not hold here—i.e. distinct spin-1 operators

do not anticommute, and also do not square to unity. Nonetheless, there is a particular

property that spin-1 operators possess which is of use to us; namely:{
Sa, (Sb)2

}
= Sa + δabS

a, (3.26)

where a, b ∈ {x, y, z}.

3.2.3 Basis Transformations

Although much of the numerics are obtained from the specific Hamiltonian shown in

Eq. (3.1), we can, in fact, generalise our findings by establishing operators that change the

basis of our Hamiltonian. In order to generalise sufficiently, we require only two operators:

the roll operator, and the swap operator.

The roll operator takes the form:

Rxyz = −(SxSy + SySz + SzSx), (3.27)

where the following properties hold true: det(Rxyz) = 1, Rxyz(Rxyz)† = (Rxyz)†Rxyz = 1,

and (Rxyz)3 = 1.

The roll operator applies a cyclic shift to each of the spin operators like so:

RxyzSx(Rxyz)† = Sy,

RxyzSy(Rxyz)† = Sz,

RxyzSz(Rxyz)† = Sx.

(3.28)

The swap operator takes the form:

V ca = {Sa, Sc}+ iεabcS
aSbSc, (3.29)

where the following properties hold true: det(V ca) = 1, V ca = (V ca)†, and (V ca)2 = 1.

The swap operator swaps two of the three spin operators, while reversing the sign of

the third. In other words:

V caSaV ca = Sc,

V caScV ca = Sa,

V caSbV ca = −Sb.

(3.30)

By using Eqs. (3.27) and (3.29), we can obtain any form of the transverse Ising model—

depicted in Eq. (3.15)—by applying them in succession to our specific Hamiltonian (3.1).
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3.2.4 Symmetry Groups

The operators we have defined thus far—{Ua}, {V ca}, and Rxyz—are all members of the

SU(3) symmetry group. In fact, we can define a symmetry group via these operators

which is necessarily subject to all four of the group axioms (with multiplication as the

group operation). The symmetry group is:

G = URV, (3.31)

where AB = {ab : a ∈ A, b ∈ B} ∀ A,B is a pairwise composition of the elements in A

and B, and the relevant proper subgroups are defined as:

U = Ux ∪ Uy ∪ Uz,

R = {1, Rxyz, (Rxyz)†},

V = Vxy ∪ Vyz ∪ Vzx

(3.32)

where Ua = {1, Ua}, Vca = {1, U bV ca}, provided that a 6= b 6= c and a, b, c ∈ {x, y, z}.

For ease of reference, we can define S0(G) = {Ux,Uy,Uz,R,Vxy,Vyz,Vzx} as the set of all

simple proper subgroups of G.

In addition to the larger symmetry group G, we can also identify a set of useful non-

simple proper subgroups S(G), each element of which is also subject to all four of the

group axioms:

S(G) = {U ,UR, G\U ,R∪ V}, (3.33)

where A\B = {a : a ∈ A, a /∈ B} ∀ A,B denotes the group of all elements which are in A,

but are not in B. If we look closely, we can deduce that R∪V is isomorphic to the dihedral

group of order six D3, and thus describes the symmetries of an equilateral triangle. We

can prove this isomorphism by considering the form of D3 like so:

D3 = {r0, r1, r2, s12, s23, s31}, (3.34)

where {r0, r1, r2} and {s12, s23, s31} respectively denote the set of rotations and reflections

that leave the equilateral triangle unchanged. We can also write down the complete set of

simple subgroups of D3, S0(D3) = {{r0, r1, r2}, {r0, s12}, {r0, s23}, {r0, s31}}.
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The elements D3 can be expressed as linear maps:

r1 : (1, 2, 3) 7→ (3, 1, 2),

sab : (1, 2, 3) 7→


(2, 1, 3) if (a, b) = (1, 2)

(1, 3, 2) if (a, b) = (2, 3)

(3, 2, 1) if (a, b) = (3, 1)

(3.35)

where (1, 2, 3) denotes the corners of an equilateral triangle, which are numbered in as-

cending order in the clockwise direction. We can now prove that (R∪ V) ∼= D3.

Proof. This should prove that there exists a group isomorphism between R∪V and D3.

(i): If R∪ V is isomorphic to D3, then there exists a linear map f , such that

f : (R∪ V) 7→ D3,

where f is defined as:

f(ab) = f(a)f(b) = f(i)f(j) = f(ij),

for all a, b ∈ (R∪ V), i, j ∈ D3.

(ii): R ∪ V and D3 possess the same group operation; therefore, we can trivially let

f(x) = x, which instantly proves f(xy) = f(x)f(y) ∀ x, y and reduces the proof of

f(ab) = f(a)f(b) = f(i)f(j) = f(ij) to the proof of ab = ij.

(iii): Set (1, Rxyz, (Rxyz)†, U zV xy, UxV yz, UyV zx) = (r0, r1, r2, s12, s23, s31) =

(1, 2, 3, 4, 5, 6) ≡ v. This allows us to write down:

1 : v 7→ (1, 2, 3, 4, 5, 6)←[ r0 : v,

Rxyz : v 7→ (3, 1, 2, 6, 4, 5)←[ r1 : v,

(Rxyz)† : v 7→ (2, 3, 1, 5, 6, 4)←[ r2 : v,

U zV xy : v 7→ (4, 5, 6, 1, 2, 3)←[ s12 : v,

UxV yz : v 7→ (5, 6, 4, 3, 1, 2)←[ s12 : v,

UyV zx : v 7→ (6, 4, 5, 2, 3, 1)←[ s12 : v.

(iv): (ii) and (iii) prove that (i) is true; therefore

(R∪ V) ∼= D3.
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3.2.5 Variance of Basis States

One might ask the question of how well the basis states approximate the many-body

eigenstates. One possible measure of this is defined as such:

∆(EX) ≡
√
〈X|H2|X〉 − 〈X|H|X〉2. (3.36)

From Eq. (3.36), we can see that ∆(EX) = 0 if 〈X|H2|X〉 = 〈X|H|X〉2, and this is only

true if |X〉 is an eigenstate of H. Therefore, we can use Eq. (3.36) as a measure of how

well |X〉 approximates |ψn〉.

Some algebraic manipulation yields the following result:

∆(EX) = J

√√√√ N∑
i=1

〈X|(Sxi )2(Sxi+1)2|X〉, (3.37)

which can be written alternatively as

∆(EX) =
1

2
J
√

4N(0, 0) + 2N(0, 1) +N(1, 1), (3.38)

where N(|si|, |si+1|) counts the number of times the permutation (si, si+1) appears in the

basis state |X〉, and is subject to the following constraint:

N(0, 0) +N(0, 1) +N(1, 1) =


N − 1 if H = Hop

N if H = Hper

(3.39)

From Eq. (3.38), we can see that the permutation (0, 0) contributes the most to ∆(EX),

thus the highest value of ∆(EX) occurs when |X〉 = |0〉. This means that |0〉 is the worst

approximation of a given many-body eigenstate (compared to other basis states), and any

many-body eigenstates that primarily localise through this channel will probably be more

delocalised (in Fock-space) than the average state.

3.2.6 The Zero Mode

A direct consequence of the chiral symmetry is that eigenstates |ψk〉 with energies Ek are

paired with eigenstates |ψk̄〉 = X|ψk〉 with energy Ek̄ = −Ek. The exception are zero

modes with energy Ek = 0, for which we formally identify the indices k̄ = k. Even in the

case of degeneracy of these zero modes, they can always be chosen to fulfil X|ψk〉 = σ|ψk〉,

where σ = ±1 distinguishes between two types of zero modes. The number νσ of modes of

each type is then constrained by the signature of X , according to TrX = ν+ − ν−, which
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serves as a topological index. In particular, in a system with an odd overall Hilbert space

dimension, at least one zero mode is always guaranteed to exist, as it is impossible to pair

up all states.

In the Ising chain, the Hilbert space dimension N is even in the case of half-integer

spins, and so are the two parity sectors of dimensionality N± = (2S + 1)N−1 as soon as

N ≥ 2. In contrast, according to Eq. (3.21), for integer spins N− is even but N+ is odd.

Hence, at least one zero mode, denoted as |ψ0〉, is guaranteed to exist in the even-parity

sector of chains with integer spins. In the basis (3.10), this can be attributed to the

existence of the state |0〉 (the state where szn = 0 for all spins), which is the only basis

state that is left invariant under the operation with the chiral operator X , which connects

all other basis states in pairs with index s and s̄ = −s.

The zero mode possesses an energy that remains pinned to zero no matter the dis-

order or interaction strength. This invariance with respect to parameter variations does

not occur for any other eigenstate, which leaves the question if this has any bearings

on the localisation characteristics, in analogy to what is known from single-particle sys-

tems. Therefore, the key question explored in this work is whether the zero mode displays

different localisation characteristics to the modes with finite energy.

3.2.7 Numerical Techniques

We will address the localisation properties of the zero mode both by analytical and nu-

merical approaches. The numerical results are obtained by exact diagonalisation from the

positive parity sector in chains with an even number N of spins of size S = 1, where

we apply periodic boundary conditions. As the effective Hilbert space dimension rises as

(3N + 1)/2, and only a single zero mode is present in each realisation, we obtain disorder

averages from chains of limited lengths up to N = 8, but also show results from individual

realisations with N = 10. For nonzero modes we collect data from the middle 10% of

the spectrum. Quantities assigned to the zero mode are denoted in the form Q0, while

those of nonzero modes are denoted in the form Q 6=0. Disorder averages of any quantity

are denoted by an overline, and are obtained from 10000 realisations. Where focusing on

individual disorder strengths, we use values W = 1 for weak disorder (ergodic regime),

W = 8 for moderate disorder, and W = 20 for strong disorder (localised regime).
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3.3 Fragmentation of the Zero-Mode Correlations

We start with a general key characteristic of the zero mode, which relates to its real-space

structure and holds at all strengths of disorder. We first introduce the spin correlation

matrix that captures this structure, and discuss its general properties. We then show

that the spin correlations of the zero mode fragment into five independent elementary

patterns, while for nonzero modes there are only two, and verify and illustrate these

patterns numerically.

3.3.1 Spin Correlation Matrix

The real-space spin structure in a given energy eigenstate |ψk〉 is captured by the correl-

ations

Ck,nm ≡


〈SxnSxm〉 〈SxnSym〉 〈SxnSzm〉

〈SynSxm〉 〈SynSym〉 〈SynSzm〉

〈SznSxm〉 〈SznSym〉 〈SznSzm〉

 , (3.40)

which we consider as blocks of a Hermitian matrix Ck of dimension 3N × 3N . We term

the eigenvalues and eigenvectors of this correlation matrix the correlation eigenvalues and

eigenvectors, in distinction to the energy eigenvalues and eigenvectors associated with the

Hamiltonian.

The following features are useful to note.

(i) According to the relation (Sxn)2 + (Syn)2 + (Szn)2 = 21, the trace Tr Ck = 2N is fixed.

(ii) The matrix is well-behaved under local changes (Sxn, S
y
n, Szn) → (Sxn, S

y
n, Szn)OTn of

the spin basis by an orthogonal transformation On (hence, basis changes that are compat-

ible with the Lie algebra), which transform the correlation matrix as Ck,nm → OnCk,nmO
T
m.

This leaves the eigenvalues of Ck invariant, while the corresponding eigenvectors automat-

ically adapt to the chosen local spin orientations.

(iii) Since the eigenstates of the Hamiltonian have a fixed parity, the expectation values

〈SznSxm〉 = 〈SznSym〉 = 0. Therefore, the spin correlation matrix decomposes into a direct

sum Ck = ∆k ⊕ Zk, given by the block decomposition Ck,nm = ∆k,nm ⊕ Zk,nm, where

∆k,nm =

〈SxnSxm〉 〈SxnSym〉
〈SynSxm〉 〈SynSym〉

 ,

Zk,nm = 〈SznSzm〉 .

(3.41)
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(iv) Utilising the unitary matrix

V =
1√
2

 1 1

−i i

 , (3.42)

we can further introduce the transformed matrix

ρk,nm = V †∆k,nmV =

〈S+
n S
−
m〉 〈S+

n S
+
m〉

〈S−n S−m〉 〈S−n S+
m〉

 (3.43)

with spin-ladder operators S±n = 2−1/2(Sxn ± iSyn). Recalling the analogy between spin-

ladder operators and fermionic creation and annihilation operators for systems with spin

1/2, this expression resembles a one-particle density matrix (OPDM), equipped with a

Bogoliubov-Nambu structure that is appropriate for a system with a nonconserved particle

number.

(v) In a canonical basis state |s〉, the correlation matrix ∆s is block-diagonal, with each

block having a correlation eigenvalue 1 and an eigenvalue 1− (szn)2, so that the correlation

eigenvectors are localised on individual spins. The correlation matrix Zs then has elements

Zs,nm = szns
z
m, and hence is of rank 1, with a single finite eigenvalue Zmax

s =
∑

n(szn)2 (as

indicated, we interpret this as the maximal eigenvalue). This counts the number of spins

with a nonzero z component.

These features imply that fully localised states are characterised by an approximately

quantised correlation spectrum, in close analogy to the OPDM occupation spectrum in a

many-body localised system [25, 26, 33]. In contrast, in an ergodic state represented by a

random superposition of basis states, the correlation matrix self-averages to Cerg
k ∼ (2/3)1.

This results in a correlation spectrum centred around the single value 2/3, smoothed out

by the influence of the residual off-diagonal elements of Ck, which is in close analogy to the

smooth OPDM occupation spectrum in an ergodic many-body system. The properties of

our defined spin correlation matrix (3.40)—stated within this section—can be made clear

by considering special cases, to which we now turn.

3.3.2 Illustrative Special Cases

3.3.2.1 The Noninteracting ρ Matrix

Since our system undergoes Fock-space localisation in our chosen basis of spin operators,

it makes sense to formulate the properties of the ρ-OPDM in the ideal case of perfect
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Figure 3.1: (a) Ergodic regime: The ρ-OPDM eigenvalues are close to continuous for both

the zero-mode and non-zero-mode; this is typical for most ergodic systems. (b) Transition

regime: The ρ-OPDM eigenvalues start to highlight differences between the zero-mode

and non-zero-mode. A gap starts to open up in the non-zero-mode spectrum at while the

zero-mode spectrum starts to level out and plateau. (c) Localised regime: The ρ-OPDM

eigenvalues are now clearly distinct between the zero-mode and non-zero-mode. There

appear to be two gaps in the non-zero-mode spectrum, while the zero-mode spectrum has

almost completely levelled out at 〈nα〉 ∼ 2. This could possibly be a signature of the

possible delocalisation of the zero-mode. Disorder-averaged over 103 disorder realisations.

Fock-space localisation. In order to do this, we begin by first defining some lightened

notation for an arbitrary cross-term:

ρ(s′,s) ≡

〈s′|S+S− |s〉 〈s′|S+S+ |s〉

〈s′|S−S− |s〉 〈s′|S−S+ |s〉

 . (3.44)

The non-vanishing cross-terms are given by:

ρ(1,1) =

2 0

0 0

 , ρ(1,−1) =

2 0

0 2

 , ρ(−1,1) =

2 0

0 0

 ,

ρ(−1,−1) =

2 0

0 0

 , ρ(0,0) =

2 0

0 2

 .

(3.45)

In the case of perfect Fock-space localisation, any given many-body eigenstate will be

equal to a given many-body basis state i.e. |ψ〉 = |X〉. Using this fact, we can define more

specific notation concerning the many-body diagonal terms:

ρX,ij ≡

〈X|S+
i S
−
j |X〉 〈X|S+

i S
+
j |X〉

〈X|S−i S−j |X〉 〈X|S−i S+
j |X〉

 . (3.46)

It is not too hard to surmise that Eq. (3.46) can be succinctly summarised by the following
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statements:

ρX,ii ∈ {ρ(0,0), ρ(1,1), ρ(−1,−1)},

ρX,ij = 02 ∀ i 6= j.

(3.47)

This allows us to write our fully diagonalised ρ-OPDM as

D(ρX) =

N⊕
i=1

ρX,ii. (3.48)

From Eq. (3.48), we can see that perfect Fock-space localisation (|ψ〉 = |X〉) reduces

ρ-OPDM to a diagonal matrix with exactly two distinct eigenvalues: two and zero. Each

non-zero spin in |X〉 contributes {0, 2} to the eigenvalue spectrum, while each zero spin

contributes {2, 2}. These analytical results are in good agreement with what is seen in

initial numerical work for a system of size N = 8, as seen in Fig. 3.1.

3.3.2.2 The Noninteracting C Matrix

We again consider the case of perfect Fock-space localisation, and thus formulate some

lightened notation for a given cross-term:

C(s′,s) ≡ ∆(s′,s) ⊕ Z(s′,s), (3.49)

where

∆(s′,s) ≡

〈s′|SxSx |s〉 〈s′|SxSy |s〉
〈s′|SySx |s〉 〈s′|SySy |s〉

 ,

Z(s′,s) ≡
〈
s′
∣∣SzSz |s〉 .

(3.50)

We can now calculate the non-vanishing cross-terms explicitly:

∆(±1,±1) =
1

2

 1 ±i

∓i 1

 , ∆(±1,∓1) =
1

2

 1 ∓i

±i −1

 , ∆(0,0) =

1 0

0 1

 ,

Z(±1,±1) = 1, Z(±1,∓1) = −1.

(3.51)

Interestingly, each of these Spin-1 cross-terms can be written quite succinctly as linear

combinations of the spin-1/2 operators (including the identity operator).

Again, we define notation for the many-body diagonal terms:

CX,ij ≡ ∆X,ij ⊕ ZX,ij , (3.52)
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Figure 3.2: (a) Ergodic regime: The C-OPDM eigenvalues are close to continuous for both

the zero-mode and non-zero-mode; this is typical for most ergodic systems. (b) Transition

regime: The C-OPDM eigenvalues start to highlight differences between the zero-mode

and non-zero-mode. A gap starts to open up in the non-zero-mode spectrum as its highest

eigenvalue rises dramatically, while the zero-mode spectrum starts to level out and plateau.

(c) Transition regime: The C-OPDM eigenvalues are now clearly distinct between the zero-

mode and non-zero-mode. A third of the zero-mode eigenvalues are close to zero and the

remaining two-thirds plateau at 〈nα〉 ∼ 1. The non-zero-mode eigenvalues exhibit a similar

trend; however, more than a third of the non-zero-mode eigenvalues are close to zero and

there is a large gap between the highest eigenvalue and the others due to the constraint

of the C-OPDM’s fixed trace. This stems from the dominant eigenvalue of ZX being very

high for the typical non-zero mode where |ψn〉 is close to |X 6= 0〉. Disorder-averaged over

103 disorder realisations.

where

∆X,ij ≡

〈X|Sxi Sxj |X〉 〈X|Sxi Syj |X〉
〈X|Syi Sxj |X〉 〈X|S

y
i S

y
j |X〉

 ,

ZX,ij ≡ 〈X|Szi Szj |X〉 .

(3.53)

Via some logical deductions, we can summarise Eq. (3.52) by the following statements:

CX,ii = ∆X,ii ⊕ ZX,ii,

CX,ij = 02 ⊕ ZX,ij ∀ i 6= j,

(3.54)

where

∆X,ii ⊕ ZX,ii ∈ {C(0,0), C(1,1), C(−1,−1)},

ZX,ij ∈ {−1, 0, 1} ∀ i, j.
(3.55)

We can rearrange the order of our C-OPDM’s basis states into a more convenient form—
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(êx1 , ê
y
1, ê

z
1, ê

x
2 , ê

y
2, ê

z
2, . . . , ê

x
N , ê

y
N , ê

z
N ) → (êx1 , ê

y
1, ê

x
2 , ê

y
2, . . . , ê

x
N , ê

y
N , ê

z
1, ê

z
2, . . . , ê

z
N ). Exploit-

ing this reordering allows us to write our full C-OPDM as

CX =
N⊕
i=1

(∆X,ii)⊕ ZX . (3.56)

This vastly simplifies the eigenproblem to:

det(CX − λ1) =
N∏
i=1

[det(∆X,ii − λ1)] det(ZX − λ1),

eig(CX) =
N⋃
i=1

[eig(∆X,ii)] ∪ eig(ZX).

(3.57)

We can now diagonalise each ∆X,ii very easily and thus obtain:

D(∆X,ii) ∈


1 0

0 1

 ,

0 0

0 1


 , (3.58)

where each non-zero spin in |X〉 contributes {0, 1} to the eigenvalue spectrum, and each

zero spin contributes {1, 1}.

Now that we have the eigenvalues of the {∆X,ii}, we need the eigenvalues of ZX . We

can begin this problem by first writing down the simple general structure of ZX explicitly:

ZX = sXs
T
X =


sX1 s

X
1 . . . sX1 s

X
N

...
. . .

...

sXNs
X
1 . . . sXNs

X
N

 , (3.59)

where sXi represents the spin of the i-th spin in basis state |X〉, and sX = (sX1 , s
X
2 , . . . , s

X
N ).

From the structure of Eq. (3.59)), we can deduce that every row is proportional to every

other; therefore

rank(ZX) =


0 if |X〉 = |0〉

1 otherwise

(3.60)

By making use of the rank-nullity theorem, we can now diagonalise ZX as:

D(ZX) = 0N−1 ⊕ Tr(ZX), (3.61)

where

Tr(ZX) = sT
XsX =

N∑
i=1

s2
i . (3.62)

The form of Eq. (3.62) immediately tells us that the dominant eigenvalue of ZX is equal

to the number of non-zero spins in |X〉.
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We can now write our fully diagonalised C-OPDM as:

D(CX) =
N⊕
i=1

[D(∆X,ii)]⊕ 0N−1 ⊕ Tr(ZX). (3.63)

This seems simple enough; however, we can actually recover our ρ-OPDM directly

from our C-OPDM by noting the form of Eqs. (3.47) and (3.58), which directly imply that

D(ρX) = 2D(∆X). These analytical results are in good agreement with what is seen in

initial numerical work for a system of size N = 8, as seen in both Figs. 3.1 and 3.2.

3.3.2.3 The General Z Matrix

The Z matrix is simpler in structure, and thus we do not need to make the assumption

of perfect Fock-space localisation to make meaningful statements about it. Since the Sz

spin operator is diagonal, we can surmise that, for any arbitrary many-body eigenstate,

we can write the elements of our so-called Z-OPDM—defined in Eq. (3.41)—as

Zn,ij =
∑

X∈[−d,d]

|ψn(X)|2 〈X|Szi Szj |X〉 . (3.64)

By making use of the chiral symmetry present in our system—and the resulting “mirrored”

eigenstates—it is convenient to write a given many-body eigenstate as

|ψn〉 ≡
∑

X∈[−d,d]

ψn(X) |X〉 , (3.65)

where the indices d label the basis states, and are subject to a specific computational or-

dering which, although arbitrary, must remain consistent. We can now simplify Eq. (3.64)

further by making use of the structure of Eq. (3.59), thus allowing us to write:

Zn =
∑

X∈[−d,d]

|ψn(X)|2sXsT
X , (3.66)

where, by definition, each sXs
T
X is an N ×N positive semidefinite matrix with rank zero

or one. In fact, the only rank zero case of sXs
T
X is the basis state with all spin-zeroes;

therefore, we can simplify our expression further by utilising this fact, along with the fact

that s−X = −sX :

Zn =
d∑

X=1

(
|ψn(X)|2 + |ψn(−X)|2

)
sXs

T
X . (3.67)

In particular, Eq. (3.67) allows us to identify a highly useful scalar measure: the largest

eigenvalue of Zn, which we will label as Zmax
n . The nature of Zmax

n can be understood

qualitatively by considering the extremal cases:
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• Perfect Fock-space localisation (IPR = 1):

Zn will be a rank one positive semidefinite matrix with Zmax
n = Tr(Zn) ∈ Z+. In

this case, Zmax
n can be interpreted simply as the number of non-zero spins in the

n-th many-body eigenstate’s only possible configuration.

• Fock-space delocalisation (IPR = 1/N ):

Zn will consist of the sum of (N − 1)/2 rank one positive semidefinite matrices with

Zmax
n ≈ 2/3.

In the case of perfect Fock-space localisation, Eq. (3.67) immediately recovers the

correct expression calculated previously in Eq. (3.59). The case of complete Fock-space

delocalisation, however, requires a slightly more complex argument, which will now ex-

plore.

Consider a matrix created via the concatenation of all of the {sX} like so:

S =
(
s−ds−d+1 · · · sd

)
. (3.68)

This allows us to rewrite Eq. (3.67) equivalently as:

Zn =

(
s−d · · · sd

)
|ψn(−d)|2 · · · 0

...
. . .

...

0 · · · |ψn(d)|2



sT
−d
...

sT
d

 , (3.69)

which is equivalent to an SVD decomposition, much like Eq. (3.84). If we now assume

the case of complete Fock-space delocalisation, then this allows us to state: |ψn(X)|2 =

1/N ∀ X ∈ [−d, d]. By using this fact, along with Eq. (3.68), we can rewrite Eq. (3.69)

as:

Zn

∣∣∣
IPR= 1

N

=
1

N SST. (3.70)

By noting the structure of our sT
X vectors, one can deduce that SST is proportional to

the identity matrix, with proportionality constant dependent on our choice of symmetry

sector like so:

SST =


(
3N−1 + 1

)
1 if H = H+

(
3N−1 − 1

)
1 if H = H−

(3.71)

where the symmetry sectors, H+ and H−, are described in Eq. (3.22). We can now
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substitute Eq. (3.71) into Eq. (3.70), and thus obtain:

Zn

∣∣∣
IPR= 1

N

=


2
(

3N−1+1
3N+1

)
1 ∼ 2

31 if H = H+

2
(

3N−1−1
3N+1

)
1 ∼ 2

31 if H = H−
(3.72)

3.3.3 Zero-Mode Correlations

As we show next, for the zero mode the correlation matrix ∆0 further decomposes into four

sectors, each pertaining the Sx or Sy component and additionally confined to the sublattice

of even or odd sites. This structure follows directly from the symmetry constraints, and

hence holds at all strengths of disorder.

To arrive at these features, we first note that for all states time-reversal symmetry

implies

〈ψk|SynSxm|ψk〉 = 0 if n 6= m, (3.73)

as this amounts to an expectation value of a Hermitian operator with imaginary matrix

elements, evaluated with a real-valued eigenvector. This constraint does not apply for

n = m as the matrix product SynSxn is not Hermitian (it is furthermore not simply related

to Szn, in contrast to the case of spin 1/2). However, for the zero mode the chiral symmetry

further implies

〈ψ0|SxnSxm|ψ0〉 = 〈Xψ0|SxnSxm|Xψ0〉

= (−1)n−m〈ψ0|SxnSxm|ψ0〉, (3.74)

and analogously

〈ψ0|SynSym|ψ0〉 = (−1)n−m〈ψ0|SynSym|ψ0〉, (3.75)

〈ψ0|SxnSym|ψ0〉 = (−1)n−m−1〈ψ0|SxnSym|ψ0〉, (3.76)

〈ψ0|SynSxm|ψ0〉 = (−1)n−m−1〈ψ0|SynSxm|ψ0〉, (3.77)

which are relations that hold for all n and m. In combination with the constraint (3.73)

from time-reversal symmetry, these relations imply that the blocks ∆0,nm are all diagonal,

and furthermore vanish if n−m is odd. Thus, for the zero mode the ∆ correlation matrix

decomposes into four independent blocks,

∆0 = ∆x,even
0 ⊕∆x,odd

0 ⊕∆y,even
0 ⊕∆y,odd

0 , (3.78)

where the superscripts denote the supporting spin component and sublattice. Including
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Figure 3.3: Spin correlations in a zero mode of the spin-1 Ising chain, as quantified by

the spin correlation matrix C in an individual realisation of the disorder with strength

(a) W = 1, (b) W = 8, (c) W = 20. At any disorder, the correlation matrix fragments

into 5 sectors. Panels (i-v) show the correlation eigenvectors with the largest and smallest

correlation eigenvalue in each sector. The corresponding correlation eigenvalue spectra are

shown in the adjacent panels (α-γ). For weak disorder, these eigenvalues lie around the

ergodic value 2/3, while for strong disorder they approach quantised values 1 (for ∆) and

0 (for Z).

the spin correlations from Z0, we can, therefore, identify five independent elementary spin

correlation patterns for the zero mode.

3.3.4 Numerical Illustration

This structure of the spin correlations is illustrated in Fig. 3.3, where we show correla-

tion eigenstates with minimal and maximal correlation eigenvalues in a typical individual

disorder realisation at (a) weak, (b) moderate and (c) strong disorder (W = 1, 8, 20, re-

spectively). Subpanels (i-iv) show the four types of correlation eigenvectors from ∆0, while



Chapter 3. Chiral Symmetry and Zero Modes 90

0

1

2

0

2

4

0

1

0

1

1 100

1

101 101 1 10 101 101

1 20 201 201

|φ
n,

x|2
|φ

n,
y|2

|φ
n,

z|2

(a) (b) (c)

Δ 
sp

ec
tru

m
Z 

sp
ec

tru
m

n n n lll

lll 
 
 
 
 
 
 

Δmax

Δmin

Zmax

Zmin

Δmax
Δmin

Zmax
Zmin

(i)

(ii)

(iii)

(α)

(β)

Figure 3.4: Spin correlations for a nonzero mode close to the band centre, in analogy to

Fig. 3.3. Note that the correlation eigenvectors displayed in subpanels (i) and (ii) now

belong to the same correlation eigenvalues, hence, represent their x and y components, as

these no longer separate, also not with respect to the sublattice. Therefore, only two types

of elementary spin correlations exist for such nonzero modes. As shown in subpanels (α)

and (β), the correlation spectra again become quantised for strong disorder, reflecting the

number of spins with finite sz in the approached basis state |s〉.

panel (v) shows correlation eigenvectors from Z0. The position of these eigenvectors in

the occupation spectrum is depicted in the adjacent subpanels (α-γ).

While the predicted fragmented structure holds at all disorder strengths, the correla-

tion eigenvectors from ∆0 display a noticeable trend from being extended over the whole

system for weak disorder, to becoming highly localised on individual spins at strong dis-

order. In contrast, we notice that the Z-correlation eigenvectors more sensitively quantify

the hybridisation of neighbouring spins, a feature that will be important in the subsequent

sections. In conjunction, the correlation spectra from ∆0 and Z0 both move away from

the ergodic value 2/3, approaching the quantised values 1 and 0, respectively, as expected

for a many-body localised state.

For comparison, Fig. 3.4 shows the analogous spin correlation features in a represent-

ative nonzero mode. Note that subpanels (i) and (ii) now refer to the x and y components

of the same ∆-correlation eigenvectors, as these correlations no longer separate. Fur-

thermore, each of these eigenvectors now populates both the even and odd sublattices.

Otherwise, we notice the same qualitative tendencies as for the zero mode—the ∆ spin
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correlations again become highly localised for strong disorder, while the Z correlations

remain more extended, and the corresponding correlation spectra move away from their

ergodic values 2/3 to quantised values, which now depend on the number of finite spins

in the approached basis state |s〉. In the example, this state has four finite spins, so that

there are four nearly-vanishing ∆-correlation eigenvalues, and a dominant Z-correlation

eigenvalue approaching the value 4.

By surveying different examples we can certify that these qualitative features are typ-

ical for individual states in fixed disorder realisations, with the variations at moderate

and strong disorder pointing to different spin hybridisation patterns. As indicated above,

the Z0-eigenvector with maximal eigenvalue Zmax
0 is particularly useful to characterise the

excitation patterns of the zero mode above the reference state |0〉 for the zero mode, and

analogously above the reference states |s〉 for nonzero modes. These insights will inform

our discussion of the quantitative differences in their localisation, on which we focus in

the following sections.

3.4 Zero-Mode Delocalisation

We now turn to the second key feature of the zero mode, which pertains to the fact that

it is less localised than the nonzero modes. In this section, we establish this feature based

on numerical results, while the theoretical explanation is provided in the following section.

3.4.1 Measures of Localisation

To address this question, we consider a number of complementary indicators of localisation,

whose general properties we summarise first.

As a general measure of localisation, we consider the bipartite von Neumann entan-

glement entropy [108]. This is defined for each normalised eigenstate |ψk〉 as

Sk = −Tr
(
ρ(k) ln ρ(k)

)
, (3.79)

where ρ(k) = TrB |ψk〉〈ψk| is the reduced density matrix of a subsystem A, obtained by

tracing out the complement B. We take A to be a contiguous subchain of length NA =

N/2, hence half the length of the total system. In delocalised states, the von Neumann

entropy is large, and should be well approximated by the Page value for completely ergodic

states [101], Sk ' NA ln 3− 1
2 . Therefore, the entropy grows linearly with the system size,
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which manifests a volume law. In contrast, in a localised state the von Neumann entropy

is expected to be small, and on average independent of the system size, which manifests

an area law. The value of the entropy can then be taken as a proxy for the effective

localisation length [1]. In a basis state |s〉, the entanglement entropy Ss = 0 vanishes as

these states are all separable.

The concept of this entanglement entropy can be extended past pure states to also

account for mixed states; however, for mixed states, the entanglement entropy is somewhat

of a misnomer, as it is more of a measure of correlations rather than actual entanglement.

Nevertheless, we will continue to use the term entanglement entropy here for convenience.

Extending this concept makes use of the Schmidt decomposition of a state, which is defined

as:

|ψ〉AB =
∑
α

λα |uα〉A ⊗ |vα〉B , (3.80)

where the states, |uα〉A and |vα〉B, form an orthogonal basis of their respective Hilbert

spaces, and the Schmidt coefficients {λα} are subject to the constraint: λα ≥ 0 ∀ α. Also, if

|ψ〉AB is orthonormal, then this is reflected by the additional constraint:
∑

α λ
2
α = 1. The

Schmidt decomposition can, in a sense, be interpreted as the decomposition that minimally

entangles the two subsystems, A and B. The more general entanglement entropy is thus

defined as:

S = −
∑
α

λ2
α lnλ2

α. (3.81)

Now, an important question arises: how do we calculate the Schmidt coefficients? To

proceed, we first rewrite a given state as:

|ψ〉 =
∑
αβ

ψαβ |α〉 ⊗ |β〉 , (3.82)

where each of the amplitudes {ψαβ} are now interpreted as the indices of a matrix i.e.

ψαβ is the matrix coefficient corresponding to the α-th row of the β-th column. We will

refer to this matrix as Ψ.

Next, we decompose this matrix via singular-value decomposition (SVD), which is

defined as:

Ψ = LΛR†, (3.83)

where Λ ∈ Cm×n is diagonal, and L ∈ Cm×m and R ∈ Cn×n are unitary. Performing SVD
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on our matrix of state amplitudes provides us with a matrix of the form:

Ψ =

(
|ψ1〉A · · · |ψα〉A · · ·

)


λ1 · · · · · · 0

...
. . .

...

... λα
...

0 · · · · · · . . .





〈ψ1|B

...

〈ψα|B

...


, (3.84)

where the diagonal matrix provides us with the Schmidt coefficients we seek. In our case,

it is most convenient to bisect our system into two subsystems of equal size so that the

number of Schmidt coefficients is maximised, leading to better statistics due to more data.

To quantify the degree of Fock-space localisation, we make use of the inverse particip-

ation ratio (IPR) in the basis (3.10),

IPRk =
∑
s

|〈s|ψk〉|4. (3.85)

In the case of perfect Fock-space localisation, the IPR goes to unity, while in the case of

complete delocalisation, the IPR goes to 1/N .

We also consider the intensity

Ik = |〈0|ψk〉|2 (3.86)

of the states with the special state |0〉, which we expect to become large for the zero mode

at large disorder, while for ergodic states again Ik ' 1/N .

3.4.2 Numerical Results

At strong disorder, the zero mode is expected to have a large overlap I0 = |〈0|ψ0〉|2 with

the state |0〉, in which the contribution from the field h vanishes. This is verified in

Fig. 3.5(a), which shows that the disorder-averaged I0 rises sharply at disorder strengths

W ' 4. In contrast, the corresponding average I6=0 ∼ O(N−1) for the nonzero modes is

negligible for all disorder strengths. Nonetheless, overall the zero mode is noticeably less

localised in Fock space than the nonzero modes, as evidenced in Fig. 3.5(b) by an inverse

participation ratio IPR0 that is reduced relative to IPR6=0, and in Fig. 3.5(c) by a bipartite

entanglement entropy S0 that is increased relative to S6=0. Therefore, for strong disorder

the nonzero modes approach basis states |s〉 with s 6= 0 more quickly than the zero mode

approaches the basis state |0〉. As we explain in Sec. 3.5, the residual hybridisation of

basis states can be quantified by the maximal Z spin-correlation eigenvalue Zmax
k , whose
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Figure 3.5: Disorder-averaged measures of localisation for the zero mode (light red) and

nonzero modes (dark blue) as a function of disorder strength W . (a) Overlap Ik with the

basis state |0〉, as defined in Eq. (3.86). For the zero mode, I0 increases with increasing

disorder strength, reaching I0 ∼ 1/2 at around W = 20. For nonzero modes, the corres-

ponding average I 6=0 = O(N−1) remains negligible at all disorder strengths. As shown

in (b), the nonzero modes nonetheless have a larger extent of Fock-space localisation, as

quantified by the inverse participation ratio IPR [see Eq. (3.85)], and hence approach an

eigenstate |s〉 with s 6= 0 more quickly than the zero mode approaches |0〉. This relative

delocalisation of the zero mode is confirmed in panel (c) by the bipartite entanglement

entropy (3.79), which is enhanced for the zero mode. We also see that, in the low-disorder

regime, the entropies of both the zero and nonzero modes lie close to the Page value of

3.89 for N = 8. Panel (d) shows the maximal Z spin correlation eigenvalue Zmax
k , which

quantifies the residual hybridisation of these states in the strongly localised regime, as

further discussed in Sec. 3.5.
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Figure 3.7: Distributions of the entanglement entropy for zero modes (top panels) and

nonzero modes (bottom panel), for parameters as in Fig. 3.6. From moderate disorder,

the zero mode shows a significant enhancement of entropies S & 1, with the indicated

value ln 3 identified in Sec. 3.5. Nonzero modes display less pronounced features at smaller

characteristic values, ln 2 and (ln 8)/2.

average is shown in Fig. 3.5(d).

In Fig. 3.6, we show the disorder-averaged entanglement entropy Sk as a function of the

mode index k, obtained by ordering all states by their energy and centring the resulting

index at the zero mode. The entropy of the zero mode is clearly enhanced in the localised

regime, by an amount that is independent of the accessible system sizes, hence remaining

consistent with an area law. This well-confined relative delocalisation peak also confirms
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that the enhancement is restricted to exact zero modes, and not shared, e.g., by nonzero

modes very close to the band centre.

As shown by the statistical distribution functions of the entanglement entropy in

Fig. 3.7, this delocalising tendency can be attributed to an accumulation of zero modes

with entropy S0 slightly above 1, to be identified as S0 ' ln 3 in the following section.

This accumulation is already well pronounced at moderate values of disorder (panel b),

and is well defined at very large values of disorder (panel c), suggesting that it arises from

a specific delocalisation mechanism. In contrast, nonzero modes display accumulations

at smaller characteristic values of the entropy, to be identified as ln 2 and (ln 8)/2, which

hints towards a competition of several distinct delocalisation mechanisms. We will identify

the underlying hybridisation patterns in the following section.

3.5 Dimer Hybridisation

We explain the relative delocalisation of the zero mode based on quasi-degenerate per-

turbation theory at relatively large disorder. This reveals a characteristic dimer hybrid-

isation pattern involving three collective basis states localised on neighbouring spins, while

nonzero modes support a much wider range of hybridisation patterns.

3.5.1 Perturbation Theory Set-up

Separating the Hamiltonian into a dominant part H(0) =
∑N

n=1 hnS
z
n and a perturba-

tion V = J
∑N

n=1 S
x
nS

x
n+1, the unperturbed eigenstates of the system coincide with the

canonical basis states |s〉 defined in Eq. (3.10), with the zero mode given by |ψ0〉 = |0〉.

These states carry energy E
(0)
s =

∑
hns

z
n, have vanishing entanglement entropy S

(0)
s = 0,

Fock-space localisation measures, IPR
(0)
s = 1 and I

(0)
s = δs,0, and quantised correlation

eigenvalues from ∆ and Z.

These characteristics define the typical features of all modes in the strongly localised

regime, where any hybridisation is absent. The question is how the modes gradually

delocalise due to resonant interactions at weaker disorder. We show that this involves

distinct hybridisation processes on adjacent spins, leading to characteristic features in the

entropy, inverse participation ratio, and spin correlations.

We first identify the resonance conditions in general terms, and then derive the hy-
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bridisation patterns and their characteristic signatures, which we further support with

numerical results.

3.5.2 Resonance Conditions

In first-order perturbation theory, the hybridisation of the zero mode with other states

|s〉 is strongly suppressed by energy denominators E
(0)
s . In principle, hybridisation can

set in for states with individual |hn| ≤ J , for which individual spins can align freely.

However, at least two sites need to be involved to retain positive parity, and furthermore

these configurations have vanishing perturbation matrix elements unless sites neighbour

each other. On the other hand, it should then suffice that |hn| − |hn+1| ' J , instead of

both |hn|, |hn+1| ' J individually, implying that such disorder configurations should be

dominant as they require fewer constraints.

We can verify the above reasoning by examining all excitations patterns above the

background state |0〉. Amongst the excitations involving neighbouring spins (hence relev-

ant in the first order of the perturbation), only two patterns are allowed by parity, chiral,

and time-reversal symmetry, namely those obtained from state |0〉 by terms generated via

application of the matrix combinations, iSxnS
y
n+1 and iSynSxn+1. These can be conveniently

combined into excitation operators

Φ̂±n ≡ iSxnSyn+1 ∓ iSynSxn+1, (3.87)

leading to the perturbative ansatz

|ψ0〉 '
(

1 +
∑
n

φ+
n Φ̂+

n +
∑
n

φ−n Φ̂−n

)
|0〉, (3.88)

where φ±n are the amplitudes of the two excitation fields. Expanding the condition H|ψ0〉 =

0 in orders of the relative interaction strength, we then obtain the perturbatively closed

coupled equations

0 = (φ+
n + φ−n )hn+1 + (−φ+

n + φ−n )hn + J, (3.89)

0 = (φ+
n + φ−n )hn + (−φ+

n + φ−n )hn+1, (3.90)
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Figure 3.8: Analytical predictions for the localisation characteristics of zero modes (top)

and nonzero modes (bottom) as a function of the hybridisation parameter δ from quasi-

degenerate perturbation theory (see text). (a) Bipartite entanglement entropy, (b) inverse

participation ratio, (c) leading Z spin-correlation eigenvalue Zmax
k . Quantities arising

from the zero-mode hybridisations (3.97) and (3.98) are given in medium-dark red. In

the case of nonzero modes, these hybridisations can still appear when embedded into a

state in which an even number of the remaining spins have a finite Sz component. For

the nonzero modes, further configuration scenarios appear from the hybridisations (3.103)

(again embedded into states with an even number of remaining nonzero spins, light yellow)

and (3.107) (embedded into states with an odd number of remaining nonzero spins, dark

blue). Examples of these hybridisation patterns are shown at the bottom of the figure.

whereupon

φ+
n =

J

2(hn − hn+1)
, (3.91)

φ−n =
−J

2(hn + hn+1)
. (3.92)

Thus, one of the two fields becomes large when |hn| ' |hn+1|, which agrees with the

resonance conditions identified above.
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3.5.3 Zero-Mode Hybridisation Patterns

To describe such resonant disorder configurations more accurately, we resort to quasi-

degenerate perturbation theory in the subspace of the hybridising spins, taken without

loss of generality as (n, n+ 1) = (1, 2). We start with dimer hybridisations of even parity,

assuming initially that they are embedded into a chain where the remaining spins are

unhybridised,

|ψ0〉 = |ψ0〉dimer ⊗ |0〉. (3.93)

We first consider the vicinity of the resonance condition (3.91), where we write h1 =

h̄+δ/2, h2 = h̄−δ/2 while setting J = 1. Ordering the even-parity states as |1, 1〉, |1,−1〉,

|0, 0〉, |−1, 1〉, |−1,−1〉, the reduced Hamiltonian

H+
12 = [h̄(Sz1 + Sz2) + δ/2(Sz1 − Sz2) + JSx1S

x
2 ]+ (3.94)

=



2h̄ 0 1/2 0 0

0 δ 1/2 0 0

1/2 1/2 0 1/2 1/2

0 0 1/2 −δ 0

0 0 1/2 0 −2h̄


(3.95)

then separates into three sectors, with states, |1, 1〉 and |−1,−1〉, gapped out by an energy

' ±2h̄, while the zero mode is contained in the quasi-degenerate sector

H̃+
12 =


δ 1/2 0

1/2 0 1/2

0 1/2 −δ

 (3.96)

spanned by the states |1,−1〉, |0, 0〉, |−1, 1〉. Diagonalising this sector, we find two states

of finite energy ±
√
δ2 + 1/2, to which we will come back later, as well as a zero mode

|ψ0〉dimer = |1,−1〉 − 2δ|0, 0〉 − |−1, 1〉 (3.97)

of vanishing energy, which we will call the dimer zero mode. Near the resonance condi-

tion (3.92), the same considerations apply upon writing h1 = h̄ + δ/2, h2 = −h̄ + δ/2

with the roles of the states, (|1, 1〉, |−1,−1〉) and (|1,−1〉, |−1, 1〉), interchanged, leading

to zero-mode hybridisations

|ψ0〉dimer = |1, 1〉 − 2δ|0, 0〉 − |−1,−1〉. (3.98)
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In both cases, the bipartite entanglement entropy of the dimer zero mode is given by

S0,dimer = ln
(
2 + 4δ2

)
− 2δ2 ln

(
4δ2
)

1 + 2δ2
, (3.99)

and the inverse participation ratio is given by

IPR0,dimer =
1 + 8δ4

2(1 + 2δ2)2
. (3.100)

On the dimer, the Z correlation matrix has a single finite eigenvalue

Zmax
0,dimer =

2

1 + 2δ2
, (3.101)

which we interpret as the maximal eigenvalue as for the remaining spins Z0,nn = 0 vanishes

1.

The top row in Fig. 3.8 displays these characteristics of the dimer zero mode as a

function of the detuning δ. The entropy has a stationary point at δ = 0 with the value

S0 = ln 2, where IPR0 = 1/2 and Zmax
0 = 2, and two stationary points at δ = ±1/2 with

the value S = ln 3, where IPR0 = 1/3 and Zmax
0 = 4/3.

We note that several of these hybridisation patterns can be embedded along differ-

ent positions of the zero mode. The entropy then arrives from the dimers spanning the

bipartite partition point, and still adheres to Eq. (3.99). The resulting inverse particip-

ation ratio is the product of those of all hybridised dimers, so that Eq. (3.100) provides

an upper bound for IPR0. Furthermore, the Z correlation matrix decomposes into inde-

pendent blocks, so that Eq. (3.101) provides a lower bound for the maximal Z correlation

eigenvalue Zmax
0 .

3.5.4 Hybridisation Patterns of Nonzero Modes

We next identify the dominant hybridisation patterns of nonzero modes,

|ψ〉 = |ψ〉dimer ⊗ |s′〉, (3.102)

of which there is a much wider variety, each having its own characteristic signatures.

We start with dimer hybridisations of even parity, embedded into a chain where the

remaining spins |s′〉 also have even parity. Assuming again first h1 = h̄+δ/2, h2 = h̄−δ/2,

the dimers of even parity are still described by the reduced Hamiltonian (3.95), but all

1In this regime this eigenvalue also determines the four-fold degenerate eigenvalue ∆0,dimer = (4 −
Zmax

0,dimer)/4 of the ∆ correlation matrix (with one eigenvalue per fragmented sector), while for the remaining
spins ∆0,nn = 1.
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Figure 3.9: Analytical predictions for correlations between the localisation characteristics

of zero modes (top) and nonzero modes (bottom), following from the results shown in

Fig. 3.8.

five resulting dimer states have to be taken into account. Alongside the hybridisation

pattern (3.97), this includes the gapped states |1, 1〉 and |−1,−1〉, which remain separable,

as well as the two finite-energy hybridisations

|ψ+,±〉dimer = (δ ±
√
δ2 +

1

2
)|1,−1〉+ |00〉+ (−δ ±

√
δ2 +

1

2
)|−1, 1〉 (3.103)

from the sector (3.95). In the dimer subspace |1, 0〉, |0, 1〉, |0,−1〉, |−1, 0〉 with odd parity,
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Figure 3.10: Scatter plot of localisation characteristics of the zero mode for disorder

strengths (a) W = 1, (b) W = 8, (c) W = 20. In (c), the dashed lines indicate the

predicted analytical bounds, see the top panels in Fig. 3.9(a,b). Note the different scale

on the horizontal axis in panel (a).

the reduced Hamiltonian takes the form

H−12 = [h̄(Sz1 + Sz2) + δ(Sz1 − Sz2) + JSx1S
x
2 ]− (3.104)

=



h̄+ δ/2 1/2 1/2 0

1/2 h̄− δ/2 0 1/2

1/2 0 −h̄+ δ/2 1/2

0 1/2 1/2 −h̄− δ/2


, (3.105)

leading to pairwise hybridisation

|ψ−,±,1〉dimer = (δ ±
√

1 + δ2)|1, 0〉+ |0, 1〉, (3.106)

|ψ−,±,2〉dimer = (δ ±
√

1 + δ2)|0,−1〉+ |−1, 0〉 (3.107)

only.

Overall, we therefore arrive at seven hybridisation patterns and two nonhybridised
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Figure 3.11: Scatter plot of localisation characteristics of nonzero modes in analogy to

Fig. 3.10, with the analytical bounds in (c) taken from the bottom panels of Fig. 3.9(a,b).

states, reflecting the full dimensionality of the dimer subspace. For the second resonance

case h1 = h̄ + δ/2, h2 = −h̄ + δ/2, the same considerations apply upon interchanging

dimer basis states |s, s′〉 ↔ |s,−s′〉.

The characteristic features of these finite-energy hybridisation patterns are shown in

the bottom row of Fig. 3.8. hybridisations based on |ψ0〉dimer still produce the same

entropies and inverse participation ratios as for the zero mode, while the largest eigenvalue

of the Z correlation matrix now arises from the remainder of the chain, where it counts

the number of finite spins, thus giving rise to the straight lines at even integers. For

the hybridisations |ψ+,±〉dimer of even parity, the entropy is stationary around δ = 0,

where Sk = (ln 8)/2 while the inverse participation ratio takes the value IPRk = 3/8.

For the hybridisations |ψ−,±,k〉dimer of odd parity, a similar behavior is observed with

stationary entropies Sk = ln 2 and inverse participation ratios IPRk = 1/2. In both these

hybridisation patterns, the eigenvalue Zmax
k depends both on the hybridisation strength

δ and the number of finite spins in the remainder of the chain. Considering that several
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hybridised dimers can occur along the chain, we again interpret the predicted inverse

participation ratios and Z correlation eigenvalues as upper bounds and lower bounds,

respectively.

3.5.5 Summary and Numerical Verification

Summarising the results from this section, we arrive at the following detailed predictions.

For the zero mode, delocalisation occurs via dimer hybridisation patterns with typical

entropies S0 ∼ ln 3 or S0 ∼ ln 2, as already observed numerically in the upper panels of

Fig. 3.7. Entropies S0 ∼ ln 3 are further expected to correlate with inverse participation

ratios bounded as IPR0 . 1/3 and leading Z correlation eigenvalues bounded by Zmax
0 &

4/3, while for entropies S0 ∼ ln 2 we expect IPR0 . 2 and Zmax
0 ∼ 2. More generally,

these quantities should be correlated as shown in the upper panels of Fig. 3.9. These

predictions are verified in Fig. 3.10, where we show scatter plots of the described quantities

from 104 realisations for chains of length N = 8. The expected correlations are already

well established for moderate values of disorder W = 8.

Furthermore, nonzero modes should predominantly display entropies around Sk = ln 2,

which can be achieved by the widest variety of hybridisation patterns, followed by Sk =

(ln 8)/2, while Sk = ln 3 should occur relatively less frequently, as indeed observed in the

lower panels of Fig. 3.7. The expected correlations with IPRk and Zmax
k are depicted in

the lower panels of Fig. 3.9. These predictions are verified in Fig. 3.11.

Comparing the results in Figs. 3.10 and 3.11, we find that the zero modes and nonzero

modes are most clearly discriminated by their distinct correlations between the inverse

participation ratio IPRk and the leading Z-correlation eigenvalue Zmax
k .

Having confirmed these key predictions, we return to Fig. 3.8 to observe that the

dominant hybridisation patterns of the zero modes are appreciable over a larger range

of detunings δ than for the nonzero mode. This verifies that the zero mode hybridises

more readily than the nonzero modes, and then exhibits more delocalised Fock-space

configurations, which provides the general explanation for the numerical observation of

this effect in the previous section.
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3.6 Discussion and Conclusions

In summary, in many-body systems zero modes protected by a chiral symmetry can loc-

alise, but they do so with distinctively different characteristics than nonzero modes. In

particular, the zero modes are more delocalised both in terms of their real-space and Fock-

space signatures. We explained these differences by the characteristic symmetry-restricted

mechanisms allowing the localised basis states to hybridise. These symmetry constraints

can be extended to all disorder strengths by considering the fragmentation of real-space

correlations.

We developed and demonstrated these effects for the example of a disordered spin-1

Ising chain. For spin 1/2-chains, the chiral symmetry is already present, but symmetry-

protected zero modes do not occur as the Hilbert space dimension is even in both par-

ity sectors. In spin-1/2 chains, the nonzero modes are known to delocalise by a single

dominant hybridisation pattern, involving dimers with bipartite entanglement entropy

Sk = ln 2 [109]. In contrast, in the spin-1 chain, the delocalisation mechanism of zero

modes involves a dominant hybridisation pattern with entropy S0 = ln 3, while nonzero

modes involve a competition of various hybridisation patterns, including such with en-

tropy Sk = (ln 8)/2. Even though the underlying hybridisations differ, these entanglement

values are reminiscent to those encountered in the fragmented ground state of the spin-1

system by Affleck, Kennedy, Lieb, and Tasaki (AKLT model) [110], as well as for other

spin-1 systems, where such entanglement entropy values can be found between a single

spin and the remainder of the system [111,112]. Furthermore, for the studied system the

fragmentation of real-space correlations occurs both with respect to the spin orientation

as well as with respect to the even and odd sublattices, where the latter is particularly

noteworthy as statistically the system is translationally invariant.

A fundamental tenet for disordered interacting quantum systems is the expectation

that many-body states close in energy share the same statistical signatures. The symmetry-

protected zero-modes discussed here provide a mechanism to equip individual states with

their own characteristic signatures. It would be interesting to explore whether the remark-

able differences between zero modes and nonzero modes become further accentuated for

larger integer spins, and whether these observations also extend to appropriately designed

itinerant fermionic systems.



Chapter 4

Universal Entanglement Behaviour

4.1 Context and Background

We know that generic many-body systems are characterised by conformity to the eigenstate

thermalisation hypothesis (ETH), which necessitates that the dynamics of such systems

will eventually mimic thermal equilibrium in finite time. In a quantum setting, this means

the observation of ergodic dynamics in local observables [13, 14, 113, 114], thus leading to

highly entangled eigenstates. This entanglement is typically captured via a measure known

as the entanglement entropy, which is known to scale extensively with the volume of a

system; hence termed as a volume-law. However, conformity to the ETH is not necessarily

guaranteed, and there exists a broad class of closed many-body quantum system that

indeed violates this hypothesis, and is thus no longer subject to equilibrium dynamics.

Amongst these are many-body localised systems [2,3, 53,115], which are characterised by

a disorder-driven entanglement transition into a localised regime [7, 36, 105, 116], where

the entanglement entropy scales subextensively according to an area-law. The fate of

this transition in the context of open quantum systems is also the subject of intense

investigation [117–121].

However, the paradigmatic case of many-body localisation is not the only pathway to

area-law entanglement scaling—as we see in a recently-studied type of quantum system

that exhibits a so-called quantum Zeno effect [122–124]. These systems offer an alternate

mechanism towards entanglement transitions by considering a randomly-driven system in

which the external environment acts as a quantum detector [38–41]. In this new setting,

the unconstrained unitary evolution of the unobserved system leads to a ballistic growth of

106
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entanglement in time [125–127], which eventually settles into a highly-entangled quasist-

ationary state characterised by a volume law. The volume-to-area-law transition in these

systems is driven, not by disorder, but by random local measurements—typically of a pro-

jective nature—which, when performed with a certain threshold frequency, will initiate an

entanglement transition to a quasistationary state characterised by an area law [38–40].

For brevity, we will henceforth refer to these systems as quantum circuit models.

The two aforementioned entanglement transitions are clearly driven by different mech-

anisms, but they nonetheless share the common trait of a distinct volume-to-area-law

transition. Therefore, one could rightfully question whether or not these two mechanisms

are in any way analogous to each other. We approach this problem primarily using two

measures: the bipartite entanglement entropy, and the tripartite mutual information. In

conjunction, these two quantities allow us to map out many qualities of the relevant en-

tanglement dynamics, and allow us to simply compare the similarities and differences of

the two entanglement transitions. While there is recent debate over the existence of the

many-body localised regime and its supposed transition point, the transition point of the

quantum circuit model is—as of yet—uncontested at p ≈ 0.3 [38]. Perhaps there is a

relation between the two that is yet to be explored.

Finally, we provide more theoretical insight into the entanglement behaviour by con-

sidering how well these two types of entanglement transitions can be captured by random-

matrix models—of which, we have significantly greater knowledge of from an analytical

viewpoint. These models attempt to generalise Page’s law [101]—a foundational concept

in the description of entanglement in ergodic many-body systems—by incorporating a

finite entanglement length scale, designed to be analogous to the localisation length in

many-body localised systems [2, 3, 12, 53, 100]. We consider two types of random-matrix

model in particular: structured and unstructured. The unstructured model is the simpler

of the two; but we have wonderful insights into both, stemming from Ref. [1]. In this

work, we also consider a generalisation of these random matrix models by considering the

singular-value decomposition of the random matrices involved.

By providing detailed comparisons of these different models, we hope to establish

some universal features of entanglement transitions in general; with an additional hope

that some of the dynamics can be captured by more-understood random-matrix models.
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4.2 The Models

4.2.1 The Heisenberg Model

We designate the one-dimensional random-field Heisenberg model as our representative

model of many-body localisation, in large part due to both its ubiquity and generality,

which is of the form

H =
L∑
i=1

(
Sxi S

x
i+1 + Syi S

y
i+1 + Szi S

z
i+1

)
−

L∑
i=1

hiS
z
i , (4.1)

where h represents onsite interactions which are randomly chosen from a uniform dis-

tribution, in the range [−W,W ], to introduce disorder into the model. We previously

defined a more general extension of the Heisenberg model—the S = 1/2 XXZ model—in

Eq. (2.43); however, we choose the special case of ∆ = 1 here as we are no longer invest-

igating adiabatic continuity. We also impose periodic boundary conditions and set t = 1

for convenience.

The Heisenberg model is amongst the most paradigmatic when it comes to the explor-

ation of the many-body localisation phase transition, and it is known to exhibit behaviour

indicative of the many-body localised phase at disorder values of roughly W > 3 [36]. How-

ever, this is now somewhat contested with recent doubts about the many-body localisation

transition in general (discussed in the introduction).

4.2.2 The Quantum Circuit Model

The quantum circuit setup is composed of a one-dimensional chain of L atomic sites,

with a single qubit located at each. The dynamics of the system are governed entirely

by a “brick-layer” structure of quantum gates, forming a quantum circuit—hence the

eponymous choice of name—and is best explicated via a diagram (see Fig. 4.1). The

quantum gates act on pairs of neighbouring qubits which are arranged periodically in

temporal space. Each discrete time step of this quantum circuit contains two layers of

“bricks”, with L/2 gates acting on all the odd links in one layer and all the even links

in the next. For this reason, any multipartite quantities must be calculated for each of

these layers separately and averaged, in order to avoid biases introduced by the odd-even

structure. Throughout this work, we will assume periodic boundary conditions.

Turning to Fig. 4.1, we see that each rectangular block represents the action of a ran-
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Figure 4.1: A diagrammatic representation of the evolution of a partially-measured

quantum circuit over a single time step. The L black dots at the bottom each signify

the location of a lone qubit with spin S = 1/2. The blue rectangular blocks correspond

to unitary two-spin operators U that act on neighbouring pairs of qubits; whereas the

orange diamonds correspond to projective measurements M of the form |↑〉〈↑| or |↓〉〈↓|.

The specific configuration of the measurements is arbitrary and is, in reality, chosen com-

pletely randomly—the probability of each individual measurement being denoted as p (and

nonmeasurement as 1− p).

dom quantum gate on a pair of neighbouring qubits. This is mathematically equivalent to

the action of a unitary two-spin operator U acting on each pair of qubits, with each oper-

ator being chosen randomly according to the Haar measure over the set of unitary two-spin

operations. Numerically, this equates to a random matrix of dimension 22—each element

of which is plucked randomly from the Gaussian unitary ensemble (GUE). In addition

to this random unitary scrambling, we also subject a set of qubits—randomly chosen at

each time step—to projective measurements M ∈ [|↑〉〈↑| , |↓〉〈↓|] with a probability p. Over

time, past a certain threshold probability, these successive projective measurements will

drive the system into a quasistationary regime with entanglement that obeys an area law

instead of a volume law [38–40]. Work has also been done concerning nonprojective meas-

urements, where each operatorM takes the form of a normalised Kraus operator associated

with a positive operator-valued measure (POVM) [57,128–132], and also for stroboscopic

and continuous measurements [133]; however, we utilise only the more-standard projective

measurements in this work.
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4.2.3 The Random-Matrix Models

We adopt a random-matrix model designed to encapsulate the essence of ergodicity, while

at the same time incorporating a finite entanglement length scale that mimics the localisa-

tion length found in many-body quantum systems. We begin by noting a key assumption of

Page’s law [101]; namely, that a typical many-body eigenstate |ψ〉 in the ergodic regime is

well-represented by a random Fock-space vector with independently distributed Gaussian

elements ψm = 〈m|ψ〉. If we bipartition such a vector as a tensor product |m〉 = |ab〉—with

indices a = 1, 2, 3, . . . ,MA for subsystem A, and b = 1, 2, 3, . . . ,MB for its complement

B—then the reduced density matrix ρ
A|B
aa′ of subsystem A can be equivalently formulated

as a matrix product

ρA|B =
V V †

trV V †
, (4.2)

where Vab = 〈ab|ψ〉 are the elements of a random Gaussian matrix of dimension MA×MB
1.

Following through with these arguments allowed Page to arrive at a prediction for the

ensemble-averaged bipartite entanglement entropy of the form

S(A|B) = − tr
(
ρA|B ln ρA|B

)
= lnMA −

MA

2MB
, (4.3)

where it is assumed that 1 � MA ≤ MB in order to make the result independent of any

specific random-matrix-theory universality class.

These observations serve as the framework for the random-matrix-theory models that

we will now introduce. We start by noting that the matrix V in Eq. (4.2), in a sense,

captures the correlation amplitudes between adjacent subsystems, A and B, in a statist-

ically invariant way; therefore leading to the notion that any independent superposition

V =
∑Nα

α=1 V
α delivers the same statistics—provided that the {V α} are all of the same

Gaussian ensemble. Now, we explicate the setup of our system—we consider a system

partitioned into a number of smaller ergodic patches P1, P2, P3, . . . of equal dimension

M0, thus leading to a wavefunction with elements of the form

ψabcd... =

Nα∑
α=1

V
1|2,α
ab V

2|3,α
bc V

3|4,α
cd . . . , (4.4)

where the random Gaussian matrices V k|k+1,α describe the correlations between neigh-

bouring ergodic patches. We will henceforth refer to Eq. (4.4) as the structured RMT

1This formulation is therefore tied to the celebrated Wishart ensemble of random-matrix theory [134]—a
central ensemble, at the core of much later work, which concerns positive-semidefinite Hermitian matrices
of the form V V †.
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model. We can also formulate a model under the assumption that the matrices V are sep-

arable, thus producing an unstructured RMT model that is equivalent to a superposition

of completely separable states—the elements of which take the form

ψabcd... =

Nα∑
α=1

χ1,α
a χ2,α

b χ3,α
c χ4,α

d . . . , (4.5)

where the random vectors χk,α are blind to all other patches n 6= k. This blindness

results in a model completely lacking in geometric features, such as dimensionality and

boundary conditions, and thus cannot differentiate between any nonequivalent ordering of

patches. Ref. [1] provides excellent details on the specific properties on these two variants

of random-matrix model.

In addition to the previously defined structured and unstructured RMT models, we

also consider a variant in which the singular-value decomposition (SVD) of V is considered.

By definition, the SVD of the matrix V is defined as

V ≡ LΛR† =

rank(V )∑
n=1

λnlnr
†
n, (4.6)

where Λ is a diagonal matrix with elements corresponding to the singular values λn.

The final formulation in Eq. (4.6) is sometimes referred to as a “rank-1 decomposition”

since each of the lnr
†
n are easily verifiable as being of rank 1—since the columns of the

outer product are all proportional to the first column, implying linear dependence on said

column—provided that ln and rn are nonzero. We can therefore suppose a random-matrix

model akin to Eq. (4.4), but with V k|k+1,α not picked randomly from a Gaussian ensemble,

but instead equal to

V k|k+1,α =

dim(V k|k+1,α)∑
n=1

λk|k+1,α
n lk|k+1,α

n

(
rk|k+1,α
n

)†
, (4.7)

where l
k|k+1,α
n and r

k|k+1,α
n are random vectors, and λ

k|k+1,α
n are values that we set ar-

bitrarily. We will henceforth omit the superfluous superscripts when making general

statements—that apply for all values of k and α—for brevity. This SVD-like definition

of V allows us to continuously adjust the {λn} between different “ranks” and, in theory,

should produce unstructured behaviour when λn = δn1 ∀ n, while becoming somewhat

more structured as the {λn} become more similar to each other, mimicking the full-rank

nature of the typical Gaussian matrix. We are therefore primarily interested in the ratios

between the various pairs in {λn}.
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We end by noting that—due to our choice of spin-1/2 particles in both the Heisenberg

and quantum circuit models—the dimension of our ergodic patches should be equal to the

number of spin-degrees of freedom for the best direct comparisons, which is 2 in this case.

This means that the dimension of V and χ, in Eqs. (4.4) and (4.5) respectively, is 2. This

also has useful implications for our additional variant expressed in Eq. (4.7), in that there

will only be two singular-value-like constants, λ1 and λ2, and thus we need only keep track

of a single ratio

λmin

λmax
≡ min(λ1, λ2)

max(λ1, λ2)
, (4.8)

where all unique properties are definitively encapsulated in the range λmin/λmax ∈ [0, 1].

4.3 Measures of Entanglement

4.3.1 Tripartite Mutual Information

We previously defined the bipartite entanglement entropy in section 3.4.1; however, let us

now discuss generalisations of this entropy, alongside other related quantities; namely, the

tripartite mutual information (TMI)—a type of so-called interaction information—which

is defined as

I3(A : B : C) = S(A) + S(B) + S(C) + S(A ∪B ∪ C)

− S(A ∪B)− S(A ∪ C)− S(B ∪ C),

(4.9)

where each of the four subsystems—A, B, C and D—is defined to be of equal length

L/4, thus necessitating that the number of particles, or patches, in our system must be

a multiple of four. It should also be noted that we use the shorthand notation S(A) ≡

S(A|B ∪C ∪D); in other words, the entropy S(A) is a measure of entanglement between

subsystem A and the rest of the system. This shorthand is trivially extended to all other

possible bipartitions.

To explicate our notation fully, we can simply relabel the indices of Eq. (3.82) like so

|ψ〉 =
∑
αβγδ

ψab |αβ〉 ⊗ |γδ〉 , (4.10)

where α, β, γ, and δ are labels corresponding to each of the subsystems A, B, C, and

D respectively. Note that each of the amplitudes {ψab} now has a, b ∈ {(x, y)} (where

x, y ∈ {α, β, γ, δ}); thus, we can assign natural-integer values to each ordered pair (x, y) ∈

N to allow us to, once again, treat the {ψab} as indices of some state matrix Ψ. We then
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retrieve the Schmidt coefficients λα by performing SVD on this matrix Ψ, as detailed in

the latter half of section 3.4.1.

Unlike the more well-known bipartite mutual information S(A : B)—which is always

non-negative—the tripartite mutual information can be either positive or negative. They

are both, in essence, a measure of information bound up in a given set of variables—

information that is not present in any subset of those variables.

4.3.2 Partition Choice

From the equidimensional subsystems written down in Eq. (4.10), one could rightfully ask

the question of how to define such subsystems. We can do so in a number of ways—the

most intuitively obvious involving splitting the system into quarters like so

A1A2 . . . AL
4
B1B2 . . . BL

4
C1C2 . . . CL

4
D1D2 . . . DL

4
, (4.11)

where each of {Xn} represents an atomic site belonging to subsystem X. We can, however,

“scramble” the subsystems such that their bipartite correlations become somewhat more

chaotic like so

A′1B
′
1A
′
2B
′
2 . . . A

′
L
4

B′L
4

C ′1D
′
1C
′
2D
′
2 . . . C

′
L
4

D′L
4

, (4.12)

with the maximal scrambling taking the form

A′′1B
′′
1C
′′
1D
′′
1A
′′
2B
′′
2C
′′
2D
′′
2 . . . A

′′
L
4

B′′L
4

C ′′L
4

D′′L
4

. (4.13)

Note that the more scrambled choices of subsystems are denoted as {X ′n} and {X ′′n} in

order to avoid ambiguity. We also employ periodic boundary conditions, thus assuming a

ring-like structure of ergodic patches. Choosing different subsystem partitions will inev-

itably affect the behaviour of the tripartite mutual information, and we explore all three

variants in order to ascertain if different subsystem definitions allows for more harmony—

or more conflict—between the entanglement behaviour of our four different models.

4.4 Numerical Comparisons

We begin by first establishing the general nature of the TMI-entropy relationship between

our four chosen models, which is depicted in Figs. 4.2 and 4.3—in particular, focusing on

the RMT models first. We can immediately see quite clearly that the different choice of
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Figure 4.2: Scatter plot of the relationship between the tripartite mutual information

I3(A : B : C) and the bipartite entanglement entropy S(A ∪ B|C ∪ D) for the three

different partition choices discussed in section 4.3.2—(a) is nonscrambled, (b) is partially

scrambled, and (c) is maximally scrambled, denoted by the usage of X, X ′, and X ′′

respectively. Data collected from the models defined in sections 4.2.1, 4.2.2, and 4.2.3

across the respective parameter ranges W ∈ [0, 12], p ∈ [0, 1], and Nα ∈ [1,dim(MA∪B)].

Averaged over 103 realisations.
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Figure 4.3: Scatter plot of the relationship between the bipartite entanglement entropy

S(A ∪ C|B ∪ D)—concerning nonadjacent subsystems—and the bipartite entanglement

entropy S(A∪B|C∪D) for the three different partition choices discussed in section 4.3.2—

(a) is nonscrambled, (b) is partially scrambled, and (c) is maximally scrambled, denoted

by the usage of X, X ′, and X ′′ respectively. Data collected from the models defined

in sections 4.2.1, 4.2.2, and 4.2.3 across the respective parameter ranges W ∈ [0, 12],

p ∈ [0, 1], and Nα ∈ [1,dim(MA∪B)]. Averaged over 103 realisations.

partitions in panels (a), (b), and (c) has zero effect on the entropies of the unstructured

RMT model. This is as expected since, by definition, Eq. (4.5) makes no reference to the
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Figure 4.4: Scatter plot of the relationship between the tripartite mutual information

I3(A : B : C) and the bipartite entanglement entropy S(A ∪ B|C ∪ D) for the three

different partition choices discussed in section 4.3.2—(a) is nonscrambled, (b) is partially

scrambled, and (c) is maximally scrambled, denoted by the usage of X, X ′, and X ′′

respectively. Data collected from the SVD-like model defined in section 4.2.3 for different

representative values of the ratio λmin/λmax. Averaged over 103 realisations.
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Figure 4.5: Scatter plot of the relationship between the bipartite entanglement entropy

S(A ∪ C|B ∪ D)—concerning nonadjacent subsystems—and the bipartite entanglement

entropy S(A∪B|C∪D) for the three different partition choices discussed in section 4.3.2—

(a) is nonscrambled, (b) is partially scrambled, and (c) is maximally scrambled, denoted by

the usage of X, X ′, and X ′′ respectively. Data collected from the SVD-like model defined

in section 4.2.3 for different representative values of the ratio λmin/λmax. Averaged over

103 realisations.

ordering of our ergodic patches, so any scrambled permutation of patches will produce

exactly the same data for any multipartite quantity. The scrambling of ergodic patches,

however, has very notable effects on the other three models, with the most extreme dif-
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Figure 4.6: Scatter plot of the relationship between the tripartite mutual information

I3(A : B : C) and the bipartite entanglement entropy S(A ∪ B|C ∪ D) for the three

different partition choices discussed in section 4.3.2—(a) is nonscrambled, (b) is partially

scrambled, and (c) is maximally scrambled, denoted by the usage of X, X ′, and X ′′

respectively. Data collected from the models defined in sections 4.2.1, 4.2.2, and the SVD-

like model defined in section 4.2.3 across the respective parameter ranges W ∈ [0, 12],

p ∈ [0, 1], and Nα ∈ [1,dim(MA∪B)]. Averaged over 103 realisations.
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Figure 4.7: Scatter plot of the relationship between the bipartite entanglement entropy

S(A ∪ C|B ∪ D)—concerning nonadjacent subsystems—and the bipartite entanglement

entropy S(A∪B|C∪D) for the three different partition choices discussed in section 4.3.2—

(a) is nonscrambled, (b) is partially scrambled, and (c) is maximally scrambled, denoted

by the usage of X, X ′, and X ′′ respectively. Data collected from the models defined in

sections 4.2.1, 4.2.2, and the SVD-like model defined in section 4.2.3 across the respective

parameter ranges W ∈ [0, 12], p ∈ [0, 1], and Nα ∈ [1,dim(MA∪B)]. Averaged over 103

realisations.
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ferences being found in the structured RMT model. This is also somewhat expected,

since Eq. (4.4) makes very explicit reference to the ordering of the ergodic patches in

the construction of the wavefunction. However, we note that as the number of ergodic

product-state-like terms Nα increases, all partition scramblings converge towards the same

values of both entropy and TMI. This is very much in keeping with the nature of true

ergodicity, as a fully ergodic system would eventually become agnostic to qualities such as

patch ordering—in a sense, the patches become indistinguishable from each other. It can

also be seen that the TMI of the structured RMT becomes negative—while the entropy

S(A ∪ C|B ∪D) increases in magnitude—much faster for the more scrambled partitions;

it is as if the scrambling of the partitions increases the initial ergodicity.

Additionally, one could also make the observation that panels (b) and (c) in Fig. 4.3

appear to be identical. This is not a trick of the light—the data in these two panels are

indeed identical. This can be quite simply explained by considering the way in which

we have defined our partitions (4.12) and (4.13). Note the placement of the constituent

elements of subsystems, A and C, in the aforementioned equations: they differ only in

ordering. If we therefore consider the composite subsystem A∪C, then we quickly realise

that A′ ∪C ′ = A′′ ∪C ′′. The same is trivially true also for the complement subsystem, in

that B′ ∪D′ = B′′ ∪D′′.

It is now time to turn to the behaviour of the more physical Heisenberg and quantum

circuit models in Figs. 4.2 and 4.3. The impact of partition choice on these two models lies

somewhere in between that of the two RMT models. They are both mildly affected by the

partition scrambling; however, the difference becomes less and less significant as one ap-

proaches the respective entanglement transitions in the two models, the three scramblings

eventually becoming equivalent deep into the area-law regime. On top of this, we see that

the majority of data points for the two physical models densely populate the origin of

the plots; whereas, for the two RMT models, we see the majority of data points densely

populating the high-entropy regions. From this, we can draw the conclusion that the two

RMT models are of little use in capturing the behaviour of nonergodic regimes. In fact,

one could question whether or not true ergodicity is well captured at all in the Heisenberg

model. If one draws their attention to the high-entropy region of the two physical models,

we see that the quantum circuit model has a single data point at S(A ∪ B|C ∪D) ≈ 3.7

that aligns with the maximum entropy exhibited in the two RMT models. However, the
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Heisenberg model has no such data point—the highest-entropy data point the Heisenberg

model possesses is at S(A ∪ B|C ∪ D) ≈ 3. This implies that, even at low finite values

of disorder, the Heisenberg model is never truly ergodic—at least, not to the same extent

as a typical Gaussian ensemble. Outside the high-entropy region, however, one notes that

the Heisenberg and quantum circuit models actually share starkly similar characteristics.

It is therefore instructive to ask the question of whether or not we can find a relationship

between the two entanglement transitions based solely on the behaviour of entropy-like

quantities. Indeed, this could be an enlightening direction were one to extend this work

further.

Since we have noted that the structured and unstructured variants of the RMT model

fail to capture the characteristics of the two physical models in the area-law regime, let us

see if the SVD-like form defined in Eq. (4.7) can do any better. We begin by comparing the

different entropy curves for different representative values of λmin/λmax ∈ [0, 1], defined

in Eq. (4.8). These comparisons are depicted in Figs. 4.4 and 4.5. We can immediately

see that, as predicted in section 4.2.3, that λmin/λmax = 0 is extremely similar to the

unstructured RMT curve seen in Figs. 4.2 and 4.3. It even shares the quality of invariance

under partition scramblings, as panels (a), (b), and (c) depict near-identical curves for

λmin/λmax = 0. Also, we do indeed see that the curves take on more-structured behaviour

as λmin/λmax → 1; however, they do not become overly similar to the structured RMT

curves seen in Figs. 4.2 and 4.3. This is most dramatically seen when comparing Fig. 4.3

to Fig. 4.5—the former depicts a distinctly curved scatter, whereas the latter maintains

the form of a straight line. However, this difference does allow for the possibility of better

agreement when compared to the curves of the two physical models, to which we now

turn.

Figs. 4.6 and 4.7 show direct comparisons between the two, more physical, Heisen-

berg and quantum circuit models and the SVD-like RMT model with λmin/λmax = 1.

While the SVD-like RMT model still struggles to capture behaviour deep in the area-law

regime—especially in Fig. 4.7—it does a much better job of approximating the lower-

entropy regions, and even offers improvement in the higher-entropy regions too. Overall,

the shape of the curves seem to match well, despite the apparent limitations, and could

perhaps be used to understand the transition region in terms of random matrix theory

with further study.
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4.5 Discussion of Initial Results

The main results of this initial foray into comparing the different types of entanglement

transition can be summarised as follows. The Heisenberg and quantum circuit models

share stunningly similar behaviour when we study the relationship between the well-known

bipartite entanglement entropy and the lesser-known tripartite mutual information. Fur-

ther work could illuminate areas of the debate concerning the recent uncertainty of the

transition location in many-body localised systems [44, 45]—namely, in theory, one could

attempt to map the entropy from the Heisenberg model (as a function of disorder strength

W ) to the entropy of the quantum circuit model (as a function of measurement probability

p). Since the location of the quantum circuit model’s entanglement transition has yet to

be hotly debated, such a mapping would allow one to potentially estimate the localisation

transition in the Heisenberg model. However, it does not resolve arguments concerning

the nature of the transition itself, and whether or not many-body localisation is a “true”

quantum phase.

Additionally, we have some promising results that random-matrix models could prove

to be a valuable diagnostic tool for obtaining a deeper understanding of the mechanisms

involved in entanglement transitions. While they struggle with approximations of physical

models deep in area-law regimes, they provide much better approximations in higher-

entropy regions i.e. volume-law regimes. In particular, a certain type of random-matrix

model—based on the structure of the rank-1 decomposition of a matrix—seems to better

approximate the behaviour of entropy-like quantities than the more simple structured and

unstructured variants. Despite much further work being required, comparison to random-

matrix models highlights an interesting feature of the Heisenberg model; namely, that—

unlike the quantum circuit model, which does seem to be truly ergodic for measurement

probability p = 0—it does not appear to be fully ergodic, even for a low disorder strength

of W = 1. This implies that there is some structure to the Heisenberg model, even in its

so-called ergodic regime.

Hopefully, these interesting initial results can be extended further to provide us with

more insight into the rapidly-blossoming study of entanglement transitions—in both many-

body localised systems, “brick-layer” quantum circuit systems, and beyond.



Epilogue

The world-changing potential of nanotechnology cannot be understated; it radically shifts

the paradigms of many problems that plague us today, ranging from the biological all the

way to the industrial. In particular, the stunning concept of quantum computation falls

under the vast umbrella of nanotechnology, and is very relevant to the systems we have

explored in this work—systems that possess robust emergent integrability and memory of

initial conditions, both of which are invaluable in the pursuit of quantum computation.

The pursuit of reliable quantum computers is, in many ways, a deeply ironic endeavour—

the very quantum phenomena we throw vast computational power at today, in order to

glean shreds of insight into the quantum world, would be easily solved by a quantum

computer. Not only does God throw dice where we cannot see them, he also writes a map

to their location on the dice themselves.

The first few chapters of this work focus primarily on explicating some of the myster-

ious phenomena produced by many-body localised systems. The first chapter provides a

brief theoretical background before leading into the second chapter, which attacks a very

clearly formulated question: can emergent conserved quantities, central to many-body loc-

alisation, truly be constructed via perturbative methods? By constructing the Brueckner

orbitals for the eigenstates of the spinless fermion model—a paradigmatic model of many-

body localisation—we show that such eigenstates cannot necessarily be constructed from

a single basis of single-particle orbitals. This directly implies that at least some of the

conserved quantities are of a many-body-like nature, and are thus fundamentally nonper-

turbative. This finding holds true even for states that have unity-approaching overlap with

a single Slater determinant, which we numerically confirm are common in the many-body

localised regime. This is invaluable knowledge concerning further study into the explicit

construction of single-quasiparticle bases for integrable systems.

The third chapter tackles a different aspect of many-body localisation; namely, the

effect of global symmetries—in this case, chiral symmetry—on the nature of many-body
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localised eigenstates. We study this in the context of the spin-1 transverse-field Ising

model, as the chiral symmetry operators in this model are easily explicated in closed form

due to their simple alternating structure. The reason for our choice of spin-1 particles arises

from the realisation that the joint constraints of chiral symmetry and an odd-dimensioned

Hilbert space necessarily produce a zero mode that is robust to all parameter variation. We

find that this model indeed localises—albeit at very large disorder strengths of W ∼ 20—

which is a seminal finding in this field. Also, inspired by the one-particle density matrices

used in fermionic models, we formulate a spin-1 analogue that captures distinct fragmented

correlations in the zero mode. These correlations indicate that the zero mode—while it

clearly localises to some degree, in that its entropy obeys area-law scaling—is significantly

less localised than typical nonzero modes. We capture this behaviour numerically, and

provide an astoundingly accurate analytical explanation using quasiperturbation theory.

Finally, the fourth chapter considers the nature of entanglement transitions in general,

pondering the potential relationship between different models that exhibit transitions into

an area-law regime. We choose the Heisenberg model as our representative model of many-

body localisation, and compare this to a model of intense recent interest—the “brick-layer”

quantum circuit model with random measurements. We also make use of three variants

of random-matrix model, with which we try to capture the key characteristics of the

aforementioned more-physical models. In order to compare these models, we look at the

commonly-utilised bipartite entanglement entropy, along with the tripartite mutual in-

formation. By producing scatter plots of these two quantities for the various different

models—across various parameter ranges—we find good agreement between the Heisen-

berg and quantum circuit models in many ways. We also manage to, partially successfully,

approximate these two models using a novel formulation of one of the random-matrix mod-

els. A key difference to note is that the Heisenberg model is never truly ergodic (to the

same extent as the random-matrix models), even at low disorder; whereas the quantum cir-

cuit model very clearly is. This preliminary research offers hope for reconciliation between

two different types of entanglement transition, and suggests that random-matrix theory

could be useful in this context.

In the final analysis, this work constitutes a substantial advancement in our under-

standing of low-dimensional disordered quantum systems; particularly in the context of

emergent conserved quantities, robust zero modes, and random-matrix theory. The emer-
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gence of spontaneous order out of disorder is a fascinating concept, and miraculously

reflects the words of Carl Jung—“In all chaos there is a cosmos, in all disorder a secret

order.” Despite his lack of physical background, I can think of no words that summarise

many-body localisation better than these, and it is our hope that this research will help

shine a light on the rich, hidden cosmos within disordered quantum systems.



Appendix A

Orbital Structure

A.1 The Slater Determinant

It is well known that a given fermionic wavefunction must be antisymmetric, and thus it

should obey the Pauli exclusion principle, which states that two fermions cannot occupy

the same quantum state. To phrase this more mathematically, it is to say that any given

fermionic wavefunction must be subject to

ψ(. . . , xi, . . . , xj , . . .) = −ψ(. . . , xj , . . . , xi, . . .), (A.1)

which directly leads to the original statement of the Pauli exclusion principle:

|ψ(. . . , xi, . . . , xi, . . .)|2 = 0. (A.2)

In the two-fermion case where N = 2, the construction of an antisymmetric wavefunction

is somewhat trivial, and will take the form:

ψ(x1, x2) = χ1(x1)χ2(x2)− χ1(x2)χ2(x1), (A.3)

where the {χi(xj)} are obtained from the relevant single-particle orbitals. It is easy

enough to see that this wavefunction obeys the antisymmetry condition; however, a natural

question arises at this point: can the construction of an antisymmetric wavefunction be

generalised to the N -fermion case? It turns out that this concept is indeed generalisable

to an arbitrary number of fermions, and the process by which this is done is known as the

Slater determinant.

Using the previously defined self-consistent ordering x1 < x2 < . . . < xN , we can define
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the Slater determinant as

S(x1, x2, . . . , xN ) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

χ1(x1) χ2(x1) . . . χN (x1)

χ1(x2) χ2(x2) . . . χN (x2)

...
...

. . .
...

χ1(xN ) χ2(xN ) . . . χN (xN )

∣∣∣∣∣∣∣∣∣∣∣∣∣
≡ |χ1, χ2, . . . , χN 〉 ,

(A.4)

where χi(xj) represents the amplitude of the ith orbital evaluated at site j, and χi is

defined as the ith fermion orbital subject to χ†nχm = δnm. Due to the properties of the

matrix determinant, if any two rows are identical within the matrix of orbitals, then the

determinant is automatically equal to zero, which is in accordance with the antisymmetry

condition conveyed by Eq. (A.1). The explicit determinant in Eq. (A.4) is a useful tool

for the numerical construction of an antisymmetrised wavefunction; however, using the

ordering of states we established previously, it can also be written as a sum of product

states

S(x1, x2, . . . , xN ) =
1√
N !

∑
x1<x2<...<xN

χ1(x1)χ2(x2) . . . χN (xN )

≡ q†x1q†x2 . . . q†xN |vac〉 .
(A.5)

Therefore, if a given eigenstate can be written as a product state of single-particle

operators, then it can be expressed as an exact Slater determinant. In the case of a

noninteracting system, each many-body eigenstate will be an exact Slater determinant

built from some set of single-particle orbitals via Eq. (A.4). As interactions are introduced,

these single-particle orbitals may change, and the many-body eigenstates will likely depart

from exact Slater determinants.

A.2 The Iterative Algorithm

Brueckner orbitals are the name given to a set of N single-particle orbitals, each with

dimension L, which maximise the overlap between a Slater determinant constructed from

these orbitals (optimal Slater determinant), and a given many-body eigenstate of our

system. To phrase this more mathematically, the Brueckner orbitals maximise the quantity

In ≡ |〈ψn|Sn〉|2. Therefore, the construction of Brueckner orbitals for our model will allow

us to quantify the answer to the first key question in section 2.2 more convincingly.

while it may be possible to utilise analytical methods to construct these orbitals for
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smaller systems with fewer fermions, this becomes an impossibly difficult task for even

slightly larger systems (such as L = 8, N = 4). There is more than one way to construct

these orbitals numerically; however, we should turn our attention to methods for which

the overlap increases monotonously with the number of iterations in order to be sure

that the Brueckner orbitals are at least close to optimal. One possible way of doing this

involves the optimisation of one single-particle orbital at a time, thus ensuring monotonous

improvement of the overlap as the number of iterations is increased1.

A detailed review of a generalised process for constructing M orbitals, which maximise

the overlap In, can be found in Ref. [71]; however, since we are dealing with the special

case of M = N , the method simplifies greatly. We begin by first defining the overlap

explicitly in terms of the orbital φ1, which is to be optimised, which can be written as

In ≡ |〈ψn|Sn〉|2

=

∣∣∣∣∣√N !
∑

x1<x2<...<xN

ψ∗(x1, x2, . . . , xN )φ1(x1)φ2(x2) . . . φN (xN )

∣∣∣∣∣
2

= |〈g|φ1〉|2,

(A.6)

where the single-particle function is defined as

g(X) ≡
√
N !

∑
x1<x2<...<xN

ψ(x1, x2, . . . , xN )

× φ∗2(x2)φ∗3(x3) . . . φ∗N (xN ).

(A.7)

Previously, we argued that if any two rows (or columns) in the Slater determinant are

identical, then it will be zero due to the properties of the matrix determinant, which is

in accordance with the Pauli exclusion principle. In addition to this, ψ(x1, x2, . . . , xN )

is assuredly antisymmetric due to the form of the Hamiltonian (2.44). Due to these

properties, it can be seen that if φ1 → φ1<i≤N , then this will result in 〈g|φ1<i≤N 〉 = 0, and

thus |g〉 is orthogonal to |φ1<i≤N 〉 by definition2. Therefore, the optimal φ1, with respect to

{φ1<i≤N}, is simply proportional to the g which maximises In = |〈g|φ1〉|2. It is important

to note that φ1 being optimal with respect to {φ1<i≤N} does not ensure that the other

orbitals are optimal with respect to each other; however, a cyclic shift of φi → φ(imodL)+1,

can be performed after each iteration before optimising again. This process can be repeated

an arbitrary number of times to increase In to its maximal value; however, we expect

1See Ref. [70] for a detailed review of a similar method which optimises the full set of Brueckner orbitals
simultaneously. This is a perfectly valid algorithm, but the overlap will not increase monotonously.

2φ1<i≤N is simply shorthand for an element of the set {φ1<i≤N} ≡ {φi|i ∈ Z, 1 < i ≤ N}.
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states in the localised phase to be well approximated by Slater determinants (indicated

by previous data), so this process should converge to the maximum In very quickly.

To perform this iterative process, the program must first be initialised with a matrix

composed of an orthogonal set of N orbitals. In order to initialise the process with an

unbiased initial matrix, we can fill an L × L matrix A with arbitrary values plucked

from some random distribution (either gaussian or uniform). This matrix can then be

decomposed via the QR-decomposition3 as A = QR, where Q is an orthogonal matrix,

and R is an upper-triangular matrix. The orthogonal matrix Q is then used as the initial

set of N orthogonal orbitals, and will take the form:

Q =



φ1(1) φ2(1) . . . φN (1)

φ1(2) φ2(2) . . . φN (2)

...
...

. . .
...

φ1(L) φ2(L) . . . φN (L)


≡ [φ1,φ2, . . . ,φN ] .

(A.8)

The primary problem with numerically evaluating g(X) is the distribution of minus

signs; however, this can be handled via the use of a determinant [71], and this will take

the form:

g(X) ≡
√
N !

∑
x1<x2<...<xN

ψ(x1, x2, . . . , xN )

×
N∑
m=1

(−1)m−1δx,xmdet∗ {Ym} ,
(A.9)

where Ym ∈ C(N−1)×(N−1) is formed by taking the rows from Q ∈ CL×N corresponding

to {x1, x2, . . . , xN} excluding the xmth row. By using this iterative algorithm, a full set

of Brueckner orbitals can be generated for each many-body eigenstate. These Brueckner

orbitals will be the best possible approximation of a given many-body eigenstate as an

exact Slater determinant, thus allowing us to quantify the exact relationship between the

purity of a state and its closeness to a Slater determinant.

3See the documentation for “numpy.linalg.qr(. . .)” in Python 3.x for details on this.
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Chiral Symmetry

B.1 Level statistics

The results in this work firmly indicate that all states in the spin-1 Ising chain (3.1)

become many-body localised when the disorder becomes sufficiently strong, irrespective of

whether they are zero modes or nonzero modes (see, e.g., Fig. 3.5). As this specific model

has not been considered before, we here provide further supporting evidence based on the

statistics of the standard level-spacing ratio rk, defined as [5, 6, 36]

rk = min

(
Ek+1 − Ek
Ek − Ek−1

,
Ek − Ek−1

Ek+1 − Ek

)
, (B.1)

where the energies Ek are ordered by magnitude. In an ergodic system, the averaged ratio

is expected to be large due to level repulsion, with rk ≈ 0.5307(1) if modelled via the

Gaussian orthogonal ensemble, while in a many-body localised system it is expected to

drop to a smaller value, approaching rk = 2 ln 2−1 ≈ 0.38629 corresponding to Poissonian

level statistics [135].

We restrict our attention to the parity sector including the zero mode. Given the chiral

symmetry, we arrange the indices k so that E0 = 0 denotes the zero mode and Ek = −E−k
denotes the levels paired by the spectral symmetry. Due to this pairing, r0 ≡ 1 in each

realisation, so we instead resort to r1 to characterise the zero mode (which is involved

via the spacing E1 − E0). We contrast this with the statistics of rk with k ≥ 1 for the

nonzero modes, which we constrain to the middle 10% of the spectrum (note that the

chiral symmetry furthermore implies rk = r−k).

In Fig. B.1, the disorder-averaged spacing ratios are shown as a function of disorder
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Figure B.1: Disorder-averaged level-spacing ratio (B.1) as a function of disorder strength

W , for (a) r1 (including the spacing of the zero mode to its next neighbour) and (b)

rk with k > 1 (only involving spacing between nonzero modes, which are furthermore

restricted to the middle 10% of the spectrum). The dotted line indicates the value expected

for an ergodic system modelled by the Gaussian orthogonal ensemble of random matrix

theory, while the dashed line indicates the value for a localised system with Poissonian

level statistics. For the three system sizes N = 6, 8, 10, the data shown is obtained from

∼ 104, 103, 102 realisations, respectively.

strength for three system sizes N = 6, 8, 10. The statistical fluctuations for r1 are large as

only a single value is obtained for each realisation. Nonetheless, both figures consistently

point towards states becoming localised at about the same strength of disorder, with the

averaged ratios of different system size crossing near a point of inflection at around W ' 5.

In Fig. B.2, we show the full statistical distribution of the spacing ratios for the smallest

system size N = 6, where enough data can be collected, for representative values of the

disorder strength W = 1, 5, 20. The results for r1 and r>1 resemble each other closely in

all three cases, being consistent with ergodic behavior for W = 1 as well as many-body

localised behavior for W = 20, and displaying similar intermediate statistics for W = 5.
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Figure B.2: Distribution of level-spacing ratios corresponding to Fig. B.1, with the system

size fixed at N = 6 and the disorder strength set to (a) W = 1, (b) W = 5, and (c)

W = 20, using 2 × 105 realisations. The curves indicate the expected distribution for an

ergodic system modelled by the Gaussian orthogonal ensemble of random matrix theory

(dotted), as well as a localised system with Poissonian level statistics (dashed).
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