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Abstract

In many areas of interest, modern risk assessment requires estimation of the extremal behaviour of sums of random
variables. We derive the first order upper-tail behaviour of the weighted sum of bivariate random variables under
weak assumptions on their marginal distributions and their copula. The extremal behaviour of the marginal variables
is characterised by the generalised Pareto distribution and their extremal dependence through subclasses of the limiting
representations of Ledford and Tawn [29] and Heffernan and Tawn [24]. We find that the upper-tail behaviour of the
aggregate is driven by different factors dependent on the signs of the marginal shape parameters; if they are both
negative, the extremal behaviour of the aggregate is determined by both marginal shape parameters and the coefficient
of asymptotic independence [28]; if they are both positive or have different signs, the upper-tail behaviour of the
aggregate is given solely by the largest marginal shape. We also derive the aggregate upper-tail behaviour for some
well known copulae which reveals further insight into the tail structure when the copula falls outside the conditions
for the subclasses of the limiting dependence representations.
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1. Introduction

The extremal behaviour of aggregated data is of importance in two key areas of risk management; financial port-
folio optimisation and fluvial flooding. In financial risk management, it is standard practice to aggregate over returns
from several assets in a portfolio in an attempt to mitigate investment risk. It is important that the uncertainty sur-
rounding the tail behaviour of the aggregate is assessed so that the risk of large negative cumulative returns can be
quantified [2, 14, 23]. For flood risk management, consider that fluvial floods are typically caused by prolonged
extreme precipitation over a catchment area; more succinctly, precipitation aggregated both spatially and temporally
[8, 13]. In both cases, the assumption of independence within the multivariate variable of interest is unlikely to hold.
We derive the first order behaviour of the upper-tail of a weighted sum of a bivariate random vector with different
marginal tail behaviours and extremal dependence structures and demonstrate that both factors have a significant
effect on the extremal behaviour of the aggregate variable.

We define the aggregate R as a weighted sum of the components of a random vector X = (X1, . . . , Xd), with
marginal distribution functions Fi for i ∈ {1, . . . , d}, as

R =

d∑
i=1

ωiXi, (1)

with weights ω = {ωi; 0 ≤ ωi ≤ 1,
∑d

i=1 ωi = 1}, and where components of X are all positive and not nec-
essarily independent and identically distributed and X has a joint density. Dependence between components can
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be described using copulae, Sklar’s theorem [39]. The joint distribution function of X can be uniquely written
as F(x) = C{F1(x1), . . . , Fd(xd)}, for x ∈ Rd, where C is the copula, i.e., some multivariate distribution function
C : [0, 1]d → [0, 1] on uniform margins. Our interest lies in the tail behaviour of R, which we quantify by considering
Pr{R ≥ r} as r → rF , where rF ≤ ∞ is the upper-endpoint of R, and how this behaviour is driven by the marginal
tails and dependence structure of X. Modelling the marginal tails of a random vector X has been widely studied,
see [11, 42] and Coles [4]. The typical approach is to assume that there exists a threshold ui for each Xi, such that
the distribution of (Xi − ui)|(Xi > ui) is characterised by a generalised Pareto distribution, denoted GPD(σi, ξi), with
distribution function

Hi(x) =

1 − (1 + ξix/σi)
−1/ξi
+ , ξi , 0,

1 − exp (−x/σi) , ξi = 0,
(2)

for x > 0, scale parameter σi > 0, shape parameter ξi ∈ R and where z+ = max{0, z}. The operator z+ forces Xi to
have upper-endpoint xF

i = ui − σi/ξi if and only if ξi ≤ 0 and the shape parameter ξi controls the heaviness of the
upper-tails of Xi: for ξi > 0, ξi = 0 and ξi < 0, we have that Xi has heavy, exponential and bounded, upper-tails,
respectively. It is important to make the distinction between these three cases as we show that the sign of the marginal
shape parameters, ξi, has a large effect on the tail behaviour of R. We focus on the bivariate sum R = X1 + X2, where
Xi ∼ GPD(σi, ξi) and Xi > 0 for i ∈ {1, 2}, i.e., setting Fi = Hi, and with some specified joint distribution on (X1, X2);
the choice of ui = 0 for i ∈ {1, 2} is discussed in Section 2.

It remains to specify the dependence structure between X1 and X2 which leads to large R. The dependence between
extreme values of variables is classified as either asymptotic dependence or asymptotic independence with respective
measures of dependence: χ the coefficient of asymptotic dependence and χ̄ the coefficient of asymptotic independence
[5]. The former is defined as

χ = lim
q↑1

Pr{F1(X1) > q|F2(X2) > q}. (3)

For χ = 0 and χ > 0, we have asymptotic independence and asymptotic dependence, respectively, with χ increasing
with strength of extremal dependence. Conversely, [28] characterise asymptotic independence between X1 and X2
through the assumption that

Pr {F1(X1) > 1 − 1/u, F2(X2) > 1 − 1/u} = L(u)u−1/η, (4)

where 0 < η ≤ 1, L(u) is a positive slowly varying function as u → ∞ and χ̄ = 2η − 1, so −1 < χ̄ ≤ 1. If χ̄ = 1 and
L(u) tends to a positive constant as u → ∞, we have asymptotic dependence, and for χ̄ ∈ [0, 1) we have asymptotic
independence with weakening strength of dependence as χ̄ decreases. We consider two special cases of these extremal
dependence classes, namely perfect positive dependence with χ = 1 in (3) and η = 1, and independence with χ = 0
and η = 1/2. In both cases, L(u) = 1 for u > 1.

Previous studies on the tail behaviour of aggregated random variables focus on the effects of the marginal distribu-
tions, with limited cases of the dependence structure being considered. Numerous studies on the sum of independent
(χ = 0, χ̄ = 0) Pareto random variables, corresponding to GPD random variables with ξ = 1, have been conducted,
see [40, 45]. The tail behaviour of weighted sums of Pareto random variables, where the weights are random and
exhibit dependence is modelled using elliptical distributions, is studied by [21] and [41] describes the relationship be-
tween marginal exceedance probabilities for both an exponential-tailed Laplace random vector and its sum. The exact
distribution for sums of independent exponential random variables with nonhomogenous, i.e., different, marginal scale
parameters, is studied by Nadarajah [35] and [37, 38] extend this framework to independent GPD margins. A further
derviation of the distribution of R with GPD margins and a Clayton copula (χ > 0, χ̄ = 1), see [20], is provided
by [36]. For asymptotically independent variables, [34] study the behaviour of bivariate aggregates with exponential
upper-tails, i.e., ξ = 0.

Under a general assumption that χ > 0 and that the shape parameters are equal, studies that focus on the extremal
behaviour of R include [7] and [26] and where R is an integral of a stochastic process by [8, 17] and [15], with the
latter studied numerically by [47] for χ ≥ 0. Further extensions to asymptotically independent structures has been
made by [16], who study the relationship between the relative tail decay rates of the bivariate sum R and random
vector (X1/R, X2/R), and the corresponding values of χ and η for (X1, X2); however, these are general results and do
not link the marginal shapes to the tail decay rate of R. Other general results for the tail behaviour of sums include
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extensions of Breiman’s lemma [1], which link the decay rate of a multivariate regularly varying random vector to the
decay rate of the sum of its components, see [18, 32].

There are important gaps in the literature for the tail behaviour of R relating to unequal marginal shape parameters
and copulae with χ = 0 and χ̄ < 1. The case where χ̄ < 0 implies negative dependence between X1 and X2; this case
is also absent from the literature, but we primarily constrain our focus to χ̄ ≥ 0.

The paper is structured as follows. In Section 2, we conduct a preliminary investigation into the upper-tail be-
haviour of R with results that motivate our modelling choices for (X1, X2). Section 3 introduces our preliminary model
set-up and the results that follow by modelling dependence in (X1, X2) using limit models that are specified there
which cover both asymptotic dependence and asymptotic indepedence cases; these results are easily interpretable and
give a strong insight into the tail behaviour of the aggregate. In Section 4, we provide examples of our results for
widely used copulae and give further insight into the tail behaviour of R when the dependence in (X1, X2) does not
satisfy the conditions detailed in Section 3.2. We apply our results to climate data in Section 5 and provide further
discussion in Section 6. Appendix A provides the proofs of the results in Section 3.2; for full details see [46].

2. Motivation

We explore the upper-tail of R numerically using Monte-Carlo methods for copulae with a range of χ and χ̄ values;
this is to motivate the form in which we present the results in Section 3.2 and our choice of dependence model for
(X1, X2). We consider two copulae based on the bivariate extreme value copula, see [48] and [22]. An example of a
bivariate extreme value copula is the logistic model,

CL(u, v) = exp
{
−

[
(− log u)1/γ + (− log v)1/γ

]γ}
, u, v ∈ [0, 1], (5)

where γ ∈ [0, 1); where here we avoid the case γ = 1 which is the independence copula, but allow γ = 0, taken as
the limit in (5) as γ → 0. From (3) and (4), this copula gives values χ = 2 − 2γ > 0 and χ̄ = 1, and the variables
are asymptotically dependent with the strength of asymptotic dependence decreasing with γ increasing. Inverting this
copula gives the inverted-logistic copula which is asymptotically independent, see [49]. This is defined through its
survival copula,

C̄IL(u, v) = exp
{
−

[(
− log(1 − u)

)1/γ
+

(
− log(1 − v)

)1/γ
]γ}

, u, v ∈ [0, 1], (6)

where γ ∈ (0, 1]. In contrast to the logistic copula, we have χ = 0 and χ̄ = 21−γ − 1, with strength of asymptotic
independence increasing as γ decreases.

Fig. 1 provides simulated quantiles of samples of size 1× 107 for R = X1 + X2, where X1, X2 ∼ GPD(1, ξ) with the
bivariate extreme value logistic, and inverted logistic, copulae, defined in (5) and (6), respectively, for selected values
of ξ and the copulae parameter γ. Quantiles rp, where F̃R(rp) = p for F̃R the empirical distribution of R, are given for
p close to 1. We observe that growth of the quantiles of R is affected by both the underlying dependence in (X1, X2)
and the marginal shape parameters. The scales of the axes in Fig. 1 are chosen so that the approximate slope of the
lines reveal the shape parameter of R. To illustrate this, we first define asymptotic notation (∼); for any functions
f : R → R, g : R → R and fixed a ∈ R, the relation f (x) ∼ g(x) as x → a holds if and only if limx→a f (x)/g(x) = 1.
Then when Pr{R ≥ rp} = 1 − p, we have

− log(1 − p) ∼


ξ−1

R log(rp) − log(K1), if ξR > 0,
σ−1

R rp − log(K2), if ξR = 0,
−ξ−1

R log(rF − rp) − log(K3) − ξ−1
R log(rF), if ξR < 0,

(7)

as p→ 1 for constants K1,K2,K3 > 0. Thus, with the axes scaling used in Fig. 1, we expect the slope of each quantile
curve to be approximately 1/ξR, 1/σR and −1/ξR if ξR > 0, ξR = 0 and ξR < 0, respectively, for sufficiently large R.

Relationship (7) and Fig. 1 reveal interesting preliminary insights into the upper-tail behaviour of R. For ξ > 0, we
find that the slopes in Fig. 1 are approximately equal; implying that the dependence structure has no significant effect
on ξR. For ξ ≤ 0, the reverse is true; for ξ = 0, we observe that for the asymptotically independent copula (6), then
σR changes with the strength of dependence; a similar property can be observed for ξ < 0, albeit given a change in
ξR. In both cases, the slopes remain approximately equal for the quantiles derived using the asymptotically dependent
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Fig. 1: Quantiles rp of R; the sum of two GPD(1, ξ) random variables, with copula (5) in red and (6) in blue and for ξ = −1, 0, 1/2, 1 and
γ = 0.3, 0.5, 0.9 and p ∈ [0.99, 0.999]. To emphasise their similarities, these are displayed on the scales − log(rF − rp), rp and log(rp) for
ξ < 0, ξ = 0 and ξ > 0 respectively, where rF is the upper-endpoint of R. Solid lines correspond to perfect dependence and independence, and
the values on the y−axis decrease in each plot with increasing γ. Curves are estimated using Monte Carlo methods, with samples taken to be
sufficiently large that any observed differences in the plot are statistically significant.

copula (5), which implies that some of the structure in ξR is driven by the strength of asymptotic independence, rather
than the degree of asymptotic dependence. We note that our empirical findings are in full agreement with the results
for the theoretical upper-tail behaviour of R that we detail in Section 3.2.

Fig. 2 motivates our choice of the regions on which we focus for characterising dependence within (X1, X2) to
derive the extremes of R. Here we plot simulated X1, X2 ∼ GPD(1, ξ) with dependence induced through the logistic
and inverted-logistic copula, (5) and (6), respectively. The regions of (X1, X2) for which R ≥ r0.999 are shown, with
points in these regions highlighted in red. The combinations of (X1, X2)|(R > r0.999) highlight which aspects of the
copula are important for studying the tail behaviour of R. These combinations are similar for different copulae, or
dependence structures, but differ for different signs on the marginal shape parameter. For ξ ≤ 0, the large values of
R occur for values which are large in both marginals, which suggests that the important regions of the copula are
those where both arguments are simultaneously large; [29, 30] detail dependence in these regions. Conversely, Fig.
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Fig. 2: Scatter plots of 20000 simulated X1, X2 ∼ GPD(1, ξ) with copula (5) (top) and (6) (bottom). Both copulae take parameter value γ = 0.5 and
so (χ, η) = (2−21/2, 1) and (0, 2−1/2) in the two rows, respectively. The red points are those for which X1 +X2 > r0.999, the estimated 0.999−quantile
of R = X1 + X2.

2 illustrates that for ξ > 0, large values of R occur when (X1, X2) is extreme in at least one component. We thus
require a model that considers the distribution of one variable whilst the other is already extreme; which is covered by
the characterisation of [24]. We use both approaches for describing limiting dependence of (X1, X2) and detail these
characterisations in Section 3.1.

In Section 1, we specified that throughout we would assume that Xi > 0 with Xi ∼ GPD(σi, ξi) for i = 1, 2. These
assumptions are clearly highly restrictive when describing marginal behaviour, but as our interest lies in the upper-tail
behaviour of R, we find that the full distribution of Xi is not always relevant. For example, Fig. 2 indicates that when
max{ξ1, ξ2} < 0, the combinations of (X1, X2) which give large R require both Xi variables to be in their upper-tails.
When ξ1 = ξ2 = ξ ≥ 0 and (X1, X2) are positively dependent in their extremes, large values of R tend to occur when
both marginal variables are in their tails. In the case where extremal dependence is weak and the marginal tails are
heavy, then R is dominated by only one large marginal variable; the distribution of the values in the body of the smaller
variable is not important for the characteristics of the upper-tail of R.

These arguments indicate that it is predominantly the upper-tail of the marginal variables that are important. The
widely adopted approximation for the upper-tails of arbitrary marginal variables is that, for some high quantile ui > 0
of Xi, that (Xi−ui)|(Xi > ui) follows a GPD [42]. Our approach is consistent with this, following the threshold stability
property [4] of the GPD: that for all 0 < ui < xF

i we have (Xi − ui)|(Xi > ui) ∼ GPD(σi − ξiui, ξi), and so our approach
is consistent with the usual tail model without any loss of generality. Thus, our modelling of the marginal distribution
has the following properties: it avoids the arbitrary choice of ui; it determines the shape parameter of the tail of R for
all ξi; when ξi = 0 it uniquely determines the scale parameter of the tail through σi; and if the marginal variables are
not lower bounded by zero, then similar results are obtained by location shifting the Xi, where Xi has a finite lower
bound.
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3. Limit results

3.1. Background and model set-up
In Section 3.2, we present our results for Pr{R ≥ r} in the form

Pr{R ≥ r} ∼


K1r−1/ξR , if ξR > 0,
K2 exp {−r/σR} , if ξR = 0,

K3

{
1 − r/rF

}−1/ξR
, if ξR < 0,

(8)

as r tends to rF , the upper-endpoint of R, which is infinite if ξR ≥ 0 and is finite when ξR < 0. Here σR > 0 and
K1,K2,K3 > 0 are constants; note that (8) can be extended by replacing K1 by a slowly varying function, K2 by
a regularly varying function, and K3 by a function the converges to a non-zero finite constant as r → rF . From
expression (8) it can be seen that the tail of R is predominantly determined by ξR, with σR important when ξR = 0,
and rF when ξR < 0. Note that in general rF ≤ xF

1 + xF
2 , where xF

i is the upper-endpoint of Xi for i ∈ {1, 2}, but for the
copulae considered in this section the equality holds. In Appendix B, we show how expression (8) links to the GPD
tail formulation which is typically required for modelling using (2).

We now describe the extremal dependence characteristics that we assume for (X1, X2). [29] present an extension of
(4) which was extended by [44]. Presented here for general marginals F1 and F2, they characterise the joint survival
function as

Pr {F1(X1) > 1 − 1/x1, F2(X2) > 1 − 1/x2} ∼ L(x1 + x2)(x1x2)−
1
2η g (x1/(x1 + x2)) , (9)

for any x1 → ∞, x2 → ∞ such that x1/(x1 + x2) → w for 0 < w < 1, and where L(·) is a positive slowly-varying
function and g : (0, 1) → R+ is a continuous function. [29] have different powers of x1 and x2 to (9) which then
requires that g satisfies a property they term quasi-symmetry; however, [44] use equal powers of x1 and x2 in the term
(x1x2)−1/(2η) which removes the need for this property. [29] provide examples of g for certain copulae, e.g., for the
bivariate extreme value logistic copula, they show that g(w) = {w(1−w)}−1/2[1− (w1/γ + (1−w)1/γ)γ] for γ defined in
(5), and for the inverted logistic copula defined in (6), they show that g(w)→ 1 for all w ∈ (0, 1) as x1 + x2 → ∞.

Heffernan and Tawn [24] and [25] quantify extremal dependence between variables by conditioning on one vari-
able being extreme. We focus on their non-negative association form only. To model extremal dependence in (X1, X2),
they consider the transformed variables Y1 = − log{1−F1(X1)} and Y2 = − log{1−F2(X2)}, such that Y1,Y2 are standard
exponential random variables. Under the assumption that there exist normalising functions a : R → R, b : R → R+,
then for any fixed z ∈ R, y ∈ R+ and for any sequence u→ ∞, we have

Pr {[Y2 − a(Y1)]/b(Y1) < z,Y1 − u > y|Y1 > u} → exp(−y)GZ(z), as u→ ∞, (10)

where GZ(·) is non-degenerate and limz→∞GZ(z) = 1. Often the normalising functions are simplified to location and
scale parameters, i.e., a(y) = αy for α ∈ [0, 1] and b(y) = yβ for 0 ≤ β < 1. The values of α and β determine
the strength of dependence between Y1 and Y2, and, thus, between X1 and X2. For example, asymptotic dependence
between the two is implied by values α = 1, β = 0 with χ =

∫ ∞
0 [1 − ḠZ(−z)] exp(−z)dz for ḠZ(z) = 1 −GZ(z). Within

the class of asymptotic independence, we have α < 1, β ≥ 0, with α = β = 0 giving near perfect independence; we
further require GZ(·) to be standard exponential if (X1, X2) are independent.

We motivated the use of (9) and (10) as dependence models in Section 2 by illustrating, through a numerical study,
that the largest values of R typically occur when both X1 and X2 are large if max{ξ1, ξ2} ≤ 0, and occur when only one
of X1, X2 is large if max{ξ1, ξ2} > 0.

3.2. Results
We now present the results for the tail behaviour of R = X1 + X2 derived by using the limiting structures described

in (9) and (10) to model dependence in (X1, X2). Recall in (1) we define R as a weighted sum, i.e., R = ω1X1 + ω2X2
with 0 < ω1, ω2 < 1 and ω1 + ω2 = 1. By setting X∗i = ωiXi where Xi ∼ GPD(σi, ξi) it follows from (2) that
X∗i ∼ GPD(ωiσi, ξi) and R = X∗1 + X∗2, and so we present results for R = X1 + X2 without loss of generality. We begin
with Theorems 1 and 2, which detail the cases where the marginal shape parameters are equal and non-zero, and zero,
respectively. Theorems 3 and 4 provide results for the cases where the marginal shapes are unequal; Theorem 3 covers
those cases where both shapes are strictly negative and the other cases are covered by Theorem 4.
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Assumptions for Theorems 1-3. We make the assumption that X1 ∼ GPD(σ1, ξ1) and X2 ∼ GPD(σ2, ξ2), with
distribution functions defined in (2), and that the extremal dependence in (X1, X2) satisfies the regularity conditions
for model (9) with η ≥ 1/2 (χ̄ ≥ 0); we further assume that there exists a fixed v > 0 such that, for all y > v,
L(y) is a positive constant which is absorbed by the function g. We assume that model (9) holds in equality for
x1 + x2 ≥ max{c, u∗} for some fixed constant c, 0 < c < rF , and where u∗ = max{xF

1 , x
F
2 } = max{−σ1/ξ1,−σ2/ξ2}

if max{ξ1, ξ2} < 0, and is 0 otherwise; that is, we require that model (9) holds for large R. We assume that the first-
and second-order derivatives of g exists; further assumptions on g are made for specific cases. If min{ξ1, ξ2} = ξ > 0,
we require an additional assumption that the limit in (10) holds in equality for some fixed u > 0 and that the residual
distribution GZ is differentiable. For the theorems that require different conditions for g in (9):

Condition 1. There exists a fixed v∗ > 0, such that for r = x1 + x2 > v∗, we assume that g(ωx) = 1 for all
ωx = exp(x1/σ1)/[exp(x1/σ1) + exp(x2/σ2)] ∈ [0, 1]; or equivalently, the density of X1 and X2 factorises when
R = X1 + X2 > v∗, and where Xi ∼ Exp(1/σi) for σi > 0 and i ∈ {1, 2}.

Condition 2. The tails of g satisfy g(w) ∼ Kgwκ as w → 0 and g(w) ∼ Kg(1 − w)κ as w → 1 for constant Kg > 0
and fixed 0 ≤ κ < 1/(2η).

Condition 3. With η = 1 and as w → 0 or w → 1, we have that g(w) ∼ w−1/2(1 − w)−1/2[1 − H((1 − w)−1,w−1)],
where the bivariate function H is homogeneous of order −1. Moreover, the first, H1 and H2, and second-order,
H12, partial derivatives of H exist and are continuous, and limz→∞ H(z, t) = limz→∞ H(t, z) = t−1 for t > 0. We
present two sub-conditions: Condition 3a, H12(1, z) ∼ −KH1 zc1 as z → 0 for constants KH1 > 0 and c1 > −1 and
H12(1, z) ∼ −KH2 zc2 as z→ ∞ for constants KH2 > 0 and c2 < −2; Condition 3b, if ξ1 > ξ2, then limz→∞ H1(1, z) < ∞
and limz→0 H1(1, z) = 0, and otherwise if ξ1 < ξ2, then limz→∞ H2(z, 1) < ∞ and limz→∞ H2(z, 1) = 0.

Note that Conditions 2 and 3 are mutually exclusive.

Theorem 1. Under the assumptions stated above, if ξ1 = ξ2 = ξ , 0, then

Pr{R ≥ r} ∼

K
(
1 +

ξr
σ1+σ2

)− 1
ηξ , if ξ < 0,

K∗ur−1/ξ, if ξ > 0, Condition 2 holds or Condition 3 holds,

as r → rF , where rF = ∞ for ξ > 0 and rF = −(σ1 + σ2)/ξ for ξ < 0, and for constants K and K∗u defined in (A.2)
and (A.7), respectively.

Theorem 2. Under the assumptions stated above, if ξ1 = ξ2 = 0, then

Pr{R ≥ r} ∼


σmax

σmax−σmin
exp

(
− r

2ησmax

)
, if σ1 , σ2,Condition 1 holds,

r
2ησ exp

(
− r

2ησ

)
, if σ1 = σ2 = σ,Condition 1 holds,

K exp
(
− r

(σ1+σ2)

)
, if Condition 3a holds,

as r → ∞ and for constant K defined (A.10), where σmax = max{σ1, σ2} and σmin = min{σ1, σ2}.

Note that there is a power term in the second case for Pr{R ≥ r} given by Theorem 2 that is not covered by the general
form given by (8). However, the form in Theorem 2 is in the domain of attraction of a GPD with shape and scale
parameters zero and 2ησ, respectively.

Theorem 3. Under the assumptions stated above, if ξ1 , ξ2 and max{ξ1, ξ2} < 0, then

Pr{R ≥ r} ∼

K(2)

(
1 +

ξ1ξ2r
σ1ξ2+σ2ξ1

)− 1
ξmax

(
1
2η+κ

)
− 1
ξmin

(
1
2η−κ

)
, if Condition 2 holds,

K(3b)

(
1 +

ξ1ξ2r
σ1ξ2+σ2ξ1

)− 1
ξmax , if Condition 3b holds,

as r → rF = −(σ1/ξ1 + σ2/ξ2), and for constants K(2) > 0 and K(3b) > 0 defined in (A.12) and (A.16), respectively,
and ξmax = max{ξ1, ξ2}, ξmin = min{ξ1, ξ2}.

The set conditions on the dependence in (X1, X2) given for Theorems 1-3 are not necessary for Theorem 4. Whilst
Theorems 1-3 only apply when χ̄ ≥ 0, i.e., non-negative association in (X1, X2), Theorem 4 applies for any χ̄ ∈ (−1, 1].
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Theorem 4. If ξ1 , ξ2 and max{ξ1, ξ2} ≥ 0, then

Pr{R ≥ r} ∼

(ξmax/σmax)−1/ξmax r−1/ξmax , if max{ξ1, ξ2} > 0,
C exp (−r/σmax) , if max{ξ1, ξ2} = 0,

as r → ∞ and where ξmax = max{ξ1, ξ2} and σmax = {σi; i is s.t. ξi = ξmax} and for constant C ∈ [1,C∗D] with C∗D
defined in (A.18).

Using a different approach [27] provides a similar result to Theorem 4 when min{ξ1, ξ2} > 0. We further note that
the cases where min{ξ1, ξ2} > 0 in Theorems 1 and 3 agree with Breiman’s Lemma [1], as we have ξR = max{ξ1, ξ2}.

4. Copula examples

We now compare the limit results detailed in Section 3.2 with results for the upper-tail behaviour of R when
dependence in (X1, X2) is fully modelled using copula families and their marginal models remain the same, i.e.,
Xi ∼ GPD(σi, ξi) for i ∈ {1, 2}. The assumptions we made in Section 3.2 hold in some cases and in these we
obtain identical results to Section 3.2. However, where the assumptions of Section 3.2 are too strong, our direct
derivations from the copulae, with details in [46], provide insight into the tails of R in these specific cases and they
show some features of Theorems 1-3 still hold even when their conditions fail to hold. We consider the extreme value
copula and the inverted extreme value copula and the limiting forms of these two classes, i.e., perfect dependence and
independence. We further consider a standard Gaussian copula with correlation parameter ρ ∈ (0, 1).

The extreme value copula takes the form

Cev(u, v) = exp
{
−V(−1/ log(u),−1/ log(v))

}
, (11)

where V(x, y) = 2
∫ 1

0 max {w/x, (1 − w)/y} dM(w) is a homogeneous function of order −1 and M(w) is a univariate
distribution function/probability measure for w ∈ [0, 1], which has expectation 1/2. Note that 1 ≤ V(1, 1) ≤ 2,
where the boundary cases correspond to special cases of the extreme value copula, i.e., we have perfect dependence,
and independence, between X1 and X2 when V(1, 1) = 1 and V(1, 1) = 2 respectively. This copula gives η = 1
(χ = 2 − V(1, 1), χ̄ = 1) and η = 1/2 (χ = 0, χ̄ = 0) when V(1, 1) < 2 and V(1, 1) = 2, respectively; that is, this
copula exhibits asymptotic dependence, or independence, only. Furthermore, [29] illustrate that this copula satisfies
Condition 3a/3b, with H = V and κ = 1/2, needed for Theorems 2 and 3.

The inverted extreme value copula follows by inverting (11), see [29], and is defined through its survival copula

C̄iev{u, v} = exp
{
−V(−1/ log(1 − u),−1/ log(1 − v))

}
, (12)

with a similarly defined V . This, and the Gaussian copula, have η = V(1, 1)−1 and η = (1 + ρ)/2, respectively, where
χ̄ = 2η − 1 and χ = 0 for both copulae. The bivariate extreme value logistic (5), and inverted logistic (6), copulae
are subclasses of (11) and (12), respectively. When discussing results pertaining to copulae (11) and (12), we assume
that the first- and second-order partial derivatives of V exist, i.e., the existence of a joint density, hence this excludes
perfect dependence which is derived separately.

We report the parameters that determine the leading order behaviour of Pr{R ≥ r} as r → ∞ as given by form (8),
i.e., ξR , 0 and when ξR = 0 we report σR. We partition the space of all (ξ1, ξ2) into three cases: (i) ξ1 = ξ2 = 0,
(ii) max{ξ1, ξ2} < 0 with ξ1 , ξ2 and (iii) all other possibilities not covered by cases (i) and (ii). Case (iii) covers a
large number of sub-cases, e.g., all those covered by Theorems 1 and 4, and no further insight into the upper-tails of
R is revealed when modelling dependence in X using copulae; [46] finds the same results as detailed in Section 3.2
suggesting that, for this case, modelling dependence using the limiting models of [29] and [24] is sufficient to derive
the first-order behaviour of the upper-tail of R.

However, for cases (i) and (ii), then [46] shows that some further insight into the upper-tail behaviour of R, relative
to that provided by Theorems 2 and 3, can be gained by modelling dependence with copulae. In these cases, we report
the differences between the results derived by [46] and those covered by Theorems 2 and 3 in Table 1. Observe that for
the classical scenarios of asymptotic dependence (χ > 0) and independence (χ̄ = 0), then both sets of results agree; the
parameters ξR and σR are the same whether derived from first principles using the copula or obtained by Theorems 1
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and 2 under conditions that do not fully apply to the specific copula. However, for asymptotic independence, i.e.,
0 ≤ χ̄ < 1, then the results only agree in the limit as χ̄ ↓ 0. As illustrated by [29], none of Conditions 1-3 are met
by either the inverted extreme value, or the Gaussian, copulae. For these copulae, the parameters in (8) cannot be
represented as the product of a function of the marginal parameters and the summary measure η; instead, the upper-
tail behaviour of R is driven by a function of both the marginal parameters and dependence structure which cannot
be factorised, indicating a more subtle relationship between the marginal shapes, extremal dependence structure and
upper-tail behaviour of R.

Table 1: Parameter values for R = X1 + X2 where (X1, X2) have GPD margins with either ξ1 = ξ2 = 0 or ξ1 , ξ2 with max{ξ1, ξ2} < 0, and for
h(w) = σ1w − 2ρ

√
σ1σ2w(1 − w) + σ2(1 − w), for 0 < w < 1,min{σ1, σ2} > 0 and 0 ≤ ρ < 1. All other cases for the GPD margins are discussed

in text in Section 4.

ξ1 = ξ2 = 0⇒ ξR = 0 max{ξ1, ξ2} < 0, ξ1 , ξ2
Dependence Structure σR ξR

Theorems 2/3, χ > 0 σ1 + σ2 max{ξ1, ξ2}

Theorems 2/3, 0 ≤ χ̄ < 1 2ηmax{σ1, σ2} 2η
(
ξ−1

1 + ξ−1
2

)−1

Independence, χ̄ = 0 max{σ1, σ2}
(
ξ−1

1 + ξ−1
2

)−1

Perfect dependence, χ = 1 σ1 + σ2 max{ξ1, ξ2}

Extreme value copula, χ > 0 σ1 + σ2 max{ξ1, ξ2}
Inverted extreme

value copula, 0 ≤ χ̄ < 1 max
0≤w≤1

{[V (σ1/w, σ2/(1 − w))]−1} −1/V(−ξ1,−ξ2)
Standard Gaussian,
χ̄ = ρ, ρ ∈ [0, 1) (1 − ρ2) max

0≤w≤1
{h(w)−1} (1 − ρ2){ξ−1

1 + 2ρ(ξ1ξ2)−1/2 + ξ−1
2 }
−1

5. Application to aggregated environmental data

5.1. Introduction

We now present an application of the results discussed in Section 3.2 to climate model data. We study precipitation
and temperature data, which have heavy and bounded marginal upper-tails respectively. Both datasets are obtained
from the UK climate projections 2018 (UKCP18) [33] which contains values aggregated over a given time interval
and a spatial grid-box. The size of these grid-boxes and the specified time interval differ between the two studies. In
both cases, we investigate the marginal upper-tail for the variables observed at a configuration of grid-boxes and the
spatial average of them over adjacent boxes.

Recall from Section 3.1 that the driving factor for the extremal behaviour of the aggregates is the GPD shape
parameter, ξ. We focus on just the relationship between estimates of ξ for the marginal variables and ξ for the aggre-
gates. To investigate this relationship, we begin with a 2 by 2 configuration of adjacent grid-boxes. For each pair of
adjacent grid-boxes, we conduct inference on three variables. Marginally, for each grid-box, we fit the GPD to ex-
cesses above the sample p-th quantile using maximum likelihood methods, under the assumption that observations are
independent and identically distributed [4]. Following many spatial extreme value applications [3, 6, 8–10, 19, 31],
we anticipate that the shape parameters for adjacent grid-boxes should be identical. Therefore we also pool informa-
tion across grid-boxes with a model that the distribution of excesses in adjacent grid-boxes i and j are GPD(σi, ξ) and
GPD(σ j, ξ), respectively, i.e., a common shape parameter but with the scale parameter unconstrained; note that we do
not assume a common shape for all four grid-boxes, we make the weaker assumption that only adjacent grid-boxes
share a common shape parameter. We then take the spatial aggregate of the data across adjacent grid-boxes at each
separate time interval and fit a GPD to excesses of these data above its empirical p-th quantile. Quantiles are estimated
separately for marginal, pooled and aggregate variables. To account for strong spatial and temporal dependence in the
data, standard errors for ξ are estimated using a stationary bootstrap [43] with 1000 samples, with temporal block size
drawn randomly from a Geometric distribution with expectation corresponding to a week of observations.
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5.2. Precipitation

The data are precipitation flux (mm/day) from a convection permitting model on 2.2 × 2.2km2 grid-boxes and
hourly intervals. To account for seasonality, we use only winter, December to February, observations between the
years 1980 and 2000. We study a 2 × 2 configuration of grid-boxes centred around (52.18◦, 0.14◦), approximately
Cambridge, UK; this is a flat area so no orographic features are important and marginal distributions are expected to
be nearly homogeneous. We conduct our analysis on outputs of the model at two spatial resolutions - high, using data
on (2.2)2km2, and coarse, from (22)2km2 grids. The latter is produced by taking the spatial average over 10 by 10
configurations of the former data. We analyse both resolutions to investigate the effect of extremal dependence on the
observed results. This is quantified using the measure η, given in (9), which is estimated as in [5]. All GPD models
are fitted to exceedances above 99.5% quantiles.

Table 2 presents estimates and the 95% confidence intervals for the shape parameters using the three inference
methods. The marginal shape parameter estimates are predominately positive which suggests that Theorem 1 is
relevant, i.e., for a homogeneous marginal shape parameter ξ > 0, the shape parameter of the aggregate is also ξ,
regardless of the dependence structure. We aim to see if this applies in the observed tail. Table 2 shows the point

Table 2: High resolution precipitation case study: shape parameter estimates and 95% confidence intervals for margins (black), pooled marginals
(red) and aggregate variable (blue).

Marginal
0.210 (0.045, 0.339) 0.197 (0.037, 0.350)

Marginal
0.154 (-0.030, 0.286) 0.172 (0.017, 0.306) 0.178 (0.019, 0.320)

0.160 (-0.006, 0.288) 0.172 (0.020, 0.328)

0.225 (0.040, 0.344) 0.214 (0.049, 0.333) 0.168 (-0.001, 0.283)
0.177 (0.036, 0.316) 0.184 (0.041, 0.347)

estimates of confidence intervals for ξ using the marginal variables and the pooled analysis. As we observe similar
estimates for ξ as well as substantial overlap in the confidence intervals, this suggests that it is reasonable to assume
homogeneous marginal shape parameters. Using the same criteria as above, the marginal estimates also have good
agreement with ξ for the aggregate variable, suggesting that the positive shape result in Theorem 1 holds well for these
data. Pairwise η estimates for Table 2 fall in the range [0.956, 0.967], which suggests strong extremal dependence
between the marginal variables. To investigate the effect of weaker dependence on the relationship between the

Table 3: Coarse resolution precipitation case study: shape parameter estimates and 95% confidence intervals for margins (black), pooled marginals
(red) and aggregate variable (blue).

Marginal
0.146 (-0.033, 0.277) 0.089 (-0.024, 0.197)

Marginal
0.104 (-0.083, 0.218) 0.108 (-0.015, 0.239) 0.101 (0.000, 0.186)

0.177 (-0.095, 0.318) 0.011 (-0.123, 0.085)

0.068 (-0.055, 0.183) 0.105 (-0.119, 0.212) 0.082 (-0.012, 0.176)
0.085 (-0.082, 0.182) 0.061 (-0.065, 0.189)

marginal and aggregate ξ parameter, we now consider the coarse resolution data and conduct the same analyses as
previously; pairwise η̂ for the coarser data are in the range [0.859, 0.895], which is lower than the estimates for Table 2.
Table 3 suggests that it is reasonable to assume homogeneous marginal shape parameters at this coarse resolution, as
we again observe good agreement between the ξ estimates for both the marginal and pooled variables. We also observe
good agreement between ξ for the pooled variables and aggregate variables even with weaker extremal dependence.

5.3. Temperature

The data are average daily temperature (◦C) from a global climate model scaled to 60 × 60km2 grid-boxes and to
account for seasonality we use only summer, June to August, observations. The model is run through the years 1899
to 2099, providing 18000 observations per grid-box. We consider a 2 × 2 configuration of grid-boxes centred around
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(53.14◦,−1.70◦), south of the Peak District, UK. As in Section 5.2, we conduct our analyses on outputs of the model
at two spatial resolutions - high using data on (60)2km2 and coarse (300)2km2 grids; the latter produced by taking the
spatial average over 5 by 5 configurations of the former data. All GPD models are fitted to exceedances above 98%
quantiles.

Table 4 presents estimates and the 95% confidence intervals for the shape parameter for the marginal and pooled
variables, which suggest that these variables have bounded upper-tails. As such, we consider the results in Theorem
1; this states that, asymptotically, the shape parameter of the aggregate should be ηξ given that the marginal variables
have equal, negative shape ξ < 0. To see if this result is consistent with the observed tails, Table 4 presents estimates
and 95% confidence intervals for a scaling of the aggregate shape parameter by 1/η̂, where the estimate η̂ of η is
calculated for each bootstrap sample of the aggregate; if Theorem 1 holds for these data, then this should be equal
to the marginal ξ. Table 4 suggests that we can assume homogeneous marginal shape parameters and these estimates

Table 4: High resolution temperature case study: shape parameter estimates and 95% confidence intervals for margins (black) and pooled variable
(red). Blue confidence intervals are for a scaling of the aggregated shape parameter by 1/η.

Marginal
-0.156 (-0.276, -0.067) -0.211 (-0.308, -0.108)

Marginal
-0.198 (-0.310, -0.106) -0.180 (-0.268, -0.106) -0.199 (-0.293, -0.133)

-0.214 (-0.339, -0.103) -0.201 (-0.318, -0.103)

-0.148 (-0.266, -0.082) -0.165 (-0.255, -0.069) -0.161 (-0.250, -0.094)
-0.166 (-0.278, -0.083) -0.160 (-0.297, -0.067)

also have clear agreement with the scaled shape parameter for the aggregate variable, suggesting that the negative
shape result in Theorem 1 holds well for these data. Pairwise η estimates for Table 4 fall in the range [0.918, 0.981],
which suggests strong extremal dependence between the marginal variables, and so we repeat the analyses with the
coarser data to investigate the effect of weaker dependence on the aggregate shape parameter. Table 5 suggests that it

Table 5: Coarse resolution temperature case study: shape parameter estimates and 95% confidence intervals for margins (black) and pooled variable
(red). Blue confidence intervals are for a scaling of the aggregated shape parameter by 1/η.

Marginal
-0.113 (-0.277, -0.020) -0.207 (-0.298, -0.132)

Marginal
-0.183 (-0.280, -0.106) -0.145 (-0.219, -0.088) -0.200 (-0.272, -0.158)

-0.200 (-0.356, -0.102) -0.204 (-0.342, -0.129)

-0.053 (-0.317, 0.057) -0.138 (-0.258, -0.067) -0.066 (-0.255, 0.010)
-0.083 (-0.338, 0.011) -0.178 (-0.410, -0.071)

is still reasonable to assume homogeneous marginal shape parameters at the coarser resolution, as we again observe
good agreement between the ξ estimates for both the marginal and pooled variables. We found that pairwise values
of η̂ for Table 5 were in the range [0.789, 0.921], which suggests weaker extremal dependence than that observed for
the high resolution temperature data. We also observe good agreement between these estimates and the estimates for
the scaled aggregate shape parameter, confirming that the result in Theorem 1 applies well, even for weaker extremal
dependence.

6. Discussion

In Section 3.2, we provided results that explore the extremal behaviour of R; the bivariate aggregate of two GPD
random variables, X1 and X2. These results focus primarily on the effect of the marginal shape parameters and
dependence within (X1, X2) on the shape parameter ξR of the aggregate, or its scale parameter if we have ξR = 0.
Through Section 3.1, we illustrate that the value of the maximum of the marginal shape parameters is generally the
most important driver in the tail behaviour of the aggregate.

The results given in Section 3.2 were derived by modelling the dependence in (X1, X2) using the limiting extremal
dependence models of [28] and [24], whereas results using full copula models are given in Section 4. There is broad
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agreement between results derived using the two methods, and so we conclude that the extremal behaviour of R is
mostly driven by the limiting behaviour of (X1, X2) as x1 → ∞ and/or x2 → ∞, and that modelling the full dependence
in (X1, X2) is not necessary to capture the first order behaviour of Pr{R ≥ r} as r → ∞.

Although we define R for any d ∈ N in (1), we constrain the focus of our study to d = 2. To extend the results
in Section 3.2 to d > 2, we require extensions of characterisations (9) and (10) to greater dimensions; such variants
exist, see [12], and so it is reasonable to assume that the results given in Section 3.2 can be extended to d > 2. For
example, [46] details extensions of some of the copula results given in Section 4 to d > 2. However, we note that the
framework for the proofs in Appendix A may not be applicable when deriving results for d > 2, as we would require
evaluation of d-dimensional integrals which may not be feasible in an analytical setting.

To illustrate some of the practical utility of the results in the paper, in Section 5 we undertake inference on
the upper-tail behaviour of aggregated precipitation and temperature data, which have heavy and bounded marginal
upper-tails, respectively. We aggregate the data as we are interested in the extremal behaviour of the climate processes
at lower resolutions; for precipitation, this is for the reasons described in Section 1, and for temperature, we are
interested in the average extreme heat over a large spatial domain since a heatwave has societal impact owing to it
affecting a spatial region not simply a single location. Both datasets are obtained from the UK climate projections
2018 (UKCP18) [33] which contains values aggregated over a spatial grid-box; we conduct our analyses using both a
fine, and coarse, spatial resolution, as we find weaker extremal dependence exhibited by the latter data. We estimate
ξ1, ξ2 and find that we can reasonably assume ξ1 = ξ2 (= ξ say) as their estimated confidence intervals overlap. We
further estimate ξR and illustrate that these estimates agree with the results presented in Theorem 1; namely that ξR = ξ
and ξR = ηξ if ξ > 0, and ξ < 0, respectively.
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Appendix A. Proofs

Proof of Theorem 1. Negative Shape Case (ξ < 0). We begin by deriving the joint density of (X1, X2) given in (9)
for GPD margins. We transform (X1, X2) → (R,W), where R = X1 + X2 and W, an auxiliary variable, and integrate
out W to give the density of R and derive its survival function. Combining (9) and (2) with ξ1 = ξ2 = ξ < 0, we have
that

Pr

1 −
(
1 + ξ

X1

σ1

)−1/ξ

> 1 −
1
x1
, 1 −

(
1 + ξ

X2

σ2

)−1/ξ

> 1 −
1
x2

 =
L(x1 + x2)

(x1x2)
1
2η

g
(

x1

x1 + x2

)
,

as x1, x2 → ∞ such that the limit of x1/(x1 + x2) is bounded by (0, 1). Under the assumption that L(y) acts as a

constant which can be absorbed by g for y > v for some v > 0, we have Pr {X1 > x1, X2 > x2} ∼ x̃
− 1

2ηξ

1 x̃
− 1

2ηξ

2 g (ωx) for
x1 → xF

1 and x2 → xF
2 , such that ωx = x̃1/ξ

1 /(x̃1/ξ
1 + x̃1/ξ

2 ) → ω∗x ∈ (0, 1) and where x̃i = (1 + ξxi/σi) for i ∈ {1, 2}.
Assuming that the first and second derivatives of g exist, then the density of (X1, X2) is

fX1,X2 (x1, x2) ∼
(x̃1 x̃2)−

1
2ηξ −1

σ1σ2

[
g (ωx)

4η2 + (x̃1 x̃2)
1
ξ

x̃1/ξ
1 − x̃1/ξ

2(
x̃1/ξ

1 + x̃1/ξ
2

)3 g
′

(ωx) −
(x̃1 x̃2)

2
ξ g

′′

(ωx)(
x̃1/ξ

1 + x̃1/ξ
2

)4

]
, (A.1)

as x1 → xF
1 and x2 → xF

2 such that ωx → ω∗x ∈ (0, 1). We now apply the transformation (X1, X2) → (R,W), where
R = X1 + X2 and W = (σ1 + ξX1){(σ1 + ξX1) + (σ2 + ξX2)}−1. For rF = −(σ1/ξ + σ2/ξ) the upper-endpoint of R, the
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density of (R,W) as r → rF , is fR,W (r,w) ∼ (−ξ)−
1
ηξ −1η−1(σ1 + σ2)

1
ηξ (rF − r)−

1
ηξ −1g∗(w), where

g∗(w) = η(σ1 + σ2)
1
ηξ (−ξ)−1(σ1σ2)

1
ηξ {w(1 − w)}−

1
2ηξ −1

[
(4η2)−1g (tw)

+

(
w(1 − w)
σ1σ2

) 1
ξ (w/σ1)1/ξ − ((1 − w)/σ2)1/ξ(

(w/σ1)1/ξ + ((1 − w)/σ2)1/ξ
)3 g

′

(tw) −

(
w(1 − w)(σ1σ2)−1

) 2
ξ(

(w/σ1)1/ξ + ((1 − w)/σ2)1/ξ
)4 g

′′

(tw)
]
,

and tw = (w/σ1)1/ξ
{
(w/σ1)1/ξ + ((1 − w)/σ2)1/ξ

}−1
∈ (0, 1). The support of W is independent of R given that R is

above u = max{xF
1 , x

F
2 }. Consider the survival function of R as s→ rF , so s > u, then

Pr{R ≥ s} ∼
∫ ∞

s

∫ 1

0

(−ξ)−
1
ηξ −1

η(σ1 + σ2)−
1
ηξ

(rF − r)−
1
ηξ −1g∗(w)dwdr ∼ K

(
1 + ξ

s
σ1 + σ2

)− 1
ηξ

, (A.2)

with K =
∫ 1

0 g∗(w)dw < ∞.
Positive Shape Case (ξ > 0). We use the inclusion-exclusion formula to write Pr{R ≥ r} in terms of events

{R ≥ r ∩ X1 > u1} and {R ≥ r ∩ X2 > u2} for any fixed constants u1, u2 > 0. We first derive Pr{R ≥ r ∩ X1 > u1}

for large u1. Assume that limit (10) holds for a(y) = αy and b(y) = yβ for some α ∈ [0, 1] and β ∈ [0, 1] for
some large u. We denote the residual distribution by GZ(·) and assume it is differentiable with density gZ . Then the
joint density of (Y1,Y2)|Y1 > u is f(Y1,Y2)|Y1>u(y1, y2) = exp(−y1)y−β1 gZ

(
(y2 − αy1)y−β1

)
, for y1 > u1 and y2 ≥ 0. We

now transform to heavy tailed marginals X1 ∼ GPD(σ1, ξ) and X2 ∼ GPD(σ2, ξ) for ξ > 0 through the transfor-
mation (Y1,Y2) → (X1, X2) where Yi = 1

ξ
log(1 + ξXi/σi) for i ∈ {1, 2}. We also note that Y1 > u is equivalent to

X1 > σ1
ξ

{
exp(ξu) − 1

}
:= u1 and so we rewrite the condition as X1 > u1. The joint density of (X1, X2)|X1 > u1 is

f(X1,X2)|X1>u1 (x1, x2) = ξβ(σ1σ2)−1 x̃−1
2 x̃−1/ξ−1

1
{
log (x̃1)

}−β gZ
(
z∗x

)
, for large u and where x̃i = 1 + ξxi/σi for i ∈ {1, 2}

and z∗x = ξβ−1{log(x̃1)}−β[log(x̃2) − α log(x̃1)] where z∗x ∈ R if β < 1 and z∗x ≥ −α, otherwise. A transformation
(X1, X2)→ (R,T = − log(1 − X1/R)/ log(R)) gives, for t ∈ (0,∞) and as r → ∞, joint density

f(R,T )|X1>u1 (r, t) ∼ r−1/ξ−1r1−t{log(r)}1−βξβ−1ξ−1/ξσ
1/ξ
1 σ−1

2

(
1 + ξr1−t/σ2

)−1
gZ

(
z∗t

)
,

where z∗t ∼ ξ
β−1

[
log

(
1 + ξr1−t/σ2

)
− α log (r)

] {
log (r)

}−β. Hence, as r → ∞,

fR|X1>u1 (r) ∼ (ξ/σ1)−1/ξ r−1/ξ−1
∫ ∞

0
r1−t{log(r)}1−βξβ−1σ−1

2

(
1 + ξr1−t/σ2

)−1
gZ

(
z∗t

)
dw

∼ σ
1/ξ
1 (ξr)−1/ξ−1

[
ḠZ

(
z∗t

)]∞
0
∼ KGσ

1/ξ
1 (ξr)−1/ξ−1, (A.3)

as r → ∞ and where KG equals ḠZ(0) if α = 0, ḠZ(−α) − ḠZ(1 − α) if β = 1, and 1 otherwise, and so Pr{R ≥
s ∩ Xi > ui} ∼ exp(−u)KGξ

−1/ξσ
1/ξ
i s−1/ξ, for i ∈ {1, 2}, as s → ∞ and for large u. Now consider Pr{R ≥ s|(X1 >

u1 ∩ X2 > u2)}, which we derive using characterisation (9). The density of (X1, X2) is given by (A.1). We perform the
transformation (X1, X2) → (R,W = X1/R) and it follows that f(R,W)|(X1>u1∩X2>u2)(r,w) ∼ (σ1σ2)−1rg∗(r,w) as r → ∞
for w ∈ [u1/r, 1 − u2/r], where

g∗(r,w) = (1 + ξrw/σ1)−
1

2ηξ −1 (1 + ξr(1 − w)/σ2)−
1

2ηξ −1

×

[
(4η2)−1g(tr,w) + tr,w(1 − tr,w)(2tr,w − 1)g

′

(tr,w) − t2
r,w(1 − tr,w)2g

′′

(tr,w)
]
, (A.4)

and tr,w = (1 + ξrw/σ1)1/ξ
[
(1 + ξrw/σ1)1/ξ + (1 + ξr(1 − w)/σ2)1/ξ

]−1
. It follows that, as r → ∞, that fR|(X1>u1∩X2>u2)(r) ∼

(σ1σ2)−1rI(r), where I(r) =
∫ 1−u2/r

u1/r
g∗(r,w)dw for g∗ in (A.4). To evaluate I(r), we consider two cases, each with

I(r) < ∞.
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Case 1. We assume Condition 2. Let I(r) = Id(r) + I1(r) + I2(r), where Id(r) =
∫ 1−d2

d1
g∗(r,w)dw, I1(r) =∫ d1

u1/r
g∗(r,w)dw, and I2 =

∫ 1−u2/r
1−d2

g∗(r,w)dw, where d1 and d2 are constants chosen such that d1 > u1/r, d2 > u2/r and
d1 < 1 − d2. We show that, as r → ∞, we have that I(r) ∼ I1(r) + I2(r). First, consider Id(r). As r → ∞, we have that
tr,w ∼ (w/σ1)1/ξ

[
(w/σ1)1/ξ + ((1 − w)/σ2)1/ξ

]−1
:= tw, and it follows that g∗(r,w) ∼ ξ−

1
ηξ −2(σ1σ2)

1
2ηξ +1r−

1
ηξ −2hw(w),

where
hw(w) = w−

1
2ηξ −1(1 − w)−

1
2ηξ −1

[
(4η2)−1g(tw) + tw(1 − tw)(2tw − 1)g

′

(tw) − t2
w(1 − tw)2g

′′

(tr,w)
]
.

Thus, we have Id(r) ∼ Kdr−
1
ηξ −2 for constant Kd = ξ−

1
ηξ −2(σ1σ2)

1
2ηξ +1

∫ 1−d2

d1
hw(w)dw > 0. Now, consider I1(r). We

begin by noting that as r → ∞ and for w ∈ [u1/r, c1], we have tr,w → 0. From (A.4), it follows that

g∗(r,w) ∼ Kg

(
(4η2)−1 − κ2

)
ξ−

1
2ηξ −

κ
ξ −1(σ2)

1
2ηξ + κ

ξ +1r−
1

2ηξ −
κ
ξ −1 (1 + ξrw/σ1)−

1
2ηξ + κ

ξ −1 ,

for Kg > 0 defined in Condition 2, and I1(r) ∼ K4r−
1

2ηξ −
κ
ξ −2 for

K4 =
(
(2η)−1 − κ

)−1
Kg

(
1/4η2 − κ2

)
ξ−

1
2ηξ −

κ
ξ −1(σ2)

1
2ηξ + κ

ξ +2 (1 + ξu1/σ1)−
1

2ηξ + κ
ξ > 0

and where the last line follows as − 1
2ηξ + κ

ξ
< 0. By symmetry, I2(r) ∼ K5r−

1
2ηξ −

κ
ξ −2 for constant

K5 = (κ − 1/(2η))−1 Kg

(
1/(4η2) − κ2

)
ξ−

1
2ηξ −

κ
ξ −1(σ1)

1
2ηξ + κ

ξ +2 (1 + ξu2/σ2)−
1

2ηξ + κ
ξ > 0.

It follows that I(r) ∼ I1(r)+ I2(r) ∼ (K4 + K5)r−
1

2ηξ −
κ
ξ −2 as r → ∞. Hence, Pr{R ≥ s|(X1 > u1)∩ (X2 > u2)} ∼ K6s−

1
2ηξ −

κ
ξ

as s→ ∞, where K6 = ξ(σ1σ2)−1(K4 + K5)(1/2η+ κ)−1 > 0. Recall that ui = σi
ξ

{
exp(ξu) − 1

}
for i ∈ {1, 2}. From (9),

we have Pr{(R ≥ r) ∩ (X1 > u1) ∩ (X2 > u2)} ∼ K6 exp (−u/η) g (1/2) r−
1

2ηξ −
κ
ξ , as r → ∞ and for large u. Combining

all terms, we have Pr{R ≥ r} ∼ K+
u r−1/ξ as r → ∞, where

K+
u =

exp(−u)KGξ
−1/ξ(σ1/ξ

1 + σ
1/ξ
2 ) − K6 exp (−u/η) g (1/2) , if 1

2η + κ = 1,
exp(−u)KGξ

−1/ξ(σ1/ξ
1 + σ

1/ξ
2 ), if 1

2η + κ > 1,
(A.5)

for KG defined in (A.3). Note that as η ∈ [1/2, 1] and κ < 1/(2η), we have 1
2η + κ ≥ 1.

Case 2. We now assume that g satisfies Condition 3 with η = 1. Then I(r) ∼
∫ 1

0 g∗(r,w)dw, for g∗ defined
in (A.4) as we have that g∗(r,w) ∼ C1(r) as w → 0 and g∗2(w) ∼ C2(r) as w → 1, where C1(r),C2(r) > 0
are constants with respect to w. As g satisfies Condition 3, we have for sr,w = (1 − tr,w)/tr,w that g∗(r,w) =

(1 + ξrw/σ1)−
1
ξ −1 (1 + ξr(1 − w)/σ2)−1 sr,w

{
−H12

(
1, sr,w

)}
, and it follows, as r → ∞, that

I(r) ∼
∫ 1

0
(1 + ξrw/σ1)−

1
ξ −1 (1 + ξr(1 − w)/σ2)−1 sr,w

{
−H12

(
1, sr,w

)}
dw ∼ ξ−

1
ξ −1(σ1σ2)

1
2ξ r−

1
ξ −1

∫ 1

0
g∗2(w)dw,

where tr,w ∼ (w/σ1)1/ξ
[
(w/σ1)1/ξ + ((1 − w)/σ2)1/ξ

]−1
:= tw as r → ∞ and, for sw = (1 − tw)/tw, we have g∗2(w) =

(σ1/σ2)
1
2ξ ξ−1w−

1
2ξ −1(1 − w)−1sw {−H12 (1, sw)}. It follows from above and (9) that

Pr{(R ≥ r) ∩ (X1 > u1) ∩ (X2 > u2)} ∼ K exp(−u)g (1/2) ξ−
1
ξ (σ1σ2)

1
2ξ r−

1
ξ , (A.6)

as r → ∞ and for large u and where K =
∫ 1

0 g∗2(w)dw. Combining all terms, we have

Pr{R ≥ r} ∼ exp(−u)KGξ
−1/ξ

(
σ

1/ξ
1 + σ

1/ξ
2

)
r−1/ξ − K exp(−u)g (1/2) ξ−

1
ξ (σ1σ2)

1
2ξ r−

1
ξ ,

as r → ∞. Combining Cases 1 and 2 we have that Pr{R ≥ s} ∼ K∗u s−
1
ξ as s→ ∞, where

K∗u = K+
u for Case 1, K∗u = exp(−u)ξ−1/ξ

{
KG(σ1/ξ

1 + σ
1/ξ
2 ) − ξKg (1/2) (σ1σ2)

1
2ξ

}
for Case 2, (A.7)
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and for K+
u and KG defined in (A.5) and (A.3), respectively.

Proof of Theorem 2. We derive the joint density of (X1, X2) implied by the dependence model given in (9) and
transform (X1, X2)→ (R,W), where R = X1 + X2 and W is an auxiliary variable. By making assumptions about g(w),
we can integrate W out and derive the survival function of R. From (9) and (2), we have

Pr
{

1 − exp
{
−

X1

σ1

}
> 1 −

1
x1
, 1 − exp

{
−

X2

σ2

}
> 1 −

1
x2

}
=
L(x1 + x2)

(x1x2)
1
2η

g
(

x1

x1 + x2

)
,

as x1, x2 → ∞ such that the limit of x1/(x1 + x2) is bounded by (0, 1). Under the assumption that L(y) acts as a
constant which can be absorbed by g for y > v for some v > 0, we have Pr {X1 > x1, X2 > x2} ∼ (x̃1 x̃2)−

1
2η g (ωx) as

x1, x2 → ∞ such that ωx = x̃1/(x̃1 + x̃2) → ω∗x ∈ (0, 1) and where x̃i = exp(xi/σi) for i ∈ {1, 2}; this implies that
x2 ∼ σ2

(
x1
σ1

+ log
( 1−ω∗x

ω∗x

))
as x1 → ∞. Under the assumption that the first and second derivatives of g exist, and the

transformation (X1, X2) → (R,W), the density of (R,W) is fR,W (r,w) ∼ {η(σ1 + σ2)}−1 exp
(
−r{η(σ1 + σ2)}−1

)
g∗(w),

for w ∈ [−r/σ2, r/σ1] and as r → ∞, and where

g∗(w) = η exp
(
−

(σ2 − σ1)w
2η(σ1 + σ2)

) [
g(tw)
4η2 + tw(1 − tw)(2tw − 1)g

′

(tw) − t2
w(1 − tw)2g

′′

(tw)
]

(A.8)

and we have tw ∈ (0, 1), where

tw = exp (σ2w/(σ1 + σ2))
[
exp (σ2w/(σ1 + σ2)) + exp (−σ1w/(σ1 + σ2))

]−1
= exp (w) [exp (w) + 1]−1 ∈ (0, 1),

which follows by multiplying the denominator and numerator of tw by exp(σ1w/(σ1 + σ2)). It follows that with
I(r) =

∫ r/σ1

−r/σ2
g∗(w)dw, as r → ∞,

fR(r) =

∫ r/σ1

−r/σ2

fR,W (r,w)dw ∼ I(r)(η(σ1 + σ2))−1 exp
{
−r(η(σ1 + σ2))−1

}
. (A.9)

To evaluate I(r) < ∞, we make different assumptions on how g(w) behaves; we consider two cases.
Case 1. We assume Condition 1. Hence, I(r) in (A.9) becomes

I(r) =

∫ r/σ1

−r/σ2

1
4η

exp
{
−

(σ2 − σ1)w
2η(σ1 + σ2)

}
dw

=

 (σ1+σ2)r
4ησ1σ2

, if σ1 = σ2,
σ1+σ2

2(σ2−σ1)

[
exp

{
−

(σ1−σ2)r
2ησ2(σ1+σ2)

}
− exp

{
−

(σ2−σ1)r
2ησ1(σ1+σ2)

}]
, if σ1 , σ2.

When σ1 = σ2 = σ (say), the marginal density of R is fR(r) ∼ r(4η2σ2)−1 exp
{
−r(2ησ)−1

}
as r → ∞, hence,

Pr{R ≥ r} ∼ r(2ησ)−1 exp(−r/(2ησ)) as r → ∞. Whereas when σ1 , σ2, we assume, without loss of generality, that
σ2 > σ1. Then the marginal density of R is

fR(r) ∼
1

2η(σ2 − σ1)
exp

{
(σ2 − σ1)r

2ησ2(σ1 + σ2)

}
exp

{
−

r
η(σ1 + σ2)

}
∼

1
2η(σ2 − σ1)

exp
{
−

r
2ησ2

}
,

as r → ∞ and so Pr{R ≥ s} ∼ σ2/(σ2 − σ1) exp {−s/(2ησ2)} as s → ∞. By symmetry, this can be written as
Pr{R ≥ r} ∼ [σmax/(σmax − σmin)] exp (−r/2ησmax), as r → ∞ where σmax = max{σ1, σ2} and σmin = min{σ1, σ2}.

Case 2. Assume that Conditions 3 and 3a hold with η = 1. Then

I(r) =

∫ r/σ1

−r/σ2

g∗(w)dw ∼
∫ ∞

−∞

g∗(w)dw := K, (A.10)

for finite constant K > 0, as g∗(w) = − exp(aw)H12
(
1, exp(−w)

)
where a = σ1/(σ1 + σ2) − 2 ∈ (−2,−1), so

g∗(w) ∼ KH1 exp((a − c1)w) → 0 as w → ∞ and g∗(w) ∼ KH2 exp((a − c2)w) → 0 as w → −∞, where the first limit
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follows as a − c1 < −2 < 0 and the second follows as a − c2 > 0. Hence, (A.10) holds, and it follows that the survival
function of R as s→ ∞ is

Pr{R ≥ s} ∼
∫ ∞

s
K(σ1 + σ2)−1 exp

{
−r(σ1 + σ2)−1

}
dr = K exp

{
−s(σ1 + σ2)−1

}
.

Proof of Theorem 3. The framework of the proof follows that of the ξ < 0 case for Theorem 1. Combining (9)
and (2), we have that

Pr

1 −
(
1 + ξ1

X1

σ1

)−1/ξ1

> 1 −
1
x1
, 1 −

(
1 + ξ2

X2

σ2

)−1/ξ2

> 1 −
1
x2

 =
L(x1 + x2)

(x1x2)
1
2η

g
(

x1

x1 + x2

)
,

as x1, x2 → ∞ such that the limit of x1/(x1 +x2) is bounded by (0, 1). Under the assumption thatL(y) acts as a constant

which can be absorbed by g for y > v for some v > 0, we have Pr {X1 > x1, X2 > x2} ∼ x̃
− 1

2ηξ1
1 x̃

− 1
2ηξ2

2 g (ωx) for x1 → xF
1

and x2 → xF
2 , such that ωx = x̃1/ξ1

1 /(x̃1/ξ1
1 + x̃1/ξ2

2 ) → ω∗x ∈ (0, 1) and where x̃i = (1 + ξixi/σi) for i ∈ {1, 2}. Assuming
that the first and second derivatives of g exist, and applying the transformation (X1, X2)→ (R,W), where R = X1 + X2
and W = (σ1/ξ1 + X1)

[
(σ1/ξ1 + X1) + (σ2/ξ2 + X2)

]−1, the density of (R,W) as r → rF for rF = −(σ1/ξ1 + σ2/ξ2)
the upper-endpoint of R is

fR,W (r,w) ∼ (−ξ1)−
1

2ηξ1
−1(−ξ2)−

1
2ηξ2
−1
σ

1
2ηξ1
1 σ

1
2ηξ2
2

(
rF − r

)− 1
2ηξ1
− 1

2ηξ2
−1

w−
1

2ηξ1
−1(1 − w)−

1
2ηξ2
−1

×

[
(4η2)−1g

(
tr,w

)
+ tr,w(1 − tr,w)(2tr,w − 1)g

′ (
tr,w

)
− t2

r,w(1 − tr,w)2g
′′ (

tr,w
) ]
, (A.11)

where tr,w =
{
−ξ1

(
rF − r

)
w/σ1

}1/ξ1
[{
−ξ1

(
rF − r

)
w/σ1

}1/ξ1
+

{
−ξ2

(
rF − r

)
(1 − w)/σ2

}1/ξ2
]−1

. It follows that the
support of W ∈ [0, 1] is independent of R|R > u when u = max{−σ1/ξ1,−σ2/ξ2}. If ξ1 > ξ2, we have tr,w → 1 as
r → rF , and so require assumptions on how g(t) behaves as t → 1. We consider two cases:

Case 1. Assume that Conditions 2 holds. Then the joint density of (R,W) is

fR,W (r,w) ∼ K1K2

(
rF − r

)− 1+2ηκ
2ηξ1
−

1−2ηκ
2ηξ2
−1

w−
1

2ηξ1
− κ
ξ1
−1(1 − w)−

1
2ηξ2

+ κ
ξ2
−1
,

as r → rF , for constants K1 = −
(
(1 + 2ηκ)(2ηξ1)−1 + (1 − 2ηκ)(2ηξ2)−1

)
(rF)

1+2ηκ
2ηξ1
−

1−2ηκ
2ηξ2 > 0 and K2 = −KgK−1

1 [(4η2)−1−

κ2](−ξ1)−
1

2ηξ1
− κ
ξ1
−1(−ξ2)−

1
2ηξ2

+ κ
ξ2
−1
σ

1
2ηξ1

κ
ξ1

1 σ
1

2ηξ2
− κ
ξ2

2 > 0. Then

Pr{R ≥ s} ∼ K(2)K1

∫ ∞

s

(
rF − r

)− 1+2ηκ
2ηξ1
−

1−2ηκ
2ηξ2
−1

dr ∼ K(2)

(
1 + ξ1ξ2

s
σ1ξ2 + σ2ξ2

)− 1+2ηκ
2ηξ1
−

1−2ηκ
2ηξ2

, (A.12)

as s → rF , and where K(2) = K2B
(
−[(2η)−1 − κ]/ξ1,−[(2η)−1 + κ]/ξ2

)
> 0; here B(·, ·) denotes the beta function and

both of its arguments are positive. The general result follows by replacing ξ1 and ξ2 with max{ξ1, ξ2} and min{ξ1, ξ2}

respectively and using the behaviour of g as t → 0 as well as t → 1.
Case 2. Assume that Condition 3b holds; recall that η = 1. From (A.11), the density of (R,W) for w ∈ [0, 1] as

r → rF is

fR,W (r,w) ∼
(
rF − r

)− 1
ξ1
−1

[
− sr,wH12

(
1, sr,w

) ]
g∗(w), (A.13)

where sr,w = (1 − tr,w)/tr,w and g∗(w) = (−ξ1)−
1
ξ1
−1(−ξ2)−1σ

1
ξ1
1 w−

1
ξ1
−1(1 − w)−1. To marginalise W out of (A.13), we

transform (R,W)→ (V,Z), where V = (rF − R)/rF and W = 1− VZ for Z ∈ (0,∞), and so large R now corresponds to
small V > 0. The joint density of (V,Z) for z ∈ (0,∞) as v ↓ 0 is

fV,Z(v, z) ∼ K2
(
− log(v)

)
(vrF)−

1
ξ1
− 1
ξ1

+ 1
ξ2
−1vz/ξ2

[
− xrH12

(
1, xr(vrF)−1/ξ1+1/ξ2 vz/ξ2

) ]
, (A.14)
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where K2 = (−ξ1)−
1
ξ1
−1(−ξ2)−1σ

1
ξ1
1 (rF)−1 > 0 and xF

i = −ξi/σi for i ∈ {1, 2} and the ratio xr := (xF
2 )1/ξ2/(xF

1 )1/ξ1 .
Consider now the integral

I1(v) =
xr

ξ2

∫ ∞

0
log(v)(vrF)−1/ξ1+1/ξ2 vz/ξ2 S 1(v, z)dz = H1 (1,∞) − H1

(
1, xr(vrF)−1/ξ1+1/ξ2

)
,

where S 1(v, z) = H12

(
1, xr(vrF)−1/ξ1+1/ξ2 vz/ξ2

)
. Then as v ↓ 0,

fV (v) ∼ K2ξ2(vrF)−
1
ξ1
−1I1(v) ∼ K2ξ2H1 (1,∞) (vrF)−

1
ξ1
−1
, (A.15)

which follows as 1/ξ2 − 1/ξ1 > 0 and H1(1, z)→ 0 as z→ 0. Transforming back to R, then as r → rF ,

Pr{R ≥ r} ∼ K3

(
1 + ξ1ξ2

r
σ1ξ2 + σ2ξ2

)− 1
ξ1

for constant K3 = |H1 (1,∞) |(−ξ1)−
1
ξ1 (rF)−

1
ξ1 σ

1
ξ1
1 > 0. The general result follows by a symmetric argument replacing

ξ1 and ξ2 with ξmax = max{ξ1, ξ2} and ξmin = min{ξ1, ξ2} respectively; that is, the distribution function is of the form
Pr{R ≥ r} ∼ K(3b) (1 + ξ1ξ2r/(σ1ξ2 + σ2ξ2))−

1
ξmax as r → rF where

K(3b) =

|H1 (1,∞) |(−ξ1)−
1
ξ1 (rF)−

1
ξ1 σ

1
ξ1
1 > 0, if ξmax = ξ1,

|H2 (∞, 1) |(−ξ2)−
1
ξ2 (rF)−

1
ξ2 σ

1
ξ2
2 > 0, if ξmax = ξ2.

(A.16)

Proof of Theorem 4. For X1 ∼ GPD(σ1, ξ1) and X2 ∼ GPD(σ2, ξ2) consider four cases: (ξ1 > ξ2, ξ2 > 0),
(ξ1 > 0, ξ2 < 0), (ξ1 > 0, ξ2 = 0), (ξ1 = 0, ξ2 < 0) and (ξ1 > ξ2, ξ2 > 0); the other cases follow by symmetry. We
present details only for ξ1 = 0 and ξ2 < 0 as the other cases are covered by Breiman’s lemma [1] since in each of the
other cases at least one of the shape parameters is positive; so let X1 ∼ GPD(σ1, 0) and X2 ∼ GPD(σ2, ξ2 < 0).

The proof follows by considering the limiting cases of association, i.e., perfect positive dependence and perfect
negative dependence, between X1 and X2. The result is then easily extended for any X1 and X2. To illustrate this, let RD

and RN be R such that X1 and X2 are perfectly positively-dependent, and perfectly negatively-dependent, respectively.
For any y > 0, we have

min {Pr{RD ≥ y},Pr{RN ≥ y}} ≤ Pr{R ≥ y} ≤ max {Pr{RD ≥ y},Pr{RN ≥ y}} . (A.17)

We show, as y → ∞, that Pr{RD ≥ y} ∼ CDS (y) and Pr{RN ≥ y} ∼ CNS (y) for some function S (y) and constants
CD,CN > 0. Hence by (A.17), it follows that limy→∞ Pr{R ≥ y}/S (y) = C for C ∈ [min{CD,CN},max{CD,CN}].

For perfect positive dependence X2 = F−1
2 {F1(X1)} and Pr{RD ≥ r} = Pr{X1 + F−1

2 {F1(X1)} ≥ r} = Pr{X1 ≥ x∗}
where x∗ solves r = x∗ + F−1

2 {F1(x∗)}. We show Pr{X1 ≥ x∗} ∼ Pr{X1 ≥ r} as r → ∞. To solve for x∗, we begin
with the initial solution x∗0 = r and consider x∗1 = r + ε. Using X2 = σ2

[
−1 + exp (X1/(σ1/ξ2))

]
/ξ2, this gives

ε = −σ2
[
−1 + exp (r/(σ1/ξ2))

]
/ξ2 → σ2/ξ2 as r → ∞ as ξ2 < 0 and hence x∗ ∼ r

{
1 + O

(
exp(r/(σ1ξ2))/r

)}
+σ2/ξ2,

as r → ∞. It follows that, as r → ∞ and for constant CD = exp(−σ2/(σ1ξ2)) > 1,

Pr{RD ≥ r} = exp
(
−r

{
1 + O

(
exp(r/(σ1ξ2))/r

)}
/σ1 − σ2/(σ1ξ2)

)
∼ CD Pr{X1 ≥ r}.

A similar approach is taken for perfect negative dependence; here X2 = 1 − F−1
2 {F1(X1)} and Pr{RN ≥ r} =

Pr{X1 + 1 − F−1
2 {F1(X1)} ≥ r} = Pr{X1 ≥ x∗} where x∗ solves r = x∗ + 1 − F−1

2 {F1(x∗)}, and we show Pr{X1 ≥ x∗} ∼
Pr{X1 ≥ r} as r → ∞. To solve for x∗, we begin with the initial solution x∗0 = r and consider x∗1 = r + ε. With
X2 = σ2

[
−1 +

(
1 − exp (−X1/σ1)

)−1/ξ2
]
/ξ2, this gives ε = −σ2

[
−1 +

(
1 − exp (−r/σ1)

)−1/ξ2
]
/ξ2 → 0 as r → ∞ as

ξ2 < 0 and hence x∗ ∼ r
{
1 + O

([(
1 − exp(−r/σ1)

)−1/ξ2 − 1
]
/r

)}
, as r → ∞. It follows that, as r → ∞ and for constant

CN = 1,
Pr{RN ≥ r} = exp

(
−r

{
1 + O

([(
1 − exp(−r/σ1)

)−1/ξ2 − 1
]
/r

)}
/σ1

)
∼ CN Pr{X1 ≥ r}.
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Note that as ξ2 < 0, then CD > CN = 1. Hence by (A.17), we have that for general X1 and X2 with any association,
that Pr{R > r} ∼ C Pr{X1 ≥ r} ∼ C exp(−r/σ1) as r → ∞ for C ∈ [1,C∗D]; by symmetry, to also cover the X1 ∼

GPD(σ1, ξ1 < 0) and X2 ∼ GPD(σ2, 0), we have

C∗D = exp(−σmin/(σmaxξmin)) > 1, (A.18)

where ξmin = min{ξ1, ξ2} < 0, σmax = {σi; i is s.t. ξi = 0} and σmin = {σi; i is s.t. ξi = ξmin}.

Appendix B. Linking (8) to the usual GPD modelling framework

Assume that (8) holds in equality, rather than asymptotically (as in = not ∼), for r ≥ uR for fixed uR ≥ 0. If ξR > 0,
we have Pr{R ≥ r} = K1r−1/ξR for r ≥ uR, and then for r > 0

Pr{R ≥ r + uR|R > uR} =
K1(r + uR)−1/ξR

K1u−1/ξR
R

=

(
1 +

r
uR

)−1/ξR

=

(
1 +

ξRr
uRξR

)−1/ξR

.

It follows that (R − uR) | (R > uR) ∼ GPD(σR, ξR), with σR = uRξR. A similar approach can be used to show that if
ξR = 0, then (R − uR) | (R > uR) is GPD(σR, 0). For ξR < 0 and r > 0 with r + uR < rF , we have

Pr{R ≥ r + uR|R > uR} =
K3

(
1 − r+uR

rF

)−1/ξR

K3

(
1 − uR

rF

)−1/ξR
=

(
1 −

r
(rF − uR)

)−1/ξR

=

(
1 + ξR

r
(−ξR)(rF − uR)

)−1/ξR

,

and so (R − uR) | (R > uR) ∼ GPD(σR, ξR), with σR = (−ξR)(rF − uR). Note that we have made no assumptions about
rF as this is fully determined by the marginal upper-endpoints.
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