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Abstract Cloud service providers acquire the computing resources and al-
locate them to their clients. To effectively utilize the resources and achieve
higher user satisfaction, efficient task scheduling algorithms play a very piv-
otal role.A number of task scheduling technique have been proposed in the
literature. However, majority of these scheduling algorithms fail to achieve
efficient resource utilization that causes them to miss tasks deadlines. This
is because these algorithms are not resource and deadline-aware. In this re-
search, a Resource and deadline Aware Dynamic Load-balancer (RADL) for
Cloud tasks has been presented. The proposed scheduling scheme evenly dis-
tribute the incoming workload of compute-intensive and independent tasks
at run-time. In addition, RADL approach has the capability to accommo-
date the newly arrived tasks (with shorter deadlines) efficiently and reduce
task rejection. The proposed scheduler monitors/updates the task and VM
status at run-time. Experimental results shows that the proposed technique
has attained up to 67.74%, 303.57%, 259.2%, 146.13%, 405.06%, and 259.14%
improvement for average resource utilization, meeting tasks deadlines, lower
makespan, task response time, penalty cost, and task execution cost respec-
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tively as compared to the state-of-the-art tasks scheduling heuristics using
three benchmark datasets.

Keywords Cloud · Task scheduling · Dynamic · Resource utilization ·
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1 Introduction

The fast development of storage technologies and processing owing to the
Internet has made the computing resources powerful, easily available, and
economical to use [1]. This rapid growth in technology has resulted in the
birth of Cloud computing [1] that enables end users to share resources like
CPU and storage for a particular time based on their needs. Cloud computing
model comprises of two key actors [3] (as shown in Figure 1). 1)Cloud Service
Provider(CSP): deploy the resources like storage, processors, network etc., 2)
Service users/clients: hire the services provided by the service providers for
their temporal needs. Service providers use internet based-interfaces to make
their services accessible to the service users.

In the last few years, Cloud computing has gained high impact on the in-
dustry of Information Technology [1]. According to Gartner Predictions [7],
the market revenue of Cloud infrastructure services will grow by 176% in 2021.
Due to such benefits of Cloud [8], many companies like Microsoft [9], Google
[10], and Amazon [11] have started providing powerful, reliable, and cost-
efficient services [12,13] to the customers. These services include Infrastruc-
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ture, Platform, and Software which are known as Software-as-Services (SaaS),
Platform-as-Services (PaaS), and Infrastructure-as-Services (IaaS) [3,15]. For
better delivery of cloud services, efficient utilization of cloud resources is essen-
tial [17]. However, the selection of a suitable scheduling algorithm for achieving
higher resource utilization is an important and challenging task. Task schedul-
ing heuristics map a job or task [16] on appropriate resource. However, to
map large number of tasks on limited resources, task scheduling becomes an
NP-hard problem [17–19,49].
Additionally, cloud computing framework provide resizing of the virtualized
hardware resources which need dynamic reconfiguration in an automatic man-
ner using infrastructure management interface [4,6]. Cloud mapping can be
divided as mapping of VMs on physical host machines and mapping of task on
VMs. This research focus on tasks-VMs mapping, where N number of tasks are
assigned to VMs with pre-determined computation capability. To map tasks
to VMs, there is possibility that a task with high computation requirements
can be assigned to the slower VM that can lead to higher execution time which
may results in deadline violation [20]. Moreover, a faster VM can get tasks with
smaller size may cause the large size tasks to wait for the execution of smaller
task which may lead deadline violation for larger tasks. These challenges may
imbalance the VMs load and can degrade the overall cloud performance [21,
48]. Load balanced [18,21] cloud task scheduling [49,50] plays a key role to
enable efficient use of the Cloud resources. Cloud task scheduling approaches
(as shown in Figure 2) are categorized into three types.

1. Static scheduling [39,47] is the simplest type of scheduling that maps all
the tasks before starting their execution. All information regarding the
computing resources and jobs like VMs MIPS and Task size in MI are
available in advance for tasks to resource allocation.

2. Batch dynamic scheduling techniques [5,21,26] assign a batch of incoming
tasks to predefined number of VMs. All tasks in a single batch are statically
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allocated to the virtual machines before their execution starts. The number
of VMs can be changed (decreased or increased) for the next batch based on
the computation requirements of a batch. These task mapping approaches
result in issues like delayed response time for the new batch formation
(i.e., the task which arrives first will have to wait till the formation of
the complete batch) and inter-batch under-utilization of resources (i.e., in
circumstances where the execution of the first batch is finished and the
next batch not formed yet).

3. Dynamic schedulers have the capability to check, estimate, and update the
VMs load during the execution of the tasks either in the reactive or proac-
tive manner [17]. These schedulers can allow prioritization and migration
[23,27] of the already assigned tasks. Moreover, the dynamic scheduling
mechanisms generally have the capability of new VMs creation [18,24,46],
removal the existing VMs and migration of VMs [28] at run time.

1.1 Gap Analysis

In static scheduling, once a set of tasks are mapped to the corresponding VMs,
their mapping will remain unaltered until the completion of the assigned tasks.
Moreover, most of the classical [1,2,20,37] and state-of-the-art heuristic based
static task scheduling schemes [5,17,21,23–25] suffer from issues like load im-
balance, poor resource utilization, and unable to meet the deadline constraints
for the real-time tasks.
In batch dynamic scheduling, tasks of new batches are allocated to VMs with-
out considering the current workload of VMs. Therefor, the newly created
VMs for the latest batch can finish the assigned workload earlier than the
existing VMs that are busy in executing the previous load. In batch dynamic
based approaches, if a task with shorter deadline arrives in later batches; and
all the VMs are already overloaded, the newly arrived task need to wait until
the completion of previously mapped tasks. Majority of the batch dynamic
scheduling heuristics [17,24–27] provide dynamism at the batch level only and
suffer from issues related to batch formation delays, and under-utilization of
resources (during the batch formation).
Dynamic scheduling mechanisms are much more flexible than the previously
described categories [20,39]. However, a number of the existing dynamic schedul-
ing approaches [20] still use an interval-based temporal batch of input tasks
that arrived during a particular time period. Majority of the existing dynamic
algorithms [17,18,23] suffer from the issues like lower resource utilization, load
imbalance, and high rejection ratio for the deadline-based tasks [17,19,23,29].
Moreover, most of these approaches do not consider tasks deadlines [23,24]
and lack the task shuffling mechanism to accommodate deadlines.
These issues lead to cloud users dissatisfaction due to high task rejection, maxi-
mized task response time, and high tasks execution time (makspan). Moreover,
this results in lower Return on Investment (ROI) for cloud service provider due
poor utilization of cloud resources. These issues also increase task execution
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cost and energy consumption.

Research Questions

1. How to improve cloud resource utilization and load balancing with reduced
makespan using heuristic based dynamic scheduler?

2. How to minimize the response time of newly arrived cloud tasks?
3. How to reduce task penalty cost by reducing task rejection and task exe-

cution cost by early execution of user tasks?

In this work, we argue that task scheduling algorithms should be resource-
aware to achieve better performance. Resource-aware [21,22] load balancing
process includes resource discovery, monitoring the current loads on each re-
source, and assessing workload to be assigned to a resource. To overcome
the load imbalance issue, the tasks should be scheduled on the most suitable
VMs considering the resource capacities. Therefore, this research proposes a
dynamic resource-aware scheduling algorithm named, Resource and deadline
Aware Dynamic Load-balancer for Cloud tasks (RADL) to mitigate the load
imbalance issue and to support deadline constraints. RADL scheduling heuris-
tic distributes the incoming workload of independent, non-preemptive, and
compute-intensive tasks in a balanced way. The RADL approach dynamically
updates two metrics, i.e., VM-load and ready-time.
The key role of the proposed RADL scheme is to increase resource utiliza-
tion, meet deadlines of newly arrived deadlines-based tasks, reduce makespan,
penalty, and task execution cost [30]. The proposed approach consists of two
schedulers: 1) RADL Scheduler: assigns incoming tasks to the pre-defined num-
ber of VMs based on the minimum completion time of the tasks. Moreover, the
RADL Scheduler monitors, updates, the task and VM status at run-time. 2)
Locator Scheduler (LR-subScheduler), this sub-scheduler places the incoming
tasks with a shorter deadline in a suitable position of the task queue of a VM
(which provides minimum completion time for the execution of that job).
This mechanism helps to execute the newly arrived tasks (with shorter dead-
lines) in a timely manner. The proposed scheduling mechanism accommodates
the newly arrived deadline-based tasks without migrating (the executing jobs)
with no additional VM requirement. The employed mechanism results in the
reduced scheduling overhead, high user satisfaction, better Return on Invest-
ment (RoI), lower penalty, and total cost. Major contributions of RADL sched-
uler are summarized as:

– In-depth critical analysis of static and dynamic state-of-the-art scheduling
heuristics to investigate their strengths and limitations.

– A novel, dynamic, and load balancing task scheduler for independent,
compute-intensive, and non-preemptive Cloud tasks that produce improved
resource utilization, reduced task rejection, lower makespan, and higher re-
sponse time.

– The proposed approach also reduce task penalty cost by reducing task
rejection and task execution cost by early execution of user tasks.
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6 Said Nabi et al.

– The RADL scheduler is empirically investigated and their performance is
evaluated against their counterparts.

Rest of the document is organized as follows. Section 2 discuss the literature
review and Section 3 describe system model and architecture, RADL algo-
rithm, complexity analysis, and scheduling overhead. The experimentation,
performance evaluation, and discussion are described in Section 4. The pa-
per is concluded in Section 5. Section 5 also discusses the potential future
directions.

2 Related Work

In this Section, an extensive literature review of state-of-the-art Cloud tasks
scheduling algorithms belonging to the three categories discussed above has
been presented.

2.1 Static scheduling heuristics

Static task scheduling heuristics map all the tasks to VMs before starting
tasks execution and the tasks once mapped to VMs cannot be altered during
the tasks execution. The newly arrived tasks will have to wait for scheduling
until the execution of already mapped tasks is completed. One of the simplest
heuristic is Random Selection (RS) that allocates tasks to VMs in an arbi-
trary manner without considering the VMs computation power and already
assigned workload [21,33]. RS has a simple implementation, low complexity,
and minimal scheduling overhead as compared to other scheduling heuristics.
RS scheduling algorithm randomly selects VMs and assigns tasks to the se-
lected VMs which overloads some of the VMs leading to load imbalance, poor
resource utilization, and longer waiting time [21] for other jobs.
Another basic heuristic is known as Round Robin (RR) [34] that distributes
the incoming workload in circular order on predefined number of VMs. RR has
simple implementation, lower complexity, and minimum scheduling overhead
than the other task scheduling algorithms. However, RR assigns tasks to the
VMs in circular order irrespective of the VM computation power and task size
(causing load imbalance) [21].

Minimum Completion Time (MCT) [35] algorithm allocates a candidate
task to the VM which results in lowest completion time for the task. MCT con-
siders already assigned workload allocated for finding the appropriate VM for
the task execution. MCT enhance resource utilization and reduces makespan
as compared to RR and RS scheduling heuristics. However, MCT overloads
the faster VMs and slower VMs remain idle which result in load imbalance
[21]. Moreover, the performance of the machines degrades when more tasks
are assigned to already over-loaded machines [32,43].

MaxMin [36] schedulers are based on MCT which assigns a task to the
VM that promises minimum expected completion time for that task. Max-
Min scheduling heuristic initially receive a list of unmapped tasks and VMs,
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Resource-aware dynamic scheduler for deadline constraints tasks 7

and completes the scheduling process in two steps: 1) finds the earliest finish
time for a task using all VMs; 2) selects the task with a maximum earliest
finish time for mapping to the concerned VM. On each scheduling step, the
MaxMin removes the mapped task and updates VM ready time. The MaxMin
approach penalize smaller jobs and favors large size jobs. Moreover, MaxMin
based scheduling heuristics suffer from load imbalance issue for workload with
a high number of large-sized tasks [21].
Authors in [42] have presented a modified PSO-based task scheduling and load
balancing meta-heuristic algorithm. The proposed technique has used a novel
inertia weight strategy to balance the exploration and exploitation mechanism
of the particles. This results in achieving efficient task scheduling and load
balancing. The presented technique is termed AdPSO and evaluated in terms
of resource utilization, makespan, and throughput. However, the AdPSO tech-
nique is not deadline aware and task response time and task rejection ratio
are not supported as scheduling objectives.

2.2 Batch dynamic scheduling heuristics

In Batch dynamic task scheduling a set of task is collectively mapped to VMs
although the execution previous batch is not completed.
RALBA [21], a resource aware load-balancing algorithm provides a balanced
distribution of workload according to the VMs computation capability. RALBA
is a batch based task scheduler which assigns a batch of non-preemptive
and independent tasks on fixed number of virtual machines. RALBA perform
scheduling in 2 phases. In phase1, tasks are scheduled on VMs according to
their computation power and computation requirement of the tasks. The sec-
ond part of the RALBA scheduler assigns tasks to the virtual machines which
executes that tasks earliest than others VMs. However, it suffers from the issue
like inter-batch under-utilization of the resources, new batch formation based
delay in processing, and unable to accommodate jobs with shorter deadlines.
In [29], the authors proposed an approach that uses a combination of Chicken
Swarm Optimization (CSO) and Improved Raven Roosting Optimization (IRRO)
algorithms. This approach uses strengths of both IRRO and CSO to provide
balance in the local and global search which results in solving premature con-
vergence, reduces the response time, execution time, and improves throughput.
By using a hybrid algorithm (IRRO-CSO), a framework named ICDSF was
presented for dynamic scheduling of independent tasks in a Cloud environ-
ment. The results show that the improvement in the execution time of the
proposed approach and the existing heuristics is very small and the improve-
ment in the response time is very high. However, this method does not take
into account, the tasks deadlines and utilization of Cloud resource.
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2.3 Dynamic scheduling heuristics

Mao et al. [23] has proposed the Max-Min based elastic task scheduling algo-
rithm (ECMM) for load balancing. ECMM heuristic maintains VM and task
status table which enable them to schedule task based on more real expected
task completion time. VM status table shows the status of VMs which include
tasks, VM id, No of allocated tasks, execution time of tasks, and life cycle
status, etc. Similarly, the task status table contains task id, VM id, task ex-
ecution time, completion time of task, and latest update time. The incoming
tasks are split into different batches based on time interval and allocate tasks
to the VMs by employing MaxMin scheme without considering task migration
and deadlines. Additionally, the employed approach is unable to achieve im-
proved resource utilization, load balance, and minimized makespan.
TM-eFCFS: a task migration-based task scheduling heuristic proposed by Pan-
war and Negi in [27] that employs First Come First Serve heuristic as the base
algorithm. To achieve faster execution and minimized the makespan, this ap-
proach uses non-live migration of tasks in the queue (waiting for the execution
turn) or partially executed task to fastest idle VMs. The proposed approach
comprises of two algorithms. 1) The algorithm selects incoming tasks and as-
signs them to the VM which provide Earliest Completion Time (ECT) and up-
date VM ready time. The second algorithm performs task migration in which
the unprocessed or partially processed tasks already assigned to the slower
VMs are migrated to a faster machine (employing preemption mechanism).
The first algorithm assign tasks based on early completion time and overloads
faster machines. The idle or slower machines are not considered for the task-
migration resulting in unbalanced distribution of workload that causes poor
resource utilization [32].

Chen et al. [37] proposed a fuzzy control theory-based dynamic resource
scheduling technique. This approach predicts the number of concurrent compute-
resources required by the users using the historical information, i.e., a number
of earlier requested resources, resource types, and the number of online users.
The data center monitors the utilization of resources in real-time. This scheme
ensure resources availability, efficiency, and prevent machine overload in peak
hours. This scheduling technique depends on prediction model and feedback.
However, such a prediction model is based on the historic resource scheduling
information which is difficult to maintain.
In [25], authors have presented threshold oriented time-efficient, and dynamic
task scheduling technique that targets to avoid tasking allocation to overloaded
VMs [18]. In this approach, the incoming task is allocated to a virtual ma-
chine only when the already assigned workload of that virtual machine is less
than a predefined threshold. The proposed algorithm performs task migration
for assigning services to the task with higher priority. When tasks with short
deadlines arrive, they are assigned to the fastest machine without considering
the slower machines with minimum load. Dynamic Load Balancing Algorithm
(DLBA) uses a threshold to check the VM for overloading; however, this ap-
proach ignores the under-utilized VMs, which reduce resource utilization and
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increase load imbalance. Also, the task rejection ratio is higher because the
approach does not accommodate jobs considering the deadlines.
A two-stage strategy has been proposed in [20] to minimize load imbalance
and improve performance of task scheduling. At the first step, historical task
scheduling information are used for task classification by using machine learn-
ing classifier. The use of historical scheduling information helps to create a
specific number of VMs types in advance to save the time of VM creation at
run-time. In stage 2, the dynamic task scheduler is presented for assigning the
matched task to the corresponding virtual machine. The key contribution of
this paper is to reduce the time by leasing virtual machines beforehand and
employing the historical scheduling information. Moreover, the task require-
ments like execution cost and task deadline leading to the reduction in the
task completion time and load of the VMs. Moreover, tasks response time,
execution and penalty cost not considered for evaluation [17,32,43].
In [19], Mousavi et al. presented TLBO (Teaching Learning Based Optimiza-
tion) and GWO (Grey Wolves Optimization) based hybrid algorithms. Social
behavior and the hierarchical structure are modelled during hunting and used
for the design of optimization algorithms. TLBO approach helps to investigate
problem space, finding optimal parameters and settings for fulfilling the prob-
lem objectives. The results of presented scheme are evaluated against PSO,
Biography Based Optimization (BBO) and GWO. Authors have claimed that
the newly TLBO-GWO to the existing heuristics, especially for high volume
data. However, for the tasks based on the deadline, the trend is not visible.
In [17], Simulation-Based Optimization (SBO) scheduling framework, named
as RePro-Active has been proposed, which executes periodically. This ap-
proach solves issues like dependency on information on past activities and
maintaining historical information. The algorithm starts from current condi-
tions (rather than relying on the history data) and uses the SBO technique
that tries to simulate possible prospective events to make better decisions.
Although, it avoids dependency on the historical information; however, this
approach results in low Average Resource Utilization Ratio (ARUR) as com-
pared to Min-Min scheduling heuristic and load imbalance.
Heuristic-Based Load Balancing Algorithm (HBLBA) [18] employs configura-
tion of host servers and tasks to VMs mapping. To reduce the waiting and
completion time of the tasks, a queuing model has been adopted for task-
to-VM mapping. The length of the host server queues is fixed and the queue
length of VMs is dynamic. The proposed algorithm allows creating as many in-
stances of hosts with the highest computation power as the data center allows.
The slower hosts remain idle due to the unavailability of computing power re-
quired for a VM, which give rise to low resource utilization and load imbalance
problems.
Kumar and Sharma in [24] proposed a deadline constrained dynamic schedul-
ing algorithm which provides scalability by adding and removing VMs at run
time. Virtual machines are leased based on the average number of the re-
jected tasks. When tasks are scheduled on the VMs then the task migration is
performed from Overloaded VM (OVM) to Under-loaded VM (UVMs). Load

Acce
pted M

anuscr
ipt
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and capacity of each VM are calculated before task migration. The OVMs
and UVMs are identified and sorted in descending and ascending order re-
spectively. The threshold of the overloaded and underutilized VMs are taken
from the existing approaches and fine-tuned by performing experiments. At
the end of each interval, some of the under-loaded VMs are removed based on
the average number of UVM. If the number of rejected tasks is high then the
number of new VMs created is higher than required. The creation of unnec-
essary VMs increase scheduling overhead, load imbalance issue, and resources
under-utilization issue. Furthermore, the task rejection ratio is high and the
rejected tasks are not reconsidered for re-scheduling.
To reduce makespan and increase the number of tasks that meet their dead-
lines, [40] has proposed a flexible and elastic task scheduling algorithm in
Cloud computing.The algorithm has the capability to automatically scale-up
and scale-down based on the incoming requests from the service users. Ar-
chitecture of the proposed approach comprises of components like controller
node/scheduler, load analyzer, Elastic Load Balancer (ELB), and a component
that perform provisioning and de-provisioning of Cloud resources.
In [48], an overall performance based resource aware dynamic scheduling algo-
rithm for Cloud computing has been proposed. In this research, the combined
effect of different evaluation parameters has been analysed. The idea is that
most of time, improving one scheduling parameters can effect the performance
of other.To compute the overall performance of Cloud task scheduler, the
values of different evaluation parameters need to normalized. A novel normal-
ization technique has also been presented.
In Summary, the literature study shows that the static and batch dynamic
task scheduling schemes have issues like load-imbalance, poor resource utiliza-
tion, and are unable to execute the newly arrived tasks with shorter deadlines.
Moreover, the batch dynamic task scheduling algorithms suffer from the is-
sues like delay in response time due to the formation of a new batch (results
in higher response time) and poor resource utilization due to the formation
of a new batch. A number of dynamic task scheduling approaches are batch-
based, however, the majority of these algorithms are not deadline-aware and
only a few of these approaches consider task deadlines. These approaches in-
clude DLBA [25] and DC-BLBA [24]; however, these approaches have high
task-rejection ratio and imbalance mapping of jobs.

3 RADL Scheduling Scheme

This section discusses a detailed overview of the proposed task scheduling
scheme that includes RADL’s system architecture, performance model used,
detail description of the algorithm, time complexity, and scheduling overhead
analysis.
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Table 1: Summary of the related work

Aproach Strengths Weaknesses

RS [33] Simple implementation
and lower scheduling
overhead

Load imbalance and
under-resource utilization

RR [34] Minimal scheduling
overhead and simple
implementation

Not resource-aware, load
imbalance and high makespan

MCT [35] Improved Resource
Utilization and
makespan than RS and
RR

Overload faster VMs, not
support deadline based tasks

Max-Min [36] Favors larger tasks by
Allocating largest task
to fastest VM,

Execution delay for smaller
tasks [21], task deadline not
supported

Dy-MaxMin [23] Calculate the VMs
status after a
pre-defined interval,
Real-time load
balancing

Under-resource utilization [20,
21], Task deadline not
considered

TM-eFCFS [27] Task migration can
play a role in
balancing the load

No task migration for slower
idle machines, minimized
resource utilization, and load
imbalance [20,38]

DLBA [25] Threshold-based
mapping, prevent
over-provisioning of
VMs

partial usage of threshold,
Lower Resource utilization, high
makespan and task rejection,
and load imbalance

RALBA [21] VMs share based
distribution of
workload

Reduced-resource utilization,
High makespan, and task
deadline not supported

TSSLB [20] Reduced execution
time by creating VM
in advance

Dependent on historical
information (previous
scheduling) [17,18]

Repro-Active [17] Not dependent on the
historical information

Poor utilization of resources
and load-imbalance [21],
execute tasks in form of batches

3.1 RADL Background and System Overview

From the literature review, it has been observed that majority of the current
task scheduling heuristics suffering from issues like poor resource utilization,
load imbalance, high makespan, penalty, and task execution cost . Moreover,
most of the these algorithms not support task deadlines and cost. RADL is
a resource and deadline-aware load-balanced scheduling technique and com-
posed of RADL Scheduler and LR-subScheduler. Figure 3 shows the basic
architecture of the Cloud.
The user Infrastructure layer represents the Cloud interface used by the users

who communicate with the Cloud through Internet. The cloud management
layer comprises of several submodules like resource manager that determines
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Fig. 3: Basic Architecture of Cloud

the user requirements in terms of computation resources, provide informa-
tion of currently available resources, the monitoring module allows a system
administrator to initiate and monitor activities of each layer, load-balancer
manages the distribution of workload for execution among available virtual
resources. RADL scheduling scheme is proposed at the Cloud management
layer to enhance load balancing and improve utilization of Cloud resources.
The virtualization layer represents virtual instances of the Cloud resources like
virtual storage and virtual machines. The physical infrastructure layer repre-
sents the physical infrastructure of the Cloud.
To evaluate the performance of the proposed scheduling technique, experiment
has been performed on Cloudsim [6] simulator. Datacenter manages hosts ma-
chines and the power of Datacenter is represented by the computation capa-
bility of host machines and servers on that Datacenter. One or more VMs are
created on every host machine according to the VMs allocation policy defined
by the Cloud Service Provider (CSP). RADL Cloud scheduling technique as-
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signs task to VM based on just-in-time manner and the aims is to improve
resource utilization, reduce task rejection, reduced task execution and penalty
cost.

3.2 System Architecture of Proposed Scheme

RADL is a deadline-aware dynamic (just-in time based) task scheduling tech-
nique in Cloud computing that allocates incoming tasks in a load balanced
manner. The Figure 4 shows the system architecture of the RADL model. Ta-
ble 2 represents some of the notations used in RADL scheduling technique.
RADL scheduling technique comprises of two heuristics i.e., RADL Scheduler
and LR-subScheduler which consist of following major steps:
1. RADL scheduler accept task Ti with their size (szi) along with their dead-
line dTi (in MilliSecond (MS). Task size is represented in Million Instructions
(MIs). A set of VM (VMS) with computation capability of each VM is pro-
vided as an input parameter (shown in Figure 4, Algorithm 1). VMS represents
the size of Cloud Datacenter.
2. The Completion Time (CTij) of the received task is calculated for all VMs
and store in a storage structure (i.e., hashMap) (presented in Figure 4, Algo-
rithm 1). CTij is the sum of the expected execution time of task Ti on VMj

and current load on the VMj as shown in equation 2.
3. This step identifies VMj which gives expected minimum completion time
(minCTij) for Ti. minCTij is compared with the deadline dTi of the task Ti

(shown in Figure 4, Algorithm 1).
4. This step will be executed based on the true value of condition at step 3. If
minCTij of task Ti is less than their deadline, task Ti is assigned to the VMj

that execute them in minimum time (Figure 4, Algorithm 1).
5. When task Ti is assigned to the VMj , VM status and task status tables are
updated (presented in Figure 4, Algorithm 1).
6. In case, minCTij of task Ti is greater than their deadline dTi, RADL Sched-
uler invokes LR-subScheduler. LR-subScheduler computes a suitable position
in the task queue of VMj for task Ti. Task Ti, VMj , minCTij , and deadline
dTi are provided as input to the LR-subScheduler (shown in Figure 4, Algo-
rithm 2). Based on the output (i.e., true or false) value of the LR-subScheduler,
task Ti will be assigned to the VMj or will select another VM from VMS which
gives next minCTij value for task Ti.

Table 2: Acronyms,notations and definitions used in RADL technique.

Notations Description
Cloudlet Notation that represent task in CloudSim simulator
VMS List of Virtual Machines on a Cloud Datacenter
MI Million Instructions (size of task)
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14 Said Nabi et al.

MIPs Computation capability of VM in Million Instructions Per
Second

CTij Task completion time on VMj

minCTij Smallest Time to complete task Ti execution on VMj

dTi Task deadline in Millisecond (MS)
szi Task size in MI
SPQ Suitable Position in the task Queue of VM for current task
RTL collection of tasks whose deadline not satisfied
pList List of Parameters
tList Collection of tasks
CTc Task Completion time that is selected for shifting
dTc Deadline of selected task
newCTc New completion time of task in case of shifting
MindTi Task in the VM task queue having shortest deadline
LR-
subScheduler

Sub-scheduler that is invoked to identify SPQ for task Ti

Heterogeneous VMs with high variation in their computation power

7. LR-subScheduler will check the tasks queue of VMj to identify the task
Tc, which has shorter deadline that is longer than the deadline of task Ti

(shown in Figure 4, Algorithm 2). If such a task (i.e., candidate task Tc) is
found, then new completion time of task Tc (i.e., newCTc) and new completion
time for task Ti (i.e., CTi), will be computed. The newCTc and CTi) will
be compared with dTc and dTi respectively. In case any of these conditions
become false then step 7 will be repeated until all the task queue of VMj is
scanned.
8. In case, both conditions at step 7 are true i.e., task Ti can be adjusted in
the task queue of VMj , then the positions of task Ti and Tc will be updated
(shown in Figure 4, Algorithm 2).
9. In case, both conditions at step 7 become true and tasks positions are
updated as represented in step 8. Task Ti will be mapped to VMj , VM and
task status tables are updated (shown in Figure 4, Algorithm 1),.
10. If condition at step 6 becomes false, a new VM that gives next minimum
completion time will be identified (shown in Figure 4, Algorithm 1). In case,
VM with next minimum completion time is found, then step 7 and 8 will be
repeated.
11. when all VMs are scanned and task Ti is not scheduled in their deadline,
then the task will be moved to list of rejected tasks. Similarly, this process
of task scheduling will continue until a new task is available for scheduling
(shown in Figure 4, Algorithm 1).
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8

10

11

Map(Ti,VMj)

updateVmTbl(pList)
updateTkTbl(pList)

9

CompCTij	

Fig. 4: RADL Scheduler

3.3 RADL System Model

Table 2 depicts acronyms, definitions, notations basic notations, and defini-
tions used in the mathematical formulation of the proposed approach. To
delineate the performance of RADL task scheduling technique, a consolidated
system model for Cloud is devised [21]. Cloud datacenter comprises on a num-
ber of VMs (VMS) as presented in Equation 1 and a VM can be marked as
VMj .

VMS = {VM1, V M2, V M3, ...V Mm} (1)

where m represents the number of VMs in the VMS and 1 ≤ j ≤ m. Ti shows
the task to be mapped on VMj that completes execution of Ti earliest than
other VMs.

CTij = vmExecTij + vmRTj (2)

, Where (CTij) is the task Ti completion time of on VMj that is the execution
time of task Ti plus already assigned workload on that VM (depict in Equation
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16 Said Nabi et al.

2). The execution time of the task Ti on VMj is shown as vmExecTij and
vmRTj is the ready time (already assigned load) of VMj . Equation (3) shows
the computation of vmExecTij , which is the ratio of the size of task Ti (in
Million Instructions (MI)) and the computation capability of VMj (in MIPS).

vmExecTij = (
size(Ti)

VMj .MIPS)
) (3)

where the task size is represented in MI and MIPS represents the computa-
tion power of VMj . The Equation (4) represents vmRTj and mathematically
expressed as:

vmRTj =

k∑
i=1

vmExecTij (4)

where, k represent the total no of tasks allocated to VMj . minCTij (shown
in Equation (5)) represents task Ti completion time of on VMj that executes
them in minimum time.

minCTij = min(CTij) ∀j ∈ 1, 2, 3, ...m (5)

If the task Ti deadline is less than the Ti completion time of on VMj which
executes them in least amount of time, then a suitable place for Ti will be
identified in the task queue of already mapped tasks to VMj . SPQ represents
Suitable Position in VM task Queue and return either true (1) or false (0)
value (depicted in Equation (6)) and mathematically represented as:

SPQ =

{
1 SPQ of Ti identified
0 otherwise

(6)

If SPQ returned value is 1 then the task Ti will be scheduled on VMj , VM
status will be updated.

VM CTj =

k∑
i=0

(
Ti.size(in MI)

VMj .MIPS
) (7)

VM CTj represents VMj completion time which is the summation of com-
pletion time of tasks scheduled to VMj and expressed by Equation (7) [21]),
where, k shows the no of tasks assigned to VMj .The difference of task arrival
time and service time is known as task response time, and mathematically
represented by Equation (8).

RspT imei = (execST imei − arrT imei) (8)

RspTimei is the response time of task Ti, execSTimei and arrTimei are the
execution start time and arrival time of task Ti.

VMsCost =

m∑
j=1

VMCostj (9)
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VMsCost is the sum of cost of all VMs used for the execution of users tasks (as
shown in Equation 9). The VMCost can depends on multiple factors like VM
computation power, number of CPUs, RAM, and storage requirement etc. In
[31] authors have categorized VMCost based on their types. The VMs used in
this article lies in category 1 of [31] and VMCost computed accordingly.

3.4 Performance Model of RADL Scheduler

The performance of RADL approach is evaluated by comparing with the ex-
isting state-of-the-art task scheduling approaches in terms of makespan, task
rejection, response time, ARUR, penalty cost, and task execution cost. ARUR
shows the average cloud resources utilization (as depicted in Equation (10)
[17,21]) and is mathematically represented as:

ARUR = (

m∑
j=1

(VM CTj))×
1

m×Makespan
(10)

ARUR values lie among 0 and 1, where, a lower value of ARUR shows poor
utilization of cloud resources and higher value i.e., 1 represents better perfor-
mance. The percentage of task rejection (%ageRT as shown in Equation (11)
[41]) is achieved by dividing the rejected tasks by total tasks in the task list.

RT%age = (
RTL.size()× 100

N
) (11)

where, RTL is the rejected tasks list and N represent total tasks. Makespan
represents the maximum time taken by a VM to complete execution of all the
allocated tasks i.e., the time taken by a VM that finish the execution of tasks
most recently. Mathematical representation of makespan is shown in Equation
(12) [20,21,24,32,42].

Makespan = max(VM CTj) ∀j ∈ 1, 2, 3, ...m (12)

where, m represent the number of VMs in VMS.

AvgRspT =
1

m

m∑
j=1

(
1

k

k∑
i=1

RspT imeij) (13)

Average Response Time (AvgRspT) (as shown in Equation 13) represent av-
erage response time of scheduled tasks. In equation 13, m shows the number
of VMs in VMS and k shows the tasks that are allocated to every VM.

Cost parameters play a vital role in the selection and evaluation of Cloud
task scheduling algorithm. The two important cost parameters include penalty
cost and task execution cost [31]. Penalty cost is the cost incurred by the CSP
by violating the Service Level Agreement (SLA). In our case, the CSP has
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18 Said Nabi et al.

to pay back by not executing the user’s tasks within their deadline i.e., task
rejection. Penalty cost is the multiple of the number of rejected tasks and
penalty rate. The penalty rate is the agreed penalty value between customer
(Cloud user) and CSP on rejecting a task which can vary from provider to
provider and customer to customer [30].

Penalty Cost = num RT ∗ penalty Rate (14)

num RT is the number of task rejected. Minimized penalty cost represent
the higher performance in terms minimum SLA violations and higher ratio of
meeting tasks deadlines.

Task Exec Cost = VMsCost ∗Makespan (15)

The execution cost of tasks is the multiple of cost of all VMs (VMsCost)
and Makespan [31] as shown in Equation 15. Lower task execution cost shows
better performance in term of reduced execution expenses for users jobs.

3.5 Proposed RADL heuristics

This Section describes proposed RADL task scheduling algorithm. RADL
scheduling technique comprise of RADL scheduler and LS-subScheduler. The
proposed RADL scheduler uses MCT based task-VM mapping and assign task
to the VM if the expected completion of task is less than the their deadline.
The proposed approach also update task and VM status in the task and VM
status table. The LS-subScheduler locate fitted position in task queue of VM
with MCT.

3.5.1 RADL Scheduler

To perform task to VM mapping, RADL Scheduler (Algorithm 1) accepts
task Ti with their computation requiremetns (size) in the unit od Million
Instructions (MIs), task deadline (dTi) in Milli Seconds (MS), and set of VMs
(VMS) with their processing capability as input. Task to VM mapping and list
of rejected tasks (RTL) is returned as an output. The necessary initialization
of the proposed algorithm is performed at lines 1-6 (Algorithm 1). The loop
at lines 7–37 (Algorithm 1) will continue to iterate until all the available tasks
are mapped to the VMs.

The For loop at lines 8-11 (Algorithm 1) compute the completion time of
task Ti on every VM in the VMS using equation 2, 3, and 4 and store task
completion time of each VM in a hashMap. The VM with MCT is identified
(using equation 5) (lines 12, Algorithm 1). The method at (lines 12, Algorithm
1) takes hashMap as an argument that contains completion times of all VMs
for task Ti. The completion time for task Ti is obtained (lines 13, Algorithm
1) and performed comparison with their deadline (line 14, Algorithm 1). If the
decision at line 14 (Algorithm 1) is true, task is scheduled on the VMj , VM
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Resource-aware dynamic scheduler for deadline constraints tasks 19

Algorithm 1: RADL Scheduler
Input : VM list with their computation power, Task Ti with size ”szi” and

deadline ”dTi”
Output: Map (Ti, VMj) i.e Mapping of Task Ti to VMj

1 CTij = 0
2 minCTij = 0
3 Vm VM = null
4 RTL = null
5 findSPQ = false
6 dTi = VmId = 0
7 while Ti.exists() do
8 for j = 1 to m do
9 CTij = computeCTij (Ti.MI, VMj .MIPs)

10 hashMap.add(CTij)


Step 2 and 3 shown
in Figure 4.

11 end
12 VMj = findVmWithMCT(hashMap)
13 minCTij = VMj .getKeyValue()
14 if minCTij < dTi then

15 Map.add(Ti, VMj)


Step 4 and 5 shown
in Figure 4.

16 updateTkTbl(pList)
17 updateVmTbl(pList)

18 else
19 repeat
20 findSPQ = LR-subScheduler (Ti, VMj , dTi, minCTij)

}
call to the
S-Scheduler

21 if findSPQ == true then
22 Map.add(Ti, VMj) updateTkTbl(pList)

}
Step 9 shown
in Figure 4.

23 updateVmTbl(pList)

24 else
25 VMj = findNVmWithMCT(hashMap)
26 if VMj != null then
27


Represent step 10
of Figure 4.

28 minCTij = VMj .getKeyValue()

29 end

30 end

31 until findSPQ == true or VMj == null ;
32 if findSPQ == false then
33


Represent step 11
of Figure 4.

34 RTL.add (Ti)

35 end

36 end

37 end

and task status tables are updated (lines 15-17, Algorithm 1). On the false side
of the decision, else part of the algorithm is computed (lines 18-36, Algorithm
1).

The LR-subScheduler is called that search the fitted location in the task
queue of VMj for task Ti (line 20, Algorithm 1). In the task queue of VMj ,
the LR-subScheduler identifies task with minimum deadline greater than the
deadline constraint of new unscheduled task (Ti) and if such a task is found
in the task queue of VMj then it returns a true value. If the returned value of
LR-subScheduler is true (line 21, Algorithm 1), task Ti is assigned to VMj ,
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20 Said Nabi et al.

the VM and task status tables are updated (lines 22-24, Algorithm 1). if the
return value al line 21 (Algorithm 1) is false then the else block of statements
are executed (lines 25 to 30, Algorithm 1) where next VM with minCTij in
the VM set is determined (line 26, Algorithm 1). The method at (line 26,
Algorithm 1) finds next VM which completes the execution of task Ti in a
least time for the remaining VMs. In case such VM is find then their minCTij

is acquired (line 28, Algorithm 1). The do-while loop is iterated until any of
the conditions at line 31 (Algorithm 1) is true i.e., the task Ti is allocated
to an appropriate VM or complete list of VMs is scanned. After scanning all
the VMs, task Ti is not adjusted the then the task Ti is moved to the list of
rejected tasks (line 34, Algorithm 1).

3.5.2 LR-subScheduler

The LR-subScheduler(Algorithm 2) is invoked by RADL scheduler (Algorithm
1) when the minCTij of a task Ti is greater than the task deadline dTi. The
input parameters for LR-subScheduler comprise of task Ti with the deadline
(dTi), VMj , and minCTij . The LR-subScheduler return true(1) value or false
(0) value as an output. The necessary initialization of Algorithm 2 is rep-
resented in lines 1-5. The candidate task (Tc) which has the lowest deadline
value in the task queue of VMj that is greater than dTi is identified (line 6, Al-
gorithm 2). In case the candidate task is not found i.e., the condition becomes
true (line 7, Algorithm 2), a false value is returned, and control move out of
if condition (lines 7-8, Algorithm 2). On the false side of the if statement, the
else block (line 9-37, Algorithm 2) will be executed. Execution time of Ti is
computed (line 11, Algorithm 2). The new completion time of candidate task
Tc (i.e., newCTc) is identified by adding their completion time and execution
time of task Ti (line 12, Algorithm 2). Similarly, execution time of candidate
task Tc (i.e., execTimeTc) and new completion time (newCTi) of task Ti is
obtained at (line 13-14, Algorithm 2). In case, the conditions at line 15 (algo-
rithm 2) are false, the next task with a minimum deadline greater than dTi is
identified and the repeat-until loop (lines 10-20, Algorithm 2) will be executed
again. The repeat-until loop is repeated until an appropriate location in the
tasks queue of VMj is determined or the complete queue is scanned and the
appropriate location is not found. If the conditions at (line 15 of Algorithm
2) are true, the control moves out of the repeat-until loop and next statement
(line 21 of Algorithm 2) after the loop is executed.
The position of the candidate task (PosTc) is obtained from the task execution
Map (TEMap)at (line 21 of Algorithm 2). The deadline dTk, completion time
CTk), and updated completion (newCTk) time of next task to Tc) which is
termed as Tk) the task is obtained (lines 23-25 of Algorithm 2). If the condi-
tion at line 26 (Algorithm 2) becomes true then the flag value is set to zero
and the control moves out of the For loop. if condition at (line 26 of Algorithm
2) becomes false then the For loop is executed again. The For loop is executed
until the tasks in the queue are checked or the condition at line 26 (Algo-
rithm 2) becomes true. If the condition at line 31 (Algorithm 2) becomes true

Acce
pted M

anuscr
ipt



Resource-aware dynamic scheduler for deadline constraints tasks 21

Algorithm 2: LR-subScheduler
Input : Ti with deadline dTi, VMj and minCTij

Output: true or false
1 Tc =null
2 newCTc = 0
3 execTimeTi =0
4 CTi = 0
5 execTimeTc = 0
6 Tc = findMindTi (tList) > dTi


Represent step 6
of Figure 4.

7 if Tc == null then
8 return false
9 else

10 repeat
11 execTimeTi = Ti.MI/VMj .MIPs
12 newCTc = CTc + execTimeTi

13 execTimeTc = TETMap(Tc)
14 newCTi = newCTc - execTimeTc



Represent step 7
of Figure 4.

15 if (newCTc < dTc && CTi < dTi) then

16 break:
17 else
18 Tc = findNextMindTi (tList) > dTi

19 end

20 until tList.hasNext();
21 PosTc = getPosTc(TEMap)
22 for k = PosTc to vmQ.length do
23 dTk = getDeadline(Tk)
24 CTk = getCTk (TEMap)
25 newCTk = CTk + minCTij

26 if (newCTk > dTk) then

27 flag = 0
28 break:

29 end

30 end
31 if (flag == 1) then
32 updateTaskPos()
33 return true

 Represent step 8
of Figure 4.

34 else
35 return false
36 end

37 end

then the position of the task is updated and a true value is returned. In case,
condition at (line 31, Algorithm 2) becomes false, a false value is returned.

position of the task is updated, returned a true value and control moves out
of the do-while loop (lines 16-20 of Algorithm 2). The do-while loop is iterated
until an appropriate location in the tasks queue of VMj is computed or the
complete queue is scanned and appropriate location not found. If a fitted loca-
tion for task Ti is not identified, the control is moved back to RADL scheduler
(Algorithm 1) to pick another VM that has next minimum completion time.
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Table 3: Complexity Analysis RADL algorithm

Algorithms Dy-
MaxMin[23]

PSSELB[17] DLBA[25] RALBA[21] DC-
DLBA[24]

RADL

Complexity O(mN2) O(mN.n2/2) O(mN+N2) O(mN2) O(m2N2) O(mN +
N2) ≈
O(N2)

Table 4: Computational overhead of RADL algorithm

Algorithms RADL PSSELB
[17]

DLBA
[25]

RALBA
[21]

DC-
DLBA
[24]

Overhead(N times of Dy-MaxMin) 1.90 2.06 2.29 2.32 7.44

3.6 Complexity Analysis and Scheduling Overhead

To analyze complexity of RADL scheduling technique, we consider that N rep-
resents the total number of tasks and m represents the total number of VMs
in a Cloud Datacenter. For a real Cloud Datacenter the following assertion
has been made: N(the number of tasks)>>m (the number of VMs). RADL
algorithm perform m number of comparison to finds VM that complete task
execution in minimum time. The m x N becomes the total number of compar-
isons for N tasks. The RADL technique perform at most m-1 matchings to
identify VM that provide next lowest task completion time. To compute ap-
propriate position for task, RADL algorithm invoke LR-subScheduler and the
LR-subScheduler performs maximum N-1/m comparisons. The total number
of comparisons become (m-1)(N-1)/m) to compute an appropriate location
for the task in the task queue of the VM. The overall complexity of RADL
technique becomes N(m+(m-1)N/m). Therefore, the time complexity of the
RADL scheduler will become N(m+(m-1)N/m). Thus, the complexity of pro-
posed scheduling technique has become O(mN + N2) ≈
O(N2). The RADL scheduling scheme has been analysed and evaluated in term
scheduling overhead as compared to state-of-the-art task schedulers like Dy-
MaxMin[23], PSSELB[17], DLBA[25], RALBA[21], and DC-DLBA[24]. Table
4 represent that Dy-MaxMin [23]) has lowest scheduling overhead than the rest
of the approaches and is considered as baseline for comparison w.r.t to N times
of Dy-MaxMin. The results shown in table 4 delineates that DC-DLBA[24] has
the highest scheduling overhead. Its because this technique perform lease and
release of VMs and task migration at run time. The scheduling overhead re-
sults shown int Table 4 reveals that the our proposed scheduling scheme RADL
has outperform terms of overhead as compared to DC-DLBA[24], RALBA[21],
DLBA[25], and PSSELB[17].
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Table 5: Configuration of simulation environment

Simulation environment Cloudsim 4.0 version
Experimental environment Intel Core 2 Duo T6570, 4.00 GB Memory, 320 GB Hard

drivez
Host Machines 30
Memory of every host ma-
chines

20000 MBs

The number of VMs 50 randomly generated VMs with different computation ca-
pacity (depicted in Figure 6) for GoCJ and Synthetic work-
load, and 16 heterogeneous VMs for HCSP based workload

Total Cloudlets 500, 600, 700, 900, 1000

4 Performance Evaluation

This section presents the experimental setup, workload generation perfor-
mance evaluation, discussions of the RADL scheduling technique, and state-
of-the-art task scheduling technique.

4.1 Experimental setup

To empirically evaluate the performance of the proposed approach, the Cloudsim
[6] [22] simulator has been used. Cloudsim is well known java based open
source tool that model and simulate the real Cloud environment and Cloud
based services. The experimental environment includes CPU (Intel Core 2 Duo
T6570 2 GHZ, 4.00 GB Memory, 320 GB Hard drive, eclipse IDE 2021 R and
Cloudsim 4.0 (as presented in Table 5). We have extended the few of the classes
of Cloudsim simulator that includes Cloudlet.java, Datacenter.java, and Bro-
ker.java. For our experimentations, a datacenter, 50 Virtual Machines, and 30
host machines have been used (presented in Table 5). The configuration of VMs
used for all of our experiments shown in the Figure 6. In our experimentation,
two realistic cloud/cluster traces and MapReduce logs of M45 supercomput-
ing clusters based benchmark datasets have been used that includes Google
like realistic workload that is GoCJ [32] [43] (as shown in Figure 5(b)), and
Expected Time to Compute (ETC) model based on HCSP instances [43]. Ad-
ditionally, synthetic workload based benchmark dataset from [21] has been
used for evaluation.
A number of influential parameters has been used for evaluating and compar-
ing the proposed scheduling algorithm. These evaluation parameters include
makespan [51] [17][21][25][24], %age of task rejection[24], Mean ARUR [17][21]
[23][51][49], and average response time [17][23][25][47]. However, most of the
time improving one evaluation parameter may effect the performance of other
i.e., executing tasks with shorter deadline before tasks with longer or no dead-
line can increase response time of tasks with longer deadline. This increases the
importance to evaluate the overall performance of task scheduling algorithm
as well. Overall performance represents the combined effect of the scheduling
algorithm for more than one evaluation parameters (inversely related ones).
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To compute the overall performance of tasks scheduling heuristics, the results
of different parameters need to be normalized. In our previous work [48], we
have presented a novel normalization technique especially designed for Cloud
tasks scheduling which resolve the limitations of existing normalization tech-
niques(as shown in equation 16 [48]).

Vn = 1− Vo

k∑
i=0

(Vi)

(16)

where Vn shows the normalized value, Vo represent the original number that
need normalization, Vi represent the value of ith parameter, and k shows the
number of parameters.

OG = (

p∑
i=0

(Pi.V alue)

p
) (17)

After normalizing the values of all parameters, overall performance in terms
of overall performance gain(OG) is computed as depicted in equation 17. In
equation 17 [48], where p shows the number of parameters and Pi value shows
the normalized value of ith parameter.

4.2 Workload formation

For experimentation, three benchmark datasets are used. However, these bench-
mark datasets does not contain deadline information which are added follow-
ing the pattern used in [24]. The GoCJ [32][43][22][52] dataset is based on real
world traces derived from traces of Google Cluster [45] and logs of MapRe-
duce from M45 supercomputing cluster[44]. The GoCJ dataset using realistic
high-performance computing Cloud tasks. The GoCJ dataset consists of tasks
having different length i.e., 15000 MIs to 900000 MIs (as presented in Figure
5(b)) and is generated using a renown Monte-Carlo simulation method. To
execute these tasks, virtual machines with different MIPS i.e., computation
capacity are used. These MIPS lies in the range between 100-4000 MIPS. The
HCSP [43,42] is a renown Expected Time to Compute model based bench-
mark dataset. This dataset approximate the actual behavior of heterogeneous
Cloud environment [32]. There are a number of instances that include 1) HCSP
instances with small size (16-64 VMs and 512-2048 tasks), medium size (128-
256 VMs and 4096-8192 tasks), and large size (512-1024 VMs and 16384-32768
tasks). HCSP instances are categorized into i hilo, c hilo, s hilo, i lohi, c lohi,
and s lohi where c shows consistent behaviour (uniform variations in task size
and VMs MIPS), i for inconsistent behavior i.e., variation in tasks MI and
VMs are not uniform, and s used for semi consistent behavior in term of vari-
ation in tasks MIs and VM MIPS. Moreover, lo represent low heterogeneity
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(a) Synthetic Workload dataset (b) GOCJ dataset 
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Fig. 5: Cloudlets distribution for GoCJ[32] and Synthetic Workload dataset
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and hi used for high heterogeneity. The virtual machine power ranges 19-7000
MIPS. In this article, HCSP instance with small size and lower complexity
level has been used that comprise of i hilo, c hilo, i lohi, and c lohi. The syn-
thetic benchmark dataset generated by [21] using monte-carlo technique. This
dataset consists of tasks with various length ranges from 1 MI to 45000 MI (as
presented in Figure 5(a)). The length of tiny tasks ranges from 1 to 250 MI,
small from 800 to 1200 MI, medium from 1800 to 2500 MI, large from 7000 to
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Fig. 7: Makespan and Task Rejection results for GoCJ dataset

10000 MI, and Extra Large (XL) ranges from 30000 to 45000 MI.

4.3 Simulation Results

This Section shows simulation results of the proposed approach RADL and a
comparison of these results with the existing state-of-the-art DC-DLBA [24],
DLBA [25], Dynamic Max-Min (Dy-MaxMin) [23], PSSELB [17], and RALBA
[21]. The performance evaluation metrics include makespan [17][21][25][24],
%age of task rejection[24], Mean ARUR [17][21] [23], and average response
time [17][23][25].

The first benchmark dataset used for evaluation of the proposed approach is
GOCJ dataset proposed in [32] which comprise of large number of larger tasks
as compared to small size tasks. Experimental results show that the proposed
approach RADL has attained 28.66%, 195.42%, 2.96%, 44.94%, and 67.71%
lower makespan (as presented in Figure 7(a)) and 40.07%, 60.78%, 75.76%,
329.23%, and 374.9% reduced task rejection (as shown in Figure 8(b)) for the
execution of GoCJ benchmark dataset as compared to Dy-MaxMin [23], DLBA
[25], DC-DLBA [24], RALBA [21], and PSSELB [17], respectively. Figure 9
presents experimental results in terms of penalty and task execution cost for
the execution of GoCJ dataset. These results shows that RADL Cloud task
scheduling scheme has achieved 374.72, 329.06, 75.69, 60.71, and 40.02% re-
duced penalty cost (as presented in Figure 9)(a) and 67.71, 44.94, 2.96, 195.42,
and 28.66% lower task execution cost respectively against PSSELB, RALBA,
DC-DLBA, DLBA, and Dy-MaxMin using GoCJ dataset respectively depicted
in 9)(b). Figure 8(a) shows that RADL scheduling scheme has attained 60%,
56.67%, 6.67%, 23.33%, and 10% higher ARUR for the execution of GoCJ
dataset against the Dy-MaxMin [23], DLBA [25], DC-DLBA [24], RALBA
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Fig. 8: ARUR and Task Response Time results using GoCJ datasets
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Fig. 9: Task Execution and Penalty Cost for GoCJ dataset

[21], and PSSELB [17], respectively. For the execution of GOCJ dataset, the
RADL approach results in 4.66%, 6.43%, and 21.20% improved response time
than DC-DLBA[24], RALBA [21], and PSSELB [17], respectively (as presented
in Figure 8(b)).

In Cloud task scheduling, the overall performance of task scheduling heuris-
tics cannot be ignored specially when we have contrasting performance pa-
rameters (i.e., increase of one aspect results in decrearse of other). This due
to that most of the time improving one parameter can affect the performance
of other parameters. To investigate the overall performance of proposed ap-
proach RADL, Overall Gain (OG) [48] of RADL scheduler has computed and
compared with state-of-the-art Cloud task scheduling heuristics. For the ex-
ecution of GOCJ dataset (as depicted in Figure 10), the proposed RADL
approach has attain 4.68%, 13.70%, 3.28%, 12.37%, and 13.78% improved
overall-performance gain against Dy-MaxMin [23], DLBA [25], DC-DLBA [24],
RALBA [21], and PSSELB [17], respectively.
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Fig. 10: Overall Performance Gain for GOCJ dataset
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Fig. 11: Makespan and Task Rejection results using HCSP dataset

Heterogeneous Computing Scheduling Problem (HCSP) [43,42] benchmark
dataset consist of HCSP instances which uses ETC model. For the execution
of HCSP dataset (as shown in Figure11(a)), the proposed scheduling heuris-
tic RADL has attain -49, 185.59%, 8.41%, 164.26%, and 298.22% reduced
makespan and 25.31%, 156.33%, 405.06%, 732.91%, and 1219.9% reduced task
rejection as compared to the Dy-MaxMin[23], DLBA [25], DC-DLBA [24],
RALBA [21] and PSSELB[17], respectively. Figure 12(a) shows that RADL
heuristic has attained 55.88%, 41.17%, 61.76%, 11.76%, and 14.7% higher per-
formance in terms of mean resource utilization for HCSP [43] dataset against
Dy-MaxMin [23], DLBA [25], DC-DLBA [24], RALBA [21] and PSSELB [17],
respectively. Figure 11(b) shows that RADL has achieved 17.4, 1, and 82.74%
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Fig. 12: ARUR and Task Response Time results using HCSP dataset
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Fig. 13: Task Execution and Penalty Cost for HCSP dataset

improved task response time than DLBA[25], RALBA[21] and PSSELB[17]
using HCSP benchmark dataset. The results depicted in Figure 13 shows that
the RADL algorithm has gained 1219.94, 732.91, 405.06, 156.33, and 25.32%
less penalty cost for the execution of HCSP dataset than PSSELB, RALBA,
DC-DLBA, DLBA, and Dy-MaxMin respectively as depicted in Figure 13(a).
Similarly, RADL has attained 298.22, 164.26, 8.41, and 185.60% minimized
task execution cost than PSSELB, RALBA, DC-DLBA, and DLBA respec-
tively as shown in Figure 13(b). Figure 14 shows that the RADL scheduling
heuristic has attained 12.45%, 6.37%, 13.58%, and 27.74% improved overall
performance for the execution of the HCSP dataset as compared to DLBA
[25], DC-DLBA [24], RALBA [21] and PSSELB [17], respectively. Experi-
mental results based on makespan using Synthetic workload [21] dataset is
shown in Figure 15 (a). Synthetic workload dataset is a third benchmark
dataset and positively skewed dataset where most of the tasks are smaller
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Fig. 14: Overall Performance Gain results using HCSP dataset
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Fig. 15: Makespan and Task Rejection results for Synthetic dataset

in size and only few tasks are of larger size. Figure 15(a) reveals that the pro-
posed approach RADL has attained 43.38, 95.78, 259.2, 49.78, and 156.28%
lower makespan and 42.86, 145, 303.57, 562.14, and 1195.71% reduced task
rejection (as shown in Figure 15(b)) using the Synthetic benchmark dataset
against Dy-MaxMin [23], DLBA [25], DC-DLBA [24], RALBA [21] and PS-
SELB [17], respectively. Figure 16(a) shows that RADL has gain 67.74, 41.93,
6.45, 25.80, 25.80% higher performance in terms of mean resource-utilization
for the Synthetic [21] dataset against Dy-MaxMin [23], DLBA [25], DC-DLBA
[24], RALBA [21], and PSSELB [17], respectively. The results presented in Fig-
ure 16(b) reveal that the proposed RADL mechanism has attained 146.13%,
12.04%, and 90.92% improved task response time as compared to DC-DLBA
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Fig. 16: ARUR and Task Response Time results for Synthetic dataset based
executions
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Fig. 17: Task Execution and Penalty Cost for Synthetic dataset

[24] RALBA[21], and PSSELB [17], respectively for the Synthetic workload
dataset. Experimental results based on penalty and task execution cost reveals
that the RADL scheduling technique has attained 1195.71, 562.14, 303.57, 145,
and 42.86% lower penalty cost (as depicted in Figure 17(b)), and 156.23, 49.75,
259.14, 95.74 and 43.35% reduced task execution cost than PSSELB, RALBA,
DC-DLBA, DLBA, and Dy-MaxMin respectively for the execution of synthetic
dataset.

Figure 18 presents that the RADL has gain 24.81%, 17.79%, 6.24%, 8.66%,
and 11.41% improved overall performance gain as compared to PSSELB [17],
DC-DLBA [24], Dy-MaxMin [23], DLBA [25], and RALBA [21], respectively
on Sythetic workload based dataset.

Acce
pted M

anuscr
ipt



32 Said Nabi et al.

0.77 
0.72 0.70 

0.63 
0.68 

0.58 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

RADL Dy-MaxMin DLBA DC-DLBA RALBA PSSELB

O
ve

ra
ll 

G
ai

n
 (

O
G

) 

Scheduling Heuristics 

Fig. 18: Overall Performance Gain for Synthetic dataset

4.4 Results and Discussion

In-depth analysis of the experimental results reveals that the RADL schedul-
ing technique has attained significant improvements in term of resource uti-
lization, meeting task deadlines, reducing makespan, cost. It is because the
RADL technique is deadline and resource aware. Experiments have been per-
formed on three state-of-the-art benchmark datasets. The synthetic workload
based benchmark datasets are a more positively skewed dataset. A positively
skewed dataset contains a substantial number of small size tasks and few large
size tasks, however, negatively skewed workload consists of a substantial num-
ber of longer tasks and reduced number of small size tasks. The GoCJ dataset
used in the experimentation consists of relatively larger size tasks than that of
synthetic dataset. Moreover, the HCSP instances based dataset employed in
this experiments, consist of c hilo, c lohi, i hilo, and i lohi where c and i show
consistency of task sizes and VMs MIPS where c shows consistent dataset
and i is used for inconsistent workload, lo represent low heterogeneity and hi
show high heterogeneity of the workload and resources. DC-DLBA achieved
higher task response time, makespan, and task execution cost on synthetic
dataset and reduced makespan and task execution cost for HCSP and GoCJ
datasets. Its because, majority of the tasks in synthetic workload have small
size and results in lower task rejection and creates few new virtual machines.
The RADL scheduler has attained 259.2% improved makespan, 6.45% higher
ARUR, 146.13% improved response time, 303.57% lower task rejection, and
259.14% lower task execution cost on synthetic dataset than DC-DLBA sched-
uler. Similarly, DC-DLBA attained reduced resource utilization and task exe-
cution cost on GoCJ and HCSP datasets as compared to synthetic workload.
Dy-MaxMin attained reduced response time and task execution cost due to
run-time updation of the task and VM status-tables result in the mapping
of tasks on realistic expected completion time-based on VMs. However, re-
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source utilization is low and task rejection is high too because it is neither
creating new VMs nor giving priority to the tasks with shorter deadlines. The
RADL attained 67.74%, 60%, and 55.88% higher resource-utilization than Dy-
MaxMin on synthetic, GoCJ, and HCSP datasets, respectively. Also, RADL
attains 43.38% and 42.86% improved makespan and task rejection, respec-
tively for synthetic workload dataset. The scrutinized results show that PS-
SELB achieved lower resource utilization for synthetic workload due to the
small number of larger tasks in the dataset. This is because the PSSELB se-
lects the largest tasks possibly assign some of the larger tasks to the slower
machine. The percentage of task rejection and penalty cost is high for all the
three datasets because these do not consider deadline-based tasks. RADL has
achieved 41.93%, 56.66%, 41.18% higher ARUR, 95.78%, 195.42%, 185.95%
improved makespan, 145%, 60.78%, 156.33% reduced task rejection, 145%,
60.71%, and 156.33% reduced penalty cost, and 95.74%, 195.42%, and 185.6%
less task execution cost as compared to the DLBA on synthetic workload,
GoCJ, and HCSP datasets respectively. Experimental results show that the
RALBA achieved improved performance in terms of makespan, and resource
utilization as compared to PSSELB and DLBA. The scrutinized results show
that the RADL attained 49.78%, 44.94%, and 164.26% improved makespan,
25.8%, 23.33%, and 11.76% improved resource utilization, 562.14%, 309.06%,
and 732.91% reduced penalty cost as compared to RALBA on synthetic work-
load, GoCJ, and HCSP datasets, respectively. Its because RALBA scheduler is
not deadline aware, which results in high task rejection and penalty cost. The
overall in-depth analysis of the experimental results reveals that the RADL
scheduler outperforms than its counterparts in terms of Resource utilization,
meeting task deadlines, task response time, and makespan. However, RADL
can not support workflow-based dynamic and SLA-aware task scheduling.

5 Conclusions, Limitations, and Future Work

Cloud computing has become an attractive platform for Cloud service providers
and service users. To earn full advantage of Cloud and achieve high user satis-
faction, Cloud service providers demand load balancing in terms of higher re-
source utilization and executing users’ tasks within their deadlines. This leads
to a need for efficient task scheduling algorithms. To attain enhanced utiliza-
tion of Cloud resources and meeting task deadlines, several tasks scheduling
algorithms has presented. However, the majority of the existing scheduling
techniques are unable to achieve high utilization of Cloud resources and to
meet task deadlines. In this research, a Resource and deadlie Aware Dynamic
Load-balancer for Cloud Tasks (RADL) technique is proposed. The perfor-
mance of the RADL scheduling technique is empirically evaluated and com-
pared with state-of-the-art task scheduling schemes like RALBA, DC-DLBA,
DLBA, Dy-MaxMin, and PSSELB using three scientific benchmark datasets.
The evaluation results show that the RADL technique outperforms as com-
pared to the state-of-the-art tasks scheduling algorithms in terms of ARUR
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and in meeting the task deadlines, makespan, and task response time. The
proposed approach reduces task rejection by maximizing the utilization of ex-
isting resources and adjusting the already mapped tasks. However, this may
increase task rejection and task scheduling overhead if all the newly arrived
tasks having shorter deadlines.

The RADL scheme assigns equal weight to every parameter like makespan,
ARUR, task response time, and task rejection ratio. However, there is a pos-
sibility that users can give more importance to one evaluation parameter than
others. The proposed approach assumes that the tasks should be computed
intensively and independently and not consider the parameters like priority,
bandwidth, communication latency, and memory. These parameters play an
important role for workflow-based dependent tasks and need to consider for
workflow-based task scheduling algorithms. The RADL scheduler accommo-
dates the newly arrived deadline-based task, which can lead to starvation in a
scenario where most of the majority of incoming tasks have a shorter deadline.

In the future, it is intended to extend the RADL scheduling technique for
workflow-based (dependent tasks) dynamic task scheduling by considering pri-
ority, bandwidth, latency, and memory as scheduling objectives. Moreover, the
RADL scheduling scheme can be used to assign weights to different evalua-
tion parameters based on users’ preferences. The proposed technique can be
combined with the machine learning approach for VM load prediction.
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